1 /* 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 37 * $FreeBSD$ 38 */ 39 40 /* 41 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 42 * All rights reserved. 43 * 44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 45 * 46 * Permission to use, copy, modify and distribute this software and 47 * its documentation is hereby granted, provided that both the copyright 48 * notice and this permission notice appear in all copies of the 49 * software, derivative works or modified versions, and any portions 50 * thereof, and that both notices appear in supporting documentation. 51 * 52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 55 * 56 * Carnegie Mellon requests users of this software to return to 57 * 58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 59 * School of Computer Science 60 * Carnegie Mellon University 61 * Pittsburgh PA 15213-3890 62 * 63 * any improvements or extensions that they make and grant Carnegie the 64 * rights to redistribute these changes. 65 */ 66 67 /* 68 * GENERAL RULES ON VM_PAGE MANIPULATION 69 * 70 * - a pageq mutex is required when adding or removing a page from a 71 * page queue (vm_page_queue[]), regardless of other mutexes or the 72 * busy state of a page. 73 * 74 * - a hash chain mutex is required when associating or disassociating 75 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 76 * regardless of other mutexes or the busy state of a page. 77 * 78 * - either a hash chain mutex OR a busied page is required in order 79 * to modify the page flags. A hash chain mutex must be obtained in 80 * order to busy a page. A page's flags cannot be modified by a 81 * hash chain mutex if the page is marked busy. 82 * 83 * - The object memq mutex is held when inserting or removing 84 * pages from an object (vm_page_insert() or vm_page_remove()). This 85 * is different from the object's main mutex. 86 * 87 * Generally speaking, you have to be aware of side effects when running 88 * vm_page ops. A vm_page_lookup() will return with the hash chain 89 * locked, whether it was able to lookup the page or not. vm_page_free(), 90 * vm_page_cache(), vm_page_activate(), and a number of other routines 91 * will release the hash chain mutex for you. Intermediate manipulation 92 * routines such as vm_page_flag_set() expect the hash chain to be held 93 * on entry and the hash chain will remain held on return. 94 * 95 * pageq scanning can only occur with the pageq in question locked. 96 * We have a known bottleneck with the active queue, but the cache 97 * and free queues are actually arrays already. 98 */ 99 100 /* 101 * Resident memory management module. 102 */ 103 104 #include <sys/param.h> 105 #include <sys/systm.h> 106 #include <sys/lock.h> 107 #include <sys/malloc.h> 108 #include <sys/mutex.h> 109 #include <sys/proc.h> 110 #include <sys/vmmeter.h> 111 #include <sys/vnode.h> 112 113 #include <vm/vm.h> 114 #include <vm/vm_param.h> 115 #include <vm/vm_kern.h> 116 #include <vm/vm_object.h> 117 #include <vm/vm_page.h> 118 #include <vm/vm_pageout.h> 119 #include <vm/vm_pager.h> 120 #include <vm/vm_extern.h> 121 #include <vm/uma.h> 122 #include <vm/uma_int.h> 123 124 /* 125 * Associated with page of user-allocatable memory is a 126 * page structure. 127 */ 128 static struct mtx vm_page_buckets_mtx; 129 static struct vm_page **vm_page_buckets; /* Array of buckets */ 130 static int vm_page_bucket_count; /* How big is array? */ 131 static int vm_page_hash_mask; /* Mask for hash function */ 132 133 vm_page_t vm_page_array = 0; 134 int vm_page_array_size = 0; 135 long first_page = 0; 136 int vm_page_zero_count = 0; 137 138 /* 139 * vm_set_page_size: 140 * 141 * Sets the page size, perhaps based upon the memory 142 * size. Must be called before any use of page-size 143 * dependent functions. 144 */ 145 void 146 vm_set_page_size(void) 147 { 148 if (cnt.v_page_size == 0) 149 cnt.v_page_size = PAGE_SIZE; 150 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 151 panic("vm_set_page_size: page size not a power of two"); 152 } 153 154 /* 155 * vm_page_startup: 156 * 157 * Initializes the resident memory module. 158 * 159 * Allocates memory for the page cells, and 160 * for the object/offset-to-page hash table headers. 161 * Each page cell is initialized and placed on the free list. 162 */ 163 vm_offset_t 164 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr) 165 { 166 vm_offset_t mapped; 167 struct vm_page **bucket; 168 vm_size_t npages, page_range; 169 vm_offset_t new_end; 170 int i; 171 vm_offset_t pa; 172 int nblocks; 173 vm_offset_t last_pa; 174 175 /* the biggest memory array is the second group of pages */ 176 vm_offset_t end; 177 vm_offset_t biggestone, biggestsize; 178 179 vm_offset_t total; 180 vm_size_t bootpages; 181 182 total = 0; 183 biggestsize = 0; 184 biggestone = 0; 185 nblocks = 0; 186 vaddr = round_page(vaddr); 187 188 for (i = 0; phys_avail[i + 1]; i += 2) { 189 phys_avail[i] = round_page(phys_avail[i]); 190 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 191 } 192 193 for (i = 0; phys_avail[i + 1]; i += 2) { 194 vm_size_t size = phys_avail[i + 1] - phys_avail[i]; 195 196 if (size > biggestsize) { 197 biggestone = i; 198 biggestsize = size; 199 } 200 ++nblocks; 201 total += size; 202 } 203 204 end = phys_avail[biggestone+1]; 205 206 /* 207 * Initialize the queue headers for the free queue, the active queue 208 * and the inactive queue. 209 */ 210 vm_pageq_init(); 211 212 /* 213 * Allocate memory for use when boot strapping the kernel memory allocator 214 */ 215 bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE; 216 new_end = end - bootpages; 217 new_end = trunc_page(new_end); 218 mapped = pmap_map(&vaddr, new_end, end, 219 VM_PROT_READ | VM_PROT_WRITE); 220 bzero((caddr_t) mapped, end - new_end); 221 uma_startup((caddr_t)mapped); 222 223 end = new_end; 224 225 /* 226 * Allocate (and initialize) the hash table buckets. 227 * 228 * The number of buckets MUST BE a power of 2, and the actual value is 229 * the next power of 2 greater than the number of physical pages in 230 * the system. 231 * 232 * We make the hash table approximately 2x the number of pages to 233 * reduce the chain length. This is about the same size using the 234 * singly-linked list as the 1x hash table we were using before 235 * using TAILQ but the chain length will be smaller. 236 * 237 * Note: This computation can be tweaked if desired. 238 */ 239 if (vm_page_bucket_count == 0) { 240 vm_page_bucket_count = 1; 241 while (vm_page_bucket_count < atop(total)) 242 vm_page_bucket_count <<= 1; 243 } 244 vm_page_bucket_count <<= 1; 245 vm_page_hash_mask = vm_page_bucket_count - 1; 246 247 /* 248 * Validate these addresses. 249 */ 250 new_end = end - vm_page_bucket_count * sizeof(struct vm_page *); 251 new_end = trunc_page(new_end); 252 mapped = pmap_map(&vaddr, new_end, end, 253 VM_PROT_READ | VM_PROT_WRITE); 254 bzero((caddr_t) mapped, end - new_end); 255 256 mtx_init(&vm_page_buckets_mtx, "vm page buckets mutex", NULL, MTX_SPIN); 257 vm_page_buckets = (struct vm_page **)mapped; 258 bucket = vm_page_buckets; 259 for (i = 0; i < vm_page_bucket_count; i++) { 260 *bucket = NULL; 261 bucket++; 262 } 263 264 /* 265 * Compute the number of pages of memory that will be available for 266 * use (taking into account the overhead of a page structure per 267 * page). 268 */ 269 first_page = phys_avail[0] / PAGE_SIZE; 270 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 271 npages = (total - (page_range * sizeof(struct vm_page)) - 272 (end - new_end)) / PAGE_SIZE; 273 end = new_end; 274 275 /* 276 * Initialize the mem entry structures now, and put them in the free 277 * queue. 278 */ 279 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 280 mapped = pmap_map(&vaddr, new_end, end, 281 VM_PROT_READ | VM_PROT_WRITE); 282 vm_page_array = (vm_page_t) mapped; 283 284 /* 285 * Clear all of the page structures 286 */ 287 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 288 vm_page_array_size = page_range; 289 290 /* 291 * Construct the free queue(s) in descending order (by physical 292 * address) so that the first 16MB of physical memory is allocated 293 * last rather than first. On large-memory machines, this avoids 294 * the exhaustion of low physical memory before isa_dmainit has run. 295 */ 296 cnt.v_page_count = 0; 297 cnt.v_free_count = 0; 298 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 299 pa = phys_avail[i]; 300 if (i == biggestone) 301 last_pa = new_end; 302 else 303 last_pa = phys_avail[i + 1]; 304 while (pa < last_pa && npages-- > 0) { 305 vm_pageq_add_new_page(pa); 306 pa += PAGE_SIZE; 307 } 308 } 309 return (vaddr); 310 } 311 312 /* 313 * vm_page_hash: 314 * 315 * Distributes the object/offset key pair among hash buckets. 316 * 317 * NOTE: This macro depends on vm_page_bucket_count being a power of 2. 318 * This routine may not block. 319 * 320 * We try to randomize the hash based on the object to spread the pages 321 * out in the hash table without it costing us too much. 322 */ 323 static __inline int 324 vm_page_hash(vm_object_t object, vm_pindex_t pindex) 325 { 326 int i = ((uintptr_t)object + pindex) ^ object->hash_rand; 327 328 return (i & vm_page_hash_mask); 329 } 330 331 void 332 vm_page_flag_set(vm_page_t m, unsigned short bits) 333 { 334 GIANT_REQUIRED; 335 m->flags |= bits; 336 } 337 338 void 339 vm_page_flag_clear(vm_page_t m, unsigned short bits) 340 { 341 GIANT_REQUIRED; 342 m->flags &= ~bits; 343 } 344 345 void 346 vm_page_busy(vm_page_t m) 347 { 348 KASSERT((m->flags & PG_BUSY) == 0, 349 ("vm_page_busy: page already busy!!!")); 350 vm_page_flag_set(m, PG_BUSY); 351 } 352 353 /* 354 * vm_page_flash: 355 * 356 * wakeup anyone waiting for the page. 357 */ 358 void 359 vm_page_flash(vm_page_t m) 360 { 361 if (m->flags & PG_WANTED) { 362 vm_page_flag_clear(m, PG_WANTED); 363 wakeup(m); 364 } 365 } 366 367 /* 368 * vm_page_wakeup: 369 * 370 * clear the PG_BUSY flag and wakeup anyone waiting for the 371 * page. 372 * 373 */ 374 void 375 vm_page_wakeup(vm_page_t m) 376 { 377 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 378 vm_page_flag_clear(m, PG_BUSY); 379 vm_page_flash(m); 380 } 381 382 /* 383 * 384 * 385 */ 386 void 387 vm_page_io_start(vm_page_t m) 388 { 389 GIANT_REQUIRED; 390 m->busy++; 391 } 392 393 void 394 vm_page_io_finish(vm_page_t m) 395 { 396 GIANT_REQUIRED; 397 m->busy--; 398 if (m->busy == 0) 399 vm_page_flash(m); 400 } 401 402 /* 403 * Keep page from being freed by the page daemon 404 * much of the same effect as wiring, except much lower 405 * overhead and should be used only for *very* temporary 406 * holding ("wiring"). 407 */ 408 void 409 vm_page_hold(vm_page_t mem) 410 { 411 GIANT_REQUIRED; 412 mem->hold_count++; 413 } 414 415 void 416 vm_page_unhold(vm_page_t mem) 417 { 418 GIANT_REQUIRED; 419 --mem->hold_count; 420 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 421 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) 422 vm_page_free_toq(mem); 423 } 424 425 /* 426 * vm_page_protect: 427 * 428 * Reduce the protection of a page. This routine never raises the 429 * protection and therefore can be safely called if the page is already 430 * at VM_PROT_NONE (it will be a NOP effectively ). 431 */ 432 void 433 vm_page_protect(vm_page_t mem, int prot) 434 { 435 if (prot == VM_PROT_NONE) { 436 if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) { 437 pmap_page_protect(mem, VM_PROT_NONE); 438 vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED); 439 } 440 } else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) { 441 pmap_page_protect(mem, VM_PROT_READ); 442 vm_page_flag_clear(mem, PG_WRITEABLE); 443 } 444 } 445 /* 446 * vm_page_zero_fill: 447 * 448 * Zero-fill the specified page. 449 * Written as a standard pagein routine, to 450 * be used by the zero-fill object. 451 */ 452 boolean_t 453 vm_page_zero_fill(vm_page_t m) 454 { 455 pmap_zero_page(m); 456 return (TRUE); 457 } 458 459 /* 460 * vm_page_zero_fill_area: 461 * 462 * Like vm_page_zero_fill but only fill the specified area. 463 */ 464 boolean_t 465 vm_page_zero_fill_area(vm_page_t m, int off, int size) 466 { 467 pmap_zero_page_area(m, off, size); 468 return (TRUE); 469 } 470 471 /* 472 * vm_page_copy: 473 * 474 * Copy one page to another 475 */ 476 void 477 vm_page_copy(vm_page_t src_m, vm_page_t dest_m) 478 { 479 pmap_copy_page(src_m, dest_m); 480 dest_m->valid = VM_PAGE_BITS_ALL; 481 } 482 483 /* 484 * vm_page_free: 485 * 486 * Free a page 487 * 488 * The clearing of PG_ZERO is a temporary safety until the code can be 489 * reviewed to determine that PG_ZERO is being properly cleared on 490 * write faults or maps. PG_ZERO was previously cleared in 491 * vm_page_alloc(). 492 */ 493 void 494 vm_page_free(vm_page_t m) 495 { 496 vm_page_flag_clear(m, PG_ZERO); 497 vm_page_free_toq(m); 498 vm_page_zero_idle_wakeup(); 499 } 500 501 /* 502 * vm_page_free_zero: 503 * 504 * Free a page to the zerod-pages queue 505 */ 506 void 507 vm_page_free_zero(vm_page_t m) 508 { 509 vm_page_flag_set(m, PG_ZERO); 510 vm_page_free_toq(m); 511 } 512 513 /* 514 * vm_page_sleep_busy: 515 * 516 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE) 517 * m->busy is zero. Returns TRUE if it had to sleep ( including if 518 * it almost had to sleep and made temporary spl*() mods), FALSE 519 * otherwise. 520 * 521 * This routine assumes that interrupts can only remove the busy 522 * status from a page, not set the busy status or change it from 523 * PG_BUSY to m->busy or vise versa (which would create a timing 524 * window). 525 */ 526 int 527 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg) 528 { 529 GIANT_REQUIRED; 530 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 531 int s = splvm(); 532 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 533 /* 534 * Page is busy. Wait and retry. 535 */ 536 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 537 tsleep(m, PVM, msg, 0); 538 } 539 splx(s); 540 return (TRUE); 541 /* not reached */ 542 } 543 return (FALSE); 544 } 545 /* 546 * vm_page_dirty: 547 * 548 * make page all dirty 549 */ 550 void 551 vm_page_dirty(vm_page_t m) 552 { 553 KASSERT(m->queue - m->pc != PQ_CACHE, 554 ("vm_page_dirty: page in cache!")); 555 m->dirty = VM_PAGE_BITS_ALL; 556 } 557 558 /* 559 * vm_page_undirty: 560 * 561 * Set page to not be dirty. Note: does not clear pmap modify bits 562 */ 563 void 564 vm_page_undirty(vm_page_t m) 565 { 566 m->dirty = 0; 567 } 568 569 /* 570 * vm_page_insert: [ internal use only ] 571 * 572 * Inserts the given mem entry into the object and object list. 573 * 574 * The pagetables are not updated but will presumably fault the page 575 * in if necessary, or if a kernel page the caller will at some point 576 * enter the page into the kernel's pmap. We are not allowed to block 577 * here so we *can't* do this anyway. 578 * 579 * The object and page must be locked, and must be splhigh. 580 * This routine may not block. 581 */ 582 void 583 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 584 { 585 struct vm_page **bucket; 586 587 GIANT_REQUIRED; 588 589 if (m->object != NULL) 590 panic("vm_page_insert: already inserted"); 591 592 /* 593 * Record the object/offset pair in this page 594 */ 595 m->object = object; 596 m->pindex = pindex; 597 598 /* 599 * Insert it into the object_object/offset hash table 600 */ 601 bucket = &vm_page_buckets[vm_page_hash(object, pindex)]; 602 mtx_lock_spin(&vm_page_buckets_mtx); 603 m->hnext = *bucket; 604 *bucket = m; 605 mtx_unlock_spin(&vm_page_buckets_mtx); 606 607 /* 608 * Now link into the object's list of backed pages. 609 */ 610 TAILQ_INSERT_TAIL(&object->memq, m, listq); 611 object->generation++; 612 613 /* 614 * show that the object has one more resident page. 615 */ 616 object->resident_page_count++; 617 618 /* 619 * Since we are inserting a new and possibly dirty page, 620 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 621 */ 622 if (m->flags & PG_WRITEABLE) 623 vm_object_set_writeable_dirty(object); 624 } 625 626 /* 627 * vm_page_remove: 628 * NOTE: used by device pager as well -wfj 629 * 630 * Removes the given mem entry from the object/offset-page 631 * table and the object page list, but do not invalidate/terminate 632 * the backing store. 633 * 634 * The object and page must be locked, and at splhigh. 635 * The underlying pmap entry (if any) is NOT removed here. 636 * This routine may not block. 637 */ 638 void 639 vm_page_remove(vm_page_t m) 640 { 641 vm_object_t object; 642 vm_page_t *bucket; 643 644 GIANT_REQUIRED; 645 646 if (m->object == NULL) 647 return; 648 649 if ((m->flags & PG_BUSY) == 0) { 650 panic("vm_page_remove: page not busy"); 651 } 652 653 /* 654 * Basically destroy the page. 655 */ 656 vm_page_wakeup(m); 657 658 object = m->object; 659 660 /* 661 * Remove from the object_object/offset hash table. The object 662 * must be on the hash queue, we will panic if it isn't 663 */ 664 bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)]; 665 mtx_lock_spin(&vm_page_buckets_mtx); 666 while (*bucket != m) { 667 if (*bucket == NULL) 668 panic("vm_page_remove(): page not found in hash"); 669 bucket = &(*bucket)->hnext; 670 } 671 *bucket = m->hnext; 672 m->hnext = NULL; 673 mtx_unlock_spin(&vm_page_buckets_mtx); 674 675 /* 676 * Now remove from the object's list of backed pages. 677 */ 678 TAILQ_REMOVE(&object->memq, m, listq); 679 680 /* 681 * And show that the object has one fewer resident page. 682 */ 683 object->resident_page_count--; 684 object->generation++; 685 686 m->object = NULL; 687 } 688 689 /* 690 * vm_page_lookup: 691 * 692 * Returns the page associated with the object/offset 693 * pair specified; if none is found, NULL is returned. 694 * 695 * The object must be locked. No side effects. 696 * This routine may not block. 697 * This is a critical path routine 698 */ 699 vm_page_t 700 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 701 { 702 vm_page_t m; 703 struct vm_page **bucket; 704 705 /* 706 * Search the hash table for this object/offset pair 707 */ 708 bucket = &vm_page_buckets[vm_page_hash(object, pindex)]; 709 mtx_lock_spin(&vm_page_buckets_mtx); 710 for (m = *bucket; m != NULL; m = m->hnext) 711 if (m->object == object && m->pindex == pindex) 712 break; 713 mtx_unlock_spin(&vm_page_buckets_mtx); 714 return (m); 715 } 716 717 /* 718 * vm_page_rename: 719 * 720 * Move the given memory entry from its 721 * current object to the specified target object/offset. 722 * 723 * The object must be locked. 724 * This routine may not block. 725 * 726 * Note: this routine will raise itself to splvm(), the caller need not. 727 * 728 * Note: swap associated with the page must be invalidated by the move. We 729 * have to do this for several reasons: (1) we aren't freeing the 730 * page, (2) we are dirtying the page, (3) the VM system is probably 731 * moving the page from object A to B, and will then later move 732 * the backing store from A to B and we can't have a conflict. 733 * 734 * Note: we *always* dirty the page. It is necessary both for the 735 * fact that we moved it, and because we may be invalidating 736 * swap. If the page is on the cache, we have to deactivate it 737 * or vm_page_dirty() will panic. Dirty pages are not allowed 738 * on the cache. 739 */ 740 void 741 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 742 { 743 int s; 744 745 s = splvm(); 746 vm_page_remove(m); 747 vm_page_insert(m, new_object, new_pindex); 748 if (m->queue - m->pc == PQ_CACHE) 749 vm_page_deactivate(m); 750 vm_page_dirty(m); 751 splx(s); 752 } 753 754 /* 755 * vm_page_select_cache: 756 * 757 * Find a page on the cache queue with color optimization. As pages 758 * might be found, but not applicable, they are deactivated. This 759 * keeps us from using potentially busy cached pages. 760 * 761 * This routine must be called at splvm(). 762 * This routine may not block. 763 */ 764 static vm_page_t 765 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex) 766 { 767 vm_page_t m; 768 769 GIANT_REQUIRED; 770 while (TRUE) { 771 m = vm_pageq_find( 772 PQ_CACHE, 773 (pindex + object->pg_color) & PQ_L2_MASK, 774 FALSE 775 ); 776 if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 777 m->hold_count || m->wire_count)) { 778 vm_page_deactivate(m); 779 continue; 780 } 781 return m; 782 } 783 } 784 785 /* 786 * vm_page_select_free: 787 * 788 * Find a free or zero page, with specified preference. 789 * 790 * This routine must be called at splvm(). 791 * This routine may not block. 792 */ 793 static __inline vm_page_t 794 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero) 795 { 796 vm_page_t m; 797 798 m = vm_pageq_find( 799 PQ_FREE, 800 (pindex + object->pg_color) & PQ_L2_MASK, 801 prefer_zero 802 ); 803 return (m); 804 } 805 806 /* 807 * vm_page_alloc: 808 * 809 * Allocate and return a memory cell associated 810 * with this VM object/offset pair. 811 * 812 * page_req classes: 813 * VM_ALLOC_NORMAL normal process request 814 * VM_ALLOC_SYSTEM system *really* needs a page 815 * VM_ALLOC_INTERRUPT interrupt time request 816 * VM_ALLOC_ZERO zero page 817 * 818 * This routine may not block. 819 * 820 * Additional special handling is required when called from an 821 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with 822 * the page cache in this case. 823 */ 824 vm_page_t 825 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req) 826 { 827 vm_page_t m = NULL; 828 int s; 829 830 GIANT_REQUIRED; 831 832 KASSERT(!vm_page_lookup(object, pindex), 833 ("vm_page_alloc: page already allocated")); 834 835 /* 836 * The pager is allowed to eat deeper into the free page list. 837 */ 838 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 839 page_req = VM_ALLOC_SYSTEM; 840 }; 841 842 s = splvm(); 843 844 loop: 845 if (cnt.v_free_count > cnt.v_free_reserved) { 846 /* 847 * Allocate from the free queue if there are plenty of pages 848 * in it. 849 */ 850 if (page_req == VM_ALLOC_ZERO) 851 m = vm_page_select_free(object, pindex, TRUE); 852 else 853 m = vm_page_select_free(object, pindex, FALSE); 854 } else if ( 855 (page_req == VM_ALLOC_SYSTEM && 856 cnt.v_cache_count == 0 && 857 cnt.v_free_count > cnt.v_interrupt_free_min) || 858 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0) 859 ) { 860 /* 861 * Interrupt or system, dig deeper into the free list. 862 */ 863 m = vm_page_select_free(object, pindex, FALSE); 864 } else if (page_req != VM_ALLOC_INTERRUPT) { 865 /* 866 * Allocatable from cache (non-interrupt only). On success, 867 * we must free the page and try again, thus ensuring that 868 * cnt.v_*_free_min counters are replenished. 869 */ 870 m = vm_page_select_cache(object, pindex); 871 if (m == NULL) { 872 splx(s); 873 #if defined(DIAGNOSTIC) 874 if (cnt.v_cache_count > 0) 875 printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count); 876 #endif 877 vm_pageout_deficit++; 878 pagedaemon_wakeup(); 879 return (NULL); 880 } 881 KASSERT(m->dirty == 0, ("Found dirty cache page %p", m)); 882 vm_page_busy(m); 883 vm_page_protect(m, VM_PROT_NONE); 884 vm_page_free(m); 885 goto loop; 886 } else { 887 /* 888 * Not allocatable from cache from interrupt, give up. 889 */ 890 splx(s); 891 vm_pageout_deficit++; 892 pagedaemon_wakeup(); 893 return (NULL); 894 } 895 896 /* 897 * At this point we had better have found a good page. 898 */ 899 900 KASSERT( 901 m != NULL, 902 ("vm_page_alloc(): missing page on free queue\n") 903 ); 904 905 /* 906 * Remove from free queue 907 */ 908 909 vm_pageq_remove_nowakeup(m); 910 911 /* 912 * Initialize structure. Only the PG_ZERO flag is inherited. 913 */ 914 if (m->flags & PG_ZERO) { 915 vm_page_zero_count--; 916 m->flags = PG_ZERO | PG_BUSY; 917 } else { 918 m->flags = PG_BUSY; 919 } 920 m->wire_count = 0; 921 m->hold_count = 0; 922 m->act_count = 0; 923 m->busy = 0; 924 m->valid = 0; 925 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 926 927 /* 928 * vm_page_insert() is safe prior to the splx(). Note also that 929 * inserting a page here does not insert it into the pmap (which 930 * could cause us to block allocating memory). We cannot block 931 * anywhere. 932 */ 933 vm_page_insert(m, object, pindex); 934 935 /* 936 * Don't wakeup too often - wakeup the pageout daemon when 937 * we would be nearly out of memory. 938 */ 939 if (vm_paging_needed()) 940 pagedaemon_wakeup(); 941 942 splx(s); 943 return (m); 944 } 945 946 /* 947 * vm_wait: (also see VM_WAIT macro) 948 * 949 * Block until free pages are available for allocation 950 * - Called in various places before memory allocations. 951 */ 952 void 953 vm_wait(void) 954 { 955 int s; 956 957 s = splvm(); 958 if (curproc == pageproc) { 959 vm_pageout_pages_needed = 1; 960 tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0); 961 } else { 962 if (!vm_pages_needed) { 963 vm_pages_needed = 1; 964 wakeup(&vm_pages_needed); 965 } 966 tsleep(&cnt.v_free_count, PVM, "vmwait", 0); 967 } 968 splx(s); 969 } 970 971 /* 972 * vm_waitpfault: (also see VM_WAITPFAULT macro) 973 * 974 * Block until free pages are available for allocation 975 * - Called only in vm_fault so that processes page faulting 976 * can be easily tracked. 977 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 978 * processes will be able to grab memory first. Do not change 979 * this balance without careful testing first. 980 */ 981 void 982 vm_waitpfault(void) 983 { 984 int s; 985 986 s = splvm(); 987 if (!vm_pages_needed) { 988 vm_pages_needed = 1; 989 wakeup(&vm_pages_needed); 990 } 991 tsleep(&cnt.v_free_count, PUSER, "pfault", 0); 992 splx(s); 993 } 994 995 /* 996 * vm_page_activate: 997 * 998 * Put the specified page on the active list (if appropriate). 999 * Ensure that act_count is at least ACT_INIT but do not otherwise 1000 * mess with it. 1001 * 1002 * The page queues must be locked. 1003 * This routine may not block. 1004 */ 1005 void 1006 vm_page_activate(vm_page_t m) 1007 { 1008 int s; 1009 1010 GIANT_REQUIRED; 1011 s = splvm(); 1012 if (m->queue != PQ_ACTIVE) { 1013 if ((m->queue - m->pc) == PQ_CACHE) 1014 cnt.v_reactivated++; 1015 vm_pageq_remove(m); 1016 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1017 if (m->act_count < ACT_INIT) 1018 m->act_count = ACT_INIT; 1019 vm_pageq_enqueue(PQ_ACTIVE, m); 1020 } 1021 } else { 1022 if (m->act_count < ACT_INIT) 1023 m->act_count = ACT_INIT; 1024 } 1025 splx(s); 1026 } 1027 1028 /* 1029 * vm_page_free_wakeup: 1030 * 1031 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1032 * routine is called when a page has been added to the cache or free 1033 * queues. 1034 * 1035 * This routine may not block. 1036 * This routine must be called at splvm() 1037 */ 1038 static __inline void 1039 vm_page_free_wakeup(void) 1040 { 1041 /* 1042 * if pageout daemon needs pages, then tell it that there are 1043 * some free. 1044 */ 1045 if (vm_pageout_pages_needed && 1046 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1047 wakeup(&vm_pageout_pages_needed); 1048 vm_pageout_pages_needed = 0; 1049 } 1050 /* 1051 * wakeup processes that are waiting on memory if we hit a 1052 * high water mark. And wakeup scheduler process if we have 1053 * lots of memory. this process will swapin processes. 1054 */ 1055 if (vm_pages_needed && !vm_page_count_min()) { 1056 vm_pages_needed = 0; 1057 wakeup(&cnt.v_free_count); 1058 } 1059 } 1060 1061 /* 1062 * vm_page_free_toq: 1063 * 1064 * Returns the given page to the PQ_FREE list, 1065 * disassociating it with any VM object. 1066 * 1067 * Object and page must be locked prior to entry. 1068 * This routine may not block. 1069 */ 1070 1071 void 1072 vm_page_free_toq(vm_page_t m) 1073 { 1074 int s; 1075 struct vpgqueues *pq; 1076 vm_object_t object = m->object; 1077 1078 GIANT_REQUIRED; 1079 s = splvm(); 1080 cnt.v_tfree++; 1081 1082 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1083 printf( 1084 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 1085 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 1086 m->hold_count); 1087 if ((m->queue - m->pc) == PQ_FREE) 1088 panic("vm_page_free: freeing free page"); 1089 else 1090 panic("vm_page_free: freeing busy page"); 1091 } 1092 1093 /* 1094 * unqueue, then remove page. Note that we cannot destroy 1095 * the page here because we do not want to call the pager's 1096 * callback routine until after we've put the page on the 1097 * appropriate free queue. 1098 */ 1099 vm_pageq_remove_nowakeup(m); 1100 vm_page_remove(m); 1101 1102 /* 1103 * If fictitious remove object association and 1104 * return, otherwise delay object association removal. 1105 */ 1106 if ((m->flags & PG_FICTITIOUS) != 0) { 1107 splx(s); 1108 return; 1109 } 1110 1111 m->valid = 0; 1112 vm_page_undirty(m); 1113 1114 if (m->wire_count != 0) { 1115 if (m->wire_count > 1) { 1116 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1117 m->wire_count, (long)m->pindex); 1118 } 1119 panic("vm_page_free: freeing wired page\n"); 1120 } 1121 1122 /* 1123 * If we've exhausted the object's resident pages we want to free 1124 * it up. 1125 */ 1126 if (object && 1127 (object->type == OBJT_VNODE) && 1128 ((object->flags & OBJ_DEAD) == 0) 1129 ) { 1130 struct vnode *vp = (struct vnode *)object->handle; 1131 1132 if (vp && VSHOULDFREE(vp)) 1133 vfree(vp); 1134 } 1135 1136 /* 1137 * Clear the UNMANAGED flag when freeing an unmanaged page. 1138 */ 1139 if (m->flags & PG_UNMANAGED) { 1140 m->flags &= ~PG_UNMANAGED; 1141 } else { 1142 #ifdef __alpha__ 1143 pmap_page_is_free(m); 1144 #endif 1145 } 1146 1147 if (m->hold_count != 0) { 1148 m->flags &= ~PG_ZERO; 1149 m->queue = PQ_HOLD; 1150 } else 1151 m->queue = PQ_FREE + m->pc; 1152 pq = &vm_page_queues[m->queue]; 1153 pq->lcnt++; 1154 ++(*pq->cnt); 1155 1156 /* 1157 * Put zero'd pages on the end ( where we look for zero'd pages 1158 * first ) and non-zerod pages at the head. 1159 */ 1160 if (m->flags & PG_ZERO) { 1161 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1162 ++vm_page_zero_count; 1163 } else { 1164 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1165 } 1166 vm_page_free_wakeup(); 1167 splx(s); 1168 } 1169 1170 /* 1171 * vm_page_unmanage: 1172 * 1173 * Prevent PV management from being done on the page. The page is 1174 * removed from the paging queues as if it were wired, and as a 1175 * consequence of no longer being managed the pageout daemon will not 1176 * touch it (since there is no way to locate the pte mappings for the 1177 * page). madvise() calls that mess with the pmap will also no longer 1178 * operate on the page. 1179 * 1180 * Beyond that the page is still reasonably 'normal'. Freeing the page 1181 * will clear the flag. 1182 * 1183 * This routine is used by OBJT_PHYS objects - objects using unswappable 1184 * physical memory as backing store rather then swap-backed memory and 1185 * will eventually be extended to support 4MB unmanaged physical 1186 * mappings. 1187 */ 1188 void 1189 vm_page_unmanage(vm_page_t m) 1190 { 1191 int s; 1192 1193 s = splvm(); 1194 if ((m->flags & PG_UNMANAGED) == 0) { 1195 if (m->wire_count == 0) 1196 vm_pageq_remove(m); 1197 } 1198 vm_page_flag_set(m, PG_UNMANAGED); 1199 splx(s); 1200 } 1201 1202 /* 1203 * vm_page_wire: 1204 * 1205 * Mark this page as wired down by yet 1206 * another map, removing it from paging queues 1207 * as necessary. 1208 * 1209 * The page queues must be locked. 1210 * This routine may not block. 1211 */ 1212 void 1213 vm_page_wire(vm_page_t m) 1214 { 1215 int s; 1216 1217 /* 1218 * Only bump the wire statistics if the page is not already wired, 1219 * and only unqueue the page if it is on some queue (if it is unmanaged 1220 * it is already off the queues). 1221 */ 1222 s = splvm(); 1223 if (m->wire_count == 0) { 1224 if ((m->flags & PG_UNMANAGED) == 0) 1225 vm_pageq_remove(m); 1226 cnt.v_wire_count++; 1227 } 1228 m->wire_count++; 1229 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1230 splx(s); 1231 vm_page_flag_set(m, PG_MAPPED); 1232 } 1233 1234 /* 1235 * vm_page_unwire: 1236 * 1237 * Release one wiring of this page, potentially 1238 * enabling it to be paged again. 1239 * 1240 * Many pages placed on the inactive queue should actually go 1241 * into the cache, but it is difficult to figure out which. What 1242 * we do instead, if the inactive target is well met, is to put 1243 * clean pages at the head of the inactive queue instead of the tail. 1244 * This will cause them to be moved to the cache more quickly and 1245 * if not actively re-referenced, freed more quickly. If we just 1246 * stick these pages at the end of the inactive queue, heavy filesystem 1247 * meta-data accesses can cause an unnecessary paging load on memory bound 1248 * processes. This optimization causes one-time-use metadata to be 1249 * reused more quickly. 1250 * 1251 * BUT, if we are in a low-memory situation we have no choice but to 1252 * put clean pages on the cache queue. 1253 * 1254 * A number of routines use vm_page_unwire() to guarantee that the page 1255 * will go into either the inactive or active queues, and will NEVER 1256 * be placed in the cache - for example, just after dirtying a page. 1257 * dirty pages in the cache are not allowed. 1258 * 1259 * The page queues must be locked. 1260 * This routine may not block. 1261 */ 1262 void 1263 vm_page_unwire(vm_page_t m, int activate) 1264 { 1265 int s; 1266 1267 s = splvm(); 1268 1269 if (m->wire_count > 0) { 1270 m->wire_count--; 1271 if (m->wire_count == 0) { 1272 cnt.v_wire_count--; 1273 if (m->flags & PG_UNMANAGED) { 1274 ; 1275 } else if (activate) 1276 vm_pageq_enqueue(PQ_ACTIVE, m); 1277 else { 1278 vm_page_flag_clear(m, PG_WINATCFLS); 1279 vm_pageq_enqueue(PQ_INACTIVE, m); 1280 } 1281 } 1282 } else { 1283 panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count); 1284 } 1285 splx(s); 1286 } 1287 1288 1289 /* 1290 * Move the specified page to the inactive queue. If the page has 1291 * any associated swap, the swap is deallocated. 1292 * 1293 * Normally athead is 0 resulting in LRU operation. athead is set 1294 * to 1 if we want this page to be 'as if it were placed in the cache', 1295 * except without unmapping it from the process address space. 1296 * 1297 * This routine may not block. 1298 */ 1299 static __inline void 1300 _vm_page_deactivate(vm_page_t m, int athead) 1301 { 1302 int s; 1303 1304 GIANT_REQUIRED; 1305 /* 1306 * Ignore if already inactive. 1307 */ 1308 if (m->queue == PQ_INACTIVE) 1309 return; 1310 1311 s = splvm(); 1312 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1313 if ((m->queue - m->pc) == PQ_CACHE) 1314 cnt.v_reactivated++; 1315 vm_page_flag_clear(m, PG_WINATCFLS); 1316 vm_pageq_remove(m); 1317 if (athead) 1318 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1319 else 1320 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1321 m->queue = PQ_INACTIVE; 1322 vm_page_queues[PQ_INACTIVE].lcnt++; 1323 cnt.v_inactive_count++; 1324 } 1325 splx(s); 1326 } 1327 1328 void 1329 vm_page_deactivate(vm_page_t m) 1330 { 1331 _vm_page_deactivate(m, 0); 1332 } 1333 1334 /* 1335 * vm_page_try_to_cache: 1336 * 1337 * Returns 0 on failure, 1 on success 1338 */ 1339 int 1340 vm_page_try_to_cache(vm_page_t m) 1341 { 1342 GIANT_REQUIRED; 1343 1344 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1345 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1346 return (0); 1347 } 1348 vm_page_test_dirty(m); 1349 if (m->dirty) 1350 return (0); 1351 vm_page_cache(m); 1352 return (1); 1353 } 1354 1355 /* 1356 * vm_page_try_to_free() 1357 * 1358 * Attempt to free the page. If we cannot free it, we do nothing. 1359 * 1 is returned on success, 0 on failure. 1360 */ 1361 int 1362 vm_page_try_to_free(vm_page_t m) 1363 { 1364 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1365 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1366 return (0); 1367 } 1368 vm_page_test_dirty(m); 1369 if (m->dirty) 1370 return (0); 1371 vm_page_busy(m); 1372 vm_page_protect(m, VM_PROT_NONE); 1373 vm_page_free(m); 1374 return (1); 1375 } 1376 1377 /* 1378 * vm_page_cache 1379 * 1380 * Put the specified page onto the page cache queue (if appropriate). 1381 * 1382 * This routine may not block. 1383 */ 1384 void 1385 vm_page_cache(vm_page_t m) 1386 { 1387 int s; 1388 1389 GIANT_REQUIRED; 1390 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) { 1391 printf("vm_page_cache: attempting to cache busy page\n"); 1392 return; 1393 } 1394 if ((m->queue - m->pc) == PQ_CACHE) 1395 return; 1396 1397 /* 1398 * Remove all pmaps and indicate that the page is not 1399 * writeable or mapped. 1400 */ 1401 vm_page_protect(m, VM_PROT_NONE); 1402 if (m->dirty != 0) { 1403 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1404 (long)m->pindex); 1405 } 1406 s = splvm(); 1407 vm_pageq_remove_nowakeup(m); 1408 vm_pageq_enqueue(PQ_CACHE + m->pc, m); 1409 vm_page_free_wakeup(); 1410 splx(s); 1411 } 1412 1413 /* 1414 * vm_page_dontneed 1415 * 1416 * Cache, deactivate, or do nothing as appropriate. This routine 1417 * is typically used by madvise() MADV_DONTNEED. 1418 * 1419 * Generally speaking we want to move the page into the cache so 1420 * it gets reused quickly. However, this can result in a silly syndrome 1421 * due to the page recycling too quickly. Small objects will not be 1422 * fully cached. On the otherhand, if we move the page to the inactive 1423 * queue we wind up with a problem whereby very large objects 1424 * unnecessarily blow away our inactive and cache queues. 1425 * 1426 * The solution is to move the pages based on a fixed weighting. We 1427 * either leave them alone, deactivate them, or move them to the cache, 1428 * where moving them to the cache has the highest weighting. 1429 * By forcing some pages into other queues we eventually force the 1430 * system to balance the queues, potentially recovering other unrelated 1431 * space from active. The idea is to not force this to happen too 1432 * often. 1433 */ 1434 void 1435 vm_page_dontneed(vm_page_t m) 1436 { 1437 static int dnweight; 1438 int dnw; 1439 int head; 1440 1441 GIANT_REQUIRED; 1442 dnw = ++dnweight; 1443 1444 /* 1445 * occassionally leave the page alone 1446 */ 1447 if ((dnw & 0x01F0) == 0 || 1448 m->queue == PQ_INACTIVE || 1449 m->queue - m->pc == PQ_CACHE 1450 ) { 1451 if (m->act_count >= ACT_INIT) 1452 --m->act_count; 1453 return; 1454 } 1455 1456 if (m->dirty == 0) 1457 vm_page_test_dirty(m); 1458 1459 if (m->dirty || (dnw & 0x0070) == 0) { 1460 /* 1461 * Deactivate the page 3 times out of 32. 1462 */ 1463 head = 0; 1464 } else { 1465 /* 1466 * Cache the page 28 times out of every 32. Note that 1467 * the page is deactivated instead of cached, but placed 1468 * at the head of the queue instead of the tail. 1469 */ 1470 head = 1; 1471 } 1472 _vm_page_deactivate(m, head); 1473 } 1474 1475 /* 1476 * Grab a page, waiting until we are waken up due to the page 1477 * changing state. We keep on waiting, if the page continues 1478 * to be in the object. If the page doesn't exist, allocate it. 1479 * 1480 * This routine may block. 1481 */ 1482 vm_page_t 1483 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1484 { 1485 vm_page_t m; 1486 int s, generation; 1487 1488 GIANT_REQUIRED; 1489 retrylookup: 1490 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1491 if (m->busy || (m->flags & PG_BUSY)) { 1492 generation = object->generation; 1493 1494 s = splvm(); 1495 while ((object->generation == generation) && 1496 (m->busy || (m->flags & PG_BUSY))) { 1497 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1498 tsleep(m, PVM, "pgrbwt", 0); 1499 if ((allocflags & VM_ALLOC_RETRY) == 0) { 1500 splx(s); 1501 return NULL; 1502 } 1503 } 1504 splx(s); 1505 goto retrylookup; 1506 } else { 1507 vm_page_busy(m); 1508 return m; 1509 } 1510 } 1511 1512 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1513 if (m == NULL) { 1514 VM_WAIT; 1515 if ((allocflags & VM_ALLOC_RETRY) == 0) 1516 return NULL; 1517 goto retrylookup; 1518 } 1519 1520 return m; 1521 } 1522 1523 /* 1524 * Mapping function for valid bits or for dirty bits in 1525 * a page. May not block. 1526 * 1527 * Inputs are required to range within a page. 1528 */ 1529 __inline int 1530 vm_page_bits(int base, int size) 1531 { 1532 int first_bit; 1533 int last_bit; 1534 1535 KASSERT( 1536 base + size <= PAGE_SIZE, 1537 ("vm_page_bits: illegal base/size %d/%d", base, size) 1538 ); 1539 1540 if (size == 0) /* handle degenerate case */ 1541 return (0); 1542 1543 first_bit = base >> DEV_BSHIFT; 1544 last_bit = (base + size - 1) >> DEV_BSHIFT; 1545 1546 return ((2 << last_bit) - (1 << first_bit)); 1547 } 1548 1549 /* 1550 * vm_page_set_validclean: 1551 * 1552 * Sets portions of a page valid and clean. The arguments are expected 1553 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1554 * of any partial chunks touched by the range. The invalid portion of 1555 * such chunks will be zero'd. 1556 * 1557 * This routine may not block. 1558 * 1559 * (base + size) must be less then or equal to PAGE_SIZE. 1560 */ 1561 void 1562 vm_page_set_validclean(vm_page_t m, int base, int size) 1563 { 1564 int pagebits; 1565 int frag; 1566 int endoff; 1567 1568 GIANT_REQUIRED; 1569 if (size == 0) /* handle degenerate case */ 1570 return; 1571 1572 /* 1573 * If the base is not DEV_BSIZE aligned and the valid 1574 * bit is clear, we have to zero out a portion of the 1575 * first block. 1576 */ 1577 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1578 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1579 pmap_zero_page_area(m, frag, base - frag); 1580 1581 /* 1582 * If the ending offset is not DEV_BSIZE aligned and the 1583 * valid bit is clear, we have to zero out a portion of 1584 * the last block. 1585 */ 1586 endoff = base + size; 1587 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1588 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1589 pmap_zero_page_area(m, endoff, 1590 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1591 1592 /* 1593 * Set valid, clear dirty bits. If validating the entire 1594 * page we can safely clear the pmap modify bit. We also 1595 * use this opportunity to clear the PG_NOSYNC flag. If a process 1596 * takes a write fault on a MAP_NOSYNC memory area the flag will 1597 * be set again. 1598 * 1599 * We set valid bits inclusive of any overlap, but we can only 1600 * clear dirty bits for DEV_BSIZE chunks that are fully within 1601 * the range. 1602 */ 1603 pagebits = vm_page_bits(base, size); 1604 m->valid |= pagebits; 1605 #if 0 /* NOT YET */ 1606 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1607 frag = DEV_BSIZE - frag; 1608 base += frag; 1609 size -= frag; 1610 if (size < 0) 1611 size = 0; 1612 } 1613 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1614 #endif 1615 m->dirty &= ~pagebits; 1616 if (base == 0 && size == PAGE_SIZE) { 1617 pmap_clear_modify(m); 1618 vm_page_flag_clear(m, PG_NOSYNC); 1619 } 1620 } 1621 1622 #if 0 1623 1624 void 1625 vm_page_set_dirty(vm_page_t m, int base, int size) 1626 { 1627 m->dirty |= vm_page_bits(base, size); 1628 } 1629 1630 #endif 1631 1632 void 1633 vm_page_clear_dirty(vm_page_t m, int base, int size) 1634 { 1635 GIANT_REQUIRED; 1636 m->dirty &= ~vm_page_bits(base, size); 1637 } 1638 1639 /* 1640 * vm_page_set_invalid: 1641 * 1642 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1643 * valid and dirty bits for the effected areas are cleared. 1644 * 1645 * May not block. 1646 */ 1647 void 1648 vm_page_set_invalid(vm_page_t m, int base, int size) 1649 { 1650 int bits; 1651 1652 GIANT_REQUIRED; 1653 bits = vm_page_bits(base, size); 1654 m->valid &= ~bits; 1655 m->dirty &= ~bits; 1656 m->object->generation++; 1657 } 1658 1659 /* 1660 * vm_page_zero_invalid() 1661 * 1662 * The kernel assumes that the invalid portions of a page contain 1663 * garbage, but such pages can be mapped into memory by user code. 1664 * When this occurs, we must zero out the non-valid portions of the 1665 * page so user code sees what it expects. 1666 * 1667 * Pages are most often semi-valid when the end of a file is mapped 1668 * into memory and the file's size is not page aligned. 1669 */ 1670 void 1671 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1672 { 1673 int b; 1674 int i; 1675 1676 /* 1677 * Scan the valid bits looking for invalid sections that 1678 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1679 * valid bit may be set ) have already been zerod by 1680 * vm_page_set_validclean(). 1681 */ 1682 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1683 if (i == (PAGE_SIZE / DEV_BSIZE) || 1684 (m->valid & (1 << i)) 1685 ) { 1686 if (i > b) { 1687 pmap_zero_page_area(m, 1688 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1689 } 1690 b = i + 1; 1691 } 1692 } 1693 1694 /* 1695 * setvalid is TRUE when we can safely set the zero'd areas 1696 * as being valid. We can do this if there are no cache consistancy 1697 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1698 */ 1699 if (setvalid) 1700 m->valid = VM_PAGE_BITS_ALL; 1701 } 1702 1703 /* 1704 * vm_page_is_valid: 1705 * 1706 * Is (partial) page valid? Note that the case where size == 0 1707 * will return FALSE in the degenerate case where the page is 1708 * entirely invalid, and TRUE otherwise. 1709 * 1710 * May not block. 1711 */ 1712 int 1713 vm_page_is_valid(vm_page_t m, int base, int size) 1714 { 1715 int bits = vm_page_bits(base, size); 1716 1717 if (m->valid && ((m->valid & bits) == bits)) 1718 return 1; 1719 else 1720 return 0; 1721 } 1722 1723 /* 1724 * update dirty bits from pmap/mmu. May not block. 1725 */ 1726 void 1727 vm_page_test_dirty(vm_page_t m) 1728 { 1729 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1730 vm_page_dirty(m); 1731 } 1732 } 1733 1734 #include "opt_ddb.h" 1735 #ifdef DDB 1736 #include <sys/kernel.h> 1737 1738 #include <ddb/ddb.h> 1739 1740 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1741 { 1742 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 1743 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 1744 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 1745 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 1746 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 1747 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 1748 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 1749 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 1750 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 1751 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 1752 } 1753 1754 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1755 { 1756 int i; 1757 db_printf("PQ_FREE:"); 1758 for (i = 0; i < PQ_L2_SIZE; i++) { 1759 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 1760 } 1761 db_printf("\n"); 1762 1763 db_printf("PQ_CACHE:"); 1764 for (i = 0; i < PQ_L2_SIZE; i++) { 1765 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 1766 } 1767 db_printf("\n"); 1768 1769 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1770 vm_page_queues[PQ_ACTIVE].lcnt, 1771 vm_page_queues[PQ_INACTIVE].lcnt); 1772 } 1773 #endif /* DDB */ 1774