xref: /freebsd/sys/vm/vm_page.c (revision c11e094d96120a2e0e726ed9705ae0ec08db49b6)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD$
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 
67 /*
68  *			GENERAL RULES ON VM_PAGE MANIPULATION
69  *
70  *	- a pageq mutex is required when adding or removing a page from a
71  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72  *	  busy state of a page.
73  *
74  *	- a hash chain mutex is required when associating or disassociating
75  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76  *	  regardless of other mutexes or the busy state of a page.
77  *
78  *	- either a hash chain mutex OR a busied page is required in order
79  *	  to modify the page flags.  A hash chain mutex must be obtained in
80  *	  order to busy a page.  A page's flags cannot be modified by a
81  *	  hash chain mutex if the page is marked busy.
82  *
83  *	- The object memq mutex is held when inserting or removing
84  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85  *	  is different from the object's main mutex.
86  *
87  *	Generally speaking, you have to be aware of side effects when running
88  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90  *	vm_page_cache(), vm_page_activate(), and a number of other routines
91  *	will release the hash chain mutex for you.  Intermediate manipulation
92  *	routines such as vm_page_flag_set() expect the hash chain to be held
93  *	on entry and the hash chain will remain held on return.
94  *
95  *	pageq scanning can only occur with the pageq in question locked.
96  *	We have a known bottleneck with the active queue, but the cache
97  *	and free queues are actually arrays already.
98  */
99 
100 /*
101  *	Resident memory management module.
102  */
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/lock.h>
107 #include <sys/malloc.h>
108 #include <sys/mutex.h>
109 #include <sys/proc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 #include <vm/uma_int.h>
123 
124 /*
125  *	Associated with page of user-allocatable memory is a
126  *	page structure.
127  */
128 static struct mtx vm_page_buckets_mtx;
129 static struct vm_page **vm_page_buckets; /* Array of buckets */
130 static int vm_page_bucket_count;	/* How big is array? */
131 static int vm_page_hash_mask;		/* Mask for hash function */
132 
133 vm_page_t vm_page_array = 0;
134 int vm_page_array_size = 0;
135 long first_page = 0;
136 int vm_page_zero_count = 0;
137 
138 /*
139  *	vm_set_page_size:
140  *
141  *	Sets the page size, perhaps based upon the memory
142  *	size.  Must be called before any use of page-size
143  *	dependent functions.
144  */
145 void
146 vm_set_page_size(void)
147 {
148 	if (cnt.v_page_size == 0)
149 		cnt.v_page_size = PAGE_SIZE;
150 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
151 		panic("vm_set_page_size: page size not a power of two");
152 }
153 
154 /*
155  *	vm_page_startup:
156  *
157  *	Initializes the resident memory module.
158  *
159  *	Allocates memory for the page cells, and
160  *	for the object/offset-to-page hash table headers.
161  *	Each page cell is initialized and placed on the free list.
162  */
163 vm_offset_t
164 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
165 {
166 	vm_offset_t mapped;
167 	struct vm_page **bucket;
168 	vm_size_t npages, page_range;
169 	vm_offset_t new_end;
170 	int i;
171 	vm_offset_t pa;
172 	int nblocks;
173 	vm_offset_t last_pa;
174 
175 	/* the biggest memory array is the second group of pages */
176 	vm_offset_t end;
177 	vm_offset_t biggestone, biggestsize;
178 
179 	vm_offset_t total;
180 	vm_size_t bootpages;
181 
182 	total = 0;
183 	biggestsize = 0;
184 	biggestone = 0;
185 	nblocks = 0;
186 	vaddr = round_page(vaddr);
187 
188 	for (i = 0; phys_avail[i + 1]; i += 2) {
189 		phys_avail[i] = round_page(phys_avail[i]);
190 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
191 	}
192 
193 	for (i = 0; phys_avail[i + 1]; i += 2) {
194 		vm_size_t size = phys_avail[i + 1] - phys_avail[i];
195 
196 		if (size > biggestsize) {
197 			biggestone = i;
198 			biggestsize = size;
199 		}
200 		++nblocks;
201 		total += size;
202 	}
203 
204 	end = phys_avail[biggestone+1];
205 
206 	/*
207 	 * Initialize the queue headers for the free queue, the active queue
208 	 * and the inactive queue.
209 	 */
210 	vm_pageq_init();
211 
212 	/*
213 	 * Allocate memory for use when boot strapping the kernel memory allocator
214 	 */
215 	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
216 	new_end = end - bootpages;
217 	new_end = trunc_page(new_end);
218 	mapped = pmap_map(&vaddr, new_end, end,
219 	    VM_PROT_READ | VM_PROT_WRITE);
220 	bzero((caddr_t) mapped, end - new_end);
221 	uma_startup((caddr_t)mapped);
222 
223 	end = new_end;
224 
225 	/*
226 	 * Allocate (and initialize) the hash table buckets.
227 	 *
228 	 * The number of buckets MUST BE a power of 2, and the actual value is
229 	 * the next power of 2 greater than the number of physical pages in
230 	 * the system.
231 	 *
232 	 * We make the hash table approximately 2x the number of pages to
233 	 * reduce the chain length.  This is about the same size using the
234 	 * singly-linked list as the 1x hash table we were using before
235 	 * using TAILQ but the chain length will be smaller.
236 	 *
237 	 * Note: This computation can be tweaked if desired.
238 	 */
239 	if (vm_page_bucket_count == 0) {
240 		vm_page_bucket_count = 1;
241 		while (vm_page_bucket_count < atop(total))
242 			vm_page_bucket_count <<= 1;
243 	}
244 	vm_page_bucket_count <<= 1;
245 	vm_page_hash_mask = vm_page_bucket_count - 1;
246 
247 	/*
248 	 * Validate these addresses.
249 	 */
250 	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
251 	new_end = trunc_page(new_end);
252 	mapped = pmap_map(&vaddr, new_end, end,
253 	    VM_PROT_READ | VM_PROT_WRITE);
254 	bzero((caddr_t) mapped, end - new_end);
255 
256 	mtx_init(&vm_page_buckets_mtx, "vm page buckets mutex", NULL, MTX_SPIN);
257 	vm_page_buckets = (struct vm_page **)mapped;
258 	bucket = vm_page_buckets;
259 	for (i = 0; i < vm_page_bucket_count; i++) {
260 		*bucket = NULL;
261 		bucket++;
262 	}
263 
264 	/*
265 	 * Compute the number of pages of memory that will be available for
266 	 * use (taking into account the overhead of a page structure per
267 	 * page).
268 	 */
269 	first_page = phys_avail[0] / PAGE_SIZE;
270 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
271 	npages = (total - (page_range * sizeof(struct vm_page)) -
272 	    (end - new_end)) / PAGE_SIZE;
273 	end = new_end;
274 
275 	/*
276 	 * Initialize the mem entry structures now, and put them in the free
277 	 * queue.
278 	 */
279 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
280 	mapped = pmap_map(&vaddr, new_end, end,
281 	    VM_PROT_READ | VM_PROT_WRITE);
282 	vm_page_array = (vm_page_t) mapped;
283 
284 	/*
285 	 * Clear all of the page structures
286 	 */
287 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
288 	vm_page_array_size = page_range;
289 
290 	/*
291 	 * Construct the free queue(s) in descending order (by physical
292 	 * address) so that the first 16MB of physical memory is allocated
293 	 * last rather than first.  On large-memory machines, this avoids
294 	 * the exhaustion of low physical memory before isa_dmainit has run.
295 	 */
296 	cnt.v_page_count = 0;
297 	cnt.v_free_count = 0;
298 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
299 		pa = phys_avail[i];
300 		if (i == biggestone)
301 			last_pa = new_end;
302 		else
303 			last_pa = phys_avail[i + 1];
304 		while (pa < last_pa && npages-- > 0) {
305 			vm_pageq_add_new_page(pa);
306 			pa += PAGE_SIZE;
307 		}
308 	}
309 	return (vaddr);
310 }
311 
312 /*
313  *	vm_page_hash:
314  *
315  *	Distributes the object/offset key pair among hash buckets.
316  *
317  *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
318  *	This routine may not block.
319  *
320  *	We try to randomize the hash based on the object to spread the pages
321  *	out in the hash table without it costing us too much.
322  */
323 static __inline int
324 vm_page_hash(vm_object_t object, vm_pindex_t pindex)
325 {
326 	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
327 
328 	return (i & vm_page_hash_mask);
329 }
330 
331 void
332 vm_page_flag_set(vm_page_t m, unsigned short bits)
333 {
334 	GIANT_REQUIRED;
335 	m->flags |= bits;
336 }
337 
338 void
339 vm_page_flag_clear(vm_page_t m, unsigned short bits)
340 {
341 	GIANT_REQUIRED;
342 	m->flags &= ~bits;
343 }
344 
345 void
346 vm_page_busy(vm_page_t m)
347 {
348 	KASSERT((m->flags & PG_BUSY) == 0,
349 	    ("vm_page_busy: page already busy!!!"));
350 	vm_page_flag_set(m, PG_BUSY);
351 }
352 
353 /*
354  *      vm_page_flash:
355  *
356  *      wakeup anyone waiting for the page.
357  */
358 void
359 vm_page_flash(vm_page_t m)
360 {
361 	if (m->flags & PG_WANTED) {
362 		vm_page_flag_clear(m, PG_WANTED);
363 		wakeup(m);
364 	}
365 }
366 
367 /*
368  *      vm_page_wakeup:
369  *
370  *      clear the PG_BUSY flag and wakeup anyone waiting for the
371  *      page.
372  *
373  */
374 void
375 vm_page_wakeup(vm_page_t m)
376 {
377 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
378 	vm_page_flag_clear(m, PG_BUSY);
379 	vm_page_flash(m);
380 }
381 
382 /*
383  *
384  *
385  */
386 void
387 vm_page_io_start(vm_page_t m)
388 {
389 	GIANT_REQUIRED;
390 	m->busy++;
391 }
392 
393 void
394 vm_page_io_finish(vm_page_t m)
395 {
396 	GIANT_REQUIRED;
397 	m->busy--;
398 	if (m->busy == 0)
399 		vm_page_flash(m);
400 }
401 
402 /*
403  * Keep page from being freed by the page daemon
404  * much of the same effect as wiring, except much lower
405  * overhead and should be used only for *very* temporary
406  * holding ("wiring").
407  */
408 void
409 vm_page_hold(vm_page_t mem)
410 {
411         GIANT_REQUIRED;
412         mem->hold_count++;
413 }
414 
415 void
416 vm_page_unhold(vm_page_t mem)
417 {
418 	GIANT_REQUIRED;
419 	--mem->hold_count;
420 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
421 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
422 		vm_page_free_toq(mem);
423 }
424 
425 /*
426  *	vm_page_protect:
427  *
428  *	Reduce the protection of a page.  This routine never raises the
429  *	protection and therefore can be safely called if the page is already
430  *	at VM_PROT_NONE (it will be a NOP effectively ).
431  */
432 void
433 vm_page_protect(vm_page_t mem, int prot)
434 {
435 	if (prot == VM_PROT_NONE) {
436 		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
437 			pmap_page_protect(mem, VM_PROT_NONE);
438 			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
439 		}
440 	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
441 		pmap_page_protect(mem, VM_PROT_READ);
442 		vm_page_flag_clear(mem, PG_WRITEABLE);
443 	}
444 }
445 /*
446  *	vm_page_zero_fill:
447  *
448  *	Zero-fill the specified page.
449  *	Written as a standard pagein routine, to
450  *	be used by the zero-fill object.
451  */
452 boolean_t
453 vm_page_zero_fill(vm_page_t m)
454 {
455 	pmap_zero_page(m);
456 	return (TRUE);
457 }
458 
459 /*
460  *	vm_page_zero_fill_area:
461  *
462  *	Like vm_page_zero_fill but only fill the specified area.
463  */
464 boolean_t
465 vm_page_zero_fill_area(vm_page_t m, int off, int size)
466 {
467 	pmap_zero_page_area(m, off, size);
468 	return (TRUE);
469 }
470 
471 /*
472  *	vm_page_copy:
473  *
474  *	Copy one page to another
475  */
476 void
477 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
478 {
479 	pmap_copy_page(src_m, dest_m);
480 	dest_m->valid = VM_PAGE_BITS_ALL;
481 }
482 
483 /*
484  *	vm_page_free:
485  *
486  *	Free a page
487  *
488  *	The clearing of PG_ZERO is a temporary safety until the code can be
489  *	reviewed to determine that PG_ZERO is being properly cleared on
490  *	write faults or maps.  PG_ZERO was previously cleared in
491  *	vm_page_alloc().
492  */
493 void
494 vm_page_free(vm_page_t m)
495 {
496 	vm_page_flag_clear(m, PG_ZERO);
497 	vm_page_free_toq(m);
498 	vm_page_zero_idle_wakeup();
499 }
500 
501 /*
502  *	vm_page_free_zero:
503  *
504  *	Free a page to the zerod-pages queue
505  */
506 void
507 vm_page_free_zero(vm_page_t m)
508 {
509 	vm_page_flag_set(m, PG_ZERO);
510 	vm_page_free_toq(m);
511 }
512 
513 /*
514  *	vm_page_sleep_busy:
515  *
516  *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
517  *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
518  *	it almost had to sleep and made temporary spl*() mods), FALSE
519  *	otherwise.
520  *
521  *	This routine assumes that interrupts can only remove the busy
522  *	status from a page, not set the busy status or change it from
523  *	PG_BUSY to m->busy or vise versa (which would create a timing
524  *	window).
525  */
526 int
527 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
528 {
529 	GIANT_REQUIRED;
530 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
531 		int s = splvm();
532 		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
533 			/*
534 			 * Page is busy. Wait and retry.
535 			 */
536 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
537 			tsleep(m, PVM, msg, 0);
538 		}
539 		splx(s);
540 		return (TRUE);
541 		/* not reached */
542 	}
543 	return (FALSE);
544 }
545 /*
546  *	vm_page_dirty:
547  *
548  *	make page all dirty
549  */
550 void
551 vm_page_dirty(vm_page_t m)
552 {
553 	KASSERT(m->queue - m->pc != PQ_CACHE,
554 	    ("vm_page_dirty: page in cache!"));
555 	m->dirty = VM_PAGE_BITS_ALL;
556 }
557 
558 /*
559  *	vm_page_undirty:
560  *
561  *	Set page to not be dirty.  Note: does not clear pmap modify bits
562  */
563 void
564 vm_page_undirty(vm_page_t m)
565 {
566 	m->dirty = 0;
567 }
568 
569 /*
570  *	vm_page_insert:		[ internal use only ]
571  *
572  *	Inserts the given mem entry into the object and object list.
573  *
574  *	The pagetables are not updated but will presumably fault the page
575  *	in if necessary, or if a kernel page the caller will at some point
576  *	enter the page into the kernel's pmap.  We are not allowed to block
577  *	here so we *can't* do this anyway.
578  *
579  *	The object and page must be locked, and must be splhigh.
580  *	This routine may not block.
581  */
582 void
583 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
584 {
585 	struct vm_page **bucket;
586 
587 	GIANT_REQUIRED;
588 
589 	if (m->object != NULL)
590 		panic("vm_page_insert: already inserted");
591 
592 	/*
593 	 * Record the object/offset pair in this page
594 	 */
595 	m->object = object;
596 	m->pindex = pindex;
597 
598 	/*
599 	 * Insert it into the object_object/offset hash table
600 	 */
601 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
602 	mtx_lock_spin(&vm_page_buckets_mtx);
603 	m->hnext = *bucket;
604 	*bucket = m;
605 	mtx_unlock_spin(&vm_page_buckets_mtx);
606 
607 	/*
608 	 * Now link into the object's list of backed pages.
609 	 */
610 	TAILQ_INSERT_TAIL(&object->memq, m, listq);
611 	object->generation++;
612 
613 	/*
614 	 * show that the object has one more resident page.
615 	 */
616 	object->resident_page_count++;
617 
618 	/*
619 	 * Since we are inserting a new and possibly dirty page,
620 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
621 	 */
622 	if (m->flags & PG_WRITEABLE)
623 		vm_object_set_writeable_dirty(object);
624 }
625 
626 /*
627  *	vm_page_remove:
628  *				NOTE: used by device pager as well -wfj
629  *
630  *	Removes the given mem entry from the object/offset-page
631  *	table and the object page list, but do not invalidate/terminate
632  *	the backing store.
633  *
634  *	The object and page must be locked, and at splhigh.
635  *	The underlying pmap entry (if any) is NOT removed here.
636  *	This routine may not block.
637  */
638 void
639 vm_page_remove(vm_page_t m)
640 {
641 	vm_object_t object;
642 	vm_page_t *bucket;
643 
644 	GIANT_REQUIRED;
645 
646 	if (m->object == NULL)
647 		return;
648 
649 	if ((m->flags & PG_BUSY) == 0) {
650 		panic("vm_page_remove: page not busy");
651 	}
652 
653 	/*
654 	 * Basically destroy the page.
655 	 */
656 	vm_page_wakeup(m);
657 
658 	object = m->object;
659 
660 	/*
661 	 * Remove from the object_object/offset hash table.  The object
662 	 * must be on the hash queue, we will panic if it isn't
663 	 */
664 	bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
665 	mtx_lock_spin(&vm_page_buckets_mtx);
666 	while (*bucket != m) {
667 		if (*bucket == NULL)
668 			panic("vm_page_remove(): page not found in hash");
669 		bucket = &(*bucket)->hnext;
670 	}
671 	*bucket = m->hnext;
672 	m->hnext = NULL;
673 	mtx_unlock_spin(&vm_page_buckets_mtx);
674 
675 	/*
676 	 * Now remove from the object's list of backed pages.
677 	 */
678 	TAILQ_REMOVE(&object->memq, m, listq);
679 
680 	/*
681 	 * And show that the object has one fewer resident page.
682 	 */
683 	object->resident_page_count--;
684 	object->generation++;
685 
686 	m->object = NULL;
687 }
688 
689 /*
690  *	vm_page_lookup:
691  *
692  *	Returns the page associated with the object/offset
693  *	pair specified; if none is found, NULL is returned.
694  *
695  *	The object must be locked.  No side effects.
696  *	This routine may not block.
697  *	This is a critical path routine
698  */
699 vm_page_t
700 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
701 {
702 	vm_page_t m;
703 	struct vm_page **bucket;
704 
705 	/*
706 	 * Search the hash table for this object/offset pair
707 	 */
708 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
709 	mtx_lock_spin(&vm_page_buckets_mtx);
710 	for (m = *bucket; m != NULL; m = m->hnext)
711 		if (m->object == object && m->pindex == pindex)
712 			break;
713 	mtx_unlock_spin(&vm_page_buckets_mtx);
714 	return (m);
715 }
716 
717 /*
718  *	vm_page_rename:
719  *
720  *	Move the given memory entry from its
721  *	current object to the specified target object/offset.
722  *
723  *	The object must be locked.
724  *	This routine may not block.
725  *
726  *	Note: this routine will raise itself to splvm(), the caller need not.
727  *
728  *	Note: swap associated with the page must be invalidated by the move.  We
729  *	      have to do this for several reasons:  (1) we aren't freeing the
730  *	      page, (2) we are dirtying the page, (3) the VM system is probably
731  *	      moving the page from object A to B, and will then later move
732  *	      the backing store from A to B and we can't have a conflict.
733  *
734  *	Note: we *always* dirty the page.  It is necessary both for the
735  *	      fact that we moved it, and because we may be invalidating
736  *	      swap.  If the page is on the cache, we have to deactivate it
737  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
738  *	      on the cache.
739  */
740 void
741 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
742 {
743 	int s;
744 
745 	s = splvm();
746 	vm_page_remove(m);
747 	vm_page_insert(m, new_object, new_pindex);
748 	if (m->queue - m->pc == PQ_CACHE)
749 		vm_page_deactivate(m);
750 	vm_page_dirty(m);
751 	splx(s);
752 }
753 
754 /*
755  *	vm_page_select_cache:
756  *
757  *	Find a page on the cache queue with color optimization.  As pages
758  *	might be found, but not applicable, they are deactivated.  This
759  *	keeps us from using potentially busy cached pages.
760  *
761  *	This routine must be called at splvm().
762  *	This routine may not block.
763  */
764 static vm_page_t
765 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
766 {
767 	vm_page_t m;
768 
769 	GIANT_REQUIRED;
770 	while (TRUE) {
771 		m = vm_pageq_find(
772 		    PQ_CACHE,
773 		    (pindex + object->pg_color) & PQ_L2_MASK,
774 		    FALSE
775 		);
776 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
777 			       m->hold_count || m->wire_count)) {
778 			vm_page_deactivate(m);
779 			continue;
780 		}
781 		return m;
782 	}
783 }
784 
785 /*
786  *	vm_page_select_free:
787  *
788  *	Find a free or zero page, with specified preference.
789  *
790  *	This routine must be called at splvm().
791  *	This routine may not block.
792  */
793 static __inline vm_page_t
794 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
795 {
796 	vm_page_t m;
797 
798 	m = vm_pageq_find(
799 		PQ_FREE,
800 		(pindex + object->pg_color) & PQ_L2_MASK,
801 		prefer_zero
802 	);
803 	return (m);
804 }
805 
806 /*
807  *	vm_page_alloc:
808  *
809  *	Allocate and return a memory cell associated
810  *	with this VM object/offset pair.
811  *
812  *	page_req classes:
813  *	VM_ALLOC_NORMAL		normal process request
814  *	VM_ALLOC_SYSTEM		system *really* needs a page
815  *	VM_ALLOC_INTERRUPT	interrupt time request
816  *	VM_ALLOC_ZERO		zero page
817  *
818  *	This routine may not block.
819  *
820  *	Additional special handling is required when called from an
821  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
822  *	the page cache in this case.
823  */
824 vm_page_t
825 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
826 {
827 	vm_page_t m = NULL;
828 	int s;
829 
830 	GIANT_REQUIRED;
831 
832 	KASSERT(!vm_page_lookup(object, pindex),
833 		("vm_page_alloc: page already allocated"));
834 
835 	/*
836 	 * The pager is allowed to eat deeper into the free page list.
837 	 */
838 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
839 		page_req = VM_ALLOC_SYSTEM;
840 	};
841 
842 	s = splvm();
843 
844 loop:
845 	if (cnt.v_free_count > cnt.v_free_reserved) {
846 		/*
847 		 * Allocate from the free queue if there are plenty of pages
848 		 * in it.
849 		 */
850 		if (page_req == VM_ALLOC_ZERO)
851 			m = vm_page_select_free(object, pindex, TRUE);
852 		else
853 			m = vm_page_select_free(object, pindex, FALSE);
854 	} else if (
855 	    (page_req == VM_ALLOC_SYSTEM &&
856 	     cnt.v_cache_count == 0 &&
857 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
858 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
859 	) {
860 		/*
861 		 * Interrupt or system, dig deeper into the free list.
862 		 */
863 		m = vm_page_select_free(object, pindex, FALSE);
864 	} else if (page_req != VM_ALLOC_INTERRUPT) {
865 		/*
866 		 * Allocatable from cache (non-interrupt only).  On success,
867 		 * we must free the page and try again, thus ensuring that
868 		 * cnt.v_*_free_min counters are replenished.
869 		 */
870 		m = vm_page_select_cache(object, pindex);
871 		if (m == NULL) {
872 			splx(s);
873 #if defined(DIAGNOSTIC)
874 			if (cnt.v_cache_count > 0)
875 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
876 #endif
877 			vm_pageout_deficit++;
878 			pagedaemon_wakeup();
879 			return (NULL);
880 		}
881 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
882 		vm_page_busy(m);
883 		vm_page_protect(m, VM_PROT_NONE);
884 		vm_page_free(m);
885 		goto loop;
886 	} else {
887 		/*
888 		 * Not allocatable from cache from interrupt, give up.
889 		 */
890 		splx(s);
891 		vm_pageout_deficit++;
892 		pagedaemon_wakeup();
893 		return (NULL);
894 	}
895 
896 	/*
897 	 *  At this point we had better have found a good page.
898 	 */
899 
900 	KASSERT(
901 	    m != NULL,
902 	    ("vm_page_alloc(): missing page on free queue\n")
903 	);
904 
905 	/*
906 	 * Remove from free queue
907 	 */
908 
909 	vm_pageq_remove_nowakeup(m);
910 
911 	/*
912 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
913 	 */
914 	if (m->flags & PG_ZERO) {
915 		vm_page_zero_count--;
916 		m->flags = PG_ZERO | PG_BUSY;
917 	} else {
918 		m->flags = PG_BUSY;
919 	}
920 	m->wire_count = 0;
921 	m->hold_count = 0;
922 	m->act_count = 0;
923 	m->busy = 0;
924 	m->valid = 0;
925 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
926 
927 	/*
928 	 * vm_page_insert() is safe prior to the splx().  Note also that
929 	 * inserting a page here does not insert it into the pmap (which
930 	 * could cause us to block allocating memory).  We cannot block
931 	 * anywhere.
932 	 */
933 	vm_page_insert(m, object, pindex);
934 
935 	/*
936 	 * Don't wakeup too often - wakeup the pageout daemon when
937 	 * we would be nearly out of memory.
938 	 */
939 	if (vm_paging_needed())
940 		pagedaemon_wakeup();
941 
942 	splx(s);
943 	return (m);
944 }
945 
946 /*
947  *	vm_wait:	(also see VM_WAIT macro)
948  *
949  *	Block until free pages are available for allocation
950  *	- Called in various places before memory allocations.
951  */
952 void
953 vm_wait(void)
954 {
955 	int s;
956 
957 	s = splvm();
958 	if (curproc == pageproc) {
959 		vm_pageout_pages_needed = 1;
960 		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
961 	} else {
962 		if (!vm_pages_needed) {
963 			vm_pages_needed = 1;
964 			wakeup(&vm_pages_needed);
965 		}
966 		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
967 	}
968 	splx(s);
969 }
970 
971 /*
972  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
973  *
974  *	Block until free pages are available for allocation
975  *	- Called only in vm_fault so that processes page faulting
976  *	  can be easily tracked.
977  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
978  *	  processes will be able to grab memory first.  Do not change
979  *	  this balance without careful testing first.
980  */
981 void
982 vm_waitpfault(void)
983 {
984 	int s;
985 
986 	s = splvm();
987 	if (!vm_pages_needed) {
988 		vm_pages_needed = 1;
989 		wakeup(&vm_pages_needed);
990 	}
991 	tsleep(&cnt.v_free_count, PUSER, "pfault", 0);
992 	splx(s);
993 }
994 
995 /*
996  *	vm_page_activate:
997  *
998  *	Put the specified page on the active list (if appropriate).
999  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1000  *	mess with it.
1001  *
1002  *	The page queues must be locked.
1003  *	This routine may not block.
1004  */
1005 void
1006 vm_page_activate(vm_page_t m)
1007 {
1008 	int s;
1009 
1010 	GIANT_REQUIRED;
1011 	s = splvm();
1012 	if (m->queue != PQ_ACTIVE) {
1013 		if ((m->queue - m->pc) == PQ_CACHE)
1014 			cnt.v_reactivated++;
1015 		vm_pageq_remove(m);
1016 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1017 			if (m->act_count < ACT_INIT)
1018 				m->act_count = ACT_INIT;
1019 			vm_pageq_enqueue(PQ_ACTIVE, m);
1020 		}
1021 	} else {
1022 		if (m->act_count < ACT_INIT)
1023 			m->act_count = ACT_INIT;
1024 	}
1025 	splx(s);
1026 }
1027 
1028 /*
1029  *	vm_page_free_wakeup:
1030  *
1031  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1032  *	routine is called when a page has been added to the cache or free
1033  *	queues.
1034  *
1035  *	This routine may not block.
1036  *	This routine must be called at splvm()
1037  */
1038 static __inline void
1039 vm_page_free_wakeup(void)
1040 {
1041 	/*
1042 	 * if pageout daemon needs pages, then tell it that there are
1043 	 * some free.
1044 	 */
1045 	if (vm_pageout_pages_needed &&
1046 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1047 		wakeup(&vm_pageout_pages_needed);
1048 		vm_pageout_pages_needed = 0;
1049 	}
1050 	/*
1051 	 * wakeup processes that are waiting on memory if we hit a
1052 	 * high water mark. And wakeup scheduler process if we have
1053 	 * lots of memory. this process will swapin processes.
1054 	 */
1055 	if (vm_pages_needed && !vm_page_count_min()) {
1056 		vm_pages_needed = 0;
1057 		wakeup(&cnt.v_free_count);
1058 	}
1059 }
1060 
1061 /*
1062  *	vm_page_free_toq:
1063  *
1064  *	Returns the given page to the PQ_FREE list,
1065  *	disassociating it with any VM object.
1066  *
1067  *	Object and page must be locked prior to entry.
1068  *	This routine may not block.
1069  */
1070 
1071 void
1072 vm_page_free_toq(vm_page_t m)
1073 {
1074 	int s;
1075 	struct vpgqueues *pq;
1076 	vm_object_t object = m->object;
1077 
1078 	GIANT_REQUIRED;
1079 	s = splvm();
1080 	cnt.v_tfree++;
1081 
1082 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1083 		printf(
1084 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1085 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1086 		    m->hold_count);
1087 		if ((m->queue - m->pc) == PQ_FREE)
1088 			panic("vm_page_free: freeing free page");
1089 		else
1090 			panic("vm_page_free: freeing busy page");
1091 	}
1092 
1093 	/*
1094 	 * unqueue, then remove page.  Note that we cannot destroy
1095 	 * the page here because we do not want to call the pager's
1096 	 * callback routine until after we've put the page on the
1097 	 * appropriate free queue.
1098 	 */
1099 	vm_pageq_remove_nowakeup(m);
1100 	vm_page_remove(m);
1101 
1102 	/*
1103 	 * If fictitious remove object association and
1104 	 * return, otherwise delay object association removal.
1105 	 */
1106 	if ((m->flags & PG_FICTITIOUS) != 0) {
1107 		splx(s);
1108 		return;
1109 	}
1110 
1111 	m->valid = 0;
1112 	vm_page_undirty(m);
1113 
1114 	if (m->wire_count != 0) {
1115 		if (m->wire_count > 1) {
1116 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1117 				m->wire_count, (long)m->pindex);
1118 		}
1119 		panic("vm_page_free: freeing wired page\n");
1120 	}
1121 
1122 	/*
1123 	 * If we've exhausted the object's resident pages we want to free
1124 	 * it up.
1125 	 */
1126 	if (object &&
1127 	    (object->type == OBJT_VNODE) &&
1128 	    ((object->flags & OBJ_DEAD) == 0)
1129 	) {
1130 		struct vnode *vp = (struct vnode *)object->handle;
1131 
1132 		if (vp && VSHOULDFREE(vp))
1133 			vfree(vp);
1134 	}
1135 
1136 	/*
1137 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1138 	 */
1139 	if (m->flags & PG_UNMANAGED) {
1140 		m->flags &= ~PG_UNMANAGED;
1141 	} else {
1142 #ifdef __alpha__
1143 		pmap_page_is_free(m);
1144 #endif
1145 	}
1146 
1147 	if (m->hold_count != 0) {
1148 		m->flags &= ~PG_ZERO;
1149 		m->queue = PQ_HOLD;
1150 	} else
1151 		m->queue = PQ_FREE + m->pc;
1152 	pq = &vm_page_queues[m->queue];
1153 	pq->lcnt++;
1154 	++(*pq->cnt);
1155 
1156 	/*
1157 	 * Put zero'd pages on the end ( where we look for zero'd pages
1158 	 * first ) and non-zerod pages at the head.
1159 	 */
1160 	if (m->flags & PG_ZERO) {
1161 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1162 		++vm_page_zero_count;
1163 	} else {
1164 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1165 	}
1166 	vm_page_free_wakeup();
1167 	splx(s);
1168 }
1169 
1170 /*
1171  *	vm_page_unmanage:
1172  *
1173  * 	Prevent PV management from being done on the page.  The page is
1174  *	removed from the paging queues as if it were wired, and as a
1175  *	consequence of no longer being managed the pageout daemon will not
1176  *	touch it (since there is no way to locate the pte mappings for the
1177  *	page).  madvise() calls that mess with the pmap will also no longer
1178  *	operate on the page.
1179  *
1180  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1181  *	will clear the flag.
1182  *
1183  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1184  *	physical memory as backing store rather then swap-backed memory and
1185  *	will eventually be extended to support 4MB unmanaged physical
1186  *	mappings.
1187  */
1188 void
1189 vm_page_unmanage(vm_page_t m)
1190 {
1191 	int s;
1192 
1193 	s = splvm();
1194 	if ((m->flags & PG_UNMANAGED) == 0) {
1195 		if (m->wire_count == 0)
1196 			vm_pageq_remove(m);
1197 	}
1198 	vm_page_flag_set(m, PG_UNMANAGED);
1199 	splx(s);
1200 }
1201 
1202 /*
1203  *	vm_page_wire:
1204  *
1205  *	Mark this page as wired down by yet
1206  *	another map, removing it from paging queues
1207  *	as necessary.
1208  *
1209  *	The page queues must be locked.
1210  *	This routine may not block.
1211  */
1212 void
1213 vm_page_wire(vm_page_t m)
1214 {
1215 	int s;
1216 
1217 	/*
1218 	 * Only bump the wire statistics if the page is not already wired,
1219 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1220 	 * it is already off the queues).
1221 	 */
1222 	s = splvm();
1223 	if (m->wire_count == 0) {
1224 		if ((m->flags & PG_UNMANAGED) == 0)
1225 			vm_pageq_remove(m);
1226 		cnt.v_wire_count++;
1227 	}
1228 	m->wire_count++;
1229 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1230 	splx(s);
1231 	vm_page_flag_set(m, PG_MAPPED);
1232 }
1233 
1234 /*
1235  *	vm_page_unwire:
1236  *
1237  *	Release one wiring of this page, potentially
1238  *	enabling it to be paged again.
1239  *
1240  *	Many pages placed on the inactive queue should actually go
1241  *	into the cache, but it is difficult to figure out which.  What
1242  *	we do instead, if the inactive target is well met, is to put
1243  *	clean pages at the head of the inactive queue instead of the tail.
1244  *	This will cause them to be moved to the cache more quickly and
1245  *	if not actively re-referenced, freed more quickly.  If we just
1246  *	stick these pages at the end of the inactive queue, heavy filesystem
1247  *	meta-data accesses can cause an unnecessary paging load on memory bound
1248  *	processes.  This optimization causes one-time-use metadata to be
1249  *	reused more quickly.
1250  *
1251  *	BUT, if we are in a low-memory situation we have no choice but to
1252  *	put clean pages on the cache queue.
1253  *
1254  *	A number of routines use vm_page_unwire() to guarantee that the page
1255  *	will go into either the inactive or active queues, and will NEVER
1256  *	be placed in the cache - for example, just after dirtying a page.
1257  *	dirty pages in the cache are not allowed.
1258  *
1259  *	The page queues must be locked.
1260  *	This routine may not block.
1261  */
1262 void
1263 vm_page_unwire(vm_page_t m, int activate)
1264 {
1265 	int s;
1266 
1267 	s = splvm();
1268 
1269 	if (m->wire_count > 0) {
1270 		m->wire_count--;
1271 		if (m->wire_count == 0) {
1272 			cnt.v_wire_count--;
1273 			if (m->flags & PG_UNMANAGED) {
1274 				;
1275 			} else if (activate)
1276 				vm_pageq_enqueue(PQ_ACTIVE, m);
1277 			else {
1278 				vm_page_flag_clear(m, PG_WINATCFLS);
1279 				vm_pageq_enqueue(PQ_INACTIVE, m);
1280 			}
1281 		}
1282 	} else {
1283 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1284 	}
1285 	splx(s);
1286 }
1287 
1288 
1289 /*
1290  * Move the specified page to the inactive queue.  If the page has
1291  * any associated swap, the swap is deallocated.
1292  *
1293  * Normally athead is 0 resulting in LRU operation.  athead is set
1294  * to 1 if we want this page to be 'as if it were placed in the cache',
1295  * except without unmapping it from the process address space.
1296  *
1297  * This routine may not block.
1298  */
1299 static __inline void
1300 _vm_page_deactivate(vm_page_t m, int athead)
1301 {
1302 	int s;
1303 
1304 	GIANT_REQUIRED;
1305 	/*
1306 	 * Ignore if already inactive.
1307 	 */
1308 	if (m->queue == PQ_INACTIVE)
1309 		return;
1310 
1311 	s = splvm();
1312 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1313 		if ((m->queue - m->pc) == PQ_CACHE)
1314 			cnt.v_reactivated++;
1315 		vm_page_flag_clear(m, PG_WINATCFLS);
1316 		vm_pageq_remove(m);
1317 		if (athead)
1318 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1319 		else
1320 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1321 		m->queue = PQ_INACTIVE;
1322 		vm_page_queues[PQ_INACTIVE].lcnt++;
1323 		cnt.v_inactive_count++;
1324 	}
1325 	splx(s);
1326 }
1327 
1328 void
1329 vm_page_deactivate(vm_page_t m)
1330 {
1331     _vm_page_deactivate(m, 0);
1332 }
1333 
1334 /*
1335  * vm_page_try_to_cache:
1336  *
1337  * Returns 0 on failure, 1 on success
1338  */
1339 int
1340 vm_page_try_to_cache(vm_page_t m)
1341 {
1342 	GIANT_REQUIRED;
1343 
1344 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1345 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1346 		return (0);
1347 	}
1348 	vm_page_test_dirty(m);
1349 	if (m->dirty)
1350 		return (0);
1351 	vm_page_cache(m);
1352 	return (1);
1353 }
1354 
1355 /*
1356  * vm_page_try_to_free()
1357  *
1358  *	Attempt to free the page.  If we cannot free it, we do nothing.
1359  *	1 is returned on success, 0 on failure.
1360  */
1361 int
1362 vm_page_try_to_free(vm_page_t m)
1363 {
1364 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1365 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1366 		return (0);
1367 	}
1368 	vm_page_test_dirty(m);
1369 	if (m->dirty)
1370 		return (0);
1371 	vm_page_busy(m);
1372 	vm_page_protect(m, VM_PROT_NONE);
1373 	vm_page_free(m);
1374 	return (1);
1375 }
1376 
1377 /*
1378  * vm_page_cache
1379  *
1380  * Put the specified page onto the page cache queue (if appropriate).
1381  *
1382  * This routine may not block.
1383  */
1384 void
1385 vm_page_cache(vm_page_t m)
1386 {
1387 	int s;
1388 
1389 	GIANT_REQUIRED;
1390 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1391 		printf("vm_page_cache: attempting to cache busy page\n");
1392 		return;
1393 	}
1394 	if ((m->queue - m->pc) == PQ_CACHE)
1395 		return;
1396 
1397 	/*
1398 	 * Remove all pmaps and indicate that the page is not
1399 	 * writeable or mapped.
1400 	 */
1401 	vm_page_protect(m, VM_PROT_NONE);
1402 	if (m->dirty != 0) {
1403 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1404 			(long)m->pindex);
1405 	}
1406 	s = splvm();
1407 	vm_pageq_remove_nowakeup(m);
1408 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1409 	vm_page_free_wakeup();
1410 	splx(s);
1411 }
1412 
1413 /*
1414  * vm_page_dontneed
1415  *
1416  *	Cache, deactivate, or do nothing as appropriate.  This routine
1417  *	is typically used by madvise() MADV_DONTNEED.
1418  *
1419  *	Generally speaking we want to move the page into the cache so
1420  *	it gets reused quickly.  However, this can result in a silly syndrome
1421  *	due to the page recycling too quickly.  Small objects will not be
1422  *	fully cached.  On the otherhand, if we move the page to the inactive
1423  *	queue we wind up with a problem whereby very large objects
1424  *	unnecessarily blow away our inactive and cache queues.
1425  *
1426  *	The solution is to move the pages based on a fixed weighting.  We
1427  *	either leave them alone, deactivate them, or move them to the cache,
1428  *	where moving them to the cache has the highest weighting.
1429  *	By forcing some pages into other queues we eventually force the
1430  *	system to balance the queues, potentially recovering other unrelated
1431  *	space from active.  The idea is to not force this to happen too
1432  *	often.
1433  */
1434 void
1435 vm_page_dontneed(vm_page_t m)
1436 {
1437 	static int dnweight;
1438 	int dnw;
1439 	int head;
1440 
1441 	GIANT_REQUIRED;
1442 	dnw = ++dnweight;
1443 
1444 	/*
1445 	 * occassionally leave the page alone
1446 	 */
1447 	if ((dnw & 0x01F0) == 0 ||
1448 	    m->queue == PQ_INACTIVE ||
1449 	    m->queue - m->pc == PQ_CACHE
1450 	) {
1451 		if (m->act_count >= ACT_INIT)
1452 			--m->act_count;
1453 		return;
1454 	}
1455 
1456 	if (m->dirty == 0)
1457 		vm_page_test_dirty(m);
1458 
1459 	if (m->dirty || (dnw & 0x0070) == 0) {
1460 		/*
1461 		 * Deactivate the page 3 times out of 32.
1462 		 */
1463 		head = 0;
1464 	} else {
1465 		/*
1466 		 * Cache the page 28 times out of every 32.  Note that
1467 		 * the page is deactivated instead of cached, but placed
1468 		 * at the head of the queue instead of the tail.
1469 		 */
1470 		head = 1;
1471 	}
1472 	_vm_page_deactivate(m, head);
1473 }
1474 
1475 /*
1476  * Grab a page, waiting until we are waken up due to the page
1477  * changing state.  We keep on waiting, if the page continues
1478  * to be in the object.  If the page doesn't exist, allocate it.
1479  *
1480  * This routine may block.
1481  */
1482 vm_page_t
1483 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1484 {
1485 	vm_page_t m;
1486 	int s, generation;
1487 
1488 	GIANT_REQUIRED;
1489 retrylookup:
1490 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1491 		if (m->busy || (m->flags & PG_BUSY)) {
1492 			generation = object->generation;
1493 
1494 			s = splvm();
1495 			while ((object->generation == generation) &&
1496 					(m->busy || (m->flags & PG_BUSY))) {
1497 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1498 				tsleep(m, PVM, "pgrbwt", 0);
1499 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1500 					splx(s);
1501 					return NULL;
1502 				}
1503 			}
1504 			splx(s);
1505 			goto retrylookup;
1506 		} else {
1507 			vm_page_busy(m);
1508 			return m;
1509 		}
1510 	}
1511 
1512 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1513 	if (m == NULL) {
1514 		VM_WAIT;
1515 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1516 			return NULL;
1517 		goto retrylookup;
1518 	}
1519 
1520 	return m;
1521 }
1522 
1523 /*
1524  * Mapping function for valid bits or for dirty bits in
1525  * a page.  May not block.
1526  *
1527  * Inputs are required to range within a page.
1528  */
1529 __inline int
1530 vm_page_bits(int base, int size)
1531 {
1532 	int first_bit;
1533 	int last_bit;
1534 
1535 	KASSERT(
1536 	    base + size <= PAGE_SIZE,
1537 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1538 	);
1539 
1540 	if (size == 0)		/* handle degenerate case */
1541 		return (0);
1542 
1543 	first_bit = base >> DEV_BSHIFT;
1544 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1545 
1546 	return ((2 << last_bit) - (1 << first_bit));
1547 }
1548 
1549 /*
1550  *	vm_page_set_validclean:
1551  *
1552  *	Sets portions of a page valid and clean.  The arguments are expected
1553  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1554  *	of any partial chunks touched by the range.  The invalid portion of
1555  *	such chunks will be zero'd.
1556  *
1557  *	This routine may not block.
1558  *
1559  *	(base + size) must be less then or equal to PAGE_SIZE.
1560  */
1561 void
1562 vm_page_set_validclean(vm_page_t m, int base, int size)
1563 {
1564 	int pagebits;
1565 	int frag;
1566 	int endoff;
1567 
1568 	GIANT_REQUIRED;
1569 	if (size == 0)	/* handle degenerate case */
1570 		return;
1571 
1572 	/*
1573 	 * If the base is not DEV_BSIZE aligned and the valid
1574 	 * bit is clear, we have to zero out a portion of the
1575 	 * first block.
1576 	 */
1577 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1578 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1579 		pmap_zero_page_area(m, frag, base - frag);
1580 
1581 	/*
1582 	 * If the ending offset is not DEV_BSIZE aligned and the
1583 	 * valid bit is clear, we have to zero out a portion of
1584 	 * the last block.
1585 	 */
1586 	endoff = base + size;
1587 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1588 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1589 		pmap_zero_page_area(m, endoff,
1590 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1591 
1592 	/*
1593 	 * Set valid, clear dirty bits.  If validating the entire
1594 	 * page we can safely clear the pmap modify bit.  We also
1595 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1596 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1597 	 * be set again.
1598 	 *
1599 	 * We set valid bits inclusive of any overlap, but we can only
1600 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1601 	 * the range.
1602 	 */
1603 	pagebits = vm_page_bits(base, size);
1604 	m->valid |= pagebits;
1605 #if 0	/* NOT YET */
1606 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1607 		frag = DEV_BSIZE - frag;
1608 		base += frag;
1609 		size -= frag;
1610 		if (size < 0)
1611 			size = 0;
1612 	}
1613 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1614 #endif
1615 	m->dirty &= ~pagebits;
1616 	if (base == 0 && size == PAGE_SIZE) {
1617 		pmap_clear_modify(m);
1618 		vm_page_flag_clear(m, PG_NOSYNC);
1619 	}
1620 }
1621 
1622 #if 0
1623 
1624 void
1625 vm_page_set_dirty(vm_page_t m, int base, int size)
1626 {
1627 	m->dirty |= vm_page_bits(base, size);
1628 }
1629 
1630 #endif
1631 
1632 void
1633 vm_page_clear_dirty(vm_page_t m, int base, int size)
1634 {
1635 	GIANT_REQUIRED;
1636 	m->dirty &= ~vm_page_bits(base, size);
1637 }
1638 
1639 /*
1640  *	vm_page_set_invalid:
1641  *
1642  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1643  *	valid and dirty bits for the effected areas are cleared.
1644  *
1645  *	May not block.
1646  */
1647 void
1648 vm_page_set_invalid(vm_page_t m, int base, int size)
1649 {
1650 	int bits;
1651 
1652 	GIANT_REQUIRED;
1653 	bits = vm_page_bits(base, size);
1654 	m->valid &= ~bits;
1655 	m->dirty &= ~bits;
1656 	m->object->generation++;
1657 }
1658 
1659 /*
1660  * vm_page_zero_invalid()
1661  *
1662  *	The kernel assumes that the invalid portions of a page contain
1663  *	garbage, but such pages can be mapped into memory by user code.
1664  *	When this occurs, we must zero out the non-valid portions of the
1665  *	page so user code sees what it expects.
1666  *
1667  *	Pages are most often semi-valid when the end of a file is mapped
1668  *	into memory and the file's size is not page aligned.
1669  */
1670 void
1671 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1672 {
1673 	int b;
1674 	int i;
1675 
1676 	/*
1677 	 * Scan the valid bits looking for invalid sections that
1678 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1679 	 * valid bit may be set ) have already been zerod by
1680 	 * vm_page_set_validclean().
1681 	 */
1682 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1683 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1684 		    (m->valid & (1 << i))
1685 		) {
1686 			if (i > b) {
1687 				pmap_zero_page_area(m,
1688 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1689 			}
1690 			b = i + 1;
1691 		}
1692 	}
1693 
1694 	/*
1695 	 * setvalid is TRUE when we can safely set the zero'd areas
1696 	 * as being valid.  We can do this if there are no cache consistancy
1697 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1698 	 */
1699 	if (setvalid)
1700 		m->valid = VM_PAGE_BITS_ALL;
1701 }
1702 
1703 /*
1704  *	vm_page_is_valid:
1705  *
1706  *	Is (partial) page valid?  Note that the case where size == 0
1707  *	will return FALSE in the degenerate case where the page is
1708  *	entirely invalid, and TRUE otherwise.
1709  *
1710  *	May not block.
1711  */
1712 int
1713 vm_page_is_valid(vm_page_t m, int base, int size)
1714 {
1715 	int bits = vm_page_bits(base, size);
1716 
1717 	if (m->valid && ((m->valid & bits) == bits))
1718 		return 1;
1719 	else
1720 		return 0;
1721 }
1722 
1723 /*
1724  * update dirty bits from pmap/mmu.  May not block.
1725  */
1726 void
1727 vm_page_test_dirty(vm_page_t m)
1728 {
1729 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1730 		vm_page_dirty(m);
1731 	}
1732 }
1733 
1734 #include "opt_ddb.h"
1735 #ifdef DDB
1736 #include <sys/kernel.h>
1737 
1738 #include <ddb/ddb.h>
1739 
1740 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1741 {
1742 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1743 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1744 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1745 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1746 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1747 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1748 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1749 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1750 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1751 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1752 }
1753 
1754 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1755 {
1756 	int i;
1757 	db_printf("PQ_FREE:");
1758 	for (i = 0; i < PQ_L2_SIZE; i++) {
1759 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1760 	}
1761 	db_printf("\n");
1762 
1763 	db_printf("PQ_CACHE:");
1764 	for (i = 0; i < PQ_L2_SIZE; i++) {
1765 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1766 	}
1767 	db_printf("\n");
1768 
1769 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1770 		vm_page_queues[PQ_ACTIVE].lcnt,
1771 		vm_page_queues[PQ_INACTIVE].lcnt);
1772 }
1773 #endif /* DDB */
1774