xref: /freebsd/sys/vm/vm_page.c (revision b8a496dfb6df7b86e014d0d4476cd75850e060c1)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Resident memory management module.
65  */
66 
67 #include <sys/cdefs.h>
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/counter.h>
73 #include <sys/domainset.h>
74 #include <sys/kernel.h>
75 #include <sys/limits.h>
76 #include <sys/linker.h>
77 #include <sys/lock.h>
78 #include <sys/malloc.h>
79 #include <sys/mman.h>
80 #include <sys/msgbuf.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/rwlock.h>
84 #include <sys/sleepqueue.h>
85 #include <sys/sbuf.h>
86 #include <sys/sched.h>
87 #include <sys/smp.h>
88 #include <sys/sysctl.h>
89 #include <sys/vmmeter.h>
90 #include <sys/vnode.h>
91 
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_param.h>
95 #include <vm/vm_domainset.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_dumpset.h>
108 #include <vm/uma.h>
109 #include <vm/uma_int.h>
110 
111 #include <machine/md_var.h>
112 
113 struct vm_domain vm_dom[MAXMEMDOM];
114 
115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
116 
117 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
118 
119 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
120 /* The following fields are protected by the domainset lock. */
121 domainset_t __exclusive_cache_line vm_min_domains;
122 domainset_t __exclusive_cache_line vm_severe_domains;
123 static int vm_min_waiters;
124 static int vm_severe_waiters;
125 static int vm_pageproc_waiters;
126 
127 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
128     "VM page statistics");
129 
130 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
131 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
132     CTLFLAG_RD, &pqstate_commit_retries,
133     "Number of failed per-page atomic queue state updates");
134 
135 static COUNTER_U64_DEFINE_EARLY(queue_ops);
136 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
137     CTLFLAG_RD, &queue_ops,
138     "Number of batched queue operations");
139 
140 static COUNTER_U64_DEFINE_EARLY(queue_nops);
141 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
142     CTLFLAG_RD, &queue_nops,
143     "Number of batched queue operations with no effects");
144 
145 /*
146  * bogus page -- for I/O to/from partially complete buffers,
147  * or for paging into sparsely invalid regions.
148  */
149 vm_page_t bogus_page;
150 
151 vm_page_t vm_page_array;
152 long vm_page_array_size;
153 long first_page;
154 
155 struct bitset *vm_page_dump;
156 long vm_page_dump_pages;
157 
158 static TAILQ_HEAD(, vm_page) blacklist_head;
159 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
160 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
161     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
162 
163 static uma_zone_t fakepg_zone;
164 
165 static void vm_page_alloc_check(vm_page_t m);
166 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
167     vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
168 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
169 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
170 static bool vm_page_free_prep(vm_page_t m);
171 static void vm_page_free_toq(vm_page_t m);
172 static void vm_page_init(void *dummy);
173 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
174     vm_pindex_t pindex, vm_page_t mpred);
175 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
176     vm_page_t mpred);
177 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
178     const uint16_t nflag);
179 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
180     vm_page_t m_run, vm_paddr_t high);
181 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
182 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
183     int req);
184 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
185     int flags);
186 static void vm_page_zone_release(void *arg, void **store, int cnt);
187 
188 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
189 
190 static void
191 vm_page_init(void *dummy)
192 {
193 
194 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
195 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
196 	bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED);
197 }
198 
199 static int pgcache_zone_max_pcpu;
200 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu,
201     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0,
202     "Per-CPU page cache size");
203 
204 /*
205  * The cache page zone is initialized later since we need to be able to allocate
206  * pages before UMA is fully initialized.
207  */
208 static void
209 vm_page_init_cache_zones(void *dummy __unused)
210 {
211 	struct vm_domain *vmd;
212 	struct vm_pgcache *pgcache;
213 	int cache, domain, maxcache, pool;
214 
215 	TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu);
216 	maxcache = pgcache_zone_max_pcpu * mp_ncpus;
217 	for (domain = 0; domain < vm_ndomains; domain++) {
218 		vmd = VM_DOMAIN(domain);
219 		for (pool = 0; pool < VM_NFREEPOOL; pool++) {
220 			pgcache = &vmd->vmd_pgcache[pool];
221 			pgcache->domain = domain;
222 			pgcache->pool = pool;
223 			pgcache->zone = uma_zcache_create("vm pgcache",
224 			    PAGE_SIZE, NULL, NULL, NULL, NULL,
225 			    vm_page_zone_import, vm_page_zone_release, pgcache,
226 			    UMA_ZONE_VM);
227 
228 			/*
229 			 * Limit each pool's zone to 0.1% of the pages in the
230 			 * domain.
231 			 */
232 			cache = maxcache != 0 ? maxcache :
233 			    vmd->vmd_page_count / 1000;
234 			uma_zone_set_maxcache(pgcache->zone, cache);
235 		}
236 	}
237 }
238 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
239 
240 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
241 #if PAGE_SIZE == 32768
242 #ifdef CTASSERT
243 CTASSERT(sizeof(u_long) >= 8);
244 #endif
245 #endif
246 
247 /*
248  *	vm_set_page_size:
249  *
250  *	Sets the page size, perhaps based upon the memory
251  *	size.  Must be called before any use of page-size
252  *	dependent functions.
253  */
254 void
255 vm_set_page_size(void)
256 {
257 	if (vm_cnt.v_page_size == 0)
258 		vm_cnt.v_page_size = PAGE_SIZE;
259 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
260 		panic("vm_set_page_size: page size not a power of two");
261 }
262 
263 /*
264  *	vm_page_blacklist_next:
265  *
266  *	Find the next entry in the provided string of blacklist
267  *	addresses.  Entries are separated by space, comma, or newline.
268  *	If an invalid integer is encountered then the rest of the
269  *	string is skipped.  Updates the list pointer to the next
270  *	character, or NULL if the string is exhausted or invalid.
271  */
272 static vm_paddr_t
273 vm_page_blacklist_next(char **list, char *end)
274 {
275 	vm_paddr_t bad;
276 	char *cp, *pos;
277 
278 	if (list == NULL || *list == NULL)
279 		return (0);
280 	if (**list =='\0') {
281 		*list = NULL;
282 		return (0);
283 	}
284 
285 	/*
286 	 * If there's no end pointer then the buffer is coming from
287 	 * the kenv and we know it's null-terminated.
288 	 */
289 	if (end == NULL)
290 		end = *list + strlen(*list);
291 
292 	/* Ensure that strtoq() won't walk off the end */
293 	if (*end != '\0') {
294 		if (*end == '\n' || *end == ' ' || *end  == ',')
295 			*end = '\0';
296 		else {
297 			printf("Blacklist not terminated, skipping\n");
298 			*list = NULL;
299 			return (0);
300 		}
301 	}
302 
303 	for (pos = *list; *pos != '\0'; pos = cp) {
304 		bad = strtoq(pos, &cp, 0);
305 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
306 			if (bad == 0) {
307 				if (++cp < end)
308 					continue;
309 				else
310 					break;
311 			}
312 		} else
313 			break;
314 		if (*cp == '\0' || ++cp >= end)
315 			*list = NULL;
316 		else
317 			*list = cp;
318 		return (trunc_page(bad));
319 	}
320 	printf("Garbage in RAM blacklist, skipping\n");
321 	*list = NULL;
322 	return (0);
323 }
324 
325 bool
326 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
327 {
328 	struct vm_domain *vmd;
329 	vm_page_t m;
330 	bool found;
331 
332 	m = vm_phys_paddr_to_vm_page(pa);
333 	if (m == NULL)
334 		return (true); /* page does not exist, no failure */
335 
336 	vmd = vm_pagequeue_domain(m);
337 	vm_domain_free_lock(vmd);
338 	found = vm_phys_unfree_page(m);
339 	vm_domain_free_unlock(vmd);
340 	if (found) {
341 		vm_domain_freecnt_inc(vmd, -1);
342 		TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
343 		if (verbose)
344 			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
345 	}
346 	return (found);
347 }
348 
349 /*
350  *	vm_page_blacklist_check:
351  *
352  *	Iterate through the provided string of blacklist addresses, pulling
353  *	each entry out of the physical allocator free list and putting it
354  *	onto a list for reporting via the vm.page_blacklist sysctl.
355  */
356 static void
357 vm_page_blacklist_check(char *list, char *end)
358 {
359 	vm_paddr_t pa;
360 	char *next;
361 
362 	next = list;
363 	while (next != NULL) {
364 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
365 			continue;
366 		vm_page_blacklist_add(pa, bootverbose);
367 	}
368 }
369 
370 /*
371  *	vm_page_blacklist_load:
372  *
373  *	Search for a special module named "ram_blacklist".  It'll be a
374  *	plain text file provided by the user via the loader directive
375  *	of the same name.
376  */
377 static void
378 vm_page_blacklist_load(char **list, char **end)
379 {
380 	void *mod;
381 	u_char *ptr;
382 	u_int len;
383 
384 	mod = NULL;
385 	ptr = NULL;
386 
387 	mod = preload_search_by_type("ram_blacklist");
388 	if (mod != NULL) {
389 		ptr = preload_fetch_addr(mod);
390 		len = preload_fetch_size(mod);
391         }
392 	*list = ptr;
393 	if (ptr != NULL)
394 		*end = ptr + len;
395 	else
396 		*end = NULL;
397 	return;
398 }
399 
400 static int
401 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
402 {
403 	vm_page_t m;
404 	struct sbuf sbuf;
405 	int error, first;
406 
407 	first = 1;
408 	error = sysctl_wire_old_buffer(req, 0);
409 	if (error != 0)
410 		return (error);
411 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
412 	TAILQ_FOREACH(m, &blacklist_head, listq) {
413 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
414 		    (uintmax_t)m->phys_addr);
415 		first = 0;
416 	}
417 	error = sbuf_finish(&sbuf);
418 	sbuf_delete(&sbuf);
419 	return (error);
420 }
421 
422 /*
423  * Initialize a dummy page for use in scans of the specified paging queue.
424  * In principle, this function only needs to set the flag PG_MARKER.
425  * Nonetheless, it write busies the page as a safety precaution.
426  */
427 void
428 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
429 {
430 
431 	bzero(marker, sizeof(*marker));
432 	marker->flags = PG_MARKER;
433 	marker->a.flags = aflags;
434 	marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
435 	marker->a.queue = queue;
436 }
437 
438 static void
439 vm_page_domain_init(int domain)
440 {
441 	struct vm_domain *vmd;
442 	struct vm_pagequeue *pq;
443 	int i;
444 
445 	vmd = VM_DOMAIN(domain);
446 	bzero(vmd, sizeof(*vmd));
447 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
448 	    "vm inactive pagequeue";
449 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
450 	    "vm active pagequeue";
451 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
452 	    "vm laundry pagequeue";
453 	*__DECONST(const char **,
454 	    &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
455 	    "vm unswappable pagequeue";
456 	vmd->vmd_domain = domain;
457 	vmd->vmd_page_count = 0;
458 	vmd->vmd_free_count = 0;
459 	vmd->vmd_segs = 0;
460 	vmd->vmd_oom = FALSE;
461 	for (i = 0; i < PQ_COUNT; i++) {
462 		pq = &vmd->vmd_pagequeues[i];
463 		TAILQ_INIT(&pq->pq_pl);
464 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
465 		    MTX_DEF | MTX_DUPOK);
466 		pq->pq_pdpages = 0;
467 		vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
468 	}
469 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
470 	mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
471 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
472 
473 	/*
474 	 * inacthead is used to provide FIFO ordering for LRU-bypassing
475 	 * insertions.
476 	 */
477 	vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
478 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
479 	    &vmd->vmd_inacthead, plinks.q);
480 
481 	/*
482 	 * The clock pages are used to implement active queue scanning without
483 	 * requeues.  Scans start at clock[0], which is advanced after the scan
484 	 * ends.  When the two clock hands meet, they are reset and scanning
485 	 * resumes from the head of the queue.
486 	 */
487 	vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
488 	vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
489 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
490 	    &vmd->vmd_clock[0], plinks.q);
491 	TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
492 	    &vmd->vmd_clock[1], plinks.q);
493 }
494 
495 /*
496  * Initialize a physical page in preparation for adding it to the free
497  * lists.
498  */
499 void
500 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
501 {
502 
503 	m->object = NULL;
504 	m->ref_count = 0;
505 	m->busy_lock = VPB_FREED;
506 	m->flags = m->a.flags = 0;
507 	m->phys_addr = pa;
508 	m->a.queue = PQ_NONE;
509 	m->psind = 0;
510 	m->segind = segind;
511 	m->order = VM_NFREEORDER;
512 	m->pool = VM_FREEPOOL_DEFAULT;
513 	m->valid = m->dirty = 0;
514 	pmap_page_init(m);
515 }
516 
517 #ifndef PMAP_HAS_PAGE_ARRAY
518 static vm_paddr_t
519 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
520 {
521 	vm_paddr_t new_end;
522 
523 	/*
524 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
525 	 * However, because this page is allocated from KVM, out-of-bounds
526 	 * accesses using the direct map will not be trapped.
527 	 */
528 	*vaddr += PAGE_SIZE;
529 
530 	/*
531 	 * Allocate physical memory for the page structures, and map it.
532 	 */
533 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
534 	vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
535 	    VM_PROT_READ | VM_PROT_WRITE);
536 	vm_page_array_size = page_range;
537 
538 	return (new_end);
539 }
540 #endif
541 
542 /*
543  *	vm_page_startup:
544  *
545  *	Initializes the resident memory module.  Allocates physical memory for
546  *	bootstrapping UMA and some data structures that are used to manage
547  *	physical pages.  Initializes these structures, and populates the free
548  *	page queues.
549  */
550 vm_offset_t
551 vm_page_startup(vm_offset_t vaddr)
552 {
553 	struct vm_phys_seg *seg;
554 	struct vm_domain *vmd;
555 	vm_page_t m;
556 	char *list, *listend;
557 	vm_paddr_t end, high_avail, low_avail, new_end, size;
558 	vm_paddr_t page_range __unused;
559 	vm_paddr_t last_pa, pa, startp, endp;
560 	u_long pagecount;
561 #if MINIDUMP_PAGE_TRACKING
562 	u_long vm_page_dump_size;
563 #endif
564 	int biggestone, i, segind;
565 #ifdef WITNESS
566 	vm_offset_t mapped;
567 	int witness_size;
568 #endif
569 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
570 	long ii;
571 #endif
572 
573 	vaddr = round_page(vaddr);
574 
575 	vm_phys_early_startup();
576 	biggestone = vm_phys_avail_largest();
577 	end = phys_avail[biggestone+1];
578 
579 	/*
580 	 * Initialize the page and queue locks.
581 	 */
582 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
583 	for (i = 0; i < PA_LOCK_COUNT; i++)
584 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
585 	for (i = 0; i < vm_ndomains; i++)
586 		vm_page_domain_init(i);
587 
588 	new_end = end;
589 #ifdef WITNESS
590 	witness_size = round_page(witness_startup_count());
591 	new_end -= witness_size;
592 	mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
593 	    VM_PROT_READ | VM_PROT_WRITE);
594 	bzero((void *)mapped, witness_size);
595 	witness_startup((void *)mapped);
596 #endif
597 
598 #if MINIDUMP_PAGE_TRACKING
599 	/*
600 	 * Allocate a bitmap to indicate that a random physical page
601 	 * needs to be included in a minidump.
602 	 *
603 	 * The amd64 port needs this to indicate which direct map pages
604 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
605 	 *
606 	 * However, i386 still needs this workspace internally within the
607 	 * minidump code.  In theory, they are not needed on i386, but are
608 	 * included should the sf_buf code decide to use them.
609 	 */
610 	last_pa = 0;
611 	vm_page_dump_pages = 0;
612 	for (i = 0; dump_avail[i + 1] != 0; i += 2) {
613 		vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
614 		    dump_avail[i] / PAGE_SIZE;
615 		if (dump_avail[i + 1] > last_pa)
616 			last_pa = dump_avail[i + 1];
617 	}
618 	vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
619 	new_end -= vm_page_dump_size;
620 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
621 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
622 	bzero((void *)vm_page_dump, vm_page_dump_size);
623 #if MINIDUMP_STARTUP_PAGE_TRACKING
624 	/*
625 	 * Include the UMA bootstrap pages, witness pages and vm_page_dump
626 	 * in a crash dump.  When pmap_map() uses the direct map, they are
627 	 * not automatically included.
628 	 */
629 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
630 		dump_add_page(pa);
631 #endif
632 #else
633 	(void)last_pa;
634 #endif
635 	phys_avail[biggestone + 1] = new_end;
636 #ifdef __amd64__
637 	/*
638 	 * Request that the physical pages underlying the message buffer be
639 	 * included in a crash dump.  Since the message buffer is accessed
640 	 * through the direct map, they are not automatically included.
641 	 */
642 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
643 	last_pa = pa + round_page(msgbufsize);
644 	while (pa < last_pa) {
645 		dump_add_page(pa);
646 		pa += PAGE_SIZE;
647 	}
648 #endif
649 	/*
650 	 * Compute the number of pages of memory that will be available for
651 	 * use, taking into account the overhead of a page structure per page.
652 	 * In other words, solve
653 	 *	"available physical memory" - round_page(page_range *
654 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
655 	 * for page_range.
656 	 */
657 	low_avail = phys_avail[0];
658 	high_avail = phys_avail[1];
659 	for (i = 0; i < vm_phys_nsegs; i++) {
660 		if (vm_phys_segs[i].start < low_avail)
661 			low_avail = vm_phys_segs[i].start;
662 		if (vm_phys_segs[i].end > high_avail)
663 			high_avail = vm_phys_segs[i].end;
664 	}
665 	/* Skip the first chunk.  It is already accounted for. */
666 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
667 		if (phys_avail[i] < low_avail)
668 			low_avail = phys_avail[i];
669 		if (phys_avail[i + 1] > high_avail)
670 			high_avail = phys_avail[i + 1];
671 	}
672 	first_page = low_avail / PAGE_SIZE;
673 #ifdef VM_PHYSSEG_SPARSE
674 	size = 0;
675 	for (i = 0; i < vm_phys_nsegs; i++)
676 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
677 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
678 		size += phys_avail[i + 1] - phys_avail[i];
679 #elif defined(VM_PHYSSEG_DENSE)
680 	size = high_avail - low_avail;
681 #else
682 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
683 #endif
684 
685 #ifdef PMAP_HAS_PAGE_ARRAY
686 	pmap_page_array_startup(size / PAGE_SIZE);
687 	biggestone = vm_phys_avail_largest();
688 	end = new_end = phys_avail[biggestone + 1];
689 #else
690 #ifdef VM_PHYSSEG_DENSE
691 	/*
692 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
693 	 * the overhead of a page structure per page only if vm_page_array is
694 	 * allocated from the last physical memory chunk.  Otherwise, we must
695 	 * allocate page structures representing the physical memory
696 	 * underlying vm_page_array, even though they will not be used.
697 	 */
698 	if (new_end != high_avail)
699 		page_range = size / PAGE_SIZE;
700 	else
701 #endif
702 	{
703 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
704 
705 		/*
706 		 * If the partial bytes remaining are large enough for
707 		 * a page (PAGE_SIZE) without a corresponding
708 		 * 'struct vm_page', then new_end will contain an
709 		 * extra page after subtracting the length of the VM
710 		 * page array.  Compensate by subtracting an extra
711 		 * page from new_end.
712 		 */
713 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
714 			if (new_end == high_avail)
715 				high_avail -= PAGE_SIZE;
716 			new_end -= PAGE_SIZE;
717 		}
718 	}
719 	end = new_end;
720 	new_end = vm_page_array_alloc(&vaddr, end, page_range);
721 #endif
722 
723 #if VM_NRESERVLEVEL > 0
724 	/*
725 	 * Allocate physical memory for the reservation management system's
726 	 * data structures, and map it.
727 	 */
728 	new_end = vm_reserv_startup(&vaddr, new_end);
729 #endif
730 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
731 	/*
732 	 * Include vm_page_array and vm_reserv_array in a crash dump.
733 	 */
734 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
735 		dump_add_page(pa);
736 #endif
737 	phys_avail[biggestone + 1] = new_end;
738 
739 	/*
740 	 * Add physical memory segments corresponding to the available
741 	 * physical pages.
742 	 */
743 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
744 		if (vm_phys_avail_size(i) != 0)
745 			vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
746 
747 	/*
748 	 * Initialize the physical memory allocator.
749 	 */
750 	vm_phys_init();
751 
752 	/*
753 	 * Initialize the page structures and add every available page to the
754 	 * physical memory allocator's free lists.
755 	 */
756 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
757 	for (ii = 0; ii < vm_page_array_size; ii++) {
758 		m = &vm_page_array[ii];
759 		vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
760 		m->flags = PG_FICTITIOUS;
761 	}
762 #endif
763 	vm_cnt.v_page_count = 0;
764 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
765 		seg = &vm_phys_segs[segind];
766 		for (m = seg->first_page, pa = seg->start; pa < seg->end;
767 		    m++, pa += PAGE_SIZE)
768 			vm_page_init_page(m, pa, segind);
769 
770 		/*
771 		 * Add the segment's pages that are covered by one of
772 		 * phys_avail's ranges to the free lists.
773 		 */
774 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
775 			if (seg->end <= phys_avail[i] ||
776 			    seg->start >= phys_avail[i + 1])
777 				continue;
778 
779 			startp = MAX(seg->start, phys_avail[i]);
780 			endp = MIN(seg->end, phys_avail[i + 1]);
781 			pagecount = (u_long)atop(endp - startp);
782 			if (pagecount == 0)
783 				continue;
784 
785 			m = seg->first_page + atop(startp - seg->start);
786 			vmd = VM_DOMAIN(seg->domain);
787 			vm_domain_free_lock(vmd);
788 			vm_phys_enqueue_contig(m, pagecount);
789 			vm_domain_free_unlock(vmd);
790 			vm_domain_freecnt_inc(vmd, pagecount);
791 			vm_cnt.v_page_count += (u_int)pagecount;
792 			vmd->vmd_page_count += (u_int)pagecount;
793 			vmd->vmd_segs |= 1UL << segind;
794 		}
795 	}
796 
797 	/*
798 	 * Remove blacklisted pages from the physical memory allocator.
799 	 */
800 	TAILQ_INIT(&blacklist_head);
801 	vm_page_blacklist_load(&list, &listend);
802 	vm_page_blacklist_check(list, listend);
803 
804 	list = kern_getenv("vm.blacklist");
805 	vm_page_blacklist_check(list, NULL);
806 
807 	freeenv(list);
808 #if VM_NRESERVLEVEL > 0
809 	/*
810 	 * Initialize the reservation management system.
811 	 */
812 	vm_reserv_init();
813 #endif
814 
815 	return (vaddr);
816 }
817 
818 void
819 vm_page_reference(vm_page_t m)
820 {
821 
822 	vm_page_aflag_set(m, PGA_REFERENCED);
823 }
824 
825 /*
826  *	vm_page_trybusy
827  *
828  *	Helper routine for grab functions to trylock busy.
829  *
830  *	Returns true on success and false on failure.
831  */
832 static bool
833 vm_page_trybusy(vm_page_t m, int allocflags)
834 {
835 
836 	if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
837 		return (vm_page_trysbusy(m));
838 	else
839 		return (vm_page_tryxbusy(m));
840 }
841 
842 /*
843  *	vm_page_tryacquire
844  *
845  *	Helper routine for grab functions to trylock busy and wire.
846  *
847  *	Returns true on success and false on failure.
848  */
849 static inline bool
850 vm_page_tryacquire(vm_page_t m, int allocflags)
851 {
852 	bool locked;
853 
854 	locked = vm_page_trybusy(m, allocflags);
855 	if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
856 		vm_page_wire(m);
857 	return (locked);
858 }
859 
860 /*
861  *	vm_page_busy_acquire:
862  *
863  *	Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
864  *	and drop the object lock if necessary.
865  */
866 bool
867 vm_page_busy_acquire(vm_page_t m, int allocflags)
868 {
869 	vm_object_t obj;
870 	bool locked;
871 
872 	/*
873 	 * The page-specific object must be cached because page
874 	 * identity can change during the sleep, causing the
875 	 * re-lock of a different object.
876 	 * It is assumed that a reference to the object is already
877 	 * held by the callers.
878 	 */
879 	obj = atomic_load_ptr(&m->object);
880 	for (;;) {
881 		if (vm_page_tryacquire(m, allocflags))
882 			return (true);
883 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
884 			return (false);
885 		if (obj != NULL)
886 			locked = VM_OBJECT_WOWNED(obj);
887 		else
888 			locked = false;
889 		MPASS(locked || vm_page_wired(m));
890 		if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
891 		    locked) && locked)
892 			VM_OBJECT_WLOCK(obj);
893 		if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
894 			return (false);
895 		KASSERT(m->object == obj || m->object == NULL,
896 		    ("vm_page_busy_acquire: page %p does not belong to %p",
897 		    m, obj));
898 	}
899 }
900 
901 /*
902  *	vm_page_busy_downgrade:
903  *
904  *	Downgrade an exclusive busy page into a single shared busy page.
905  */
906 void
907 vm_page_busy_downgrade(vm_page_t m)
908 {
909 	u_int x;
910 
911 	vm_page_assert_xbusied(m);
912 
913 	x = vm_page_busy_fetch(m);
914 	for (;;) {
915 		if (atomic_fcmpset_rel_int(&m->busy_lock,
916 		    &x, VPB_SHARERS_WORD(1)))
917 			break;
918 	}
919 	if ((x & VPB_BIT_WAITERS) != 0)
920 		wakeup(m);
921 }
922 
923 /*
924  *
925  *	vm_page_busy_tryupgrade:
926  *
927  *	Attempt to upgrade a single shared busy into an exclusive busy.
928  */
929 int
930 vm_page_busy_tryupgrade(vm_page_t m)
931 {
932 	u_int ce, x;
933 
934 	vm_page_assert_sbusied(m);
935 
936 	x = vm_page_busy_fetch(m);
937 	ce = VPB_CURTHREAD_EXCLUSIVE;
938 	for (;;) {
939 		if (VPB_SHARERS(x) > 1)
940 			return (0);
941 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
942 		    ("vm_page_busy_tryupgrade: invalid lock state"));
943 		if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
944 		    ce | (x & VPB_BIT_WAITERS)))
945 			continue;
946 		return (1);
947 	}
948 }
949 
950 /*
951  *	vm_page_sbusied:
952  *
953  *	Return a positive value if the page is shared busied, 0 otherwise.
954  */
955 int
956 vm_page_sbusied(vm_page_t m)
957 {
958 	u_int x;
959 
960 	x = vm_page_busy_fetch(m);
961 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
962 }
963 
964 /*
965  *	vm_page_sunbusy:
966  *
967  *	Shared unbusy a page.
968  */
969 void
970 vm_page_sunbusy(vm_page_t m)
971 {
972 	u_int x;
973 
974 	vm_page_assert_sbusied(m);
975 
976 	x = vm_page_busy_fetch(m);
977 	for (;;) {
978 		KASSERT(x != VPB_FREED,
979 		    ("vm_page_sunbusy: Unlocking freed page."));
980 		if (VPB_SHARERS(x) > 1) {
981 			if (atomic_fcmpset_int(&m->busy_lock, &x,
982 			    x - VPB_ONE_SHARER))
983 				break;
984 			continue;
985 		}
986 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
987 		    ("vm_page_sunbusy: invalid lock state"));
988 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
989 			continue;
990 		if ((x & VPB_BIT_WAITERS) == 0)
991 			break;
992 		wakeup(m);
993 		break;
994 	}
995 }
996 
997 /*
998  *	vm_page_busy_sleep:
999  *
1000  *	Sleep if the page is busy, using the page pointer as wchan.
1001  *	This is used to implement the hard-path of the busying mechanism.
1002  *
1003  *	If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1004  *	will not sleep if the page is shared-busy.
1005  *
1006  *	The object lock must be held on entry.
1007  *
1008  *	Returns true if it slept and dropped the object lock, or false
1009  *	if there was no sleep and the lock is still held.
1010  */
1011 bool
1012 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
1013 {
1014 	vm_object_t obj;
1015 
1016 	obj = m->object;
1017 	VM_OBJECT_ASSERT_LOCKED(obj);
1018 
1019 	return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
1020 	    true));
1021 }
1022 
1023 /*
1024  *	vm_page_busy_sleep_unlocked:
1025  *
1026  *	Sleep if the page is busy, using the page pointer as wchan.
1027  *	This is used to implement the hard-path of busying mechanism.
1028  *
1029  *	If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1030  *	will not sleep if the page is shared-busy.
1031  *
1032  *	The object lock must not be held on entry.  The operation will
1033  *	return if the page changes identity.
1034  */
1035 void
1036 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1037     const char *wmesg, int allocflags)
1038 {
1039 	VM_OBJECT_ASSERT_UNLOCKED(obj);
1040 
1041 	(void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
1042 }
1043 
1044 /*
1045  *	_vm_page_busy_sleep:
1046  *
1047  *	Internal busy sleep function.  Verifies the page identity and
1048  *	lockstate against parameters.  Returns true if it sleeps and
1049  *	false otherwise.
1050  *
1051  *	allocflags uses VM_ALLOC_* flags to specify the lock required.
1052  *
1053  *	If locked is true the lock will be dropped for any true returns
1054  *	and held for any false returns.
1055  */
1056 static bool
1057 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1058     const char *wmesg, int allocflags, bool locked)
1059 {
1060 	bool xsleep;
1061 	u_int x;
1062 
1063 	/*
1064 	 * If the object is busy we must wait for that to drain to zero
1065 	 * before trying the page again.
1066 	 */
1067 	if (obj != NULL && vm_object_busied(obj)) {
1068 		if (locked)
1069 			VM_OBJECT_DROP(obj);
1070 		vm_object_busy_wait(obj, wmesg);
1071 		return (true);
1072 	}
1073 
1074 	if (!vm_page_busied(m))
1075 		return (false);
1076 
1077 	xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1078 	sleepq_lock(m);
1079 	x = vm_page_busy_fetch(m);
1080 	do {
1081 		/*
1082 		 * If the page changes objects or becomes unlocked we can
1083 		 * simply return.
1084 		 */
1085 		if (x == VPB_UNBUSIED ||
1086 		    (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1087 		    m->object != obj || m->pindex != pindex) {
1088 			sleepq_release(m);
1089 			return (false);
1090 		}
1091 		if ((x & VPB_BIT_WAITERS) != 0)
1092 			break;
1093 	} while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1094 	if (locked)
1095 		VM_OBJECT_DROP(obj);
1096 	DROP_GIANT();
1097 	sleepq_add(m, NULL, wmesg, 0, 0);
1098 	sleepq_wait(m, PVM);
1099 	PICKUP_GIANT();
1100 	return (true);
1101 }
1102 
1103 /*
1104  *	vm_page_trysbusy:
1105  *
1106  *	Try to shared busy a page.
1107  *	If the operation succeeds 1 is returned otherwise 0.
1108  *	The operation never sleeps.
1109  */
1110 int
1111 vm_page_trysbusy(vm_page_t m)
1112 {
1113 	vm_object_t obj;
1114 	u_int x;
1115 
1116 	obj = m->object;
1117 	x = vm_page_busy_fetch(m);
1118 	for (;;) {
1119 		if ((x & VPB_BIT_SHARED) == 0)
1120 			return (0);
1121 		/*
1122 		 * Reduce the window for transient busies that will trigger
1123 		 * false negatives in vm_page_ps_test().
1124 		 */
1125 		if (obj != NULL && vm_object_busied(obj))
1126 			return (0);
1127 		if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1128 		    x + VPB_ONE_SHARER))
1129 			break;
1130 	}
1131 
1132 	/* Refetch the object now that we're guaranteed that it is stable. */
1133 	obj = m->object;
1134 	if (obj != NULL && vm_object_busied(obj)) {
1135 		vm_page_sunbusy(m);
1136 		return (0);
1137 	}
1138 	return (1);
1139 }
1140 
1141 /*
1142  *	vm_page_tryxbusy:
1143  *
1144  *	Try to exclusive busy a page.
1145  *	If the operation succeeds 1 is returned otherwise 0.
1146  *	The operation never sleeps.
1147  */
1148 int
1149 vm_page_tryxbusy(vm_page_t m)
1150 {
1151 	vm_object_t obj;
1152 
1153         if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1154             VPB_CURTHREAD_EXCLUSIVE) == 0)
1155 		return (0);
1156 
1157 	obj = m->object;
1158 	if (obj != NULL && vm_object_busied(obj)) {
1159 		vm_page_xunbusy(m);
1160 		return (0);
1161 	}
1162 	return (1);
1163 }
1164 
1165 static void
1166 vm_page_xunbusy_hard_tail(vm_page_t m)
1167 {
1168 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1169 	/* Wake the waiter. */
1170 	wakeup(m);
1171 }
1172 
1173 /*
1174  *	vm_page_xunbusy_hard:
1175  *
1176  *	Called when unbusy has failed because there is a waiter.
1177  */
1178 void
1179 vm_page_xunbusy_hard(vm_page_t m)
1180 {
1181 	vm_page_assert_xbusied(m);
1182 	vm_page_xunbusy_hard_tail(m);
1183 }
1184 
1185 void
1186 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1187 {
1188 	vm_page_assert_xbusied_unchecked(m);
1189 	vm_page_xunbusy_hard_tail(m);
1190 }
1191 
1192 static void
1193 vm_page_busy_free(vm_page_t m)
1194 {
1195 	u_int x;
1196 
1197 	atomic_thread_fence_rel();
1198 	x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1199 	if ((x & VPB_BIT_WAITERS) != 0)
1200 		wakeup(m);
1201 }
1202 
1203 /*
1204  *	vm_page_unhold_pages:
1205  *
1206  *	Unhold each of the pages that is referenced by the given array.
1207  */
1208 void
1209 vm_page_unhold_pages(vm_page_t *ma, int count)
1210 {
1211 
1212 	for (; count != 0; count--) {
1213 		vm_page_unwire(*ma, PQ_ACTIVE);
1214 		ma++;
1215 	}
1216 }
1217 
1218 vm_page_t
1219 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1220 {
1221 	vm_page_t m;
1222 
1223 #ifdef VM_PHYSSEG_SPARSE
1224 	m = vm_phys_paddr_to_vm_page(pa);
1225 	if (m == NULL)
1226 		m = vm_phys_fictitious_to_vm_page(pa);
1227 	return (m);
1228 #elif defined(VM_PHYSSEG_DENSE)
1229 	long pi;
1230 
1231 	pi = atop(pa);
1232 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1233 		m = &vm_page_array[pi - first_page];
1234 		return (m);
1235 	}
1236 	return (vm_phys_fictitious_to_vm_page(pa));
1237 #else
1238 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1239 #endif
1240 }
1241 
1242 /*
1243  *	vm_page_getfake:
1244  *
1245  *	Create a fictitious page with the specified physical address and
1246  *	memory attribute.  The memory attribute is the only the machine-
1247  *	dependent aspect of a fictitious page that must be initialized.
1248  */
1249 vm_page_t
1250 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1251 {
1252 	vm_page_t m;
1253 
1254 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1255 	vm_page_initfake(m, paddr, memattr);
1256 	return (m);
1257 }
1258 
1259 void
1260 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1261 {
1262 
1263 	if ((m->flags & PG_FICTITIOUS) != 0) {
1264 		/*
1265 		 * The page's memattr might have changed since the
1266 		 * previous initialization.  Update the pmap to the
1267 		 * new memattr.
1268 		 */
1269 		goto memattr;
1270 	}
1271 	m->phys_addr = paddr;
1272 	m->a.queue = PQ_NONE;
1273 	/* Fictitious pages don't use "segind". */
1274 	m->flags = PG_FICTITIOUS;
1275 	/* Fictitious pages don't use "order" or "pool". */
1276 	m->oflags = VPO_UNMANAGED;
1277 	m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1278 	/* Fictitious pages are unevictable. */
1279 	m->ref_count = 1;
1280 	pmap_page_init(m);
1281 memattr:
1282 	pmap_page_set_memattr(m, memattr);
1283 }
1284 
1285 /*
1286  *	vm_page_putfake:
1287  *
1288  *	Release a fictitious page.
1289  */
1290 void
1291 vm_page_putfake(vm_page_t m)
1292 {
1293 
1294 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1295 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1296 	    ("vm_page_putfake: bad page %p", m));
1297 	vm_page_assert_xbusied(m);
1298 	vm_page_busy_free(m);
1299 	uma_zfree(fakepg_zone, m);
1300 }
1301 
1302 /*
1303  *	vm_page_updatefake:
1304  *
1305  *	Update the given fictitious page to the specified physical address and
1306  *	memory attribute.
1307  */
1308 void
1309 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1310 {
1311 
1312 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1313 	    ("vm_page_updatefake: bad page %p", m));
1314 	m->phys_addr = paddr;
1315 	pmap_page_set_memattr(m, memattr);
1316 }
1317 
1318 /*
1319  *	vm_page_free:
1320  *
1321  *	Free a page.
1322  */
1323 void
1324 vm_page_free(vm_page_t m)
1325 {
1326 
1327 	m->flags &= ~PG_ZERO;
1328 	vm_page_free_toq(m);
1329 }
1330 
1331 /*
1332  *	vm_page_free_zero:
1333  *
1334  *	Free a page to the zerod-pages queue
1335  */
1336 void
1337 vm_page_free_zero(vm_page_t m)
1338 {
1339 
1340 	m->flags |= PG_ZERO;
1341 	vm_page_free_toq(m);
1342 }
1343 
1344 /*
1345  * Unbusy and handle the page queueing for a page from a getpages request that
1346  * was optionally read ahead or behind.
1347  */
1348 void
1349 vm_page_readahead_finish(vm_page_t m)
1350 {
1351 
1352 	/* We shouldn't put invalid pages on queues. */
1353 	KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1354 
1355 	/*
1356 	 * Since the page is not the actually needed one, whether it should
1357 	 * be activated or deactivated is not obvious.  Empirical results
1358 	 * have shown that deactivating the page is usually the best choice,
1359 	 * unless the page is wanted by another thread.
1360 	 */
1361 	if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1362 		vm_page_activate(m);
1363 	else
1364 		vm_page_deactivate(m);
1365 	vm_page_xunbusy_unchecked(m);
1366 }
1367 
1368 /*
1369  * Destroy the identity of an invalid page and free it if possible.
1370  * This is intended to be used when reading a page from backing store fails.
1371  */
1372 void
1373 vm_page_free_invalid(vm_page_t m)
1374 {
1375 
1376 	KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1377 	KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1378 	KASSERT(m->object != NULL, ("page %p has no object", m));
1379 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1380 
1381 	/*
1382 	 * We may be attempting to free the page as part of the handling for an
1383 	 * I/O error, in which case the page was xbusied by a different thread.
1384 	 */
1385 	vm_page_xbusy_claim(m);
1386 
1387 	/*
1388 	 * If someone has wired this page while the object lock
1389 	 * was not held, then the thread that unwires is responsible
1390 	 * for freeing the page.  Otherwise just free the page now.
1391 	 * The wire count of this unmapped page cannot change while
1392 	 * we have the page xbusy and the page's object wlocked.
1393 	 */
1394 	if (vm_page_remove(m))
1395 		vm_page_free(m);
1396 }
1397 
1398 /*
1399  *	vm_page_dirty_KBI:		[ internal use only ]
1400  *
1401  *	Set all bits in the page's dirty field.
1402  *
1403  *	The object containing the specified page must be locked if the
1404  *	call is made from the machine-independent layer.
1405  *
1406  *	See vm_page_clear_dirty_mask().
1407  *
1408  *	This function should only be called by vm_page_dirty().
1409  */
1410 void
1411 vm_page_dirty_KBI(vm_page_t m)
1412 {
1413 
1414 	/* Refer to this operation by its public name. */
1415 	KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1416 	m->dirty = VM_PAGE_BITS_ALL;
1417 }
1418 
1419 /*
1420  * Insert the given page into the given object at the given pindex.  mpred is
1421  * used for memq linkage.  From vm_page_insert, lookup is true, mpred is
1422  * initially NULL, and this procedure looks it up.  From vm_page_insert_after,
1423  * lookup is false and mpred is known to the caller to be valid, and may be
1424  * NULL if this will be the page with the lowest pindex.
1425  *
1426  * The procedure is marked __always_inline to suggest to the compiler to
1427  * eliminate the lookup parameter and the associated alternate branch.
1428  */
1429 static __always_inline int
1430 vm_page_insert_lookup(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1431     vm_page_t mpred, bool lookup)
1432 {
1433 	int error;
1434 
1435 	VM_OBJECT_ASSERT_WLOCKED(object);
1436 	KASSERT(m->object == NULL,
1437 	    ("vm_page_insert: page %p already inserted", m));
1438 
1439 	/*
1440 	 * Record the object/offset pair in this page.
1441 	 */
1442 	m->object = object;
1443 	m->pindex = pindex;
1444 	m->ref_count |= VPRC_OBJREF;
1445 
1446 	/*
1447 	 * Add this page to the object's radix tree, and look up mpred if
1448 	 * needed.
1449 	 */
1450 	if (lookup)
1451 		error = vm_radix_insert_lookup_lt(&object->rtree, m, &mpred);
1452 	else
1453 		error = vm_radix_insert(&object->rtree, m);
1454 	if (__predict_false(error != 0)) {
1455 		m->object = NULL;
1456 		m->pindex = 0;
1457 		m->ref_count &= ~VPRC_OBJREF;
1458 		return (1);
1459 	}
1460 
1461 	/*
1462 	 * Now link into the object's ordered list of backed pages.
1463 	 */
1464 	vm_page_insert_radixdone(m, object, mpred);
1465 	vm_pager_page_inserted(object, m);
1466 	return (0);
1467 }
1468 
1469 /*
1470  *	vm_page_insert:		[ internal use only ]
1471  *
1472  *	Inserts the given mem entry into the object and object list.
1473  *
1474  *	The object must be locked.
1475  */
1476 int
1477 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1478 {
1479 	return (vm_page_insert_lookup(m, object, pindex, NULL, true));
1480 }
1481 
1482 /*
1483  *	vm_page_insert_after:
1484  *
1485  *	Inserts the page "m" into the specified object at offset "pindex".
1486  *
1487  *	The page "mpred" must immediately precede the offset "pindex" within
1488  *	the specified object.
1489  *
1490  *	The object must be locked.
1491  */
1492 static int
1493 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1494     vm_page_t mpred)
1495 {
1496 	return (vm_page_insert_lookup(m, object, pindex, mpred, false));
1497 }
1498 
1499 /*
1500  *	vm_page_insert_radixdone:
1501  *
1502  *	Complete page "m" insertion into the specified object after the
1503  *	radix trie hooking.
1504  *
1505  *	The page "mpred" must precede the offset "m->pindex" within the
1506  *	specified object.
1507  *
1508  *	The object must be locked.
1509  */
1510 static void
1511 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1512 {
1513 
1514 	VM_OBJECT_ASSERT_WLOCKED(object);
1515 	KASSERT(object != NULL && m->object == object,
1516 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1517 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1518 	    ("vm_page_insert_radixdone: page %p is missing object ref", m));
1519 	if (mpred != NULL) {
1520 		KASSERT(mpred->object == object,
1521 		    ("vm_page_insert_radixdone: object doesn't contain mpred"));
1522 		KASSERT(mpred->pindex < m->pindex,
1523 		    ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1524 		KASSERT(TAILQ_NEXT(mpred, listq) == NULL ||
1525 		    m->pindex < TAILQ_NEXT(mpred, listq)->pindex,
1526 		    ("vm_page_insert_radixdone: pindex doesn't precede msucc"));
1527 	} else {
1528 		KASSERT(TAILQ_EMPTY(&object->memq) ||
1529 		    m->pindex < TAILQ_FIRST(&object->memq)->pindex,
1530 		    ("vm_page_insert_radixdone: no mpred but not first page"));
1531 	}
1532 
1533 	if (mpred != NULL)
1534 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1535 	else
1536 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1537 
1538 	/*
1539 	 * Show that the object has one more resident page.
1540 	 */
1541 	object->resident_page_count++;
1542 
1543 	/*
1544 	 * Hold the vnode until the last page is released.
1545 	 */
1546 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1547 		vhold(object->handle);
1548 
1549 	/*
1550 	 * Since we are inserting a new and possibly dirty page,
1551 	 * update the object's generation count.
1552 	 */
1553 	if (pmap_page_is_write_mapped(m))
1554 		vm_object_set_writeable_dirty(object);
1555 }
1556 
1557 /*
1558  * Do the work to remove a page from its object.  The caller is responsible for
1559  * updating the page's fields to reflect this removal.
1560  */
1561 static void
1562 vm_page_object_remove(vm_page_t m)
1563 {
1564 	vm_object_t object;
1565 	vm_page_t mrem __diagused;
1566 
1567 	vm_page_assert_xbusied(m);
1568 	object = m->object;
1569 	VM_OBJECT_ASSERT_WLOCKED(object);
1570 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1571 	    ("page %p is missing its object ref", m));
1572 
1573 	/* Deferred free of swap space. */
1574 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1575 		vm_pager_page_unswapped(m);
1576 
1577 	vm_pager_page_removed(object, m);
1578 
1579 	m->object = NULL;
1580 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1581 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1582 
1583 	/*
1584 	 * Now remove from the object's list of backed pages.
1585 	 */
1586 	TAILQ_REMOVE(&object->memq, m, listq);
1587 
1588 	/*
1589 	 * And show that the object has one fewer resident page.
1590 	 */
1591 	object->resident_page_count--;
1592 
1593 	/*
1594 	 * The vnode may now be recycled.
1595 	 */
1596 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1597 		vdrop(object->handle);
1598 }
1599 
1600 /*
1601  *	vm_page_remove:
1602  *
1603  *	Removes the specified page from its containing object, but does not
1604  *	invalidate any backing storage.  Returns true if the object's reference
1605  *	was the last reference to the page, and false otherwise.
1606  *
1607  *	The object must be locked and the page must be exclusively busied.
1608  *	The exclusive busy will be released on return.  If this is not the
1609  *	final ref and the caller does not hold a wire reference it may not
1610  *	continue to access the page.
1611  */
1612 bool
1613 vm_page_remove(vm_page_t m)
1614 {
1615 	bool dropped;
1616 
1617 	dropped = vm_page_remove_xbusy(m);
1618 	vm_page_xunbusy(m);
1619 
1620 	return (dropped);
1621 }
1622 
1623 /*
1624  *	vm_page_remove_xbusy
1625  *
1626  *	Removes the page but leaves the xbusy held.  Returns true if this
1627  *	removed the final ref and false otherwise.
1628  */
1629 bool
1630 vm_page_remove_xbusy(vm_page_t m)
1631 {
1632 
1633 	vm_page_object_remove(m);
1634 	return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1635 }
1636 
1637 /*
1638  *	vm_page_lookup:
1639  *
1640  *	Returns the page associated with the object/offset
1641  *	pair specified; if none is found, NULL is returned.
1642  *
1643  *	The object must be locked.
1644  */
1645 vm_page_t
1646 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1647 {
1648 
1649 	VM_OBJECT_ASSERT_LOCKED(object);
1650 	return (vm_radix_lookup(&object->rtree, pindex));
1651 }
1652 
1653 /*
1654  *	vm_page_lookup_unlocked:
1655  *
1656  *	Returns the page associated with the object/offset pair specified;
1657  *	if none is found, NULL is returned.  The page may be no longer be
1658  *	present in the object at the time that this function returns.  Only
1659  *	useful for opportunistic checks such as inmem().
1660  */
1661 vm_page_t
1662 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1663 {
1664 
1665 	return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1666 }
1667 
1668 /*
1669  *	vm_page_relookup:
1670  *
1671  *	Returns a page that must already have been busied by
1672  *	the caller.  Used for bogus page replacement.
1673  */
1674 vm_page_t
1675 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1676 {
1677 	vm_page_t m;
1678 
1679 	m = vm_radix_lookup_unlocked(&object->rtree, pindex);
1680 	KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1681 	    m->object == object && m->pindex == pindex,
1682 	    ("vm_page_relookup: Invalid page %p", m));
1683 	return (m);
1684 }
1685 
1686 /*
1687  * This should only be used by lockless functions for releasing transient
1688  * incorrect acquires.  The page may have been freed after we acquired a
1689  * busy lock.  In this case busy_lock == VPB_FREED and we have nothing
1690  * further to do.
1691  */
1692 static void
1693 vm_page_busy_release(vm_page_t m)
1694 {
1695 	u_int x;
1696 
1697 	x = vm_page_busy_fetch(m);
1698 	for (;;) {
1699 		if (x == VPB_FREED)
1700 			break;
1701 		if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1702 			if (atomic_fcmpset_int(&m->busy_lock, &x,
1703 			    x - VPB_ONE_SHARER))
1704 				break;
1705 			continue;
1706 		}
1707 		KASSERT((x & VPB_BIT_SHARED) != 0 ||
1708 		    (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1709 		    ("vm_page_busy_release: %p xbusy not owned.", m));
1710 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1711 			continue;
1712 		if ((x & VPB_BIT_WAITERS) != 0)
1713 			wakeup(m);
1714 		break;
1715 	}
1716 }
1717 
1718 /*
1719  *	vm_page_find_least:
1720  *
1721  *	Returns the page associated with the object with least pindex
1722  *	greater than or equal to the parameter pindex, or NULL.
1723  *
1724  *	The object must be locked.
1725  */
1726 vm_page_t
1727 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1728 {
1729 	vm_page_t m;
1730 
1731 	VM_OBJECT_ASSERT_LOCKED(object);
1732 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1733 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1734 	return (m);
1735 }
1736 
1737 /*
1738  * Returns the given page's successor (by pindex) within the object if it is
1739  * resident; if none is found, NULL is returned.
1740  *
1741  * The object must be locked.
1742  */
1743 vm_page_t
1744 vm_page_next(vm_page_t m)
1745 {
1746 	vm_page_t next;
1747 
1748 	VM_OBJECT_ASSERT_LOCKED(m->object);
1749 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1750 		MPASS(next->object == m->object);
1751 		if (next->pindex != m->pindex + 1)
1752 			next = NULL;
1753 	}
1754 	return (next);
1755 }
1756 
1757 /*
1758  * Returns the given page's predecessor (by pindex) within the object if it is
1759  * resident; if none is found, NULL is returned.
1760  *
1761  * The object must be locked.
1762  */
1763 vm_page_t
1764 vm_page_prev(vm_page_t m)
1765 {
1766 	vm_page_t prev;
1767 
1768 	VM_OBJECT_ASSERT_LOCKED(m->object);
1769 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1770 		MPASS(prev->object == m->object);
1771 		if (prev->pindex != m->pindex - 1)
1772 			prev = NULL;
1773 	}
1774 	return (prev);
1775 }
1776 
1777 /*
1778  * Uses the page mnew as a replacement for an existing page at index
1779  * pindex which must be already present in the object.
1780  *
1781  * Both pages must be exclusively busied on enter.  The old page is
1782  * unbusied on exit.
1783  *
1784  * A return value of true means mold is now free.  If this is not the
1785  * final ref and the caller does not hold a wire reference it may not
1786  * continue to access the page.
1787  */
1788 static bool
1789 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1790     vm_page_t mold)
1791 {
1792 	vm_page_t mret __diagused;
1793 	bool dropped;
1794 
1795 	VM_OBJECT_ASSERT_WLOCKED(object);
1796 	vm_page_assert_xbusied(mold);
1797 	KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1798 	    ("vm_page_replace: page %p already in object", mnew));
1799 
1800 	/*
1801 	 * This function mostly follows vm_page_insert() and
1802 	 * vm_page_remove() without the radix, object count and vnode
1803 	 * dance.  Double check such functions for more comments.
1804 	 */
1805 
1806 	mnew->object = object;
1807 	mnew->pindex = pindex;
1808 	atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1809 	mret = vm_radix_replace(&object->rtree, mnew);
1810 	KASSERT(mret == mold,
1811 	    ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1812 	KASSERT((mold->oflags & VPO_UNMANAGED) ==
1813 	    (mnew->oflags & VPO_UNMANAGED),
1814 	    ("vm_page_replace: mismatched VPO_UNMANAGED"));
1815 
1816 	/* Keep the resident page list in sorted order. */
1817 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1818 	TAILQ_REMOVE(&object->memq, mold, listq);
1819 	mold->object = NULL;
1820 
1821 	/*
1822 	 * The object's resident_page_count does not change because we have
1823 	 * swapped one page for another, but the generation count should
1824 	 * change if the page is dirty.
1825 	 */
1826 	if (pmap_page_is_write_mapped(mnew))
1827 		vm_object_set_writeable_dirty(object);
1828 	dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1829 	vm_page_xunbusy(mold);
1830 
1831 	return (dropped);
1832 }
1833 
1834 void
1835 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1836     vm_page_t mold)
1837 {
1838 
1839 	vm_page_assert_xbusied(mnew);
1840 
1841 	if (vm_page_replace_hold(mnew, object, pindex, mold))
1842 		vm_page_free(mold);
1843 }
1844 
1845 /*
1846  *	vm_page_rename:
1847  *
1848  *	Move the given memory entry from its
1849  *	current object to the specified target object/offset.
1850  *
1851  *	Note: swap associated with the page must be invalidated by the move.  We
1852  *	      have to do this for several reasons:  (1) we aren't freeing the
1853  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1854  *	      moving the page from object A to B, and will then later move
1855  *	      the backing store from A to B and we can't have a conflict.
1856  *
1857  *	Note: we *always* dirty the page.  It is necessary both for the
1858  *	      fact that we moved it, and because we may be invalidating
1859  *	      swap.
1860  *
1861  *	The objects must be locked.
1862  */
1863 int
1864 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1865 {
1866 	vm_page_t mpred;
1867 	vm_pindex_t opidx;
1868 
1869 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1870 
1871 	KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1872 
1873 	/*
1874 	 * Create a custom version of vm_page_insert() which does not depend
1875 	 * by m_prev and can cheat on the implementation aspects of the
1876 	 * function.
1877 	 */
1878 	opidx = m->pindex;
1879 	m->pindex = new_pindex;
1880 	if (vm_radix_insert_lookup_lt(&new_object->rtree, m, &mpred) != 0) {
1881 		m->pindex = opidx;
1882 		return (1);
1883 	}
1884 
1885 	/*
1886 	 * The operation cannot fail anymore.  The removal must happen before
1887 	 * the listq iterator is tainted.
1888 	 */
1889 	m->pindex = opidx;
1890 	vm_page_object_remove(m);
1891 
1892 	/* Return back to the new pindex to complete vm_page_insert(). */
1893 	m->pindex = new_pindex;
1894 	m->object = new_object;
1895 
1896 	vm_page_insert_radixdone(m, new_object, mpred);
1897 	vm_page_dirty(m);
1898 	vm_pager_page_inserted(new_object, m);
1899 	return (0);
1900 }
1901 
1902 /*
1903  *	vm_page_alloc:
1904  *
1905  *	Allocate and return a page that is associated with the specified
1906  *	object and offset pair.  By default, this page is exclusive busied.
1907  *
1908  *	The caller must always specify an allocation class.
1909  *
1910  *	allocation classes:
1911  *	VM_ALLOC_NORMAL		normal process request
1912  *	VM_ALLOC_SYSTEM		system *really* needs a page
1913  *	VM_ALLOC_INTERRUPT	interrupt time request
1914  *
1915  *	optional allocation flags:
1916  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1917  *				intends to allocate
1918  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1919  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1920  *	VM_ALLOC_SBUSY		shared busy the allocated page
1921  *	VM_ALLOC_WIRED		wire the allocated page
1922  *	VM_ALLOC_ZERO		prefer a zeroed page
1923  */
1924 vm_page_t
1925 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1926 {
1927 
1928 	return (vm_page_alloc_after(object, pindex, req,
1929 	    vm_radix_lookup_le(&object->rtree, pindex)));
1930 }
1931 
1932 vm_page_t
1933 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1934     int req)
1935 {
1936 
1937 	return (vm_page_alloc_domain_after(object, pindex, domain, req,
1938 	    vm_radix_lookup_le(&object->rtree, pindex)));
1939 }
1940 
1941 /*
1942  * Allocate a page in the specified object with the given page index.  To
1943  * optimize insertion of the page into the object, the caller must also specifiy
1944  * the resident page in the object with largest index smaller than the given
1945  * page index, or NULL if no such page exists.
1946  */
1947 vm_page_t
1948 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1949     int req, vm_page_t mpred)
1950 {
1951 	struct vm_domainset_iter di;
1952 	vm_page_t m;
1953 	int domain;
1954 
1955 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1956 	do {
1957 		m = vm_page_alloc_domain_after(object, pindex, domain, req,
1958 		    mpred);
1959 		if (m != NULL)
1960 			break;
1961 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
1962 
1963 	return (m);
1964 }
1965 
1966 /*
1967  * Returns true if the number of free pages exceeds the minimum
1968  * for the request class and false otherwise.
1969  */
1970 static int
1971 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
1972 {
1973 	u_int limit, old, new;
1974 
1975 	if (req_class == VM_ALLOC_INTERRUPT)
1976 		limit = 0;
1977 	else if (req_class == VM_ALLOC_SYSTEM)
1978 		limit = vmd->vmd_interrupt_free_min;
1979 	else
1980 		limit = vmd->vmd_free_reserved;
1981 
1982 	/*
1983 	 * Attempt to reserve the pages.  Fail if we're below the limit.
1984 	 */
1985 	limit += npages;
1986 	old = vmd->vmd_free_count;
1987 	do {
1988 		if (old < limit)
1989 			return (0);
1990 		new = old - npages;
1991 	} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1992 
1993 	/* Wake the page daemon if we've crossed the threshold. */
1994 	if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1995 		pagedaemon_wakeup(vmd->vmd_domain);
1996 
1997 	/* Only update bitsets on transitions. */
1998 	if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1999 	    (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2000 		vm_domain_set(vmd);
2001 
2002 	return (1);
2003 }
2004 
2005 int
2006 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2007 {
2008 	int req_class;
2009 
2010 	/*
2011 	 * The page daemon is allowed to dig deeper into the free page list.
2012 	 */
2013 	req_class = req & VM_ALLOC_CLASS_MASK;
2014 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2015 		req_class = VM_ALLOC_SYSTEM;
2016 	return (_vm_domain_allocate(vmd, req_class, npages));
2017 }
2018 
2019 vm_page_t
2020 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
2021     int req, vm_page_t mpred)
2022 {
2023 	struct vm_domain *vmd;
2024 	vm_page_t m;
2025 	int flags;
2026 
2027 #define	VPA_FLAGS	(VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL |	\
2028 			 VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY |		\
2029 			 VM_ALLOC_SBUSY | VM_ALLOC_WIRED |		\
2030 			 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK)
2031 	KASSERT((req & ~VPA_FLAGS) == 0,
2032 	    ("invalid request %#x", req));
2033 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2034 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2035 	    ("invalid request %#x", req));
2036 	KASSERT(mpred == NULL || mpred->pindex < pindex,
2037 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
2038 	    (uintmax_t)pindex));
2039 	VM_OBJECT_ASSERT_WLOCKED(object);
2040 
2041 	flags = 0;
2042 	m = NULL;
2043 	if (!vm_pager_can_alloc_page(object, pindex))
2044 		return (NULL);
2045 again:
2046 #if VM_NRESERVLEVEL > 0
2047 	/*
2048 	 * Can we allocate the page from a reservation?
2049 	 */
2050 	if (vm_object_reserv(object) &&
2051 	    (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2052 	    NULL) {
2053 		goto found;
2054 	}
2055 #endif
2056 	vmd = VM_DOMAIN(domain);
2057 	if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
2058 		m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
2059 		    M_NOWAIT | M_NOVM);
2060 		if (m != NULL) {
2061 			flags |= PG_PCPU_CACHE;
2062 			goto found;
2063 		}
2064 	}
2065 	if (vm_domain_allocate(vmd, req, 1)) {
2066 		/*
2067 		 * If not, allocate it from the free page queues.
2068 		 */
2069 		vm_domain_free_lock(vmd);
2070 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
2071 		vm_domain_free_unlock(vmd);
2072 		if (m == NULL) {
2073 			vm_domain_freecnt_inc(vmd, 1);
2074 #if VM_NRESERVLEVEL > 0
2075 			if (vm_reserv_reclaim_inactive(domain))
2076 				goto again;
2077 #endif
2078 		}
2079 	}
2080 	if (m == NULL) {
2081 		/*
2082 		 * Not allocatable, give up.
2083 		 */
2084 		if (vm_domain_alloc_fail(vmd, object, req))
2085 			goto again;
2086 		return (NULL);
2087 	}
2088 
2089 	/*
2090 	 * At this point we had better have found a good page.
2091 	 */
2092 found:
2093 	vm_page_dequeue(m);
2094 	vm_page_alloc_check(m);
2095 
2096 	/*
2097 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2098 	 */
2099 	flags |= m->flags & PG_ZERO;
2100 	if ((req & VM_ALLOC_NODUMP) != 0)
2101 		flags |= PG_NODUMP;
2102 	m->flags = flags;
2103 	m->a.flags = 0;
2104 	m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2105 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2106 		m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2107 	else if ((req & VM_ALLOC_SBUSY) != 0)
2108 		m->busy_lock = VPB_SHARERS_WORD(1);
2109 	else
2110 		m->busy_lock = VPB_UNBUSIED;
2111 	if (req & VM_ALLOC_WIRED) {
2112 		vm_wire_add(1);
2113 		m->ref_count = 1;
2114 	}
2115 	m->a.act_count = 0;
2116 
2117 	if (vm_page_insert_after(m, object, pindex, mpred)) {
2118 		if (req & VM_ALLOC_WIRED) {
2119 			vm_wire_sub(1);
2120 			m->ref_count = 0;
2121 		}
2122 		KASSERT(m->object == NULL, ("page %p has object", m));
2123 		m->oflags = VPO_UNMANAGED;
2124 		m->busy_lock = VPB_UNBUSIED;
2125 		/* Don't change PG_ZERO. */
2126 		vm_page_free_toq(m);
2127 		if (req & VM_ALLOC_WAITFAIL) {
2128 			VM_OBJECT_WUNLOCK(object);
2129 			vm_radix_wait();
2130 			VM_OBJECT_WLOCK(object);
2131 		}
2132 		return (NULL);
2133 	}
2134 
2135 	/* Ignore device objects; the pager sets "memattr" for them. */
2136 	if (object->memattr != VM_MEMATTR_DEFAULT &&
2137 	    (object->flags & OBJ_FICTITIOUS) == 0)
2138 		pmap_page_set_memattr(m, object->memattr);
2139 
2140 	return (m);
2141 }
2142 
2143 /*
2144  *	vm_page_alloc_contig:
2145  *
2146  *	Allocate a contiguous set of physical pages of the given size "npages"
2147  *	from the free lists.  All of the physical pages must be at or above
2148  *	the given physical address "low" and below the given physical address
2149  *	"high".  The given value "alignment" determines the alignment of the
2150  *	first physical page in the set.  If the given value "boundary" is
2151  *	non-zero, then the set of physical pages cannot cross any physical
2152  *	address boundary that is a multiple of that value.  Both "alignment"
2153  *	and "boundary" must be a power of two.
2154  *
2155  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2156  *	then the memory attribute setting for the physical pages is configured
2157  *	to the object's memory attribute setting.  Otherwise, the memory
2158  *	attribute setting for the physical pages is configured to "memattr",
2159  *	overriding the object's memory attribute setting.  However, if the
2160  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2161  *	memory attribute setting for the physical pages cannot be configured
2162  *	to VM_MEMATTR_DEFAULT.
2163  *
2164  *	The specified object may not contain fictitious pages.
2165  *
2166  *	The caller must always specify an allocation class.
2167  *
2168  *	allocation classes:
2169  *	VM_ALLOC_NORMAL		normal process request
2170  *	VM_ALLOC_SYSTEM		system *really* needs a page
2171  *	VM_ALLOC_INTERRUPT	interrupt time request
2172  *
2173  *	optional allocation flags:
2174  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
2175  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
2176  *	VM_ALLOC_SBUSY		shared busy the allocated page
2177  *	VM_ALLOC_WIRED		wire the allocated page
2178  *	VM_ALLOC_ZERO		prefer a zeroed page
2179  */
2180 vm_page_t
2181 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2182     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2183     vm_paddr_t boundary, vm_memattr_t memattr)
2184 {
2185 	struct vm_domainset_iter di;
2186 	vm_page_t bounds[2];
2187 	vm_page_t m;
2188 	int domain;
2189 	int start_segind;
2190 
2191 	start_segind = -1;
2192 
2193 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2194 	do {
2195 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2196 		    npages, low, high, alignment, boundary, memattr);
2197 		if (m != NULL)
2198 			break;
2199 		if (start_segind == -1)
2200 			start_segind = vm_phys_lookup_segind(low);
2201 		if (vm_phys_find_range(bounds, start_segind, domain,
2202 		    npages, low, high) == -1) {
2203 			vm_domainset_iter_ignore(&di, domain);
2204 		}
2205 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
2206 
2207 	return (m);
2208 }
2209 
2210 static vm_page_t
2211 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
2212     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2213 {
2214 	struct vm_domain *vmd;
2215 	vm_page_t m_ret;
2216 
2217 	/*
2218 	 * Can we allocate the pages without the number of free pages falling
2219 	 * below the lower bound for the allocation class?
2220 	 */
2221 	vmd = VM_DOMAIN(domain);
2222 	if (!vm_domain_allocate(vmd, req, npages))
2223 		return (NULL);
2224 	/*
2225 	 * Try to allocate the pages from the free page queues.
2226 	 */
2227 	vm_domain_free_lock(vmd);
2228 	m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2229 	    alignment, boundary);
2230 	vm_domain_free_unlock(vmd);
2231 	if (m_ret != NULL)
2232 		return (m_ret);
2233 #if VM_NRESERVLEVEL > 0
2234 	/*
2235 	 * Try to break a reservation to allocate the pages.
2236 	 */
2237 	if ((req & VM_ALLOC_NORECLAIM) == 0) {
2238 		m_ret = vm_reserv_reclaim_contig(domain, npages, low,
2239 	            high, alignment, boundary);
2240 		if (m_ret != NULL)
2241 			return (m_ret);
2242 	}
2243 #endif
2244 	vm_domain_freecnt_inc(vmd, npages);
2245 	return (NULL);
2246 }
2247 
2248 vm_page_t
2249 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2250     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2251     vm_paddr_t boundary, vm_memattr_t memattr)
2252 {
2253 	vm_page_t m, m_ret, mpred;
2254 	u_int busy_lock, flags, oflags;
2255 
2256 #define	VPAC_FLAGS	(VPA_FLAGS | VM_ALLOC_NORECLAIM)
2257 	KASSERT((req & ~VPAC_FLAGS) == 0,
2258 	    ("invalid request %#x", req));
2259 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2260 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2261 	    ("invalid request %#x", req));
2262 	KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2263 	    (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2264 	    ("invalid request %#x", req));
2265 	VM_OBJECT_ASSERT_WLOCKED(object);
2266 	KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2267 	    ("vm_page_alloc_contig: object %p has fictitious pages",
2268 	    object));
2269 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2270 
2271 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
2272 	KASSERT(mpred == NULL || mpred->pindex != pindex,
2273 	    ("vm_page_alloc_contig: pindex already allocated"));
2274 	for (;;) {
2275 #if VM_NRESERVLEVEL > 0
2276 		/*
2277 		 * Can we allocate the pages from a reservation?
2278 		 */
2279 		if (vm_object_reserv(object) &&
2280 		    (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2281 		    mpred, npages, low, high, alignment, boundary)) != NULL) {
2282 			break;
2283 		}
2284 #endif
2285 		if ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2286 		    low, high, alignment, boundary)) != NULL)
2287 			break;
2288 		if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req))
2289 			return (NULL);
2290 	}
2291 	for (m = m_ret; m < &m_ret[npages]; m++) {
2292 		vm_page_dequeue(m);
2293 		vm_page_alloc_check(m);
2294 	}
2295 
2296 	/*
2297 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2298 	 */
2299 	flags = PG_ZERO;
2300 	if ((req & VM_ALLOC_NODUMP) != 0)
2301 		flags |= PG_NODUMP;
2302 	oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2303 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2304 		busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2305 	else if ((req & VM_ALLOC_SBUSY) != 0)
2306 		busy_lock = VPB_SHARERS_WORD(1);
2307 	else
2308 		busy_lock = VPB_UNBUSIED;
2309 	if ((req & VM_ALLOC_WIRED) != 0)
2310 		vm_wire_add(npages);
2311 	if (object->memattr != VM_MEMATTR_DEFAULT &&
2312 	    memattr == VM_MEMATTR_DEFAULT)
2313 		memattr = object->memattr;
2314 	for (m = m_ret; m < &m_ret[npages]; m++) {
2315 		m->a.flags = 0;
2316 		m->flags = (m->flags | PG_NODUMP) & flags;
2317 		m->busy_lock = busy_lock;
2318 		if ((req & VM_ALLOC_WIRED) != 0)
2319 			m->ref_count = 1;
2320 		m->a.act_count = 0;
2321 		m->oflags = oflags;
2322 		if (vm_page_insert_after(m, object, pindex, mpred)) {
2323 			if ((req & VM_ALLOC_WIRED) != 0)
2324 				vm_wire_sub(npages);
2325 			KASSERT(m->object == NULL,
2326 			    ("page %p has object", m));
2327 			mpred = m;
2328 			for (m = m_ret; m < &m_ret[npages]; m++) {
2329 				if (m <= mpred &&
2330 				    (req & VM_ALLOC_WIRED) != 0)
2331 					m->ref_count = 0;
2332 				m->oflags = VPO_UNMANAGED;
2333 				m->busy_lock = VPB_UNBUSIED;
2334 				/* Don't change PG_ZERO. */
2335 				vm_page_free_toq(m);
2336 			}
2337 			if (req & VM_ALLOC_WAITFAIL) {
2338 				VM_OBJECT_WUNLOCK(object);
2339 				vm_radix_wait();
2340 				VM_OBJECT_WLOCK(object);
2341 			}
2342 			return (NULL);
2343 		}
2344 		mpred = m;
2345 		if (memattr != VM_MEMATTR_DEFAULT)
2346 			pmap_page_set_memattr(m, memattr);
2347 		pindex++;
2348 	}
2349 	return (m_ret);
2350 }
2351 
2352 /*
2353  * Allocate a physical page that is not intended to be inserted into a VM
2354  * object.  If the "freelist" parameter is not equal to VM_NFREELIST, then only
2355  * pages from the specified vm_phys freelist will be returned.
2356  */
2357 static __always_inline vm_page_t
2358 _vm_page_alloc_noobj_domain(int domain, const int freelist, int req)
2359 {
2360 	struct vm_domain *vmd;
2361 	vm_page_t m;
2362 	int flags;
2363 
2364 #define	VPAN_FLAGS	(VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL |      \
2365 			 VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK |		\
2366 			 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED |		\
2367 			 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK)
2368 	KASSERT((req & ~VPAN_FLAGS) == 0,
2369 	    ("invalid request %#x", req));
2370 
2371 	flags = (req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0;
2372 	vmd = VM_DOMAIN(domain);
2373 again:
2374 	if (freelist == VM_NFREELIST &&
2375 	    vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
2376 		m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
2377 		    M_NOWAIT | M_NOVM);
2378 		if (m != NULL) {
2379 			flags |= PG_PCPU_CACHE;
2380 			goto found;
2381 		}
2382 	}
2383 
2384 	if (vm_domain_allocate(vmd, req, 1)) {
2385 		vm_domain_free_lock(vmd);
2386 		if (freelist == VM_NFREELIST)
2387 			m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
2388 		else
2389 			m = vm_phys_alloc_freelist_pages(domain, freelist,
2390 			    VM_FREEPOOL_DIRECT, 0);
2391 		vm_domain_free_unlock(vmd);
2392 		if (m == NULL) {
2393 			vm_domain_freecnt_inc(vmd, 1);
2394 #if VM_NRESERVLEVEL > 0
2395 			if (freelist == VM_NFREELIST &&
2396 			    vm_reserv_reclaim_inactive(domain))
2397 				goto again;
2398 #endif
2399 		}
2400 	}
2401 	if (m == NULL) {
2402 		if (vm_domain_alloc_fail(vmd, NULL, req))
2403 			goto again;
2404 		return (NULL);
2405 	}
2406 
2407 found:
2408 	vm_page_dequeue(m);
2409 	vm_page_alloc_check(m);
2410 
2411 	/*
2412 	 * Consumers should not rely on a useful default pindex value.
2413 	 */
2414 	m->pindex = 0xdeadc0dedeadc0de;
2415 	m->flags = (m->flags & PG_ZERO) | flags;
2416 	m->a.flags = 0;
2417 	m->oflags = VPO_UNMANAGED;
2418 	m->busy_lock = VPB_UNBUSIED;
2419 	if ((req & VM_ALLOC_WIRED) != 0) {
2420 		vm_wire_add(1);
2421 		m->ref_count = 1;
2422 	}
2423 
2424 	if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2425 		pmap_zero_page(m);
2426 
2427 	return (m);
2428 }
2429 
2430 vm_page_t
2431 vm_page_alloc_freelist(int freelist, int req)
2432 {
2433 	struct vm_domainset_iter di;
2434 	vm_page_t m;
2435 	int domain;
2436 
2437 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2438 	do {
2439 		m = vm_page_alloc_freelist_domain(domain, freelist, req);
2440 		if (m != NULL)
2441 			break;
2442 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2443 
2444 	return (m);
2445 }
2446 
2447 vm_page_t
2448 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2449 {
2450 	KASSERT(freelist >= 0 && freelist < VM_NFREELIST,
2451 	    ("%s: invalid freelist %d", __func__, freelist));
2452 
2453 	return (_vm_page_alloc_noobj_domain(domain, freelist, req));
2454 }
2455 
2456 vm_page_t
2457 vm_page_alloc_noobj(int req)
2458 {
2459 	struct vm_domainset_iter di;
2460 	vm_page_t m;
2461 	int domain;
2462 
2463 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2464 	do {
2465 		m = vm_page_alloc_noobj_domain(domain, req);
2466 		if (m != NULL)
2467 			break;
2468 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2469 
2470 	return (m);
2471 }
2472 
2473 vm_page_t
2474 vm_page_alloc_noobj_domain(int domain, int req)
2475 {
2476 	return (_vm_page_alloc_noobj_domain(domain, VM_NFREELIST, req));
2477 }
2478 
2479 vm_page_t
2480 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
2481     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2482     vm_memattr_t memattr)
2483 {
2484 	struct vm_domainset_iter di;
2485 	vm_page_t m;
2486 	int domain;
2487 
2488 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2489 	do {
2490 		m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
2491 		    high, alignment, boundary, memattr);
2492 		if (m != NULL)
2493 			break;
2494 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2495 
2496 	return (m);
2497 }
2498 
2499 vm_page_t
2500 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
2501     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2502     vm_memattr_t memattr)
2503 {
2504 	vm_page_t m, m_ret;
2505 	u_int flags;
2506 
2507 #define	VPANC_FLAGS	(VPAN_FLAGS | VM_ALLOC_NORECLAIM)
2508 	KASSERT((req & ~VPANC_FLAGS) == 0,
2509 	    ("invalid request %#x", req));
2510 	KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2511 	    (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2512 	    ("invalid request %#x", req));
2513 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2514 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2515 	    ("invalid request %#x", req));
2516 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2517 
2518 	while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2519 	    low, high, alignment, boundary)) == NULL) {
2520 		if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
2521 			return (NULL);
2522 	}
2523 
2524 	/*
2525 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2526 	 */
2527 	flags = PG_ZERO;
2528 	if ((req & VM_ALLOC_NODUMP) != 0)
2529 		flags |= PG_NODUMP;
2530 	if ((req & VM_ALLOC_WIRED) != 0)
2531 		vm_wire_add(npages);
2532 	for (m = m_ret; m < &m_ret[npages]; m++) {
2533 		vm_page_dequeue(m);
2534 		vm_page_alloc_check(m);
2535 
2536 		/*
2537 		 * Consumers should not rely on a useful default pindex value.
2538 		 */
2539 		m->pindex = 0xdeadc0dedeadc0de;
2540 		m->a.flags = 0;
2541 		m->flags = (m->flags | PG_NODUMP) & flags;
2542 		m->busy_lock = VPB_UNBUSIED;
2543 		if ((req & VM_ALLOC_WIRED) != 0)
2544 			m->ref_count = 1;
2545 		m->a.act_count = 0;
2546 		m->oflags = VPO_UNMANAGED;
2547 
2548 		/*
2549 		 * Zero the page before updating any mappings since the page is
2550 		 * not yet shared with any devices which might require the
2551 		 * non-default memory attribute.  pmap_page_set_memattr()
2552 		 * flushes data caches before returning.
2553 		 */
2554 		if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2555 			pmap_zero_page(m);
2556 		if (memattr != VM_MEMATTR_DEFAULT)
2557 			pmap_page_set_memattr(m, memattr);
2558 	}
2559 	return (m_ret);
2560 }
2561 
2562 /*
2563  * Check a page that has been freshly dequeued from a freelist.
2564  */
2565 static void
2566 vm_page_alloc_check(vm_page_t m)
2567 {
2568 
2569 	KASSERT(m->object == NULL, ("page %p has object", m));
2570 	KASSERT(m->a.queue == PQ_NONE &&
2571 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2572 	    ("page %p has unexpected queue %d, flags %#x",
2573 	    m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2574 	KASSERT(m->ref_count == 0, ("page %p has references", m));
2575 	KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2576 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2577 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2578 	    ("page %p has unexpected memattr %d",
2579 	    m, pmap_page_get_memattr(m)));
2580 	KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
2581 	pmap_vm_page_alloc_check(m);
2582 }
2583 
2584 static int
2585 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2586 {
2587 	struct vm_domain *vmd;
2588 	struct vm_pgcache *pgcache;
2589 	int i;
2590 
2591 	pgcache = arg;
2592 	vmd = VM_DOMAIN(pgcache->domain);
2593 
2594 	/*
2595 	 * The page daemon should avoid creating extra memory pressure since its
2596 	 * main purpose is to replenish the store of free pages.
2597 	 */
2598 	if (vmd->vmd_severeset || curproc == pageproc ||
2599 	    !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2600 		return (0);
2601 	domain = vmd->vmd_domain;
2602 	vm_domain_free_lock(vmd);
2603 	i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2604 	    (vm_page_t *)store);
2605 	vm_domain_free_unlock(vmd);
2606 	if (cnt != i)
2607 		vm_domain_freecnt_inc(vmd, cnt - i);
2608 
2609 	return (i);
2610 }
2611 
2612 static void
2613 vm_page_zone_release(void *arg, void **store, int cnt)
2614 {
2615 	struct vm_domain *vmd;
2616 	struct vm_pgcache *pgcache;
2617 	vm_page_t m;
2618 	int i;
2619 
2620 	pgcache = arg;
2621 	vmd = VM_DOMAIN(pgcache->domain);
2622 	vm_domain_free_lock(vmd);
2623 	for (i = 0; i < cnt; i++) {
2624 		m = (vm_page_t)store[i];
2625 		vm_phys_free_pages(m, 0);
2626 	}
2627 	vm_domain_free_unlock(vmd);
2628 	vm_domain_freecnt_inc(vmd, cnt);
2629 }
2630 
2631 #define	VPSC_ANY	0	/* No restrictions. */
2632 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2633 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2634 
2635 /*
2636  *	vm_page_scan_contig:
2637  *
2638  *	Scan vm_page_array[] between the specified entries "m_start" and
2639  *	"m_end" for a run of contiguous physical pages that satisfy the
2640  *	specified conditions, and return the lowest page in the run.  The
2641  *	specified "alignment" determines the alignment of the lowest physical
2642  *	page in the run.  If the specified "boundary" is non-zero, then the
2643  *	run of physical pages cannot span a physical address that is a
2644  *	multiple of "boundary".
2645  *
2646  *	"m_end" is never dereferenced, so it need not point to a vm_page
2647  *	structure within vm_page_array[].
2648  *
2649  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2650  *	span a hole (or discontiguity) in the physical address space.  Both
2651  *	"alignment" and "boundary" must be a power of two.
2652  */
2653 static vm_page_t
2654 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2655     u_long alignment, vm_paddr_t boundary, int options)
2656 {
2657 	vm_object_t object;
2658 	vm_paddr_t pa;
2659 	vm_page_t m, m_run;
2660 #if VM_NRESERVLEVEL > 0
2661 	int level;
2662 #endif
2663 	int m_inc, order, run_ext, run_len;
2664 
2665 	KASSERT(npages > 0, ("npages is 0"));
2666 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2667 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2668 	m_run = NULL;
2669 	run_len = 0;
2670 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2671 		KASSERT((m->flags & PG_MARKER) == 0,
2672 		    ("page %p is PG_MARKER", m));
2673 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2674 		    ("fictitious page %p has invalid ref count", m));
2675 
2676 		/*
2677 		 * If the current page would be the start of a run, check its
2678 		 * physical address against the end, alignment, and boundary
2679 		 * conditions.  If it doesn't satisfy these conditions, either
2680 		 * terminate the scan or advance to the next page that
2681 		 * satisfies the failed condition.
2682 		 */
2683 		if (run_len == 0) {
2684 			KASSERT(m_run == NULL, ("m_run != NULL"));
2685 			if (m + npages > m_end)
2686 				break;
2687 			pa = VM_PAGE_TO_PHYS(m);
2688 			if (!vm_addr_align_ok(pa, alignment)) {
2689 				m_inc = atop(roundup2(pa, alignment) - pa);
2690 				continue;
2691 			}
2692 			if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
2693 				m_inc = atop(roundup2(pa, boundary) - pa);
2694 				continue;
2695 			}
2696 		} else
2697 			KASSERT(m_run != NULL, ("m_run == NULL"));
2698 
2699 retry:
2700 		m_inc = 1;
2701 		if (vm_page_wired(m))
2702 			run_ext = 0;
2703 #if VM_NRESERVLEVEL > 0
2704 		else if ((level = vm_reserv_level(m)) >= 0 &&
2705 		    (options & VPSC_NORESERV) != 0) {
2706 			run_ext = 0;
2707 			/* Advance to the end of the reservation. */
2708 			pa = VM_PAGE_TO_PHYS(m);
2709 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2710 			    pa);
2711 		}
2712 #endif
2713 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2714 			/*
2715 			 * The page is considered eligible for relocation if
2716 			 * and only if it could be laundered or reclaimed by
2717 			 * the page daemon.
2718 			 */
2719 			VM_OBJECT_RLOCK(object);
2720 			if (object != m->object) {
2721 				VM_OBJECT_RUNLOCK(object);
2722 				goto retry;
2723 			}
2724 			/* Don't care: PG_NODUMP, PG_ZERO. */
2725 			if ((object->flags & OBJ_SWAP) == 0 &&
2726 			    object->type != OBJT_VNODE) {
2727 				run_ext = 0;
2728 #if VM_NRESERVLEVEL > 0
2729 			} else if ((options & VPSC_NOSUPER) != 0 &&
2730 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2731 				run_ext = 0;
2732 				/* Advance to the end of the superpage. */
2733 				pa = VM_PAGE_TO_PHYS(m);
2734 				m_inc = atop(roundup2(pa + 1,
2735 				    vm_reserv_size(level)) - pa);
2736 #endif
2737 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2738 			    vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2739 				/*
2740 				 * The page is allocated but eligible for
2741 				 * relocation.  Extend the current run by one
2742 				 * page.
2743 				 */
2744 				KASSERT(pmap_page_get_memattr(m) ==
2745 				    VM_MEMATTR_DEFAULT,
2746 				    ("page %p has an unexpected memattr", m));
2747 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2748 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2749 				    ("page %p has unexpected oflags", m));
2750 				/* Don't care: PGA_NOSYNC. */
2751 				run_ext = 1;
2752 			} else
2753 				run_ext = 0;
2754 			VM_OBJECT_RUNLOCK(object);
2755 #if VM_NRESERVLEVEL > 0
2756 		} else if (level >= 0) {
2757 			/*
2758 			 * The page is reserved but not yet allocated.  In
2759 			 * other words, it is still free.  Extend the current
2760 			 * run by one page.
2761 			 */
2762 			run_ext = 1;
2763 #endif
2764 		} else if ((order = m->order) < VM_NFREEORDER) {
2765 			/*
2766 			 * The page is enqueued in the physical memory
2767 			 * allocator's free page queues.  Moreover, it is the
2768 			 * first page in a power-of-two-sized run of
2769 			 * contiguous free pages.  Add these pages to the end
2770 			 * of the current run, and jump ahead.
2771 			 */
2772 			run_ext = 1 << order;
2773 			m_inc = 1 << order;
2774 		} else {
2775 			/*
2776 			 * Skip the page for one of the following reasons: (1)
2777 			 * It is enqueued in the physical memory allocator's
2778 			 * free page queues.  However, it is not the first
2779 			 * page in a run of contiguous free pages.  (This case
2780 			 * rarely occurs because the scan is performed in
2781 			 * ascending order.) (2) It is not reserved, and it is
2782 			 * transitioning from free to allocated.  (Conversely,
2783 			 * the transition from allocated to free for managed
2784 			 * pages is blocked by the page busy lock.) (3) It is
2785 			 * allocated but not contained by an object and not
2786 			 * wired, e.g., allocated by Xen's balloon driver.
2787 			 */
2788 			run_ext = 0;
2789 		}
2790 
2791 		/*
2792 		 * Extend or reset the current run of pages.
2793 		 */
2794 		if (run_ext > 0) {
2795 			if (run_len == 0)
2796 				m_run = m;
2797 			run_len += run_ext;
2798 		} else {
2799 			if (run_len > 0) {
2800 				m_run = NULL;
2801 				run_len = 0;
2802 			}
2803 		}
2804 	}
2805 	if (run_len >= npages)
2806 		return (m_run);
2807 	return (NULL);
2808 }
2809 
2810 /*
2811  *	vm_page_reclaim_run:
2812  *
2813  *	Try to relocate each of the allocated virtual pages within the
2814  *	specified run of physical pages to a new physical address.  Free the
2815  *	physical pages underlying the relocated virtual pages.  A virtual page
2816  *	is relocatable if and only if it could be laundered or reclaimed by
2817  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2818  *	physical address above "high".
2819  *
2820  *	Returns 0 if every physical page within the run was already free or
2821  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2822  *	value indicating why the last attempt to relocate a virtual page was
2823  *	unsuccessful.
2824  *
2825  *	"req_class" must be an allocation class.
2826  */
2827 static int
2828 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2829     vm_paddr_t high)
2830 {
2831 	struct vm_domain *vmd;
2832 	struct spglist free;
2833 	vm_object_t object;
2834 	vm_paddr_t pa;
2835 	vm_page_t m, m_end, m_new;
2836 	int error, order, req;
2837 
2838 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2839 	    ("req_class is not an allocation class"));
2840 	SLIST_INIT(&free);
2841 	error = 0;
2842 	m = m_run;
2843 	m_end = m_run + npages;
2844 	for (; error == 0 && m < m_end; m++) {
2845 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2846 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2847 
2848 		/*
2849 		 * Racily check for wirings.  Races are handled once the object
2850 		 * lock is held and the page is unmapped.
2851 		 */
2852 		if (vm_page_wired(m))
2853 			error = EBUSY;
2854 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2855 			/*
2856 			 * The page is relocated if and only if it could be
2857 			 * laundered or reclaimed by the page daemon.
2858 			 */
2859 			VM_OBJECT_WLOCK(object);
2860 			/* Don't care: PG_NODUMP, PG_ZERO. */
2861 			if (m->object != object ||
2862 			    ((object->flags & OBJ_SWAP) == 0 &&
2863 			    object->type != OBJT_VNODE))
2864 				error = EINVAL;
2865 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2866 				error = EINVAL;
2867 			else if (vm_page_queue(m) != PQ_NONE &&
2868 			    vm_page_tryxbusy(m) != 0) {
2869 				if (vm_page_wired(m)) {
2870 					vm_page_xunbusy(m);
2871 					error = EBUSY;
2872 					goto unlock;
2873 				}
2874 				KASSERT(pmap_page_get_memattr(m) ==
2875 				    VM_MEMATTR_DEFAULT,
2876 				    ("page %p has an unexpected memattr", m));
2877 				KASSERT(m->oflags == 0,
2878 				    ("page %p has unexpected oflags", m));
2879 				/* Don't care: PGA_NOSYNC. */
2880 				if (!vm_page_none_valid(m)) {
2881 					/*
2882 					 * First, try to allocate a new page
2883 					 * that is above "high".  Failing
2884 					 * that, try to allocate a new page
2885 					 * that is below "m_run".  Allocate
2886 					 * the new page between the end of
2887 					 * "m_run" and "high" only as a last
2888 					 * resort.
2889 					 */
2890 					req = req_class;
2891 					if ((m->flags & PG_NODUMP) != 0)
2892 						req |= VM_ALLOC_NODUMP;
2893 					if (trunc_page(high) !=
2894 					    ~(vm_paddr_t)PAGE_MASK) {
2895 						m_new =
2896 						    vm_page_alloc_noobj_contig(
2897 						    req, 1, round_page(high),
2898 						    ~(vm_paddr_t)0, PAGE_SIZE,
2899 						    0, VM_MEMATTR_DEFAULT);
2900 					} else
2901 						m_new = NULL;
2902 					if (m_new == NULL) {
2903 						pa = VM_PAGE_TO_PHYS(m_run);
2904 						m_new =
2905 						    vm_page_alloc_noobj_contig(
2906 						    req, 1, 0, pa - 1,
2907 						    PAGE_SIZE, 0,
2908 						    VM_MEMATTR_DEFAULT);
2909 					}
2910 					if (m_new == NULL) {
2911 						pa += ptoa(npages);
2912 						m_new =
2913 						    vm_page_alloc_noobj_contig(
2914 						    req, 1, pa, high, PAGE_SIZE,
2915 						    0, VM_MEMATTR_DEFAULT);
2916 					}
2917 					if (m_new == NULL) {
2918 						vm_page_xunbusy(m);
2919 						error = ENOMEM;
2920 						goto unlock;
2921 					}
2922 
2923 					/*
2924 					 * Unmap the page and check for new
2925 					 * wirings that may have been acquired
2926 					 * through a pmap lookup.
2927 					 */
2928 					if (object->ref_count != 0 &&
2929 					    !vm_page_try_remove_all(m)) {
2930 						vm_page_xunbusy(m);
2931 						vm_page_free(m_new);
2932 						error = EBUSY;
2933 						goto unlock;
2934 					}
2935 
2936 					/*
2937 					 * Replace "m" with the new page.  For
2938 					 * vm_page_replace(), "m" must be busy
2939 					 * and dequeued.  Finally, change "m"
2940 					 * as if vm_page_free() was called.
2941 					 */
2942 					m_new->a.flags = m->a.flags &
2943 					    ~PGA_QUEUE_STATE_MASK;
2944 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2945 					    ("page %p is managed", m_new));
2946 					m_new->oflags = 0;
2947 					pmap_copy_page(m, m_new);
2948 					m_new->valid = m->valid;
2949 					m_new->dirty = m->dirty;
2950 					m->flags &= ~PG_ZERO;
2951 					vm_page_dequeue(m);
2952 					if (vm_page_replace_hold(m_new, object,
2953 					    m->pindex, m) &&
2954 					    vm_page_free_prep(m))
2955 						SLIST_INSERT_HEAD(&free, m,
2956 						    plinks.s.ss);
2957 
2958 					/*
2959 					 * The new page must be deactivated
2960 					 * before the object is unlocked.
2961 					 */
2962 					vm_page_deactivate(m_new);
2963 				} else {
2964 					m->flags &= ~PG_ZERO;
2965 					vm_page_dequeue(m);
2966 					if (vm_page_free_prep(m))
2967 						SLIST_INSERT_HEAD(&free, m,
2968 						    plinks.s.ss);
2969 					KASSERT(m->dirty == 0,
2970 					    ("page %p is dirty", m));
2971 				}
2972 			} else
2973 				error = EBUSY;
2974 unlock:
2975 			VM_OBJECT_WUNLOCK(object);
2976 		} else {
2977 			MPASS(vm_page_domain(m) == domain);
2978 			vmd = VM_DOMAIN(domain);
2979 			vm_domain_free_lock(vmd);
2980 			order = m->order;
2981 			if (order < VM_NFREEORDER) {
2982 				/*
2983 				 * The page is enqueued in the physical memory
2984 				 * allocator's free page queues.  Moreover, it
2985 				 * is the first page in a power-of-two-sized
2986 				 * run of contiguous free pages.  Jump ahead
2987 				 * to the last page within that run, and
2988 				 * continue from there.
2989 				 */
2990 				m += (1 << order) - 1;
2991 			}
2992 #if VM_NRESERVLEVEL > 0
2993 			else if (vm_reserv_is_page_free(m))
2994 				order = 0;
2995 #endif
2996 			vm_domain_free_unlock(vmd);
2997 			if (order == VM_NFREEORDER)
2998 				error = EINVAL;
2999 		}
3000 	}
3001 	if ((m = SLIST_FIRST(&free)) != NULL) {
3002 		int cnt;
3003 
3004 		vmd = VM_DOMAIN(domain);
3005 		cnt = 0;
3006 		vm_domain_free_lock(vmd);
3007 		do {
3008 			MPASS(vm_page_domain(m) == domain);
3009 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
3010 			vm_phys_free_pages(m, 0);
3011 			cnt++;
3012 		} while ((m = SLIST_FIRST(&free)) != NULL);
3013 		vm_domain_free_unlock(vmd);
3014 		vm_domain_freecnt_inc(vmd, cnt);
3015 	}
3016 	return (error);
3017 }
3018 
3019 #define	NRUNS	16
3020 
3021 #define	RUN_INDEX(count, nruns)	((count) % (nruns))
3022 
3023 #define	MIN_RECLAIM	8
3024 
3025 /*
3026  *	vm_page_reclaim_contig:
3027  *
3028  *	Reclaim allocated, contiguous physical memory satisfying the specified
3029  *	conditions by relocating the virtual pages using that physical memory.
3030  *	Returns 0 if reclamation is successful, ERANGE if the specified domain
3031  *	can't possibly satisfy the reclamation request, or ENOMEM if not
3032  *	currently able to reclaim the requested number of pages.  Since
3033  *	relocation requires the allocation of physical pages, reclamation may
3034  *	fail with ENOMEM due to a shortage of free pages.  When reclamation
3035  *	fails in this manner, callers are expected to perform vm_wait() before
3036  *	retrying a failed allocation operation, e.g., vm_page_alloc_contig().
3037  *
3038  *	The caller must always specify an allocation class through "req".
3039  *
3040  *	allocation classes:
3041  *	VM_ALLOC_NORMAL		normal process request
3042  *	VM_ALLOC_SYSTEM		system *really* needs a page
3043  *	VM_ALLOC_INTERRUPT	interrupt time request
3044  *
3045  *	The optional allocation flags are ignored.
3046  *
3047  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
3048  *	must be a power of two.
3049  */
3050 int
3051 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
3052     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
3053     int desired_runs)
3054 {
3055 	struct vm_domain *vmd;
3056 	vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs;
3057 	u_long count, minalign, reclaimed;
3058 	int error, i, min_reclaim, nruns, options, req_class;
3059 	int segind, start_segind;
3060 	int ret;
3061 
3062 	KASSERT(npages > 0, ("npages is 0"));
3063 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
3064 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
3065 
3066 	ret = ENOMEM;
3067 
3068 	/*
3069 	 * If the caller wants to reclaim multiple runs, try to allocate
3070 	 * space to store the runs.  If that fails, fall back to the old
3071 	 * behavior of just reclaiming MIN_RECLAIM pages.
3072 	 */
3073 	if (desired_runs > 1)
3074 		m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs),
3075 		    M_TEMP, M_NOWAIT);
3076 	else
3077 		m_runs = NULL;
3078 
3079 	if (m_runs == NULL) {
3080 		m_runs = _m_runs;
3081 		nruns = NRUNS;
3082 	} else {
3083 		nruns = NRUNS + desired_runs - 1;
3084 	}
3085 	min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM);
3086 
3087 	/*
3088 	 * The caller will attempt an allocation after some runs have been
3089 	 * reclaimed and added to the vm_phys buddy lists.  Due to limitations
3090 	 * of vm_phys_alloc_contig(), round up the requested length to the next
3091 	 * power of two or maximum chunk size, and ensure that each run is
3092 	 * suitably aligned.
3093 	 */
3094 	minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
3095 	npages = roundup2(npages, minalign);
3096 	if (alignment < ptoa(minalign))
3097 		alignment = ptoa(minalign);
3098 
3099 	/*
3100 	 * The page daemon is allowed to dig deeper into the free page list.
3101 	 */
3102 	req_class = req & VM_ALLOC_CLASS_MASK;
3103 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3104 		req_class = VM_ALLOC_SYSTEM;
3105 
3106 	start_segind = vm_phys_lookup_segind(low);
3107 
3108 	/*
3109 	 * Return if the number of free pages cannot satisfy the requested
3110 	 * allocation.
3111 	 */
3112 	vmd = VM_DOMAIN(domain);
3113 	count = vmd->vmd_free_count;
3114 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
3115 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3116 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
3117 		goto done;
3118 
3119 	/*
3120 	 * Scan up to three times, relaxing the restrictions ("options") on
3121 	 * the reclamation of reservations and superpages each time.
3122 	 */
3123 	for (options = VPSC_NORESERV;;) {
3124 		bool phys_range_exists = false;
3125 
3126 		/*
3127 		 * Find the highest runs that satisfy the given constraints
3128 		 * and restrictions, and record them in "m_runs".
3129 		 */
3130 		count = 0;
3131 		segind = start_segind;
3132 		while ((segind = vm_phys_find_range(bounds, segind, domain,
3133 		    npages, low, high)) != -1) {
3134 			phys_range_exists = true;
3135 			while ((m_run = vm_page_scan_contig(npages, bounds[0],
3136 			    bounds[1], alignment, boundary, options))) {
3137 				bounds[0] = m_run + npages;
3138 				m_runs[RUN_INDEX(count, nruns)] = m_run;
3139 				count++;
3140 			}
3141 			segind++;
3142 		}
3143 
3144 		if (!phys_range_exists) {
3145 			ret = ERANGE;
3146 			goto done;
3147 		}
3148 
3149 		/*
3150 		 * Reclaim the highest runs in LIFO (descending) order until
3151 		 * the number of reclaimed pages, "reclaimed", is at least
3152 		 * "min_reclaim".  Reset "reclaimed" each time because each
3153 		 * reclamation is idempotent, and runs will (likely) recur
3154 		 * from one scan to the next as restrictions are relaxed.
3155 		 */
3156 		reclaimed = 0;
3157 		for (i = 0; count > 0 && i < nruns; i++) {
3158 			count--;
3159 			m_run = m_runs[RUN_INDEX(count, nruns)];
3160 			error = vm_page_reclaim_run(req_class, domain, npages,
3161 			    m_run, high);
3162 			if (error == 0) {
3163 				reclaimed += npages;
3164 				if (reclaimed >= min_reclaim) {
3165 					ret = 0;
3166 					goto done;
3167 				}
3168 			}
3169 		}
3170 
3171 		/*
3172 		 * Either relax the restrictions on the next scan or return if
3173 		 * the last scan had no restrictions.
3174 		 */
3175 		if (options == VPSC_NORESERV)
3176 			options = VPSC_NOSUPER;
3177 		else if (options == VPSC_NOSUPER)
3178 			options = VPSC_ANY;
3179 		else if (options == VPSC_ANY) {
3180 			if (reclaimed != 0)
3181 				ret = 0;
3182 			goto done;
3183 		}
3184 	}
3185 done:
3186 	if (m_runs != _m_runs)
3187 		free(m_runs, M_TEMP);
3188 	return (ret);
3189 }
3190 
3191 int
3192 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
3193     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
3194 {
3195 	return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low, high,
3196 	    alignment, boundary, 1));
3197 }
3198 
3199 int
3200 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3201     u_long alignment, vm_paddr_t boundary)
3202 {
3203 	struct vm_domainset_iter di;
3204 	int domain, ret, status;
3205 
3206 	ret = ERANGE;
3207 
3208 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3209 	do {
3210 		status = vm_page_reclaim_contig_domain(domain, req, npages, low,
3211 		    high, alignment, boundary);
3212 		if (status == 0)
3213 			return (0);
3214 		else if (status == ERANGE)
3215 			vm_domainset_iter_ignore(&di, domain);
3216 		else {
3217 			KASSERT(status == ENOMEM, ("Unrecognized error %d "
3218 			    "from vm_page_reclaim_contig_domain()", status));
3219 			ret = ENOMEM;
3220 		}
3221 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3222 
3223 	return (ret);
3224 }
3225 
3226 /*
3227  * Set the domain in the appropriate page level domainset.
3228  */
3229 void
3230 vm_domain_set(struct vm_domain *vmd)
3231 {
3232 
3233 	mtx_lock(&vm_domainset_lock);
3234 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3235 		vmd->vmd_minset = 1;
3236 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3237 	}
3238 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3239 		vmd->vmd_severeset = 1;
3240 		DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3241 	}
3242 	mtx_unlock(&vm_domainset_lock);
3243 }
3244 
3245 /*
3246  * Clear the domain from the appropriate page level domainset.
3247  */
3248 void
3249 vm_domain_clear(struct vm_domain *vmd)
3250 {
3251 
3252 	mtx_lock(&vm_domainset_lock);
3253 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3254 		vmd->vmd_minset = 0;
3255 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3256 		if (vm_min_waiters != 0) {
3257 			vm_min_waiters = 0;
3258 			wakeup(&vm_min_domains);
3259 		}
3260 	}
3261 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3262 		vmd->vmd_severeset = 0;
3263 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3264 		if (vm_severe_waiters != 0) {
3265 			vm_severe_waiters = 0;
3266 			wakeup(&vm_severe_domains);
3267 		}
3268 	}
3269 
3270 	/*
3271 	 * If pageout daemon needs pages, then tell it that there are
3272 	 * some free.
3273 	 */
3274 	if (vmd->vmd_pageout_pages_needed &&
3275 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3276 		wakeup(&vmd->vmd_pageout_pages_needed);
3277 		vmd->vmd_pageout_pages_needed = 0;
3278 	}
3279 
3280 	/* See comments in vm_wait_doms(). */
3281 	if (vm_pageproc_waiters) {
3282 		vm_pageproc_waiters = 0;
3283 		wakeup(&vm_pageproc_waiters);
3284 	}
3285 	mtx_unlock(&vm_domainset_lock);
3286 }
3287 
3288 /*
3289  * Wait for free pages to exceed the min threshold globally.
3290  */
3291 void
3292 vm_wait_min(void)
3293 {
3294 
3295 	mtx_lock(&vm_domainset_lock);
3296 	while (vm_page_count_min()) {
3297 		vm_min_waiters++;
3298 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3299 	}
3300 	mtx_unlock(&vm_domainset_lock);
3301 }
3302 
3303 /*
3304  * Wait for free pages to exceed the severe threshold globally.
3305  */
3306 void
3307 vm_wait_severe(void)
3308 {
3309 
3310 	mtx_lock(&vm_domainset_lock);
3311 	while (vm_page_count_severe()) {
3312 		vm_severe_waiters++;
3313 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3314 		    "vmwait", 0);
3315 	}
3316 	mtx_unlock(&vm_domainset_lock);
3317 }
3318 
3319 u_int
3320 vm_wait_count(void)
3321 {
3322 
3323 	return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3324 }
3325 
3326 int
3327 vm_wait_doms(const domainset_t *wdoms, int mflags)
3328 {
3329 	int error;
3330 
3331 	error = 0;
3332 
3333 	/*
3334 	 * We use racey wakeup synchronization to avoid expensive global
3335 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
3336 	 * To handle this, we only sleep for one tick in this instance.  It
3337 	 * is expected that most allocations for the pageproc will come from
3338 	 * kmem or vm_page_grab* which will use the more specific and
3339 	 * race-free vm_wait_domain().
3340 	 */
3341 	if (curproc == pageproc) {
3342 		mtx_lock(&vm_domainset_lock);
3343 		vm_pageproc_waiters++;
3344 		error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3345 		    PVM | PDROP | mflags, "pageprocwait", 1);
3346 	} else {
3347 		/*
3348 		 * XXX Ideally we would wait only until the allocation could
3349 		 * be satisfied.  This condition can cause new allocators to
3350 		 * consume all freed pages while old allocators wait.
3351 		 */
3352 		mtx_lock(&vm_domainset_lock);
3353 		if (vm_page_count_min_set(wdoms)) {
3354 			if (pageproc == NULL)
3355 				panic("vm_wait in early boot");
3356 			vm_min_waiters++;
3357 			error = msleep(&vm_min_domains, &vm_domainset_lock,
3358 			    PVM | PDROP | mflags, "vmwait", 0);
3359 		} else
3360 			mtx_unlock(&vm_domainset_lock);
3361 	}
3362 	return (error);
3363 }
3364 
3365 /*
3366  *	vm_wait_domain:
3367  *
3368  *	Sleep until free pages are available for allocation.
3369  *	- Called in various places after failed memory allocations.
3370  */
3371 void
3372 vm_wait_domain(int domain)
3373 {
3374 	struct vm_domain *vmd;
3375 	domainset_t wdom;
3376 
3377 	vmd = VM_DOMAIN(domain);
3378 	vm_domain_free_assert_unlocked(vmd);
3379 
3380 	if (curproc == pageproc) {
3381 		mtx_lock(&vm_domainset_lock);
3382 		if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3383 			vmd->vmd_pageout_pages_needed = 1;
3384 			msleep(&vmd->vmd_pageout_pages_needed,
3385 			    &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3386 		} else
3387 			mtx_unlock(&vm_domainset_lock);
3388 	} else {
3389 		DOMAINSET_ZERO(&wdom);
3390 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
3391 		vm_wait_doms(&wdom, 0);
3392 	}
3393 }
3394 
3395 static int
3396 vm_wait_flags(vm_object_t obj, int mflags)
3397 {
3398 	struct domainset *d;
3399 
3400 	d = NULL;
3401 
3402 	/*
3403 	 * Carefully fetch pointers only once: the struct domainset
3404 	 * itself is ummutable but the pointer might change.
3405 	 */
3406 	if (obj != NULL)
3407 		d = obj->domain.dr_policy;
3408 	if (d == NULL)
3409 		d = curthread->td_domain.dr_policy;
3410 
3411 	return (vm_wait_doms(&d->ds_mask, mflags));
3412 }
3413 
3414 /*
3415  *	vm_wait:
3416  *
3417  *	Sleep until free pages are available for allocation in the
3418  *	affinity domains of the obj.  If obj is NULL, the domain set
3419  *	for the calling thread is used.
3420  *	Called in various places after failed memory allocations.
3421  */
3422 void
3423 vm_wait(vm_object_t obj)
3424 {
3425 	(void)vm_wait_flags(obj, 0);
3426 }
3427 
3428 int
3429 vm_wait_intr(vm_object_t obj)
3430 {
3431 	return (vm_wait_flags(obj, PCATCH));
3432 }
3433 
3434 /*
3435  *	vm_domain_alloc_fail:
3436  *
3437  *	Called when a page allocation function fails.  Informs the
3438  *	pagedaemon and performs the requested wait.  Requires the
3439  *	domain_free and object lock on entry.  Returns with the
3440  *	object lock held and free lock released.  Returns an error when
3441  *	retry is necessary.
3442  *
3443  */
3444 static int
3445 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3446 {
3447 
3448 	vm_domain_free_assert_unlocked(vmd);
3449 
3450 	atomic_add_int(&vmd->vmd_pageout_deficit,
3451 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3452 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3453 		if (object != NULL)
3454 			VM_OBJECT_WUNLOCK(object);
3455 		vm_wait_domain(vmd->vmd_domain);
3456 		if (object != NULL)
3457 			VM_OBJECT_WLOCK(object);
3458 		if (req & VM_ALLOC_WAITOK)
3459 			return (EAGAIN);
3460 	}
3461 
3462 	return (0);
3463 }
3464 
3465 /*
3466  *	vm_waitpfault:
3467  *
3468  *	Sleep until free pages are available for allocation.
3469  *	- Called only in vm_fault so that processes page faulting
3470  *	  can be easily tracked.
3471  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3472  *	  processes will be able to grab memory first.  Do not change
3473  *	  this balance without careful testing first.
3474  */
3475 void
3476 vm_waitpfault(struct domainset *dset, int timo)
3477 {
3478 
3479 	/*
3480 	 * XXX Ideally we would wait only until the allocation could
3481 	 * be satisfied.  This condition can cause new allocators to
3482 	 * consume all freed pages while old allocators wait.
3483 	 */
3484 	mtx_lock(&vm_domainset_lock);
3485 	if (vm_page_count_min_set(&dset->ds_mask)) {
3486 		vm_min_waiters++;
3487 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3488 		    "pfault", timo);
3489 	} else
3490 		mtx_unlock(&vm_domainset_lock);
3491 }
3492 
3493 static struct vm_pagequeue *
3494 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3495 {
3496 
3497 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3498 }
3499 
3500 #ifdef INVARIANTS
3501 static struct vm_pagequeue *
3502 vm_page_pagequeue(vm_page_t m)
3503 {
3504 
3505 	return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3506 }
3507 #endif
3508 
3509 static __always_inline bool
3510 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3511 {
3512 	vm_page_astate_t tmp;
3513 
3514 	tmp = *old;
3515 	do {
3516 		if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3517 			return (true);
3518 		counter_u64_add(pqstate_commit_retries, 1);
3519 	} while (old->_bits == tmp._bits);
3520 
3521 	return (false);
3522 }
3523 
3524 /*
3525  * Do the work of committing a queue state update that moves the page out of
3526  * its current queue.
3527  */
3528 static bool
3529 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3530     vm_page_astate_t *old, vm_page_astate_t new)
3531 {
3532 	vm_page_t next;
3533 
3534 	vm_pagequeue_assert_locked(pq);
3535 	KASSERT(vm_page_pagequeue(m) == pq,
3536 	    ("%s: queue %p does not match page %p", __func__, pq, m));
3537 	KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3538 	    ("%s: invalid queue indices %d %d",
3539 	    __func__, old->queue, new.queue));
3540 
3541 	/*
3542 	 * Once the queue index of the page changes there is nothing
3543 	 * synchronizing with further updates to the page's physical
3544 	 * queue state.  Therefore we must speculatively remove the page
3545 	 * from the queue now and be prepared to roll back if the queue
3546 	 * state update fails.  If the page is not physically enqueued then
3547 	 * we just update its queue index.
3548 	 */
3549 	if ((old->flags & PGA_ENQUEUED) != 0) {
3550 		new.flags &= ~PGA_ENQUEUED;
3551 		next = TAILQ_NEXT(m, plinks.q);
3552 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3553 		vm_pagequeue_cnt_dec(pq);
3554 		if (!vm_page_pqstate_fcmpset(m, old, new)) {
3555 			if (next == NULL)
3556 				TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3557 			else
3558 				TAILQ_INSERT_BEFORE(next, m, plinks.q);
3559 			vm_pagequeue_cnt_inc(pq);
3560 			return (false);
3561 		} else {
3562 			return (true);
3563 		}
3564 	} else {
3565 		return (vm_page_pqstate_fcmpset(m, old, new));
3566 	}
3567 }
3568 
3569 static bool
3570 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3571     vm_page_astate_t new)
3572 {
3573 	struct vm_pagequeue *pq;
3574 	vm_page_astate_t as;
3575 	bool ret;
3576 
3577 	pq = _vm_page_pagequeue(m, old->queue);
3578 
3579 	/*
3580 	 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3581 	 * corresponding page queue lock is held.
3582 	 */
3583 	vm_pagequeue_lock(pq);
3584 	as = vm_page_astate_load(m);
3585 	if (__predict_false(as._bits != old->_bits)) {
3586 		*old = as;
3587 		ret = false;
3588 	} else {
3589 		ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3590 	}
3591 	vm_pagequeue_unlock(pq);
3592 	return (ret);
3593 }
3594 
3595 /*
3596  * Commit a queue state update that enqueues or requeues a page.
3597  */
3598 static bool
3599 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3600     vm_page_astate_t *old, vm_page_astate_t new)
3601 {
3602 	struct vm_domain *vmd;
3603 
3604 	vm_pagequeue_assert_locked(pq);
3605 	KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3606 	    ("%s: invalid queue indices %d %d",
3607 	    __func__, old->queue, new.queue));
3608 
3609 	new.flags |= PGA_ENQUEUED;
3610 	if (!vm_page_pqstate_fcmpset(m, old, new))
3611 		return (false);
3612 
3613 	if ((old->flags & PGA_ENQUEUED) != 0)
3614 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3615 	else
3616 		vm_pagequeue_cnt_inc(pq);
3617 
3618 	/*
3619 	 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3620 	 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3621 	 * applied, even if it was set first.
3622 	 */
3623 	if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3624 		vmd = vm_pagequeue_domain(m);
3625 		KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3626 		    ("%s: invalid page queue for page %p", __func__, m));
3627 		TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3628 	} else {
3629 		TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3630 	}
3631 	return (true);
3632 }
3633 
3634 /*
3635  * Commit a queue state update that encodes a request for a deferred queue
3636  * operation.
3637  */
3638 static bool
3639 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3640     vm_page_astate_t new)
3641 {
3642 
3643 	KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3644 	    ("%s: invalid state, queue %d flags %x",
3645 	    __func__, new.queue, new.flags));
3646 
3647 	if (old->_bits != new._bits &&
3648 	    !vm_page_pqstate_fcmpset(m, old, new))
3649 		return (false);
3650 	vm_page_pqbatch_submit(m, new.queue);
3651 	return (true);
3652 }
3653 
3654 /*
3655  * A generic queue state update function.  This handles more cases than the
3656  * specialized functions above.
3657  */
3658 bool
3659 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3660 {
3661 
3662 	if (old->_bits == new._bits)
3663 		return (true);
3664 
3665 	if (old->queue != PQ_NONE && new.queue != old->queue) {
3666 		if (!vm_page_pqstate_commit_dequeue(m, old, new))
3667 			return (false);
3668 		if (new.queue != PQ_NONE)
3669 			vm_page_pqbatch_submit(m, new.queue);
3670 	} else {
3671 		if (!vm_page_pqstate_fcmpset(m, old, new))
3672 			return (false);
3673 		if (new.queue != PQ_NONE &&
3674 		    ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3675 			vm_page_pqbatch_submit(m, new.queue);
3676 	}
3677 	return (true);
3678 }
3679 
3680 /*
3681  * Apply deferred queue state updates to a page.
3682  */
3683 static inline void
3684 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3685 {
3686 	vm_page_astate_t new, old;
3687 
3688 	CRITICAL_ASSERT(curthread);
3689 	vm_pagequeue_assert_locked(pq);
3690 	KASSERT(queue < PQ_COUNT,
3691 	    ("%s: invalid queue index %d", __func__, queue));
3692 	KASSERT(pq == _vm_page_pagequeue(m, queue),
3693 	    ("%s: page %p does not belong to queue %p", __func__, m, pq));
3694 
3695 	for (old = vm_page_astate_load(m);;) {
3696 		if (__predict_false(old.queue != queue ||
3697 		    (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3698 			counter_u64_add(queue_nops, 1);
3699 			break;
3700 		}
3701 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3702 		    ("%s: page %p is unmanaged", __func__, m));
3703 
3704 		new = old;
3705 		if ((old.flags & PGA_DEQUEUE) != 0) {
3706 			new.flags &= ~PGA_QUEUE_OP_MASK;
3707 			new.queue = PQ_NONE;
3708 			if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3709 			    m, &old, new))) {
3710 				counter_u64_add(queue_ops, 1);
3711 				break;
3712 			}
3713 		} else {
3714 			new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3715 			if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3716 			    m, &old, new))) {
3717 				counter_u64_add(queue_ops, 1);
3718 				break;
3719 			}
3720 		}
3721 	}
3722 }
3723 
3724 static void
3725 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3726     uint8_t queue)
3727 {
3728 	int i;
3729 
3730 	for (i = 0; i < bq->bq_cnt; i++)
3731 		vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3732 	vm_batchqueue_init(bq);
3733 }
3734 
3735 /*
3736  *	vm_page_pqbatch_submit:		[ internal use only ]
3737  *
3738  *	Enqueue a page in the specified page queue's batched work queue.
3739  *	The caller must have encoded the requested operation in the page
3740  *	structure's a.flags field.
3741  */
3742 void
3743 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3744 {
3745 	struct vm_batchqueue *bq;
3746 	struct vm_pagequeue *pq;
3747 	int domain, slots_remaining;
3748 
3749 	KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3750 
3751 	domain = vm_page_domain(m);
3752 	critical_enter();
3753 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3754 	slots_remaining = vm_batchqueue_insert(bq, m);
3755 	if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
3756 		/* keep building the bq */
3757 		critical_exit();
3758 		return;
3759 	} else if (slots_remaining > 0 ) {
3760 		/* Try to process the bq if we can get the lock */
3761 		pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3762 		if (vm_pagequeue_trylock(pq)) {
3763 			vm_pqbatch_process(pq, bq, queue);
3764 			vm_pagequeue_unlock(pq);
3765 		}
3766 		critical_exit();
3767 		return;
3768 	}
3769 	critical_exit();
3770 
3771 	/* if we make it here, the bq is full so wait for the lock */
3772 
3773 	pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3774 	vm_pagequeue_lock(pq);
3775 	critical_enter();
3776 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3777 	vm_pqbatch_process(pq, bq, queue);
3778 	vm_pqbatch_process_page(pq, m, queue);
3779 	vm_pagequeue_unlock(pq);
3780 	critical_exit();
3781 }
3782 
3783 /*
3784  *	vm_page_pqbatch_drain:		[ internal use only ]
3785  *
3786  *	Force all per-CPU page queue batch queues to be drained.  This is
3787  *	intended for use in severe memory shortages, to ensure that pages
3788  *	do not remain stuck in the batch queues.
3789  */
3790 void
3791 vm_page_pqbatch_drain(void)
3792 {
3793 	struct thread *td;
3794 	struct vm_domain *vmd;
3795 	struct vm_pagequeue *pq;
3796 	int cpu, domain, queue;
3797 
3798 	td = curthread;
3799 	CPU_FOREACH(cpu) {
3800 		thread_lock(td);
3801 		sched_bind(td, cpu);
3802 		thread_unlock(td);
3803 
3804 		for (domain = 0; domain < vm_ndomains; domain++) {
3805 			vmd = VM_DOMAIN(domain);
3806 			for (queue = 0; queue < PQ_COUNT; queue++) {
3807 				pq = &vmd->vmd_pagequeues[queue];
3808 				vm_pagequeue_lock(pq);
3809 				critical_enter();
3810 				vm_pqbatch_process(pq,
3811 				    DPCPU_PTR(pqbatch[domain][queue]), queue);
3812 				critical_exit();
3813 				vm_pagequeue_unlock(pq);
3814 			}
3815 		}
3816 	}
3817 	thread_lock(td);
3818 	sched_unbind(td);
3819 	thread_unlock(td);
3820 }
3821 
3822 /*
3823  *	vm_page_dequeue_deferred:	[ internal use only ]
3824  *
3825  *	Request removal of the given page from its current page
3826  *	queue.  Physical removal from the queue may be deferred
3827  *	indefinitely.
3828  */
3829 void
3830 vm_page_dequeue_deferred(vm_page_t m)
3831 {
3832 	vm_page_astate_t new, old;
3833 
3834 	old = vm_page_astate_load(m);
3835 	do {
3836 		if (old.queue == PQ_NONE) {
3837 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3838 			    ("%s: page %p has unexpected queue state",
3839 			    __func__, m));
3840 			break;
3841 		}
3842 		new = old;
3843 		new.flags |= PGA_DEQUEUE;
3844 	} while (!vm_page_pqstate_commit_request(m, &old, new));
3845 }
3846 
3847 /*
3848  *	vm_page_dequeue:
3849  *
3850  *	Remove the page from whichever page queue it's in, if any, before
3851  *	returning.
3852  */
3853 void
3854 vm_page_dequeue(vm_page_t m)
3855 {
3856 	vm_page_astate_t new, old;
3857 
3858 	old = vm_page_astate_load(m);
3859 	do {
3860 		if (old.queue == PQ_NONE) {
3861 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3862 			    ("%s: page %p has unexpected queue state",
3863 			    __func__, m));
3864 			break;
3865 		}
3866 		new = old;
3867 		new.flags &= ~PGA_QUEUE_OP_MASK;
3868 		new.queue = PQ_NONE;
3869 	} while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3870 
3871 }
3872 
3873 /*
3874  * Schedule the given page for insertion into the specified page queue.
3875  * Physical insertion of the page may be deferred indefinitely.
3876  */
3877 static void
3878 vm_page_enqueue(vm_page_t m, uint8_t queue)
3879 {
3880 
3881 	KASSERT(m->a.queue == PQ_NONE &&
3882 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3883 	    ("%s: page %p is already enqueued", __func__, m));
3884 	KASSERT(m->ref_count > 0,
3885 	    ("%s: page %p does not carry any references", __func__, m));
3886 
3887 	m->a.queue = queue;
3888 	if ((m->a.flags & PGA_REQUEUE) == 0)
3889 		vm_page_aflag_set(m, PGA_REQUEUE);
3890 	vm_page_pqbatch_submit(m, queue);
3891 }
3892 
3893 /*
3894  *	vm_page_free_prep:
3895  *
3896  *	Prepares the given page to be put on the free list,
3897  *	disassociating it from any VM object. The caller may return
3898  *	the page to the free list only if this function returns true.
3899  *
3900  *	The object, if it exists, must be locked, and then the page must
3901  *	be xbusy.  Otherwise the page must be not busied.  A managed
3902  *	page must be unmapped.
3903  */
3904 static bool
3905 vm_page_free_prep(vm_page_t m)
3906 {
3907 
3908 	/*
3909 	 * Synchronize with threads that have dropped a reference to this
3910 	 * page.
3911 	 */
3912 	atomic_thread_fence_acq();
3913 
3914 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3915 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3916 		uint64_t *p;
3917 		int i;
3918 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3919 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3920 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3921 			    m, i, (uintmax_t)*p));
3922 	}
3923 #endif
3924 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3925 		KASSERT(!pmap_page_is_mapped(m),
3926 		    ("vm_page_free_prep: freeing mapped page %p", m));
3927 		KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3928 		    ("vm_page_free_prep: mapping flags set in page %p", m));
3929 	} else {
3930 		KASSERT(m->a.queue == PQ_NONE,
3931 		    ("vm_page_free_prep: unmanaged page %p is queued", m));
3932 	}
3933 	VM_CNT_INC(v_tfree);
3934 
3935 	if (m->object != NULL) {
3936 		KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
3937 		    ((m->object->flags & OBJ_UNMANAGED) != 0),
3938 		    ("vm_page_free_prep: managed flag mismatch for page %p",
3939 		    m));
3940 		vm_page_assert_xbusied(m);
3941 
3942 		/*
3943 		 * The object reference can be released without an atomic
3944 		 * operation.
3945 		 */
3946 		KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3947 		    m->ref_count == VPRC_OBJREF,
3948 		    ("vm_page_free_prep: page %p has unexpected ref_count %u",
3949 		    m, m->ref_count));
3950 		vm_page_object_remove(m);
3951 		m->ref_count -= VPRC_OBJREF;
3952 	} else
3953 		vm_page_assert_unbusied(m);
3954 
3955 	vm_page_busy_free(m);
3956 
3957 	/*
3958 	 * If fictitious remove object association and
3959 	 * return.
3960 	 */
3961 	if ((m->flags & PG_FICTITIOUS) != 0) {
3962 		KASSERT(m->ref_count == 1,
3963 		    ("fictitious page %p is referenced", m));
3964 		KASSERT(m->a.queue == PQ_NONE,
3965 		    ("fictitious page %p is queued", m));
3966 		return (false);
3967 	}
3968 
3969 	/*
3970 	 * Pages need not be dequeued before they are returned to the physical
3971 	 * memory allocator, but they must at least be marked for a deferred
3972 	 * dequeue.
3973 	 */
3974 	if ((m->oflags & VPO_UNMANAGED) == 0)
3975 		vm_page_dequeue_deferred(m);
3976 
3977 	m->valid = 0;
3978 	vm_page_undirty(m);
3979 
3980 	if (m->ref_count != 0)
3981 		panic("vm_page_free_prep: page %p has references", m);
3982 
3983 	/*
3984 	 * Restore the default memory attribute to the page.
3985 	 */
3986 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3987 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3988 
3989 #if VM_NRESERVLEVEL > 0
3990 	/*
3991 	 * Determine whether the page belongs to a reservation.  If the page was
3992 	 * allocated from a per-CPU cache, it cannot belong to a reservation, so
3993 	 * as an optimization, we avoid the check in that case.
3994 	 */
3995 	if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3996 		return (false);
3997 #endif
3998 
3999 	return (true);
4000 }
4001 
4002 /*
4003  *	vm_page_free_toq:
4004  *
4005  *	Returns the given page to the free list, disassociating it
4006  *	from any VM object.
4007  *
4008  *	The object must be locked.  The page must be exclusively busied if it
4009  *	belongs to an object.
4010  */
4011 static void
4012 vm_page_free_toq(vm_page_t m)
4013 {
4014 	struct vm_domain *vmd;
4015 	uma_zone_t zone;
4016 
4017 	if (!vm_page_free_prep(m))
4018 		return;
4019 
4020 	vmd = vm_pagequeue_domain(m);
4021 	zone = vmd->vmd_pgcache[m->pool].zone;
4022 	if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
4023 		uma_zfree(zone, m);
4024 		return;
4025 	}
4026 	vm_domain_free_lock(vmd);
4027 	vm_phys_free_pages(m, 0);
4028 	vm_domain_free_unlock(vmd);
4029 	vm_domain_freecnt_inc(vmd, 1);
4030 }
4031 
4032 /*
4033  *	vm_page_free_pages_toq:
4034  *
4035  *	Returns a list of pages to the free list, disassociating it
4036  *	from any VM object.  In other words, this is equivalent to
4037  *	calling vm_page_free_toq() for each page of a list of VM objects.
4038  */
4039 void
4040 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
4041 {
4042 	vm_page_t m;
4043 	int count;
4044 
4045 	if (SLIST_EMPTY(free))
4046 		return;
4047 
4048 	count = 0;
4049 	while ((m = SLIST_FIRST(free)) != NULL) {
4050 		count++;
4051 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
4052 		vm_page_free_toq(m);
4053 	}
4054 
4055 	if (update_wire_count)
4056 		vm_wire_sub(count);
4057 }
4058 
4059 /*
4060  * Mark this page as wired down.  For managed pages, this prevents reclamation
4061  * by the page daemon, or when the containing object, if any, is destroyed.
4062  */
4063 void
4064 vm_page_wire(vm_page_t m)
4065 {
4066 	u_int old;
4067 
4068 #ifdef INVARIANTS
4069 	if (m->object != NULL && !vm_page_busied(m) &&
4070 	    !vm_object_busied(m->object))
4071 		VM_OBJECT_ASSERT_LOCKED(m->object);
4072 #endif
4073 	KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
4074 	    VPRC_WIRE_COUNT(m->ref_count) >= 1,
4075 	    ("vm_page_wire: fictitious page %p has zero wirings", m));
4076 
4077 	old = atomic_fetchadd_int(&m->ref_count, 1);
4078 	KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
4079 	    ("vm_page_wire: counter overflow for page %p", m));
4080 	if (VPRC_WIRE_COUNT(old) == 0) {
4081 		if ((m->oflags & VPO_UNMANAGED) == 0)
4082 			vm_page_aflag_set(m, PGA_DEQUEUE);
4083 		vm_wire_add(1);
4084 	}
4085 }
4086 
4087 /*
4088  * Attempt to wire a mapped page following a pmap lookup of that page.
4089  * This may fail if a thread is concurrently tearing down mappings of the page.
4090  * The transient failure is acceptable because it translates to the
4091  * failure of the caller pmap_extract_and_hold(), which should be then
4092  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
4093  */
4094 bool
4095 vm_page_wire_mapped(vm_page_t m)
4096 {
4097 	u_int old;
4098 
4099 	old = m->ref_count;
4100 	do {
4101 		KASSERT(old > 0,
4102 		    ("vm_page_wire_mapped: wiring unreferenced page %p", m));
4103 		if ((old & VPRC_BLOCKED) != 0)
4104 			return (false);
4105 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
4106 
4107 	if (VPRC_WIRE_COUNT(old) == 0) {
4108 		if ((m->oflags & VPO_UNMANAGED) == 0)
4109 			vm_page_aflag_set(m, PGA_DEQUEUE);
4110 		vm_wire_add(1);
4111 	}
4112 	return (true);
4113 }
4114 
4115 /*
4116  * Release a wiring reference to a managed page.  If the page still belongs to
4117  * an object, update its position in the page queues to reflect the reference.
4118  * If the wiring was the last reference to the page, free the page.
4119  */
4120 static void
4121 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
4122 {
4123 	u_int old;
4124 
4125 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4126 	    ("%s: page %p is unmanaged", __func__, m));
4127 
4128 	/*
4129 	 * Update LRU state before releasing the wiring reference.
4130 	 * Use a release store when updating the reference count to
4131 	 * synchronize with vm_page_free_prep().
4132 	 */
4133 	old = m->ref_count;
4134 	do {
4135 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
4136 		    ("vm_page_unwire: wire count underflow for page %p", m));
4137 
4138 		if (old > VPRC_OBJREF + 1) {
4139 			/*
4140 			 * The page has at least one other wiring reference.  An
4141 			 * earlier iteration of this loop may have called
4142 			 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
4143 			 * re-set it if necessary.
4144 			 */
4145 			if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
4146 				vm_page_aflag_set(m, PGA_DEQUEUE);
4147 		} else if (old == VPRC_OBJREF + 1) {
4148 			/*
4149 			 * This is the last wiring.  Clear PGA_DEQUEUE and
4150 			 * update the page's queue state to reflect the
4151 			 * reference.  If the page does not belong to an object
4152 			 * (i.e., the VPRC_OBJREF bit is clear), we only need to
4153 			 * clear leftover queue state.
4154 			 */
4155 			vm_page_release_toq(m, nqueue, noreuse);
4156 		} else if (old == 1) {
4157 			vm_page_aflag_clear(m, PGA_DEQUEUE);
4158 		}
4159 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4160 
4161 	if (VPRC_WIRE_COUNT(old) == 1) {
4162 		vm_wire_sub(1);
4163 		if (old == 1)
4164 			vm_page_free(m);
4165 	}
4166 }
4167 
4168 /*
4169  * Release one wiring of the specified page, potentially allowing it to be
4170  * paged out.
4171  *
4172  * Only managed pages belonging to an object can be paged out.  If the number
4173  * of wirings transitions to zero and the page is eligible for page out, then
4174  * the page is added to the specified paging queue.  If the released wiring
4175  * represented the last reference to the page, the page is freed.
4176  */
4177 void
4178 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4179 {
4180 
4181 	KASSERT(nqueue < PQ_COUNT,
4182 	    ("vm_page_unwire: invalid queue %u request for page %p",
4183 	    nqueue, m));
4184 
4185 	if ((m->oflags & VPO_UNMANAGED) != 0) {
4186 		if (vm_page_unwire_noq(m) && m->ref_count == 0)
4187 			vm_page_free(m);
4188 		return;
4189 	}
4190 	vm_page_unwire_managed(m, nqueue, false);
4191 }
4192 
4193 /*
4194  * Unwire a page without (re-)inserting it into a page queue.  It is up
4195  * to the caller to enqueue, requeue, or free the page as appropriate.
4196  * In most cases involving managed pages, vm_page_unwire() should be used
4197  * instead.
4198  */
4199 bool
4200 vm_page_unwire_noq(vm_page_t m)
4201 {
4202 	u_int old;
4203 
4204 	old = vm_page_drop(m, 1);
4205 	KASSERT(VPRC_WIRE_COUNT(old) != 0,
4206 	    ("%s: counter underflow for page %p", __func__,  m));
4207 	KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4208 	    ("%s: missing ref on fictitious page %p", __func__, m));
4209 
4210 	if (VPRC_WIRE_COUNT(old) > 1)
4211 		return (false);
4212 	if ((m->oflags & VPO_UNMANAGED) == 0)
4213 		vm_page_aflag_clear(m, PGA_DEQUEUE);
4214 	vm_wire_sub(1);
4215 	return (true);
4216 }
4217 
4218 /*
4219  * Ensure that the page ends up in the specified page queue.  If the page is
4220  * active or being moved to the active queue, ensure that its act_count is
4221  * at least ACT_INIT but do not otherwise mess with it.
4222  */
4223 static __always_inline void
4224 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4225 {
4226 	vm_page_astate_t old, new;
4227 
4228 	KASSERT(m->ref_count > 0,
4229 	    ("%s: page %p does not carry any references", __func__, m));
4230 	KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4231 	    ("%s: invalid flags %x", __func__, nflag));
4232 
4233 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4234 		return;
4235 
4236 	old = vm_page_astate_load(m);
4237 	do {
4238 		if ((old.flags & PGA_DEQUEUE) != 0)
4239 			break;
4240 		new = old;
4241 		new.flags &= ~PGA_QUEUE_OP_MASK;
4242 		if (nqueue == PQ_ACTIVE)
4243 			new.act_count = max(old.act_count, ACT_INIT);
4244 		if (old.queue == nqueue) {
4245 			/*
4246 			 * There is no need to requeue pages already in the
4247 			 * active queue.
4248 			 */
4249 			if (nqueue != PQ_ACTIVE ||
4250 			    (old.flags & PGA_ENQUEUED) == 0)
4251 				new.flags |= nflag;
4252 		} else {
4253 			new.flags |= nflag;
4254 			new.queue = nqueue;
4255 		}
4256 	} while (!vm_page_pqstate_commit(m, &old, new));
4257 }
4258 
4259 /*
4260  * Put the specified page on the active list (if appropriate).
4261  */
4262 void
4263 vm_page_activate(vm_page_t m)
4264 {
4265 
4266 	vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4267 }
4268 
4269 /*
4270  * Move the specified page to the tail of the inactive queue, or requeue
4271  * the page if it is already in the inactive queue.
4272  */
4273 void
4274 vm_page_deactivate(vm_page_t m)
4275 {
4276 
4277 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4278 }
4279 
4280 void
4281 vm_page_deactivate_noreuse(vm_page_t m)
4282 {
4283 
4284 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4285 }
4286 
4287 /*
4288  * Put a page in the laundry, or requeue it if it is already there.
4289  */
4290 void
4291 vm_page_launder(vm_page_t m)
4292 {
4293 
4294 	vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4295 }
4296 
4297 /*
4298  * Put a page in the PQ_UNSWAPPABLE holding queue.
4299  */
4300 void
4301 vm_page_unswappable(vm_page_t m)
4302 {
4303 
4304 	VM_OBJECT_ASSERT_LOCKED(m->object);
4305 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4306 	    ("page %p already unswappable", m));
4307 
4308 	vm_page_dequeue(m);
4309 	vm_page_enqueue(m, PQ_UNSWAPPABLE);
4310 }
4311 
4312 /*
4313  * Release a page back to the page queues in preparation for unwiring.
4314  */
4315 static void
4316 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4317 {
4318 	vm_page_astate_t old, new;
4319 	uint16_t nflag;
4320 
4321 	/*
4322 	 * Use a check of the valid bits to determine whether we should
4323 	 * accelerate reclamation of the page.  The object lock might not be
4324 	 * held here, in which case the check is racy.  At worst we will either
4325 	 * accelerate reclamation of a valid page and violate LRU, or
4326 	 * unnecessarily defer reclamation of an invalid page.
4327 	 *
4328 	 * If we were asked to not cache the page, place it near the head of the
4329 	 * inactive queue so that is reclaimed sooner.
4330 	 */
4331 	if (noreuse || vm_page_none_valid(m)) {
4332 		nqueue = PQ_INACTIVE;
4333 		nflag = PGA_REQUEUE_HEAD;
4334 	} else {
4335 		nflag = PGA_REQUEUE;
4336 	}
4337 
4338 	old = vm_page_astate_load(m);
4339 	do {
4340 		new = old;
4341 
4342 		/*
4343 		 * If the page is already in the active queue and we are not
4344 		 * trying to accelerate reclamation, simply mark it as
4345 		 * referenced and avoid any queue operations.
4346 		 */
4347 		new.flags &= ~PGA_QUEUE_OP_MASK;
4348 		if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
4349 		    (old.flags & PGA_ENQUEUED) != 0)
4350 			new.flags |= PGA_REFERENCED;
4351 		else {
4352 			new.flags |= nflag;
4353 			new.queue = nqueue;
4354 		}
4355 	} while (!vm_page_pqstate_commit(m, &old, new));
4356 }
4357 
4358 /*
4359  * Unwire a page and either attempt to free it or re-add it to the page queues.
4360  */
4361 void
4362 vm_page_release(vm_page_t m, int flags)
4363 {
4364 	vm_object_t object;
4365 
4366 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4367 	    ("vm_page_release: page %p is unmanaged", m));
4368 
4369 	if ((flags & VPR_TRYFREE) != 0) {
4370 		for (;;) {
4371 			object = atomic_load_ptr(&m->object);
4372 			if (object == NULL)
4373 				break;
4374 			/* Depends on type-stability. */
4375 			if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4376 				break;
4377 			if (object == m->object) {
4378 				vm_page_release_locked(m, flags);
4379 				VM_OBJECT_WUNLOCK(object);
4380 				return;
4381 			}
4382 			VM_OBJECT_WUNLOCK(object);
4383 		}
4384 	}
4385 	vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4386 }
4387 
4388 /* See vm_page_release(). */
4389 void
4390 vm_page_release_locked(vm_page_t m, int flags)
4391 {
4392 
4393 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4394 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4395 	    ("vm_page_release_locked: page %p is unmanaged", m));
4396 
4397 	if (vm_page_unwire_noq(m)) {
4398 		if ((flags & VPR_TRYFREE) != 0 &&
4399 		    (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4400 		    m->dirty == 0 && vm_page_tryxbusy(m)) {
4401 			/*
4402 			 * An unlocked lookup may have wired the page before the
4403 			 * busy lock was acquired, in which case the page must
4404 			 * not be freed.
4405 			 */
4406 			if (__predict_true(!vm_page_wired(m))) {
4407 				vm_page_free(m);
4408 				return;
4409 			}
4410 			vm_page_xunbusy(m);
4411 		} else {
4412 			vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4413 		}
4414 	}
4415 }
4416 
4417 static bool
4418 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4419 {
4420 	u_int old;
4421 
4422 	KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4423 	    ("vm_page_try_blocked_op: page %p has no object", m));
4424 	KASSERT(vm_page_busied(m),
4425 	    ("vm_page_try_blocked_op: page %p is not busy", m));
4426 	VM_OBJECT_ASSERT_LOCKED(m->object);
4427 
4428 	old = m->ref_count;
4429 	do {
4430 		KASSERT(old != 0,
4431 		    ("vm_page_try_blocked_op: page %p has no references", m));
4432 		if (VPRC_WIRE_COUNT(old) != 0)
4433 			return (false);
4434 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4435 
4436 	(op)(m);
4437 
4438 	/*
4439 	 * If the object is read-locked, new wirings may be created via an
4440 	 * object lookup.
4441 	 */
4442 	old = vm_page_drop(m, VPRC_BLOCKED);
4443 	KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4444 	    old == (VPRC_BLOCKED | VPRC_OBJREF),
4445 	    ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4446 	    old, m));
4447 	return (true);
4448 }
4449 
4450 /*
4451  * Atomically check for wirings and remove all mappings of the page.
4452  */
4453 bool
4454 vm_page_try_remove_all(vm_page_t m)
4455 {
4456 
4457 	return (vm_page_try_blocked_op(m, pmap_remove_all));
4458 }
4459 
4460 /*
4461  * Atomically check for wirings and remove all writeable mappings of the page.
4462  */
4463 bool
4464 vm_page_try_remove_write(vm_page_t m)
4465 {
4466 
4467 	return (vm_page_try_blocked_op(m, pmap_remove_write));
4468 }
4469 
4470 /*
4471  * vm_page_advise
4472  *
4473  * 	Apply the specified advice to the given page.
4474  */
4475 void
4476 vm_page_advise(vm_page_t m, int advice)
4477 {
4478 
4479 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4480 	vm_page_assert_xbusied(m);
4481 
4482 	if (advice == MADV_FREE)
4483 		/*
4484 		 * Mark the page clean.  This will allow the page to be freed
4485 		 * without first paging it out.  MADV_FREE pages are often
4486 		 * quickly reused by malloc(3), so we do not do anything that
4487 		 * would result in a page fault on a later access.
4488 		 */
4489 		vm_page_undirty(m);
4490 	else if (advice != MADV_DONTNEED) {
4491 		if (advice == MADV_WILLNEED)
4492 			vm_page_activate(m);
4493 		return;
4494 	}
4495 
4496 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4497 		vm_page_dirty(m);
4498 
4499 	/*
4500 	 * Clear any references to the page.  Otherwise, the page daemon will
4501 	 * immediately reactivate the page.
4502 	 */
4503 	vm_page_aflag_clear(m, PGA_REFERENCED);
4504 
4505 	/*
4506 	 * Place clean pages near the head of the inactive queue rather than
4507 	 * the tail, thus defeating the queue's LRU operation and ensuring that
4508 	 * the page will be reused quickly.  Dirty pages not already in the
4509 	 * laundry are moved there.
4510 	 */
4511 	if (m->dirty == 0)
4512 		vm_page_deactivate_noreuse(m);
4513 	else if (!vm_page_in_laundry(m))
4514 		vm_page_launder(m);
4515 }
4516 
4517 /*
4518  *	vm_page_grab_release
4519  *
4520  *	Helper routine for grab functions to release busy on return.
4521  */
4522 static inline void
4523 vm_page_grab_release(vm_page_t m, int allocflags)
4524 {
4525 
4526 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4527 		if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4528 			vm_page_sunbusy(m);
4529 		else
4530 			vm_page_xunbusy(m);
4531 	}
4532 }
4533 
4534 /*
4535  *	vm_page_grab_sleep
4536  *
4537  *	Sleep for busy according to VM_ALLOC_ parameters.  Returns true
4538  *	if the caller should retry and false otherwise.
4539  *
4540  *	If the object is locked on entry the object will be unlocked with
4541  *	false returns and still locked but possibly having been dropped
4542  *	with true returns.
4543  */
4544 static bool
4545 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4546     const char *wmesg, int allocflags, bool locked)
4547 {
4548 
4549 	if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4550 		return (false);
4551 
4552 	/*
4553 	 * Reference the page before unlocking and sleeping so that
4554 	 * the page daemon is less likely to reclaim it.
4555 	 */
4556 	if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4557 		vm_page_reference(m);
4558 
4559 	if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4560 	    locked)
4561 		VM_OBJECT_WLOCK(object);
4562 	if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4563 		return (false);
4564 
4565 	return (true);
4566 }
4567 
4568 /*
4569  * Assert that the grab flags are valid.
4570  */
4571 static inline void
4572 vm_page_grab_check(int allocflags)
4573 {
4574 
4575 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4576 	    (allocflags & VM_ALLOC_WIRED) != 0,
4577 	    ("vm_page_grab*: the pages must be busied or wired"));
4578 
4579 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4580 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4581 	    ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4582 }
4583 
4584 /*
4585  * Calculate the page allocation flags for grab.
4586  */
4587 static inline int
4588 vm_page_grab_pflags(int allocflags)
4589 {
4590 	int pflags;
4591 
4592 	pflags = allocflags &
4593 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4594 	    VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY);
4595 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4596 		pflags |= VM_ALLOC_WAITFAIL;
4597 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4598 		pflags |= VM_ALLOC_SBUSY;
4599 
4600 	return (pflags);
4601 }
4602 
4603 /*
4604  * Grab a page, waiting until we are waken up due to the page
4605  * changing state.  We keep on waiting, if the page continues
4606  * to be in the object.  If the page doesn't exist, first allocate it
4607  * and then conditionally zero it.
4608  *
4609  * This routine may sleep.
4610  *
4611  * The object must be locked on entry.  The lock will, however, be released
4612  * and reacquired if the routine sleeps.
4613  */
4614 vm_page_t
4615 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4616 {
4617 	vm_page_t m;
4618 
4619 	VM_OBJECT_ASSERT_WLOCKED(object);
4620 	vm_page_grab_check(allocflags);
4621 
4622 retrylookup:
4623 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4624 		if (!vm_page_tryacquire(m, allocflags)) {
4625 			if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4626 			    allocflags, true))
4627 				goto retrylookup;
4628 			return (NULL);
4629 		}
4630 		goto out;
4631 	}
4632 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4633 		return (NULL);
4634 	m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
4635 	if (m == NULL) {
4636 		if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4637 			return (NULL);
4638 		goto retrylookup;
4639 	}
4640 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4641 		pmap_zero_page(m);
4642 
4643 out:
4644 	vm_page_grab_release(m, allocflags);
4645 
4646 	return (m);
4647 }
4648 
4649 /*
4650  * Locklessly attempt to acquire a page given a (object, pindex) tuple
4651  * and an optional previous page to avoid the radix lookup.  The resulting
4652  * page will be validated against the identity tuple and busied or wired
4653  * as requested.  A NULL *mp return guarantees that the page was not in
4654  * radix at the time of the call but callers must perform higher level
4655  * synchronization or retry the operation under a lock if they require
4656  * an atomic answer.  This is the only lock free validation routine,
4657  * other routines can depend on the resulting page state.
4658  *
4659  * The return value indicates whether the operation failed due to caller
4660  * flags.  The return is tri-state with mp:
4661  *
4662  * (true, *mp != NULL) - The operation was successful.
4663  * (true, *mp == NULL) - The page was not found in tree.
4664  * (false, *mp == NULL) - WAITFAIL or NOWAIT prevented acquisition.
4665  */
4666 static bool
4667 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex,
4668     vm_page_t prev, vm_page_t *mp, int allocflags)
4669 {
4670 	vm_page_t m;
4671 
4672 	vm_page_grab_check(allocflags);
4673 	MPASS(prev == NULL || vm_page_busied(prev) || vm_page_wired(prev));
4674 
4675 	*mp = NULL;
4676 	for (;;) {
4677 		/*
4678 		 * We may see a false NULL here because the previous page
4679 		 * has been removed or just inserted and the list is loaded
4680 		 * without barriers.  Switch to radix to verify.
4681 		 */
4682 		if (prev == NULL || (m = TAILQ_NEXT(prev, listq)) == NULL ||
4683 		    QMD_IS_TRASHED(m) || m->pindex != pindex ||
4684 		    atomic_load_ptr(&m->object) != object) {
4685 			prev = NULL;
4686 			/*
4687 			 * This guarantees the result is instantaneously
4688 			 * correct.
4689 			 */
4690 			m = vm_radix_lookup_unlocked(&object->rtree, pindex);
4691 		}
4692 		if (m == NULL)
4693 			return (true);
4694 		if (vm_page_trybusy(m, allocflags)) {
4695 			if (m->object == object && m->pindex == pindex)
4696 				break;
4697 			/* relookup. */
4698 			vm_page_busy_release(m);
4699 			cpu_spinwait();
4700 			continue;
4701 		}
4702 		if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4703 		    allocflags, false))
4704 			return (false);
4705 	}
4706 	if ((allocflags & VM_ALLOC_WIRED) != 0)
4707 		vm_page_wire(m);
4708 	vm_page_grab_release(m, allocflags);
4709 	*mp = m;
4710 	return (true);
4711 }
4712 
4713 /*
4714  * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4715  * is not set.
4716  */
4717 vm_page_t
4718 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4719 {
4720 	vm_page_t m;
4721 
4722 	vm_page_grab_check(allocflags);
4723 
4724 	if (!vm_page_acquire_unlocked(object, pindex, NULL, &m, allocflags))
4725 		return (NULL);
4726 	if (m != NULL)
4727 		return (m);
4728 
4729 	/*
4730 	 * The radix lockless lookup should never return a false negative
4731 	 * errors.  If the user specifies NOCREAT they are guaranteed there
4732 	 * was no page present at the instant of the call.  A NOCREAT caller
4733 	 * must handle create races gracefully.
4734 	 */
4735 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4736 		return (NULL);
4737 
4738 	VM_OBJECT_WLOCK(object);
4739 	m = vm_page_grab(object, pindex, allocflags);
4740 	VM_OBJECT_WUNLOCK(object);
4741 
4742 	return (m);
4743 }
4744 
4745 /*
4746  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4747  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4748  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4749  * in simultaneously.  Additional pages will be left on a paging queue but
4750  * will neither be wired nor busy regardless of allocflags.
4751  */
4752 int
4753 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4754 {
4755 	vm_page_t m;
4756 	vm_page_t ma[VM_INITIAL_PAGEIN];
4757 	int after, i, pflags, rv;
4758 
4759 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4760 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4761 	    ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4762 	KASSERT((allocflags &
4763 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4764 	    ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4765 	VM_OBJECT_ASSERT_WLOCKED(object);
4766 	pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4767 	    VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
4768 	pflags |= VM_ALLOC_WAITFAIL;
4769 
4770 retrylookup:
4771 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4772 		/*
4773 		 * If the page is fully valid it can only become invalid
4774 		 * with the object lock held.  If it is not valid it can
4775 		 * become valid with the busy lock held.  Therefore, we
4776 		 * may unnecessarily lock the exclusive busy here if we
4777 		 * race with I/O completion not using the object lock.
4778 		 * However, we will not end up with an invalid page and a
4779 		 * shared lock.
4780 		 */
4781 		if (!vm_page_trybusy(m,
4782 		    vm_page_all_valid(m) ? allocflags : 0)) {
4783 			(void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4784 			    allocflags, true);
4785 			goto retrylookup;
4786 		}
4787 		if (vm_page_all_valid(m))
4788 			goto out;
4789 		if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4790 			vm_page_busy_release(m);
4791 			*mp = NULL;
4792 			return (VM_PAGER_FAIL);
4793 		}
4794 	} else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4795 		*mp = NULL;
4796 		return (VM_PAGER_FAIL);
4797 	} else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
4798 		if (!vm_pager_can_alloc_page(object, pindex)) {
4799 			*mp = NULL;
4800 			return (VM_PAGER_AGAIN);
4801 		}
4802 		goto retrylookup;
4803 	}
4804 
4805 	vm_page_assert_xbusied(m);
4806 	if (vm_pager_has_page(object, pindex, NULL, &after)) {
4807 		after = MIN(after, VM_INITIAL_PAGEIN);
4808 		after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4809 		after = MAX(after, 1);
4810 		ma[0] = m;
4811 		for (i = 1; i < after; i++) {
4812 			if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4813 				if (vm_page_any_valid(ma[i]) ||
4814 				    !vm_page_tryxbusy(ma[i]))
4815 					break;
4816 			} else {
4817 				ma[i] = vm_page_alloc(object, m->pindex + i,
4818 				    VM_ALLOC_NORMAL);
4819 				if (ma[i] == NULL)
4820 					break;
4821 			}
4822 		}
4823 		after = i;
4824 		vm_object_pip_add(object, after);
4825 		VM_OBJECT_WUNLOCK(object);
4826 		rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4827 		VM_OBJECT_WLOCK(object);
4828 		vm_object_pip_wakeupn(object, after);
4829 		/* Pager may have replaced a page. */
4830 		m = ma[0];
4831 		if (rv != VM_PAGER_OK) {
4832 			for (i = 0; i < after; i++) {
4833 				if (!vm_page_wired(ma[i]))
4834 					vm_page_free(ma[i]);
4835 				else
4836 					vm_page_xunbusy(ma[i]);
4837 			}
4838 			*mp = NULL;
4839 			return (rv);
4840 		}
4841 		for (i = 1; i < after; i++)
4842 			vm_page_readahead_finish(ma[i]);
4843 		MPASS(vm_page_all_valid(m));
4844 	} else {
4845 		vm_page_zero_invalid(m, TRUE);
4846 	}
4847 out:
4848 	if ((allocflags & VM_ALLOC_WIRED) != 0)
4849 		vm_page_wire(m);
4850 	if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
4851 		vm_page_busy_downgrade(m);
4852 	else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
4853 		vm_page_busy_release(m);
4854 	*mp = m;
4855 	return (VM_PAGER_OK);
4856 }
4857 
4858 /*
4859  * Locklessly grab a valid page.  If the page is not valid or not yet
4860  * allocated this will fall back to the object lock method.
4861  */
4862 int
4863 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
4864     vm_pindex_t pindex, int allocflags)
4865 {
4866 	vm_page_t m;
4867 	int flags;
4868 	int error;
4869 
4870 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4871 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4872 	    ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4873 	    "mismatch"));
4874 	KASSERT((allocflags &
4875 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4876 	    ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
4877 
4878 	/*
4879 	 * Attempt a lockless lookup and busy.  We need at least an sbusy
4880 	 * before we can inspect the valid field and return a wired page.
4881 	 */
4882 	flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
4883 	if (!vm_page_acquire_unlocked(object, pindex, NULL, mp, flags))
4884 		return (VM_PAGER_FAIL);
4885 	if ((m = *mp) != NULL) {
4886 		if (vm_page_all_valid(m)) {
4887 			if ((allocflags & VM_ALLOC_WIRED) != 0)
4888 				vm_page_wire(m);
4889 			vm_page_grab_release(m, allocflags);
4890 			return (VM_PAGER_OK);
4891 		}
4892 		vm_page_busy_release(m);
4893 	}
4894 	if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4895 		*mp = NULL;
4896 		return (VM_PAGER_FAIL);
4897 	}
4898 	VM_OBJECT_WLOCK(object);
4899 	error = vm_page_grab_valid(mp, object, pindex, allocflags);
4900 	VM_OBJECT_WUNLOCK(object);
4901 
4902 	return (error);
4903 }
4904 
4905 /*
4906  * Return the specified range of pages from the given object.  For each
4907  * page offset within the range, if a page already exists within the object
4908  * at that offset and it is busy, then wait for it to change state.  If,
4909  * instead, the page doesn't exist, then allocate it.
4910  *
4911  * The caller must always specify an allocation class.
4912  *
4913  * allocation classes:
4914  *	VM_ALLOC_NORMAL		normal process request
4915  *	VM_ALLOC_SYSTEM		system *really* needs the pages
4916  *
4917  * The caller must always specify that the pages are to be busied and/or
4918  * wired.
4919  *
4920  * optional allocation flags:
4921  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
4922  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
4923  *	VM_ALLOC_NOWAIT		do not sleep
4924  *	VM_ALLOC_SBUSY		set page to sbusy state
4925  *	VM_ALLOC_WIRED		wire the pages
4926  *	VM_ALLOC_ZERO		zero and validate any invalid pages
4927  *
4928  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4929  * may return a partial prefix of the requested range.
4930  */
4931 int
4932 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4933     vm_page_t *ma, int count)
4934 {
4935 	vm_page_t m, mpred;
4936 	int pflags;
4937 	int i;
4938 
4939 	VM_OBJECT_ASSERT_WLOCKED(object);
4940 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4941 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4942 	KASSERT(count > 0,
4943 	    ("vm_page_grab_pages: invalid page count %d", count));
4944 	vm_page_grab_check(allocflags);
4945 
4946 	pflags = vm_page_grab_pflags(allocflags);
4947 	i = 0;
4948 retrylookup:
4949 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
4950 	if (m == NULL || m->pindex != pindex + i) {
4951 		mpred = m;
4952 		m = NULL;
4953 	} else
4954 		mpred = TAILQ_PREV(m, pglist, listq);
4955 	for (; i < count; i++) {
4956 		if (m != NULL) {
4957 			if (!vm_page_tryacquire(m, allocflags)) {
4958 				if (vm_page_grab_sleep(object, m, pindex + i,
4959 				    "grbmaw", allocflags, true))
4960 					goto retrylookup;
4961 				break;
4962 			}
4963 		} else {
4964 			if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4965 				break;
4966 			m = vm_page_alloc_after(object, pindex + i,
4967 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
4968 			if (m == NULL) {
4969 				if ((allocflags & (VM_ALLOC_NOWAIT |
4970 				    VM_ALLOC_WAITFAIL)) != 0)
4971 					break;
4972 				goto retrylookup;
4973 			}
4974 		}
4975 		if (vm_page_none_valid(m) &&
4976 		    (allocflags & VM_ALLOC_ZERO) != 0) {
4977 			if ((m->flags & PG_ZERO) == 0)
4978 				pmap_zero_page(m);
4979 			vm_page_valid(m);
4980 		}
4981 		vm_page_grab_release(m, allocflags);
4982 		ma[i] = mpred = m;
4983 		m = vm_page_next(m);
4984 	}
4985 	return (i);
4986 }
4987 
4988 /*
4989  * Unlocked variant of vm_page_grab_pages().  This accepts the same flags
4990  * and will fall back to the locked variant to handle allocation.
4991  */
4992 int
4993 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
4994     int allocflags, vm_page_t *ma, int count)
4995 {
4996 	vm_page_t m, pred;
4997 	int flags;
4998 	int i;
4999 
5000 	KASSERT(count > 0,
5001 	    ("vm_page_grab_pages_unlocked: invalid page count %d", count));
5002 	vm_page_grab_check(allocflags);
5003 
5004 	/*
5005 	 * Modify flags for lockless acquire to hold the page until we
5006 	 * set it valid if necessary.
5007 	 */
5008 	flags = allocflags & ~VM_ALLOC_NOBUSY;
5009 	pred = NULL;
5010 	for (i = 0; i < count; i++, pindex++) {
5011 		if (!vm_page_acquire_unlocked(object, pindex, pred, &m, flags))
5012 			return (i);
5013 		if (m == NULL)
5014 			break;
5015 		if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
5016 			if ((m->flags & PG_ZERO) == 0)
5017 				pmap_zero_page(m);
5018 			vm_page_valid(m);
5019 		}
5020 		/* m will still be wired or busy according to flags. */
5021 		vm_page_grab_release(m, allocflags);
5022 		pred = ma[i] = m;
5023 	}
5024 	if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
5025 		return (i);
5026 	count -= i;
5027 	VM_OBJECT_WLOCK(object);
5028 	i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
5029 	VM_OBJECT_WUNLOCK(object);
5030 
5031 	return (i);
5032 }
5033 
5034 /*
5035  * Mapping function for valid or dirty bits in a page.
5036  *
5037  * Inputs are required to range within a page.
5038  */
5039 vm_page_bits_t
5040 vm_page_bits(int base, int size)
5041 {
5042 	int first_bit;
5043 	int last_bit;
5044 
5045 	KASSERT(
5046 	    base + size <= PAGE_SIZE,
5047 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
5048 	);
5049 
5050 	if (size == 0)		/* handle degenerate case */
5051 		return (0);
5052 
5053 	first_bit = base >> DEV_BSHIFT;
5054 	last_bit = (base + size - 1) >> DEV_BSHIFT;
5055 
5056 	return (((vm_page_bits_t)2 << last_bit) -
5057 	    ((vm_page_bits_t)1 << first_bit));
5058 }
5059 
5060 void
5061 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
5062 {
5063 
5064 #if PAGE_SIZE == 32768
5065 	atomic_set_64((uint64_t *)bits, set);
5066 #elif PAGE_SIZE == 16384
5067 	atomic_set_32((uint32_t *)bits, set);
5068 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
5069 	atomic_set_16((uint16_t *)bits, set);
5070 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
5071 	atomic_set_8((uint8_t *)bits, set);
5072 #else		/* PAGE_SIZE <= 8192 */
5073 	uintptr_t addr;
5074 	int shift;
5075 
5076 	addr = (uintptr_t)bits;
5077 	/*
5078 	 * Use a trick to perform a 32-bit atomic on the
5079 	 * containing aligned word, to not depend on the existence
5080 	 * of atomic_{set, clear}_{8, 16}.
5081 	 */
5082 	shift = addr & (sizeof(uint32_t) - 1);
5083 #if BYTE_ORDER == BIG_ENDIAN
5084 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5085 #else
5086 	shift *= NBBY;
5087 #endif
5088 	addr &= ~(sizeof(uint32_t) - 1);
5089 	atomic_set_32((uint32_t *)addr, set << shift);
5090 #endif		/* PAGE_SIZE */
5091 }
5092 
5093 static inline void
5094 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
5095 {
5096 
5097 #if PAGE_SIZE == 32768
5098 	atomic_clear_64((uint64_t *)bits, clear);
5099 #elif PAGE_SIZE == 16384
5100 	atomic_clear_32((uint32_t *)bits, clear);
5101 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
5102 	atomic_clear_16((uint16_t *)bits, clear);
5103 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
5104 	atomic_clear_8((uint8_t *)bits, clear);
5105 #else		/* PAGE_SIZE <= 8192 */
5106 	uintptr_t addr;
5107 	int shift;
5108 
5109 	addr = (uintptr_t)bits;
5110 	/*
5111 	 * Use a trick to perform a 32-bit atomic on the
5112 	 * containing aligned word, to not depend on the existence
5113 	 * of atomic_{set, clear}_{8, 16}.
5114 	 */
5115 	shift = addr & (sizeof(uint32_t) - 1);
5116 #if BYTE_ORDER == BIG_ENDIAN
5117 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5118 #else
5119 	shift *= NBBY;
5120 #endif
5121 	addr &= ~(sizeof(uint32_t) - 1);
5122 	atomic_clear_32((uint32_t *)addr, clear << shift);
5123 #endif		/* PAGE_SIZE */
5124 }
5125 
5126 static inline vm_page_bits_t
5127 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
5128 {
5129 #if PAGE_SIZE == 32768
5130 	uint64_t old;
5131 
5132 	old = *bits;
5133 	while (atomic_fcmpset_64(bits, &old, newbits) == 0);
5134 	return (old);
5135 #elif PAGE_SIZE == 16384
5136 	uint32_t old;
5137 
5138 	old = *bits;
5139 	while (atomic_fcmpset_32(bits, &old, newbits) == 0);
5140 	return (old);
5141 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
5142 	uint16_t old;
5143 
5144 	old = *bits;
5145 	while (atomic_fcmpset_16(bits, &old, newbits) == 0);
5146 	return (old);
5147 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
5148 	uint8_t old;
5149 
5150 	old = *bits;
5151 	while (atomic_fcmpset_8(bits, &old, newbits) == 0);
5152 	return (old);
5153 #else		/* PAGE_SIZE <= 4096*/
5154 	uintptr_t addr;
5155 	uint32_t old, new, mask;
5156 	int shift;
5157 
5158 	addr = (uintptr_t)bits;
5159 	/*
5160 	 * Use a trick to perform a 32-bit atomic on the
5161 	 * containing aligned word, to not depend on the existence
5162 	 * of atomic_{set, swap, clear}_{8, 16}.
5163 	 */
5164 	shift = addr & (sizeof(uint32_t) - 1);
5165 #if BYTE_ORDER == BIG_ENDIAN
5166 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5167 #else
5168 	shift *= NBBY;
5169 #endif
5170 	addr &= ~(sizeof(uint32_t) - 1);
5171 	mask = VM_PAGE_BITS_ALL << shift;
5172 
5173 	old = *bits;
5174 	do {
5175 		new = old & ~mask;
5176 		new |= newbits << shift;
5177 	} while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5178 	return (old >> shift);
5179 #endif		/* PAGE_SIZE */
5180 }
5181 
5182 /*
5183  *	vm_page_set_valid_range:
5184  *
5185  *	Sets portions of a page valid.  The arguments are expected
5186  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5187  *	of any partial chunks touched by the range.  The invalid portion of
5188  *	such chunks will be zeroed.
5189  *
5190  *	(base + size) must be less then or equal to PAGE_SIZE.
5191  */
5192 void
5193 vm_page_set_valid_range(vm_page_t m, int base, int size)
5194 {
5195 	int endoff, frag;
5196 	vm_page_bits_t pagebits;
5197 
5198 	vm_page_assert_busied(m);
5199 	if (size == 0)	/* handle degenerate case */
5200 		return;
5201 
5202 	/*
5203 	 * If the base is not DEV_BSIZE aligned and the valid
5204 	 * bit is clear, we have to zero out a portion of the
5205 	 * first block.
5206 	 */
5207 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5208 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5209 		pmap_zero_page_area(m, frag, base - frag);
5210 
5211 	/*
5212 	 * If the ending offset is not DEV_BSIZE aligned and the
5213 	 * valid bit is clear, we have to zero out a portion of
5214 	 * the last block.
5215 	 */
5216 	endoff = base + size;
5217 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5218 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5219 		pmap_zero_page_area(m, endoff,
5220 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5221 
5222 	/*
5223 	 * Assert that no previously invalid block that is now being validated
5224 	 * is already dirty.
5225 	 */
5226 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5227 	    ("vm_page_set_valid_range: page %p is dirty", m));
5228 
5229 	/*
5230 	 * Set valid bits inclusive of any overlap.
5231 	 */
5232 	pagebits = vm_page_bits(base, size);
5233 	if (vm_page_xbusied(m))
5234 		m->valid |= pagebits;
5235 	else
5236 		vm_page_bits_set(m, &m->valid, pagebits);
5237 }
5238 
5239 /*
5240  * Set the page dirty bits and free the invalid swap space if
5241  * present.  Returns the previous dirty bits.
5242  */
5243 vm_page_bits_t
5244 vm_page_set_dirty(vm_page_t m)
5245 {
5246 	vm_page_bits_t old;
5247 
5248 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
5249 
5250 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5251 		old = m->dirty;
5252 		m->dirty = VM_PAGE_BITS_ALL;
5253 	} else
5254 		old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5255 	if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5256 		vm_pager_page_unswapped(m);
5257 
5258 	return (old);
5259 }
5260 
5261 /*
5262  * Clear the given bits from the specified page's dirty field.
5263  */
5264 static __inline void
5265 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5266 {
5267 
5268 	vm_page_assert_busied(m);
5269 
5270 	/*
5271 	 * If the page is xbusied and not write mapped we are the
5272 	 * only thread that can modify dirty bits.  Otherwise, The pmap
5273 	 * layer can call vm_page_dirty() without holding a distinguished
5274 	 * lock.  The combination of page busy and atomic operations
5275 	 * suffice to guarantee consistency of the page dirty field.
5276 	 */
5277 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5278 		m->dirty &= ~pagebits;
5279 	else
5280 		vm_page_bits_clear(m, &m->dirty, pagebits);
5281 }
5282 
5283 /*
5284  *	vm_page_set_validclean:
5285  *
5286  *	Sets portions of a page valid and clean.  The arguments are expected
5287  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5288  *	of any partial chunks touched by the range.  The invalid portion of
5289  *	such chunks will be zero'd.
5290  *
5291  *	(base + size) must be less then or equal to PAGE_SIZE.
5292  */
5293 void
5294 vm_page_set_validclean(vm_page_t m, int base, int size)
5295 {
5296 	vm_page_bits_t oldvalid, pagebits;
5297 	int endoff, frag;
5298 
5299 	vm_page_assert_busied(m);
5300 	if (size == 0)	/* handle degenerate case */
5301 		return;
5302 
5303 	/*
5304 	 * If the base is not DEV_BSIZE aligned and the valid
5305 	 * bit is clear, we have to zero out a portion of the
5306 	 * first block.
5307 	 */
5308 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5309 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5310 		pmap_zero_page_area(m, frag, base - frag);
5311 
5312 	/*
5313 	 * If the ending offset is not DEV_BSIZE aligned and the
5314 	 * valid bit is clear, we have to zero out a portion of
5315 	 * the last block.
5316 	 */
5317 	endoff = base + size;
5318 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5319 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5320 		pmap_zero_page_area(m, endoff,
5321 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5322 
5323 	/*
5324 	 * Set valid, clear dirty bits.  If validating the entire
5325 	 * page we can safely clear the pmap modify bit.  We also
5326 	 * use this opportunity to clear the PGA_NOSYNC flag.  If a process
5327 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
5328 	 * be set again.
5329 	 *
5330 	 * We set valid bits inclusive of any overlap, but we can only
5331 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
5332 	 * the range.
5333 	 */
5334 	oldvalid = m->valid;
5335 	pagebits = vm_page_bits(base, size);
5336 	if (vm_page_xbusied(m))
5337 		m->valid |= pagebits;
5338 	else
5339 		vm_page_bits_set(m, &m->valid, pagebits);
5340 #if 0	/* NOT YET */
5341 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5342 		frag = DEV_BSIZE - frag;
5343 		base += frag;
5344 		size -= frag;
5345 		if (size < 0)
5346 			size = 0;
5347 	}
5348 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5349 #endif
5350 	if (base == 0 && size == PAGE_SIZE) {
5351 		/*
5352 		 * The page can only be modified within the pmap if it is
5353 		 * mapped, and it can only be mapped if it was previously
5354 		 * fully valid.
5355 		 */
5356 		if (oldvalid == VM_PAGE_BITS_ALL)
5357 			/*
5358 			 * Perform the pmap_clear_modify() first.  Otherwise,
5359 			 * a concurrent pmap operation, such as
5360 			 * pmap_protect(), could clear a modification in the
5361 			 * pmap and set the dirty field on the page before
5362 			 * pmap_clear_modify() had begun and after the dirty
5363 			 * field was cleared here.
5364 			 */
5365 			pmap_clear_modify(m);
5366 		m->dirty = 0;
5367 		vm_page_aflag_clear(m, PGA_NOSYNC);
5368 	} else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5369 		m->dirty &= ~pagebits;
5370 	else
5371 		vm_page_clear_dirty_mask(m, pagebits);
5372 }
5373 
5374 void
5375 vm_page_clear_dirty(vm_page_t m, int base, int size)
5376 {
5377 
5378 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5379 }
5380 
5381 /*
5382  *	vm_page_set_invalid:
5383  *
5384  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
5385  *	valid and dirty bits for the effected areas are cleared.
5386  */
5387 void
5388 vm_page_set_invalid(vm_page_t m, int base, int size)
5389 {
5390 	vm_page_bits_t bits;
5391 	vm_object_t object;
5392 
5393 	/*
5394 	 * The object lock is required so that pages can't be mapped
5395 	 * read-only while we're in the process of invalidating them.
5396 	 */
5397 	object = m->object;
5398 	VM_OBJECT_ASSERT_WLOCKED(object);
5399 	vm_page_assert_busied(m);
5400 
5401 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5402 	    size >= object->un_pager.vnp.vnp_size)
5403 		bits = VM_PAGE_BITS_ALL;
5404 	else
5405 		bits = vm_page_bits(base, size);
5406 	if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5407 		pmap_remove_all(m);
5408 	KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5409 	    !pmap_page_is_mapped(m),
5410 	    ("vm_page_set_invalid: page %p is mapped", m));
5411 	if (vm_page_xbusied(m)) {
5412 		m->valid &= ~bits;
5413 		m->dirty &= ~bits;
5414 	} else {
5415 		vm_page_bits_clear(m, &m->valid, bits);
5416 		vm_page_bits_clear(m, &m->dirty, bits);
5417 	}
5418 }
5419 
5420 /*
5421  *	vm_page_invalid:
5422  *
5423  *	Invalidates the entire page.  The page must be busy, unmapped, and
5424  *	the enclosing object must be locked.  The object locks protects
5425  *	against concurrent read-only pmap enter which is done without
5426  *	busy.
5427  */
5428 void
5429 vm_page_invalid(vm_page_t m)
5430 {
5431 
5432 	vm_page_assert_busied(m);
5433 	VM_OBJECT_ASSERT_WLOCKED(m->object);
5434 	MPASS(!pmap_page_is_mapped(m));
5435 
5436 	if (vm_page_xbusied(m))
5437 		m->valid = 0;
5438 	else
5439 		vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5440 }
5441 
5442 /*
5443  * vm_page_zero_invalid()
5444  *
5445  *	The kernel assumes that the invalid portions of a page contain
5446  *	garbage, but such pages can be mapped into memory by user code.
5447  *	When this occurs, we must zero out the non-valid portions of the
5448  *	page so user code sees what it expects.
5449  *
5450  *	Pages are most often semi-valid when the end of a file is mapped
5451  *	into memory and the file's size is not page aligned.
5452  */
5453 void
5454 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5455 {
5456 	int b;
5457 	int i;
5458 
5459 	/*
5460 	 * Scan the valid bits looking for invalid sections that
5461 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
5462 	 * valid bit may be set ) have already been zeroed by
5463 	 * vm_page_set_validclean().
5464 	 */
5465 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5466 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
5467 		    (m->valid & ((vm_page_bits_t)1 << i))) {
5468 			if (i > b) {
5469 				pmap_zero_page_area(m,
5470 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5471 			}
5472 			b = i + 1;
5473 		}
5474 	}
5475 
5476 	/*
5477 	 * setvalid is TRUE when we can safely set the zero'd areas
5478 	 * as being valid.  We can do this if there are no cache consistency
5479 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
5480 	 */
5481 	if (setvalid)
5482 		vm_page_valid(m);
5483 }
5484 
5485 /*
5486  *	vm_page_is_valid:
5487  *
5488  *	Is (partial) page valid?  Note that the case where size == 0
5489  *	will return FALSE in the degenerate case where the page is
5490  *	entirely invalid, and TRUE otherwise.
5491  *
5492  *	Some callers envoke this routine without the busy lock held and
5493  *	handle races via higher level locks.  Typical callers should
5494  *	hold a busy lock to prevent invalidation.
5495  */
5496 int
5497 vm_page_is_valid(vm_page_t m, int base, int size)
5498 {
5499 	vm_page_bits_t bits;
5500 
5501 	bits = vm_page_bits(base, size);
5502 	return (vm_page_any_valid(m) && (m->valid & bits) == bits);
5503 }
5504 
5505 /*
5506  * Returns true if all of the specified predicates are true for the entire
5507  * (super)page and false otherwise.
5508  */
5509 bool
5510 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
5511 {
5512 	vm_object_t object;
5513 	int i, npages;
5514 
5515 	object = m->object;
5516 	if (skip_m != NULL && skip_m->object != object)
5517 		return (false);
5518 	VM_OBJECT_ASSERT_LOCKED(object);
5519 	npages = atop(pagesizes[m->psind]);
5520 
5521 	/*
5522 	 * The physically contiguous pages that make up a superpage, i.e., a
5523 	 * page with a page size index ("psind") greater than zero, will
5524 	 * occupy adjacent entries in vm_page_array[].
5525 	 */
5526 	for (i = 0; i < npages; i++) {
5527 		/* Always test object consistency, including "skip_m". */
5528 		if (m[i].object != object)
5529 			return (false);
5530 		if (&m[i] == skip_m)
5531 			continue;
5532 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5533 			return (false);
5534 		if ((flags & PS_ALL_DIRTY) != 0) {
5535 			/*
5536 			 * Calling vm_page_test_dirty() or pmap_is_modified()
5537 			 * might stop this case from spuriously returning
5538 			 * "false".  However, that would require a write lock
5539 			 * on the object containing "m[i]".
5540 			 */
5541 			if (m[i].dirty != VM_PAGE_BITS_ALL)
5542 				return (false);
5543 		}
5544 		if ((flags & PS_ALL_VALID) != 0 &&
5545 		    m[i].valid != VM_PAGE_BITS_ALL)
5546 			return (false);
5547 	}
5548 	return (true);
5549 }
5550 
5551 /*
5552  * Set the page's dirty bits if the page is modified.
5553  */
5554 void
5555 vm_page_test_dirty(vm_page_t m)
5556 {
5557 
5558 	vm_page_assert_busied(m);
5559 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5560 		vm_page_dirty(m);
5561 }
5562 
5563 void
5564 vm_page_valid(vm_page_t m)
5565 {
5566 
5567 	vm_page_assert_busied(m);
5568 	if (vm_page_xbusied(m))
5569 		m->valid = VM_PAGE_BITS_ALL;
5570 	else
5571 		vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5572 }
5573 
5574 void
5575 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5576 {
5577 
5578 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5579 }
5580 
5581 void
5582 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5583 {
5584 
5585 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5586 }
5587 
5588 int
5589 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5590 {
5591 
5592 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5593 }
5594 
5595 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5596 void
5597 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5598 {
5599 
5600 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5601 }
5602 
5603 void
5604 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5605 {
5606 
5607 	mtx_assert_(vm_page_lockptr(m), a, file, line);
5608 }
5609 #endif
5610 
5611 #ifdef INVARIANTS
5612 void
5613 vm_page_object_busy_assert(vm_page_t m)
5614 {
5615 
5616 	/*
5617 	 * Certain of the page's fields may only be modified by the
5618 	 * holder of a page or object busy.
5619 	 */
5620 	if (m->object != NULL && !vm_page_busied(m))
5621 		VM_OBJECT_ASSERT_BUSY(m->object);
5622 }
5623 
5624 void
5625 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5626 {
5627 
5628 	if ((bits & PGA_WRITEABLE) == 0)
5629 		return;
5630 
5631 	/*
5632 	 * The PGA_WRITEABLE flag can only be set if the page is
5633 	 * managed, is exclusively busied or the object is locked.
5634 	 * Currently, this flag is only set by pmap_enter().
5635 	 */
5636 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5637 	    ("PGA_WRITEABLE on unmanaged page"));
5638 	if (!vm_page_xbusied(m))
5639 		VM_OBJECT_ASSERT_BUSY(m->object);
5640 }
5641 #endif
5642 
5643 #include "opt_ddb.h"
5644 #ifdef DDB
5645 #include <sys/kernel.h>
5646 
5647 #include <ddb/ddb.h>
5648 
5649 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
5650 {
5651 
5652 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5653 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5654 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5655 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5656 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5657 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5658 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5659 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5660 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5661 }
5662 
5663 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
5664 {
5665 	int dom;
5666 
5667 	db_printf("pq_free %d\n", vm_free_count());
5668 	for (dom = 0; dom < vm_ndomains; dom++) {
5669 		db_printf(
5670     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5671 		    dom,
5672 		    vm_dom[dom].vmd_page_count,
5673 		    vm_dom[dom].vmd_free_count,
5674 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5675 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5676 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5677 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5678 	}
5679 }
5680 
5681 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5682 {
5683 	vm_page_t m;
5684 	boolean_t phys, virt;
5685 
5686 	if (!have_addr) {
5687 		db_printf("show pginfo addr\n");
5688 		return;
5689 	}
5690 
5691 	phys = strchr(modif, 'p') != NULL;
5692 	virt = strchr(modif, 'v') != NULL;
5693 	if (virt)
5694 		m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5695 	else if (phys)
5696 		m = PHYS_TO_VM_PAGE(addr);
5697 	else
5698 		m = (vm_page_t)addr;
5699 	db_printf(
5700     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5701     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5702 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5703 	    m->a.queue, m->ref_count, m->a.flags, m->oflags,
5704 	    m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5705 }
5706 #endif /* DDB */
5707