xref: /freebsd/sys/vm/vm_page.c (revision c74c7b73a005e689b922dfcfe5b94804669b595b)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- a pageq mutex is required when adding or removing a page from a
67  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68  *	  busy state of a page.
69  *
70  *	- a hash chain mutex is required when associating or disassociating
71  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
72  *	  regardless of other mutexes or the busy state of a page.
73  *
74  *	- either a hash chain mutex OR a busied page is required in order
75  *	  to modify the page flags.  A hash chain mutex must be obtained in
76  *	  order to busy a page.  A page's flags cannot be modified by a
77  *	  hash chain mutex if the page is marked busy.
78  *
79  *	- The object memq mutex is held when inserting or removing
80  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
81  *	  is different from the object's main mutex.
82  *
83  *	Generally speaking, you have to be aware of side effects when running
84  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
85  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
86  *	vm_page_cache(), vm_page_activate(), and a number of other routines
87  *	will release the hash chain mutex for you.  Intermediate manipulation
88  *	routines such as vm_page_flag_set() expect the hash chain to be held
89  *	on entry and the hash chain will remain held on return.
90  *
91  *	pageq scanning can only occur with the pageq in question locked.
92  *	We have a known bottleneck with the active queue, but the cache
93  *	and free queues are actually arrays already.
94  */
95 
96 /*
97  *	Resident memory management module.
98  */
99 
100 #include <sys/cdefs.h>
101 __FBSDID("$FreeBSD$");
102 
103 #include "opt_vm.h"
104 
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/lock.h>
108 #include <sys/kernel.h>
109 #include <sys/limits.h>
110 #include <sys/malloc.h>
111 #include <sys/mutex.h>
112 #include <sys/proc.h>
113 #include <sys/sysctl.h>
114 #include <sys/vmmeter.h>
115 #include <sys/vnode.h>
116 
117 #include <vm/vm.h>
118 #include <vm/vm_param.h>
119 #include <vm/vm_kern.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_pager.h>
124 #include <vm/vm_phys.h>
125 #include <vm/vm_reserv.h>
126 #include <vm/vm_extern.h>
127 #include <vm/uma.h>
128 #include <vm/uma_int.h>
129 
130 #include <machine/md_var.h>
131 
132 /*
133  *	Associated with page of user-allocatable memory is a
134  *	page structure.
135  */
136 
137 struct vpgqueues vm_page_queues[PQ_COUNT];
138 struct mtx vm_page_queue_mtx;
139 struct mtx vm_page_queue_free_mtx;
140 
141 vm_page_t vm_page_array = 0;
142 int vm_page_array_size = 0;
143 long first_page = 0;
144 int vm_page_zero_count = 0;
145 
146 static int boot_pages = UMA_BOOT_PAGES;
147 TUNABLE_INT("vm.boot_pages", &boot_pages);
148 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
149 	"number of pages allocated for bootstrapping the VM system");
150 
151 static void vm_page_enqueue(int queue, vm_page_t m);
152 
153 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
154 #if PAGE_SIZE == 32768
155 #ifdef CTASSERT
156 CTASSERT(sizeof(u_long) >= 8);
157 #endif
158 #endif
159 
160 /*
161  *	vm_set_page_size:
162  *
163  *	Sets the page size, perhaps based upon the memory
164  *	size.  Must be called before any use of page-size
165  *	dependent functions.
166  */
167 void
168 vm_set_page_size(void)
169 {
170 	if (cnt.v_page_size == 0)
171 		cnt.v_page_size = PAGE_SIZE;
172 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
173 		panic("vm_set_page_size: page size not a power of two");
174 }
175 
176 /*
177  *	vm_page_blacklist_lookup:
178  *
179  *	See if a physical address in this page has been listed
180  *	in the blacklist tunable.  Entries in the tunable are
181  *	separated by spaces or commas.  If an invalid integer is
182  *	encountered then the rest of the string is skipped.
183  */
184 static int
185 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
186 {
187 	vm_paddr_t bad;
188 	char *cp, *pos;
189 
190 	for (pos = list; *pos != '\0'; pos = cp) {
191 		bad = strtoq(pos, &cp, 0);
192 		if (*cp != '\0') {
193 			if (*cp == ' ' || *cp == ',') {
194 				cp++;
195 				if (cp == pos)
196 					continue;
197 			} else
198 				break;
199 		}
200 		if (pa == trunc_page(bad))
201 			return (1);
202 	}
203 	return (0);
204 }
205 
206 /*
207  *	vm_page_startup:
208  *
209  *	Initializes the resident memory module.
210  *
211  *	Allocates memory for the page cells, and
212  *	for the object/offset-to-page hash table headers.
213  *	Each page cell is initialized and placed on the free list.
214  */
215 vm_offset_t
216 vm_page_startup(vm_offset_t vaddr)
217 {
218 	vm_offset_t mapped;
219 	vm_paddr_t page_range;
220 	vm_paddr_t new_end;
221 	int i;
222 	vm_paddr_t pa;
223 	int nblocks;
224 	vm_paddr_t last_pa;
225 	char *list;
226 
227 	/* the biggest memory array is the second group of pages */
228 	vm_paddr_t end;
229 	vm_paddr_t biggestsize;
230 	vm_paddr_t low_water, high_water;
231 	int biggestone;
232 
233 	biggestsize = 0;
234 	biggestone = 0;
235 	nblocks = 0;
236 	vaddr = round_page(vaddr);
237 
238 	for (i = 0; phys_avail[i + 1]; i += 2) {
239 		phys_avail[i] = round_page(phys_avail[i]);
240 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
241 	}
242 
243 	low_water = phys_avail[0];
244 	high_water = phys_avail[1];
245 
246 	for (i = 0; phys_avail[i + 1]; i += 2) {
247 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
248 
249 		if (size > biggestsize) {
250 			biggestone = i;
251 			biggestsize = size;
252 		}
253 		if (phys_avail[i] < low_water)
254 			low_water = phys_avail[i];
255 		if (phys_avail[i + 1] > high_water)
256 			high_water = phys_avail[i + 1];
257 		++nblocks;
258 	}
259 
260 #ifdef XEN
261 	low_water = 0;
262 #endif
263 
264 	end = phys_avail[biggestone+1];
265 
266 	/*
267 	 * Initialize the locks.
268 	 */
269 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
270 	    MTX_RECURSE);
271 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
272 	    MTX_DEF);
273 
274 	/*
275 	 * Initialize the queue headers for the hold queue, the active queue,
276 	 * and the inactive queue.
277 	 */
278 	for (i = 0; i < PQ_COUNT; i++)
279 		TAILQ_INIT(&vm_page_queues[i].pl);
280 	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
281 	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
282 	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
283 
284 	/*
285 	 * Allocate memory for use when boot strapping the kernel memory
286 	 * allocator.
287 	 */
288 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
289 	new_end = trunc_page(new_end);
290 	mapped = pmap_map(&vaddr, new_end, end,
291 	    VM_PROT_READ | VM_PROT_WRITE);
292 	bzero((void *)mapped, end - new_end);
293 	uma_startup((void *)mapped, boot_pages);
294 
295 #if defined(__amd64__) || defined(__i386__) || defined(__arm__)
296 	/*
297 	 * Allocate a bitmap to indicate that a random physical page
298 	 * needs to be included in a minidump.
299 	 *
300 	 * The amd64 port needs this to indicate which direct map pages
301 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
302 	 *
303 	 * However, i386 still needs this workspace internally within the
304 	 * minidump code.  In theory, they are not needed on i386, but are
305 	 * included should the sf_buf code decide to use them.
306 	 */
307 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
308 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
309 	new_end -= vm_page_dump_size;
310 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
311 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
312 	bzero((void *)vm_page_dump, vm_page_dump_size);
313 #endif
314 	/*
315 	 * Compute the number of pages of memory that will be available for
316 	 * use (taking into account the overhead of a page structure per
317 	 * page).
318 	 */
319 	first_page = low_water / PAGE_SIZE;
320 #ifdef VM_PHYSSEG_SPARSE
321 	page_range = 0;
322 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
323 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
324 #elif defined(VM_PHYSSEG_DENSE)
325 	page_range = high_water / PAGE_SIZE - first_page;
326 #else
327 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
328 #endif
329 	end = new_end;
330 
331 	/*
332 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
333 	 */
334 	vaddr += PAGE_SIZE;
335 
336 	/*
337 	 * Initialize the mem entry structures now, and put them in the free
338 	 * queue.
339 	 */
340 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
341 	mapped = pmap_map(&vaddr, new_end, end,
342 	    VM_PROT_READ | VM_PROT_WRITE);
343 	vm_page_array = (vm_page_t) mapped;
344 #if VM_NRESERVLEVEL > 0
345 	/*
346 	 * Allocate memory for the reservation management system's data
347 	 * structures.
348 	 */
349 	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
350 #endif
351 #ifdef __amd64__
352 	/*
353 	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
354 	 * so the pages must be tracked for a crashdump to include this data.
355 	 * This includes the vm_page_array and the early UMA bootstrap pages.
356 	 */
357 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
358 		dump_add_page(pa);
359 #endif
360 	phys_avail[biggestone + 1] = new_end;
361 
362 	/*
363 	 * Clear all of the page structures
364 	 */
365 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
366 	for (i = 0; i < page_range; i++)
367 		vm_page_array[i].order = VM_NFREEORDER;
368 	vm_page_array_size = page_range;
369 
370 	/*
371 	 * Initialize the physical memory allocator.
372 	 */
373 	vm_phys_init();
374 
375 	/*
376 	 * Add every available physical page that is not blacklisted to
377 	 * the free lists.
378 	 */
379 	cnt.v_page_count = 0;
380 	cnt.v_free_count = 0;
381 	list = getenv("vm.blacklist");
382 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
383 		pa = phys_avail[i];
384 		last_pa = phys_avail[i + 1];
385 		while (pa < last_pa) {
386 			if (list != NULL &&
387 			    vm_page_blacklist_lookup(list, pa))
388 				printf("Skipping page with pa 0x%jx\n",
389 				    (uintmax_t)pa);
390 			else
391 				vm_phys_add_page(pa);
392 			pa += PAGE_SIZE;
393 		}
394 	}
395 	freeenv(list);
396 #if VM_NRESERVLEVEL > 0
397 	/*
398 	 * Initialize the reservation management system.
399 	 */
400 	vm_reserv_init();
401 #endif
402 	return (vaddr);
403 }
404 
405 void
406 vm_page_flag_set(vm_page_t m, unsigned short bits)
407 {
408 
409 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
410 	m->flags |= bits;
411 }
412 
413 void
414 vm_page_flag_clear(vm_page_t m, unsigned short bits)
415 {
416 
417 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
418 	m->flags &= ~bits;
419 }
420 
421 void
422 vm_page_busy(vm_page_t m)
423 {
424 
425 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
426 	KASSERT((m->oflags & VPO_BUSY) == 0,
427 	    ("vm_page_busy: page already busy!!!"));
428 	m->oflags |= VPO_BUSY;
429 }
430 
431 /*
432  *      vm_page_flash:
433  *
434  *      wakeup anyone waiting for the page.
435  */
436 void
437 vm_page_flash(vm_page_t m)
438 {
439 
440 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
441 	if (m->oflags & VPO_WANTED) {
442 		m->oflags &= ~VPO_WANTED;
443 		wakeup(m);
444 	}
445 }
446 
447 /*
448  *      vm_page_wakeup:
449  *
450  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
451  *      page.
452  *
453  */
454 void
455 vm_page_wakeup(vm_page_t m)
456 {
457 
458 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
459 	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
460 	m->oflags &= ~VPO_BUSY;
461 	vm_page_flash(m);
462 }
463 
464 void
465 vm_page_io_start(vm_page_t m)
466 {
467 
468 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
469 	m->busy++;
470 }
471 
472 void
473 vm_page_io_finish(vm_page_t m)
474 {
475 
476 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
477 	m->busy--;
478 	if (m->busy == 0)
479 		vm_page_flash(m);
480 }
481 
482 /*
483  * Keep page from being freed by the page daemon
484  * much of the same effect as wiring, except much lower
485  * overhead and should be used only for *very* temporary
486  * holding ("wiring").
487  */
488 void
489 vm_page_hold(vm_page_t mem)
490 {
491 
492 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
493         mem->hold_count++;
494 }
495 
496 void
497 vm_page_unhold(vm_page_t mem)
498 {
499 
500 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
501 	--mem->hold_count;
502 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
503 	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
504 		vm_page_free_toq(mem);
505 }
506 
507 /*
508  *	vm_page_free:
509  *
510  *	Free a page.
511  */
512 void
513 vm_page_free(vm_page_t m)
514 {
515 
516 	m->flags &= ~PG_ZERO;
517 	vm_page_free_toq(m);
518 }
519 
520 /*
521  *	vm_page_free_zero:
522  *
523  *	Free a page to the zerod-pages queue
524  */
525 void
526 vm_page_free_zero(vm_page_t m)
527 {
528 
529 	m->flags |= PG_ZERO;
530 	vm_page_free_toq(m);
531 }
532 
533 /*
534  *	vm_page_sleep:
535  *
536  *	Sleep and release the page queues lock.
537  *
538  *	The object containing the given page must be locked.
539  */
540 void
541 vm_page_sleep(vm_page_t m, const char *msg)
542 {
543 
544 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
545 	if (!mtx_owned(&vm_page_queue_mtx))
546 		vm_page_lock_queues();
547 	vm_page_flag_set(m, PG_REFERENCED);
548 	vm_page_unlock_queues();
549 
550 	/*
551 	 * It's possible that while we sleep, the page will get
552 	 * unbusied and freed.  If we are holding the object
553 	 * lock, we will assume we hold a reference to the object
554 	 * such that even if m->object changes, we can re-lock
555 	 * it.
556 	 */
557 	m->oflags |= VPO_WANTED;
558 	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
559 }
560 
561 /*
562  *	vm_page_dirty:
563  *
564  *	make page all dirty
565  */
566 void
567 vm_page_dirty(vm_page_t m)
568 {
569 	KASSERT((m->flags & PG_CACHED) == 0,
570 	    ("vm_page_dirty: page in cache!"));
571 	KASSERT(!VM_PAGE_IS_FREE(m),
572 	    ("vm_page_dirty: page is free!"));
573 	m->dirty = VM_PAGE_BITS_ALL;
574 }
575 
576 /*
577  *	vm_page_splay:
578  *
579  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
580  *	the vm_page containing the given pindex.  If, however, that
581  *	pindex is not found in the vm_object, returns a vm_page that is
582  *	adjacent to the pindex, coming before or after it.
583  */
584 vm_page_t
585 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
586 {
587 	struct vm_page dummy;
588 	vm_page_t lefttreemax, righttreemin, y;
589 
590 	if (root == NULL)
591 		return (root);
592 	lefttreemax = righttreemin = &dummy;
593 	for (;; root = y) {
594 		if (pindex < root->pindex) {
595 			if ((y = root->left) == NULL)
596 				break;
597 			if (pindex < y->pindex) {
598 				/* Rotate right. */
599 				root->left = y->right;
600 				y->right = root;
601 				root = y;
602 				if ((y = root->left) == NULL)
603 					break;
604 			}
605 			/* Link into the new root's right tree. */
606 			righttreemin->left = root;
607 			righttreemin = root;
608 		} else if (pindex > root->pindex) {
609 			if ((y = root->right) == NULL)
610 				break;
611 			if (pindex > y->pindex) {
612 				/* Rotate left. */
613 				root->right = y->left;
614 				y->left = root;
615 				root = y;
616 				if ((y = root->right) == NULL)
617 					break;
618 			}
619 			/* Link into the new root's left tree. */
620 			lefttreemax->right = root;
621 			lefttreemax = root;
622 		} else
623 			break;
624 	}
625 	/* Assemble the new root. */
626 	lefttreemax->right = root->left;
627 	righttreemin->left = root->right;
628 	root->left = dummy.right;
629 	root->right = dummy.left;
630 	return (root);
631 }
632 
633 /*
634  *	vm_page_insert:		[ internal use only ]
635  *
636  *	Inserts the given mem entry into the object and object list.
637  *
638  *	The pagetables are not updated but will presumably fault the page
639  *	in if necessary, or if a kernel page the caller will at some point
640  *	enter the page into the kernel's pmap.  We are not allowed to block
641  *	here so we *can't* do this anyway.
642  *
643  *	The object and page must be locked.
644  *	This routine may not block.
645  */
646 void
647 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
648 {
649 	vm_page_t root;
650 
651 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
652 	if (m->object != NULL)
653 		panic("vm_page_insert: page already inserted");
654 
655 	/*
656 	 * Record the object/offset pair in this page
657 	 */
658 	m->object = object;
659 	m->pindex = pindex;
660 
661 	/*
662 	 * Now link into the object's ordered list of backed pages.
663 	 */
664 	root = object->root;
665 	if (root == NULL) {
666 		m->left = NULL;
667 		m->right = NULL;
668 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
669 	} else {
670 		root = vm_page_splay(pindex, root);
671 		if (pindex < root->pindex) {
672 			m->left = root->left;
673 			m->right = root;
674 			root->left = NULL;
675 			TAILQ_INSERT_BEFORE(root, m, listq);
676 		} else if (pindex == root->pindex)
677 			panic("vm_page_insert: offset already allocated");
678 		else {
679 			m->right = root->right;
680 			m->left = root;
681 			root->right = NULL;
682 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
683 		}
684 	}
685 	object->root = m;
686 	object->generation++;
687 
688 	/*
689 	 * show that the object has one more resident page.
690 	 */
691 	object->resident_page_count++;
692 	/*
693 	 * Hold the vnode until the last page is released.
694 	 */
695 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
696 		vhold((struct vnode *)object->handle);
697 
698 	/*
699 	 * Since we are inserting a new and possibly dirty page,
700 	 * update the object's OBJ_MIGHTBEDIRTY flag.
701 	 */
702 	if (m->flags & PG_WRITEABLE)
703 		vm_object_set_writeable_dirty(object);
704 }
705 
706 /*
707  *	vm_page_remove:
708  *				NOTE: used by device pager as well -wfj
709  *
710  *	Removes the given mem entry from the object/offset-page
711  *	table and the object page list, but do not invalidate/terminate
712  *	the backing store.
713  *
714  *	The object and page must be locked.
715  *	The underlying pmap entry (if any) is NOT removed here.
716  *	This routine may not block.
717  */
718 void
719 vm_page_remove(vm_page_t m)
720 {
721 	vm_object_t object;
722 	vm_page_t root;
723 
724 	if ((object = m->object) == NULL)
725 		return;
726 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
727 	if (m->oflags & VPO_BUSY) {
728 		m->oflags &= ~VPO_BUSY;
729 		vm_page_flash(m);
730 	}
731 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
732 
733 	/*
734 	 * Now remove from the object's list of backed pages.
735 	 */
736 	if (m != object->root)
737 		vm_page_splay(m->pindex, object->root);
738 	if (m->left == NULL)
739 		root = m->right;
740 	else {
741 		root = vm_page_splay(m->pindex, m->left);
742 		root->right = m->right;
743 	}
744 	object->root = root;
745 	TAILQ_REMOVE(&object->memq, m, listq);
746 
747 	/*
748 	 * And show that the object has one fewer resident page.
749 	 */
750 	object->resident_page_count--;
751 	object->generation++;
752 	/*
753 	 * The vnode may now be recycled.
754 	 */
755 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
756 		vdrop((struct vnode *)object->handle);
757 
758 	m->object = NULL;
759 }
760 
761 /*
762  *	vm_page_lookup:
763  *
764  *	Returns the page associated with the object/offset
765  *	pair specified; if none is found, NULL is returned.
766  *
767  *	The object must be locked.
768  *	This routine may not block.
769  *	This is a critical path routine
770  */
771 vm_page_t
772 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
773 {
774 	vm_page_t m;
775 
776 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
777 	if ((m = object->root) != NULL && m->pindex != pindex) {
778 		m = vm_page_splay(pindex, m);
779 		if ((object->root = m)->pindex != pindex)
780 			m = NULL;
781 	}
782 	return (m);
783 }
784 
785 /*
786  *	vm_page_rename:
787  *
788  *	Move the given memory entry from its
789  *	current object to the specified target object/offset.
790  *
791  *	The object must be locked.
792  *	This routine may not block.
793  *
794  *	Note: swap associated with the page must be invalidated by the move.  We
795  *	      have to do this for several reasons:  (1) we aren't freeing the
796  *	      page, (2) we are dirtying the page, (3) the VM system is probably
797  *	      moving the page from object A to B, and will then later move
798  *	      the backing store from A to B and we can't have a conflict.
799  *
800  *	Note: we *always* dirty the page.  It is necessary both for the
801  *	      fact that we moved it, and because we may be invalidating
802  *	      swap.  If the page is on the cache, we have to deactivate it
803  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
804  *	      on the cache.
805  */
806 void
807 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
808 {
809 
810 	vm_page_remove(m);
811 	vm_page_insert(m, new_object, new_pindex);
812 	vm_page_dirty(m);
813 }
814 
815 /*
816  *	Convert all of the given object's cached pages that have a
817  *	pindex within the given range into free pages.  If the value
818  *	zero is given for "end", then the range's upper bound is
819  *	infinity.  If the given object is backed by a vnode and it
820  *	transitions from having one or more cached pages to none, the
821  *	vnode's hold count is reduced.
822  */
823 void
824 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
825 {
826 	vm_page_t m, m_next;
827 	boolean_t empty;
828 
829 	mtx_lock(&vm_page_queue_free_mtx);
830 	if (__predict_false(object->cache == NULL)) {
831 		mtx_unlock(&vm_page_queue_free_mtx);
832 		return;
833 	}
834 	m = object->cache = vm_page_splay(start, object->cache);
835 	if (m->pindex < start) {
836 		if (m->right == NULL)
837 			m = NULL;
838 		else {
839 			m_next = vm_page_splay(start, m->right);
840 			m_next->left = m;
841 			m->right = NULL;
842 			m = object->cache = m_next;
843 		}
844 	}
845 
846 	/*
847 	 * At this point, "m" is either (1) a reference to the page
848 	 * with the least pindex that is greater than or equal to
849 	 * "start" or (2) NULL.
850 	 */
851 	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
852 		/*
853 		 * Find "m"'s successor and remove "m" from the
854 		 * object's cache.
855 		 */
856 		if (m->right == NULL) {
857 			object->cache = m->left;
858 			m_next = NULL;
859 		} else {
860 			m_next = vm_page_splay(start, m->right);
861 			m_next->left = m->left;
862 			object->cache = m_next;
863 		}
864 		/* Convert "m" to a free page. */
865 		m->object = NULL;
866 		m->valid = 0;
867 		/* Clear PG_CACHED and set PG_FREE. */
868 		m->flags ^= PG_CACHED | PG_FREE;
869 		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
870 		    ("vm_page_cache_free: page %p has inconsistent flags", m));
871 		cnt.v_cache_count--;
872 		cnt.v_free_count++;
873 	}
874 	empty = object->cache == NULL;
875 	mtx_unlock(&vm_page_queue_free_mtx);
876 	if (object->type == OBJT_VNODE && empty)
877 		vdrop(object->handle);
878 }
879 
880 /*
881  *	Returns the cached page that is associated with the given
882  *	object and offset.  If, however, none exists, returns NULL.
883  *
884  *	The free page queue must be locked.
885  */
886 static inline vm_page_t
887 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
888 {
889 	vm_page_t m;
890 
891 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
892 	if ((m = object->cache) != NULL && m->pindex != pindex) {
893 		m = vm_page_splay(pindex, m);
894 		if ((object->cache = m)->pindex != pindex)
895 			m = NULL;
896 	}
897 	return (m);
898 }
899 
900 /*
901  *	Remove the given cached page from its containing object's
902  *	collection of cached pages.
903  *
904  *	The free page queue must be locked.
905  */
906 void
907 vm_page_cache_remove(vm_page_t m)
908 {
909 	vm_object_t object;
910 	vm_page_t root;
911 
912 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
913 	KASSERT((m->flags & PG_CACHED) != 0,
914 	    ("vm_page_cache_remove: page %p is not cached", m));
915 	object = m->object;
916 	if (m != object->cache) {
917 		root = vm_page_splay(m->pindex, object->cache);
918 		KASSERT(root == m,
919 		    ("vm_page_cache_remove: page %p is not cached in object %p",
920 		    m, object));
921 	}
922 	if (m->left == NULL)
923 		root = m->right;
924 	else if (m->right == NULL)
925 		root = m->left;
926 	else {
927 		root = vm_page_splay(m->pindex, m->left);
928 		root->right = m->right;
929 	}
930 	object->cache = root;
931 	m->object = NULL;
932 	cnt.v_cache_count--;
933 }
934 
935 /*
936  *	Transfer all of the cached pages with offset greater than or
937  *	equal to 'offidxstart' from the original object's cache to the
938  *	new object's cache.  However, any cached pages with offset
939  *	greater than or equal to the new object's size are kept in the
940  *	original object.  Initially, the new object's cache must be
941  *	empty.  Offset 'offidxstart' in the original object must
942  *	correspond to offset zero in the new object.
943  *
944  *	The new object must be locked.
945  */
946 void
947 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
948     vm_object_t new_object)
949 {
950 	vm_page_t m, m_next;
951 
952 	/*
953 	 * Insertion into an object's collection of cached pages
954 	 * requires the object to be locked.  In contrast, removal does
955 	 * not.
956 	 */
957 	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
958 	KASSERT(new_object->cache == NULL,
959 	    ("vm_page_cache_transfer: object %p has cached pages",
960 	    new_object));
961 	mtx_lock(&vm_page_queue_free_mtx);
962 	if ((m = orig_object->cache) != NULL) {
963 		/*
964 		 * Transfer all of the pages with offset greater than or
965 		 * equal to 'offidxstart' from the original object's
966 		 * cache to the new object's cache.
967 		 */
968 		m = vm_page_splay(offidxstart, m);
969 		if (m->pindex < offidxstart) {
970 			orig_object->cache = m;
971 			new_object->cache = m->right;
972 			m->right = NULL;
973 		} else {
974 			orig_object->cache = m->left;
975 			new_object->cache = m;
976 			m->left = NULL;
977 		}
978 		while ((m = new_object->cache) != NULL) {
979 			if ((m->pindex - offidxstart) >= new_object->size) {
980 				/*
981 				 * Return all of the cached pages with
982 				 * offset greater than or equal to the
983 				 * new object's size to the original
984 				 * object's cache.
985 				 */
986 				new_object->cache = m->left;
987 				m->left = orig_object->cache;
988 				orig_object->cache = m;
989 				break;
990 			}
991 			m_next = vm_page_splay(m->pindex, m->right);
992 			/* Update the page's object and offset. */
993 			m->object = new_object;
994 			m->pindex -= offidxstart;
995 			if (m_next == NULL)
996 				break;
997 			m->right = NULL;
998 			m_next->left = m;
999 			new_object->cache = m_next;
1000 		}
1001 		KASSERT(new_object->cache == NULL ||
1002 		    new_object->type == OBJT_SWAP,
1003 		    ("vm_page_cache_transfer: object %p's type is incompatible"
1004 		    " with cached pages", new_object));
1005 	}
1006 	mtx_unlock(&vm_page_queue_free_mtx);
1007 }
1008 
1009 /*
1010  *	vm_page_alloc:
1011  *
1012  *	Allocate and return a memory cell associated
1013  *	with this VM object/offset pair.
1014  *
1015  *	page_req classes:
1016  *	VM_ALLOC_NORMAL		normal process request
1017  *	VM_ALLOC_SYSTEM		system *really* needs a page
1018  *	VM_ALLOC_INTERRUPT	interrupt time request
1019  *	VM_ALLOC_ZERO		zero page
1020  *
1021  *	This routine may not block.
1022  */
1023 vm_page_t
1024 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1025 {
1026 	struct vnode *vp = NULL;
1027 	vm_object_t m_object;
1028 	vm_page_t m;
1029 	int flags, page_req;
1030 
1031 	page_req = req & VM_ALLOC_CLASS_MASK;
1032 	KASSERT(curthread->td_intr_nesting_level == 0 ||
1033 	    page_req == VM_ALLOC_INTERRUPT,
1034 	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
1035 
1036 	if ((req & VM_ALLOC_NOOBJ) == 0) {
1037 		KASSERT(object != NULL,
1038 		    ("vm_page_alloc: NULL object."));
1039 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1040 	}
1041 
1042 	/*
1043 	 * The pager is allowed to eat deeper into the free page list.
1044 	 */
1045 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
1046 		page_req = VM_ALLOC_SYSTEM;
1047 	};
1048 
1049 	mtx_lock(&vm_page_queue_free_mtx);
1050 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1051 	    (page_req == VM_ALLOC_SYSTEM &&
1052 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1053 	    (page_req == VM_ALLOC_INTERRUPT &&
1054 	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1055 		/*
1056 		 * Allocate from the free queue if the number of free pages
1057 		 * exceeds the minimum for the request class.
1058 		 */
1059 		if (object != NULL &&
1060 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1061 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1062 				mtx_unlock(&vm_page_queue_free_mtx);
1063 				return (NULL);
1064 			}
1065 			if (vm_phys_unfree_page(m))
1066 				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1067 #if VM_NRESERVLEVEL > 0
1068 			else if (!vm_reserv_reactivate_page(m))
1069 #else
1070 			else
1071 #endif
1072 				panic("vm_page_alloc: cache page %p is missing"
1073 				    " from the free queue", m);
1074 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1075 			mtx_unlock(&vm_page_queue_free_mtx);
1076 			return (NULL);
1077 #if VM_NRESERVLEVEL > 0
1078 		} else if (object == NULL || object->type == OBJT_DEVICE ||
1079 		    (object->flags & OBJ_COLORED) == 0 ||
1080 		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1081 #else
1082 		} else {
1083 #endif
1084 			m = vm_phys_alloc_pages(object != NULL ?
1085 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1086 #if VM_NRESERVLEVEL > 0
1087 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1088 				m = vm_phys_alloc_pages(object != NULL ?
1089 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1090 				    0);
1091 			}
1092 #endif
1093 		}
1094 	} else {
1095 		/*
1096 		 * Not allocatable, give up.
1097 		 */
1098 		mtx_unlock(&vm_page_queue_free_mtx);
1099 		atomic_add_int(&vm_pageout_deficit, 1);
1100 		pagedaemon_wakeup();
1101 		return (NULL);
1102 	}
1103 
1104 	/*
1105 	 *  At this point we had better have found a good page.
1106 	 */
1107 
1108 	KASSERT(
1109 	    m != NULL,
1110 	    ("vm_page_alloc(): missing page on free queue")
1111 	);
1112 	if ((m->flags & PG_CACHED) != 0) {
1113 		KASSERT(m->valid != 0,
1114 		    ("vm_page_alloc: cached page %p is invalid", m));
1115 		if (m->object == object && m->pindex == pindex)
1116 	  		cnt.v_reactivated++;
1117 		else
1118 			m->valid = 0;
1119 		m_object = m->object;
1120 		vm_page_cache_remove(m);
1121 		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1122 			vp = m_object->handle;
1123 	} else {
1124 		KASSERT(VM_PAGE_IS_FREE(m),
1125 		    ("vm_page_alloc: page %p is not free", m));
1126 		KASSERT(m->valid == 0,
1127 		    ("vm_page_alloc: free page %p is valid", m));
1128 		cnt.v_free_count--;
1129 	}
1130 
1131 	/*
1132 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
1133 	 */
1134 	flags = 0;
1135 	if (m->flags & PG_ZERO) {
1136 		vm_page_zero_count--;
1137 		if (req & VM_ALLOC_ZERO)
1138 			flags = PG_ZERO;
1139 	}
1140 	if (object == NULL || object->type == OBJT_PHYS)
1141 		flags |= PG_UNMANAGED;
1142 	m->flags = flags;
1143 	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1144 		m->oflags = 0;
1145 	else
1146 		m->oflags = VPO_BUSY;
1147 	if (req & VM_ALLOC_WIRED) {
1148 		atomic_add_int(&cnt.v_wire_count, 1);
1149 		m->wire_count = 1;
1150 	} else
1151 		m->wire_count = 0;
1152 	m->hold_count = 0;
1153 	m->act_count = 0;
1154 	m->busy = 0;
1155 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
1156 	mtx_unlock(&vm_page_queue_free_mtx);
1157 
1158 	if ((req & VM_ALLOC_NOOBJ) == 0)
1159 		vm_page_insert(m, object, pindex);
1160 	else
1161 		m->pindex = pindex;
1162 
1163 	/*
1164 	 * The following call to vdrop() must come after the above call
1165 	 * to vm_page_insert() in case both affect the same object and
1166 	 * vnode.  Otherwise, the affected vnode's hold count could
1167 	 * temporarily become zero.
1168 	 */
1169 	if (vp != NULL)
1170 		vdrop(vp);
1171 
1172 	/*
1173 	 * Don't wakeup too often - wakeup the pageout daemon when
1174 	 * we would be nearly out of memory.
1175 	 */
1176 	if (vm_paging_needed())
1177 		pagedaemon_wakeup();
1178 
1179 	return (m);
1180 }
1181 
1182 /*
1183  *	vm_wait:	(also see VM_WAIT macro)
1184  *
1185  *	Block until free pages are available for allocation
1186  *	- Called in various places before memory allocations.
1187  */
1188 void
1189 vm_wait(void)
1190 {
1191 
1192 	mtx_lock(&vm_page_queue_free_mtx);
1193 	if (curproc == pageproc) {
1194 		vm_pageout_pages_needed = 1;
1195 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1196 		    PDROP | PSWP, "VMWait", 0);
1197 	} else {
1198 		if (!vm_pages_needed) {
1199 			vm_pages_needed = 1;
1200 			wakeup(&vm_pages_needed);
1201 		}
1202 		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1203 		    "vmwait", 0);
1204 	}
1205 }
1206 
1207 /*
1208  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1209  *
1210  *	Block until free pages are available for allocation
1211  *	- Called only in vm_fault so that processes page faulting
1212  *	  can be easily tracked.
1213  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1214  *	  processes will be able to grab memory first.  Do not change
1215  *	  this balance without careful testing first.
1216  */
1217 void
1218 vm_waitpfault(void)
1219 {
1220 
1221 	mtx_lock(&vm_page_queue_free_mtx);
1222 	if (!vm_pages_needed) {
1223 		vm_pages_needed = 1;
1224 		wakeup(&vm_pages_needed);
1225 	}
1226 	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1227 	    "pfault", 0);
1228 }
1229 
1230 /*
1231  *	vm_page_requeue:
1232  *
1233  *	If the given page is contained within a page queue, move it to the tail
1234  *	of that queue.
1235  *
1236  *	The page queues must be locked.
1237  */
1238 void
1239 vm_page_requeue(vm_page_t m)
1240 {
1241 	int queue = VM_PAGE_GETQUEUE(m);
1242 	struct vpgqueues *vpq;
1243 
1244 	if (queue != PQ_NONE) {
1245 		vpq = &vm_page_queues[queue];
1246 		TAILQ_REMOVE(&vpq->pl, m, pageq);
1247 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1248 	}
1249 }
1250 
1251 /*
1252  *	vm_pageq_remove:
1253  *
1254  *	Remove a page from its queue.
1255  *
1256  *	The queue containing the given page must be locked.
1257  *	This routine may not block.
1258  */
1259 void
1260 vm_pageq_remove(vm_page_t m)
1261 {
1262 	int queue = VM_PAGE_GETQUEUE(m);
1263 	struct vpgqueues *pq;
1264 
1265 	if (queue != PQ_NONE) {
1266 		VM_PAGE_SETQUEUE2(m, PQ_NONE);
1267 		pq = &vm_page_queues[queue];
1268 		TAILQ_REMOVE(&pq->pl, m, pageq);
1269 		(*pq->cnt)--;
1270 	}
1271 }
1272 
1273 /*
1274  *	vm_page_enqueue:
1275  *
1276  *	Add the given page to the specified queue.
1277  *
1278  *	The page queues must be locked.
1279  */
1280 static void
1281 vm_page_enqueue(int queue, vm_page_t m)
1282 {
1283 	struct vpgqueues *vpq;
1284 
1285 	vpq = &vm_page_queues[queue];
1286 	VM_PAGE_SETQUEUE2(m, queue);
1287 	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1288 	++*vpq->cnt;
1289 }
1290 
1291 /*
1292  *	vm_page_activate:
1293  *
1294  *	Put the specified page on the active list (if appropriate).
1295  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1296  *	mess with it.
1297  *
1298  *	The page queues must be locked.
1299  *	This routine may not block.
1300  */
1301 void
1302 vm_page_activate(vm_page_t m)
1303 {
1304 
1305 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1306 	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1307 		vm_pageq_remove(m);
1308 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1309 			if (m->act_count < ACT_INIT)
1310 				m->act_count = ACT_INIT;
1311 			vm_page_enqueue(PQ_ACTIVE, m);
1312 		}
1313 	} else {
1314 		if (m->act_count < ACT_INIT)
1315 			m->act_count = ACT_INIT;
1316 	}
1317 }
1318 
1319 /*
1320  *	vm_page_free_wakeup:
1321  *
1322  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1323  *	routine is called when a page has been added to the cache or free
1324  *	queues.
1325  *
1326  *	The page queues must be locked.
1327  *	This routine may not block.
1328  */
1329 static inline void
1330 vm_page_free_wakeup(void)
1331 {
1332 
1333 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1334 	/*
1335 	 * if pageout daemon needs pages, then tell it that there are
1336 	 * some free.
1337 	 */
1338 	if (vm_pageout_pages_needed &&
1339 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1340 		wakeup(&vm_pageout_pages_needed);
1341 		vm_pageout_pages_needed = 0;
1342 	}
1343 	/*
1344 	 * wakeup processes that are waiting on memory if we hit a
1345 	 * high water mark. And wakeup scheduler process if we have
1346 	 * lots of memory. this process will swapin processes.
1347 	 */
1348 	if (vm_pages_needed && !vm_page_count_min()) {
1349 		vm_pages_needed = 0;
1350 		wakeup(&cnt.v_free_count);
1351 	}
1352 }
1353 
1354 /*
1355  *	vm_page_free_toq:
1356  *
1357  *	Returns the given page to the free list,
1358  *	disassociating it with any VM object.
1359  *
1360  *	Object and page must be locked prior to entry.
1361  *	This routine may not block.
1362  */
1363 
1364 void
1365 vm_page_free_toq(vm_page_t m)
1366 {
1367 
1368 	if (VM_PAGE_GETQUEUE(m) != PQ_NONE)
1369 		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1370 	KASSERT(!pmap_page_is_mapped(m),
1371 	    ("vm_page_free_toq: freeing mapped page %p", m));
1372 	PCPU_INC(cnt.v_tfree);
1373 
1374 	if (m->busy || VM_PAGE_IS_FREE(m)) {
1375 		printf(
1376 		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1377 		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1378 		    m->hold_count);
1379 		if (VM_PAGE_IS_FREE(m))
1380 			panic("vm_page_free: freeing free page");
1381 		else
1382 			panic("vm_page_free: freeing busy page");
1383 	}
1384 
1385 	/*
1386 	 * unqueue, then remove page.  Note that we cannot destroy
1387 	 * the page here because we do not want to call the pager's
1388 	 * callback routine until after we've put the page on the
1389 	 * appropriate free queue.
1390 	 */
1391 	vm_pageq_remove(m);
1392 	vm_page_remove(m);
1393 
1394 	/*
1395 	 * If fictitious remove object association and
1396 	 * return, otherwise delay object association removal.
1397 	 */
1398 	if ((m->flags & PG_FICTITIOUS) != 0) {
1399 		return;
1400 	}
1401 
1402 	m->valid = 0;
1403 	vm_page_undirty(m);
1404 
1405 	if (m->wire_count != 0) {
1406 		if (m->wire_count > 1) {
1407 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1408 				m->wire_count, (long)m->pindex);
1409 		}
1410 		panic("vm_page_free: freeing wired page");
1411 	}
1412 	if (m->hold_count != 0) {
1413 		m->flags &= ~PG_ZERO;
1414 		vm_page_enqueue(PQ_HOLD, m);
1415 	} else {
1416 		mtx_lock(&vm_page_queue_free_mtx);
1417 		m->flags |= PG_FREE;
1418 		cnt.v_free_count++;
1419 #if VM_NRESERVLEVEL > 0
1420 		if (!vm_reserv_free_page(m))
1421 #else
1422 		if (TRUE)
1423 #endif
1424 			vm_phys_free_pages(m, 0);
1425 		if ((m->flags & PG_ZERO) != 0)
1426 			++vm_page_zero_count;
1427 		else
1428 			vm_page_zero_idle_wakeup();
1429 		vm_page_free_wakeup();
1430 		mtx_unlock(&vm_page_queue_free_mtx);
1431 	}
1432 }
1433 
1434 /*
1435  *	vm_page_wire:
1436  *
1437  *	Mark this page as wired down by yet
1438  *	another map, removing it from paging queues
1439  *	as necessary.
1440  *
1441  *	The page queues must be locked.
1442  *	This routine may not block.
1443  */
1444 void
1445 vm_page_wire(vm_page_t m)
1446 {
1447 
1448 	/*
1449 	 * Only bump the wire statistics if the page is not already wired,
1450 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1451 	 * it is already off the queues).
1452 	 */
1453 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1454 	if (m->flags & PG_FICTITIOUS)
1455 		return;
1456 	if (m->wire_count == 0) {
1457 		if ((m->flags & PG_UNMANAGED) == 0)
1458 			vm_pageq_remove(m);
1459 		atomic_add_int(&cnt.v_wire_count, 1);
1460 	}
1461 	m->wire_count++;
1462 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1463 }
1464 
1465 /*
1466  *	vm_page_unwire:
1467  *
1468  *	Release one wiring of this page, potentially
1469  *	enabling it to be paged again.
1470  *
1471  *	Many pages placed on the inactive queue should actually go
1472  *	into the cache, but it is difficult to figure out which.  What
1473  *	we do instead, if the inactive target is well met, is to put
1474  *	clean pages at the head of the inactive queue instead of the tail.
1475  *	This will cause them to be moved to the cache more quickly and
1476  *	if not actively re-referenced, freed more quickly.  If we just
1477  *	stick these pages at the end of the inactive queue, heavy filesystem
1478  *	meta-data accesses can cause an unnecessary paging load on memory bound
1479  *	processes.  This optimization causes one-time-use metadata to be
1480  *	reused more quickly.
1481  *
1482  *	BUT, if we are in a low-memory situation we have no choice but to
1483  *	put clean pages on the cache queue.
1484  *
1485  *	A number of routines use vm_page_unwire() to guarantee that the page
1486  *	will go into either the inactive or active queues, and will NEVER
1487  *	be placed in the cache - for example, just after dirtying a page.
1488  *	dirty pages in the cache are not allowed.
1489  *
1490  *	The page queues must be locked.
1491  *	This routine may not block.
1492  */
1493 void
1494 vm_page_unwire(vm_page_t m, int activate)
1495 {
1496 
1497 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1498 	if (m->flags & PG_FICTITIOUS)
1499 		return;
1500 	if (m->wire_count > 0) {
1501 		m->wire_count--;
1502 		if (m->wire_count == 0) {
1503 			atomic_subtract_int(&cnt.v_wire_count, 1);
1504 			if (m->flags & PG_UNMANAGED) {
1505 				;
1506 			} else if (activate)
1507 				vm_page_enqueue(PQ_ACTIVE, m);
1508 			else {
1509 				vm_page_flag_clear(m, PG_WINATCFLS);
1510 				vm_page_enqueue(PQ_INACTIVE, m);
1511 			}
1512 		}
1513 	} else {
1514 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1515 	}
1516 }
1517 
1518 
1519 /*
1520  * Move the specified page to the inactive queue.  If the page has
1521  * any associated swap, the swap is deallocated.
1522  *
1523  * Normally athead is 0 resulting in LRU operation.  athead is set
1524  * to 1 if we want this page to be 'as if it were placed in the cache',
1525  * except without unmapping it from the process address space.
1526  *
1527  * This routine may not block.
1528  */
1529 static inline void
1530 _vm_page_deactivate(vm_page_t m, int athead)
1531 {
1532 
1533 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1534 
1535 	/*
1536 	 * Ignore if already inactive.
1537 	 */
1538 	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1539 		return;
1540 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1541 		vm_page_flag_clear(m, PG_WINATCFLS);
1542 		vm_pageq_remove(m);
1543 		if (athead)
1544 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1545 		else
1546 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1547 		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1548 		cnt.v_inactive_count++;
1549 	}
1550 }
1551 
1552 void
1553 vm_page_deactivate(vm_page_t m)
1554 {
1555     _vm_page_deactivate(m, 0);
1556 }
1557 
1558 /*
1559  * vm_page_try_to_cache:
1560  *
1561  * Returns 0 on failure, 1 on success
1562  */
1563 int
1564 vm_page_try_to_cache(vm_page_t m)
1565 {
1566 
1567 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1568 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1569 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1570 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1571 		return (0);
1572 	}
1573 	pmap_remove_all(m);
1574 	if (m->dirty)
1575 		return (0);
1576 	vm_page_cache(m);
1577 	return (1);
1578 }
1579 
1580 /*
1581  * vm_page_try_to_free()
1582  *
1583  *	Attempt to free the page.  If we cannot free it, we do nothing.
1584  *	1 is returned on success, 0 on failure.
1585  */
1586 int
1587 vm_page_try_to_free(vm_page_t m)
1588 {
1589 
1590 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1591 	if (m->object != NULL)
1592 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1593 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1594 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1595 		return (0);
1596 	}
1597 	pmap_remove_all(m);
1598 	if (m->dirty)
1599 		return (0);
1600 	vm_page_free(m);
1601 	return (1);
1602 }
1603 
1604 /*
1605  * vm_page_cache
1606  *
1607  * Put the specified page onto the page cache queue (if appropriate).
1608  *
1609  * This routine may not block.
1610  */
1611 void
1612 vm_page_cache(vm_page_t m)
1613 {
1614 	vm_object_t object;
1615 	vm_page_t root;
1616 
1617 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1618 	object = m->object;
1619 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1620 	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1621 	    m->hold_count || m->wire_count) {
1622 		panic("vm_page_cache: attempting to cache busy page");
1623 	}
1624 	pmap_remove_all(m);
1625 	if (m->dirty != 0)
1626 		panic("vm_page_cache: page %p is dirty", m);
1627 	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
1628 	    (object->type == OBJT_SWAP &&
1629 	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
1630 		/*
1631 		 * Hypothesis: A cache-elgible page belonging to a
1632 		 * default object or swap object but without a backing
1633 		 * store must be zero filled.
1634 		 */
1635 		vm_page_free(m);
1636 		return;
1637 	}
1638 	KASSERT((m->flags & PG_CACHED) == 0,
1639 	    ("vm_page_cache: page %p is already cached", m));
1640 	cnt.v_tcached++;
1641 
1642 	/*
1643 	 * Remove the page from the paging queues.
1644 	 */
1645 	vm_pageq_remove(m);
1646 
1647 	/*
1648 	 * Remove the page from the object's collection of resident
1649 	 * pages.
1650 	 */
1651 	if (m != object->root)
1652 		vm_page_splay(m->pindex, object->root);
1653 	if (m->left == NULL)
1654 		root = m->right;
1655 	else {
1656 		root = vm_page_splay(m->pindex, m->left);
1657 		root->right = m->right;
1658 	}
1659 	object->root = root;
1660 	TAILQ_REMOVE(&object->memq, m, listq);
1661 	object->resident_page_count--;
1662 	object->generation++;
1663 
1664 	/*
1665 	 * Insert the page into the object's collection of cached pages
1666 	 * and the physical memory allocator's cache/free page queues.
1667 	 */
1668 	vm_page_flag_clear(m, PG_ZERO);
1669 	mtx_lock(&vm_page_queue_free_mtx);
1670 	m->flags |= PG_CACHED;
1671 	cnt.v_cache_count++;
1672 	root = object->cache;
1673 	if (root == NULL) {
1674 		m->left = NULL;
1675 		m->right = NULL;
1676 	} else {
1677 		root = vm_page_splay(m->pindex, root);
1678 		if (m->pindex < root->pindex) {
1679 			m->left = root->left;
1680 			m->right = root;
1681 			root->left = NULL;
1682 		} else if (__predict_false(m->pindex == root->pindex))
1683 			panic("vm_page_cache: offset already cached");
1684 		else {
1685 			m->right = root->right;
1686 			m->left = root;
1687 			root->right = NULL;
1688 		}
1689 	}
1690 	object->cache = m;
1691 #if VM_NRESERVLEVEL > 0
1692 	if (!vm_reserv_free_page(m)) {
1693 #else
1694 	if (TRUE) {
1695 #endif
1696 		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
1697 		vm_phys_free_pages(m, 0);
1698 	}
1699 	vm_page_free_wakeup();
1700 	mtx_unlock(&vm_page_queue_free_mtx);
1701 
1702 	/*
1703 	 * Increment the vnode's hold count if this is the object's only
1704 	 * cached page.  Decrement the vnode's hold count if this was
1705 	 * the object's only resident page.
1706 	 */
1707 	if (object->type == OBJT_VNODE) {
1708 		if (root == NULL && object->resident_page_count != 0)
1709 			vhold(object->handle);
1710 		else if (root != NULL && object->resident_page_count == 0)
1711 			vdrop(object->handle);
1712 	}
1713 }
1714 
1715 /*
1716  * vm_page_dontneed
1717  *
1718  *	Cache, deactivate, or do nothing as appropriate.  This routine
1719  *	is typically used by madvise() MADV_DONTNEED.
1720  *
1721  *	Generally speaking we want to move the page into the cache so
1722  *	it gets reused quickly.  However, this can result in a silly syndrome
1723  *	due to the page recycling too quickly.  Small objects will not be
1724  *	fully cached.  On the otherhand, if we move the page to the inactive
1725  *	queue we wind up with a problem whereby very large objects
1726  *	unnecessarily blow away our inactive and cache queues.
1727  *
1728  *	The solution is to move the pages based on a fixed weighting.  We
1729  *	either leave them alone, deactivate them, or move them to the cache,
1730  *	where moving them to the cache has the highest weighting.
1731  *	By forcing some pages into other queues we eventually force the
1732  *	system to balance the queues, potentially recovering other unrelated
1733  *	space from active.  The idea is to not force this to happen too
1734  *	often.
1735  */
1736 void
1737 vm_page_dontneed(vm_page_t m)
1738 {
1739 	static int dnweight;
1740 	int dnw;
1741 	int head;
1742 
1743 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1744 	dnw = ++dnweight;
1745 
1746 	/*
1747 	 * occassionally leave the page alone
1748 	 */
1749 	if ((dnw & 0x01F0) == 0 ||
1750 	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) {
1751 		if (m->act_count >= ACT_INIT)
1752 			--m->act_count;
1753 		return;
1754 	}
1755 
1756 	/*
1757 	 * Clear any references to the page.  Otherwise, the page daemon will
1758 	 * immediately reactivate the page.
1759 	 */
1760 	vm_page_flag_clear(m, PG_REFERENCED);
1761 	pmap_clear_reference(m);
1762 
1763 	if (m->dirty == 0 && pmap_is_modified(m))
1764 		vm_page_dirty(m);
1765 
1766 	if (m->dirty || (dnw & 0x0070) == 0) {
1767 		/*
1768 		 * Deactivate the page 3 times out of 32.
1769 		 */
1770 		head = 0;
1771 	} else {
1772 		/*
1773 		 * Cache the page 28 times out of every 32.  Note that
1774 		 * the page is deactivated instead of cached, but placed
1775 		 * at the head of the queue instead of the tail.
1776 		 */
1777 		head = 1;
1778 	}
1779 	_vm_page_deactivate(m, head);
1780 }
1781 
1782 /*
1783  * Grab a page, waiting until we are waken up due to the page
1784  * changing state.  We keep on waiting, if the page continues
1785  * to be in the object.  If the page doesn't exist, first allocate it
1786  * and then conditionally zero it.
1787  *
1788  * This routine may block.
1789  */
1790 vm_page_t
1791 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1792 {
1793 	vm_page_t m;
1794 
1795 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1796 retrylookup:
1797 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1798 		if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1799 			if ((allocflags & VM_ALLOC_RETRY) == 0)
1800 				return (NULL);
1801 			goto retrylookup;
1802 		} else {
1803 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1804 				vm_page_lock_queues();
1805 				vm_page_wire(m);
1806 				vm_page_unlock_queues();
1807 			}
1808 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1809 				vm_page_busy(m);
1810 			return (m);
1811 		}
1812 	}
1813 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1814 	if (m == NULL) {
1815 		VM_OBJECT_UNLOCK(object);
1816 		VM_WAIT;
1817 		VM_OBJECT_LOCK(object);
1818 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1819 			return (NULL);
1820 		goto retrylookup;
1821 	} else if (m->valid != 0)
1822 		return (m);
1823 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1824 		pmap_zero_page(m);
1825 	return (m);
1826 }
1827 
1828 /*
1829  * Mapping function for valid bits or for dirty bits in
1830  * a page.  May not block.
1831  *
1832  * Inputs are required to range within a page.
1833  */
1834 int
1835 vm_page_bits(int base, int size)
1836 {
1837 	int first_bit;
1838 	int last_bit;
1839 
1840 	KASSERT(
1841 	    base + size <= PAGE_SIZE,
1842 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1843 	);
1844 
1845 	if (size == 0)		/* handle degenerate case */
1846 		return (0);
1847 
1848 	first_bit = base >> DEV_BSHIFT;
1849 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1850 
1851 	return ((2 << last_bit) - (1 << first_bit));
1852 }
1853 
1854 /*
1855  *	vm_page_set_validclean:
1856  *
1857  *	Sets portions of a page valid and clean.  The arguments are expected
1858  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1859  *	of any partial chunks touched by the range.  The invalid portion of
1860  *	such chunks will be zero'd.
1861  *
1862  *	This routine may not block.
1863  *
1864  *	(base + size) must be less then or equal to PAGE_SIZE.
1865  */
1866 void
1867 vm_page_set_validclean(vm_page_t m, int base, int size)
1868 {
1869 	int pagebits;
1870 	int frag;
1871 	int endoff;
1872 
1873 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1874 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1875 	if (size == 0)	/* handle degenerate case */
1876 		return;
1877 
1878 	/*
1879 	 * If the base is not DEV_BSIZE aligned and the valid
1880 	 * bit is clear, we have to zero out a portion of the
1881 	 * first block.
1882 	 */
1883 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1884 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1885 		pmap_zero_page_area(m, frag, base - frag);
1886 
1887 	/*
1888 	 * If the ending offset is not DEV_BSIZE aligned and the
1889 	 * valid bit is clear, we have to zero out a portion of
1890 	 * the last block.
1891 	 */
1892 	endoff = base + size;
1893 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1894 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1895 		pmap_zero_page_area(m, endoff,
1896 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1897 
1898 	/*
1899 	 * Set valid, clear dirty bits.  If validating the entire
1900 	 * page we can safely clear the pmap modify bit.  We also
1901 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
1902 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1903 	 * be set again.
1904 	 *
1905 	 * We set valid bits inclusive of any overlap, but we can only
1906 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1907 	 * the range.
1908 	 */
1909 	pagebits = vm_page_bits(base, size);
1910 	m->valid |= pagebits;
1911 #if 0	/* NOT YET */
1912 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1913 		frag = DEV_BSIZE - frag;
1914 		base += frag;
1915 		size -= frag;
1916 		if (size < 0)
1917 			size = 0;
1918 	}
1919 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1920 #endif
1921 	m->dirty &= ~pagebits;
1922 	if (base == 0 && size == PAGE_SIZE) {
1923 		pmap_clear_modify(m);
1924 		m->oflags &= ~VPO_NOSYNC;
1925 	}
1926 }
1927 
1928 void
1929 vm_page_clear_dirty(vm_page_t m, int base, int size)
1930 {
1931 
1932 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1933 	m->dirty &= ~vm_page_bits(base, size);
1934 }
1935 
1936 /*
1937  *	vm_page_set_invalid:
1938  *
1939  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1940  *	valid and dirty bits for the effected areas are cleared.
1941  *
1942  *	May not block.
1943  */
1944 void
1945 vm_page_set_invalid(vm_page_t m, int base, int size)
1946 {
1947 	int bits;
1948 
1949 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1950 	bits = vm_page_bits(base, size);
1951 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1952 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1953 		pmap_remove_all(m);
1954 	m->valid &= ~bits;
1955 	m->dirty &= ~bits;
1956 	m->object->generation++;
1957 }
1958 
1959 /*
1960  * vm_page_zero_invalid()
1961  *
1962  *	The kernel assumes that the invalid portions of a page contain
1963  *	garbage, but such pages can be mapped into memory by user code.
1964  *	When this occurs, we must zero out the non-valid portions of the
1965  *	page so user code sees what it expects.
1966  *
1967  *	Pages are most often semi-valid when the end of a file is mapped
1968  *	into memory and the file's size is not page aligned.
1969  */
1970 void
1971 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1972 {
1973 	int b;
1974 	int i;
1975 
1976 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1977 	/*
1978 	 * Scan the valid bits looking for invalid sections that
1979 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1980 	 * valid bit may be set ) have already been zerod by
1981 	 * vm_page_set_validclean().
1982 	 */
1983 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1984 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1985 		    (m->valid & (1 << i))
1986 		) {
1987 			if (i > b) {
1988 				pmap_zero_page_area(m,
1989 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1990 			}
1991 			b = i + 1;
1992 		}
1993 	}
1994 
1995 	/*
1996 	 * setvalid is TRUE when we can safely set the zero'd areas
1997 	 * as being valid.  We can do this if there are no cache consistancy
1998 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1999 	 */
2000 	if (setvalid)
2001 		m->valid = VM_PAGE_BITS_ALL;
2002 }
2003 
2004 /*
2005  *	vm_page_is_valid:
2006  *
2007  *	Is (partial) page valid?  Note that the case where size == 0
2008  *	will return FALSE in the degenerate case where the page is
2009  *	entirely invalid, and TRUE otherwise.
2010  *
2011  *	May not block.
2012  */
2013 int
2014 vm_page_is_valid(vm_page_t m, int base, int size)
2015 {
2016 	int bits = vm_page_bits(base, size);
2017 
2018 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2019 	if (m->valid && ((m->valid & bits) == bits))
2020 		return 1;
2021 	else
2022 		return 0;
2023 }
2024 
2025 /*
2026  * update dirty bits from pmap/mmu.  May not block.
2027  */
2028 void
2029 vm_page_test_dirty(vm_page_t m)
2030 {
2031 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
2032 		vm_page_dirty(m);
2033 	}
2034 }
2035 
2036 int so_zerocp_fullpage = 0;
2037 
2038 /*
2039  *	Replace the given page with a copy.  The copied page assumes
2040  *	the portion of the given page's "wire_count" that is not the
2041  *	responsibility of this copy-on-write mechanism.
2042  *
2043  *	The object containing the given page must have a non-zero
2044  *	paging-in-progress count and be locked.
2045  */
2046 void
2047 vm_page_cowfault(vm_page_t m)
2048 {
2049 	vm_page_t mnew;
2050 	vm_object_t object;
2051 	vm_pindex_t pindex;
2052 
2053 	object = m->object;
2054 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2055 	KASSERT(object->paging_in_progress != 0,
2056 	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2057 	    object));
2058 	pindex = m->pindex;
2059 
2060  retry_alloc:
2061 	pmap_remove_all(m);
2062 	vm_page_remove(m);
2063 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2064 	if (mnew == NULL) {
2065 		vm_page_insert(m, object, pindex);
2066 		vm_page_unlock_queues();
2067 		VM_OBJECT_UNLOCK(object);
2068 		VM_WAIT;
2069 		VM_OBJECT_LOCK(object);
2070 		if (m == vm_page_lookup(object, pindex)) {
2071 			vm_page_lock_queues();
2072 			goto retry_alloc;
2073 		} else {
2074 			/*
2075 			 * Page disappeared during the wait.
2076 			 */
2077 			vm_page_lock_queues();
2078 			return;
2079 		}
2080 	}
2081 
2082 	if (m->cow == 0) {
2083 		/*
2084 		 * check to see if we raced with an xmit complete when
2085 		 * waiting to allocate a page.  If so, put things back
2086 		 * the way they were
2087 		 */
2088 		vm_page_free(mnew);
2089 		vm_page_insert(m, object, pindex);
2090 	} else { /* clear COW & copy page */
2091 		if (!so_zerocp_fullpage)
2092 			pmap_copy_page(m, mnew);
2093 		mnew->valid = VM_PAGE_BITS_ALL;
2094 		vm_page_dirty(mnew);
2095 		mnew->wire_count = m->wire_count - m->cow;
2096 		m->wire_count = m->cow;
2097 	}
2098 }
2099 
2100 void
2101 vm_page_cowclear(vm_page_t m)
2102 {
2103 
2104 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2105 	if (m->cow) {
2106 		m->cow--;
2107 		/*
2108 		 * let vm_fault add back write permission  lazily
2109 		 */
2110 	}
2111 	/*
2112 	 *  sf_buf_free() will free the page, so we needn't do it here
2113 	 */
2114 }
2115 
2116 int
2117 vm_page_cowsetup(vm_page_t m)
2118 {
2119 
2120 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2121 	if (m->cow == USHRT_MAX - 1)
2122 		return (EBUSY);
2123 	m->cow++;
2124 	pmap_remove_write(m);
2125 	return (0);
2126 }
2127 
2128 #include "opt_ddb.h"
2129 #ifdef DDB
2130 #include <sys/kernel.h>
2131 
2132 #include <ddb/ddb.h>
2133 
2134 DB_SHOW_COMMAND(page, vm_page_print_page_info)
2135 {
2136 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2137 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2138 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2139 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2140 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2141 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2142 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2143 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2144 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2145 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2146 }
2147 
2148 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2149 {
2150 
2151 	db_printf("PQ_FREE:");
2152 	db_printf(" %d", cnt.v_free_count);
2153 	db_printf("\n");
2154 
2155 	db_printf("PQ_CACHE:");
2156 	db_printf(" %d", cnt.v_cache_count);
2157 	db_printf("\n");
2158 
2159 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2160 		*vm_page_queues[PQ_ACTIVE].cnt,
2161 		*vm_page_queues[PQ_INACTIVE].cnt);
2162 }
2163 #endif /* DDB */
2164