xref: /freebsd/sys/vm/vm_page.c (revision c4f6a2a9e1b1879b618c436ab4f56ff75c73a0f5)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD$
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 
67 /*
68  *			GENERAL RULES ON VM_PAGE MANIPULATION
69  *
70  *	- a pageq mutex is required when adding or removing a page from a
71  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72  *	  busy state of a page.
73  *
74  *	- a hash chain mutex is required when associating or disassociating
75  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76  *	  regardless of other mutexes or the busy state of a page.
77  *
78  *	- either a hash chain mutex OR a busied page is required in order
79  *	  to modify the page flags.  A hash chain mutex must be obtained in
80  *	  order to busy a page.  A page's flags cannot be modified by a
81  *	  hash chain mutex if the page is marked busy.
82  *
83  *	- The object memq mutex is held when inserting or removing
84  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85  *	  is different from the object's main mutex.
86  *
87  *	Generally speaking, you have to be aware of side effects when running
88  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90  *	vm_page_cache(), vm_page_activate(), and a number of other routines
91  *	will release the hash chain mutex for you.  Intermediate manipulation
92  *	routines such as vm_page_flag_set() expect the hash chain to be held
93  *	on entry and the hash chain will remain held on return.
94  *
95  *	pageq scanning can only occur with the pageq in question locked.
96  *	We have a known bottleneck with the active queue, but the cache
97  *	and free queues are actually arrays already.
98  */
99 
100 /*
101  *	Resident memory management module.
102  */
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/lock.h>
107 #include <sys/malloc.h>
108 #include <sys/mutex.h>
109 #include <sys/proc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 #include <vm/uma_int.h>
123 
124 /*
125  *	Associated with page of user-allocatable memory is a
126  *	page structure.
127  */
128 static struct mtx vm_page_buckets_mtx;
129 static struct vm_page **vm_page_buckets; /* Array of buckets */
130 static int vm_page_bucket_count;	/* How big is array? */
131 static int vm_page_hash_mask;		/* Mask for hash function */
132 
133 struct mtx vm_page_queue_mtx;
134 struct mtx vm_page_queue_free_mtx;
135 
136 vm_page_t vm_page_array = 0;
137 int vm_page_array_size = 0;
138 long first_page = 0;
139 int vm_page_zero_count = 0;
140 
141 /*
142  *	vm_set_page_size:
143  *
144  *	Sets the page size, perhaps based upon the memory
145  *	size.  Must be called before any use of page-size
146  *	dependent functions.
147  */
148 void
149 vm_set_page_size(void)
150 {
151 	if (cnt.v_page_size == 0)
152 		cnt.v_page_size = PAGE_SIZE;
153 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
154 		panic("vm_set_page_size: page size not a power of two");
155 }
156 
157 /*
158  *	vm_page_startup:
159  *
160  *	Initializes the resident memory module.
161  *
162  *	Allocates memory for the page cells, and
163  *	for the object/offset-to-page hash table headers.
164  *	Each page cell is initialized and placed on the free list.
165  */
166 vm_offset_t
167 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
168 {
169 	vm_offset_t mapped;
170 	struct vm_page **bucket;
171 	vm_size_t npages, page_range;
172 	vm_offset_t new_end;
173 	int i;
174 	vm_offset_t pa;
175 	int nblocks;
176 	vm_offset_t last_pa;
177 
178 	/* the biggest memory array is the second group of pages */
179 	vm_offset_t end;
180 	vm_offset_t biggestone, biggestsize;
181 
182 	vm_offset_t total;
183 	vm_size_t bootpages;
184 
185 	total = 0;
186 	biggestsize = 0;
187 	biggestone = 0;
188 	nblocks = 0;
189 	vaddr = round_page(vaddr);
190 
191 	for (i = 0; phys_avail[i + 1]; i += 2) {
192 		phys_avail[i] = round_page(phys_avail[i]);
193 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
194 	}
195 
196 	for (i = 0; phys_avail[i + 1]; i += 2) {
197 		vm_size_t size = phys_avail[i + 1] - phys_avail[i];
198 
199 		if (size > biggestsize) {
200 			biggestone = i;
201 			biggestsize = size;
202 		}
203 		++nblocks;
204 		total += size;
205 	}
206 
207 	end = phys_avail[biggestone+1];
208 
209 	/*
210 	 * Initialize the locks.
211 	 */
212 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
213 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
214 	   MTX_SPIN);
215 
216 	/*
217 	 * Initialize the queue headers for the free queue, the active queue
218 	 * and the inactive queue.
219 	 */
220 	vm_pageq_init();
221 
222 	/*
223 	 * Allocate memory for use when boot strapping the kernel memory allocator
224 	 */
225 	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
226 	new_end = end - bootpages;
227 	new_end = trunc_page(new_end);
228 	mapped = pmap_map(&vaddr, new_end, end,
229 	    VM_PROT_READ | VM_PROT_WRITE);
230 	bzero((caddr_t) mapped, end - new_end);
231 	uma_startup((caddr_t)mapped);
232 
233 	end = new_end;
234 
235 	/*
236 	 * Allocate (and initialize) the hash table buckets.
237 	 *
238 	 * The number of buckets MUST BE a power of 2, and the actual value is
239 	 * the next power of 2 greater than the number of physical pages in
240 	 * the system.
241 	 *
242 	 * We make the hash table approximately 2x the number of pages to
243 	 * reduce the chain length.  This is about the same size using the
244 	 * singly-linked list as the 1x hash table we were using before
245 	 * using TAILQ but the chain length will be smaller.
246 	 *
247 	 * Note: This computation can be tweaked if desired.
248 	 */
249 	if (vm_page_bucket_count == 0) {
250 		vm_page_bucket_count = 1;
251 		while (vm_page_bucket_count < atop(total))
252 			vm_page_bucket_count <<= 1;
253 	}
254 	vm_page_bucket_count <<= 1;
255 	vm_page_hash_mask = vm_page_bucket_count - 1;
256 
257 	/*
258 	 * Validate these addresses.
259 	 */
260 	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
261 	new_end = trunc_page(new_end);
262 	mapped = pmap_map(&vaddr, new_end, end,
263 	    VM_PROT_READ | VM_PROT_WRITE);
264 	bzero((caddr_t) mapped, end - new_end);
265 
266 	mtx_init(&vm_page_buckets_mtx, "vm page buckets mutex", NULL, MTX_SPIN);
267 	vm_page_buckets = (struct vm_page **)mapped;
268 	bucket = vm_page_buckets;
269 	for (i = 0; i < vm_page_bucket_count; i++) {
270 		*bucket = NULL;
271 		bucket++;
272 	}
273 
274 	/*
275 	 * Compute the number of pages of memory that will be available for
276 	 * use (taking into account the overhead of a page structure per
277 	 * page).
278 	 */
279 	first_page = phys_avail[0] / PAGE_SIZE;
280 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
281 	npages = (total - (page_range * sizeof(struct vm_page)) -
282 	    (end - new_end)) / PAGE_SIZE;
283 	end = new_end;
284 
285 	/*
286 	 * Initialize the mem entry structures now, and put them in the free
287 	 * queue.
288 	 */
289 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
290 	mapped = pmap_map(&vaddr, new_end, end,
291 	    VM_PROT_READ | VM_PROT_WRITE);
292 	vm_page_array = (vm_page_t) mapped;
293 
294 	/*
295 	 * Clear all of the page structures
296 	 */
297 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
298 	vm_page_array_size = page_range;
299 
300 	/*
301 	 * Construct the free queue(s) in descending order (by physical
302 	 * address) so that the first 16MB of physical memory is allocated
303 	 * last rather than first.  On large-memory machines, this avoids
304 	 * the exhaustion of low physical memory before isa_dmainit has run.
305 	 */
306 	cnt.v_page_count = 0;
307 	cnt.v_free_count = 0;
308 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
309 		pa = phys_avail[i];
310 		if (i == biggestone)
311 			last_pa = new_end;
312 		else
313 			last_pa = phys_avail[i + 1];
314 		while (pa < last_pa && npages-- > 0) {
315 			vm_pageq_add_new_page(pa);
316 			pa += PAGE_SIZE;
317 		}
318 	}
319 	return (vaddr);
320 }
321 
322 /*
323  *	vm_page_hash:
324  *
325  *	Distributes the object/offset key pair among hash buckets.
326  *
327  *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
328  *	This routine may not block.
329  *
330  *	We try to randomize the hash based on the object to spread the pages
331  *	out in the hash table without it costing us too much.
332  */
333 static __inline int
334 vm_page_hash(vm_object_t object, vm_pindex_t pindex)
335 {
336 	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
337 
338 	return (i & vm_page_hash_mask);
339 }
340 
341 void
342 vm_page_flag_set(vm_page_t m, unsigned short bits)
343 {
344 	GIANT_REQUIRED;
345 	m->flags |= bits;
346 }
347 
348 void
349 vm_page_flag_clear(vm_page_t m, unsigned short bits)
350 {
351 	GIANT_REQUIRED;
352 	m->flags &= ~bits;
353 }
354 
355 void
356 vm_page_busy(vm_page_t m)
357 {
358 	KASSERT((m->flags & PG_BUSY) == 0,
359 	    ("vm_page_busy: page already busy!!!"));
360 	vm_page_flag_set(m, PG_BUSY);
361 }
362 
363 /*
364  *      vm_page_flash:
365  *
366  *      wakeup anyone waiting for the page.
367  */
368 void
369 vm_page_flash(vm_page_t m)
370 {
371 	if (m->flags & PG_WANTED) {
372 		vm_page_flag_clear(m, PG_WANTED);
373 		wakeup(m);
374 	}
375 }
376 
377 /*
378  *      vm_page_wakeup:
379  *
380  *      clear the PG_BUSY flag and wakeup anyone waiting for the
381  *      page.
382  *
383  */
384 void
385 vm_page_wakeup(vm_page_t m)
386 {
387 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
388 	vm_page_flag_clear(m, PG_BUSY);
389 	vm_page_flash(m);
390 }
391 
392 /*
393  *
394  *
395  */
396 void
397 vm_page_io_start(vm_page_t m)
398 {
399 
400 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
401 	m->busy++;
402 }
403 
404 void
405 vm_page_io_finish(vm_page_t m)
406 {
407 
408 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
409 	m->busy--;
410 	if (m->busy == 0)
411 		vm_page_flash(m);
412 }
413 
414 /*
415  * Keep page from being freed by the page daemon
416  * much of the same effect as wiring, except much lower
417  * overhead and should be used only for *very* temporary
418  * holding ("wiring").
419  */
420 void
421 vm_page_hold(vm_page_t mem)
422 {
423         GIANT_REQUIRED;
424         mem->hold_count++;
425 }
426 
427 void
428 vm_page_unhold(vm_page_t mem)
429 {
430 	GIANT_REQUIRED;
431 	--mem->hold_count;
432 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
433 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
434 		vm_page_free_toq(mem);
435 }
436 
437 /*
438  *	vm_page_protect:
439  *
440  *	Reduce the protection of a page.  This routine never raises the
441  *	protection and therefore can be safely called if the page is already
442  *	at VM_PROT_NONE (it will be a NOP effectively ).
443  */
444 void
445 vm_page_protect(vm_page_t mem, int prot)
446 {
447 	if (prot == VM_PROT_NONE) {
448 		if (pmap_page_is_mapped(mem) || (mem->flags & PG_WRITEABLE)) {
449 			pmap_page_protect(mem, VM_PROT_NONE);
450 			vm_page_flag_clear(mem, PG_WRITEABLE);
451 		}
452 	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
453 		pmap_page_protect(mem, VM_PROT_READ);
454 		vm_page_flag_clear(mem, PG_WRITEABLE);
455 	}
456 }
457 /*
458  *	vm_page_zero_fill:
459  *
460  *	Zero-fill the specified page.
461  *	Written as a standard pagein routine, to
462  *	be used by the zero-fill object.
463  */
464 boolean_t
465 vm_page_zero_fill(vm_page_t m)
466 {
467 	pmap_zero_page(m);
468 	return (TRUE);
469 }
470 
471 /*
472  *	vm_page_zero_fill_area:
473  *
474  *	Like vm_page_zero_fill but only fill the specified area.
475  */
476 boolean_t
477 vm_page_zero_fill_area(vm_page_t m, int off, int size)
478 {
479 	pmap_zero_page_area(m, off, size);
480 	return (TRUE);
481 }
482 
483 /*
484  *	vm_page_copy:
485  *
486  *	Copy one page to another
487  */
488 void
489 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
490 {
491 	pmap_copy_page(src_m, dest_m);
492 	dest_m->valid = VM_PAGE_BITS_ALL;
493 }
494 
495 /*
496  *	vm_page_free:
497  *
498  *	Free a page
499  *
500  *	The clearing of PG_ZERO is a temporary safety until the code can be
501  *	reviewed to determine that PG_ZERO is being properly cleared on
502  *	write faults or maps.  PG_ZERO was previously cleared in
503  *	vm_page_alloc().
504  */
505 void
506 vm_page_free(vm_page_t m)
507 {
508 	vm_page_flag_clear(m, PG_ZERO);
509 	vm_page_free_toq(m);
510 	vm_page_zero_idle_wakeup();
511 }
512 
513 /*
514  *	vm_page_free_zero:
515  *
516  *	Free a page to the zerod-pages queue
517  */
518 void
519 vm_page_free_zero(vm_page_t m)
520 {
521 	vm_page_flag_set(m, PG_ZERO);
522 	vm_page_free_toq(m);
523 }
524 
525 /*
526  *	vm_page_sleep_busy:
527  *
528  *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
529  *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
530  *	it almost had to sleep and made temporary spl*() mods), FALSE
531  *	otherwise.
532  *
533  *	This routine assumes that interrupts can only remove the busy
534  *	status from a page, not set the busy status or change it from
535  *	PG_BUSY to m->busy or vise versa (which would create a timing
536  *	window).
537  */
538 int
539 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
540 {
541 	GIANT_REQUIRED;
542 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
543 		int s = splvm();
544 		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
545 			/*
546 			 * Page is busy. Wait and retry.
547 			 */
548 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
549 			tsleep(m, PVM, msg, 0);
550 		}
551 		splx(s);
552 		return (TRUE);
553 		/* not reached */
554 	}
555 	return (FALSE);
556 }
557 
558 /*
559  *	vm_page_sleep_if_busy:
560  *
561  *	Sleep and release the page queues lock if PG_BUSY is set or,
562  *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
563  *	thread slept and the page queues lock was released.
564  *	Otherwise, retains the page queues lock and returns FALSE.
565  */
566 int
567 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
568 {
569 
570 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
571 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
572 		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
573 		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
574 		return (TRUE);
575 	}
576 	return (FALSE);
577 }
578 
579 /*
580  *	vm_page_dirty:
581  *
582  *	make page all dirty
583  */
584 void
585 vm_page_dirty(vm_page_t m)
586 {
587 	KASSERT(m->queue - m->pc != PQ_CACHE,
588 	    ("vm_page_dirty: page in cache!"));
589 	m->dirty = VM_PAGE_BITS_ALL;
590 }
591 
592 /*
593  *	vm_page_undirty:
594  *
595  *	Set page to not be dirty.  Note: does not clear pmap modify bits
596  */
597 void
598 vm_page_undirty(vm_page_t m)
599 {
600 	m->dirty = 0;
601 }
602 
603 /*
604  *	vm_page_insert:		[ internal use only ]
605  *
606  *	Inserts the given mem entry into the object and object list.
607  *
608  *	The pagetables are not updated but will presumably fault the page
609  *	in if necessary, or if a kernel page the caller will at some point
610  *	enter the page into the kernel's pmap.  We are not allowed to block
611  *	here so we *can't* do this anyway.
612  *
613  *	The object and page must be locked, and must be splhigh.
614  *	This routine may not block.
615  */
616 void
617 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
618 {
619 	struct vm_page **bucket;
620 
621 	GIANT_REQUIRED;
622 
623 	if (m->object != NULL)
624 		panic("vm_page_insert: already inserted");
625 
626 	/*
627 	 * Record the object/offset pair in this page
628 	 */
629 	m->object = object;
630 	m->pindex = pindex;
631 
632 	/*
633 	 * Insert it into the object_object/offset hash table
634 	 */
635 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
636 	mtx_lock_spin(&vm_page_buckets_mtx);
637 	m->hnext = *bucket;
638 	*bucket = m;
639 	mtx_unlock_spin(&vm_page_buckets_mtx);
640 
641 	/*
642 	 * Now link into the object's list of backed pages.
643 	 */
644 	TAILQ_INSERT_TAIL(&object->memq, m, listq);
645 	object->generation++;
646 
647 	/*
648 	 * show that the object has one more resident page.
649 	 */
650 	object->resident_page_count++;
651 
652 	/*
653 	 * Since we are inserting a new and possibly dirty page,
654 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
655 	 */
656 	if (m->flags & PG_WRITEABLE)
657 		vm_object_set_writeable_dirty(object);
658 }
659 
660 /*
661  *	vm_page_remove:
662  *				NOTE: used by device pager as well -wfj
663  *
664  *	Removes the given mem entry from the object/offset-page
665  *	table and the object page list, but do not invalidate/terminate
666  *	the backing store.
667  *
668  *	The object and page must be locked, and at splhigh.
669  *	The underlying pmap entry (if any) is NOT removed here.
670  *	This routine may not block.
671  */
672 void
673 vm_page_remove(vm_page_t m)
674 {
675 	vm_object_t object;
676 	vm_page_t *bucket;
677 
678 	GIANT_REQUIRED;
679 
680 	if (m->object == NULL)
681 		return;
682 
683 	if ((m->flags & PG_BUSY) == 0) {
684 		panic("vm_page_remove: page not busy");
685 	}
686 
687 	/*
688 	 * Basically destroy the page.
689 	 */
690 	vm_page_wakeup(m);
691 
692 	object = m->object;
693 
694 	/*
695 	 * Remove from the object_object/offset hash table.  The object
696 	 * must be on the hash queue, we will panic if it isn't
697 	 */
698 	bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
699 	mtx_lock_spin(&vm_page_buckets_mtx);
700 	while (*bucket != m) {
701 		if (*bucket == NULL)
702 			panic("vm_page_remove(): page not found in hash");
703 		bucket = &(*bucket)->hnext;
704 	}
705 	*bucket = m->hnext;
706 	m->hnext = NULL;
707 	mtx_unlock_spin(&vm_page_buckets_mtx);
708 
709 	/*
710 	 * Now remove from the object's list of backed pages.
711 	 */
712 	TAILQ_REMOVE(&object->memq, m, listq);
713 
714 	/*
715 	 * And show that the object has one fewer resident page.
716 	 */
717 	object->resident_page_count--;
718 	object->generation++;
719 
720 	m->object = NULL;
721 }
722 
723 /*
724  *	vm_page_lookup:
725  *
726  *	Returns the page associated with the object/offset
727  *	pair specified; if none is found, NULL is returned.
728  *
729  *	The object must be locked.  No side effects.
730  *	This routine may not block.
731  *	This is a critical path routine
732  */
733 vm_page_t
734 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
735 {
736 	vm_page_t m;
737 	struct vm_page **bucket;
738 
739 	/*
740 	 * Search the hash table for this object/offset pair
741 	 */
742 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
743 	mtx_lock_spin(&vm_page_buckets_mtx);
744 	for (m = *bucket; m != NULL; m = m->hnext)
745 		if (m->object == object && m->pindex == pindex)
746 			break;
747 	mtx_unlock_spin(&vm_page_buckets_mtx);
748 	return (m);
749 }
750 
751 /*
752  *	vm_page_rename:
753  *
754  *	Move the given memory entry from its
755  *	current object to the specified target object/offset.
756  *
757  *	The object must be locked.
758  *	This routine may not block.
759  *
760  *	Note: this routine will raise itself to splvm(), the caller need not.
761  *
762  *	Note: swap associated with the page must be invalidated by the move.  We
763  *	      have to do this for several reasons:  (1) we aren't freeing the
764  *	      page, (2) we are dirtying the page, (3) the VM system is probably
765  *	      moving the page from object A to B, and will then later move
766  *	      the backing store from A to B and we can't have a conflict.
767  *
768  *	Note: we *always* dirty the page.  It is necessary both for the
769  *	      fact that we moved it, and because we may be invalidating
770  *	      swap.  If the page is on the cache, we have to deactivate it
771  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
772  *	      on the cache.
773  */
774 void
775 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
776 {
777 	int s;
778 
779 	s = splvm();
780 	vm_page_lock_queues();
781 	vm_page_remove(m);
782 	vm_page_insert(m, new_object, new_pindex);
783 	if (m->queue - m->pc == PQ_CACHE)
784 		vm_page_deactivate(m);
785 	vm_page_dirty(m);
786 	vm_page_unlock_queues();
787 	splx(s);
788 }
789 
790 /*
791  *	vm_page_select_cache:
792  *
793  *	Find a page on the cache queue with color optimization.  As pages
794  *	might be found, but not applicable, they are deactivated.  This
795  *	keeps us from using potentially busy cached pages.
796  *
797  *	This routine must be called at splvm().
798  *	This routine may not block.
799  */
800 static vm_page_t
801 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
802 {
803 	vm_page_t m;
804 
805 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
806 	while (TRUE) {
807 		m = vm_pageq_find(
808 		    PQ_CACHE,
809 		    (pindex + object->pg_color) & PQ_L2_MASK,
810 		    FALSE
811 		);
812 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
813 			       m->hold_count || m->wire_count)) {
814 			vm_page_deactivate(m);
815 			continue;
816 		}
817 		return m;
818 	}
819 }
820 
821 /*
822  *	vm_page_select_free:
823  *
824  *	Find a free or zero page, with specified preference.
825  *
826  *	This routine must be called at splvm().
827  *	This routine may not block.
828  */
829 static __inline vm_page_t
830 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
831 {
832 	vm_page_t m;
833 
834 	m = vm_pageq_find(
835 		PQ_FREE,
836 		(pindex + object->pg_color) & PQ_L2_MASK,
837 		prefer_zero
838 	);
839 	return (m);
840 }
841 
842 /*
843  *	vm_page_alloc:
844  *
845  *	Allocate and return a memory cell associated
846  *	with this VM object/offset pair.
847  *
848  *	page_req classes:
849  *	VM_ALLOC_NORMAL		normal process request
850  *	VM_ALLOC_SYSTEM		system *really* needs a page
851  *	VM_ALLOC_INTERRUPT	interrupt time request
852  *	VM_ALLOC_ZERO		zero page
853  *
854  *	This routine may not block.
855  *
856  *	Additional special handling is required when called from an
857  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
858  *	the page cache in this case.
859  */
860 vm_page_t
861 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
862 {
863 	vm_page_t m = NULL;
864 	int page_req, s;
865 
866 	GIANT_REQUIRED;
867 
868 	KASSERT(!vm_page_lookup(object, pindex),
869 		("vm_page_alloc: page already allocated"));
870 
871 	page_req = req & VM_ALLOC_CLASS_MASK;
872 
873 	/*
874 	 * The pager is allowed to eat deeper into the free page list.
875 	 */
876 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
877 		page_req = VM_ALLOC_SYSTEM;
878 	};
879 
880 	s = splvm();
881 loop:
882 	mtx_lock_spin(&vm_page_queue_free_mtx);
883 	if (cnt.v_free_count > cnt.v_free_reserved) {
884 		/*
885 		 * Allocate from the free queue if there are plenty of pages
886 		 * in it.
887 		 */
888 		m = vm_page_select_free(object, pindex,
889 					(req & VM_ALLOC_ZERO) != 0);
890 	} else if (
891 	    (page_req == VM_ALLOC_SYSTEM &&
892 	     cnt.v_cache_count == 0 &&
893 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
894 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
895 	) {
896 		/*
897 		 * Interrupt or system, dig deeper into the free list.
898 		 */
899 		m = vm_page_select_free(object, pindex, FALSE);
900 	} else if (page_req != VM_ALLOC_INTERRUPT) {
901 		mtx_unlock_spin(&vm_page_queue_free_mtx);
902 		/*
903 		 * Allocatable from cache (non-interrupt only).  On success,
904 		 * we must free the page and try again, thus ensuring that
905 		 * cnt.v_*_free_min counters are replenished.
906 		 */
907 		vm_page_lock_queues();
908 		if ((m = vm_page_select_cache(object, pindex)) == NULL) {
909 			vm_page_unlock_queues();
910 			splx(s);
911 #if defined(DIAGNOSTIC)
912 			if (cnt.v_cache_count > 0)
913 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
914 #endif
915 			vm_pageout_deficit++;
916 			pagedaemon_wakeup();
917 			return (NULL);
918 		}
919 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
920 		vm_page_busy(m);
921 		vm_page_protect(m, VM_PROT_NONE);
922 		vm_page_free(m);
923 		vm_page_unlock_queues();
924 		goto loop;
925 	} else {
926 		/*
927 		 * Not allocatable from cache from interrupt, give up.
928 		 */
929 		mtx_unlock_spin(&vm_page_queue_free_mtx);
930 		splx(s);
931 		vm_pageout_deficit++;
932 		pagedaemon_wakeup();
933 		return (NULL);
934 	}
935 
936 	/*
937 	 *  At this point we had better have found a good page.
938 	 */
939 
940 	KASSERT(
941 	    m != NULL,
942 	    ("vm_page_alloc(): missing page on free queue\n")
943 	);
944 
945 	/*
946 	 * Remove from free queue
947 	 */
948 
949 	vm_pageq_remove_nowakeup(m);
950 
951 	/*
952 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
953 	 */
954 	if (m->flags & PG_ZERO) {
955 		vm_page_zero_count--;
956 		m->flags = PG_ZERO | PG_BUSY;
957 	} else {
958 		m->flags = PG_BUSY;
959 	}
960 	if (req & VM_ALLOC_WIRED) {
961 		cnt.v_wire_count++;
962 		m->wire_count = 1;
963 	} else
964 		m->wire_count = 0;
965 	m->hold_count = 0;
966 	m->act_count = 0;
967 	m->busy = 0;
968 	m->valid = 0;
969 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
970 	mtx_unlock_spin(&vm_page_queue_free_mtx);
971 
972 	/*
973 	 * vm_page_insert() is safe prior to the splx().  Note also that
974 	 * inserting a page here does not insert it into the pmap (which
975 	 * could cause us to block allocating memory).  We cannot block
976 	 * anywhere.
977 	 */
978 	vm_page_insert(m, object, pindex);
979 
980 	/*
981 	 * Don't wakeup too often - wakeup the pageout daemon when
982 	 * we would be nearly out of memory.
983 	 */
984 	if (vm_paging_needed())
985 		pagedaemon_wakeup();
986 
987 	splx(s);
988 	return (m);
989 }
990 
991 /*
992  *	vm_wait:	(also see VM_WAIT macro)
993  *
994  *	Block until free pages are available for allocation
995  *	- Called in various places before memory allocations.
996  */
997 void
998 vm_wait(void)
999 {
1000 	int s;
1001 
1002 	s = splvm();
1003 	if (curproc == pageproc) {
1004 		vm_pageout_pages_needed = 1;
1005 		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
1006 	} else {
1007 		if (!vm_pages_needed) {
1008 			vm_pages_needed = 1;
1009 			wakeup(&vm_pages_needed);
1010 		}
1011 		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
1012 	}
1013 	splx(s);
1014 }
1015 
1016 /*
1017  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1018  *
1019  *	Block until free pages are available for allocation
1020  *	- Called only in vm_fault so that processes page faulting
1021  *	  can be easily tracked.
1022  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1023  *	  processes will be able to grab memory first.  Do not change
1024  *	  this balance without careful testing first.
1025  */
1026 void
1027 vm_waitpfault(void)
1028 {
1029 	int s;
1030 
1031 	s = splvm();
1032 	if (!vm_pages_needed) {
1033 		vm_pages_needed = 1;
1034 		wakeup(&vm_pages_needed);
1035 	}
1036 	tsleep(&cnt.v_free_count, PUSER, "pfault", 0);
1037 	splx(s);
1038 }
1039 
1040 /*
1041  *	vm_page_activate:
1042  *
1043  *	Put the specified page on the active list (if appropriate).
1044  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1045  *	mess with it.
1046  *
1047  *	The page queues must be locked.
1048  *	This routine may not block.
1049  */
1050 void
1051 vm_page_activate(vm_page_t m)
1052 {
1053 	int s;
1054 
1055 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1056 	s = splvm();
1057 	if (m->queue != PQ_ACTIVE) {
1058 		if ((m->queue - m->pc) == PQ_CACHE)
1059 			cnt.v_reactivated++;
1060 		vm_pageq_remove(m);
1061 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1062 			if (m->act_count < ACT_INIT)
1063 				m->act_count = ACT_INIT;
1064 			vm_pageq_enqueue(PQ_ACTIVE, m);
1065 		}
1066 	} else {
1067 		if (m->act_count < ACT_INIT)
1068 			m->act_count = ACT_INIT;
1069 	}
1070 	splx(s);
1071 }
1072 
1073 /*
1074  *	vm_page_free_wakeup:
1075  *
1076  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1077  *	routine is called when a page has been added to the cache or free
1078  *	queues.
1079  *
1080  *	This routine may not block.
1081  *	This routine must be called at splvm()
1082  */
1083 static __inline void
1084 vm_page_free_wakeup(void)
1085 {
1086 	/*
1087 	 * if pageout daemon needs pages, then tell it that there are
1088 	 * some free.
1089 	 */
1090 	if (vm_pageout_pages_needed &&
1091 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1092 		wakeup(&vm_pageout_pages_needed);
1093 		vm_pageout_pages_needed = 0;
1094 	}
1095 	/*
1096 	 * wakeup processes that are waiting on memory if we hit a
1097 	 * high water mark. And wakeup scheduler process if we have
1098 	 * lots of memory. this process will swapin processes.
1099 	 */
1100 	if (vm_pages_needed && !vm_page_count_min()) {
1101 		vm_pages_needed = 0;
1102 		wakeup(&cnt.v_free_count);
1103 	}
1104 }
1105 
1106 /*
1107  *	vm_page_free_toq:
1108  *
1109  *	Returns the given page to the PQ_FREE list,
1110  *	disassociating it with any VM object.
1111  *
1112  *	Object and page must be locked prior to entry.
1113  *	This routine may not block.
1114  */
1115 
1116 void
1117 vm_page_free_toq(vm_page_t m)
1118 {
1119 	int s;
1120 	struct vpgqueues *pq;
1121 	vm_object_t object = m->object;
1122 
1123 	GIANT_REQUIRED;
1124 	s = splvm();
1125 	cnt.v_tfree++;
1126 
1127 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1128 		printf(
1129 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1130 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1131 		    m->hold_count);
1132 		if ((m->queue - m->pc) == PQ_FREE)
1133 			panic("vm_page_free: freeing free page");
1134 		else
1135 			panic("vm_page_free: freeing busy page");
1136 	}
1137 
1138 	/*
1139 	 * unqueue, then remove page.  Note that we cannot destroy
1140 	 * the page here because we do not want to call the pager's
1141 	 * callback routine until after we've put the page on the
1142 	 * appropriate free queue.
1143 	 */
1144 	vm_pageq_remove_nowakeup(m);
1145 	vm_page_remove(m);
1146 
1147 	/*
1148 	 * If fictitious remove object association and
1149 	 * return, otherwise delay object association removal.
1150 	 */
1151 	if ((m->flags & PG_FICTITIOUS) != 0) {
1152 		splx(s);
1153 		return;
1154 	}
1155 
1156 	m->valid = 0;
1157 	vm_page_undirty(m);
1158 
1159 	if (m->wire_count != 0) {
1160 		if (m->wire_count > 1) {
1161 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1162 				m->wire_count, (long)m->pindex);
1163 		}
1164 		panic("vm_page_free: freeing wired page\n");
1165 	}
1166 
1167 	/*
1168 	 * If we've exhausted the object's resident pages we want to free
1169 	 * it up.
1170 	 */
1171 	if (object &&
1172 	    (object->type == OBJT_VNODE) &&
1173 	    ((object->flags & OBJ_DEAD) == 0)
1174 	) {
1175 		struct vnode *vp = (struct vnode *)object->handle;
1176 
1177 		if (vp) {
1178 			VI_LOCK(vp);
1179 			if (VSHOULDFREE(vp))
1180 				vfree(vp);
1181 			VI_UNLOCK(vp);
1182 		}
1183 	}
1184 
1185 	/*
1186 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1187 	 */
1188 	if (m->flags & PG_UNMANAGED) {
1189 		m->flags &= ~PG_UNMANAGED;
1190 	} else {
1191 #ifdef __alpha__
1192 		pmap_page_is_free(m);
1193 #endif
1194 	}
1195 
1196 	if (m->hold_count != 0) {
1197 		m->flags &= ~PG_ZERO;
1198 		m->queue = PQ_HOLD;
1199 	} else
1200 		m->queue = PQ_FREE + m->pc;
1201 	pq = &vm_page_queues[m->queue];
1202 	mtx_lock_spin(&vm_page_queue_free_mtx);
1203 	pq->lcnt++;
1204 	++(*pq->cnt);
1205 
1206 	/*
1207 	 * Put zero'd pages on the end ( where we look for zero'd pages
1208 	 * first ) and non-zerod pages at the head.
1209 	 */
1210 	if (m->flags & PG_ZERO) {
1211 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1212 		++vm_page_zero_count;
1213 	} else {
1214 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1215 	}
1216 	mtx_unlock_spin(&vm_page_queue_free_mtx);
1217 	vm_page_free_wakeup();
1218 	splx(s);
1219 }
1220 
1221 /*
1222  *	vm_page_unmanage:
1223  *
1224  * 	Prevent PV management from being done on the page.  The page is
1225  *	removed from the paging queues as if it were wired, and as a
1226  *	consequence of no longer being managed the pageout daemon will not
1227  *	touch it (since there is no way to locate the pte mappings for the
1228  *	page).  madvise() calls that mess with the pmap will also no longer
1229  *	operate on the page.
1230  *
1231  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1232  *	will clear the flag.
1233  *
1234  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1235  *	physical memory as backing store rather then swap-backed memory and
1236  *	will eventually be extended to support 4MB unmanaged physical
1237  *	mappings.
1238  */
1239 void
1240 vm_page_unmanage(vm_page_t m)
1241 {
1242 	int s;
1243 
1244 	s = splvm();
1245 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1246 	if ((m->flags & PG_UNMANAGED) == 0) {
1247 		if (m->wire_count == 0)
1248 			vm_pageq_remove(m);
1249 	}
1250 	vm_page_flag_set(m, PG_UNMANAGED);
1251 	splx(s);
1252 }
1253 
1254 /*
1255  *	vm_page_wire:
1256  *
1257  *	Mark this page as wired down by yet
1258  *	another map, removing it from paging queues
1259  *	as necessary.
1260  *
1261  *	The page queues must be locked.
1262  *	This routine may not block.
1263  */
1264 void
1265 vm_page_wire(vm_page_t m)
1266 {
1267 	int s;
1268 
1269 	/*
1270 	 * Only bump the wire statistics if the page is not already wired,
1271 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1272 	 * it is already off the queues).
1273 	 */
1274 	s = splvm();
1275 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1276 	if (m->wire_count == 0) {
1277 		if ((m->flags & PG_UNMANAGED) == 0)
1278 			vm_pageq_remove(m);
1279 		cnt.v_wire_count++;
1280 	}
1281 	m->wire_count++;
1282 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1283 	splx(s);
1284 }
1285 
1286 /*
1287  *	vm_page_unwire:
1288  *
1289  *	Release one wiring of this page, potentially
1290  *	enabling it to be paged again.
1291  *
1292  *	Many pages placed on the inactive queue should actually go
1293  *	into the cache, but it is difficult to figure out which.  What
1294  *	we do instead, if the inactive target is well met, is to put
1295  *	clean pages at the head of the inactive queue instead of the tail.
1296  *	This will cause them to be moved to the cache more quickly and
1297  *	if not actively re-referenced, freed more quickly.  If we just
1298  *	stick these pages at the end of the inactive queue, heavy filesystem
1299  *	meta-data accesses can cause an unnecessary paging load on memory bound
1300  *	processes.  This optimization causes one-time-use metadata to be
1301  *	reused more quickly.
1302  *
1303  *	BUT, if we are in a low-memory situation we have no choice but to
1304  *	put clean pages on the cache queue.
1305  *
1306  *	A number of routines use vm_page_unwire() to guarantee that the page
1307  *	will go into either the inactive or active queues, and will NEVER
1308  *	be placed in the cache - for example, just after dirtying a page.
1309  *	dirty pages in the cache are not allowed.
1310  *
1311  *	The page queues must be locked.
1312  *	This routine may not block.
1313  */
1314 void
1315 vm_page_unwire(vm_page_t m, int activate)
1316 {
1317 	int s;
1318 
1319 	s = splvm();
1320 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1321 	if (m->wire_count > 0) {
1322 		m->wire_count--;
1323 		if (m->wire_count == 0) {
1324 			cnt.v_wire_count--;
1325 			if (m->flags & PG_UNMANAGED) {
1326 				;
1327 			} else if (activate)
1328 				vm_pageq_enqueue(PQ_ACTIVE, m);
1329 			else {
1330 				vm_page_flag_clear(m, PG_WINATCFLS);
1331 				vm_pageq_enqueue(PQ_INACTIVE, m);
1332 			}
1333 		}
1334 	} else {
1335 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1336 	}
1337 	splx(s);
1338 }
1339 
1340 
1341 /*
1342  * Move the specified page to the inactive queue.  If the page has
1343  * any associated swap, the swap is deallocated.
1344  *
1345  * Normally athead is 0 resulting in LRU operation.  athead is set
1346  * to 1 if we want this page to be 'as if it were placed in the cache',
1347  * except without unmapping it from the process address space.
1348  *
1349  * This routine may not block.
1350  */
1351 static __inline void
1352 _vm_page_deactivate(vm_page_t m, int athead)
1353 {
1354 	int s;
1355 
1356 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1357 	/*
1358 	 * Ignore if already inactive.
1359 	 */
1360 	if (m->queue == PQ_INACTIVE)
1361 		return;
1362 
1363 	s = splvm();
1364 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1365 		if ((m->queue - m->pc) == PQ_CACHE)
1366 			cnt.v_reactivated++;
1367 		vm_page_flag_clear(m, PG_WINATCFLS);
1368 		vm_pageq_remove(m);
1369 		if (athead)
1370 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1371 		else
1372 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1373 		m->queue = PQ_INACTIVE;
1374 		vm_page_queues[PQ_INACTIVE].lcnt++;
1375 		cnt.v_inactive_count++;
1376 	}
1377 	splx(s);
1378 }
1379 
1380 void
1381 vm_page_deactivate(vm_page_t m)
1382 {
1383     _vm_page_deactivate(m, 0);
1384 }
1385 
1386 /*
1387  * vm_page_try_to_cache:
1388  *
1389  * Returns 0 on failure, 1 on success
1390  */
1391 int
1392 vm_page_try_to_cache(vm_page_t m)
1393 {
1394 
1395 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1396 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1397 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1398 		return (0);
1399 	}
1400 	vm_page_test_dirty(m);
1401 	if (m->dirty)
1402 		return (0);
1403 	vm_page_cache(m);
1404 	return (1);
1405 }
1406 
1407 /*
1408  * vm_page_try_to_free()
1409  *
1410  *	Attempt to free the page.  If we cannot free it, we do nothing.
1411  *	1 is returned on success, 0 on failure.
1412  */
1413 int
1414 vm_page_try_to_free(vm_page_t m)
1415 {
1416 
1417 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1418 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1419 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1420 		return (0);
1421 	}
1422 	vm_page_test_dirty(m);
1423 	if (m->dirty)
1424 		return (0);
1425 	vm_page_busy(m);
1426 	vm_page_protect(m, VM_PROT_NONE);
1427 	vm_page_free(m);
1428 	return (1);
1429 }
1430 
1431 /*
1432  * vm_page_cache
1433  *
1434  * Put the specified page onto the page cache queue (if appropriate).
1435  *
1436  * This routine may not block.
1437  */
1438 void
1439 vm_page_cache(vm_page_t m)
1440 {
1441 	int s;
1442 
1443 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1444 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1445 		printf("vm_page_cache: attempting to cache busy page\n");
1446 		return;
1447 	}
1448 	if ((m->queue - m->pc) == PQ_CACHE)
1449 		return;
1450 
1451 	/*
1452 	 * Remove all pmaps and indicate that the page is not
1453 	 * writeable or mapped.
1454 	 */
1455 	vm_page_protect(m, VM_PROT_NONE);
1456 	if (m->dirty != 0) {
1457 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1458 			(long)m->pindex);
1459 	}
1460 	s = splvm();
1461 	vm_pageq_remove_nowakeup(m);
1462 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1463 	vm_page_free_wakeup();
1464 	splx(s);
1465 }
1466 
1467 /*
1468  * vm_page_dontneed
1469  *
1470  *	Cache, deactivate, or do nothing as appropriate.  This routine
1471  *	is typically used by madvise() MADV_DONTNEED.
1472  *
1473  *	Generally speaking we want to move the page into the cache so
1474  *	it gets reused quickly.  However, this can result in a silly syndrome
1475  *	due to the page recycling too quickly.  Small objects will not be
1476  *	fully cached.  On the otherhand, if we move the page to the inactive
1477  *	queue we wind up with a problem whereby very large objects
1478  *	unnecessarily blow away our inactive and cache queues.
1479  *
1480  *	The solution is to move the pages based on a fixed weighting.  We
1481  *	either leave them alone, deactivate them, or move them to the cache,
1482  *	where moving them to the cache has the highest weighting.
1483  *	By forcing some pages into other queues we eventually force the
1484  *	system to balance the queues, potentially recovering other unrelated
1485  *	space from active.  The idea is to not force this to happen too
1486  *	often.
1487  */
1488 void
1489 vm_page_dontneed(vm_page_t m)
1490 {
1491 	static int dnweight;
1492 	int dnw;
1493 	int head;
1494 
1495 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1496 	dnw = ++dnweight;
1497 
1498 	/*
1499 	 * occassionally leave the page alone
1500 	 */
1501 	if ((dnw & 0x01F0) == 0 ||
1502 	    m->queue == PQ_INACTIVE ||
1503 	    m->queue - m->pc == PQ_CACHE
1504 	) {
1505 		if (m->act_count >= ACT_INIT)
1506 			--m->act_count;
1507 		return;
1508 	}
1509 
1510 	if (m->dirty == 0)
1511 		vm_page_test_dirty(m);
1512 
1513 	if (m->dirty || (dnw & 0x0070) == 0) {
1514 		/*
1515 		 * Deactivate the page 3 times out of 32.
1516 		 */
1517 		head = 0;
1518 	} else {
1519 		/*
1520 		 * Cache the page 28 times out of every 32.  Note that
1521 		 * the page is deactivated instead of cached, but placed
1522 		 * at the head of the queue instead of the tail.
1523 		 */
1524 		head = 1;
1525 	}
1526 	_vm_page_deactivate(m, head);
1527 }
1528 
1529 /*
1530  * Grab a page, waiting until we are waken up due to the page
1531  * changing state.  We keep on waiting, if the page continues
1532  * to be in the object.  If the page doesn't exist, allocate it.
1533  *
1534  * This routine may block.
1535  */
1536 vm_page_t
1537 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1538 {
1539 	vm_page_t m;
1540 	int s, generation;
1541 
1542 	GIANT_REQUIRED;
1543 retrylookup:
1544 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1545 		vm_page_lock_queues();
1546 		if (m->busy || (m->flags & PG_BUSY)) {
1547 			generation = object->generation;
1548 
1549 			s = splvm();
1550 			while ((object->generation == generation) &&
1551 					(m->busy || (m->flags & PG_BUSY))) {
1552 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1553 				msleep(m, &vm_page_queue_mtx, PVM, "pgrbwt", 0);
1554 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1555 					vm_page_unlock_queues();
1556 					splx(s);
1557 					return NULL;
1558 				}
1559 			}
1560 			vm_page_unlock_queues();
1561 			splx(s);
1562 			goto retrylookup;
1563 		} else {
1564 			if (allocflags & VM_ALLOC_WIRED)
1565 				vm_page_wire(m);
1566 			vm_page_busy(m);
1567 			vm_page_unlock_queues();
1568 			return m;
1569 		}
1570 	}
1571 
1572 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1573 	if (m == NULL) {
1574 		VM_WAIT;
1575 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1576 			return NULL;
1577 		goto retrylookup;
1578 	}
1579 
1580 	return m;
1581 }
1582 
1583 /*
1584  * Mapping function for valid bits or for dirty bits in
1585  * a page.  May not block.
1586  *
1587  * Inputs are required to range within a page.
1588  */
1589 __inline int
1590 vm_page_bits(int base, int size)
1591 {
1592 	int first_bit;
1593 	int last_bit;
1594 
1595 	KASSERT(
1596 	    base + size <= PAGE_SIZE,
1597 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1598 	);
1599 
1600 	if (size == 0)		/* handle degenerate case */
1601 		return (0);
1602 
1603 	first_bit = base >> DEV_BSHIFT;
1604 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1605 
1606 	return ((2 << last_bit) - (1 << first_bit));
1607 }
1608 
1609 /*
1610  *	vm_page_set_validclean:
1611  *
1612  *	Sets portions of a page valid and clean.  The arguments are expected
1613  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1614  *	of any partial chunks touched by the range.  The invalid portion of
1615  *	such chunks will be zero'd.
1616  *
1617  *	This routine may not block.
1618  *
1619  *	(base + size) must be less then or equal to PAGE_SIZE.
1620  */
1621 void
1622 vm_page_set_validclean(vm_page_t m, int base, int size)
1623 {
1624 	int pagebits;
1625 	int frag;
1626 	int endoff;
1627 
1628 	GIANT_REQUIRED;
1629 	if (size == 0)	/* handle degenerate case */
1630 		return;
1631 
1632 	/*
1633 	 * If the base is not DEV_BSIZE aligned and the valid
1634 	 * bit is clear, we have to zero out a portion of the
1635 	 * first block.
1636 	 */
1637 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1638 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1639 		pmap_zero_page_area(m, frag, base - frag);
1640 
1641 	/*
1642 	 * If the ending offset is not DEV_BSIZE aligned and the
1643 	 * valid bit is clear, we have to zero out a portion of
1644 	 * the last block.
1645 	 */
1646 	endoff = base + size;
1647 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1648 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1649 		pmap_zero_page_area(m, endoff,
1650 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1651 
1652 	/*
1653 	 * Set valid, clear dirty bits.  If validating the entire
1654 	 * page we can safely clear the pmap modify bit.  We also
1655 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1656 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1657 	 * be set again.
1658 	 *
1659 	 * We set valid bits inclusive of any overlap, but we can only
1660 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1661 	 * the range.
1662 	 */
1663 	pagebits = vm_page_bits(base, size);
1664 	m->valid |= pagebits;
1665 #if 0	/* NOT YET */
1666 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1667 		frag = DEV_BSIZE - frag;
1668 		base += frag;
1669 		size -= frag;
1670 		if (size < 0)
1671 			size = 0;
1672 	}
1673 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1674 #endif
1675 	m->dirty &= ~pagebits;
1676 	if (base == 0 && size == PAGE_SIZE) {
1677 		pmap_clear_modify(m);
1678 		vm_page_flag_clear(m, PG_NOSYNC);
1679 	}
1680 }
1681 
1682 #if 0
1683 
1684 void
1685 vm_page_set_dirty(vm_page_t m, int base, int size)
1686 {
1687 	m->dirty |= vm_page_bits(base, size);
1688 }
1689 
1690 #endif
1691 
1692 void
1693 vm_page_clear_dirty(vm_page_t m, int base, int size)
1694 {
1695 	GIANT_REQUIRED;
1696 	m->dirty &= ~vm_page_bits(base, size);
1697 }
1698 
1699 /*
1700  *	vm_page_set_invalid:
1701  *
1702  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1703  *	valid and dirty bits for the effected areas are cleared.
1704  *
1705  *	May not block.
1706  */
1707 void
1708 vm_page_set_invalid(vm_page_t m, int base, int size)
1709 {
1710 	int bits;
1711 
1712 	GIANT_REQUIRED;
1713 	bits = vm_page_bits(base, size);
1714 	m->valid &= ~bits;
1715 	m->dirty &= ~bits;
1716 	m->object->generation++;
1717 }
1718 
1719 /*
1720  * vm_page_zero_invalid()
1721  *
1722  *	The kernel assumes that the invalid portions of a page contain
1723  *	garbage, but such pages can be mapped into memory by user code.
1724  *	When this occurs, we must zero out the non-valid portions of the
1725  *	page so user code sees what it expects.
1726  *
1727  *	Pages are most often semi-valid when the end of a file is mapped
1728  *	into memory and the file's size is not page aligned.
1729  */
1730 void
1731 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1732 {
1733 	int b;
1734 	int i;
1735 
1736 	/*
1737 	 * Scan the valid bits looking for invalid sections that
1738 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1739 	 * valid bit may be set ) have already been zerod by
1740 	 * vm_page_set_validclean().
1741 	 */
1742 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1743 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1744 		    (m->valid & (1 << i))
1745 		) {
1746 			if (i > b) {
1747 				pmap_zero_page_area(m,
1748 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1749 			}
1750 			b = i + 1;
1751 		}
1752 	}
1753 
1754 	/*
1755 	 * setvalid is TRUE when we can safely set the zero'd areas
1756 	 * as being valid.  We can do this if there are no cache consistancy
1757 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1758 	 */
1759 	if (setvalid)
1760 		m->valid = VM_PAGE_BITS_ALL;
1761 }
1762 
1763 /*
1764  *	vm_page_is_valid:
1765  *
1766  *	Is (partial) page valid?  Note that the case where size == 0
1767  *	will return FALSE in the degenerate case where the page is
1768  *	entirely invalid, and TRUE otherwise.
1769  *
1770  *	May not block.
1771  */
1772 int
1773 vm_page_is_valid(vm_page_t m, int base, int size)
1774 {
1775 	int bits = vm_page_bits(base, size);
1776 
1777 	if (m->valid && ((m->valid & bits) == bits))
1778 		return 1;
1779 	else
1780 		return 0;
1781 }
1782 
1783 /*
1784  * update dirty bits from pmap/mmu.  May not block.
1785  */
1786 void
1787 vm_page_test_dirty(vm_page_t m)
1788 {
1789 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1790 		vm_page_dirty(m);
1791 	}
1792 }
1793 
1794 int so_zerocp_fullpage = 0;
1795 
1796 void
1797 vm_page_cowfault(vm_page_t m)
1798 {
1799 	vm_page_t mnew;
1800 	vm_object_t object;
1801 	vm_pindex_t pindex;
1802 
1803 	object = m->object;
1804 	pindex = m->pindex;
1805 	vm_page_busy(m);
1806 
1807  retry_alloc:
1808 	vm_page_remove(m);
1809 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1810 	if (mnew == NULL) {
1811 		vm_page_insert(m, object, pindex);
1812 		VM_WAIT;
1813 		goto retry_alloc;
1814 	}
1815 
1816 	if (m->cow == 0) {
1817 		/*
1818 		 * check to see if we raced with an xmit complete when
1819 		 * waiting to allocate a page.  If so, put things back
1820 		 * the way they were
1821 		 */
1822 		vm_page_busy(mnew);
1823 		vm_page_free(mnew);
1824 		vm_page_insert(m, object, pindex);
1825 	} else { /* clear COW & copy page */
1826 		if (so_zerocp_fullpage) {
1827 			mnew->valid = VM_PAGE_BITS_ALL;
1828 		} else {
1829 			vm_page_copy(m, mnew);
1830 		}
1831 		vm_page_dirty(mnew);
1832 		vm_page_flag_clear(mnew, PG_BUSY);
1833 	}
1834 }
1835 
1836 void
1837 vm_page_cowclear(vm_page_t m)
1838 {
1839 
1840 	/* XXX KDM find out if giant is required here. */
1841 	GIANT_REQUIRED;
1842 	if (m->cow) {
1843 		atomic_subtract_int(&m->cow, 1);
1844 		/*
1845 		 * let vm_fault add back write permission  lazily
1846 		 */
1847 	}
1848 	/*
1849 	 *  sf_buf_free() will free the page, so we needn't do it here
1850 	 */
1851 }
1852 
1853 void
1854 vm_page_cowsetup(vm_page_t m)
1855 {
1856 	/* XXX KDM find out if giant is required here */
1857 	GIANT_REQUIRED;
1858 	atomic_add_int(&m->cow, 1);
1859 	vm_page_protect(m, VM_PROT_READ);
1860 }
1861 
1862 #include "opt_ddb.h"
1863 #ifdef DDB
1864 #include <sys/kernel.h>
1865 
1866 #include <ddb/ddb.h>
1867 
1868 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1869 {
1870 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1871 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1872 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1873 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1874 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1875 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1876 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1877 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1878 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1879 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1880 }
1881 
1882 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1883 {
1884 	int i;
1885 	db_printf("PQ_FREE:");
1886 	for (i = 0; i < PQ_L2_SIZE; i++) {
1887 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1888 	}
1889 	db_printf("\n");
1890 
1891 	db_printf("PQ_CACHE:");
1892 	for (i = 0; i < PQ_L2_SIZE; i++) {
1893 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1894 	}
1895 	db_printf("\n");
1896 
1897 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1898 		vm_page_queues[PQ_ACTIVE].lcnt,
1899 		vm_page_queues[PQ_INACTIVE].lcnt);
1900 }
1901 #endif /* DDB */
1902