1 /* 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 37 * $FreeBSD$ 38 */ 39 40 /* 41 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 42 * All rights reserved. 43 * 44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 45 * 46 * Permission to use, copy, modify and distribute this software and 47 * its documentation is hereby granted, provided that both the copyright 48 * notice and this permission notice appear in all copies of the 49 * software, derivative works or modified versions, and any portions 50 * thereof, and that both notices appear in supporting documentation. 51 * 52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 55 * 56 * Carnegie Mellon requests users of this software to return to 57 * 58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 59 * School of Computer Science 60 * Carnegie Mellon University 61 * Pittsburgh PA 15213-3890 62 * 63 * any improvements or extensions that they make and grant Carnegie the 64 * rights to redistribute these changes. 65 */ 66 67 /* 68 * GENERAL RULES ON VM_PAGE MANIPULATION 69 * 70 * - a pageq mutex is required when adding or removing a page from a 71 * page queue (vm_page_queue[]), regardless of other mutexes or the 72 * busy state of a page. 73 * 74 * - a hash chain mutex is required when associating or disassociating 75 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 76 * regardless of other mutexes or the busy state of a page. 77 * 78 * - either a hash chain mutex OR a busied page is required in order 79 * to modify the page flags. A hash chain mutex must be obtained in 80 * order to busy a page. A page's flags cannot be modified by a 81 * hash chain mutex if the page is marked busy. 82 * 83 * - The object memq mutex is held when inserting or removing 84 * pages from an object (vm_page_insert() or vm_page_remove()). This 85 * is different from the object's main mutex. 86 * 87 * Generally speaking, you have to be aware of side effects when running 88 * vm_page ops. A vm_page_lookup() will return with the hash chain 89 * locked, whether it was able to lookup the page or not. vm_page_free(), 90 * vm_page_cache(), vm_page_activate(), and a number of other routines 91 * will release the hash chain mutex for you. Intermediate manipulation 92 * routines such as vm_page_flag_set() expect the hash chain to be held 93 * on entry and the hash chain will remain held on return. 94 * 95 * pageq scanning can only occur with the pageq in question locked. 96 * We have a known bottleneck with the active queue, but the cache 97 * and free queues are actually arrays already. 98 */ 99 100 /* 101 * Resident memory management module. 102 */ 103 104 #include <sys/param.h> 105 #include <sys/systm.h> 106 #include <sys/lock.h> 107 #include <sys/malloc.h> 108 #include <sys/mutex.h> 109 #include <sys/proc.h> 110 #include <sys/vmmeter.h> 111 #include <sys/vnode.h> 112 113 #include <vm/vm.h> 114 #include <vm/vm_param.h> 115 #include <vm/vm_kern.h> 116 #include <vm/vm_object.h> 117 #include <vm/vm_page.h> 118 #include <vm/vm_pageout.h> 119 #include <vm/vm_pager.h> 120 #include <vm/vm_extern.h> 121 #include <vm/uma.h> 122 #include <vm/uma_int.h> 123 124 /* 125 * Associated with page of user-allocatable memory is a 126 * page structure. 127 */ 128 static struct mtx vm_page_buckets_mtx; 129 static struct vm_page **vm_page_buckets; /* Array of buckets */ 130 static int vm_page_bucket_count; /* How big is array? */ 131 static int vm_page_hash_mask; /* Mask for hash function */ 132 133 struct mtx vm_page_queue_mtx; 134 struct mtx vm_page_queue_free_mtx; 135 136 vm_page_t vm_page_array = 0; 137 int vm_page_array_size = 0; 138 long first_page = 0; 139 int vm_page_zero_count = 0; 140 141 /* 142 * vm_set_page_size: 143 * 144 * Sets the page size, perhaps based upon the memory 145 * size. Must be called before any use of page-size 146 * dependent functions. 147 */ 148 void 149 vm_set_page_size(void) 150 { 151 if (cnt.v_page_size == 0) 152 cnt.v_page_size = PAGE_SIZE; 153 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 154 panic("vm_set_page_size: page size not a power of two"); 155 } 156 157 /* 158 * vm_page_startup: 159 * 160 * Initializes the resident memory module. 161 * 162 * Allocates memory for the page cells, and 163 * for the object/offset-to-page hash table headers. 164 * Each page cell is initialized and placed on the free list. 165 */ 166 vm_offset_t 167 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr) 168 { 169 vm_offset_t mapped; 170 struct vm_page **bucket; 171 vm_size_t npages, page_range; 172 vm_offset_t new_end; 173 int i; 174 vm_offset_t pa; 175 int nblocks; 176 vm_offset_t last_pa; 177 178 /* the biggest memory array is the second group of pages */ 179 vm_offset_t end; 180 vm_offset_t biggestone, biggestsize; 181 182 vm_offset_t total; 183 vm_size_t bootpages; 184 185 total = 0; 186 biggestsize = 0; 187 biggestone = 0; 188 nblocks = 0; 189 vaddr = round_page(vaddr); 190 191 for (i = 0; phys_avail[i + 1]; i += 2) { 192 phys_avail[i] = round_page(phys_avail[i]); 193 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 194 } 195 196 for (i = 0; phys_avail[i + 1]; i += 2) { 197 vm_size_t size = phys_avail[i + 1] - phys_avail[i]; 198 199 if (size > biggestsize) { 200 biggestone = i; 201 biggestsize = size; 202 } 203 ++nblocks; 204 total += size; 205 } 206 207 end = phys_avail[biggestone+1]; 208 209 /* 210 * Initialize the locks. 211 */ 212 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF); 213 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 214 MTX_SPIN); 215 216 /* 217 * Initialize the queue headers for the free queue, the active queue 218 * and the inactive queue. 219 */ 220 vm_pageq_init(); 221 222 /* 223 * Allocate memory for use when boot strapping the kernel memory allocator 224 */ 225 bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE; 226 new_end = end - bootpages; 227 new_end = trunc_page(new_end); 228 mapped = pmap_map(&vaddr, new_end, end, 229 VM_PROT_READ | VM_PROT_WRITE); 230 bzero((caddr_t) mapped, end - new_end); 231 uma_startup((caddr_t)mapped); 232 233 end = new_end; 234 235 /* 236 * Allocate (and initialize) the hash table buckets. 237 * 238 * The number of buckets MUST BE a power of 2, and the actual value is 239 * the next power of 2 greater than the number of physical pages in 240 * the system. 241 * 242 * We make the hash table approximately 2x the number of pages to 243 * reduce the chain length. This is about the same size using the 244 * singly-linked list as the 1x hash table we were using before 245 * using TAILQ but the chain length will be smaller. 246 * 247 * Note: This computation can be tweaked if desired. 248 */ 249 if (vm_page_bucket_count == 0) { 250 vm_page_bucket_count = 1; 251 while (vm_page_bucket_count < atop(total)) 252 vm_page_bucket_count <<= 1; 253 } 254 vm_page_bucket_count <<= 1; 255 vm_page_hash_mask = vm_page_bucket_count - 1; 256 257 /* 258 * Validate these addresses. 259 */ 260 new_end = end - vm_page_bucket_count * sizeof(struct vm_page *); 261 new_end = trunc_page(new_end); 262 mapped = pmap_map(&vaddr, new_end, end, 263 VM_PROT_READ | VM_PROT_WRITE); 264 bzero((caddr_t) mapped, end - new_end); 265 266 mtx_init(&vm_page_buckets_mtx, "vm page buckets mutex", NULL, MTX_SPIN); 267 vm_page_buckets = (struct vm_page **)mapped; 268 bucket = vm_page_buckets; 269 for (i = 0; i < vm_page_bucket_count; i++) { 270 *bucket = NULL; 271 bucket++; 272 } 273 274 /* 275 * Compute the number of pages of memory that will be available for 276 * use (taking into account the overhead of a page structure per 277 * page). 278 */ 279 first_page = phys_avail[0] / PAGE_SIZE; 280 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 281 npages = (total - (page_range * sizeof(struct vm_page)) - 282 (end - new_end)) / PAGE_SIZE; 283 end = new_end; 284 285 /* 286 * Initialize the mem entry structures now, and put them in the free 287 * queue. 288 */ 289 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 290 mapped = pmap_map(&vaddr, new_end, end, 291 VM_PROT_READ | VM_PROT_WRITE); 292 vm_page_array = (vm_page_t) mapped; 293 294 /* 295 * Clear all of the page structures 296 */ 297 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 298 vm_page_array_size = page_range; 299 300 /* 301 * Construct the free queue(s) in descending order (by physical 302 * address) so that the first 16MB of physical memory is allocated 303 * last rather than first. On large-memory machines, this avoids 304 * the exhaustion of low physical memory before isa_dmainit has run. 305 */ 306 cnt.v_page_count = 0; 307 cnt.v_free_count = 0; 308 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 309 pa = phys_avail[i]; 310 if (i == biggestone) 311 last_pa = new_end; 312 else 313 last_pa = phys_avail[i + 1]; 314 while (pa < last_pa && npages-- > 0) { 315 vm_pageq_add_new_page(pa); 316 pa += PAGE_SIZE; 317 } 318 } 319 return (vaddr); 320 } 321 322 /* 323 * vm_page_hash: 324 * 325 * Distributes the object/offset key pair among hash buckets. 326 * 327 * NOTE: This macro depends on vm_page_bucket_count being a power of 2. 328 * This routine may not block. 329 * 330 * We try to randomize the hash based on the object to spread the pages 331 * out in the hash table without it costing us too much. 332 */ 333 static __inline int 334 vm_page_hash(vm_object_t object, vm_pindex_t pindex) 335 { 336 int i = ((uintptr_t)object + pindex) ^ object->hash_rand; 337 338 return (i & vm_page_hash_mask); 339 } 340 341 void 342 vm_page_flag_set(vm_page_t m, unsigned short bits) 343 { 344 GIANT_REQUIRED; 345 m->flags |= bits; 346 } 347 348 void 349 vm_page_flag_clear(vm_page_t m, unsigned short bits) 350 { 351 GIANT_REQUIRED; 352 m->flags &= ~bits; 353 } 354 355 void 356 vm_page_busy(vm_page_t m) 357 { 358 KASSERT((m->flags & PG_BUSY) == 0, 359 ("vm_page_busy: page already busy!!!")); 360 vm_page_flag_set(m, PG_BUSY); 361 } 362 363 /* 364 * vm_page_flash: 365 * 366 * wakeup anyone waiting for the page. 367 */ 368 void 369 vm_page_flash(vm_page_t m) 370 { 371 if (m->flags & PG_WANTED) { 372 vm_page_flag_clear(m, PG_WANTED); 373 wakeup(m); 374 } 375 } 376 377 /* 378 * vm_page_wakeup: 379 * 380 * clear the PG_BUSY flag and wakeup anyone waiting for the 381 * page. 382 * 383 */ 384 void 385 vm_page_wakeup(vm_page_t m) 386 { 387 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 388 vm_page_flag_clear(m, PG_BUSY); 389 vm_page_flash(m); 390 } 391 392 /* 393 * 394 * 395 */ 396 void 397 vm_page_io_start(vm_page_t m) 398 { 399 400 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 401 m->busy++; 402 } 403 404 void 405 vm_page_io_finish(vm_page_t m) 406 { 407 408 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 409 m->busy--; 410 if (m->busy == 0) 411 vm_page_flash(m); 412 } 413 414 /* 415 * Keep page from being freed by the page daemon 416 * much of the same effect as wiring, except much lower 417 * overhead and should be used only for *very* temporary 418 * holding ("wiring"). 419 */ 420 void 421 vm_page_hold(vm_page_t mem) 422 { 423 GIANT_REQUIRED; 424 mem->hold_count++; 425 } 426 427 void 428 vm_page_unhold(vm_page_t mem) 429 { 430 GIANT_REQUIRED; 431 --mem->hold_count; 432 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 433 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) 434 vm_page_free_toq(mem); 435 } 436 437 /* 438 * vm_page_protect: 439 * 440 * Reduce the protection of a page. This routine never raises the 441 * protection and therefore can be safely called if the page is already 442 * at VM_PROT_NONE (it will be a NOP effectively ). 443 */ 444 void 445 vm_page_protect(vm_page_t mem, int prot) 446 { 447 if (prot == VM_PROT_NONE) { 448 if (pmap_page_is_mapped(mem) || (mem->flags & PG_WRITEABLE)) { 449 pmap_page_protect(mem, VM_PROT_NONE); 450 vm_page_flag_clear(mem, PG_WRITEABLE); 451 } 452 } else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) { 453 pmap_page_protect(mem, VM_PROT_READ); 454 vm_page_flag_clear(mem, PG_WRITEABLE); 455 } 456 } 457 /* 458 * vm_page_zero_fill: 459 * 460 * Zero-fill the specified page. 461 * Written as a standard pagein routine, to 462 * be used by the zero-fill object. 463 */ 464 boolean_t 465 vm_page_zero_fill(vm_page_t m) 466 { 467 pmap_zero_page(m); 468 return (TRUE); 469 } 470 471 /* 472 * vm_page_zero_fill_area: 473 * 474 * Like vm_page_zero_fill but only fill the specified area. 475 */ 476 boolean_t 477 vm_page_zero_fill_area(vm_page_t m, int off, int size) 478 { 479 pmap_zero_page_area(m, off, size); 480 return (TRUE); 481 } 482 483 /* 484 * vm_page_copy: 485 * 486 * Copy one page to another 487 */ 488 void 489 vm_page_copy(vm_page_t src_m, vm_page_t dest_m) 490 { 491 pmap_copy_page(src_m, dest_m); 492 dest_m->valid = VM_PAGE_BITS_ALL; 493 } 494 495 /* 496 * vm_page_free: 497 * 498 * Free a page 499 * 500 * The clearing of PG_ZERO is a temporary safety until the code can be 501 * reviewed to determine that PG_ZERO is being properly cleared on 502 * write faults or maps. PG_ZERO was previously cleared in 503 * vm_page_alloc(). 504 */ 505 void 506 vm_page_free(vm_page_t m) 507 { 508 vm_page_flag_clear(m, PG_ZERO); 509 vm_page_free_toq(m); 510 vm_page_zero_idle_wakeup(); 511 } 512 513 /* 514 * vm_page_free_zero: 515 * 516 * Free a page to the zerod-pages queue 517 */ 518 void 519 vm_page_free_zero(vm_page_t m) 520 { 521 vm_page_flag_set(m, PG_ZERO); 522 vm_page_free_toq(m); 523 } 524 525 /* 526 * vm_page_sleep_busy: 527 * 528 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE) 529 * m->busy is zero. Returns TRUE if it had to sleep ( including if 530 * it almost had to sleep and made temporary spl*() mods), FALSE 531 * otherwise. 532 * 533 * This routine assumes that interrupts can only remove the busy 534 * status from a page, not set the busy status or change it from 535 * PG_BUSY to m->busy or vise versa (which would create a timing 536 * window). 537 */ 538 int 539 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg) 540 { 541 GIANT_REQUIRED; 542 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 543 int s = splvm(); 544 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 545 /* 546 * Page is busy. Wait and retry. 547 */ 548 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 549 tsleep(m, PVM, msg, 0); 550 } 551 splx(s); 552 return (TRUE); 553 /* not reached */ 554 } 555 return (FALSE); 556 } 557 558 /* 559 * vm_page_sleep_if_busy: 560 * 561 * Sleep and release the page queues lock if PG_BUSY is set or, 562 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the 563 * thread slept and the page queues lock was released. 564 * Otherwise, retains the page queues lock and returns FALSE. 565 */ 566 int 567 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg) 568 { 569 570 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 571 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 572 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 573 msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0); 574 return (TRUE); 575 } 576 return (FALSE); 577 } 578 579 /* 580 * vm_page_dirty: 581 * 582 * make page all dirty 583 */ 584 void 585 vm_page_dirty(vm_page_t m) 586 { 587 KASSERT(m->queue - m->pc != PQ_CACHE, 588 ("vm_page_dirty: page in cache!")); 589 m->dirty = VM_PAGE_BITS_ALL; 590 } 591 592 /* 593 * vm_page_undirty: 594 * 595 * Set page to not be dirty. Note: does not clear pmap modify bits 596 */ 597 void 598 vm_page_undirty(vm_page_t m) 599 { 600 m->dirty = 0; 601 } 602 603 /* 604 * vm_page_insert: [ internal use only ] 605 * 606 * Inserts the given mem entry into the object and object list. 607 * 608 * The pagetables are not updated but will presumably fault the page 609 * in if necessary, or if a kernel page the caller will at some point 610 * enter the page into the kernel's pmap. We are not allowed to block 611 * here so we *can't* do this anyway. 612 * 613 * The object and page must be locked, and must be splhigh. 614 * This routine may not block. 615 */ 616 void 617 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 618 { 619 struct vm_page **bucket; 620 621 GIANT_REQUIRED; 622 623 if (m->object != NULL) 624 panic("vm_page_insert: already inserted"); 625 626 /* 627 * Record the object/offset pair in this page 628 */ 629 m->object = object; 630 m->pindex = pindex; 631 632 /* 633 * Insert it into the object_object/offset hash table 634 */ 635 bucket = &vm_page_buckets[vm_page_hash(object, pindex)]; 636 mtx_lock_spin(&vm_page_buckets_mtx); 637 m->hnext = *bucket; 638 *bucket = m; 639 mtx_unlock_spin(&vm_page_buckets_mtx); 640 641 /* 642 * Now link into the object's list of backed pages. 643 */ 644 TAILQ_INSERT_TAIL(&object->memq, m, listq); 645 object->generation++; 646 647 /* 648 * show that the object has one more resident page. 649 */ 650 object->resident_page_count++; 651 652 /* 653 * Since we are inserting a new and possibly dirty page, 654 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 655 */ 656 if (m->flags & PG_WRITEABLE) 657 vm_object_set_writeable_dirty(object); 658 } 659 660 /* 661 * vm_page_remove: 662 * NOTE: used by device pager as well -wfj 663 * 664 * Removes the given mem entry from the object/offset-page 665 * table and the object page list, but do not invalidate/terminate 666 * the backing store. 667 * 668 * The object and page must be locked, and at splhigh. 669 * The underlying pmap entry (if any) is NOT removed here. 670 * This routine may not block. 671 */ 672 void 673 vm_page_remove(vm_page_t m) 674 { 675 vm_object_t object; 676 vm_page_t *bucket; 677 678 GIANT_REQUIRED; 679 680 if (m->object == NULL) 681 return; 682 683 if ((m->flags & PG_BUSY) == 0) { 684 panic("vm_page_remove: page not busy"); 685 } 686 687 /* 688 * Basically destroy the page. 689 */ 690 vm_page_wakeup(m); 691 692 object = m->object; 693 694 /* 695 * Remove from the object_object/offset hash table. The object 696 * must be on the hash queue, we will panic if it isn't 697 */ 698 bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)]; 699 mtx_lock_spin(&vm_page_buckets_mtx); 700 while (*bucket != m) { 701 if (*bucket == NULL) 702 panic("vm_page_remove(): page not found in hash"); 703 bucket = &(*bucket)->hnext; 704 } 705 *bucket = m->hnext; 706 m->hnext = NULL; 707 mtx_unlock_spin(&vm_page_buckets_mtx); 708 709 /* 710 * Now remove from the object's list of backed pages. 711 */ 712 TAILQ_REMOVE(&object->memq, m, listq); 713 714 /* 715 * And show that the object has one fewer resident page. 716 */ 717 object->resident_page_count--; 718 object->generation++; 719 720 m->object = NULL; 721 } 722 723 /* 724 * vm_page_lookup: 725 * 726 * Returns the page associated with the object/offset 727 * pair specified; if none is found, NULL is returned. 728 * 729 * The object must be locked. No side effects. 730 * This routine may not block. 731 * This is a critical path routine 732 */ 733 vm_page_t 734 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 735 { 736 vm_page_t m; 737 struct vm_page **bucket; 738 739 /* 740 * Search the hash table for this object/offset pair 741 */ 742 bucket = &vm_page_buckets[vm_page_hash(object, pindex)]; 743 mtx_lock_spin(&vm_page_buckets_mtx); 744 for (m = *bucket; m != NULL; m = m->hnext) 745 if (m->object == object && m->pindex == pindex) 746 break; 747 mtx_unlock_spin(&vm_page_buckets_mtx); 748 return (m); 749 } 750 751 /* 752 * vm_page_rename: 753 * 754 * Move the given memory entry from its 755 * current object to the specified target object/offset. 756 * 757 * The object must be locked. 758 * This routine may not block. 759 * 760 * Note: this routine will raise itself to splvm(), the caller need not. 761 * 762 * Note: swap associated with the page must be invalidated by the move. We 763 * have to do this for several reasons: (1) we aren't freeing the 764 * page, (2) we are dirtying the page, (3) the VM system is probably 765 * moving the page from object A to B, and will then later move 766 * the backing store from A to B and we can't have a conflict. 767 * 768 * Note: we *always* dirty the page. It is necessary both for the 769 * fact that we moved it, and because we may be invalidating 770 * swap. If the page is on the cache, we have to deactivate it 771 * or vm_page_dirty() will panic. Dirty pages are not allowed 772 * on the cache. 773 */ 774 void 775 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 776 { 777 int s; 778 779 s = splvm(); 780 vm_page_lock_queues(); 781 vm_page_remove(m); 782 vm_page_insert(m, new_object, new_pindex); 783 if (m->queue - m->pc == PQ_CACHE) 784 vm_page_deactivate(m); 785 vm_page_dirty(m); 786 vm_page_unlock_queues(); 787 splx(s); 788 } 789 790 /* 791 * vm_page_select_cache: 792 * 793 * Find a page on the cache queue with color optimization. As pages 794 * might be found, but not applicable, they are deactivated. This 795 * keeps us from using potentially busy cached pages. 796 * 797 * This routine must be called at splvm(). 798 * This routine may not block. 799 */ 800 static vm_page_t 801 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex) 802 { 803 vm_page_t m; 804 805 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 806 while (TRUE) { 807 m = vm_pageq_find( 808 PQ_CACHE, 809 (pindex + object->pg_color) & PQ_L2_MASK, 810 FALSE 811 ); 812 if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 813 m->hold_count || m->wire_count)) { 814 vm_page_deactivate(m); 815 continue; 816 } 817 return m; 818 } 819 } 820 821 /* 822 * vm_page_select_free: 823 * 824 * Find a free or zero page, with specified preference. 825 * 826 * This routine must be called at splvm(). 827 * This routine may not block. 828 */ 829 static __inline vm_page_t 830 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero) 831 { 832 vm_page_t m; 833 834 m = vm_pageq_find( 835 PQ_FREE, 836 (pindex + object->pg_color) & PQ_L2_MASK, 837 prefer_zero 838 ); 839 return (m); 840 } 841 842 /* 843 * vm_page_alloc: 844 * 845 * Allocate and return a memory cell associated 846 * with this VM object/offset pair. 847 * 848 * page_req classes: 849 * VM_ALLOC_NORMAL normal process request 850 * VM_ALLOC_SYSTEM system *really* needs a page 851 * VM_ALLOC_INTERRUPT interrupt time request 852 * VM_ALLOC_ZERO zero page 853 * 854 * This routine may not block. 855 * 856 * Additional special handling is required when called from an 857 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with 858 * the page cache in this case. 859 */ 860 vm_page_t 861 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 862 { 863 vm_page_t m = NULL; 864 int page_req, s; 865 866 GIANT_REQUIRED; 867 868 KASSERT(!vm_page_lookup(object, pindex), 869 ("vm_page_alloc: page already allocated")); 870 871 page_req = req & VM_ALLOC_CLASS_MASK; 872 873 /* 874 * The pager is allowed to eat deeper into the free page list. 875 */ 876 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 877 page_req = VM_ALLOC_SYSTEM; 878 }; 879 880 s = splvm(); 881 loop: 882 mtx_lock_spin(&vm_page_queue_free_mtx); 883 if (cnt.v_free_count > cnt.v_free_reserved) { 884 /* 885 * Allocate from the free queue if there are plenty of pages 886 * in it. 887 */ 888 m = vm_page_select_free(object, pindex, 889 (req & VM_ALLOC_ZERO) != 0); 890 } else if ( 891 (page_req == VM_ALLOC_SYSTEM && 892 cnt.v_cache_count == 0 && 893 cnt.v_free_count > cnt.v_interrupt_free_min) || 894 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0) 895 ) { 896 /* 897 * Interrupt or system, dig deeper into the free list. 898 */ 899 m = vm_page_select_free(object, pindex, FALSE); 900 } else if (page_req != VM_ALLOC_INTERRUPT) { 901 mtx_unlock_spin(&vm_page_queue_free_mtx); 902 /* 903 * Allocatable from cache (non-interrupt only). On success, 904 * we must free the page and try again, thus ensuring that 905 * cnt.v_*_free_min counters are replenished. 906 */ 907 vm_page_lock_queues(); 908 if ((m = vm_page_select_cache(object, pindex)) == NULL) { 909 vm_page_unlock_queues(); 910 splx(s); 911 #if defined(DIAGNOSTIC) 912 if (cnt.v_cache_count > 0) 913 printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count); 914 #endif 915 vm_pageout_deficit++; 916 pagedaemon_wakeup(); 917 return (NULL); 918 } 919 KASSERT(m->dirty == 0, ("Found dirty cache page %p", m)); 920 vm_page_busy(m); 921 vm_page_protect(m, VM_PROT_NONE); 922 vm_page_free(m); 923 vm_page_unlock_queues(); 924 goto loop; 925 } else { 926 /* 927 * Not allocatable from cache from interrupt, give up. 928 */ 929 mtx_unlock_spin(&vm_page_queue_free_mtx); 930 splx(s); 931 vm_pageout_deficit++; 932 pagedaemon_wakeup(); 933 return (NULL); 934 } 935 936 /* 937 * At this point we had better have found a good page. 938 */ 939 940 KASSERT( 941 m != NULL, 942 ("vm_page_alloc(): missing page on free queue\n") 943 ); 944 945 /* 946 * Remove from free queue 947 */ 948 949 vm_pageq_remove_nowakeup(m); 950 951 /* 952 * Initialize structure. Only the PG_ZERO flag is inherited. 953 */ 954 if (m->flags & PG_ZERO) { 955 vm_page_zero_count--; 956 m->flags = PG_ZERO | PG_BUSY; 957 } else { 958 m->flags = PG_BUSY; 959 } 960 if (req & VM_ALLOC_WIRED) { 961 cnt.v_wire_count++; 962 m->wire_count = 1; 963 } else 964 m->wire_count = 0; 965 m->hold_count = 0; 966 m->act_count = 0; 967 m->busy = 0; 968 m->valid = 0; 969 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 970 mtx_unlock_spin(&vm_page_queue_free_mtx); 971 972 /* 973 * vm_page_insert() is safe prior to the splx(). Note also that 974 * inserting a page here does not insert it into the pmap (which 975 * could cause us to block allocating memory). We cannot block 976 * anywhere. 977 */ 978 vm_page_insert(m, object, pindex); 979 980 /* 981 * Don't wakeup too often - wakeup the pageout daemon when 982 * we would be nearly out of memory. 983 */ 984 if (vm_paging_needed()) 985 pagedaemon_wakeup(); 986 987 splx(s); 988 return (m); 989 } 990 991 /* 992 * vm_wait: (also see VM_WAIT macro) 993 * 994 * Block until free pages are available for allocation 995 * - Called in various places before memory allocations. 996 */ 997 void 998 vm_wait(void) 999 { 1000 int s; 1001 1002 s = splvm(); 1003 if (curproc == pageproc) { 1004 vm_pageout_pages_needed = 1; 1005 tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0); 1006 } else { 1007 if (!vm_pages_needed) { 1008 vm_pages_needed = 1; 1009 wakeup(&vm_pages_needed); 1010 } 1011 tsleep(&cnt.v_free_count, PVM, "vmwait", 0); 1012 } 1013 splx(s); 1014 } 1015 1016 /* 1017 * vm_waitpfault: (also see VM_WAITPFAULT macro) 1018 * 1019 * Block until free pages are available for allocation 1020 * - Called only in vm_fault so that processes page faulting 1021 * can be easily tracked. 1022 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 1023 * processes will be able to grab memory first. Do not change 1024 * this balance without careful testing first. 1025 */ 1026 void 1027 vm_waitpfault(void) 1028 { 1029 int s; 1030 1031 s = splvm(); 1032 if (!vm_pages_needed) { 1033 vm_pages_needed = 1; 1034 wakeup(&vm_pages_needed); 1035 } 1036 tsleep(&cnt.v_free_count, PUSER, "pfault", 0); 1037 splx(s); 1038 } 1039 1040 /* 1041 * vm_page_activate: 1042 * 1043 * Put the specified page on the active list (if appropriate). 1044 * Ensure that act_count is at least ACT_INIT but do not otherwise 1045 * mess with it. 1046 * 1047 * The page queues must be locked. 1048 * This routine may not block. 1049 */ 1050 void 1051 vm_page_activate(vm_page_t m) 1052 { 1053 int s; 1054 1055 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1056 s = splvm(); 1057 if (m->queue != PQ_ACTIVE) { 1058 if ((m->queue - m->pc) == PQ_CACHE) 1059 cnt.v_reactivated++; 1060 vm_pageq_remove(m); 1061 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1062 if (m->act_count < ACT_INIT) 1063 m->act_count = ACT_INIT; 1064 vm_pageq_enqueue(PQ_ACTIVE, m); 1065 } 1066 } else { 1067 if (m->act_count < ACT_INIT) 1068 m->act_count = ACT_INIT; 1069 } 1070 splx(s); 1071 } 1072 1073 /* 1074 * vm_page_free_wakeup: 1075 * 1076 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1077 * routine is called when a page has been added to the cache or free 1078 * queues. 1079 * 1080 * This routine may not block. 1081 * This routine must be called at splvm() 1082 */ 1083 static __inline void 1084 vm_page_free_wakeup(void) 1085 { 1086 /* 1087 * if pageout daemon needs pages, then tell it that there are 1088 * some free. 1089 */ 1090 if (vm_pageout_pages_needed && 1091 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1092 wakeup(&vm_pageout_pages_needed); 1093 vm_pageout_pages_needed = 0; 1094 } 1095 /* 1096 * wakeup processes that are waiting on memory if we hit a 1097 * high water mark. And wakeup scheduler process if we have 1098 * lots of memory. this process will swapin processes. 1099 */ 1100 if (vm_pages_needed && !vm_page_count_min()) { 1101 vm_pages_needed = 0; 1102 wakeup(&cnt.v_free_count); 1103 } 1104 } 1105 1106 /* 1107 * vm_page_free_toq: 1108 * 1109 * Returns the given page to the PQ_FREE list, 1110 * disassociating it with any VM object. 1111 * 1112 * Object and page must be locked prior to entry. 1113 * This routine may not block. 1114 */ 1115 1116 void 1117 vm_page_free_toq(vm_page_t m) 1118 { 1119 int s; 1120 struct vpgqueues *pq; 1121 vm_object_t object = m->object; 1122 1123 GIANT_REQUIRED; 1124 s = splvm(); 1125 cnt.v_tfree++; 1126 1127 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1128 printf( 1129 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 1130 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 1131 m->hold_count); 1132 if ((m->queue - m->pc) == PQ_FREE) 1133 panic("vm_page_free: freeing free page"); 1134 else 1135 panic("vm_page_free: freeing busy page"); 1136 } 1137 1138 /* 1139 * unqueue, then remove page. Note that we cannot destroy 1140 * the page here because we do not want to call the pager's 1141 * callback routine until after we've put the page on the 1142 * appropriate free queue. 1143 */ 1144 vm_pageq_remove_nowakeup(m); 1145 vm_page_remove(m); 1146 1147 /* 1148 * If fictitious remove object association and 1149 * return, otherwise delay object association removal. 1150 */ 1151 if ((m->flags & PG_FICTITIOUS) != 0) { 1152 splx(s); 1153 return; 1154 } 1155 1156 m->valid = 0; 1157 vm_page_undirty(m); 1158 1159 if (m->wire_count != 0) { 1160 if (m->wire_count > 1) { 1161 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1162 m->wire_count, (long)m->pindex); 1163 } 1164 panic("vm_page_free: freeing wired page\n"); 1165 } 1166 1167 /* 1168 * If we've exhausted the object's resident pages we want to free 1169 * it up. 1170 */ 1171 if (object && 1172 (object->type == OBJT_VNODE) && 1173 ((object->flags & OBJ_DEAD) == 0) 1174 ) { 1175 struct vnode *vp = (struct vnode *)object->handle; 1176 1177 if (vp) { 1178 VI_LOCK(vp); 1179 if (VSHOULDFREE(vp)) 1180 vfree(vp); 1181 VI_UNLOCK(vp); 1182 } 1183 } 1184 1185 /* 1186 * Clear the UNMANAGED flag when freeing an unmanaged page. 1187 */ 1188 if (m->flags & PG_UNMANAGED) { 1189 m->flags &= ~PG_UNMANAGED; 1190 } else { 1191 #ifdef __alpha__ 1192 pmap_page_is_free(m); 1193 #endif 1194 } 1195 1196 if (m->hold_count != 0) { 1197 m->flags &= ~PG_ZERO; 1198 m->queue = PQ_HOLD; 1199 } else 1200 m->queue = PQ_FREE + m->pc; 1201 pq = &vm_page_queues[m->queue]; 1202 mtx_lock_spin(&vm_page_queue_free_mtx); 1203 pq->lcnt++; 1204 ++(*pq->cnt); 1205 1206 /* 1207 * Put zero'd pages on the end ( where we look for zero'd pages 1208 * first ) and non-zerod pages at the head. 1209 */ 1210 if (m->flags & PG_ZERO) { 1211 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1212 ++vm_page_zero_count; 1213 } else { 1214 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1215 } 1216 mtx_unlock_spin(&vm_page_queue_free_mtx); 1217 vm_page_free_wakeup(); 1218 splx(s); 1219 } 1220 1221 /* 1222 * vm_page_unmanage: 1223 * 1224 * Prevent PV management from being done on the page. The page is 1225 * removed from the paging queues as if it were wired, and as a 1226 * consequence of no longer being managed the pageout daemon will not 1227 * touch it (since there is no way to locate the pte mappings for the 1228 * page). madvise() calls that mess with the pmap will also no longer 1229 * operate on the page. 1230 * 1231 * Beyond that the page is still reasonably 'normal'. Freeing the page 1232 * will clear the flag. 1233 * 1234 * This routine is used by OBJT_PHYS objects - objects using unswappable 1235 * physical memory as backing store rather then swap-backed memory and 1236 * will eventually be extended to support 4MB unmanaged physical 1237 * mappings. 1238 */ 1239 void 1240 vm_page_unmanage(vm_page_t m) 1241 { 1242 int s; 1243 1244 s = splvm(); 1245 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1246 if ((m->flags & PG_UNMANAGED) == 0) { 1247 if (m->wire_count == 0) 1248 vm_pageq_remove(m); 1249 } 1250 vm_page_flag_set(m, PG_UNMANAGED); 1251 splx(s); 1252 } 1253 1254 /* 1255 * vm_page_wire: 1256 * 1257 * Mark this page as wired down by yet 1258 * another map, removing it from paging queues 1259 * as necessary. 1260 * 1261 * The page queues must be locked. 1262 * This routine may not block. 1263 */ 1264 void 1265 vm_page_wire(vm_page_t m) 1266 { 1267 int s; 1268 1269 /* 1270 * Only bump the wire statistics if the page is not already wired, 1271 * and only unqueue the page if it is on some queue (if it is unmanaged 1272 * it is already off the queues). 1273 */ 1274 s = splvm(); 1275 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1276 if (m->wire_count == 0) { 1277 if ((m->flags & PG_UNMANAGED) == 0) 1278 vm_pageq_remove(m); 1279 cnt.v_wire_count++; 1280 } 1281 m->wire_count++; 1282 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1283 splx(s); 1284 } 1285 1286 /* 1287 * vm_page_unwire: 1288 * 1289 * Release one wiring of this page, potentially 1290 * enabling it to be paged again. 1291 * 1292 * Many pages placed on the inactive queue should actually go 1293 * into the cache, but it is difficult to figure out which. What 1294 * we do instead, if the inactive target is well met, is to put 1295 * clean pages at the head of the inactive queue instead of the tail. 1296 * This will cause them to be moved to the cache more quickly and 1297 * if not actively re-referenced, freed more quickly. If we just 1298 * stick these pages at the end of the inactive queue, heavy filesystem 1299 * meta-data accesses can cause an unnecessary paging load on memory bound 1300 * processes. This optimization causes one-time-use metadata to be 1301 * reused more quickly. 1302 * 1303 * BUT, if we are in a low-memory situation we have no choice but to 1304 * put clean pages on the cache queue. 1305 * 1306 * A number of routines use vm_page_unwire() to guarantee that the page 1307 * will go into either the inactive or active queues, and will NEVER 1308 * be placed in the cache - for example, just after dirtying a page. 1309 * dirty pages in the cache are not allowed. 1310 * 1311 * The page queues must be locked. 1312 * This routine may not block. 1313 */ 1314 void 1315 vm_page_unwire(vm_page_t m, int activate) 1316 { 1317 int s; 1318 1319 s = splvm(); 1320 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1321 if (m->wire_count > 0) { 1322 m->wire_count--; 1323 if (m->wire_count == 0) { 1324 cnt.v_wire_count--; 1325 if (m->flags & PG_UNMANAGED) { 1326 ; 1327 } else if (activate) 1328 vm_pageq_enqueue(PQ_ACTIVE, m); 1329 else { 1330 vm_page_flag_clear(m, PG_WINATCFLS); 1331 vm_pageq_enqueue(PQ_INACTIVE, m); 1332 } 1333 } 1334 } else { 1335 panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count); 1336 } 1337 splx(s); 1338 } 1339 1340 1341 /* 1342 * Move the specified page to the inactive queue. If the page has 1343 * any associated swap, the swap is deallocated. 1344 * 1345 * Normally athead is 0 resulting in LRU operation. athead is set 1346 * to 1 if we want this page to be 'as if it were placed in the cache', 1347 * except without unmapping it from the process address space. 1348 * 1349 * This routine may not block. 1350 */ 1351 static __inline void 1352 _vm_page_deactivate(vm_page_t m, int athead) 1353 { 1354 int s; 1355 1356 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1357 /* 1358 * Ignore if already inactive. 1359 */ 1360 if (m->queue == PQ_INACTIVE) 1361 return; 1362 1363 s = splvm(); 1364 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1365 if ((m->queue - m->pc) == PQ_CACHE) 1366 cnt.v_reactivated++; 1367 vm_page_flag_clear(m, PG_WINATCFLS); 1368 vm_pageq_remove(m); 1369 if (athead) 1370 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1371 else 1372 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1373 m->queue = PQ_INACTIVE; 1374 vm_page_queues[PQ_INACTIVE].lcnt++; 1375 cnt.v_inactive_count++; 1376 } 1377 splx(s); 1378 } 1379 1380 void 1381 vm_page_deactivate(vm_page_t m) 1382 { 1383 _vm_page_deactivate(m, 0); 1384 } 1385 1386 /* 1387 * vm_page_try_to_cache: 1388 * 1389 * Returns 0 on failure, 1 on success 1390 */ 1391 int 1392 vm_page_try_to_cache(vm_page_t m) 1393 { 1394 1395 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1396 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1397 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1398 return (0); 1399 } 1400 vm_page_test_dirty(m); 1401 if (m->dirty) 1402 return (0); 1403 vm_page_cache(m); 1404 return (1); 1405 } 1406 1407 /* 1408 * vm_page_try_to_free() 1409 * 1410 * Attempt to free the page. If we cannot free it, we do nothing. 1411 * 1 is returned on success, 0 on failure. 1412 */ 1413 int 1414 vm_page_try_to_free(vm_page_t m) 1415 { 1416 1417 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1418 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1419 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1420 return (0); 1421 } 1422 vm_page_test_dirty(m); 1423 if (m->dirty) 1424 return (0); 1425 vm_page_busy(m); 1426 vm_page_protect(m, VM_PROT_NONE); 1427 vm_page_free(m); 1428 return (1); 1429 } 1430 1431 /* 1432 * vm_page_cache 1433 * 1434 * Put the specified page onto the page cache queue (if appropriate). 1435 * 1436 * This routine may not block. 1437 */ 1438 void 1439 vm_page_cache(vm_page_t m) 1440 { 1441 int s; 1442 1443 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1444 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) { 1445 printf("vm_page_cache: attempting to cache busy page\n"); 1446 return; 1447 } 1448 if ((m->queue - m->pc) == PQ_CACHE) 1449 return; 1450 1451 /* 1452 * Remove all pmaps and indicate that the page is not 1453 * writeable or mapped. 1454 */ 1455 vm_page_protect(m, VM_PROT_NONE); 1456 if (m->dirty != 0) { 1457 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1458 (long)m->pindex); 1459 } 1460 s = splvm(); 1461 vm_pageq_remove_nowakeup(m); 1462 vm_pageq_enqueue(PQ_CACHE + m->pc, m); 1463 vm_page_free_wakeup(); 1464 splx(s); 1465 } 1466 1467 /* 1468 * vm_page_dontneed 1469 * 1470 * Cache, deactivate, or do nothing as appropriate. This routine 1471 * is typically used by madvise() MADV_DONTNEED. 1472 * 1473 * Generally speaking we want to move the page into the cache so 1474 * it gets reused quickly. However, this can result in a silly syndrome 1475 * due to the page recycling too quickly. Small objects will not be 1476 * fully cached. On the otherhand, if we move the page to the inactive 1477 * queue we wind up with a problem whereby very large objects 1478 * unnecessarily blow away our inactive and cache queues. 1479 * 1480 * The solution is to move the pages based on a fixed weighting. We 1481 * either leave them alone, deactivate them, or move them to the cache, 1482 * where moving them to the cache has the highest weighting. 1483 * By forcing some pages into other queues we eventually force the 1484 * system to balance the queues, potentially recovering other unrelated 1485 * space from active. The idea is to not force this to happen too 1486 * often. 1487 */ 1488 void 1489 vm_page_dontneed(vm_page_t m) 1490 { 1491 static int dnweight; 1492 int dnw; 1493 int head; 1494 1495 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1496 dnw = ++dnweight; 1497 1498 /* 1499 * occassionally leave the page alone 1500 */ 1501 if ((dnw & 0x01F0) == 0 || 1502 m->queue == PQ_INACTIVE || 1503 m->queue - m->pc == PQ_CACHE 1504 ) { 1505 if (m->act_count >= ACT_INIT) 1506 --m->act_count; 1507 return; 1508 } 1509 1510 if (m->dirty == 0) 1511 vm_page_test_dirty(m); 1512 1513 if (m->dirty || (dnw & 0x0070) == 0) { 1514 /* 1515 * Deactivate the page 3 times out of 32. 1516 */ 1517 head = 0; 1518 } else { 1519 /* 1520 * Cache the page 28 times out of every 32. Note that 1521 * the page is deactivated instead of cached, but placed 1522 * at the head of the queue instead of the tail. 1523 */ 1524 head = 1; 1525 } 1526 _vm_page_deactivate(m, head); 1527 } 1528 1529 /* 1530 * Grab a page, waiting until we are waken up due to the page 1531 * changing state. We keep on waiting, if the page continues 1532 * to be in the object. If the page doesn't exist, allocate it. 1533 * 1534 * This routine may block. 1535 */ 1536 vm_page_t 1537 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1538 { 1539 vm_page_t m; 1540 int s, generation; 1541 1542 GIANT_REQUIRED; 1543 retrylookup: 1544 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1545 vm_page_lock_queues(); 1546 if (m->busy || (m->flags & PG_BUSY)) { 1547 generation = object->generation; 1548 1549 s = splvm(); 1550 while ((object->generation == generation) && 1551 (m->busy || (m->flags & PG_BUSY))) { 1552 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1553 msleep(m, &vm_page_queue_mtx, PVM, "pgrbwt", 0); 1554 if ((allocflags & VM_ALLOC_RETRY) == 0) { 1555 vm_page_unlock_queues(); 1556 splx(s); 1557 return NULL; 1558 } 1559 } 1560 vm_page_unlock_queues(); 1561 splx(s); 1562 goto retrylookup; 1563 } else { 1564 if (allocflags & VM_ALLOC_WIRED) 1565 vm_page_wire(m); 1566 vm_page_busy(m); 1567 vm_page_unlock_queues(); 1568 return m; 1569 } 1570 } 1571 1572 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1573 if (m == NULL) { 1574 VM_WAIT; 1575 if ((allocflags & VM_ALLOC_RETRY) == 0) 1576 return NULL; 1577 goto retrylookup; 1578 } 1579 1580 return m; 1581 } 1582 1583 /* 1584 * Mapping function for valid bits or for dirty bits in 1585 * a page. May not block. 1586 * 1587 * Inputs are required to range within a page. 1588 */ 1589 __inline int 1590 vm_page_bits(int base, int size) 1591 { 1592 int first_bit; 1593 int last_bit; 1594 1595 KASSERT( 1596 base + size <= PAGE_SIZE, 1597 ("vm_page_bits: illegal base/size %d/%d", base, size) 1598 ); 1599 1600 if (size == 0) /* handle degenerate case */ 1601 return (0); 1602 1603 first_bit = base >> DEV_BSHIFT; 1604 last_bit = (base + size - 1) >> DEV_BSHIFT; 1605 1606 return ((2 << last_bit) - (1 << first_bit)); 1607 } 1608 1609 /* 1610 * vm_page_set_validclean: 1611 * 1612 * Sets portions of a page valid and clean. The arguments are expected 1613 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1614 * of any partial chunks touched by the range. The invalid portion of 1615 * such chunks will be zero'd. 1616 * 1617 * This routine may not block. 1618 * 1619 * (base + size) must be less then or equal to PAGE_SIZE. 1620 */ 1621 void 1622 vm_page_set_validclean(vm_page_t m, int base, int size) 1623 { 1624 int pagebits; 1625 int frag; 1626 int endoff; 1627 1628 GIANT_REQUIRED; 1629 if (size == 0) /* handle degenerate case */ 1630 return; 1631 1632 /* 1633 * If the base is not DEV_BSIZE aligned and the valid 1634 * bit is clear, we have to zero out a portion of the 1635 * first block. 1636 */ 1637 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1638 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1639 pmap_zero_page_area(m, frag, base - frag); 1640 1641 /* 1642 * If the ending offset is not DEV_BSIZE aligned and the 1643 * valid bit is clear, we have to zero out a portion of 1644 * the last block. 1645 */ 1646 endoff = base + size; 1647 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1648 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1649 pmap_zero_page_area(m, endoff, 1650 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1651 1652 /* 1653 * Set valid, clear dirty bits. If validating the entire 1654 * page we can safely clear the pmap modify bit. We also 1655 * use this opportunity to clear the PG_NOSYNC flag. If a process 1656 * takes a write fault on a MAP_NOSYNC memory area the flag will 1657 * be set again. 1658 * 1659 * We set valid bits inclusive of any overlap, but we can only 1660 * clear dirty bits for DEV_BSIZE chunks that are fully within 1661 * the range. 1662 */ 1663 pagebits = vm_page_bits(base, size); 1664 m->valid |= pagebits; 1665 #if 0 /* NOT YET */ 1666 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1667 frag = DEV_BSIZE - frag; 1668 base += frag; 1669 size -= frag; 1670 if (size < 0) 1671 size = 0; 1672 } 1673 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1674 #endif 1675 m->dirty &= ~pagebits; 1676 if (base == 0 && size == PAGE_SIZE) { 1677 pmap_clear_modify(m); 1678 vm_page_flag_clear(m, PG_NOSYNC); 1679 } 1680 } 1681 1682 #if 0 1683 1684 void 1685 vm_page_set_dirty(vm_page_t m, int base, int size) 1686 { 1687 m->dirty |= vm_page_bits(base, size); 1688 } 1689 1690 #endif 1691 1692 void 1693 vm_page_clear_dirty(vm_page_t m, int base, int size) 1694 { 1695 GIANT_REQUIRED; 1696 m->dirty &= ~vm_page_bits(base, size); 1697 } 1698 1699 /* 1700 * vm_page_set_invalid: 1701 * 1702 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1703 * valid and dirty bits for the effected areas are cleared. 1704 * 1705 * May not block. 1706 */ 1707 void 1708 vm_page_set_invalid(vm_page_t m, int base, int size) 1709 { 1710 int bits; 1711 1712 GIANT_REQUIRED; 1713 bits = vm_page_bits(base, size); 1714 m->valid &= ~bits; 1715 m->dirty &= ~bits; 1716 m->object->generation++; 1717 } 1718 1719 /* 1720 * vm_page_zero_invalid() 1721 * 1722 * The kernel assumes that the invalid portions of a page contain 1723 * garbage, but such pages can be mapped into memory by user code. 1724 * When this occurs, we must zero out the non-valid portions of the 1725 * page so user code sees what it expects. 1726 * 1727 * Pages are most often semi-valid when the end of a file is mapped 1728 * into memory and the file's size is not page aligned. 1729 */ 1730 void 1731 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1732 { 1733 int b; 1734 int i; 1735 1736 /* 1737 * Scan the valid bits looking for invalid sections that 1738 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1739 * valid bit may be set ) have already been zerod by 1740 * vm_page_set_validclean(). 1741 */ 1742 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1743 if (i == (PAGE_SIZE / DEV_BSIZE) || 1744 (m->valid & (1 << i)) 1745 ) { 1746 if (i > b) { 1747 pmap_zero_page_area(m, 1748 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1749 } 1750 b = i + 1; 1751 } 1752 } 1753 1754 /* 1755 * setvalid is TRUE when we can safely set the zero'd areas 1756 * as being valid. We can do this if there are no cache consistancy 1757 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1758 */ 1759 if (setvalid) 1760 m->valid = VM_PAGE_BITS_ALL; 1761 } 1762 1763 /* 1764 * vm_page_is_valid: 1765 * 1766 * Is (partial) page valid? Note that the case where size == 0 1767 * will return FALSE in the degenerate case where the page is 1768 * entirely invalid, and TRUE otherwise. 1769 * 1770 * May not block. 1771 */ 1772 int 1773 vm_page_is_valid(vm_page_t m, int base, int size) 1774 { 1775 int bits = vm_page_bits(base, size); 1776 1777 if (m->valid && ((m->valid & bits) == bits)) 1778 return 1; 1779 else 1780 return 0; 1781 } 1782 1783 /* 1784 * update dirty bits from pmap/mmu. May not block. 1785 */ 1786 void 1787 vm_page_test_dirty(vm_page_t m) 1788 { 1789 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1790 vm_page_dirty(m); 1791 } 1792 } 1793 1794 int so_zerocp_fullpage = 0; 1795 1796 void 1797 vm_page_cowfault(vm_page_t m) 1798 { 1799 vm_page_t mnew; 1800 vm_object_t object; 1801 vm_pindex_t pindex; 1802 1803 object = m->object; 1804 pindex = m->pindex; 1805 vm_page_busy(m); 1806 1807 retry_alloc: 1808 vm_page_remove(m); 1809 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL); 1810 if (mnew == NULL) { 1811 vm_page_insert(m, object, pindex); 1812 VM_WAIT; 1813 goto retry_alloc; 1814 } 1815 1816 if (m->cow == 0) { 1817 /* 1818 * check to see if we raced with an xmit complete when 1819 * waiting to allocate a page. If so, put things back 1820 * the way they were 1821 */ 1822 vm_page_busy(mnew); 1823 vm_page_free(mnew); 1824 vm_page_insert(m, object, pindex); 1825 } else { /* clear COW & copy page */ 1826 if (so_zerocp_fullpage) { 1827 mnew->valid = VM_PAGE_BITS_ALL; 1828 } else { 1829 vm_page_copy(m, mnew); 1830 } 1831 vm_page_dirty(mnew); 1832 vm_page_flag_clear(mnew, PG_BUSY); 1833 } 1834 } 1835 1836 void 1837 vm_page_cowclear(vm_page_t m) 1838 { 1839 1840 /* XXX KDM find out if giant is required here. */ 1841 GIANT_REQUIRED; 1842 if (m->cow) { 1843 atomic_subtract_int(&m->cow, 1); 1844 /* 1845 * let vm_fault add back write permission lazily 1846 */ 1847 } 1848 /* 1849 * sf_buf_free() will free the page, so we needn't do it here 1850 */ 1851 } 1852 1853 void 1854 vm_page_cowsetup(vm_page_t m) 1855 { 1856 /* XXX KDM find out if giant is required here */ 1857 GIANT_REQUIRED; 1858 atomic_add_int(&m->cow, 1); 1859 vm_page_protect(m, VM_PROT_READ); 1860 } 1861 1862 #include "opt_ddb.h" 1863 #ifdef DDB 1864 #include <sys/kernel.h> 1865 1866 #include <ddb/ddb.h> 1867 1868 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1869 { 1870 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 1871 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 1872 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 1873 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 1874 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 1875 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 1876 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 1877 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 1878 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 1879 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 1880 } 1881 1882 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1883 { 1884 int i; 1885 db_printf("PQ_FREE:"); 1886 for (i = 0; i < PQ_L2_SIZE; i++) { 1887 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 1888 } 1889 db_printf("\n"); 1890 1891 db_printf("PQ_CACHE:"); 1892 for (i = 0; i < PQ_L2_SIZE; i++) { 1893 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 1894 } 1895 db_printf("\n"); 1896 1897 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1898 vm_page_queues[PQ_ACTIVE].lcnt, 1899 vm_page_queues[PQ_INACTIVE].lcnt); 1900 } 1901 #endif /* DDB */ 1902