xref: /freebsd/sys/vm/vm_page.c (revision bbb7a2c7c329494e0148026f8568c0da4d8db085)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
36  */
37 
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *	Resident memory management module.
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_vm.h"
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 #include <vm/uma_int.h>
113 
114 #include <machine/md_var.h>
115 
116 struct vm_domain vm_dom[MAXMEMDOM];
117 
118 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
119 
120 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
121 
122 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
123 /* The following fields are protected by the domainset lock. */
124 domainset_t __exclusive_cache_line vm_min_domains;
125 domainset_t __exclusive_cache_line vm_severe_domains;
126 static int vm_min_waiters;
127 static int vm_severe_waiters;
128 static int vm_pageproc_waiters;
129 
130 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD, 0,
131     "VM page statistics");
132 
133 static counter_u64_t pqstate_commit_retries = EARLY_COUNTER;
134 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
135     CTLFLAG_RD, &pqstate_commit_retries,
136     "Number of failed per-page atomic queue state updates");
137 
138 static counter_u64_t queue_ops = EARLY_COUNTER;
139 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
140     CTLFLAG_RD, &queue_ops,
141     "Number of batched queue operations");
142 
143 static counter_u64_t queue_nops = EARLY_COUNTER;
144 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
145     CTLFLAG_RD, &queue_nops,
146     "Number of batched queue operations with no effects");
147 
148 static void
149 counter_startup(void)
150 {
151 
152 	pqstate_commit_retries = counter_u64_alloc(M_WAITOK);
153 	queue_ops = counter_u64_alloc(M_WAITOK);
154 	queue_nops = counter_u64_alloc(M_WAITOK);
155 }
156 SYSINIT(page_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
157 
158 /*
159  * bogus page -- for I/O to/from partially complete buffers,
160  * or for paging into sparsely invalid regions.
161  */
162 vm_page_t bogus_page;
163 
164 vm_page_t vm_page_array;
165 long vm_page_array_size;
166 long first_page;
167 
168 static TAILQ_HEAD(, vm_page) blacklist_head;
169 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
170 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
171     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
172 
173 static uma_zone_t fakepg_zone;
174 
175 static void vm_page_alloc_check(vm_page_t m);
176 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
177     const char *wmesg, bool nonshared, bool locked);
178 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
179 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
180 static bool vm_page_free_prep(vm_page_t m);
181 static void vm_page_free_toq(vm_page_t m);
182 static void vm_page_init(void *dummy);
183 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
184     vm_pindex_t pindex, vm_page_t mpred);
185 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
186     vm_page_t mpred);
187 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
188     const uint16_t nflag);
189 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
190     vm_page_t m_run, vm_paddr_t high);
191 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
192 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
193     int req);
194 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
195     int flags);
196 static void vm_page_zone_release(void *arg, void **store, int cnt);
197 
198 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
199 
200 static void
201 vm_page_init(void *dummy)
202 {
203 
204 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
205 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
206 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
207 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
208 }
209 
210 /*
211  * The cache page zone is initialized later since we need to be able to allocate
212  * pages before UMA is fully initialized.
213  */
214 static void
215 vm_page_init_cache_zones(void *dummy __unused)
216 {
217 	struct vm_domain *vmd;
218 	struct vm_pgcache *pgcache;
219 	int cache, domain, maxcache, pool;
220 
221 	maxcache = 0;
222 	TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache);
223 	maxcache *= mp_ncpus;
224 	for (domain = 0; domain < vm_ndomains; domain++) {
225 		vmd = VM_DOMAIN(domain);
226 		for (pool = 0; pool < VM_NFREEPOOL; pool++) {
227 			pgcache = &vmd->vmd_pgcache[pool];
228 			pgcache->domain = domain;
229 			pgcache->pool = pool;
230 			pgcache->zone = uma_zcache_create("vm pgcache",
231 			    PAGE_SIZE, NULL, NULL, NULL, NULL,
232 			    vm_page_zone_import, vm_page_zone_release, pgcache,
233 			    UMA_ZONE_VM);
234 
235 			/*
236 			 * Limit each pool's zone to 0.1% of the pages in the
237 			 * domain.
238 			 */
239 			cache = maxcache != 0 ? maxcache :
240 			    vmd->vmd_page_count / 1000;
241 			uma_zone_set_maxcache(pgcache->zone, cache);
242 		}
243 	}
244 }
245 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
246 
247 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
248 #if PAGE_SIZE == 32768
249 #ifdef CTASSERT
250 CTASSERT(sizeof(u_long) >= 8);
251 #endif
252 #endif
253 
254 /*
255  *	vm_set_page_size:
256  *
257  *	Sets the page size, perhaps based upon the memory
258  *	size.  Must be called before any use of page-size
259  *	dependent functions.
260  */
261 void
262 vm_set_page_size(void)
263 {
264 	if (vm_cnt.v_page_size == 0)
265 		vm_cnt.v_page_size = PAGE_SIZE;
266 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
267 		panic("vm_set_page_size: page size not a power of two");
268 }
269 
270 /*
271  *	vm_page_blacklist_next:
272  *
273  *	Find the next entry in the provided string of blacklist
274  *	addresses.  Entries are separated by space, comma, or newline.
275  *	If an invalid integer is encountered then the rest of the
276  *	string is skipped.  Updates the list pointer to the next
277  *	character, or NULL if the string is exhausted or invalid.
278  */
279 static vm_paddr_t
280 vm_page_blacklist_next(char **list, char *end)
281 {
282 	vm_paddr_t bad;
283 	char *cp, *pos;
284 
285 	if (list == NULL || *list == NULL)
286 		return (0);
287 	if (**list =='\0') {
288 		*list = NULL;
289 		return (0);
290 	}
291 
292 	/*
293 	 * If there's no end pointer then the buffer is coming from
294 	 * the kenv and we know it's null-terminated.
295 	 */
296 	if (end == NULL)
297 		end = *list + strlen(*list);
298 
299 	/* Ensure that strtoq() won't walk off the end */
300 	if (*end != '\0') {
301 		if (*end == '\n' || *end == ' ' || *end  == ',')
302 			*end = '\0';
303 		else {
304 			printf("Blacklist not terminated, skipping\n");
305 			*list = NULL;
306 			return (0);
307 		}
308 	}
309 
310 	for (pos = *list; *pos != '\0'; pos = cp) {
311 		bad = strtoq(pos, &cp, 0);
312 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
313 			if (bad == 0) {
314 				if (++cp < end)
315 					continue;
316 				else
317 					break;
318 			}
319 		} else
320 			break;
321 		if (*cp == '\0' || ++cp >= end)
322 			*list = NULL;
323 		else
324 			*list = cp;
325 		return (trunc_page(bad));
326 	}
327 	printf("Garbage in RAM blacklist, skipping\n");
328 	*list = NULL;
329 	return (0);
330 }
331 
332 bool
333 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
334 {
335 	struct vm_domain *vmd;
336 	vm_page_t m;
337 	int ret;
338 
339 	m = vm_phys_paddr_to_vm_page(pa);
340 	if (m == NULL)
341 		return (true); /* page does not exist, no failure */
342 
343 	vmd = vm_pagequeue_domain(m);
344 	vm_domain_free_lock(vmd);
345 	ret = vm_phys_unfree_page(m);
346 	vm_domain_free_unlock(vmd);
347 	if (ret != 0) {
348 		vm_domain_freecnt_inc(vmd, -1);
349 		TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
350 		if (verbose)
351 			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
352 	}
353 	return (ret);
354 }
355 
356 /*
357  *	vm_page_blacklist_check:
358  *
359  *	Iterate through the provided string of blacklist addresses, pulling
360  *	each entry out of the physical allocator free list and putting it
361  *	onto a list for reporting via the vm.page_blacklist sysctl.
362  */
363 static void
364 vm_page_blacklist_check(char *list, char *end)
365 {
366 	vm_paddr_t pa;
367 	char *next;
368 
369 	next = list;
370 	while (next != NULL) {
371 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
372 			continue;
373 		vm_page_blacklist_add(pa, bootverbose);
374 	}
375 }
376 
377 /*
378  *	vm_page_blacklist_load:
379  *
380  *	Search for a special module named "ram_blacklist".  It'll be a
381  *	plain text file provided by the user via the loader directive
382  *	of the same name.
383  */
384 static void
385 vm_page_blacklist_load(char **list, char **end)
386 {
387 	void *mod;
388 	u_char *ptr;
389 	u_int len;
390 
391 	mod = NULL;
392 	ptr = NULL;
393 
394 	mod = preload_search_by_type("ram_blacklist");
395 	if (mod != NULL) {
396 		ptr = preload_fetch_addr(mod);
397 		len = preload_fetch_size(mod);
398         }
399 	*list = ptr;
400 	if (ptr != NULL)
401 		*end = ptr + len;
402 	else
403 		*end = NULL;
404 	return;
405 }
406 
407 static int
408 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
409 {
410 	vm_page_t m;
411 	struct sbuf sbuf;
412 	int error, first;
413 
414 	first = 1;
415 	error = sysctl_wire_old_buffer(req, 0);
416 	if (error != 0)
417 		return (error);
418 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
419 	TAILQ_FOREACH(m, &blacklist_head, listq) {
420 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
421 		    (uintmax_t)m->phys_addr);
422 		first = 0;
423 	}
424 	error = sbuf_finish(&sbuf);
425 	sbuf_delete(&sbuf);
426 	return (error);
427 }
428 
429 /*
430  * Initialize a dummy page for use in scans of the specified paging queue.
431  * In principle, this function only needs to set the flag PG_MARKER.
432  * Nonetheless, it write busies the page as a safety precaution.
433  */
434 static void
435 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
436 {
437 
438 	bzero(marker, sizeof(*marker));
439 	marker->flags = PG_MARKER;
440 	marker->a.flags = aflags;
441 	marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
442 	marker->a.queue = queue;
443 }
444 
445 static void
446 vm_page_domain_init(int domain)
447 {
448 	struct vm_domain *vmd;
449 	struct vm_pagequeue *pq;
450 	int i;
451 
452 	vmd = VM_DOMAIN(domain);
453 	bzero(vmd, sizeof(*vmd));
454 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
455 	    "vm inactive pagequeue";
456 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
457 	    "vm active pagequeue";
458 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
459 	    "vm laundry pagequeue";
460 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
461 	    "vm unswappable pagequeue";
462 	vmd->vmd_domain = domain;
463 	vmd->vmd_page_count = 0;
464 	vmd->vmd_free_count = 0;
465 	vmd->vmd_segs = 0;
466 	vmd->vmd_oom = FALSE;
467 	for (i = 0; i < PQ_COUNT; i++) {
468 		pq = &vmd->vmd_pagequeues[i];
469 		TAILQ_INIT(&pq->pq_pl);
470 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
471 		    MTX_DEF | MTX_DUPOK);
472 		pq->pq_pdpages = 0;
473 		vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
474 	}
475 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
476 	mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
477 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
478 
479 	/*
480 	 * inacthead is used to provide FIFO ordering for LRU-bypassing
481 	 * insertions.
482 	 */
483 	vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
484 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
485 	    &vmd->vmd_inacthead, plinks.q);
486 
487 	/*
488 	 * The clock pages are used to implement active queue scanning without
489 	 * requeues.  Scans start at clock[0], which is advanced after the scan
490 	 * ends.  When the two clock hands meet, they are reset and scanning
491 	 * resumes from the head of the queue.
492 	 */
493 	vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
494 	vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
495 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
496 	    &vmd->vmd_clock[0], plinks.q);
497 	TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
498 	    &vmd->vmd_clock[1], plinks.q);
499 }
500 
501 /*
502  * Initialize a physical page in preparation for adding it to the free
503  * lists.
504  */
505 static void
506 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
507 {
508 
509 	m->object = NULL;
510 	m->ref_count = 0;
511 	m->busy_lock = VPB_FREED;
512 	m->flags = m->a.flags = 0;
513 	m->phys_addr = pa;
514 	m->a.queue = PQ_NONE;
515 	m->psind = 0;
516 	m->segind = segind;
517 	m->order = VM_NFREEORDER;
518 	m->pool = VM_FREEPOOL_DEFAULT;
519 	m->valid = m->dirty = 0;
520 	pmap_page_init(m);
521 }
522 
523 #ifndef PMAP_HAS_PAGE_ARRAY
524 static vm_paddr_t
525 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
526 {
527 	vm_paddr_t new_end;
528 
529 	/*
530 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
531 	 * However, because this page is allocated from KVM, out-of-bounds
532 	 * accesses using the direct map will not be trapped.
533 	 */
534 	*vaddr += PAGE_SIZE;
535 
536 	/*
537 	 * Allocate physical memory for the page structures, and map it.
538 	 */
539 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
540 	vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
541 	    VM_PROT_READ | VM_PROT_WRITE);
542 	vm_page_array_size = page_range;
543 
544 	return (new_end);
545 }
546 #endif
547 
548 /*
549  *	vm_page_startup:
550  *
551  *	Initializes the resident memory module.  Allocates physical memory for
552  *	bootstrapping UMA and some data structures that are used to manage
553  *	physical pages.  Initializes these structures, and populates the free
554  *	page queues.
555  */
556 vm_offset_t
557 vm_page_startup(vm_offset_t vaddr)
558 {
559 	struct vm_phys_seg *seg;
560 	vm_page_t m;
561 	char *list, *listend;
562 	vm_paddr_t end, high_avail, low_avail, new_end, size;
563 	vm_paddr_t page_range __unused;
564 	vm_paddr_t last_pa, pa;
565 	u_long pagecount;
566 	int biggestone, i, segind;
567 #ifdef WITNESS
568 	vm_offset_t mapped;
569 	int witness_size;
570 #endif
571 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
572 	long ii;
573 #endif
574 
575 	vaddr = round_page(vaddr);
576 
577 	vm_phys_early_startup();
578 	biggestone = vm_phys_avail_largest();
579 	end = phys_avail[biggestone+1];
580 
581 	/*
582 	 * Initialize the page and queue locks.
583 	 */
584 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
585 	for (i = 0; i < PA_LOCK_COUNT; i++)
586 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
587 	for (i = 0; i < vm_ndomains; i++)
588 		vm_page_domain_init(i);
589 
590 	new_end = end;
591 #ifdef WITNESS
592 	witness_size = round_page(witness_startup_count());
593 	new_end -= witness_size;
594 	mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
595 	    VM_PROT_READ | VM_PROT_WRITE);
596 	bzero((void *)mapped, witness_size);
597 	witness_startup((void *)mapped);
598 #endif
599 
600 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
601     defined(__i386__) || defined(__mips__) || defined(__riscv) || \
602     defined(__powerpc64__)
603 	/*
604 	 * Allocate a bitmap to indicate that a random physical page
605 	 * needs to be included in a minidump.
606 	 *
607 	 * The amd64 port needs this to indicate which direct map pages
608 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
609 	 *
610 	 * However, i386 still needs this workspace internally within the
611 	 * minidump code.  In theory, they are not needed on i386, but are
612 	 * included should the sf_buf code decide to use them.
613 	 */
614 	last_pa = 0;
615 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
616 		if (dump_avail[i + 1] > last_pa)
617 			last_pa = dump_avail[i + 1];
618 	page_range = last_pa / PAGE_SIZE;
619 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
620 	new_end -= vm_page_dump_size;
621 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
622 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
623 	bzero((void *)vm_page_dump, vm_page_dump_size);
624 #else
625 	(void)last_pa;
626 #endif
627 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
628     defined(__riscv) || defined(__powerpc64__)
629 	/*
630 	 * Include the UMA bootstrap pages, witness pages and vm_page_dump
631 	 * in a crash dump.  When pmap_map() uses the direct map, they are
632 	 * not automatically included.
633 	 */
634 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
635 		dump_add_page(pa);
636 #endif
637 	phys_avail[biggestone + 1] = new_end;
638 #ifdef __amd64__
639 	/*
640 	 * Request that the physical pages underlying the message buffer be
641 	 * included in a crash dump.  Since the message buffer is accessed
642 	 * through the direct map, they are not automatically included.
643 	 */
644 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
645 	last_pa = pa + round_page(msgbufsize);
646 	while (pa < last_pa) {
647 		dump_add_page(pa);
648 		pa += PAGE_SIZE;
649 	}
650 #endif
651 	/*
652 	 * Compute the number of pages of memory that will be available for
653 	 * use, taking into account the overhead of a page structure per page.
654 	 * In other words, solve
655 	 *	"available physical memory" - round_page(page_range *
656 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
657 	 * for page_range.
658 	 */
659 	low_avail = phys_avail[0];
660 	high_avail = phys_avail[1];
661 	for (i = 0; i < vm_phys_nsegs; i++) {
662 		if (vm_phys_segs[i].start < low_avail)
663 			low_avail = vm_phys_segs[i].start;
664 		if (vm_phys_segs[i].end > high_avail)
665 			high_avail = vm_phys_segs[i].end;
666 	}
667 	/* Skip the first chunk.  It is already accounted for. */
668 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
669 		if (phys_avail[i] < low_avail)
670 			low_avail = phys_avail[i];
671 		if (phys_avail[i + 1] > high_avail)
672 			high_avail = phys_avail[i + 1];
673 	}
674 	first_page = low_avail / PAGE_SIZE;
675 #ifdef VM_PHYSSEG_SPARSE
676 	size = 0;
677 	for (i = 0; i < vm_phys_nsegs; i++)
678 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
679 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
680 		size += phys_avail[i + 1] - phys_avail[i];
681 #elif defined(VM_PHYSSEG_DENSE)
682 	size = high_avail - low_avail;
683 #else
684 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
685 #endif
686 
687 #ifdef PMAP_HAS_PAGE_ARRAY
688 	pmap_page_array_startup(size / PAGE_SIZE);
689 	biggestone = vm_phys_avail_largest();
690 	end = new_end = phys_avail[biggestone + 1];
691 #else
692 #ifdef VM_PHYSSEG_DENSE
693 	/*
694 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
695 	 * the overhead of a page structure per page only if vm_page_array is
696 	 * allocated from the last physical memory chunk.  Otherwise, we must
697 	 * allocate page structures representing the physical memory
698 	 * underlying vm_page_array, even though they will not be used.
699 	 */
700 	if (new_end != high_avail)
701 		page_range = size / PAGE_SIZE;
702 	else
703 #endif
704 	{
705 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
706 
707 		/*
708 		 * If the partial bytes remaining are large enough for
709 		 * a page (PAGE_SIZE) without a corresponding
710 		 * 'struct vm_page', then new_end will contain an
711 		 * extra page after subtracting the length of the VM
712 		 * page array.  Compensate by subtracting an extra
713 		 * page from new_end.
714 		 */
715 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
716 			if (new_end == high_avail)
717 				high_avail -= PAGE_SIZE;
718 			new_end -= PAGE_SIZE;
719 		}
720 	}
721 	end = new_end;
722 	new_end = vm_page_array_alloc(&vaddr, end, page_range);
723 #endif
724 
725 #if VM_NRESERVLEVEL > 0
726 	/*
727 	 * Allocate physical memory for the reservation management system's
728 	 * data structures, and map it.
729 	 */
730 	new_end = vm_reserv_startup(&vaddr, new_end);
731 #endif
732 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
733     defined(__riscv) || defined(__powerpc64__)
734 	/*
735 	 * Include vm_page_array and vm_reserv_array in a crash dump.
736 	 */
737 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
738 		dump_add_page(pa);
739 #endif
740 	phys_avail[biggestone + 1] = new_end;
741 
742 	/*
743 	 * Add physical memory segments corresponding to the available
744 	 * physical pages.
745 	 */
746 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
747 		if (vm_phys_avail_size(i) != 0)
748 			vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
749 
750 	/*
751 	 * Initialize the physical memory allocator.
752 	 */
753 	vm_phys_init();
754 
755 	/*
756 	 * Initialize the page structures and add every available page to the
757 	 * physical memory allocator's free lists.
758 	 */
759 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
760 	for (ii = 0; ii < vm_page_array_size; ii++) {
761 		m = &vm_page_array[ii];
762 		vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
763 		m->flags = PG_FICTITIOUS;
764 	}
765 #endif
766 	vm_cnt.v_page_count = 0;
767 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
768 		seg = &vm_phys_segs[segind];
769 		for (m = seg->first_page, pa = seg->start; pa < seg->end;
770 		    m++, pa += PAGE_SIZE)
771 			vm_page_init_page(m, pa, segind);
772 
773 		/*
774 		 * Add the segment to the free lists only if it is covered by
775 		 * one of the ranges in phys_avail.  Because we've added the
776 		 * ranges to the vm_phys_segs array, we can assume that each
777 		 * segment is either entirely contained in one of the ranges,
778 		 * or doesn't overlap any of them.
779 		 */
780 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
781 			struct vm_domain *vmd;
782 
783 			if (seg->start < phys_avail[i] ||
784 			    seg->end > phys_avail[i + 1])
785 				continue;
786 
787 			m = seg->first_page;
788 			pagecount = (u_long)atop(seg->end - seg->start);
789 
790 			vmd = VM_DOMAIN(seg->domain);
791 			vm_domain_free_lock(vmd);
792 			vm_phys_enqueue_contig(m, pagecount);
793 			vm_domain_free_unlock(vmd);
794 			vm_domain_freecnt_inc(vmd, pagecount);
795 			vm_cnt.v_page_count += (u_int)pagecount;
796 
797 			vmd = VM_DOMAIN(seg->domain);
798 			vmd->vmd_page_count += (u_int)pagecount;
799 			vmd->vmd_segs |= 1UL << m->segind;
800 			break;
801 		}
802 	}
803 
804 	/*
805 	 * Remove blacklisted pages from the physical memory allocator.
806 	 */
807 	TAILQ_INIT(&blacklist_head);
808 	vm_page_blacklist_load(&list, &listend);
809 	vm_page_blacklist_check(list, listend);
810 
811 	list = kern_getenv("vm.blacklist");
812 	vm_page_blacklist_check(list, NULL);
813 
814 	freeenv(list);
815 #if VM_NRESERVLEVEL > 0
816 	/*
817 	 * Initialize the reservation management system.
818 	 */
819 	vm_reserv_init();
820 #endif
821 
822 	return (vaddr);
823 }
824 
825 void
826 vm_page_reference(vm_page_t m)
827 {
828 
829 	vm_page_aflag_set(m, PGA_REFERENCED);
830 }
831 
832 static bool
833 vm_page_acquire_flags(vm_page_t m, int allocflags)
834 {
835 	bool locked;
836 
837 	if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
838 		locked = vm_page_trysbusy(m);
839 	else
840 		locked = vm_page_tryxbusy(m);
841 	if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
842 		vm_page_wire(m);
843 	return (locked);
844 }
845 
846 /*
847  *	vm_page_busy_sleep_flags
848  *
849  *	Sleep for busy according to VM_ALLOC_ parameters.
850  */
851 static bool
852 vm_page_busy_sleep_flags(vm_object_t object, vm_page_t m, const char *wmesg,
853     int allocflags)
854 {
855 
856 	if ((allocflags & VM_ALLOC_NOWAIT) != 0)
857 		return (false);
858 	/*
859 	 * Reference the page before unlocking and
860 	 * sleeping so that the page daemon is less
861 	 * likely to reclaim it.
862 	 */
863 	if ((allocflags & VM_ALLOC_NOCREAT) == 0)
864 		vm_page_aflag_set(m, PGA_REFERENCED);
865 	if (_vm_page_busy_sleep(object, m, wmesg, (allocflags &
866 	    VM_ALLOC_IGN_SBUSY) != 0, true))
867 		VM_OBJECT_WLOCK(object);
868 	if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
869 		return (false);
870 	return (true);
871 }
872 
873 /*
874  *	vm_page_busy_acquire:
875  *
876  *	Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
877  *	and drop the object lock if necessary.
878  */
879 bool
880 vm_page_busy_acquire(vm_page_t m, int allocflags)
881 {
882 	vm_object_t obj;
883 	bool locked;
884 
885 	/*
886 	 * The page-specific object must be cached because page
887 	 * identity can change during the sleep, causing the
888 	 * re-lock of a different object.
889 	 * It is assumed that a reference to the object is already
890 	 * held by the callers.
891 	 */
892 	obj = m->object;
893 	for (;;) {
894 		if (vm_page_acquire_flags(m, allocflags))
895 			return (true);
896 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
897 			return (false);
898 		if (obj != NULL)
899 			locked = VM_OBJECT_WOWNED(obj);
900 		else
901 			locked = false;
902 		MPASS(locked || vm_page_wired(m));
903 		if (_vm_page_busy_sleep(obj, m, "vmpba",
904 		    (allocflags & VM_ALLOC_SBUSY) != 0, locked))
905 			VM_OBJECT_WLOCK(obj);
906 		if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
907 			return (false);
908 		KASSERT(m->object == obj || m->object == NULL,
909 		    ("vm_page_busy_acquire: page %p does not belong to %p",
910 		    m, obj));
911 	}
912 }
913 
914 /*
915  *	vm_page_busy_downgrade:
916  *
917  *	Downgrade an exclusive busy page into a single shared busy page.
918  */
919 void
920 vm_page_busy_downgrade(vm_page_t m)
921 {
922 	u_int x;
923 
924 	vm_page_assert_xbusied(m);
925 
926 	x = m->busy_lock;
927 	for (;;) {
928 		if (atomic_fcmpset_rel_int(&m->busy_lock,
929 		    &x, VPB_SHARERS_WORD(1)))
930 			break;
931 	}
932 	if ((x & VPB_BIT_WAITERS) != 0)
933 		wakeup(m);
934 }
935 
936 /*
937  *
938  *	vm_page_busy_tryupgrade:
939  *
940  *	Attempt to upgrade a single shared busy into an exclusive busy.
941  */
942 int
943 vm_page_busy_tryupgrade(vm_page_t m)
944 {
945 	u_int ce, x;
946 
947 	vm_page_assert_sbusied(m);
948 
949 	x = m->busy_lock;
950 	ce = VPB_CURTHREAD_EXCLUSIVE;
951 	for (;;) {
952 		if (VPB_SHARERS(x) > 1)
953 			return (0);
954 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
955 		    ("vm_page_busy_tryupgrade: invalid lock state"));
956 		if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
957 		    ce | (x & VPB_BIT_WAITERS)))
958 			continue;
959 		return (1);
960 	}
961 }
962 
963 /*
964  *	vm_page_sbusied:
965  *
966  *	Return a positive value if the page is shared busied, 0 otherwise.
967  */
968 int
969 vm_page_sbusied(vm_page_t m)
970 {
971 	u_int x;
972 
973 	x = m->busy_lock;
974 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
975 }
976 
977 /*
978  *	vm_page_sunbusy:
979  *
980  *	Shared unbusy a page.
981  */
982 void
983 vm_page_sunbusy(vm_page_t m)
984 {
985 	u_int x;
986 
987 	vm_page_assert_sbusied(m);
988 
989 	x = m->busy_lock;
990 	for (;;) {
991 		KASSERT(x != VPB_FREED,
992 		    ("vm_page_sunbusy: Unlocking freed page."));
993 		if (VPB_SHARERS(x) > 1) {
994 			if (atomic_fcmpset_int(&m->busy_lock, &x,
995 			    x - VPB_ONE_SHARER))
996 				break;
997 			continue;
998 		}
999 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1000 		    ("vm_page_sunbusy: invalid lock state"));
1001 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1002 			continue;
1003 		if ((x & VPB_BIT_WAITERS) == 0)
1004 			break;
1005 		wakeup(m);
1006 		break;
1007 	}
1008 }
1009 
1010 /*
1011  *	vm_page_busy_sleep:
1012  *
1013  *	Sleep if the page is busy, using the page pointer as wchan.
1014  *	This is used to implement the hard-path of busying mechanism.
1015  *
1016  *	If nonshared is true, sleep only if the page is xbusy.
1017  *
1018  *	The object lock must be held on entry and will be released on exit.
1019  */
1020 void
1021 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1022 {
1023 	vm_object_t obj;
1024 
1025 	obj = m->object;
1026 	VM_OBJECT_ASSERT_LOCKED(obj);
1027 	vm_page_lock_assert(m, MA_NOTOWNED);
1028 
1029 	if (!_vm_page_busy_sleep(obj, m, wmesg, nonshared, true))
1030 		VM_OBJECT_DROP(obj);
1031 }
1032 
1033 /*
1034  *	_vm_page_busy_sleep:
1035  *
1036  *	Internal busy sleep function.
1037  */
1038 static bool
1039 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, const char *wmesg,
1040     bool nonshared, bool locked)
1041 {
1042 	u_int x;
1043 
1044 	/*
1045 	 * If the object is busy we must wait for that to drain to zero
1046 	 * before trying the page again.
1047 	 */
1048 	if (obj != NULL && vm_object_busied(obj)) {
1049 		if (locked)
1050 			VM_OBJECT_DROP(obj);
1051 		vm_object_busy_wait(obj, wmesg);
1052 		return (locked);
1053 	}
1054 	sleepq_lock(m);
1055 	x = m->busy_lock;
1056 	if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
1057 	    ((x & VPB_BIT_WAITERS) == 0 &&
1058 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
1059 		sleepq_release(m);
1060 		return (false);
1061 	}
1062 	if (locked)
1063 		VM_OBJECT_DROP(obj);
1064 	DROP_GIANT();
1065 	sleepq_add(m, NULL, wmesg, 0, 0);
1066 	sleepq_wait(m, PVM);
1067 	PICKUP_GIANT();
1068 	return (locked);
1069 }
1070 
1071 /*
1072  *	vm_page_trysbusy:
1073  *
1074  *	Try to shared busy a page.
1075  *	If the operation succeeds 1 is returned otherwise 0.
1076  *	The operation never sleeps.
1077  */
1078 int
1079 vm_page_trysbusy(vm_page_t m)
1080 {
1081 	vm_object_t obj;
1082 	u_int x;
1083 
1084 	obj = m->object;
1085 	x = m->busy_lock;
1086 	for (;;) {
1087 		if ((x & VPB_BIT_SHARED) == 0)
1088 			return (0);
1089 		/*
1090 		 * Reduce the window for transient busies that will trigger
1091 		 * false negatives in vm_page_ps_test().
1092 		 */
1093 		if (obj != NULL && vm_object_busied(obj))
1094 			return (0);
1095 		if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1096 		    x + VPB_ONE_SHARER))
1097 			break;
1098 	}
1099 
1100 	/* Refetch the object now that we're guaranteed that it is stable. */
1101 	obj = m->object;
1102 	if (obj != NULL && vm_object_busied(obj)) {
1103 		vm_page_sunbusy(m);
1104 		return (0);
1105 	}
1106 	return (1);
1107 }
1108 
1109 /*
1110  *	vm_page_tryxbusy:
1111  *
1112  *	Try to exclusive busy a page.
1113  *	If the operation succeeds 1 is returned otherwise 0.
1114  *	The operation never sleeps.
1115  */
1116 int
1117 vm_page_tryxbusy(vm_page_t m)
1118 {
1119 	vm_object_t obj;
1120 
1121         if (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED,
1122             VPB_CURTHREAD_EXCLUSIVE) == 0)
1123 		return (0);
1124 
1125 	obj = m->object;
1126 	if (obj != NULL && vm_object_busied(obj)) {
1127 		vm_page_xunbusy(m);
1128 		return (0);
1129 	}
1130 	return (1);
1131 }
1132 
1133 static void
1134 vm_page_xunbusy_hard_tail(vm_page_t m)
1135 {
1136 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1137 	/* Wake the waiter. */
1138 	wakeup(m);
1139 }
1140 
1141 /*
1142  *	vm_page_xunbusy_hard:
1143  *
1144  *	Called when unbusy has failed because there is a waiter.
1145  */
1146 void
1147 vm_page_xunbusy_hard(vm_page_t m)
1148 {
1149 	vm_page_assert_xbusied(m);
1150 	vm_page_xunbusy_hard_tail(m);
1151 }
1152 
1153 void
1154 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1155 {
1156 	vm_page_assert_xbusied_unchecked(m);
1157 	vm_page_xunbusy_hard_tail(m);
1158 }
1159 
1160 static void
1161 vm_page_busy_free(vm_page_t m)
1162 {
1163 	u_int x;
1164 
1165 	atomic_thread_fence_rel();
1166 	x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1167 	if ((x & VPB_BIT_WAITERS) != 0)
1168 		wakeup(m);
1169 }
1170 
1171 /*
1172  *	vm_page_unhold_pages:
1173  *
1174  *	Unhold each of the pages that is referenced by the given array.
1175  */
1176 void
1177 vm_page_unhold_pages(vm_page_t *ma, int count)
1178 {
1179 
1180 	for (; count != 0; count--) {
1181 		vm_page_unwire(*ma, PQ_ACTIVE);
1182 		ma++;
1183 	}
1184 }
1185 
1186 vm_page_t
1187 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1188 {
1189 	vm_page_t m;
1190 
1191 #ifdef VM_PHYSSEG_SPARSE
1192 	m = vm_phys_paddr_to_vm_page(pa);
1193 	if (m == NULL)
1194 		m = vm_phys_fictitious_to_vm_page(pa);
1195 	return (m);
1196 #elif defined(VM_PHYSSEG_DENSE)
1197 	long pi;
1198 
1199 	pi = atop(pa);
1200 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1201 		m = &vm_page_array[pi - first_page];
1202 		return (m);
1203 	}
1204 	return (vm_phys_fictitious_to_vm_page(pa));
1205 #else
1206 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1207 #endif
1208 }
1209 
1210 /*
1211  *	vm_page_getfake:
1212  *
1213  *	Create a fictitious page with the specified physical address and
1214  *	memory attribute.  The memory attribute is the only the machine-
1215  *	dependent aspect of a fictitious page that must be initialized.
1216  */
1217 vm_page_t
1218 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1219 {
1220 	vm_page_t m;
1221 
1222 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1223 	vm_page_initfake(m, paddr, memattr);
1224 	return (m);
1225 }
1226 
1227 void
1228 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1229 {
1230 
1231 	if ((m->flags & PG_FICTITIOUS) != 0) {
1232 		/*
1233 		 * The page's memattr might have changed since the
1234 		 * previous initialization.  Update the pmap to the
1235 		 * new memattr.
1236 		 */
1237 		goto memattr;
1238 	}
1239 	m->phys_addr = paddr;
1240 	m->a.queue = PQ_NONE;
1241 	/* Fictitious pages don't use "segind". */
1242 	m->flags = PG_FICTITIOUS;
1243 	/* Fictitious pages don't use "order" or "pool". */
1244 	m->oflags = VPO_UNMANAGED;
1245 	m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1246 	/* Fictitious pages are unevictable. */
1247 	m->ref_count = 1;
1248 	pmap_page_init(m);
1249 memattr:
1250 	pmap_page_set_memattr(m, memattr);
1251 }
1252 
1253 /*
1254  *	vm_page_putfake:
1255  *
1256  *	Release a fictitious page.
1257  */
1258 void
1259 vm_page_putfake(vm_page_t m)
1260 {
1261 
1262 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1263 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1264 	    ("vm_page_putfake: bad page %p", m));
1265 	vm_page_assert_xbusied(m);
1266 	vm_page_busy_free(m);
1267 	uma_zfree(fakepg_zone, m);
1268 }
1269 
1270 /*
1271  *	vm_page_updatefake:
1272  *
1273  *	Update the given fictitious page to the specified physical address and
1274  *	memory attribute.
1275  */
1276 void
1277 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1278 {
1279 
1280 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1281 	    ("vm_page_updatefake: bad page %p", m));
1282 	m->phys_addr = paddr;
1283 	pmap_page_set_memattr(m, memattr);
1284 }
1285 
1286 /*
1287  *	vm_page_free:
1288  *
1289  *	Free a page.
1290  */
1291 void
1292 vm_page_free(vm_page_t m)
1293 {
1294 
1295 	m->flags &= ~PG_ZERO;
1296 	vm_page_free_toq(m);
1297 }
1298 
1299 /*
1300  *	vm_page_free_zero:
1301  *
1302  *	Free a page to the zerod-pages queue
1303  */
1304 void
1305 vm_page_free_zero(vm_page_t m)
1306 {
1307 
1308 	m->flags |= PG_ZERO;
1309 	vm_page_free_toq(m);
1310 }
1311 
1312 /*
1313  * Unbusy and handle the page queueing for a page from a getpages request that
1314  * was optionally read ahead or behind.
1315  */
1316 void
1317 vm_page_readahead_finish(vm_page_t m)
1318 {
1319 
1320 	/* We shouldn't put invalid pages on queues. */
1321 	KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1322 
1323 	/*
1324 	 * Since the page is not the actually needed one, whether it should
1325 	 * be activated or deactivated is not obvious.  Empirical results
1326 	 * have shown that deactivating the page is usually the best choice,
1327 	 * unless the page is wanted by another thread.
1328 	 */
1329 	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1330 		vm_page_activate(m);
1331 	else
1332 		vm_page_deactivate(m);
1333 	vm_page_xunbusy_unchecked(m);
1334 }
1335 
1336 /*
1337  *	vm_page_sleep_if_busy:
1338  *
1339  *	Sleep and release the object lock if the page is busied.
1340  *	Returns TRUE if the thread slept.
1341  *
1342  *	The given page must be unlocked and object containing it must
1343  *	be locked.
1344  */
1345 int
1346 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1347 {
1348 	vm_object_t obj;
1349 
1350 	vm_page_lock_assert(m, MA_NOTOWNED);
1351 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1352 
1353 	/*
1354 	 * The page-specific object must be cached because page
1355 	 * identity can change during the sleep, causing the
1356 	 * re-lock of a different object.
1357 	 * It is assumed that a reference to the object is already
1358 	 * held by the callers.
1359 	 */
1360 	obj = m->object;
1361 	if (vm_page_busied(m) || (obj != NULL && obj->busy)) {
1362 		vm_page_busy_sleep(m, msg, false);
1363 		VM_OBJECT_WLOCK(obj);
1364 		return (TRUE);
1365 	}
1366 	return (FALSE);
1367 }
1368 
1369 /*
1370  *	vm_page_sleep_if_xbusy:
1371  *
1372  *	Sleep and release the object lock if the page is xbusied.
1373  *	Returns TRUE if the thread slept.
1374  *
1375  *	The given page must be unlocked and object containing it must
1376  *	be locked.
1377  */
1378 int
1379 vm_page_sleep_if_xbusy(vm_page_t m, const char *msg)
1380 {
1381 	vm_object_t obj;
1382 
1383 	vm_page_lock_assert(m, MA_NOTOWNED);
1384 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1385 
1386 	/*
1387 	 * The page-specific object must be cached because page
1388 	 * identity can change during the sleep, causing the
1389 	 * re-lock of a different object.
1390 	 * It is assumed that a reference to the object is already
1391 	 * held by the callers.
1392 	 */
1393 	obj = m->object;
1394 	if (vm_page_xbusied(m) || (obj != NULL && obj->busy)) {
1395 		vm_page_busy_sleep(m, msg, true);
1396 		VM_OBJECT_WLOCK(obj);
1397 		return (TRUE);
1398 	}
1399 	return (FALSE);
1400 }
1401 
1402 /*
1403  *	vm_page_dirty_KBI:		[ internal use only ]
1404  *
1405  *	Set all bits in the page's dirty field.
1406  *
1407  *	The object containing the specified page must be locked if the
1408  *	call is made from the machine-independent layer.
1409  *
1410  *	See vm_page_clear_dirty_mask().
1411  *
1412  *	This function should only be called by vm_page_dirty().
1413  */
1414 void
1415 vm_page_dirty_KBI(vm_page_t m)
1416 {
1417 
1418 	/* Refer to this operation by its public name. */
1419 	KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1420 	m->dirty = VM_PAGE_BITS_ALL;
1421 }
1422 
1423 /*
1424  *	vm_page_insert:		[ internal use only ]
1425  *
1426  *	Inserts the given mem entry into the object and object list.
1427  *
1428  *	The object must be locked.
1429  */
1430 int
1431 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1432 {
1433 	vm_page_t mpred;
1434 
1435 	VM_OBJECT_ASSERT_WLOCKED(object);
1436 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1437 	return (vm_page_insert_after(m, object, pindex, mpred));
1438 }
1439 
1440 /*
1441  *	vm_page_insert_after:
1442  *
1443  *	Inserts the page "m" into the specified object at offset "pindex".
1444  *
1445  *	The page "mpred" must immediately precede the offset "pindex" within
1446  *	the specified object.
1447  *
1448  *	The object must be locked.
1449  */
1450 static int
1451 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1452     vm_page_t mpred)
1453 {
1454 	vm_page_t msucc;
1455 
1456 	VM_OBJECT_ASSERT_WLOCKED(object);
1457 	KASSERT(m->object == NULL,
1458 	    ("vm_page_insert_after: page already inserted"));
1459 	if (mpred != NULL) {
1460 		KASSERT(mpred->object == object,
1461 		    ("vm_page_insert_after: object doesn't contain mpred"));
1462 		KASSERT(mpred->pindex < pindex,
1463 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1464 		msucc = TAILQ_NEXT(mpred, listq);
1465 	} else
1466 		msucc = TAILQ_FIRST(&object->memq);
1467 	if (msucc != NULL)
1468 		KASSERT(msucc->pindex > pindex,
1469 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1470 
1471 	/*
1472 	 * Record the object/offset pair in this page.
1473 	 */
1474 	m->object = object;
1475 	m->pindex = pindex;
1476 	m->ref_count |= VPRC_OBJREF;
1477 
1478 	/*
1479 	 * Now link into the object's ordered list of backed pages.
1480 	 */
1481 	if (vm_radix_insert(&object->rtree, m)) {
1482 		m->object = NULL;
1483 		m->pindex = 0;
1484 		m->ref_count &= ~VPRC_OBJREF;
1485 		return (1);
1486 	}
1487 	vm_page_insert_radixdone(m, object, mpred);
1488 	return (0);
1489 }
1490 
1491 /*
1492  *	vm_page_insert_radixdone:
1493  *
1494  *	Complete page "m" insertion into the specified object after the
1495  *	radix trie hooking.
1496  *
1497  *	The page "mpred" must precede the offset "m->pindex" within the
1498  *	specified object.
1499  *
1500  *	The object must be locked.
1501  */
1502 static void
1503 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1504 {
1505 
1506 	VM_OBJECT_ASSERT_WLOCKED(object);
1507 	KASSERT(object != NULL && m->object == object,
1508 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1509 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1510 	    ("vm_page_insert_radixdone: page %p is missing object ref", m));
1511 	if (mpred != NULL) {
1512 		KASSERT(mpred->object == object,
1513 		    ("vm_page_insert_radixdone: object doesn't contain mpred"));
1514 		KASSERT(mpred->pindex < m->pindex,
1515 		    ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1516 	}
1517 
1518 	if (mpred != NULL)
1519 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1520 	else
1521 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1522 
1523 	/*
1524 	 * Show that the object has one more resident page.
1525 	 */
1526 	object->resident_page_count++;
1527 
1528 	/*
1529 	 * Hold the vnode until the last page is released.
1530 	 */
1531 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1532 		vhold(object->handle);
1533 
1534 	/*
1535 	 * Since we are inserting a new and possibly dirty page,
1536 	 * update the object's generation count.
1537 	 */
1538 	if (pmap_page_is_write_mapped(m))
1539 		vm_object_set_writeable_dirty(object);
1540 }
1541 
1542 /*
1543  * Do the work to remove a page from its object.  The caller is responsible for
1544  * updating the page's fields to reflect this removal.
1545  */
1546 static void
1547 vm_page_object_remove(vm_page_t m)
1548 {
1549 	vm_object_t object;
1550 	vm_page_t mrem;
1551 
1552 	vm_page_assert_xbusied(m);
1553 	object = m->object;
1554 	VM_OBJECT_ASSERT_WLOCKED(object);
1555 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1556 	    ("page %p is missing its object ref", m));
1557 
1558 	/* Deferred free of swap space. */
1559 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1560 		vm_pager_page_unswapped(m);
1561 
1562 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1563 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1564 
1565 	/*
1566 	 * Now remove from the object's list of backed pages.
1567 	 */
1568 	TAILQ_REMOVE(&object->memq, m, listq);
1569 
1570 	/*
1571 	 * And show that the object has one fewer resident page.
1572 	 */
1573 	object->resident_page_count--;
1574 
1575 	/*
1576 	 * The vnode may now be recycled.
1577 	 */
1578 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1579 		vdrop(object->handle);
1580 }
1581 
1582 /*
1583  *	vm_page_remove:
1584  *
1585  *	Removes the specified page from its containing object, but does not
1586  *	invalidate any backing storage.  Returns true if the object's reference
1587  *	was the last reference to the page, and false otherwise.
1588  *
1589  *	The object must be locked and the page must be exclusively busied.
1590  *	The exclusive busy will be released on return.  If this is not the
1591  *	final ref and the caller does not hold a wire reference it may not
1592  *	continue to access the page.
1593  */
1594 bool
1595 vm_page_remove(vm_page_t m)
1596 {
1597 	bool dropped;
1598 
1599 	dropped = vm_page_remove_xbusy(m);
1600 	vm_page_xunbusy(m);
1601 
1602 	return (dropped);
1603 }
1604 
1605 /*
1606  *	vm_page_remove_xbusy
1607  *
1608  *	Removes the page but leaves the xbusy held.  Returns true if this
1609  *	removed the final ref and false otherwise.
1610  */
1611 bool
1612 vm_page_remove_xbusy(vm_page_t m)
1613 {
1614 
1615 	vm_page_object_remove(m);
1616 	m->object = NULL;
1617 	return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1618 }
1619 
1620 /*
1621  *	vm_page_lookup:
1622  *
1623  *	Returns the page associated with the object/offset
1624  *	pair specified; if none is found, NULL is returned.
1625  *
1626  *	The object must be locked.
1627  */
1628 vm_page_t
1629 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1630 {
1631 
1632 	VM_OBJECT_ASSERT_LOCKED(object);
1633 	return (vm_radix_lookup(&object->rtree, pindex));
1634 }
1635 
1636 /*
1637  *	vm_page_find_least:
1638  *
1639  *	Returns the page associated with the object with least pindex
1640  *	greater than or equal to the parameter pindex, or NULL.
1641  *
1642  *	The object must be locked.
1643  */
1644 vm_page_t
1645 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1646 {
1647 	vm_page_t m;
1648 
1649 	VM_OBJECT_ASSERT_LOCKED(object);
1650 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1651 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1652 	return (m);
1653 }
1654 
1655 /*
1656  * Returns the given page's successor (by pindex) within the object if it is
1657  * resident; if none is found, NULL is returned.
1658  *
1659  * The object must be locked.
1660  */
1661 vm_page_t
1662 vm_page_next(vm_page_t m)
1663 {
1664 	vm_page_t next;
1665 
1666 	VM_OBJECT_ASSERT_LOCKED(m->object);
1667 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1668 		MPASS(next->object == m->object);
1669 		if (next->pindex != m->pindex + 1)
1670 			next = NULL;
1671 	}
1672 	return (next);
1673 }
1674 
1675 /*
1676  * Returns the given page's predecessor (by pindex) within the object if it is
1677  * resident; if none is found, NULL is returned.
1678  *
1679  * The object must be locked.
1680  */
1681 vm_page_t
1682 vm_page_prev(vm_page_t m)
1683 {
1684 	vm_page_t prev;
1685 
1686 	VM_OBJECT_ASSERT_LOCKED(m->object);
1687 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1688 		MPASS(prev->object == m->object);
1689 		if (prev->pindex != m->pindex - 1)
1690 			prev = NULL;
1691 	}
1692 	return (prev);
1693 }
1694 
1695 /*
1696  * Uses the page mnew as a replacement for an existing page at index
1697  * pindex which must be already present in the object.
1698  *
1699  * Both pages must be exclusively busied on enter.  The old page is
1700  * unbusied on exit.
1701  *
1702  * A return value of true means mold is now free.  If this is not the
1703  * final ref and the caller does not hold a wire reference it may not
1704  * continue to access the page.
1705  */
1706 static bool
1707 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1708     vm_page_t mold)
1709 {
1710 	vm_page_t mret;
1711 	bool dropped;
1712 
1713 	VM_OBJECT_ASSERT_WLOCKED(object);
1714 	vm_page_assert_xbusied(mold);
1715 	KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1716 	    ("vm_page_replace: page %p already in object", mnew));
1717 
1718 	/*
1719 	 * This function mostly follows vm_page_insert() and
1720 	 * vm_page_remove() without the radix, object count and vnode
1721 	 * dance.  Double check such functions for more comments.
1722 	 */
1723 
1724 	mnew->object = object;
1725 	mnew->pindex = pindex;
1726 	atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1727 	mret = vm_radix_replace(&object->rtree, mnew);
1728 	KASSERT(mret == mold,
1729 	    ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1730 	KASSERT((mold->oflags & VPO_UNMANAGED) ==
1731 	    (mnew->oflags & VPO_UNMANAGED),
1732 	    ("vm_page_replace: mismatched VPO_UNMANAGED"));
1733 
1734 	/* Keep the resident page list in sorted order. */
1735 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1736 	TAILQ_REMOVE(&object->memq, mold, listq);
1737 	mold->object = NULL;
1738 
1739 	/*
1740 	 * The object's resident_page_count does not change because we have
1741 	 * swapped one page for another, but the generation count should
1742 	 * change if the page is dirty.
1743 	 */
1744 	if (pmap_page_is_write_mapped(mnew))
1745 		vm_object_set_writeable_dirty(object);
1746 	dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1747 	vm_page_xunbusy(mold);
1748 
1749 	return (dropped);
1750 }
1751 
1752 void
1753 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1754     vm_page_t mold)
1755 {
1756 
1757 	vm_page_assert_xbusied(mnew);
1758 
1759 	if (vm_page_replace_hold(mnew, object, pindex, mold))
1760 		vm_page_free(mold);
1761 }
1762 
1763 /*
1764  *	vm_page_rename:
1765  *
1766  *	Move the given memory entry from its
1767  *	current object to the specified target object/offset.
1768  *
1769  *	Note: swap associated with the page must be invalidated by the move.  We
1770  *	      have to do this for several reasons:  (1) we aren't freeing the
1771  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1772  *	      moving the page from object A to B, and will then later move
1773  *	      the backing store from A to B and we can't have a conflict.
1774  *
1775  *	Note: we *always* dirty the page.  It is necessary both for the
1776  *	      fact that we moved it, and because we may be invalidating
1777  *	      swap.
1778  *
1779  *	The objects must be locked.
1780  */
1781 int
1782 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1783 {
1784 	vm_page_t mpred;
1785 	vm_pindex_t opidx;
1786 
1787 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1788 
1789 	KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1790 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1791 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1792 	    ("vm_page_rename: pindex already renamed"));
1793 
1794 	/*
1795 	 * Create a custom version of vm_page_insert() which does not depend
1796 	 * by m_prev and can cheat on the implementation aspects of the
1797 	 * function.
1798 	 */
1799 	opidx = m->pindex;
1800 	m->pindex = new_pindex;
1801 	if (vm_radix_insert(&new_object->rtree, m)) {
1802 		m->pindex = opidx;
1803 		return (1);
1804 	}
1805 
1806 	/*
1807 	 * The operation cannot fail anymore.  The removal must happen before
1808 	 * the listq iterator is tainted.
1809 	 */
1810 	m->pindex = opidx;
1811 	vm_page_object_remove(m);
1812 
1813 	/* Return back to the new pindex to complete vm_page_insert(). */
1814 	m->pindex = new_pindex;
1815 	m->object = new_object;
1816 
1817 	vm_page_insert_radixdone(m, new_object, mpred);
1818 	vm_page_dirty(m);
1819 	return (0);
1820 }
1821 
1822 /*
1823  *	vm_page_alloc:
1824  *
1825  *	Allocate and return a page that is associated with the specified
1826  *	object and offset pair.  By default, this page is exclusive busied.
1827  *
1828  *	The caller must always specify an allocation class.
1829  *
1830  *	allocation classes:
1831  *	VM_ALLOC_NORMAL		normal process request
1832  *	VM_ALLOC_SYSTEM		system *really* needs a page
1833  *	VM_ALLOC_INTERRUPT	interrupt time request
1834  *
1835  *	optional allocation flags:
1836  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1837  *				intends to allocate
1838  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1839  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1840  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1841  *				should not be exclusive busy
1842  *	VM_ALLOC_SBUSY		shared busy the allocated page
1843  *	VM_ALLOC_WIRED		wire the allocated page
1844  *	VM_ALLOC_ZERO		prefer a zeroed page
1845  */
1846 vm_page_t
1847 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1848 {
1849 
1850 	return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1851 	    vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1852 }
1853 
1854 vm_page_t
1855 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1856     int req)
1857 {
1858 
1859 	return (vm_page_alloc_domain_after(object, pindex, domain, req,
1860 	    object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1861 	    NULL));
1862 }
1863 
1864 /*
1865  * Allocate a page in the specified object with the given page index.  To
1866  * optimize insertion of the page into the object, the caller must also specifiy
1867  * the resident page in the object with largest index smaller than the given
1868  * page index, or NULL if no such page exists.
1869  */
1870 vm_page_t
1871 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1872     int req, vm_page_t mpred)
1873 {
1874 	struct vm_domainset_iter di;
1875 	vm_page_t m;
1876 	int domain;
1877 
1878 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1879 	do {
1880 		m = vm_page_alloc_domain_after(object, pindex, domain, req,
1881 		    mpred);
1882 		if (m != NULL)
1883 			break;
1884 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
1885 
1886 	return (m);
1887 }
1888 
1889 /*
1890  * Returns true if the number of free pages exceeds the minimum
1891  * for the request class and false otherwise.
1892  */
1893 static int
1894 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
1895 {
1896 	u_int limit, old, new;
1897 
1898 	if (req_class == VM_ALLOC_INTERRUPT)
1899 		limit = 0;
1900 	else if (req_class == VM_ALLOC_SYSTEM)
1901 		limit = vmd->vmd_interrupt_free_min;
1902 	else
1903 		limit = vmd->vmd_free_reserved;
1904 
1905 	/*
1906 	 * Attempt to reserve the pages.  Fail if we're below the limit.
1907 	 */
1908 	limit += npages;
1909 	old = vmd->vmd_free_count;
1910 	do {
1911 		if (old < limit)
1912 			return (0);
1913 		new = old - npages;
1914 	} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1915 
1916 	/* Wake the page daemon if we've crossed the threshold. */
1917 	if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1918 		pagedaemon_wakeup(vmd->vmd_domain);
1919 
1920 	/* Only update bitsets on transitions. */
1921 	if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1922 	    (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1923 		vm_domain_set(vmd);
1924 
1925 	return (1);
1926 }
1927 
1928 int
1929 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1930 {
1931 	int req_class;
1932 
1933 	/*
1934 	 * The page daemon is allowed to dig deeper into the free page list.
1935 	 */
1936 	req_class = req & VM_ALLOC_CLASS_MASK;
1937 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1938 		req_class = VM_ALLOC_SYSTEM;
1939 	return (_vm_domain_allocate(vmd, req_class, npages));
1940 }
1941 
1942 vm_page_t
1943 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1944     int req, vm_page_t mpred)
1945 {
1946 	struct vm_domain *vmd;
1947 	vm_page_t m;
1948 	int flags, pool;
1949 
1950 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1951 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1952 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1953 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1954 	    ("inconsistent object(%p)/req(%x)", object, req));
1955 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1956 	    ("Can't sleep and retry object insertion."));
1957 	KASSERT(mpred == NULL || mpred->pindex < pindex,
1958 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
1959 	    (uintmax_t)pindex));
1960 	if (object != NULL)
1961 		VM_OBJECT_ASSERT_WLOCKED(object);
1962 
1963 	flags = 0;
1964 	m = NULL;
1965 	pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
1966 again:
1967 #if VM_NRESERVLEVEL > 0
1968 	/*
1969 	 * Can we allocate the page from a reservation?
1970 	 */
1971 	if (vm_object_reserv(object) &&
1972 	    (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
1973 	    NULL) {
1974 		domain = vm_phys_domain(m);
1975 		vmd = VM_DOMAIN(domain);
1976 		goto found;
1977 	}
1978 #endif
1979 	vmd = VM_DOMAIN(domain);
1980 	if (vmd->vmd_pgcache[pool].zone != NULL) {
1981 		m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT);
1982 		if (m != NULL) {
1983 			flags |= PG_PCPU_CACHE;
1984 			goto found;
1985 		}
1986 	}
1987 	if (vm_domain_allocate(vmd, req, 1)) {
1988 		/*
1989 		 * If not, allocate it from the free page queues.
1990 		 */
1991 		vm_domain_free_lock(vmd);
1992 		m = vm_phys_alloc_pages(domain, pool, 0);
1993 		vm_domain_free_unlock(vmd);
1994 		if (m == NULL) {
1995 			vm_domain_freecnt_inc(vmd, 1);
1996 #if VM_NRESERVLEVEL > 0
1997 			if (vm_reserv_reclaim_inactive(domain))
1998 				goto again;
1999 #endif
2000 		}
2001 	}
2002 	if (m == NULL) {
2003 		/*
2004 		 * Not allocatable, give up.
2005 		 */
2006 		if (vm_domain_alloc_fail(vmd, object, req))
2007 			goto again;
2008 		return (NULL);
2009 	}
2010 
2011 	/*
2012 	 * At this point we had better have found a good page.
2013 	 */
2014 found:
2015 	vm_page_dequeue(m);
2016 	vm_page_alloc_check(m);
2017 
2018 	/*
2019 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2020 	 */
2021 	if ((req & VM_ALLOC_ZERO) != 0)
2022 		flags |= (m->flags & PG_ZERO);
2023 	if ((req & VM_ALLOC_NODUMP) != 0)
2024 		flags |= PG_NODUMP;
2025 	m->flags = flags;
2026 	m->a.flags = 0;
2027 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2028 	    VPO_UNMANAGED : 0;
2029 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2030 		m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2031 	else if ((req & VM_ALLOC_SBUSY) != 0)
2032 		m->busy_lock = VPB_SHARERS_WORD(1);
2033 	else
2034 		m->busy_lock = VPB_UNBUSIED;
2035 	if (req & VM_ALLOC_WIRED) {
2036 		vm_wire_add(1);
2037 		m->ref_count = 1;
2038 	}
2039 	m->a.act_count = 0;
2040 
2041 	if (object != NULL) {
2042 		if (vm_page_insert_after(m, object, pindex, mpred)) {
2043 			if (req & VM_ALLOC_WIRED) {
2044 				vm_wire_sub(1);
2045 				m->ref_count = 0;
2046 			}
2047 			KASSERT(m->object == NULL, ("page %p has object", m));
2048 			m->oflags = VPO_UNMANAGED;
2049 			m->busy_lock = VPB_UNBUSIED;
2050 			/* Don't change PG_ZERO. */
2051 			vm_page_free_toq(m);
2052 			if (req & VM_ALLOC_WAITFAIL) {
2053 				VM_OBJECT_WUNLOCK(object);
2054 				vm_radix_wait();
2055 				VM_OBJECT_WLOCK(object);
2056 			}
2057 			return (NULL);
2058 		}
2059 
2060 		/* Ignore device objects; the pager sets "memattr" for them. */
2061 		if (object->memattr != VM_MEMATTR_DEFAULT &&
2062 		    (object->flags & OBJ_FICTITIOUS) == 0)
2063 			pmap_page_set_memattr(m, object->memattr);
2064 	} else
2065 		m->pindex = pindex;
2066 
2067 	return (m);
2068 }
2069 
2070 /*
2071  *	vm_page_alloc_contig:
2072  *
2073  *	Allocate a contiguous set of physical pages of the given size "npages"
2074  *	from the free lists.  All of the physical pages must be at or above
2075  *	the given physical address "low" and below the given physical address
2076  *	"high".  The given value "alignment" determines the alignment of the
2077  *	first physical page in the set.  If the given value "boundary" is
2078  *	non-zero, then the set of physical pages cannot cross any physical
2079  *	address boundary that is a multiple of that value.  Both "alignment"
2080  *	and "boundary" must be a power of two.
2081  *
2082  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2083  *	then the memory attribute setting for the physical pages is configured
2084  *	to the object's memory attribute setting.  Otherwise, the memory
2085  *	attribute setting for the physical pages is configured to "memattr",
2086  *	overriding the object's memory attribute setting.  However, if the
2087  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2088  *	memory attribute setting for the physical pages cannot be configured
2089  *	to VM_MEMATTR_DEFAULT.
2090  *
2091  *	The specified object may not contain fictitious pages.
2092  *
2093  *	The caller must always specify an allocation class.
2094  *
2095  *	allocation classes:
2096  *	VM_ALLOC_NORMAL		normal process request
2097  *	VM_ALLOC_SYSTEM		system *really* needs a page
2098  *	VM_ALLOC_INTERRUPT	interrupt time request
2099  *
2100  *	optional allocation flags:
2101  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
2102  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
2103  *	VM_ALLOC_NOOBJ		page is not associated with an object and
2104  *				should not be exclusive busy
2105  *	VM_ALLOC_SBUSY		shared busy the allocated page
2106  *	VM_ALLOC_WIRED		wire the allocated page
2107  *	VM_ALLOC_ZERO		prefer a zeroed page
2108  */
2109 vm_page_t
2110 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2111     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2112     vm_paddr_t boundary, vm_memattr_t memattr)
2113 {
2114 	struct vm_domainset_iter di;
2115 	vm_page_t m;
2116 	int domain;
2117 
2118 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2119 	do {
2120 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2121 		    npages, low, high, alignment, boundary, memattr);
2122 		if (m != NULL)
2123 			break;
2124 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
2125 
2126 	return (m);
2127 }
2128 
2129 vm_page_t
2130 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2131     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2132     vm_paddr_t boundary, vm_memattr_t memattr)
2133 {
2134 	struct vm_domain *vmd;
2135 	vm_page_t m, m_ret, mpred;
2136 	u_int busy_lock, flags, oflags;
2137 
2138 	mpred = NULL;	/* XXX: pacify gcc */
2139 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2140 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2141 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2142 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2143 	    ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2144 	    req));
2145 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2146 	    ("Can't sleep and retry object insertion."));
2147 	if (object != NULL) {
2148 		VM_OBJECT_ASSERT_WLOCKED(object);
2149 		KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2150 		    ("vm_page_alloc_contig: object %p has fictitious pages",
2151 		    object));
2152 	}
2153 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2154 
2155 	if (object != NULL) {
2156 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
2157 		KASSERT(mpred == NULL || mpred->pindex != pindex,
2158 		    ("vm_page_alloc_contig: pindex already allocated"));
2159 	}
2160 
2161 	/*
2162 	 * Can we allocate the pages without the number of free pages falling
2163 	 * below the lower bound for the allocation class?
2164 	 */
2165 	m_ret = NULL;
2166 again:
2167 #if VM_NRESERVLEVEL > 0
2168 	/*
2169 	 * Can we allocate the pages from a reservation?
2170 	 */
2171 	if (vm_object_reserv(object) &&
2172 	    (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2173 	    mpred, npages, low, high, alignment, boundary)) != NULL) {
2174 		domain = vm_phys_domain(m_ret);
2175 		vmd = VM_DOMAIN(domain);
2176 		goto found;
2177 	}
2178 #endif
2179 	vmd = VM_DOMAIN(domain);
2180 	if (vm_domain_allocate(vmd, req, npages)) {
2181 		/*
2182 		 * allocate them from the free page queues.
2183 		 */
2184 		vm_domain_free_lock(vmd);
2185 		m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2186 		    alignment, boundary);
2187 		vm_domain_free_unlock(vmd);
2188 		if (m_ret == NULL) {
2189 			vm_domain_freecnt_inc(vmd, npages);
2190 #if VM_NRESERVLEVEL > 0
2191 			if (vm_reserv_reclaim_contig(domain, npages, low,
2192 			    high, alignment, boundary))
2193 				goto again;
2194 #endif
2195 		}
2196 	}
2197 	if (m_ret == NULL) {
2198 		if (vm_domain_alloc_fail(vmd, object, req))
2199 			goto again;
2200 		return (NULL);
2201 	}
2202 #if VM_NRESERVLEVEL > 0
2203 found:
2204 #endif
2205 	for (m = m_ret; m < &m_ret[npages]; m++) {
2206 		vm_page_dequeue(m);
2207 		vm_page_alloc_check(m);
2208 	}
2209 
2210 	/*
2211 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2212 	 */
2213 	flags = 0;
2214 	if ((req & VM_ALLOC_ZERO) != 0)
2215 		flags = PG_ZERO;
2216 	if ((req & VM_ALLOC_NODUMP) != 0)
2217 		flags |= PG_NODUMP;
2218 	oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2219 	    VPO_UNMANAGED : 0;
2220 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2221 		busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2222 	else if ((req & VM_ALLOC_SBUSY) != 0)
2223 		busy_lock = VPB_SHARERS_WORD(1);
2224 	else
2225 		busy_lock = VPB_UNBUSIED;
2226 	if ((req & VM_ALLOC_WIRED) != 0)
2227 		vm_wire_add(npages);
2228 	if (object != NULL) {
2229 		if (object->memattr != VM_MEMATTR_DEFAULT &&
2230 		    memattr == VM_MEMATTR_DEFAULT)
2231 			memattr = object->memattr;
2232 	}
2233 	for (m = m_ret; m < &m_ret[npages]; m++) {
2234 		m->a.flags = 0;
2235 		m->flags = (m->flags | PG_NODUMP) & flags;
2236 		m->busy_lock = busy_lock;
2237 		if ((req & VM_ALLOC_WIRED) != 0)
2238 			m->ref_count = 1;
2239 		m->a.act_count = 0;
2240 		m->oflags = oflags;
2241 		if (object != NULL) {
2242 			if (vm_page_insert_after(m, object, pindex, mpred)) {
2243 				if ((req & VM_ALLOC_WIRED) != 0)
2244 					vm_wire_sub(npages);
2245 				KASSERT(m->object == NULL,
2246 				    ("page %p has object", m));
2247 				mpred = m;
2248 				for (m = m_ret; m < &m_ret[npages]; m++) {
2249 					if (m <= mpred &&
2250 					    (req & VM_ALLOC_WIRED) != 0)
2251 						m->ref_count = 0;
2252 					m->oflags = VPO_UNMANAGED;
2253 					m->busy_lock = VPB_UNBUSIED;
2254 					/* Don't change PG_ZERO. */
2255 					vm_page_free_toq(m);
2256 				}
2257 				if (req & VM_ALLOC_WAITFAIL) {
2258 					VM_OBJECT_WUNLOCK(object);
2259 					vm_radix_wait();
2260 					VM_OBJECT_WLOCK(object);
2261 				}
2262 				return (NULL);
2263 			}
2264 			mpred = m;
2265 		} else
2266 			m->pindex = pindex;
2267 		if (memattr != VM_MEMATTR_DEFAULT)
2268 			pmap_page_set_memattr(m, memattr);
2269 		pindex++;
2270 	}
2271 	return (m_ret);
2272 }
2273 
2274 /*
2275  * Check a page that has been freshly dequeued from a freelist.
2276  */
2277 static void
2278 vm_page_alloc_check(vm_page_t m)
2279 {
2280 
2281 	KASSERT(m->object == NULL, ("page %p has object", m));
2282 	KASSERT(m->a.queue == PQ_NONE &&
2283 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2284 	    ("page %p has unexpected queue %d, flags %#x",
2285 	    m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2286 	KASSERT(m->ref_count == 0, ("page %p has references", m));
2287 	KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2288 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2289 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2290 	    ("page %p has unexpected memattr %d",
2291 	    m, pmap_page_get_memattr(m)));
2292 	KASSERT(m->valid == 0, ("free page %p is valid", m));
2293 }
2294 
2295 /*
2296  * 	vm_page_alloc_freelist:
2297  *
2298  *	Allocate a physical page from the specified free page list.
2299  *
2300  *	The caller must always specify an allocation class.
2301  *
2302  *	allocation classes:
2303  *	VM_ALLOC_NORMAL		normal process request
2304  *	VM_ALLOC_SYSTEM		system *really* needs a page
2305  *	VM_ALLOC_INTERRUPT	interrupt time request
2306  *
2307  *	optional allocation flags:
2308  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2309  *				intends to allocate
2310  *	VM_ALLOC_WIRED		wire the allocated page
2311  *	VM_ALLOC_ZERO		prefer a zeroed page
2312  */
2313 vm_page_t
2314 vm_page_alloc_freelist(int freelist, int req)
2315 {
2316 	struct vm_domainset_iter di;
2317 	vm_page_t m;
2318 	int domain;
2319 
2320 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2321 	do {
2322 		m = vm_page_alloc_freelist_domain(domain, freelist, req);
2323 		if (m != NULL)
2324 			break;
2325 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2326 
2327 	return (m);
2328 }
2329 
2330 vm_page_t
2331 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2332 {
2333 	struct vm_domain *vmd;
2334 	vm_page_t m;
2335 	u_int flags;
2336 
2337 	m = NULL;
2338 	vmd = VM_DOMAIN(domain);
2339 again:
2340 	if (vm_domain_allocate(vmd, req, 1)) {
2341 		vm_domain_free_lock(vmd);
2342 		m = vm_phys_alloc_freelist_pages(domain, freelist,
2343 		    VM_FREEPOOL_DIRECT, 0);
2344 		vm_domain_free_unlock(vmd);
2345 		if (m == NULL)
2346 			vm_domain_freecnt_inc(vmd, 1);
2347 	}
2348 	if (m == NULL) {
2349 		if (vm_domain_alloc_fail(vmd, NULL, req))
2350 			goto again;
2351 		return (NULL);
2352 	}
2353 	vm_page_dequeue(m);
2354 	vm_page_alloc_check(m);
2355 
2356 	/*
2357 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2358 	 */
2359 	m->a.flags = 0;
2360 	flags = 0;
2361 	if ((req & VM_ALLOC_ZERO) != 0)
2362 		flags = PG_ZERO;
2363 	m->flags &= flags;
2364 	if ((req & VM_ALLOC_WIRED) != 0) {
2365 		vm_wire_add(1);
2366 		m->ref_count = 1;
2367 	}
2368 	/* Unmanaged pages don't use "act_count". */
2369 	m->oflags = VPO_UNMANAGED;
2370 	return (m);
2371 }
2372 
2373 static int
2374 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2375 {
2376 	struct vm_domain *vmd;
2377 	struct vm_pgcache *pgcache;
2378 	int i;
2379 
2380 	pgcache = arg;
2381 	vmd = VM_DOMAIN(pgcache->domain);
2382 
2383 	/*
2384 	 * The page daemon should avoid creating extra memory pressure since its
2385 	 * main purpose is to replenish the store of free pages.
2386 	 */
2387 	if (vmd->vmd_severeset || curproc == pageproc ||
2388 	    !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2389 		return (0);
2390 	domain = vmd->vmd_domain;
2391 	vm_domain_free_lock(vmd);
2392 	i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2393 	    (vm_page_t *)store);
2394 	vm_domain_free_unlock(vmd);
2395 	if (cnt != i)
2396 		vm_domain_freecnt_inc(vmd, cnt - i);
2397 
2398 	return (i);
2399 }
2400 
2401 static void
2402 vm_page_zone_release(void *arg, void **store, int cnt)
2403 {
2404 	struct vm_domain *vmd;
2405 	struct vm_pgcache *pgcache;
2406 	vm_page_t m;
2407 	int i;
2408 
2409 	pgcache = arg;
2410 	vmd = VM_DOMAIN(pgcache->domain);
2411 	vm_domain_free_lock(vmd);
2412 	for (i = 0; i < cnt; i++) {
2413 		m = (vm_page_t)store[i];
2414 		vm_phys_free_pages(m, 0);
2415 	}
2416 	vm_domain_free_unlock(vmd);
2417 	vm_domain_freecnt_inc(vmd, cnt);
2418 }
2419 
2420 #define	VPSC_ANY	0	/* No restrictions. */
2421 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2422 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2423 
2424 /*
2425  *	vm_page_scan_contig:
2426  *
2427  *	Scan vm_page_array[] between the specified entries "m_start" and
2428  *	"m_end" for a run of contiguous physical pages that satisfy the
2429  *	specified conditions, and return the lowest page in the run.  The
2430  *	specified "alignment" determines the alignment of the lowest physical
2431  *	page in the run.  If the specified "boundary" is non-zero, then the
2432  *	run of physical pages cannot span a physical address that is a
2433  *	multiple of "boundary".
2434  *
2435  *	"m_end" is never dereferenced, so it need not point to a vm_page
2436  *	structure within vm_page_array[].
2437  *
2438  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2439  *	span a hole (or discontiguity) in the physical address space.  Both
2440  *	"alignment" and "boundary" must be a power of two.
2441  */
2442 vm_page_t
2443 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2444     u_long alignment, vm_paddr_t boundary, int options)
2445 {
2446 	vm_object_t object;
2447 	vm_paddr_t pa;
2448 	vm_page_t m, m_run;
2449 #if VM_NRESERVLEVEL > 0
2450 	int level;
2451 #endif
2452 	int m_inc, order, run_ext, run_len;
2453 
2454 	KASSERT(npages > 0, ("npages is 0"));
2455 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2456 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2457 	m_run = NULL;
2458 	run_len = 0;
2459 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2460 		KASSERT((m->flags & PG_MARKER) == 0,
2461 		    ("page %p is PG_MARKER", m));
2462 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2463 		    ("fictitious page %p has invalid ref count", m));
2464 
2465 		/*
2466 		 * If the current page would be the start of a run, check its
2467 		 * physical address against the end, alignment, and boundary
2468 		 * conditions.  If it doesn't satisfy these conditions, either
2469 		 * terminate the scan or advance to the next page that
2470 		 * satisfies the failed condition.
2471 		 */
2472 		if (run_len == 0) {
2473 			KASSERT(m_run == NULL, ("m_run != NULL"));
2474 			if (m + npages > m_end)
2475 				break;
2476 			pa = VM_PAGE_TO_PHYS(m);
2477 			if ((pa & (alignment - 1)) != 0) {
2478 				m_inc = atop(roundup2(pa, alignment) - pa);
2479 				continue;
2480 			}
2481 			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2482 			    boundary) != 0) {
2483 				m_inc = atop(roundup2(pa, boundary) - pa);
2484 				continue;
2485 			}
2486 		} else
2487 			KASSERT(m_run != NULL, ("m_run == NULL"));
2488 
2489 retry:
2490 		m_inc = 1;
2491 		if (vm_page_wired(m))
2492 			run_ext = 0;
2493 #if VM_NRESERVLEVEL > 0
2494 		else if ((level = vm_reserv_level(m)) >= 0 &&
2495 		    (options & VPSC_NORESERV) != 0) {
2496 			run_ext = 0;
2497 			/* Advance to the end of the reservation. */
2498 			pa = VM_PAGE_TO_PHYS(m);
2499 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2500 			    pa);
2501 		}
2502 #endif
2503 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2504 			/*
2505 			 * The page is considered eligible for relocation if
2506 			 * and only if it could be laundered or reclaimed by
2507 			 * the page daemon.
2508 			 */
2509 			VM_OBJECT_RLOCK(object);
2510 			if (object != m->object) {
2511 				VM_OBJECT_RUNLOCK(object);
2512 				goto retry;
2513 			}
2514 			/* Don't care: PG_NODUMP, PG_ZERO. */
2515 			if (object->type != OBJT_DEFAULT &&
2516 			    object->type != OBJT_SWAP &&
2517 			    object->type != OBJT_VNODE) {
2518 				run_ext = 0;
2519 #if VM_NRESERVLEVEL > 0
2520 			} else if ((options & VPSC_NOSUPER) != 0 &&
2521 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2522 				run_ext = 0;
2523 				/* Advance to the end of the superpage. */
2524 				pa = VM_PAGE_TO_PHYS(m);
2525 				m_inc = atop(roundup2(pa + 1,
2526 				    vm_reserv_size(level)) - pa);
2527 #endif
2528 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2529 			    vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2530 				/*
2531 				 * The page is allocated but eligible for
2532 				 * relocation.  Extend the current run by one
2533 				 * page.
2534 				 */
2535 				KASSERT(pmap_page_get_memattr(m) ==
2536 				    VM_MEMATTR_DEFAULT,
2537 				    ("page %p has an unexpected memattr", m));
2538 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2539 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2540 				    ("page %p has unexpected oflags", m));
2541 				/* Don't care: PGA_NOSYNC. */
2542 				run_ext = 1;
2543 			} else
2544 				run_ext = 0;
2545 			VM_OBJECT_RUNLOCK(object);
2546 #if VM_NRESERVLEVEL > 0
2547 		} else if (level >= 0) {
2548 			/*
2549 			 * The page is reserved but not yet allocated.  In
2550 			 * other words, it is still free.  Extend the current
2551 			 * run by one page.
2552 			 */
2553 			run_ext = 1;
2554 #endif
2555 		} else if ((order = m->order) < VM_NFREEORDER) {
2556 			/*
2557 			 * The page is enqueued in the physical memory
2558 			 * allocator's free page queues.  Moreover, it is the
2559 			 * first page in a power-of-two-sized run of
2560 			 * contiguous free pages.  Add these pages to the end
2561 			 * of the current run, and jump ahead.
2562 			 */
2563 			run_ext = 1 << order;
2564 			m_inc = 1 << order;
2565 		} else {
2566 			/*
2567 			 * Skip the page for one of the following reasons: (1)
2568 			 * It is enqueued in the physical memory allocator's
2569 			 * free page queues.  However, it is not the first
2570 			 * page in a run of contiguous free pages.  (This case
2571 			 * rarely occurs because the scan is performed in
2572 			 * ascending order.) (2) It is not reserved, and it is
2573 			 * transitioning from free to allocated.  (Conversely,
2574 			 * the transition from allocated to free for managed
2575 			 * pages is blocked by the page lock.) (3) It is
2576 			 * allocated but not contained by an object and not
2577 			 * wired, e.g., allocated by Xen's balloon driver.
2578 			 */
2579 			run_ext = 0;
2580 		}
2581 
2582 		/*
2583 		 * Extend or reset the current run of pages.
2584 		 */
2585 		if (run_ext > 0) {
2586 			if (run_len == 0)
2587 				m_run = m;
2588 			run_len += run_ext;
2589 		} else {
2590 			if (run_len > 0) {
2591 				m_run = NULL;
2592 				run_len = 0;
2593 			}
2594 		}
2595 	}
2596 	if (run_len >= npages)
2597 		return (m_run);
2598 	return (NULL);
2599 }
2600 
2601 /*
2602  *	vm_page_reclaim_run:
2603  *
2604  *	Try to relocate each of the allocated virtual pages within the
2605  *	specified run of physical pages to a new physical address.  Free the
2606  *	physical pages underlying the relocated virtual pages.  A virtual page
2607  *	is relocatable if and only if it could be laundered or reclaimed by
2608  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2609  *	physical address above "high".
2610  *
2611  *	Returns 0 if every physical page within the run was already free or
2612  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2613  *	value indicating why the last attempt to relocate a virtual page was
2614  *	unsuccessful.
2615  *
2616  *	"req_class" must be an allocation class.
2617  */
2618 static int
2619 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2620     vm_paddr_t high)
2621 {
2622 	struct vm_domain *vmd;
2623 	struct spglist free;
2624 	vm_object_t object;
2625 	vm_paddr_t pa;
2626 	vm_page_t m, m_end, m_new;
2627 	int error, order, req;
2628 
2629 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2630 	    ("req_class is not an allocation class"));
2631 	SLIST_INIT(&free);
2632 	error = 0;
2633 	m = m_run;
2634 	m_end = m_run + npages;
2635 	for (; error == 0 && m < m_end; m++) {
2636 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2637 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2638 
2639 		/*
2640 		 * Racily check for wirings.  Races are handled once the object
2641 		 * lock is held and the page is unmapped.
2642 		 */
2643 		if (vm_page_wired(m))
2644 			error = EBUSY;
2645 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2646 			/*
2647 			 * The page is relocated if and only if it could be
2648 			 * laundered or reclaimed by the page daemon.
2649 			 */
2650 			VM_OBJECT_WLOCK(object);
2651 			/* Don't care: PG_NODUMP, PG_ZERO. */
2652 			if (m->object != object ||
2653 			    (object->type != OBJT_DEFAULT &&
2654 			    object->type != OBJT_SWAP &&
2655 			    object->type != OBJT_VNODE))
2656 				error = EINVAL;
2657 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2658 				error = EINVAL;
2659 			else if (vm_page_queue(m) != PQ_NONE &&
2660 			    vm_page_tryxbusy(m) != 0) {
2661 				if (vm_page_wired(m)) {
2662 					vm_page_xunbusy(m);
2663 					error = EBUSY;
2664 					goto unlock;
2665 				}
2666 				KASSERT(pmap_page_get_memattr(m) ==
2667 				    VM_MEMATTR_DEFAULT,
2668 				    ("page %p has an unexpected memattr", m));
2669 				KASSERT(m->oflags == 0,
2670 				    ("page %p has unexpected oflags", m));
2671 				/* Don't care: PGA_NOSYNC. */
2672 				if (!vm_page_none_valid(m)) {
2673 					/*
2674 					 * First, try to allocate a new page
2675 					 * that is above "high".  Failing
2676 					 * that, try to allocate a new page
2677 					 * that is below "m_run".  Allocate
2678 					 * the new page between the end of
2679 					 * "m_run" and "high" only as a last
2680 					 * resort.
2681 					 */
2682 					req = req_class | VM_ALLOC_NOOBJ;
2683 					if ((m->flags & PG_NODUMP) != 0)
2684 						req |= VM_ALLOC_NODUMP;
2685 					if (trunc_page(high) !=
2686 					    ~(vm_paddr_t)PAGE_MASK) {
2687 						m_new = vm_page_alloc_contig(
2688 						    NULL, 0, req, 1,
2689 						    round_page(high),
2690 						    ~(vm_paddr_t)0,
2691 						    PAGE_SIZE, 0,
2692 						    VM_MEMATTR_DEFAULT);
2693 					} else
2694 						m_new = NULL;
2695 					if (m_new == NULL) {
2696 						pa = VM_PAGE_TO_PHYS(m_run);
2697 						m_new = vm_page_alloc_contig(
2698 						    NULL, 0, req, 1,
2699 						    0, pa - 1, PAGE_SIZE, 0,
2700 						    VM_MEMATTR_DEFAULT);
2701 					}
2702 					if (m_new == NULL) {
2703 						pa += ptoa(npages);
2704 						m_new = vm_page_alloc_contig(
2705 						    NULL, 0, req, 1,
2706 						    pa, high, PAGE_SIZE, 0,
2707 						    VM_MEMATTR_DEFAULT);
2708 					}
2709 					if (m_new == NULL) {
2710 						vm_page_xunbusy(m);
2711 						error = ENOMEM;
2712 						goto unlock;
2713 					}
2714 
2715 					/*
2716 					 * Unmap the page and check for new
2717 					 * wirings that may have been acquired
2718 					 * through a pmap lookup.
2719 					 */
2720 					if (object->ref_count != 0 &&
2721 					    !vm_page_try_remove_all(m)) {
2722 						vm_page_xunbusy(m);
2723 						vm_page_free(m_new);
2724 						error = EBUSY;
2725 						goto unlock;
2726 					}
2727 
2728 					/*
2729 					 * Replace "m" with the new page.  For
2730 					 * vm_page_replace(), "m" must be busy
2731 					 * and dequeued.  Finally, change "m"
2732 					 * as if vm_page_free() was called.
2733 					 */
2734 					m_new->a.flags = m->a.flags &
2735 					    ~PGA_QUEUE_STATE_MASK;
2736 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2737 					    ("page %p is managed", m_new));
2738 					m_new->oflags = 0;
2739 					pmap_copy_page(m, m_new);
2740 					m_new->valid = m->valid;
2741 					m_new->dirty = m->dirty;
2742 					m->flags &= ~PG_ZERO;
2743 					vm_page_dequeue(m);
2744 					if (vm_page_replace_hold(m_new, object,
2745 					    m->pindex, m) &&
2746 					    vm_page_free_prep(m))
2747 						SLIST_INSERT_HEAD(&free, m,
2748 						    plinks.s.ss);
2749 
2750 					/*
2751 					 * The new page must be deactivated
2752 					 * before the object is unlocked.
2753 					 */
2754 					vm_page_deactivate(m_new);
2755 				} else {
2756 					m->flags &= ~PG_ZERO;
2757 					vm_page_dequeue(m);
2758 					if (vm_page_free_prep(m))
2759 						SLIST_INSERT_HEAD(&free, m,
2760 						    plinks.s.ss);
2761 					KASSERT(m->dirty == 0,
2762 					    ("page %p is dirty", m));
2763 				}
2764 			} else
2765 				error = EBUSY;
2766 unlock:
2767 			VM_OBJECT_WUNLOCK(object);
2768 		} else {
2769 			MPASS(vm_phys_domain(m) == domain);
2770 			vmd = VM_DOMAIN(domain);
2771 			vm_domain_free_lock(vmd);
2772 			order = m->order;
2773 			if (order < VM_NFREEORDER) {
2774 				/*
2775 				 * The page is enqueued in the physical memory
2776 				 * allocator's free page queues.  Moreover, it
2777 				 * is the first page in a power-of-two-sized
2778 				 * run of contiguous free pages.  Jump ahead
2779 				 * to the last page within that run, and
2780 				 * continue from there.
2781 				 */
2782 				m += (1 << order) - 1;
2783 			}
2784 #if VM_NRESERVLEVEL > 0
2785 			else if (vm_reserv_is_page_free(m))
2786 				order = 0;
2787 #endif
2788 			vm_domain_free_unlock(vmd);
2789 			if (order == VM_NFREEORDER)
2790 				error = EINVAL;
2791 		}
2792 	}
2793 	if ((m = SLIST_FIRST(&free)) != NULL) {
2794 		int cnt;
2795 
2796 		vmd = VM_DOMAIN(domain);
2797 		cnt = 0;
2798 		vm_domain_free_lock(vmd);
2799 		do {
2800 			MPASS(vm_phys_domain(m) == domain);
2801 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2802 			vm_phys_free_pages(m, 0);
2803 			cnt++;
2804 		} while ((m = SLIST_FIRST(&free)) != NULL);
2805 		vm_domain_free_unlock(vmd);
2806 		vm_domain_freecnt_inc(vmd, cnt);
2807 	}
2808 	return (error);
2809 }
2810 
2811 #define	NRUNS	16
2812 
2813 CTASSERT(powerof2(NRUNS));
2814 
2815 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2816 
2817 #define	MIN_RECLAIM	8
2818 
2819 /*
2820  *	vm_page_reclaim_contig:
2821  *
2822  *	Reclaim allocated, contiguous physical memory satisfying the specified
2823  *	conditions by relocating the virtual pages using that physical memory.
2824  *	Returns true if reclamation is successful and false otherwise.  Since
2825  *	relocation requires the allocation of physical pages, reclamation may
2826  *	fail due to a shortage of free pages.  When reclamation fails, callers
2827  *	are expected to perform vm_wait() before retrying a failed allocation
2828  *	operation, e.g., vm_page_alloc_contig().
2829  *
2830  *	The caller must always specify an allocation class through "req".
2831  *
2832  *	allocation classes:
2833  *	VM_ALLOC_NORMAL		normal process request
2834  *	VM_ALLOC_SYSTEM		system *really* needs a page
2835  *	VM_ALLOC_INTERRUPT	interrupt time request
2836  *
2837  *	The optional allocation flags are ignored.
2838  *
2839  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2840  *	must be a power of two.
2841  */
2842 bool
2843 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2844     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2845 {
2846 	struct vm_domain *vmd;
2847 	vm_paddr_t curr_low;
2848 	vm_page_t m_run, m_runs[NRUNS];
2849 	u_long count, reclaimed;
2850 	int error, i, options, req_class;
2851 
2852 	KASSERT(npages > 0, ("npages is 0"));
2853 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2854 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2855 	req_class = req & VM_ALLOC_CLASS_MASK;
2856 
2857 	/*
2858 	 * The page daemon is allowed to dig deeper into the free page list.
2859 	 */
2860 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2861 		req_class = VM_ALLOC_SYSTEM;
2862 
2863 	/*
2864 	 * Return if the number of free pages cannot satisfy the requested
2865 	 * allocation.
2866 	 */
2867 	vmd = VM_DOMAIN(domain);
2868 	count = vmd->vmd_free_count;
2869 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
2870 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2871 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2872 		return (false);
2873 
2874 	/*
2875 	 * Scan up to three times, relaxing the restrictions ("options") on
2876 	 * the reclamation of reservations and superpages each time.
2877 	 */
2878 	for (options = VPSC_NORESERV;;) {
2879 		/*
2880 		 * Find the highest runs that satisfy the given constraints
2881 		 * and restrictions, and record them in "m_runs".
2882 		 */
2883 		curr_low = low;
2884 		count = 0;
2885 		for (;;) {
2886 			m_run = vm_phys_scan_contig(domain, npages, curr_low,
2887 			    high, alignment, boundary, options);
2888 			if (m_run == NULL)
2889 				break;
2890 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2891 			m_runs[RUN_INDEX(count)] = m_run;
2892 			count++;
2893 		}
2894 
2895 		/*
2896 		 * Reclaim the highest runs in LIFO (descending) order until
2897 		 * the number of reclaimed pages, "reclaimed", is at least
2898 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2899 		 * reclamation is idempotent, and runs will (likely) recur
2900 		 * from one scan to the next as restrictions are relaxed.
2901 		 */
2902 		reclaimed = 0;
2903 		for (i = 0; count > 0 && i < NRUNS; i++) {
2904 			count--;
2905 			m_run = m_runs[RUN_INDEX(count)];
2906 			error = vm_page_reclaim_run(req_class, domain, npages,
2907 			    m_run, high);
2908 			if (error == 0) {
2909 				reclaimed += npages;
2910 				if (reclaimed >= MIN_RECLAIM)
2911 					return (true);
2912 			}
2913 		}
2914 
2915 		/*
2916 		 * Either relax the restrictions on the next scan or return if
2917 		 * the last scan had no restrictions.
2918 		 */
2919 		if (options == VPSC_NORESERV)
2920 			options = VPSC_NOSUPER;
2921 		else if (options == VPSC_NOSUPER)
2922 			options = VPSC_ANY;
2923 		else if (options == VPSC_ANY)
2924 			return (reclaimed != 0);
2925 	}
2926 }
2927 
2928 bool
2929 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2930     u_long alignment, vm_paddr_t boundary)
2931 {
2932 	struct vm_domainset_iter di;
2933 	int domain;
2934 	bool ret;
2935 
2936 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2937 	do {
2938 		ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
2939 		    high, alignment, boundary);
2940 		if (ret)
2941 			break;
2942 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2943 
2944 	return (ret);
2945 }
2946 
2947 /*
2948  * Set the domain in the appropriate page level domainset.
2949  */
2950 void
2951 vm_domain_set(struct vm_domain *vmd)
2952 {
2953 
2954 	mtx_lock(&vm_domainset_lock);
2955 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
2956 		vmd->vmd_minset = 1;
2957 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
2958 	}
2959 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
2960 		vmd->vmd_severeset = 1;
2961 		DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
2962 	}
2963 	mtx_unlock(&vm_domainset_lock);
2964 }
2965 
2966 /*
2967  * Clear the domain from the appropriate page level domainset.
2968  */
2969 void
2970 vm_domain_clear(struct vm_domain *vmd)
2971 {
2972 
2973 	mtx_lock(&vm_domainset_lock);
2974 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
2975 		vmd->vmd_minset = 0;
2976 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
2977 		if (vm_min_waiters != 0) {
2978 			vm_min_waiters = 0;
2979 			wakeup(&vm_min_domains);
2980 		}
2981 	}
2982 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
2983 		vmd->vmd_severeset = 0;
2984 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
2985 		if (vm_severe_waiters != 0) {
2986 			vm_severe_waiters = 0;
2987 			wakeup(&vm_severe_domains);
2988 		}
2989 	}
2990 
2991 	/*
2992 	 * If pageout daemon needs pages, then tell it that there are
2993 	 * some free.
2994 	 */
2995 	if (vmd->vmd_pageout_pages_needed &&
2996 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
2997 		wakeup(&vmd->vmd_pageout_pages_needed);
2998 		vmd->vmd_pageout_pages_needed = 0;
2999 	}
3000 
3001 	/* See comments in vm_wait_doms(). */
3002 	if (vm_pageproc_waiters) {
3003 		vm_pageproc_waiters = 0;
3004 		wakeup(&vm_pageproc_waiters);
3005 	}
3006 	mtx_unlock(&vm_domainset_lock);
3007 }
3008 
3009 /*
3010  * Wait for free pages to exceed the min threshold globally.
3011  */
3012 void
3013 vm_wait_min(void)
3014 {
3015 
3016 	mtx_lock(&vm_domainset_lock);
3017 	while (vm_page_count_min()) {
3018 		vm_min_waiters++;
3019 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3020 	}
3021 	mtx_unlock(&vm_domainset_lock);
3022 }
3023 
3024 /*
3025  * Wait for free pages to exceed the severe threshold globally.
3026  */
3027 void
3028 vm_wait_severe(void)
3029 {
3030 
3031 	mtx_lock(&vm_domainset_lock);
3032 	while (vm_page_count_severe()) {
3033 		vm_severe_waiters++;
3034 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3035 		    "vmwait", 0);
3036 	}
3037 	mtx_unlock(&vm_domainset_lock);
3038 }
3039 
3040 u_int
3041 vm_wait_count(void)
3042 {
3043 
3044 	return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3045 }
3046 
3047 void
3048 vm_wait_doms(const domainset_t *wdoms)
3049 {
3050 
3051 	/*
3052 	 * We use racey wakeup synchronization to avoid expensive global
3053 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
3054 	 * To handle this, we only sleep for one tick in this instance.  It
3055 	 * is expected that most allocations for the pageproc will come from
3056 	 * kmem or vm_page_grab* which will use the more specific and
3057 	 * race-free vm_wait_domain().
3058 	 */
3059 	if (curproc == pageproc) {
3060 		mtx_lock(&vm_domainset_lock);
3061 		vm_pageproc_waiters++;
3062 		msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
3063 		    "pageprocwait", 1);
3064 	} else {
3065 		/*
3066 		 * XXX Ideally we would wait only until the allocation could
3067 		 * be satisfied.  This condition can cause new allocators to
3068 		 * consume all freed pages while old allocators wait.
3069 		 */
3070 		mtx_lock(&vm_domainset_lock);
3071 		if (vm_page_count_min_set(wdoms)) {
3072 			vm_min_waiters++;
3073 			msleep(&vm_min_domains, &vm_domainset_lock,
3074 			    PVM | PDROP, "vmwait", 0);
3075 		} else
3076 			mtx_unlock(&vm_domainset_lock);
3077 	}
3078 }
3079 
3080 /*
3081  *	vm_wait_domain:
3082  *
3083  *	Sleep until free pages are available for allocation.
3084  *	- Called in various places after failed memory allocations.
3085  */
3086 void
3087 vm_wait_domain(int domain)
3088 {
3089 	struct vm_domain *vmd;
3090 	domainset_t wdom;
3091 
3092 	vmd = VM_DOMAIN(domain);
3093 	vm_domain_free_assert_unlocked(vmd);
3094 
3095 	if (curproc == pageproc) {
3096 		mtx_lock(&vm_domainset_lock);
3097 		if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3098 			vmd->vmd_pageout_pages_needed = 1;
3099 			msleep(&vmd->vmd_pageout_pages_needed,
3100 			    &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3101 		} else
3102 			mtx_unlock(&vm_domainset_lock);
3103 	} else {
3104 		if (pageproc == NULL)
3105 			panic("vm_wait in early boot");
3106 		DOMAINSET_ZERO(&wdom);
3107 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
3108 		vm_wait_doms(&wdom);
3109 	}
3110 }
3111 
3112 /*
3113  *	vm_wait:
3114  *
3115  *	Sleep until free pages are available for allocation in the
3116  *	affinity domains of the obj.  If obj is NULL, the domain set
3117  *	for the calling thread is used.
3118  *	Called in various places after failed memory allocations.
3119  */
3120 void
3121 vm_wait(vm_object_t obj)
3122 {
3123 	struct domainset *d;
3124 
3125 	d = NULL;
3126 
3127 	/*
3128 	 * Carefully fetch pointers only once: the struct domainset
3129 	 * itself is ummutable but the pointer might change.
3130 	 */
3131 	if (obj != NULL)
3132 		d = obj->domain.dr_policy;
3133 	if (d == NULL)
3134 		d = curthread->td_domain.dr_policy;
3135 
3136 	vm_wait_doms(&d->ds_mask);
3137 }
3138 
3139 /*
3140  *	vm_domain_alloc_fail:
3141  *
3142  *	Called when a page allocation function fails.  Informs the
3143  *	pagedaemon and performs the requested wait.  Requires the
3144  *	domain_free and object lock on entry.  Returns with the
3145  *	object lock held and free lock released.  Returns an error when
3146  *	retry is necessary.
3147  *
3148  */
3149 static int
3150 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3151 {
3152 
3153 	vm_domain_free_assert_unlocked(vmd);
3154 
3155 	atomic_add_int(&vmd->vmd_pageout_deficit,
3156 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3157 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3158 		if (object != NULL)
3159 			VM_OBJECT_WUNLOCK(object);
3160 		vm_wait_domain(vmd->vmd_domain);
3161 		if (object != NULL)
3162 			VM_OBJECT_WLOCK(object);
3163 		if (req & VM_ALLOC_WAITOK)
3164 			return (EAGAIN);
3165 	}
3166 
3167 	return (0);
3168 }
3169 
3170 /*
3171  *	vm_waitpfault:
3172  *
3173  *	Sleep until free pages are available for allocation.
3174  *	- Called only in vm_fault so that processes page faulting
3175  *	  can be easily tracked.
3176  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3177  *	  processes will be able to grab memory first.  Do not change
3178  *	  this balance without careful testing first.
3179  */
3180 void
3181 vm_waitpfault(struct domainset *dset, int timo)
3182 {
3183 
3184 	/*
3185 	 * XXX Ideally we would wait only until the allocation could
3186 	 * be satisfied.  This condition can cause new allocators to
3187 	 * consume all freed pages while old allocators wait.
3188 	 */
3189 	mtx_lock(&vm_domainset_lock);
3190 	if (vm_page_count_min_set(&dset->ds_mask)) {
3191 		vm_min_waiters++;
3192 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3193 		    "pfault", timo);
3194 	} else
3195 		mtx_unlock(&vm_domainset_lock);
3196 }
3197 
3198 static struct vm_pagequeue *
3199 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3200 {
3201 
3202 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3203 }
3204 
3205 #ifdef INVARIANTS
3206 static struct vm_pagequeue *
3207 vm_page_pagequeue(vm_page_t m)
3208 {
3209 
3210 	return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3211 }
3212 #endif
3213 
3214 static __always_inline bool
3215 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3216 {
3217 	vm_page_astate_t tmp;
3218 
3219 	tmp = *old;
3220 	do {
3221 		if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3222 			return (true);
3223 		counter_u64_add(pqstate_commit_retries, 1);
3224 	} while (old->_bits == tmp._bits);
3225 
3226 	return (false);
3227 }
3228 
3229 /*
3230  * Do the work of committing a queue state update that moves the page out of
3231  * its current queue.
3232  */
3233 static bool
3234 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3235     vm_page_astate_t *old, vm_page_astate_t new)
3236 {
3237 	vm_page_t next;
3238 
3239 	vm_pagequeue_assert_locked(pq);
3240 	KASSERT(vm_page_pagequeue(m) == pq,
3241 	    ("%s: queue %p does not match page %p", __func__, pq, m));
3242 	KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3243 	    ("%s: invalid queue indices %d %d",
3244 	    __func__, old->queue, new.queue));
3245 
3246 	/*
3247 	 * Once the queue index of the page changes there is nothing
3248 	 * synchronizing with further updates to the page's physical
3249 	 * queue state.  Therefore we must speculatively remove the page
3250 	 * from the queue now and be prepared to roll back if the queue
3251 	 * state update fails.  If the page is not physically enqueued then
3252 	 * we just update its queue index.
3253 	 */
3254 	if ((old->flags & PGA_ENQUEUED) != 0) {
3255 		new.flags &= ~PGA_ENQUEUED;
3256 		next = TAILQ_NEXT(m, plinks.q);
3257 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3258 		vm_pagequeue_cnt_dec(pq);
3259 		if (!vm_page_pqstate_fcmpset(m, old, new)) {
3260 			if (next == NULL)
3261 				TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3262 			else
3263 				TAILQ_INSERT_BEFORE(next, m, plinks.q);
3264 			vm_pagequeue_cnt_inc(pq);
3265 			return (false);
3266 		} else {
3267 			return (true);
3268 		}
3269 	} else {
3270 		return (vm_page_pqstate_fcmpset(m, old, new));
3271 	}
3272 }
3273 
3274 static bool
3275 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3276     vm_page_astate_t new)
3277 {
3278 	struct vm_pagequeue *pq;
3279 	vm_page_astate_t as;
3280 	bool ret;
3281 
3282 	pq = _vm_page_pagequeue(m, old->queue);
3283 
3284 	/*
3285 	 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3286 	 * corresponding page queue lock is held.
3287 	 */
3288 	vm_pagequeue_lock(pq);
3289 	as = vm_page_astate_load(m);
3290 	if (__predict_false(as._bits != old->_bits)) {
3291 		*old = as;
3292 		ret = false;
3293 	} else {
3294 		ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3295 	}
3296 	vm_pagequeue_unlock(pq);
3297 	return (ret);
3298 }
3299 
3300 /*
3301  * Commit a queue state update that enqueues or requeues a page.
3302  */
3303 static bool
3304 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3305     vm_page_astate_t *old, vm_page_astate_t new)
3306 {
3307 	struct vm_domain *vmd;
3308 
3309 	vm_pagequeue_assert_locked(pq);
3310 	KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3311 	    ("%s: invalid queue indices %d %d",
3312 	    __func__, old->queue, new.queue));
3313 
3314 	new.flags |= PGA_ENQUEUED;
3315 	if (!vm_page_pqstate_fcmpset(m, old, new))
3316 		return (false);
3317 
3318 	if ((old->flags & PGA_ENQUEUED) != 0)
3319 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3320 	else
3321 		vm_pagequeue_cnt_inc(pq);
3322 
3323 	/*
3324 	 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3325 	 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3326 	 * applied, even if it was set first.
3327 	 */
3328 	if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3329 		vmd = vm_pagequeue_domain(m);
3330 		KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3331 		    ("%s: invalid page queue for page %p", __func__, m));
3332 		TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3333 	} else {
3334 		TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3335 	}
3336 	return (true);
3337 }
3338 
3339 /*
3340  * Commit a queue state update that encodes a request for a deferred queue
3341  * operation.
3342  */
3343 static bool
3344 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3345     vm_page_astate_t new)
3346 {
3347 
3348 	KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3349 	    ("%s: invalid state, queue %d flags %x",
3350 	    __func__, new.queue, new.flags));
3351 
3352 	if (old->_bits != new._bits &&
3353 	    !vm_page_pqstate_fcmpset(m, old, new))
3354 		return (false);
3355 	vm_page_pqbatch_submit(m, new.queue);
3356 	return (true);
3357 }
3358 
3359 /*
3360  * A generic queue state update function.  This handles more cases than the
3361  * specialized functions above.
3362  */
3363 bool
3364 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3365 {
3366 
3367 	if (old->_bits == new._bits)
3368 		return (true);
3369 
3370 	if (old->queue != PQ_NONE && new.queue != old->queue) {
3371 		if (!vm_page_pqstate_commit_dequeue(m, old, new))
3372 			return (false);
3373 		if (new.queue != PQ_NONE)
3374 			vm_page_pqbatch_submit(m, new.queue);
3375 	} else {
3376 		if (!vm_page_pqstate_fcmpset(m, old, new))
3377 			return (false);
3378 		if (new.queue != PQ_NONE &&
3379 		    ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3380 			vm_page_pqbatch_submit(m, new.queue);
3381 	}
3382 	return (true);
3383 }
3384 
3385 /*
3386  * Apply deferred queue state updates to a page.
3387  */
3388 static inline void
3389 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3390 {
3391 	vm_page_astate_t new, old;
3392 
3393 	CRITICAL_ASSERT(curthread);
3394 	vm_pagequeue_assert_locked(pq);
3395 	KASSERT(queue < PQ_COUNT,
3396 	    ("%s: invalid queue index %d", __func__, queue));
3397 	KASSERT(pq == _vm_page_pagequeue(m, queue),
3398 	    ("%s: page %p does not belong to queue %p", __func__, m, pq));
3399 
3400 	for (old = vm_page_astate_load(m);;) {
3401 		if (__predict_false(old.queue != queue ||
3402 		    (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3403 			counter_u64_add(queue_nops, 1);
3404 			break;
3405 		}
3406 		KASSERT(old.queue != PQ_NONE || (old.flags & PGA_QUEUE_STATE_MASK) == 0,
3407 		    ("%s: page %p has unexpected queue state", __func__, m));
3408 
3409 		new = old;
3410 		if ((old.flags & PGA_DEQUEUE) != 0) {
3411 			new.flags &= ~PGA_QUEUE_OP_MASK;
3412 			new.queue = PQ_NONE;
3413 			if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3414 			    m, &old, new))) {
3415 				counter_u64_add(queue_ops, 1);
3416 				break;
3417 			}
3418 		} else {
3419 			new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3420 			if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3421 			    m, &old, new))) {
3422 				counter_u64_add(queue_ops, 1);
3423 				break;
3424 			}
3425 		}
3426 	}
3427 }
3428 
3429 static void
3430 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3431     uint8_t queue)
3432 {
3433 	int i;
3434 
3435 	for (i = 0; i < bq->bq_cnt; i++)
3436 		vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3437 	vm_batchqueue_init(bq);
3438 }
3439 
3440 /*
3441  *	vm_page_pqbatch_submit:		[ internal use only ]
3442  *
3443  *	Enqueue a page in the specified page queue's batched work queue.
3444  *	The caller must have encoded the requested operation in the page
3445  *	structure's a.flags field.
3446  */
3447 void
3448 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3449 {
3450 	struct vm_batchqueue *bq;
3451 	struct vm_pagequeue *pq;
3452 	int domain;
3453 
3454 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3455 	    ("page %p is unmanaged", m));
3456 	KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3457 
3458 	domain = vm_phys_domain(m);
3459 	pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3460 
3461 	critical_enter();
3462 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3463 	if (vm_batchqueue_insert(bq, m)) {
3464 		critical_exit();
3465 		return;
3466 	}
3467 	critical_exit();
3468 	vm_pagequeue_lock(pq);
3469 	critical_enter();
3470 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3471 	vm_pqbatch_process(pq, bq, queue);
3472 	vm_pqbatch_process_page(pq, m, queue);
3473 	vm_pagequeue_unlock(pq);
3474 	critical_exit();
3475 }
3476 
3477 /*
3478  *	vm_page_pqbatch_drain:		[ internal use only ]
3479  *
3480  *	Force all per-CPU page queue batch queues to be drained.  This is
3481  *	intended for use in severe memory shortages, to ensure that pages
3482  *	do not remain stuck in the batch queues.
3483  */
3484 void
3485 vm_page_pqbatch_drain(void)
3486 {
3487 	struct thread *td;
3488 	struct vm_domain *vmd;
3489 	struct vm_pagequeue *pq;
3490 	int cpu, domain, queue;
3491 
3492 	td = curthread;
3493 	CPU_FOREACH(cpu) {
3494 		thread_lock(td);
3495 		sched_bind(td, cpu);
3496 		thread_unlock(td);
3497 
3498 		for (domain = 0; domain < vm_ndomains; domain++) {
3499 			vmd = VM_DOMAIN(domain);
3500 			for (queue = 0; queue < PQ_COUNT; queue++) {
3501 				pq = &vmd->vmd_pagequeues[queue];
3502 				vm_pagequeue_lock(pq);
3503 				critical_enter();
3504 				vm_pqbatch_process(pq,
3505 				    DPCPU_PTR(pqbatch[domain][queue]), queue);
3506 				critical_exit();
3507 				vm_pagequeue_unlock(pq);
3508 			}
3509 		}
3510 	}
3511 	thread_lock(td);
3512 	sched_unbind(td);
3513 	thread_unlock(td);
3514 }
3515 
3516 /*
3517  *	vm_page_dequeue_deferred:	[ internal use only ]
3518  *
3519  *	Request removal of the given page from its current page
3520  *	queue.  Physical removal from the queue may be deferred
3521  *	indefinitely.
3522  *
3523  *	The page must be locked.
3524  */
3525 void
3526 vm_page_dequeue_deferred(vm_page_t m)
3527 {
3528 	vm_page_astate_t new, old;
3529 
3530 	old = vm_page_astate_load(m);
3531 	do {
3532 		if (old.queue == PQ_NONE) {
3533 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3534 			    ("%s: page %p has unexpected queue state",
3535 			    __func__, m));
3536 			break;
3537 		}
3538 		new = old;
3539 		new.flags |= PGA_DEQUEUE;
3540 	} while (!vm_page_pqstate_commit_request(m, &old, new));
3541 }
3542 
3543 /*
3544  *	vm_page_dequeue:
3545  *
3546  *	Remove the page from whichever page queue it's in, if any, before
3547  *	returning.
3548  */
3549 void
3550 vm_page_dequeue(vm_page_t m)
3551 {
3552 	vm_page_astate_t new, old;
3553 
3554 	old = vm_page_astate_load(m);
3555 	do {
3556 		if (old.queue == PQ_NONE) {
3557 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3558 			    ("%s: page %p has unexpected queue state",
3559 			    __func__, m));
3560 			break;
3561 		}
3562 		new = old;
3563 		new.flags &= ~PGA_QUEUE_OP_MASK;
3564 		new.queue = PQ_NONE;
3565 	} while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3566 
3567 }
3568 
3569 /*
3570  * Schedule the given page for insertion into the specified page queue.
3571  * Physical insertion of the page may be deferred indefinitely.
3572  */
3573 static void
3574 vm_page_enqueue(vm_page_t m, uint8_t queue)
3575 {
3576 
3577 	KASSERT(m->a.queue == PQ_NONE &&
3578 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3579 	    ("%s: page %p is already enqueued", __func__, m));
3580 	KASSERT(m->ref_count > 0,
3581 	    ("%s: page %p does not carry any references", __func__, m));
3582 
3583 	m->a.queue = queue;
3584 	if ((m->a.flags & PGA_REQUEUE) == 0)
3585 		vm_page_aflag_set(m, PGA_REQUEUE);
3586 	vm_page_pqbatch_submit(m, queue);
3587 }
3588 
3589 /*
3590  *	vm_page_free_prep:
3591  *
3592  *	Prepares the given page to be put on the free list,
3593  *	disassociating it from any VM object. The caller may return
3594  *	the page to the free list only if this function returns true.
3595  *
3596  *	The object must be locked.  The page must be locked if it is
3597  *	managed.
3598  */
3599 static bool
3600 vm_page_free_prep(vm_page_t m)
3601 {
3602 
3603 	/*
3604 	 * Synchronize with threads that have dropped a reference to this
3605 	 * page.
3606 	 */
3607 	atomic_thread_fence_acq();
3608 
3609 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3610 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3611 		uint64_t *p;
3612 		int i;
3613 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3614 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3615 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3616 			    m, i, (uintmax_t)*p));
3617 	}
3618 #endif
3619 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3620 		KASSERT(!pmap_page_is_mapped(m),
3621 		    ("vm_page_free_prep: freeing mapped page %p", m));
3622 		KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3623 		    ("vm_page_free_prep: mapping flags set in page %p", m));
3624 	} else {
3625 		KASSERT(m->a.queue == PQ_NONE,
3626 		    ("vm_page_free_prep: unmanaged page %p is queued", m));
3627 	}
3628 	VM_CNT_INC(v_tfree);
3629 
3630 	if (m->object != NULL) {
3631 		KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
3632 		    ((m->object->flags & OBJ_UNMANAGED) != 0),
3633 		    ("vm_page_free_prep: managed flag mismatch for page %p",
3634 		    m));
3635 		vm_page_assert_xbusied(m);
3636 
3637 		/*
3638 		 * The object reference can be released without an atomic
3639 		 * operation.
3640 		 */
3641 		KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3642 		    m->ref_count == VPRC_OBJREF,
3643 		    ("vm_page_free_prep: page %p has unexpected ref_count %u",
3644 		    m, m->ref_count));
3645 		vm_page_object_remove(m);
3646 		m->object = NULL;
3647 		m->ref_count -= VPRC_OBJREF;
3648 	} else
3649 		vm_page_assert_unbusied(m);
3650 
3651 	vm_page_busy_free(m);
3652 
3653 	/*
3654 	 * If fictitious remove object association and
3655 	 * return.
3656 	 */
3657 	if ((m->flags & PG_FICTITIOUS) != 0) {
3658 		KASSERT(m->ref_count == 1,
3659 		    ("fictitious page %p is referenced", m));
3660 		KASSERT(m->a.queue == PQ_NONE,
3661 		    ("fictitious page %p is queued", m));
3662 		return (false);
3663 	}
3664 
3665 	/*
3666 	 * Pages need not be dequeued before they are returned to the physical
3667 	 * memory allocator, but they must at least be marked for a deferred
3668 	 * dequeue.
3669 	 */
3670 	if ((m->oflags & VPO_UNMANAGED) == 0)
3671 		vm_page_dequeue_deferred(m);
3672 
3673 	m->valid = 0;
3674 	vm_page_undirty(m);
3675 
3676 	if (m->ref_count != 0)
3677 		panic("vm_page_free_prep: page %p has references", m);
3678 
3679 	/*
3680 	 * Restore the default memory attribute to the page.
3681 	 */
3682 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3683 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3684 
3685 #if VM_NRESERVLEVEL > 0
3686 	/*
3687 	 * Determine whether the page belongs to a reservation.  If the page was
3688 	 * allocated from a per-CPU cache, it cannot belong to a reservation, so
3689 	 * as an optimization, we avoid the check in that case.
3690 	 */
3691 	if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3692 		return (false);
3693 #endif
3694 
3695 	return (true);
3696 }
3697 
3698 /*
3699  *	vm_page_free_toq:
3700  *
3701  *	Returns the given page to the free list, disassociating it
3702  *	from any VM object.
3703  *
3704  *	The object must be locked.  The page must be locked if it is
3705  *	managed.
3706  */
3707 static void
3708 vm_page_free_toq(vm_page_t m)
3709 {
3710 	struct vm_domain *vmd;
3711 	uma_zone_t zone;
3712 
3713 	if (!vm_page_free_prep(m))
3714 		return;
3715 
3716 	vmd = vm_pagequeue_domain(m);
3717 	zone = vmd->vmd_pgcache[m->pool].zone;
3718 	if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3719 		uma_zfree(zone, m);
3720 		return;
3721 	}
3722 	vm_domain_free_lock(vmd);
3723 	vm_phys_free_pages(m, 0);
3724 	vm_domain_free_unlock(vmd);
3725 	vm_domain_freecnt_inc(vmd, 1);
3726 }
3727 
3728 /*
3729  *	vm_page_free_pages_toq:
3730  *
3731  *	Returns a list of pages to the free list, disassociating it
3732  *	from any VM object.  In other words, this is equivalent to
3733  *	calling vm_page_free_toq() for each page of a list of VM objects.
3734  *
3735  *	The objects must be locked.  The pages must be locked if it is
3736  *	managed.
3737  */
3738 void
3739 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3740 {
3741 	vm_page_t m;
3742 	int count;
3743 
3744 	if (SLIST_EMPTY(free))
3745 		return;
3746 
3747 	count = 0;
3748 	while ((m = SLIST_FIRST(free)) != NULL) {
3749 		count++;
3750 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
3751 		vm_page_free_toq(m);
3752 	}
3753 
3754 	if (update_wire_count)
3755 		vm_wire_sub(count);
3756 }
3757 
3758 /*
3759  * Mark this page as wired down, preventing reclamation by the page daemon
3760  * or when the containing object is destroyed.
3761  */
3762 void
3763 vm_page_wire(vm_page_t m)
3764 {
3765 	u_int old;
3766 
3767 	KASSERT(m->object != NULL,
3768 	    ("vm_page_wire: page %p does not belong to an object", m));
3769 	if (!vm_page_busied(m) && !vm_object_busied(m->object))
3770 		VM_OBJECT_ASSERT_LOCKED(m->object);
3771 	KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3772 	    VPRC_WIRE_COUNT(m->ref_count) >= 1,
3773 	    ("vm_page_wire: fictitious page %p has zero wirings", m));
3774 
3775 	old = atomic_fetchadd_int(&m->ref_count, 1);
3776 	KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3777 	    ("vm_page_wire: counter overflow for page %p", m));
3778 	if (VPRC_WIRE_COUNT(old) == 0) {
3779 		if ((m->oflags & VPO_UNMANAGED) == 0)
3780 			vm_page_aflag_set(m, PGA_DEQUEUE);
3781 		vm_wire_add(1);
3782 	}
3783 }
3784 
3785 /*
3786  * Attempt to wire a mapped page following a pmap lookup of that page.
3787  * This may fail if a thread is concurrently tearing down mappings of the page.
3788  * The transient failure is acceptable because it translates to the
3789  * failure of the caller pmap_extract_and_hold(), which should be then
3790  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
3791  */
3792 bool
3793 vm_page_wire_mapped(vm_page_t m)
3794 {
3795 	u_int old;
3796 
3797 	old = m->ref_count;
3798 	do {
3799 		KASSERT(old > 0,
3800 		    ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3801 		if ((old & VPRC_BLOCKED) != 0)
3802 			return (false);
3803 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3804 
3805 	if (VPRC_WIRE_COUNT(old) == 0) {
3806 		if ((m->oflags & VPO_UNMANAGED) == 0)
3807 			vm_page_aflag_set(m, PGA_DEQUEUE);
3808 		vm_wire_add(1);
3809 	}
3810 	return (true);
3811 }
3812 
3813 /*
3814  * Release a wiring reference to a managed page.  If the page still belongs to
3815  * an object, update its position in the page queues to reflect the reference.
3816  * If the wiring was the last reference to the page, free the page.
3817  */
3818 static void
3819 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
3820 {
3821 	u_int old;
3822 
3823 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3824 	    ("%s: page %p is unmanaged", __func__, m));
3825 
3826 	/*
3827 	 * Update LRU state before releasing the wiring reference.
3828 	 * Use a release store when updating the reference count to
3829 	 * synchronize with vm_page_free_prep().
3830 	 */
3831 	old = m->ref_count;
3832 	do {
3833 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
3834 		    ("vm_page_unwire: wire count underflow for page %p", m));
3835 
3836 		if (old > VPRC_OBJREF + 1) {
3837 			/*
3838 			 * The page has at least one other wiring reference.  An
3839 			 * earlier iteration of this loop may have called
3840 			 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
3841 			 * re-set it if necessary.
3842 			 */
3843 			if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
3844 				vm_page_aflag_set(m, PGA_DEQUEUE);
3845 		} else if (old == VPRC_OBJREF + 1) {
3846 			/*
3847 			 * This is the last wiring.  Clear PGA_DEQUEUE and
3848 			 * update the page's queue state to reflect the
3849 			 * reference.  If the page does not belong to an object
3850 			 * (i.e., the VPRC_OBJREF bit is clear), we only need to
3851 			 * clear leftover queue state.
3852 			 */
3853 			vm_page_release_toq(m, nqueue, false);
3854 		} else if (old == 1) {
3855 			vm_page_aflag_clear(m, PGA_DEQUEUE);
3856 		}
3857 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3858 
3859 	if (VPRC_WIRE_COUNT(old) == 1) {
3860 		vm_wire_sub(1);
3861 		if (old == 1)
3862 			vm_page_free(m);
3863 	}
3864 }
3865 
3866 /*
3867  * Release one wiring of the specified page, potentially allowing it to be
3868  * paged out.
3869  *
3870  * Only managed pages belonging to an object can be paged out.  If the number
3871  * of wirings transitions to zero and the page is eligible for page out, then
3872  * the page is added to the specified paging queue.  If the released wiring
3873  * represented the last reference to the page, the page is freed.
3874  *
3875  * A managed page must be locked.
3876  */
3877 void
3878 vm_page_unwire(vm_page_t m, uint8_t nqueue)
3879 {
3880 
3881 	KASSERT(nqueue < PQ_COUNT,
3882 	    ("vm_page_unwire: invalid queue %u request for page %p",
3883 	    nqueue, m));
3884 
3885 	if ((m->oflags & VPO_UNMANAGED) != 0) {
3886 		if (vm_page_unwire_noq(m) && m->ref_count == 0)
3887 			vm_page_free(m);
3888 		return;
3889 	}
3890 	vm_page_unwire_managed(m, nqueue, false);
3891 }
3892 
3893 /*
3894  * Unwire a page without (re-)inserting it into a page queue.  It is up
3895  * to the caller to enqueue, requeue, or free the page as appropriate.
3896  * In most cases involving managed pages, vm_page_unwire() should be used
3897  * instead.
3898  */
3899 bool
3900 vm_page_unwire_noq(vm_page_t m)
3901 {
3902 	u_int old;
3903 
3904 	old = vm_page_drop(m, 1);
3905 	KASSERT(VPRC_WIRE_COUNT(old) != 0,
3906 	    ("vm_page_unref: counter underflow for page %p", m));
3907 	KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
3908 	    ("vm_page_unref: missing ref on fictitious page %p", m));
3909 
3910 	if (VPRC_WIRE_COUNT(old) > 1)
3911 		return (false);
3912 	if ((m->oflags & VPO_UNMANAGED) == 0)
3913 		vm_page_aflag_clear(m, PGA_DEQUEUE);
3914 	vm_wire_sub(1);
3915 	return (true);
3916 }
3917 
3918 /*
3919  * Ensure that the page ends up in the specified page queue.  If the page is
3920  * active or being moved to the active queue, ensure that its act_count is
3921  * at least ACT_INIT but do not otherwise mess with it.
3922  *
3923  * A managed page must be locked.
3924  */
3925 static __always_inline void
3926 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
3927 {
3928 	vm_page_astate_t old, new;
3929 
3930 	KASSERT(m->ref_count > 0,
3931 	    ("%s: page %p does not carry any references", __func__, m));
3932 	KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
3933 	    ("%s: invalid flags %x", __func__, nflag));
3934 
3935 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3936 		return;
3937 
3938 	old = vm_page_astate_load(m);
3939 	do {
3940 		if ((old.flags & PGA_DEQUEUE) != 0)
3941 			break;
3942 		new = old;
3943 		new.flags &= ~PGA_QUEUE_OP_MASK;
3944 		if (nqueue == PQ_ACTIVE)
3945 			new.act_count = max(old.act_count, ACT_INIT);
3946 		if (old.queue == nqueue) {
3947 			if (nqueue != PQ_ACTIVE)
3948 				new.flags |= nflag;
3949 		} else {
3950 			new.flags |= nflag;
3951 			new.queue = nqueue;
3952 		}
3953 	} while (!vm_page_pqstate_commit(m, &old, new));
3954 }
3955 
3956 /*
3957  * Put the specified page on the active list (if appropriate).
3958  */
3959 void
3960 vm_page_activate(vm_page_t m)
3961 {
3962 
3963 	vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
3964 }
3965 
3966 /*
3967  * Move the specified page to the tail of the inactive queue, or requeue
3968  * the page if it is already in the inactive queue.
3969  */
3970 void
3971 vm_page_deactivate(vm_page_t m)
3972 {
3973 
3974 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
3975 }
3976 
3977 void
3978 vm_page_deactivate_noreuse(vm_page_t m)
3979 {
3980 
3981 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
3982 }
3983 
3984 /*
3985  * Put a page in the laundry, or requeue it if it is already there.
3986  */
3987 void
3988 vm_page_launder(vm_page_t m)
3989 {
3990 
3991 	vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
3992 }
3993 
3994 /*
3995  * Put a page in the PQ_UNSWAPPABLE holding queue.
3996  */
3997 void
3998 vm_page_unswappable(vm_page_t m)
3999 {
4000 
4001 	KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
4002 	    ("page %p already unswappable", m));
4003 
4004 	vm_page_dequeue(m);
4005 	vm_page_enqueue(m, PQ_UNSWAPPABLE);
4006 }
4007 
4008 /*
4009  * Release a page back to the page queues in preparation for unwiring.
4010  */
4011 static void
4012 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4013 {
4014 	vm_page_astate_t old, new;
4015 	uint16_t nflag;
4016 
4017 	/*
4018 	 * Use a check of the valid bits to determine whether we should
4019 	 * accelerate reclamation of the page.  The object lock might not be
4020 	 * held here, in which case the check is racy.  At worst we will either
4021 	 * accelerate reclamation of a valid page and violate LRU, or
4022 	 * unnecessarily defer reclamation of an invalid page.
4023 	 *
4024 	 * If we were asked to not cache the page, place it near the head of the
4025 	 * inactive queue so that is reclaimed sooner.
4026 	 */
4027 	if (noreuse || m->valid == 0) {
4028 		nqueue = PQ_INACTIVE;
4029 		nflag = PGA_REQUEUE_HEAD;
4030 	} else {
4031 		nflag = PGA_REQUEUE;
4032 	}
4033 
4034 	old = vm_page_astate_load(m);
4035 	do {
4036 		new = old;
4037 
4038 		/*
4039 		 * If the page is already in the active queue and we are not
4040 		 * trying to accelerate reclamation, simply mark it as
4041 		 * referenced and avoid any queue operations.
4042 		 */
4043 		new.flags &= ~PGA_QUEUE_OP_MASK;
4044 		if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE)
4045 			new.flags |= PGA_REFERENCED;
4046 		else {
4047 			new.flags |= nflag;
4048 			new.queue = nqueue;
4049 		}
4050 	} while (!vm_page_pqstate_commit(m, &old, new));
4051 }
4052 
4053 /*
4054  * Unwire a page and either attempt to free it or re-add it to the page queues.
4055  */
4056 void
4057 vm_page_release(vm_page_t m, int flags)
4058 {
4059 	vm_object_t object;
4060 
4061 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4062 	    ("vm_page_release: page %p is unmanaged", m));
4063 
4064 	if ((flags & VPR_TRYFREE) != 0) {
4065 		for (;;) {
4066 			object = atomic_load_ptr(&m->object);
4067 			if (object == NULL)
4068 				break;
4069 			/* Depends on type-stability. */
4070 			if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4071 				break;
4072 			if (object == m->object) {
4073 				vm_page_release_locked(m, flags);
4074 				VM_OBJECT_WUNLOCK(object);
4075 				return;
4076 			}
4077 			VM_OBJECT_WUNLOCK(object);
4078 		}
4079 	}
4080 	vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4081 }
4082 
4083 /* See vm_page_release(). */
4084 void
4085 vm_page_release_locked(vm_page_t m, int flags)
4086 {
4087 
4088 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4089 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4090 	    ("vm_page_release_locked: page %p is unmanaged", m));
4091 
4092 	if (vm_page_unwire_noq(m)) {
4093 		if ((flags & VPR_TRYFREE) != 0 &&
4094 		    (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4095 		    m->dirty == 0 && vm_page_tryxbusy(m)) {
4096 			vm_page_free(m);
4097 		} else {
4098 			vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4099 		}
4100 	}
4101 }
4102 
4103 static bool
4104 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4105 {
4106 	u_int old;
4107 
4108 	KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4109 	    ("vm_page_try_blocked_op: page %p has no object", m));
4110 	KASSERT(vm_page_busied(m),
4111 	    ("vm_page_try_blocked_op: page %p is not busy", m));
4112 	VM_OBJECT_ASSERT_LOCKED(m->object);
4113 
4114 	old = m->ref_count;
4115 	do {
4116 		KASSERT(old != 0,
4117 		    ("vm_page_try_blocked_op: page %p has no references", m));
4118 		if (VPRC_WIRE_COUNT(old) != 0)
4119 			return (false);
4120 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4121 
4122 	(op)(m);
4123 
4124 	/*
4125 	 * If the object is read-locked, new wirings may be created via an
4126 	 * object lookup.
4127 	 */
4128 	old = vm_page_drop(m, VPRC_BLOCKED);
4129 	KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4130 	    old == (VPRC_BLOCKED | VPRC_OBJREF),
4131 	    ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4132 	    old, m));
4133 	return (true);
4134 }
4135 
4136 /*
4137  * Atomically check for wirings and remove all mappings of the page.
4138  */
4139 bool
4140 vm_page_try_remove_all(vm_page_t m)
4141 {
4142 
4143 	return (vm_page_try_blocked_op(m, pmap_remove_all));
4144 }
4145 
4146 /*
4147  * Atomically check for wirings and remove all writeable mappings of the page.
4148  */
4149 bool
4150 vm_page_try_remove_write(vm_page_t m)
4151 {
4152 
4153 	return (vm_page_try_blocked_op(m, pmap_remove_write));
4154 }
4155 
4156 /*
4157  * vm_page_advise
4158  *
4159  * 	Apply the specified advice to the given page.
4160  *
4161  *	The object and page must be locked.
4162  */
4163 void
4164 vm_page_advise(vm_page_t m, int advice)
4165 {
4166 
4167 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4168 	if (advice == MADV_FREE)
4169 		/*
4170 		 * Mark the page clean.  This will allow the page to be freed
4171 		 * without first paging it out.  MADV_FREE pages are often
4172 		 * quickly reused by malloc(3), so we do not do anything that
4173 		 * would result in a page fault on a later access.
4174 		 */
4175 		vm_page_undirty(m);
4176 	else if (advice != MADV_DONTNEED) {
4177 		if (advice == MADV_WILLNEED)
4178 			vm_page_activate(m);
4179 		return;
4180 	}
4181 
4182 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4183 		vm_page_dirty(m);
4184 
4185 	/*
4186 	 * Clear any references to the page.  Otherwise, the page daemon will
4187 	 * immediately reactivate the page.
4188 	 */
4189 	vm_page_aflag_clear(m, PGA_REFERENCED);
4190 
4191 	/*
4192 	 * Place clean pages near the head of the inactive queue rather than
4193 	 * the tail, thus defeating the queue's LRU operation and ensuring that
4194 	 * the page will be reused quickly.  Dirty pages not already in the
4195 	 * laundry are moved there.
4196 	 */
4197 	if (m->dirty == 0)
4198 		vm_page_deactivate_noreuse(m);
4199 	else if (!vm_page_in_laundry(m))
4200 		vm_page_launder(m);
4201 }
4202 
4203 static inline int
4204 vm_page_grab_pflags(int allocflags)
4205 {
4206 	int pflags;
4207 
4208 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4209 	    (allocflags & VM_ALLOC_WIRED) != 0,
4210 	    ("vm_page_grab_pflags: the pages must be busied or wired"));
4211 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4212 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4213 	    ("vm_page_grab_pflags: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4214 	    "mismatch"));
4215 	pflags = allocflags &
4216 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4217 	    VM_ALLOC_NOBUSY);
4218 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4219 		pflags |= VM_ALLOC_WAITFAIL;
4220 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4221 		pflags |= VM_ALLOC_SBUSY;
4222 
4223 	return (pflags);
4224 }
4225 
4226 /*
4227  * Grab a page, waiting until we are waken up due to the page
4228  * changing state.  We keep on waiting, if the page continues
4229  * to be in the object.  If the page doesn't exist, first allocate it
4230  * and then conditionally zero it.
4231  *
4232  * This routine may sleep.
4233  *
4234  * The object must be locked on entry.  The lock will, however, be released
4235  * and reacquired if the routine sleeps.
4236  */
4237 vm_page_t
4238 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4239 {
4240 	vm_page_t m;
4241 	int pflags;
4242 
4243 	VM_OBJECT_ASSERT_WLOCKED(object);
4244 	pflags = vm_page_grab_pflags(allocflags);
4245 retrylookup:
4246 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4247 		if (!vm_page_acquire_flags(m, allocflags)) {
4248 			if (vm_page_busy_sleep_flags(object, m, "pgrbwt",
4249 			    allocflags))
4250 				goto retrylookup;
4251 			return (NULL);
4252 		}
4253 		goto out;
4254 	}
4255 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4256 		return (NULL);
4257 	m = vm_page_alloc(object, pindex, pflags);
4258 	if (m == NULL) {
4259 		if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4260 			return (NULL);
4261 		goto retrylookup;
4262 	}
4263 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4264 		pmap_zero_page(m);
4265 
4266 out:
4267 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4268 		if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4269 			vm_page_sunbusy(m);
4270 		else
4271 			vm_page_xunbusy(m);
4272 	}
4273 	return (m);
4274 }
4275 
4276 /*
4277  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4278  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4279  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4280  * in simultaneously.  Additional pages will be left on a paging queue but
4281  * will neither be wired nor busy regardless of allocflags.
4282  */
4283 int
4284 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4285 {
4286 	vm_page_t m;
4287 	vm_page_t ma[VM_INITIAL_PAGEIN];
4288 	bool sleep, xbusy;
4289 	int after, i, pflags, rv;
4290 
4291 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4292 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4293 	    ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4294 	KASSERT((allocflags &
4295 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4296 	    ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4297 	VM_OBJECT_ASSERT_WLOCKED(object);
4298 	pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY);
4299 	pflags |= VM_ALLOC_WAITFAIL;
4300 
4301 retrylookup:
4302 	xbusy = false;
4303 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4304 		/*
4305 		 * If the page is fully valid it can only become invalid
4306 		 * with the object lock held.  If it is not valid it can
4307 		 * become valid with the busy lock held.  Therefore, we
4308 		 * may unnecessarily lock the exclusive busy here if we
4309 		 * race with I/O completion not using the object lock.
4310 		 * However, we will not end up with an invalid page and a
4311 		 * shared lock.
4312 		 */
4313 		if (!vm_page_all_valid(m) ||
4314 		    (allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) == 0) {
4315 			sleep = !vm_page_tryxbusy(m);
4316 			xbusy = true;
4317 		} else
4318 			sleep = !vm_page_trysbusy(m);
4319 		if (sleep) {
4320 			(void)vm_page_busy_sleep_flags(object, m, "pgrbwt",
4321 			    allocflags);
4322 			goto retrylookup;
4323 		}
4324 		if ((allocflags & VM_ALLOC_NOCREAT) != 0 &&
4325 		   !vm_page_all_valid(m)) {
4326 			if (xbusy)
4327 				vm_page_xunbusy(m);
4328 			else
4329 				vm_page_sunbusy(m);
4330 			*mp = NULL;
4331 			return (VM_PAGER_FAIL);
4332 		}
4333 		if ((allocflags & VM_ALLOC_WIRED) != 0)
4334 			vm_page_wire(m);
4335 		if (vm_page_all_valid(m))
4336 			goto out;
4337 	} else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4338 		*mp = NULL;
4339 		return (VM_PAGER_FAIL);
4340 	} else if ((m = vm_page_alloc(object, pindex, pflags)) != NULL) {
4341 		xbusy = true;
4342 	} else {
4343 		goto retrylookup;
4344 	}
4345 
4346 	vm_page_assert_xbusied(m);
4347 	MPASS(xbusy);
4348 	if (vm_pager_has_page(object, pindex, NULL, &after)) {
4349 		after = MIN(after, VM_INITIAL_PAGEIN);
4350 		after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4351 		after = MAX(after, 1);
4352 		ma[0] = m;
4353 		for (i = 1; i < after; i++) {
4354 			if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4355 				if (ma[i]->valid || !vm_page_tryxbusy(ma[i]))
4356 					break;
4357 			} else {
4358 				ma[i] = vm_page_alloc(object, m->pindex + i,
4359 				    VM_ALLOC_NORMAL);
4360 				if (ma[i] == NULL)
4361 					break;
4362 			}
4363 		}
4364 		after = i;
4365 		vm_object_pip_add(object, after);
4366 		VM_OBJECT_WUNLOCK(object);
4367 		rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4368 		VM_OBJECT_WLOCK(object);
4369 		vm_object_pip_wakeupn(object, after);
4370 		/* Pager may have replaced a page. */
4371 		m = ma[0];
4372 		if (rv != VM_PAGER_OK) {
4373 			if ((allocflags & VM_ALLOC_WIRED) != 0)
4374 				vm_page_unwire_noq(m);
4375 			for (i = 0; i < after; i++) {
4376 				if (!vm_page_wired(ma[i]))
4377 					vm_page_free(ma[i]);
4378 				else
4379 					vm_page_xunbusy(ma[i]);
4380 			}
4381 			*mp = NULL;
4382 			return (rv);
4383 		}
4384 		for (i = 1; i < after; i++)
4385 			vm_page_readahead_finish(ma[i]);
4386 		MPASS(vm_page_all_valid(m));
4387 	} else {
4388 		vm_page_zero_invalid(m, TRUE);
4389 	}
4390 out:
4391 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4392 		if (xbusy)
4393 			vm_page_xunbusy(m);
4394 		else
4395 			vm_page_sunbusy(m);
4396 	}
4397 	if ((allocflags & VM_ALLOC_SBUSY) != 0 && xbusy)
4398 		vm_page_busy_downgrade(m);
4399 	*mp = m;
4400 	return (VM_PAGER_OK);
4401 }
4402 
4403 /*
4404  * Return the specified range of pages from the given object.  For each
4405  * page offset within the range, if a page already exists within the object
4406  * at that offset and it is busy, then wait for it to change state.  If,
4407  * instead, the page doesn't exist, then allocate it.
4408  *
4409  * The caller must always specify an allocation class.
4410  *
4411  * allocation classes:
4412  *	VM_ALLOC_NORMAL		normal process request
4413  *	VM_ALLOC_SYSTEM		system *really* needs the pages
4414  *
4415  * The caller must always specify that the pages are to be busied and/or
4416  * wired.
4417  *
4418  * optional allocation flags:
4419  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
4420  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
4421  *	VM_ALLOC_NOWAIT		do not sleep
4422  *	VM_ALLOC_SBUSY		set page to sbusy state
4423  *	VM_ALLOC_WIRED		wire the pages
4424  *	VM_ALLOC_ZERO		zero and validate any invalid pages
4425  *
4426  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4427  * may return a partial prefix of the requested range.
4428  */
4429 int
4430 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4431     vm_page_t *ma, int count)
4432 {
4433 	vm_page_t m, mpred;
4434 	int pflags;
4435 	int i;
4436 
4437 	VM_OBJECT_ASSERT_WLOCKED(object);
4438 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4439 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4440 
4441 	pflags = vm_page_grab_pflags(allocflags);
4442 	if (count == 0)
4443 		return (0);
4444 
4445 	i = 0;
4446 retrylookup:
4447 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
4448 	if (m == NULL || m->pindex != pindex + i) {
4449 		mpred = m;
4450 		m = NULL;
4451 	} else
4452 		mpred = TAILQ_PREV(m, pglist, listq);
4453 	for (; i < count; i++) {
4454 		if (m != NULL) {
4455 			if (!vm_page_acquire_flags(m, allocflags)) {
4456 				if (vm_page_busy_sleep_flags(object, m,
4457 				    "grbmaw", allocflags))
4458 					goto retrylookup;
4459 				break;
4460 			}
4461 		} else {
4462 			if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4463 				break;
4464 			m = vm_page_alloc_after(object, pindex + i,
4465 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
4466 			if (m == NULL) {
4467 				if ((allocflags & (VM_ALLOC_NOWAIT |
4468 				    VM_ALLOC_WAITFAIL)) != 0)
4469 					break;
4470 				goto retrylookup;
4471 			}
4472 		}
4473 		if (vm_page_none_valid(m) &&
4474 		    (allocflags & VM_ALLOC_ZERO) != 0) {
4475 			if ((m->flags & PG_ZERO) == 0)
4476 				pmap_zero_page(m);
4477 			vm_page_valid(m);
4478 		}
4479 		if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4480 			if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4481 				vm_page_sunbusy(m);
4482 			else
4483 				vm_page_xunbusy(m);
4484 		}
4485 		ma[i] = mpred = m;
4486 		m = vm_page_next(m);
4487 	}
4488 	return (i);
4489 }
4490 
4491 /*
4492  * Mapping function for valid or dirty bits in a page.
4493  *
4494  * Inputs are required to range within a page.
4495  */
4496 vm_page_bits_t
4497 vm_page_bits(int base, int size)
4498 {
4499 	int first_bit;
4500 	int last_bit;
4501 
4502 	KASSERT(
4503 	    base + size <= PAGE_SIZE,
4504 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
4505 	);
4506 
4507 	if (size == 0)		/* handle degenerate case */
4508 		return (0);
4509 
4510 	first_bit = base >> DEV_BSHIFT;
4511 	last_bit = (base + size - 1) >> DEV_BSHIFT;
4512 
4513 	return (((vm_page_bits_t)2 << last_bit) -
4514 	    ((vm_page_bits_t)1 << first_bit));
4515 }
4516 
4517 void
4518 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4519 {
4520 
4521 #if PAGE_SIZE == 32768
4522 	atomic_set_64((uint64_t *)bits, set);
4523 #elif PAGE_SIZE == 16384
4524 	atomic_set_32((uint32_t *)bits, set);
4525 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4526 	atomic_set_16((uint16_t *)bits, set);
4527 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4528 	atomic_set_8((uint8_t *)bits, set);
4529 #else		/* PAGE_SIZE <= 8192 */
4530 	uintptr_t addr;
4531 	int shift;
4532 
4533 	addr = (uintptr_t)bits;
4534 	/*
4535 	 * Use a trick to perform a 32-bit atomic on the
4536 	 * containing aligned word, to not depend on the existence
4537 	 * of atomic_{set, clear}_{8, 16}.
4538 	 */
4539 	shift = addr & (sizeof(uint32_t) - 1);
4540 #if BYTE_ORDER == BIG_ENDIAN
4541 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4542 #else
4543 	shift *= NBBY;
4544 #endif
4545 	addr &= ~(sizeof(uint32_t) - 1);
4546 	atomic_set_32((uint32_t *)addr, set << shift);
4547 #endif		/* PAGE_SIZE */
4548 }
4549 
4550 static inline void
4551 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4552 {
4553 
4554 #if PAGE_SIZE == 32768
4555 	atomic_clear_64((uint64_t *)bits, clear);
4556 #elif PAGE_SIZE == 16384
4557 	atomic_clear_32((uint32_t *)bits, clear);
4558 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4559 	atomic_clear_16((uint16_t *)bits, clear);
4560 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4561 	atomic_clear_8((uint8_t *)bits, clear);
4562 #else		/* PAGE_SIZE <= 8192 */
4563 	uintptr_t addr;
4564 	int shift;
4565 
4566 	addr = (uintptr_t)bits;
4567 	/*
4568 	 * Use a trick to perform a 32-bit atomic on the
4569 	 * containing aligned word, to not depend on the existence
4570 	 * of atomic_{set, clear}_{8, 16}.
4571 	 */
4572 	shift = addr & (sizeof(uint32_t) - 1);
4573 #if BYTE_ORDER == BIG_ENDIAN
4574 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4575 #else
4576 	shift *= NBBY;
4577 #endif
4578 	addr &= ~(sizeof(uint32_t) - 1);
4579 	atomic_clear_32((uint32_t *)addr, clear << shift);
4580 #endif		/* PAGE_SIZE */
4581 }
4582 
4583 static inline vm_page_bits_t
4584 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
4585 {
4586 #if PAGE_SIZE == 32768
4587 	uint64_t old;
4588 
4589 	old = *bits;
4590 	while (atomic_fcmpset_64(bits, &old, newbits) == 0);
4591 	return (old);
4592 #elif PAGE_SIZE == 16384
4593 	uint32_t old;
4594 
4595 	old = *bits;
4596 	while (atomic_fcmpset_32(bits, &old, newbits) == 0);
4597 	return (old);
4598 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
4599 	uint16_t old;
4600 
4601 	old = *bits;
4602 	while (atomic_fcmpset_16(bits, &old, newbits) == 0);
4603 	return (old);
4604 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
4605 	uint8_t old;
4606 
4607 	old = *bits;
4608 	while (atomic_fcmpset_8(bits, &old, newbits) == 0);
4609 	return (old);
4610 #else		/* PAGE_SIZE <= 4096*/
4611 	uintptr_t addr;
4612 	uint32_t old, new, mask;
4613 	int shift;
4614 
4615 	addr = (uintptr_t)bits;
4616 	/*
4617 	 * Use a trick to perform a 32-bit atomic on the
4618 	 * containing aligned word, to not depend on the existence
4619 	 * of atomic_{set, swap, clear}_{8, 16}.
4620 	 */
4621 	shift = addr & (sizeof(uint32_t) - 1);
4622 #if BYTE_ORDER == BIG_ENDIAN
4623 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4624 #else
4625 	shift *= NBBY;
4626 #endif
4627 	addr &= ~(sizeof(uint32_t) - 1);
4628 	mask = VM_PAGE_BITS_ALL << shift;
4629 
4630 	old = *bits;
4631 	do {
4632 		new = old & ~mask;
4633 		new |= newbits << shift;
4634 	} while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
4635 	return (old >> shift);
4636 #endif		/* PAGE_SIZE */
4637 }
4638 
4639 /*
4640  *	vm_page_set_valid_range:
4641  *
4642  *	Sets portions of a page valid.  The arguments are expected
4643  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4644  *	of any partial chunks touched by the range.  The invalid portion of
4645  *	such chunks will be zeroed.
4646  *
4647  *	(base + size) must be less then or equal to PAGE_SIZE.
4648  */
4649 void
4650 vm_page_set_valid_range(vm_page_t m, int base, int size)
4651 {
4652 	int endoff, frag;
4653 	vm_page_bits_t pagebits;
4654 
4655 	vm_page_assert_busied(m);
4656 	if (size == 0)	/* handle degenerate case */
4657 		return;
4658 
4659 	/*
4660 	 * If the base is not DEV_BSIZE aligned and the valid
4661 	 * bit is clear, we have to zero out a portion of the
4662 	 * first block.
4663 	 */
4664 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4665 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4666 		pmap_zero_page_area(m, frag, base - frag);
4667 
4668 	/*
4669 	 * If the ending offset is not DEV_BSIZE aligned and the
4670 	 * valid bit is clear, we have to zero out a portion of
4671 	 * the last block.
4672 	 */
4673 	endoff = base + size;
4674 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4675 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
4676 		pmap_zero_page_area(m, endoff,
4677 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4678 
4679 	/*
4680 	 * Assert that no previously invalid block that is now being validated
4681 	 * is already dirty.
4682 	 */
4683 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
4684 	    ("vm_page_set_valid_range: page %p is dirty", m));
4685 
4686 	/*
4687 	 * Set valid bits inclusive of any overlap.
4688 	 */
4689 	pagebits = vm_page_bits(base, size);
4690 	if (vm_page_xbusied(m))
4691 		m->valid |= pagebits;
4692 	else
4693 		vm_page_bits_set(m, &m->valid, pagebits);
4694 }
4695 
4696 /*
4697  * Set the page dirty bits and free the invalid swap space if
4698  * present.  Returns the previous dirty bits.
4699  */
4700 vm_page_bits_t
4701 vm_page_set_dirty(vm_page_t m)
4702 {
4703 	vm_page_bits_t old;
4704 
4705 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
4706 
4707 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
4708 		old = m->dirty;
4709 		m->dirty = VM_PAGE_BITS_ALL;
4710 	} else
4711 		old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
4712 	if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
4713 		vm_pager_page_unswapped(m);
4714 
4715 	return (old);
4716 }
4717 
4718 /*
4719  * Clear the given bits from the specified page's dirty field.
4720  */
4721 static __inline void
4722 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
4723 {
4724 
4725 	vm_page_assert_busied(m);
4726 
4727 	/*
4728 	 * If the page is xbusied and not write mapped we are the
4729 	 * only thread that can modify dirty bits.  Otherwise, The pmap
4730 	 * layer can call vm_page_dirty() without holding a distinguished
4731 	 * lock.  The combination of page busy and atomic operations
4732 	 * suffice to guarantee consistency of the page dirty field.
4733 	 */
4734 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
4735 		m->dirty &= ~pagebits;
4736 	else
4737 		vm_page_bits_clear(m, &m->dirty, pagebits);
4738 }
4739 
4740 /*
4741  *	vm_page_set_validclean:
4742  *
4743  *	Sets portions of a page valid and clean.  The arguments are expected
4744  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4745  *	of any partial chunks touched by the range.  The invalid portion of
4746  *	such chunks will be zero'd.
4747  *
4748  *	(base + size) must be less then or equal to PAGE_SIZE.
4749  */
4750 void
4751 vm_page_set_validclean(vm_page_t m, int base, int size)
4752 {
4753 	vm_page_bits_t oldvalid, pagebits;
4754 	int endoff, frag;
4755 
4756 	vm_page_assert_busied(m);
4757 	if (size == 0)	/* handle degenerate case */
4758 		return;
4759 
4760 	/*
4761 	 * If the base is not DEV_BSIZE aligned and the valid
4762 	 * bit is clear, we have to zero out a portion of the
4763 	 * first block.
4764 	 */
4765 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4766 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
4767 		pmap_zero_page_area(m, frag, base - frag);
4768 
4769 	/*
4770 	 * If the ending offset is not DEV_BSIZE aligned and the
4771 	 * valid bit is clear, we have to zero out a portion of
4772 	 * the last block.
4773 	 */
4774 	endoff = base + size;
4775 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4776 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
4777 		pmap_zero_page_area(m, endoff,
4778 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4779 
4780 	/*
4781 	 * Set valid, clear dirty bits.  If validating the entire
4782 	 * page we can safely clear the pmap modify bit.  We also
4783 	 * use this opportunity to clear the PGA_NOSYNC flag.  If a process
4784 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
4785 	 * be set again.
4786 	 *
4787 	 * We set valid bits inclusive of any overlap, but we can only
4788 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
4789 	 * the range.
4790 	 */
4791 	oldvalid = m->valid;
4792 	pagebits = vm_page_bits(base, size);
4793 	if (vm_page_xbusied(m))
4794 		m->valid |= pagebits;
4795 	else
4796 		vm_page_bits_set(m, &m->valid, pagebits);
4797 #if 0	/* NOT YET */
4798 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
4799 		frag = DEV_BSIZE - frag;
4800 		base += frag;
4801 		size -= frag;
4802 		if (size < 0)
4803 			size = 0;
4804 	}
4805 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
4806 #endif
4807 	if (base == 0 && size == PAGE_SIZE) {
4808 		/*
4809 		 * The page can only be modified within the pmap if it is
4810 		 * mapped, and it can only be mapped if it was previously
4811 		 * fully valid.
4812 		 */
4813 		if (oldvalid == VM_PAGE_BITS_ALL)
4814 			/*
4815 			 * Perform the pmap_clear_modify() first.  Otherwise,
4816 			 * a concurrent pmap operation, such as
4817 			 * pmap_protect(), could clear a modification in the
4818 			 * pmap and set the dirty field on the page before
4819 			 * pmap_clear_modify() had begun and after the dirty
4820 			 * field was cleared here.
4821 			 */
4822 			pmap_clear_modify(m);
4823 		m->dirty = 0;
4824 		vm_page_aflag_clear(m, PGA_NOSYNC);
4825 	} else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
4826 		m->dirty &= ~pagebits;
4827 	else
4828 		vm_page_clear_dirty_mask(m, pagebits);
4829 }
4830 
4831 void
4832 vm_page_clear_dirty(vm_page_t m, int base, int size)
4833 {
4834 
4835 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
4836 }
4837 
4838 /*
4839  *	vm_page_set_invalid:
4840  *
4841  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
4842  *	valid and dirty bits for the effected areas are cleared.
4843  */
4844 void
4845 vm_page_set_invalid(vm_page_t m, int base, int size)
4846 {
4847 	vm_page_bits_t bits;
4848 	vm_object_t object;
4849 
4850 	/*
4851 	 * The object lock is required so that pages can't be mapped
4852 	 * read-only while we're in the process of invalidating them.
4853 	 */
4854 	object = m->object;
4855 	VM_OBJECT_ASSERT_WLOCKED(object);
4856 	vm_page_assert_busied(m);
4857 
4858 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
4859 	    size >= object->un_pager.vnp.vnp_size)
4860 		bits = VM_PAGE_BITS_ALL;
4861 	else
4862 		bits = vm_page_bits(base, size);
4863 	if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
4864 		pmap_remove_all(m);
4865 	KASSERT((bits == 0 && vm_page_all_valid(m)) ||
4866 	    !pmap_page_is_mapped(m),
4867 	    ("vm_page_set_invalid: page %p is mapped", m));
4868 	if (vm_page_xbusied(m)) {
4869 		m->valid &= ~bits;
4870 		m->dirty &= ~bits;
4871 	} else {
4872 		vm_page_bits_clear(m, &m->valid, bits);
4873 		vm_page_bits_clear(m, &m->dirty, bits);
4874 	}
4875 }
4876 
4877 /*
4878  *	vm_page_invalid:
4879  *
4880  *	Invalidates the entire page.  The page must be busy, unmapped, and
4881  *	the enclosing object must be locked.  The object locks protects
4882  *	against concurrent read-only pmap enter which is done without
4883  *	busy.
4884  */
4885 void
4886 vm_page_invalid(vm_page_t m)
4887 {
4888 
4889 	vm_page_assert_busied(m);
4890 	VM_OBJECT_ASSERT_LOCKED(m->object);
4891 	MPASS(!pmap_page_is_mapped(m));
4892 
4893 	if (vm_page_xbusied(m))
4894 		m->valid = 0;
4895 	else
4896 		vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
4897 }
4898 
4899 /*
4900  * vm_page_zero_invalid()
4901  *
4902  *	The kernel assumes that the invalid portions of a page contain
4903  *	garbage, but such pages can be mapped into memory by user code.
4904  *	When this occurs, we must zero out the non-valid portions of the
4905  *	page so user code sees what it expects.
4906  *
4907  *	Pages are most often semi-valid when the end of a file is mapped
4908  *	into memory and the file's size is not page aligned.
4909  */
4910 void
4911 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
4912 {
4913 	int b;
4914 	int i;
4915 
4916 	/*
4917 	 * Scan the valid bits looking for invalid sections that
4918 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
4919 	 * valid bit may be set ) have already been zeroed by
4920 	 * vm_page_set_validclean().
4921 	 */
4922 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
4923 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
4924 		    (m->valid & ((vm_page_bits_t)1 << i))) {
4925 			if (i > b) {
4926 				pmap_zero_page_area(m,
4927 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
4928 			}
4929 			b = i + 1;
4930 		}
4931 	}
4932 
4933 	/*
4934 	 * setvalid is TRUE when we can safely set the zero'd areas
4935 	 * as being valid.  We can do this if there are no cache consistancy
4936 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
4937 	 */
4938 	if (setvalid)
4939 		vm_page_valid(m);
4940 }
4941 
4942 /*
4943  *	vm_page_is_valid:
4944  *
4945  *	Is (partial) page valid?  Note that the case where size == 0
4946  *	will return FALSE in the degenerate case where the page is
4947  *	entirely invalid, and TRUE otherwise.
4948  *
4949  *	Some callers envoke this routine without the busy lock held and
4950  *	handle races via higher level locks.  Typical callers should
4951  *	hold a busy lock to prevent invalidation.
4952  */
4953 int
4954 vm_page_is_valid(vm_page_t m, int base, int size)
4955 {
4956 	vm_page_bits_t bits;
4957 
4958 	bits = vm_page_bits(base, size);
4959 	return (m->valid != 0 && (m->valid & bits) == bits);
4960 }
4961 
4962 /*
4963  * Returns true if all of the specified predicates are true for the entire
4964  * (super)page and false otherwise.
4965  */
4966 bool
4967 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
4968 {
4969 	vm_object_t object;
4970 	int i, npages;
4971 
4972 	object = m->object;
4973 	if (skip_m != NULL && skip_m->object != object)
4974 		return (false);
4975 	VM_OBJECT_ASSERT_LOCKED(object);
4976 	npages = atop(pagesizes[m->psind]);
4977 
4978 	/*
4979 	 * The physically contiguous pages that make up a superpage, i.e., a
4980 	 * page with a page size index ("psind") greater than zero, will
4981 	 * occupy adjacent entries in vm_page_array[].
4982 	 */
4983 	for (i = 0; i < npages; i++) {
4984 		/* Always test object consistency, including "skip_m". */
4985 		if (m[i].object != object)
4986 			return (false);
4987 		if (&m[i] == skip_m)
4988 			continue;
4989 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
4990 			return (false);
4991 		if ((flags & PS_ALL_DIRTY) != 0) {
4992 			/*
4993 			 * Calling vm_page_test_dirty() or pmap_is_modified()
4994 			 * might stop this case from spuriously returning
4995 			 * "false".  However, that would require a write lock
4996 			 * on the object containing "m[i]".
4997 			 */
4998 			if (m[i].dirty != VM_PAGE_BITS_ALL)
4999 				return (false);
5000 		}
5001 		if ((flags & PS_ALL_VALID) != 0 &&
5002 		    m[i].valid != VM_PAGE_BITS_ALL)
5003 			return (false);
5004 	}
5005 	return (true);
5006 }
5007 
5008 /*
5009  * Set the page's dirty bits if the page is modified.
5010  */
5011 void
5012 vm_page_test_dirty(vm_page_t m)
5013 {
5014 
5015 	vm_page_assert_busied(m);
5016 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5017 		vm_page_dirty(m);
5018 }
5019 
5020 void
5021 vm_page_valid(vm_page_t m)
5022 {
5023 
5024 	vm_page_assert_busied(m);
5025 	if (vm_page_xbusied(m))
5026 		m->valid = VM_PAGE_BITS_ALL;
5027 	else
5028 		vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5029 }
5030 
5031 void
5032 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5033 {
5034 
5035 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5036 }
5037 
5038 void
5039 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5040 {
5041 
5042 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5043 }
5044 
5045 int
5046 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5047 {
5048 
5049 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5050 }
5051 
5052 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5053 void
5054 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5055 {
5056 
5057 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5058 }
5059 
5060 void
5061 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5062 {
5063 
5064 	mtx_assert_(vm_page_lockptr(m), a, file, line);
5065 }
5066 #endif
5067 
5068 #ifdef INVARIANTS
5069 void
5070 vm_page_object_busy_assert(vm_page_t m)
5071 {
5072 
5073 	/*
5074 	 * Certain of the page's fields may only be modified by the
5075 	 * holder of a page or object busy.
5076 	 */
5077 	if (m->object != NULL && !vm_page_busied(m))
5078 		VM_OBJECT_ASSERT_BUSY(m->object);
5079 }
5080 
5081 void
5082 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5083 {
5084 
5085 	if ((bits & PGA_WRITEABLE) == 0)
5086 		return;
5087 
5088 	/*
5089 	 * The PGA_WRITEABLE flag can only be set if the page is
5090 	 * managed, is exclusively busied or the object is locked.
5091 	 * Currently, this flag is only set by pmap_enter().
5092 	 */
5093 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5094 	    ("PGA_WRITEABLE on unmanaged page"));
5095 	if (!vm_page_xbusied(m))
5096 		VM_OBJECT_ASSERT_BUSY(m->object);
5097 }
5098 #endif
5099 
5100 #include "opt_ddb.h"
5101 #ifdef DDB
5102 #include <sys/kernel.h>
5103 
5104 #include <ddb/ddb.h>
5105 
5106 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5107 {
5108 
5109 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5110 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5111 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5112 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5113 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5114 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5115 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5116 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5117 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5118 }
5119 
5120 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5121 {
5122 	int dom;
5123 
5124 	db_printf("pq_free %d\n", vm_free_count());
5125 	for (dom = 0; dom < vm_ndomains; dom++) {
5126 		db_printf(
5127     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5128 		    dom,
5129 		    vm_dom[dom].vmd_page_count,
5130 		    vm_dom[dom].vmd_free_count,
5131 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5132 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5133 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5134 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5135 	}
5136 }
5137 
5138 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5139 {
5140 	vm_page_t m;
5141 	boolean_t phys, virt;
5142 
5143 	if (!have_addr) {
5144 		db_printf("show pginfo addr\n");
5145 		return;
5146 	}
5147 
5148 	phys = strchr(modif, 'p') != NULL;
5149 	virt = strchr(modif, 'v') != NULL;
5150 	if (virt)
5151 		m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5152 	else if (phys)
5153 		m = PHYS_TO_VM_PAGE(addr);
5154 	else
5155 		m = (vm_page_t)addr;
5156 	db_printf(
5157     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref %u\n"
5158     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5159 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5160 	    m->a.queue, m->ref_count, m->a.flags, m->oflags,
5161 	    m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5162 }
5163 #endif /* DDB */
5164