1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * The Mach Operating System project at Carnegie-Mellon University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 /*- 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Resident memory management module. 65 */ 66 67 #include <sys/cdefs.h> 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/counter.h> 73 #include <sys/domainset.h> 74 #include <sys/kernel.h> 75 #include <sys/limits.h> 76 #include <sys/linker.h> 77 #include <sys/lock.h> 78 #include <sys/malloc.h> 79 #include <sys/mman.h> 80 #include <sys/msgbuf.h> 81 #include <sys/mutex.h> 82 #include <sys/proc.h> 83 #include <sys/rwlock.h> 84 #include <sys/sleepqueue.h> 85 #include <sys/sbuf.h> 86 #include <sys/sched.h> 87 #include <sys/smp.h> 88 #include <sys/sysctl.h> 89 #include <sys/vmmeter.h> 90 #include <sys/vnode.h> 91 92 #include <vm/vm.h> 93 #include <vm/pmap.h> 94 #include <vm/vm_param.h> 95 #include <vm/vm_domainset.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_map.h> 98 #include <vm/vm_object.h> 99 #include <vm/vm_page.h> 100 #include <vm/vm_pageout.h> 101 #include <vm/vm_phys.h> 102 #include <vm/vm_pagequeue.h> 103 #include <vm/vm_pager.h> 104 #include <vm/vm_radix.h> 105 #include <vm/vm_reserv.h> 106 #include <vm/vm_extern.h> 107 #include <vm/vm_dumpset.h> 108 #include <vm/uma.h> 109 #include <vm/uma_int.h> 110 111 #include <machine/md_var.h> 112 113 struct vm_domain vm_dom[MAXMEMDOM]; 114 115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]); 116 117 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT]; 118 119 struct mtx_padalign __exclusive_cache_line vm_domainset_lock; 120 /* The following fields are protected by the domainset lock. */ 121 domainset_t __exclusive_cache_line vm_min_domains; 122 domainset_t __exclusive_cache_line vm_severe_domains; 123 static int vm_min_waiters; 124 static int vm_severe_waiters; 125 static int vm_pageproc_waiters; 126 127 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 128 "VM page statistics"); 129 130 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries); 131 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries, 132 CTLFLAG_RD, &pqstate_commit_retries, 133 "Number of failed per-page atomic queue state updates"); 134 135 static COUNTER_U64_DEFINE_EARLY(queue_ops); 136 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops, 137 CTLFLAG_RD, &queue_ops, 138 "Number of batched queue operations"); 139 140 static COUNTER_U64_DEFINE_EARLY(queue_nops); 141 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops, 142 CTLFLAG_RD, &queue_nops, 143 "Number of batched queue operations with no effects"); 144 145 /* 146 * bogus page -- for I/O to/from partially complete buffers, 147 * or for paging into sparsely invalid regions. 148 */ 149 vm_page_t bogus_page; 150 151 vm_page_t vm_page_array; 152 long vm_page_array_size; 153 long first_page; 154 155 struct bitset *vm_page_dump; 156 long vm_page_dump_pages; 157 158 static TAILQ_HEAD(, vm_page) blacklist_head; 159 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); 160 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | 161 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); 162 163 static uma_zone_t fakepg_zone; 164 165 static vm_page_t vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, 166 int req, vm_page_t mpred); 167 static void vm_page_alloc_check(vm_page_t m); 168 static vm_page_t vm_page_alloc_nofree_domain(int domain, int req); 169 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, 170 vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked); 171 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 172 static void vm_page_enqueue(vm_page_t m, uint8_t queue); 173 static bool vm_page_free_prep(vm_page_t m); 174 static void vm_page_free_toq(vm_page_t m); 175 static void vm_page_init(void *dummy); 176 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 177 vm_pindex_t pindex, vm_page_t mpred); 178 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 179 vm_page_t mpred); 180 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue, 181 const uint16_t nflag); 182 static int vm_page_reclaim_run(int req_class, int domain, u_long npages, 183 vm_page_t m_run, vm_paddr_t high); 184 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse); 185 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, 186 int req); 187 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain, 188 int flags); 189 static void vm_page_zone_release(void *arg, void **store, int cnt); 190 191 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL); 192 193 static void 194 vm_page_init(void *dummy) 195 { 196 197 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 198 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 199 bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_NOFREE); 200 } 201 202 static int pgcache_zone_max_pcpu; 203 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu, 204 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0, 205 "Per-CPU page cache size"); 206 207 /* 208 * The cache page zone is initialized later since we need to be able to allocate 209 * pages before UMA is fully initialized. 210 */ 211 static void 212 vm_page_init_cache_zones(void *dummy __unused) 213 { 214 struct vm_domain *vmd; 215 struct vm_pgcache *pgcache; 216 int cache, domain, maxcache, pool; 217 218 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu); 219 maxcache = pgcache_zone_max_pcpu * mp_ncpus; 220 for (domain = 0; domain < vm_ndomains; domain++) { 221 vmd = VM_DOMAIN(domain); 222 for (pool = 0; pool < VM_NFREEPOOL; pool++) { 223 pgcache = &vmd->vmd_pgcache[pool]; 224 pgcache->domain = domain; 225 pgcache->pool = pool; 226 pgcache->zone = uma_zcache_create("vm pgcache", 227 PAGE_SIZE, NULL, NULL, NULL, NULL, 228 vm_page_zone_import, vm_page_zone_release, pgcache, 229 UMA_ZONE_VM); 230 231 /* 232 * Limit each pool's zone to 0.1% of the pages in the 233 * domain. 234 */ 235 cache = maxcache != 0 ? maxcache : 236 vmd->vmd_page_count / 1000; 237 uma_zone_set_maxcache(pgcache->zone, cache); 238 } 239 } 240 } 241 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL); 242 243 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 244 #if PAGE_SIZE == 32768 245 #ifdef CTASSERT 246 CTASSERT(sizeof(u_long) >= 8); 247 #endif 248 #endif 249 250 /* 251 * vm_set_page_size: 252 * 253 * Sets the page size, perhaps based upon the memory 254 * size. Must be called before any use of page-size 255 * dependent functions. 256 */ 257 void 258 vm_set_page_size(void) 259 { 260 if (vm_cnt.v_page_size == 0) 261 vm_cnt.v_page_size = PAGE_SIZE; 262 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 263 panic("vm_set_page_size: page size not a power of two"); 264 } 265 266 /* 267 * vm_page_blacklist_next: 268 * 269 * Find the next entry in the provided string of blacklist 270 * addresses. Entries are separated by space, comma, or newline. 271 * If an invalid integer is encountered then the rest of the 272 * string is skipped. Updates the list pointer to the next 273 * character, or NULL if the string is exhausted or invalid. 274 */ 275 static vm_paddr_t 276 vm_page_blacklist_next(char **list, char *end) 277 { 278 vm_paddr_t bad; 279 char *cp, *pos; 280 281 if (list == NULL || *list == NULL) 282 return (0); 283 if (**list =='\0') { 284 *list = NULL; 285 return (0); 286 } 287 288 /* 289 * If there's no end pointer then the buffer is coming from 290 * the kenv and we know it's null-terminated. 291 */ 292 if (end == NULL) 293 end = *list + strlen(*list); 294 295 /* Ensure that strtoq() won't walk off the end */ 296 if (*end != '\0') { 297 if (*end == '\n' || *end == ' ' || *end == ',') 298 *end = '\0'; 299 else { 300 printf("Blacklist not terminated, skipping\n"); 301 *list = NULL; 302 return (0); 303 } 304 } 305 306 for (pos = *list; *pos != '\0'; pos = cp) { 307 bad = strtoq(pos, &cp, 0); 308 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { 309 if (bad == 0) { 310 if (++cp < end) 311 continue; 312 else 313 break; 314 } 315 } else 316 break; 317 if (*cp == '\0' || ++cp >= end) 318 *list = NULL; 319 else 320 *list = cp; 321 return (trunc_page(bad)); 322 } 323 printf("Garbage in RAM blacklist, skipping\n"); 324 *list = NULL; 325 return (0); 326 } 327 328 bool 329 vm_page_blacklist_add(vm_paddr_t pa, bool verbose) 330 { 331 struct vm_domain *vmd; 332 vm_page_t m; 333 bool found; 334 335 m = vm_phys_paddr_to_vm_page(pa); 336 if (m == NULL) 337 return (true); /* page does not exist, no failure */ 338 339 vmd = VM_DOMAIN(vm_phys_domain(pa)); 340 vm_domain_free_lock(vmd); 341 found = vm_phys_unfree_page(pa); 342 vm_domain_free_unlock(vmd); 343 if (found) { 344 vm_domain_freecnt_inc(vmd, -1); 345 TAILQ_INSERT_TAIL(&blacklist_head, m, listq); 346 if (verbose) 347 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa); 348 } 349 return (found); 350 } 351 352 /* 353 * vm_page_blacklist_check: 354 * 355 * Iterate through the provided string of blacklist addresses, pulling 356 * each entry out of the physical allocator free list and putting it 357 * onto a list for reporting via the vm.page_blacklist sysctl. 358 */ 359 static void 360 vm_page_blacklist_check(char *list, char *end) 361 { 362 vm_paddr_t pa; 363 char *next; 364 365 next = list; 366 while (next != NULL) { 367 if ((pa = vm_page_blacklist_next(&next, end)) == 0) 368 continue; 369 vm_page_blacklist_add(pa, bootverbose); 370 } 371 } 372 373 /* 374 * vm_page_blacklist_load: 375 * 376 * Search for a special module named "ram_blacklist". It'll be a 377 * plain text file provided by the user via the loader directive 378 * of the same name. 379 */ 380 static void 381 vm_page_blacklist_load(char **list, char **end) 382 { 383 void *mod; 384 u_char *ptr; 385 u_int len; 386 387 mod = NULL; 388 ptr = NULL; 389 390 mod = preload_search_by_type("ram_blacklist"); 391 if (mod != NULL) { 392 ptr = preload_fetch_addr(mod); 393 len = preload_fetch_size(mod); 394 } 395 *list = ptr; 396 if (ptr != NULL) 397 *end = ptr + len; 398 else 399 *end = NULL; 400 return; 401 } 402 403 static int 404 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) 405 { 406 vm_page_t m; 407 struct sbuf sbuf; 408 int error, first; 409 410 first = 1; 411 error = sysctl_wire_old_buffer(req, 0); 412 if (error != 0) 413 return (error); 414 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 415 TAILQ_FOREACH(m, &blacklist_head, listq) { 416 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", 417 (uintmax_t)m->phys_addr); 418 first = 0; 419 } 420 error = sbuf_finish(&sbuf); 421 sbuf_delete(&sbuf); 422 return (error); 423 } 424 425 /* 426 * Initialize a dummy page for use in scans of the specified paging queue. 427 * In principle, this function only needs to set the flag PG_MARKER. 428 * Nonetheless, it write busies the page as a safety precaution. 429 */ 430 void 431 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags) 432 { 433 434 bzero(marker, sizeof(*marker)); 435 marker->flags = PG_MARKER; 436 marker->a.flags = aflags; 437 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 438 marker->a.queue = queue; 439 } 440 441 static void 442 vm_page_domain_init(int domain) 443 { 444 struct vm_domain *vmd; 445 struct vm_pagequeue *pq; 446 int i; 447 448 vmd = VM_DOMAIN(domain); 449 bzero(vmd, sizeof(*vmd)); 450 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 451 "vm inactive pagequeue"; 452 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 453 "vm active pagequeue"; 454 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) = 455 "vm laundry pagequeue"; 456 *__DECONST(const char **, 457 &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) = 458 "vm unswappable pagequeue"; 459 vmd->vmd_domain = domain; 460 vmd->vmd_page_count = 0; 461 vmd->vmd_free_count = 0; 462 vmd->vmd_segs = 0; 463 vmd->vmd_oom = FALSE; 464 for (i = 0; i < PQ_COUNT; i++) { 465 pq = &vmd->vmd_pagequeues[i]; 466 TAILQ_INIT(&pq->pq_pl); 467 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 468 MTX_DEF | MTX_DUPOK); 469 pq->pq_pdpages = 0; 470 vm_page_init_marker(&vmd->vmd_markers[i], i, 0); 471 } 472 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF); 473 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF); 474 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain); 475 476 /* 477 * inacthead is used to provide FIFO ordering for LRU-bypassing 478 * insertions. 479 */ 480 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED); 481 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl, 482 &vmd->vmd_inacthead, plinks.q); 483 484 /* 485 * The clock pages are used to implement active queue scanning without 486 * requeues. Scans start at clock[0], which is advanced after the scan 487 * ends. When the two clock hands meet, they are reset and scanning 488 * resumes from the head of the queue. 489 */ 490 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED); 491 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED); 492 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 493 &vmd->vmd_clock[0], plinks.q); 494 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 495 &vmd->vmd_clock[1], plinks.q); 496 } 497 498 /* 499 * Initialize a physical page in preparation for adding it to the free 500 * lists. 501 */ 502 void 503 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool) 504 { 505 m->object = NULL; 506 m->ref_count = 0; 507 m->busy_lock = VPB_FREED; 508 m->flags = m->a.flags = 0; 509 m->phys_addr = pa; 510 m->a.queue = PQ_NONE; 511 m->psind = 0; 512 m->segind = segind; 513 m->order = VM_NFREEORDER; 514 m->pool = pool; 515 m->valid = m->dirty = 0; 516 pmap_page_init(m); 517 } 518 519 #ifndef PMAP_HAS_PAGE_ARRAY 520 static vm_paddr_t 521 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range) 522 { 523 vm_paddr_t new_end; 524 525 /* 526 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 527 * However, because this page is allocated from KVM, out-of-bounds 528 * accesses using the direct map will not be trapped. 529 */ 530 *vaddr += PAGE_SIZE; 531 532 /* 533 * Allocate physical memory for the page structures, and map it. 534 */ 535 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 536 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end, 537 VM_PROT_READ | VM_PROT_WRITE); 538 vm_page_array_size = page_range; 539 540 return (new_end); 541 } 542 #endif 543 544 /* 545 * vm_page_startup: 546 * 547 * Initializes the resident memory module. Allocates physical memory for 548 * bootstrapping UMA and some data structures that are used to manage 549 * physical pages. Initializes these structures, and populates the free 550 * page queues. 551 */ 552 vm_offset_t 553 vm_page_startup(vm_offset_t vaddr) 554 { 555 struct vm_phys_seg *seg; 556 struct vm_domain *vmd; 557 vm_page_t m; 558 char *list, *listend; 559 vm_paddr_t end, high_avail, low_avail, new_end, size; 560 vm_paddr_t page_range __unused; 561 vm_paddr_t last_pa, pa, startp, endp; 562 u_long pagecount; 563 #if MINIDUMP_PAGE_TRACKING 564 u_long vm_page_dump_size; 565 #endif 566 int biggestone, i, segind; 567 #ifdef WITNESS 568 vm_offset_t mapped; 569 int witness_size; 570 #endif 571 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 572 long ii; 573 #endif 574 #ifdef VM_FREEPOOL_LAZYINIT 575 int lazyinit; 576 #endif 577 578 vaddr = round_page(vaddr); 579 580 vm_phys_early_startup(); 581 biggestone = vm_phys_avail_largest(); 582 end = phys_avail[biggestone+1]; 583 584 /* 585 * Initialize the page and queue locks. 586 */ 587 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF); 588 for (i = 0; i < PA_LOCK_COUNT; i++) 589 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 590 for (i = 0; i < vm_ndomains; i++) 591 vm_page_domain_init(i); 592 593 new_end = end; 594 #ifdef WITNESS 595 witness_size = round_page(witness_startup_count()); 596 new_end -= witness_size; 597 mapped = pmap_map(&vaddr, new_end, new_end + witness_size, 598 VM_PROT_READ | VM_PROT_WRITE); 599 bzero((void *)mapped, witness_size); 600 witness_startup((void *)mapped); 601 #endif 602 603 #if MINIDUMP_PAGE_TRACKING 604 /* 605 * Allocate a bitmap to indicate that a random physical page 606 * needs to be included in a minidump. 607 * 608 * The amd64 port needs this to indicate which direct map pages 609 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 610 * 611 * However, i386 still needs this workspace internally within the 612 * minidump code. In theory, they are not needed on i386, but are 613 * included should the sf_buf code decide to use them. 614 */ 615 last_pa = 0; 616 vm_page_dump_pages = 0; 617 for (i = 0; dump_avail[i + 1] != 0; i += 2) { 618 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) - 619 dump_avail[i] / PAGE_SIZE; 620 if (dump_avail[i + 1] > last_pa) 621 last_pa = dump_avail[i + 1]; 622 } 623 vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages)); 624 new_end -= vm_page_dump_size; 625 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 626 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 627 bzero((void *)vm_page_dump, vm_page_dump_size); 628 #if MINIDUMP_STARTUP_PAGE_TRACKING 629 /* 630 * Include the UMA bootstrap pages, witness pages and vm_page_dump 631 * in a crash dump. When pmap_map() uses the direct map, they are 632 * not automatically included. 633 */ 634 for (pa = new_end; pa < end; pa += PAGE_SIZE) 635 dump_add_page(pa); 636 #endif 637 #else 638 (void)last_pa; 639 #endif 640 phys_avail[biggestone + 1] = new_end; 641 #ifdef __amd64__ 642 /* 643 * Request that the physical pages underlying the message buffer be 644 * included in a crash dump. Since the message buffer is accessed 645 * through the direct map, they are not automatically included. 646 */ 647 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 648 last_pa = pa + round_page(msgbufsize); 649 while (pa < last_pa) { 650 dump_add_page(pa); 651 pa += PAGE_SIZE; 652 } 653 #endif 654 /* 655 * Compute the number of pages of memory that will be available for 656 * use, taking into account the overhead of a page structure per page. 657 * In other words, solve 658 * "available physical memory" - round_page(page_range * 659 * sizeof(struct vm_page)) = page_range * PAGE_SIZE 660 * for page_range. 661 */ 662 low_avail = phys_avail[0]; 663 high_avail = phys_avail[1]; 664 for (i = 0; i < vm_phys_nsegs; i++) { 665 if (vm_phys_segs[i].start < low_avail) 666 low_avail = vm_phys_segs[i].start; 667 if (vm_phys_segs[i].end > high_avail) 668 high_avail = vm_phys_segs[i].end; 669 } 670 /* Skip the first chunk. It is already accounted for. */ 671 for (i = 2; phys_avail[i + 1] != 0; i += 2) { 672 if (phys_avail[i] < low_avail) 673 low_avail = phys_avail[i]; 674 if (phys_avail[i + 1] > high_avail) 675 high_avail = phys_avail[i + 1]; 676 } 677 first_page = low_avail / PAGE_SIZE; 678 #ifdef VM_PHYSSEG_SPARSE 679 size = 0; 680 for (i = 0; i < vm_phys_nsegs; i++) 681 size += vm_phys_segs[i].end - vm_phys_segs[i].start; 682 for (i = 0; phys_avail[i + 1] != 0; i += 2) 683 size += phys_avail[i + 1] - phys_avail[i]; 684 #elif defined(VM_PHYSSEG_DENSE) 685 size = high_avail - low_avail; 686 #else 687 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 688 #endif 689 690 #ifdef PMAP_HAS_PAGE_ARRAY 691 pmap_page_array_startup(size / PAGE_SIZE); 692 biggestone = vm_phys_avail_largest(); 693 end = new_end = phys_avail[biggestone + 1]; 694 #else 695 #ifdef VM_PHYSSEG_DENSE 696 /* 697 * In the VM_PHYSSEG_DENSE case, the number of pages can account for 698 * the overhead of a page structure per page only if vm_page_array is 699 * allocated from the last physical memory chunk. Otherwise, we must 700 * allocate page structures representing the physical memory 701 * underlying vm_page_array, even though they will not be used. 702 */ 703 if (new_end != high_avail) 704 page_range = size / PAGE_SIZE; 705 else 706 #endif 707 { 708 page_range = size / (PAGE_SIZE + sizeof(struct vm_page)); 709 710 /* 711 * If the partial bytes remaining are large enough for 712 * a page (PAGE_SIZE) without a corresponding 713 * 'struct vm_page', then new_end will contain an 714 * extra page after subtracting the length of the VM 715 * page array. Compensate by subtracting an extra 716 * page from new_end. 717 */ 718 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) { 719 if (new_end == high_avail) 720 high_avail -= PAGE_SIZE; 721 new_end -= PAGE_SIZE; 722 } 723 } 724 end = new_end; 725 new_end = vm_page_array_alloc(&vaddr, end, page_range); 726 #endif 727 728 #if VM_NRESERVLEVEL > 0 729 /* 730 * Allocate physical memory for the reservation management system's 731 * data structures, and map it. 732 */ 733 new_end = vm_reserv_startup(&vaddr, new_end); 734 #endif 735 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING 736 /* 737 * Include vm_page_array and vm_reserv_array in a crash dump. 738 */ 739 for (pa = new_end; pa < end; pa += PAGE_SIZE) 740 dump_add_page(pa); 741 #endif 742 phys_avail[biggestone + 1] = new_end; 743 744 /* 745 * Add physical memory segments corresponding to the available 746 * physical pages. 747 */ 748 for (i = 0; phys_avail[i + 1] != 0; i += 2) 749 if (vm_phys_avail_size(i) != 0) 750 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 751 752 /* 753 * Initialize the physical memory allocator. 754 */ 755 vm_phys_init(); 756 757 #ifdef VM_FREEPOOL_LAZYINIT 758 lazyinit = 1; 759 TUNABLE_INT_FETCH("debug.vm.lazy_page_init", &lazyinit); 760 #endif 761 762 /* 763 * Initialize the page structures and add every available page to the 764 * physical memory allocator's free lists. 765 */ 766 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 767 for (ii = 0; ii < vm_page_array_size; ii++) { 768 m = &vm_page_array[ii]; 769 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0, 770 VM_FREEPOOL_DEFAULT); 771 m->flags = PG_FICTITIOUS; 772 } 773 #endif 774 vm_cnt.v_page_count = 0; 775 for (segind = 0; segind < vm_phys_nsegs; segind++) { 776 seg = &vm_phys_segs[segind]; 777 778 /* 779 * If lazy vm_page initialization is not enabled, simply 780 * initialize all of the pages in the segment. Otherwise, we 781 * only initialize: 782 * 1. Pages not covered by phys_avail[], since they might be 783 * freed to the allocator at some future point, e.g., by 784 * kmem_bootstrap_free(). 785 * 2. The first page of each run of free pages handed to the 786 * vm_phys allocator, which in turn defers initialization 787 * of pages until they are needed. 788 * This avoids blocking the boot process for long periods, which 789 * may be relevant for VMs (which ought to boot as quickly as 790 * possible) and/or systems with large amounts of physical 791 * memory. 792 */ 793 #ifdef VM_FREEPOOL_LAZYINIT 794 if (lazyinit) { 795 startp = seg->start; 796 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 797 if (startp >= seg->end) 798 break; 799 800 if (phys_avail[i + 1] < startp) 801 continue; 802 if (phys_avail[i] <= startp) { 803 startp = phys_avail[i + 1]; 804 continue; 805 } 806 807 m = vm_phys_seg_paddr_to_vm_page(seg, startp); 808 for (endp = MIN(phys_avail[i], seg->end); 809 startp < endp; startp += PAGE_SIZE, m++) { 810 vm_page_init_page(m, startp, segind, 811 VM_FREEPOOL_DEFAULT); 812 } 813 } 814 } else 815 #endif 816 for (m = seg->first_page, pa = seg->start; 817 pa < seg->end; m++, pa += PAGE_SIZE) { 818 vm_page_init_page(m, pa, segind, 819 VM_FREEPOOL_DEFAULT); 820 } 821 822 /* 823 * Add the segment's pages that are covered by one of 824 * phys_avail's ranges to the free lists. 825 */ 826 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 827 if (seg->end <= phys_avail[i] || 828 seg->start >= phys_avail[i + 1]) 829 continue; 830 831 startp = MAX(seg->start, phys_avail[i]); 832 endp = MIN(seg->end, phys_avail[i + 1]); 833 pagecount = (u_long)atop(endp - startp); 834 if (pagecount == 0) 835 continue; 836 837 m = vm_phys_seg_paddr_to_vm_page(seg, startp); 838 #ifdef VM_FREEPOOL_LAZYINIT 839 if (lazyinit) { 840 vm_page_init_page(m, startp, segind, 841 VM_FREEPOOL_LAZYINIT); 842 } 843 #endif 844 vmd = VM_DOMAIN(seg->domain); 845 vm_domain_free_lock(vmd); 846 vm_phys_enqueue_contig(m, pagecount); 847 vm_domain_free_unlock(vmd); 848 vm_domain_freecnt_inc(vmd, pagecount); 849 vm_cnt.v_page_count += (u_int)pagecount; 850 vmd->vmd_page_count += (u_int)pagecount; 851 vmd->vmd_segs |= 1UL << segind; 852 } 853 } 854 855 /* 856 * Remove blacklisted pages from the physical memory allocator. 857 */ 858 TAILQ_INIT(&blacklist_head); 859 vm_page_blacklist_load(&list, &listend); 860 vm_page_blacklist_check(list, listend); 861 862 list = kern_getenv("vm.blacklist"); 863 vm_page_blacklist_check(list, NULL); 864 865 freeenv(list); 866 #if VM_NRESERVLEVEL > 0 867 /* 868 * Initialize the reservation management system. 869 */ 870 vm_reserv_init(); 871 #endif 872 873 return (vaddr); 874 } 875 876 void 877 vm_page_reference(vm_page_t m) 878 { 879 880 vm_page_aflag_set(m, PGA_REFERENCED); 881 } 882 883 /* 884 * vm_page_trybusy 885 * 886 * Helper routine for grab functions to trylock busy. 887 * 888 * Returns true on success and false on failure. 889 */ 890 static bool 891 vm_page_trybusy(vm_page_t m, int allocflags) 892 { 893 894 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0) 895 return (vm_page_trysbusy(m)); 896 else 897 return (vm_page_tryxbusy(m)); 898 } 899 900 /* 901 * vm_page_tryacquire 902 * 903 * Helper routine for grab functions to trylock busy and wire. 904 * 905 * Returns true on success and false on failure. 906 */ 907 static inline bool 908 vm_page_tryacquire(vm_page_t m, int allocflags) 909 { 910 bool locked; 911 912 locked = vm_page_trybusy(m, allocflags); 913 if (locked && (allocflags & VM_ALLOC_WIRED) != 0) 914 vm_page_wire(m); 915 return (locked); 916 } 917 918 /* 919 * vm_page_busy_acquire: 920 * 921 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop 922 * and drop the object lock if necessary. 923 */ 924 bool 925 vm_page_busy_acquire(vm_page_t m, int allocflags) 926 { 927 vm_object_t obj; 928 bool locked; 929 930 /* 931 * The page-specific object must be cached because page 932 * identity can change during the sleep, causing the 933 * re-lock of a different object. 934 * It is assumed that a reference to the object is already 935 * held by the callers. 936 */ 937 obj = atomic_load_ptr(&m->object); 938 for (;;) { 939 if (vm_page_tryacquire(m, allocflags)) 940 return (true); 941 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 942 return (false); 943 if (obj != NULL) 944 locked = VM_OBJECT_WOWNED(obj); 945 else 946 locked = false; 947 MPASS(locked || vm_page_wired(m)); 948 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags, 949 locked) && locked) 950 VM_OBJECT_WLOCK(obj); 951 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 952 return (false); 953 KASSERT(m->object == obj || m->object == NULL, 954 ("vm_page_busy_acquire: page %p does not belong to %p", 955 m, obj)); 956 } 957 } 958 959 /* 960 * vm_page_busy_downgrade: 961 * 962 * Downgrade an exclusive busy page into a single shared busy page. 963 */ 964 void 965 vm_page_busy_downgrade(vm_page_t m) 966 { 967 u_int x; 968 969 vm_page_assert_xbusied(m); 970 971 x = vm_page_busy_fetch(m); 972 for (;;) { 973 if (atomic_fcmpset_rel_int(&m->busy_lock, 974 &x, VPB_SHARERS_WORD(1))) 975 break; 976 } 977 if ((x & VPB_BIT_WAITERS) != 0) 978 wakeup(m); 979 } 980 981 /* 982 * 983 * vm_page_busy_tryupgrade: 984 * 985 * Attempt to upgrade a single shared busy into an exclusive busy. 986 */ 987 int 988 vm_page_busy_tryupgrade(vm_page_t m) 989 { 990 u_int ce, x; 991 992 vm_page_assert_sbusied(m); 993 994 x = vm_page_busy_fetch(m); 995 ce = VPB_CURTHREAD_EXCLUSIVE; 996 for (;;) { 997 if (VPB_SHARERS(x) > 1) 998 return (0); 999 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 1000 ("vm_page_busy_tryupgrade: invalid lock state")); 1001 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x, 1002 ce | (x & VPB_BIT_WAITERS))) 1003 continue; 1004 return (1); 1005 } 1006 } 1007 1008 /* 1009 * vm_page_sbusied: 1010 * 1011 * Return a positive value if the page is shared busied, 0 otherwise. 1012 */ 1013 int 1014 vm_page_sbusied(vm_page_t m) 1015 { 1016 u_int x; 1017 1018 x = vm_page_busy_fetch(m); 1019 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 1020 } 1021 1022 /* 1023 * vm_page_sunbusy: 1024 * 1025 * Shared unbusy a page. 1026 */ 1027 void 1028 vm_page_sunbusy(vm_page_t m) 1029 { 1030 u_int x; 1031 1032 vm_page_assert_sbusied(m); 1033 1034 x = vm_page_busy_fetch(m); 1035 for (;;) { 1036 KASSERT(x != VPB_FREED, 1037 ("vm_page_sunbusy: Unlocking freed page.")); 1038 if (VPB_SHARERS(x) > 1) { 1039 if (atomic_fcmpset_int(&m->busy_lock, &x, 1040 x - VPB_ONE_SHARER)) 1041 break; 1042 continue; 1043 } 1044 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 1045 ("vm_page_sunbusy: invalid lock state")); 1046 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED)) 1047 continue; 1048 if ((x & VPB_BIT_WAITERS) == 0) 1049 break; 1050 wakeup(m); 1051 break; 1052 } 1053 } 1054 1055 /* 1056 * vm_page_busy_sleep: 1057 * 1058 * Sleep if the page is busy, using the page pointer as wchan. 1059 * This is used to implement the hard-path of the busying mechanism. 1060 * 1061 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function 1062 * will not sleep if the page is shared-busy. 1063 * 1064 * The object lock must be held on entry. 1065 * 1066 * Returns true if it slept and dropped the object lock, or false 1067 * if there was no sleep and the lock is still held. 1068 */ 1069 bool 1070 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags) 1071 { 1072 vm_object_t obj; 1073 1074 obj = m->object; 1075 VM_OBJECT_ASSERT_LOCKED(obj); 1076 1077 return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags, 1078 true)); 1079 } 1080 1081 /* 1082 * vm_page_busy_sleep_unlocked: 1083 * 1084 * Sleep if the page is busy, using the page pointer as wchan. 1085 * This is used to implement the hard-path of busying mechanism. 1086 * 1087 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function 1088 * will not sleep if the page is shared-busy. 1089 * 1090 * The object lock must not be held on entry. The operation will 1091 * return if the page changes identity. 1092 */ 1093 void 1094 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex, 1095 const char *wmesg, int allocflags) 1096 { 1097 VM_OBJECT_ASSERT_UNLOCKED(obj); 1098 1099 (void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false); 1100 } 1101 1102 /* 1103 * _vm_page_busy_sleep: 1104 * 1105 * Internal busy sleep function. Verifies the page identity and 1106 * lockstate against parameters. Returns true if it sleeps and 1107 * false otherwise. 1108 * 1109 * allocflags uses VM_ALLOC_* flags to specify the lock required. 1110 * 1111 * If locked is true the lock will be dropped for any true returns 1112 * and held for any false returns. 1113 */ 1114 static bool 1115 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex, 1116 const char *wmesg, int allocflags, bool locked) 1117 { 1118 bool xsleep; 1119 u_int x; 1120 1121 /* 1122 * If the object is busy we must wait for that to drain to zero 1123 * before trying the page again. 1124 */ 1125 if (obj != NULL && vm_object_busied(obj)) { 1126 if (locked) 1127 VM_OBJECT_DROP(obj); 1128 vm_object_busy_wait(obj, wmesg); 1129 return (true); 1130 } 1131 1132 if (!vm_page_busied(m)) 1133 return (false); 1134 1135 xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0; 1136 sleepq_lock(m); 1137 x = vm_page_busy_fetch(m); 1138 do { 1139 /* 1140 * If the page changes objects or becomes unlocked we can 1141 * simply return. 1142 */ 1143 if (x == VPB_UNBUSIED || 1144 (xsleep && (x & VPB_BIT_SHARED) != 0) || 1145 m->object != obj || m->pindex != pindex) { 1146 sleepq_release(m); 1147 return (false); 1148 } 1149 if ((x & VPB_BIT_WAITERS) != 0) 1150 break; 1151 } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS)); 1152 if (locked) 1153 VM_OBJECT_DROP(obj); 1154 DROP_GIANT(); 1155 sleepq_add(m, NULL, wmesg, 0, 0); 1156 sleepq_wait(m, PVM); 1157 PICKUP_GIANT(); 1158 return (true); 1159 } 1160 1161 /* 1162 * vm_page_trysbusy: 1163 * 1164 * Try to shared busy a page. 1165 * If the operation succeeds 1 is returned otherwise 0. 1166 * The operation never sleeps. 1167 */ 1168 int 1169 vm_page_trysbusy(vm_page_t m) 1170 { 1171 vm_object_t obj; 1172 u_int x; 1173 1174 obj = m->object; 1175 x = vm_page_busy_fetch(m); 1176 for (;;) { 1177 if ((x & VPB_BIT_SHARED) == 0) 1178 return (0); 1179 /* 1180 * Reduce the window for transient busies that will trigger 1181 * false negatives in vm_page_ps_test(). 1182 */ 1183 if (obj != NULL && vm_object_busied(obj)) 1184 return (0); 1185 if (atomic_fcmpset_acq_int(&m->busy_lock, &x, 1186 x + VPB_ONE_SHARER)) 1187 break; 1188 } 1189 1190 /* Refetch the object now that we're guaranteed that it is stable. */ 1191 obj = m->object; 1192 if (obj != NULL && vm_object_busied(obj)) { 1193 vm_page_sunbusy(m); 1194 return (0); 1195 } 1196 return (1); 1197 } 1198 1199 /* 1200 * vm_page_tryxbusy: 1201 * 1202 * Try to exclusive busy a page. 1203 * If the operation succeeds 1 is returned otherwise 0. 1204 * The operation never sleeps. 1205 */ 1206 int 1207 vm_page_tryxbusy(vm_page_t m) 1208 { 1209 vm_object_t obj; 1210 1211 if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED, 1212 VPB_CURTHREAD_EXCLUSIVE) == 0) 1213 return (0); 1214 1215 obj = m->object; 1216 if (obj != NULL && vm_object_busied(obj)) { 1217 vm_page_xunbusy(m); 1218 return (0); 1219 } 1220 return (1); 1221 } 1222 1223 static void 1224 vm_page_xunbusy_hard_tail(vm_page_t m) 1225 { 1226 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 1227 /* Wake the waiter. */ 1228 wakeup(m); 1229 } 1230 1231 /* 1232 * vm_page_xunbusy_hard: 1233 * 1234 * Called when unbusy has failed because there is a waiter. 1235 */ 1236 void 1237 vm_page_xunbusy_hard(vm_page_t m) 1238 { 1239 vm_page_assert_xbusied(m); 1240 vm_page_xunbusy_hard_tail(m); 1241 } 1242 1243 void 1244 vm_page_xunbusy_hard_unchecked(vm_page_t m) 1245 { 1246 vm_page_assert_xbusied_unchecked(m); 1247 vm_page_xunbusy_hard_tail(m); 1248 } 1249 1250 static void 1251 vm_page_busy_free(vm_page_t m) 1252 { 1253 u_int x; 1254 1255 atomic_thread_fence_rel(); 1256 x = atomic_swap_int(&m->busy_lock, VPB_FREED); 1257 if ((x & VPB_BIT_WAITERS) != 0) 1258 wakeup(m); 1259 } 1260 1261 /* 1262 * vm_page_unhold_pages: 1263 * 1264 * Unhold each of the pages that is referenced by the given array. 1265 */ 1266 void 1267 vm_page_unhold_pages(vm_page_t *ma, int count) 1268 { 1269 1270 for (; count != 0; count--) { 1271 vm_page_unwire(*ma, PQ_ACTIVE); 1272 ma++; 1273 } 1274 } 1275 1276 vm_page_t 1277 PHYS_TO_VM_PAGE(vm_paddr_t pa) 1278 { 1279 vm_page_t m; 1280 1281 #ifdef VM_PHYSSEG_SPARSE 1282 m = vm_phys_paddr_to_vm_page(pa); 1283 if (m == NULL) 1284 m = vm_phys_fictitious_to_vm_page(pa); 1285 return (m); 1286 #elif defined(VM_PHYSSEG_DENSE) 1287 long pi; 1288 1289 pi = atop(pa); 1290 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 1291 m = &vm_page_array[pi - first_page]; 1292 return (m); 1293 } 1294 return (vm_phys_fictitious_to_vm_page(pa)); 1295 #else 1296 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 1297 #endif 1298 } 1299 1300 /* 1301 * vm_page_getfake: 1302 * 1303 * Create a fictitious page with the specified physical address and 1304 * memory attribute. The memory attribute is the only the machine- 1305 * dependent aspect of a fictitious page that must be initialized. 1306 */ 1307 vm_page_t 1308 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 1309 { 1310 vm_page_t m; 1311 1312 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 1313 vm_page_initfake(m, paddr, memattr); 1314 return (m); 1315 } 1316 1317 void 1318 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1319 { 1320 1321 if ((m->flags & PG_FICTITIOUS) != 0) { 1322 /* 1323 * The page's memattr might have changed since the 1324 * previous initialization. Update the pmap to the 1325 * new memattr. 1326 */ 1327 goto memattr; 1328 } 1329 m->phys_addr = paddr; 1330 m->a.queue = PQ_NONE; 1331 /* Fictitious pages don't use "segind". */ 1332 m->flags = PG_FICTITIOUS; 1333 /* Fictitious pages don't use "order" or "pool". */ 1334 m->oflags = VPO_UNMANAGED; 1335 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 1336 /* Fictitious pages are unevictable. */ 1337 m->ref_count = 1; 1338 pmap_page_init(m); 1339 memattr: 1340 pmap_page_set_memattr(m, memattr); 1341 } 1342 1343 /* 1344 * vm_page_putfake: 1345 * 1346 * Release a fictitious page. 1347 */ 1348 void 1349 vm_page_putfake(vm_page_t m) 1350 { 1351 1352 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 1353 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1354 ("vm_page_putfake: bad page %p", m)); 1355 vm_page_assert_xbusied(m); 1356 vm_page_busy_free(m); 1357 uma_zfree(fakepg_zone, m); 1358 } 1359 1360 /* 1361 * vm_page_updatefake: 1362 * 1363 * Update the given fictitious page to the specified physical address and 1364 * memory attribute. 1365 */ 1366 void 1367 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1368 { 1369 1370 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1371 ("vm_page_updatefake: bad page %p", m)); 1372 m->phys_addr = paddr; 1373 pmap_page_set_memattr(m, memattr); 1374 } 1375 1376 /* 1377 * vm_page_free: 1378 * 1379 * Free a page. 1380 */ 1381 void 1382 vm_page_free(vm_page_t m) 1383 { 1384 1385 m->flags &= ~PG_ZERO; 1386 vm_page_free_toq(m); 1387 } 1388 1389 /* 1390 * vm_page_free_zero: 1391 * 1392 * Free a page to the zerod-pages queue 1393 */ 1394 void 1395 vm_page_free_zero(vm_page_t m) 1396 { 1397 1398 m->flags |= PG_ZERO; 1399 vm_page_free_toq(m); 1400 } 1401 1402 /* 1403 * Unbusy and handle the page queueing for a page from a getpages request that 1404 * was optionally read ahead or behind. 1405 */ 1406 void 1407 vm_page_readahead_finish(vm_page_t m) 1408 { 1409 1410 /* We shouldn't put invalid pages on queues. */ 1411 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m)); 1412 1413 /* 1414 * Since the page is not the actually needed one, whether it should 1415 * be activated or deactivated is not obvious. Empirical results 1416 * have shown that deactivating the page is usually the best choice, 1417 * unless the page is wanted by another thread. 1418 */ 1419 if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0) 1420 vm_page_activate(m); 1421 else 1422 vm_page_deactivate(m); 1423 vm_page_xunbusy_unchecked(m); 1424 } 1425 1426 /* 1427 * Destroy the identity of an invalid page and free it if possible. 1428 * This is intended to be used when reading a page from backing store fails. 1429 */ 1430 void 1431 vm_page_free_invalid(vm_page_t m) 1432 { 1433 1434 KASSERT(vm_page_none_valid(m), ("page %p is valid", m)); 1435 KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m)); 1436 KASSERT(m->object != NULL, ("page %p has no object", m)); 1437 VM_OBJECT_ASSERT_WLOCKED(m->object); 1438 1439 /* 1440 * We may be attempting to free the page as part of the handling for an 1441 * I/O error, in which case the page was xbusied by a different thread. 1442 */ 1443 vm_page_xbusy_claim(m); 1444 1445 /* 1446 * If someone has wired this page while the object lock 1447 * was not held, then the thread that unwires is responsible 1448 * for freeing the page. Otherwise just free the page now. 1449 * The wire count of this unmapped page cannot change while 1450 * we have the page xbusy and the page's object wlocked. 1451 */ 1452 if (vm_page_remove(m)) 1453 vm_page_free(m); 1454 } 1455 1456 /* 1457 * vm_page_dirty_KBI: [ internal use only ] 1458 * 1459 * Set all bits in the page's dirty field. 1460 * 1461 * The object containing the specified page must be locked if the 1462 * call is made from the machine-independent layer. 1463 * 1464 * See vm_page_clear_dirty_mask(). 1465 * 1466 * This function should only be called by vm_page_dirty(). 1467 */ 1468 void 1469 vm_page_dirty_KBI(vm_page_t m) 1470 { 1471 1472 /* Refer to this operation by its public name. */ 1473 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!")); 1474 m->dirty = VM_PAGE_BITS_ALL; 1475 } 1476 1477 /* 1478 * Insert the given page into the given object at the given pindex. mpred is 1479 * used for memq linkage. From vm_page_insert, lookup is true, mpred is 1480 * initially NULL, and this procedure looks it up. From vm_page_insert_after 1481 * and vm_page_iter_insert, lookup is false and mpred is known to the caller 1482 * to be valid, and may be NULL if this will be the page with the lowest 1483 * pindex. 1484 * 1485 * The procedure is marked __always_inline to suggest to the compiler to 1486 * eliminate the lookup parameter and the associated alternate branch. 1487 */ 1488 static __always_inline int 1489 vm_page_insert_lookup(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1490 struct pctrie_iter *pages, bool iter, vm_page_t mpred, bool lookup) 1491 { 1492 int error; 1493 1494 VM_OBJECT_ASSERT_WLOCKED(object); 1495 KASSERT(m->object == NULL, 1496 ("vm_page_insert: page %p already inserted", m)); 1497 1498 /* 1499 * Record the object/offset pair in this page. 1500 */ 1501 m->object = object; 1502 m->pindex = pindex; 1503 m->ref_count |= VPRC_OBJREF; 1504 1505 /* 1506 * Add this page to the object's radix tree, and look up mpred if 1507 * needed. 1508 */ 1509 if (iter) { 1510 KASSERT(!lookup, ("%s: cannot lookup mpred", __func__)); 1511 error = vm_radix_iter_insert(pages, m); 1512 } else if (lookup) 1513 error = vm_radix_insert_lookup_lt(&object->rtree, m, &mpred); 1514 else 1515 error = vm_radix_insert(&object->rtree, m); 1516 if (__predict_false(error != 0)) { 1517 m->object = NULL; 1518 m->pindex = 0; 1519 m->ref_count &= ~VPRC_OBJREF; 1520 return (1); 1521 } 1522 1523 /* 1524 * Now link into the object's ordered list of backed pages. 1525 */ 1526 vm_page_insert_radixdone(m, object, mpred); 1527 vm_pager_page_inserted(object, m); 1528 return (0); 1529 } 1530 1531 /* 1532 * vm_page_insert: [ internal use only ] 1533 * 1534 * Inserts the given mem entry into the object and object list. 1535 * 1536 * The object must be locked. 1537 */ 1538 int 1539 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1540 { 1541 return (vm_page_insert_lookup(m, object, pindex, NULL, false, NULL, 1542 true)); 1543 } 1544 1545 /* 1546 * vm_page_insert_after: 1547 * 1548 * Inserts the page "m" into the specified object at offset "pindex". 1549 * 1550 * The page "mpred" must immediately precede the offset "pindex" within 1551 * the specified object. 1552 * 1553 * The object must be locked. 1554 */ 1555 static int 1556 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1557 vm_page_t mpred) 1558 { 1559 return (vm_page_insert_lookup(m, object, pindex, NULL, false, mpred, 1560 false)); 1561 } 1562 1563 /* 1564 * vm_page_iter_insert: 1565 * 1566 * Tries to insert the page "m" into the specified object at offset 1567 * "pindex" using the iterator "pages". Returns 0 if the insertion was 1568 * successful. 1569 * 1570 * The page "mpred" must immediately precede the offset "pindex" within 1571 * the specified object. 1572 * 1573 * The object must be locked. 1574 */ 1575 static int 1576 vm_page_iter_insert(struct pctrie_iter *pages, vm_page_t m, vm_object_t object, 1577 vm_pindex_t pindex, vm_page_t mpred) 1578 { 1579 return (vm_page_insert_lookup(m, object, pindex, pages, true, mpred, 1580 false)); 1581 } 1582 1583 /* 1584 * vm_page_insert_radixdone: 1585 * 1586 * Complete page "m" insertion into the specified object after the 1587 * radix trie hooking. 1588 * 1589 * The page "mpred" must precede the offset "m->pindex" within the 1590 * specified object. 1591 * 1592 * The object must be locked. 1593 */ 1594 static void 1595 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1596 { 1597 1598 VM_OBJECT_ASSERT_WLOCKED(object); 1599 KASSERT(object != NULL && m->object == object, 1600 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1601 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1602 ("vm_page_insert_radixdone: page %p is missing object ref", m)); 1603 if (mpred != NULL) { 1604 KASSERT(mpred->object == object, 1605 ("vm_page_insert_radixdone: object doesn't contain mpred")); 1606 KASSERT(mpred->pindex < m->pindex, 1607 ("vm_page_insert_radixdone: mpred doesn't precede pindex")); 1608 KASSERT(TAILQ_NEXT(mpred, listq) == NULL || 1609 m->pindex < TAILQ_NEXT(mpred, listq)->pindex, 1610 ("vm_page_insert_radixdone: pindex doesn't precede msucc")); 1611 } else { 1612 KASSERT(TAILQ_EMPTY(&object->memq) || 1613 m->pindex < TAILQ_FIRST(&object->memq)->pindex, 1614 ("vm_page_insert_radixdone: no mpred but not first page")); 1615 } 1616 1617 if (mpred != NULL) 1618 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1619 else 1620 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1621 1622 /* 1623 * Show that the object has one more resident page. 1624 */ 1625 object->resident_page_count++; 1626 1627 /* 1628 * Hold the vnode until the last page is released. 1629 */ 1630 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1631 vhold(object->handle); 1632 1633 /* 1634 * Since we are inserting a new and possibly dirty page, 1635 * update the object's generation count. 1636 */ 1637 if (pmap_page_is_write_mapped(m)) 1638 vm_object_set_writeable_dirty(object); 1639 } 1640 1641 /* 1642 * vm_page_remove_radixdone 1643 * 1644 * Complete page "m" removal from the specified object after the radix trie 1645 * unhooking. 1646 * 1647 * The caller is responsible for updating the page's fields to reflect this 1648 * removal. 1649 */ 1650 static void 1651 vm_page_remove_radixdone(vm_page_t m) 1652 { 1653 vm_object_t object; 1654 1655 vm_page_assert_xbusied(m); 1656 object = m->object; 1657 VM_OBJECT_ASSERT_WLOCKED(object); 1658 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1659 ("page %p is missing its object ref", m)); 1660 1661 /* Deferred free of swap space. */ 1662 if ((m->a.flags & PGA_SWAP_FREE) != 0) 1663 vm_pager_page_unswapped(m); 1664 1665 vm_pager_page_removed(object, m); 1666 m->object = NULL; 1667 1668 /* 1669 * Now remove from the object's list of backed pages. 1670 */ 1671 TAILQ_REMOVE(&object->memq, m, listq); 1672 1673 /* 1674 * And show that the object has one fewer resident page. 1675 */ 1676 object->resident_page_count--; 1677 1678 /* 1679 * The vnode may now be recycled. 1680 */ 1681 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1682 vdrop(object->handle); 1683 } 1684 1685 /* 1686 * vm_page_free_object_prep: 1687 * 1688 * Disassociates the given page from its VM object. 1689 * 1690 * The object must be locked, and the page must be xbusy. 1691 */ 1692 static void 1693 vm_page_free_object_prep(vm_page_t m) 1694 { 1695 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) == 1696 ((m->object->flags & OBJ_UNMANAGED) != 0), 1697 ("%s: managed flag mismatch for page %p", 1698 __func__, m)); 1699 vm_page_assert_xbusied(m); 1700 1701 /* 1702 * The object reference can be released without an atomic 1703 * operation. 1704 */ 1705 KASSERT((m->flags & PG_FICTITIOUS) != 0 || 1706 m->ref_count == VPRC_OBJREF, 1707 ("%s: page %p has unexpected ref_count %u", 1708 __func__, m, m->ref_count)); 1709 vm_page_remove_radixdone(m); 1710 m->ref_count -= VPRC_OBJREF; 1711 } 1712 1713 /* 1714 * vm_page_iter_free: 1715 * 1716 * Free the given page, and use the iterator to remove it from the radix 1717 * tree. 1718 */ 1719 void 1720 vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m) 1721 { 1722 vm_radix_iter_remove(pages); 1723 vm_page_free_object_prep(m); 1724 vm_page_xunbusy(m); 1725 m->flags &= ~PG_ZERO; 1726 vm_page_free_toq(m); 1727 } 1728 1729 /* 1730 * vm_page_remove: 1731 * 1732 * Removes the specified page from its containing object, but does not 1733 * invalidate any backing storage. Returns true if the object's reference 1734 * was the last reference to the page, and false otherwise. 1735 * 1736 * The object must be locked and the page must be exclusively busied. 1737 * The exclusive busy will be released on return. If this is not the 1738 * final ref and the caller does not hold a wire reference it may not 1739 * continue to access the page. 1740 */ 1741 bool 1742 vm_page_remove(vm_page_t m) 1743 { 1744 bool dropped; 1745 1746 dropped = vm_page_remove_xbusy(m); 1747 vm_page_xunbusy(m); 1748 1749 return (dropped); 1750 } 1751 1752 /* 1753 * vm_page_iter_remove: 1754 * 1755 * Remove the current page, and use the iterator to remove it from the 1756 * radix tree. 1757 */ 1758 bool 1759 vm_page_iter_remove(struct pctrie_iter *pages, vm_page_t m) 1760 { 1761 bool dropped; 1762 1763 vm_radix_iter_remove(pages); 1764 vm_page_remove_radixdone(m); 1765 dropped = (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF); 1766 vm_page_xunbusy(m); 1767 1768 return (dropped); 1769 } 1770 1771 /* 1772 * vm_page_radix_remove 1773 * 1774 * Removes the specified page from the radix tree. 1775 */ 1776 static void 1777 vm_page_radix_remove(vm_page_t m) 1778 { 1779 vm_page_t mrem __diagused; 1780 1781 mrem = vm_radix_remove(&m->object->rtree, m->pindex); 1782 KASSERT(mrem == m, 1783 ("removed page %p, expected page %p", mrem, m)); 1784 } 1785 1786 /* 1787 * vm_page_remove_xbusy 1788 * 1789 * Removes the page but leaves the xbusy held. Returns true if this 1790 * removed the final ref and false otherwise. 1791 */ 1792 bool 1793 vm_page_remove_xbusy(vm_page_t m) 1794 { 1795 1796 vm_page_radix_remove(m); 1797 vm_page_remove_radixdone(m); 1798 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF); 1799 } 1800 1801 /* 1802 * vm_page_lookup: 1803 * 1804 * Returns the page associated with the object/offset 1805 * pair specified; if none is found, NULL is returned. 1806 * 1807 * The object must be locked. 1808 */ 1809 vm_page_t 1810 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1811 { 1812 1813 VM_OBJECT_ASSERT_LOCKED(object); 1814 return (vm_radix_lookup(&object->rtree, pindex)); 1815 } 1816 1817 /* 1818 * vm_page_iter_init: 1819 * 1820 * Initialize iterator for vm pages. 1821 */ 1822 void 1823 vm_page_iter_init(struct pctrie_iter *pages, vm_object_t object) 1824 { 1825 1826 vm_radix_iter_init(pages, &object->rtree); 1827 } 1828 1829 /* 1830 * vm_page_iter_init: 1831 * 1832 * Initialize iterator for vm pages. 1833 */ 1834 void 1835 vm_page_iter_limit_init(struct pctrie_iter *pages, vm_object_t object, 1836 vm_pindex_t limit) 1837 { 1838 1839 vm_radix_iter_limit_init(pages, &object->rtree, limit); 1840 } 1841 1842 /* 1843 * vm_page_iter_lookup: 1844 * 1845 * Returns the page associated with the object/offset pair specified, and 1846 * stores the path to its position; if none is found, NULL is returned. 1847 * 1848 * The iter pctrie must be locked. 1849 */ 1850 vm_page_t 1851 vm_page_iter_lookup(struct pctrie_iter *pages, vm_pindex_t pindex) 1852 { 1853 1854 return (vm_radix_iter_lookup(pages, pindex)); 1855 } 1856 1857 /* 1858 * vm_page_lookup_unlocked: 1859 * 1860 * Returns the page associated with the object/offset pair specified; 1861 * if none is found, NULL is returned. The page may be no longer be 1862 * present in the object at the time that this function returns. Only 1863 * useful for opportunistic checks such as inmem(). 1864 */ 1865 vm_page_t 1866 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex) 1867 { 1868 1869 return (vm_radix_lookup_unlocked(&object->rtree, pindex)); 1870 } 1871 1872 /* 1873 * vm_page_relookup: 1874 * 1875 * Returns a page that must already have been busied by 1876 * the caller. Used for bogus page replacement. 1877 */ 1878 vm_page_t 1879 vm_page_relookup(vm_object_t object, vm_pindex_t pindex) 1880 { 1881 vm_page_t m; 1882 1883 m = vm_page_lookup_unlocked(object, pindex); 1884 KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) && 1885 m->object == object && m->pindex == pindex, 1886 ("vm_page_relookup: Invalid page %p", m)); 1887 return (m); 1888 } 1889 1890 /* 1891 * This should only be used by lockless functions for releasing transient 1892 * incorrect acquires. The page may have been freed after we acquired a 1893 * busy lock. In this case busy_lock == VPB_FREED and we have nothing 1894 * further to do. 1895 */ 1896 static void 1897 vm_page_busy_release(vm_page_t m) 1898 { 1899 u_int x; 1900 1901 x = vm_page_busy_fetch(m); 1902 for (;;) { 1903 if (x == VPB_FREED) 1904 break; 1905 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) { 1906 if (atomic_fcmpset_int(&m->busy_lock, &x, 1907 x - VPB_ONE_SHARER)) 1908 break; 1909 continue; 1910 } 1911 KASSERT((x & VPB_BIT_SHARED) != 0 || 1912 (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE, 1913 ("vm_page_busy_release: %p xbusy not owned.", m)); 1914 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED)) 1915 continue; 1916 if ((x & VPB_BIT_WAITERS) != 0) 1917 wakeup(m); 1918 break; 1919 } 1920 } 1921 1922 /* 1923 * vm_page_find_least: 1924 * 1925 * Returns the page associated with the object with least pindex 1926 * greater than or equal to the parameter pindex, or NULL. 1927 * 1928 * The object must be locked. 1929 */ 1930 vm_page_t 1931 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1932 { 1933 vm_page_t m; 1934 1935 VM_OBJECT_ASSERT_LOCKED(object); 1936 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1937 m = vm_radix_lookup_ge(&object->rtree, pindex); 1938 return (m); 1939 } 1940 1941 /* 1942 * vm_page_iter_lookup_ge: 1943 * 1944 * Returns the page associated with the object with least pindex 1945 * greater than or equal to the parameter pindex, or NULL. Initializes the 1946 * iterator to point to that page. 1947 * 1948 * The iter pctrie must be locked. 1949 */ 1950 vm_page_t 1951 vm_page_iter_lookup_ge(struct pctrie_iter *pages, vm_pindex_t pindex) 1952 { 1953 1954 return (vm_radix_iter_lookup_ge(pages, pindex)); 1955 } 1956 1957 /* 1958 * Returns the given page's successor (by pindex) within the object if it is 1959 * resident; if none is found, NULL is returned. 1960 * 1961 * The object must be locked. 1962 */ 1963 vm_page_t 1964 vm_page_next(vm_page_t m) 1965 { 1966 vm_page_t next; 1967 1968 VM_OBJECT_ASSERT_LOCKED(m->object); 1969 if ((next = TAILQ_NEXT(m, listq)) != NULL) { 1970 MPASS(next->object == m->object); 1971 if (next->pindex != m->pindex + 1) 1972 next = NULL; 1973 } 1974 return (next); 1975 } 1976 1977 /* 1978 * Returns the given page's predecessor (by pindex) within the object if it is 1979 * resident; if none is found, NULL is returned. 1980 * 1981 * The object must be locked. 1982 */ 1983 vm_page_t 1984 vm_page_prev(vm_page_t m) 1985 { 1986 vm_page_t prev; 1987 1988 VM_OBJECT_ASSERT_LOCKED(m->object); 1989 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) { 1990 MPASS(prev->object == m->object); 1991 if (prev->pindex != m->pindex - 1) 1992 prev = NULL; 1993 } 1994 return (prev); 1995 } 1996 1997 /* 1998 * Uses the page mnew as a replacement for an existing page at index 1999 * pindex which must be already present in the object. 2000 * 2001 * Both pages must be exclusively busied on enter. The old page is 2002 * unbusied on exit. 2003 * 2004 * A return value of true means mold is now free. If this is not the 2005 * final ref and the caller does not hold a wire reference it may not 2006 * continue to access the page. 2007 */ 2008 static bool 2009 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 2010 vm_page_t mold) 2011 { 2012 vm_page_t mret __diagused; 2013 bool dropped; 2014 2015 VM_OBJECT_ASSERT_WLOCKED(object); 2016 vm_page_assert_xbusied(mold); 2017 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0, 2018 ("vm_page_replace: page %p already in object", mnew)); 2019 2020 /* 2021 * This function mostly follows vm_page_insert() and 2022 * vm_page_remove() without the radix, object count and vnode 2023 * dance. Double check such functions for more comments. 2024 */ 2025 2026 mnew->object = object; 2027 mnew->pindex = pindex; 2028 atomic_set_int(&mnew->ref_count, VPRC_OBJREF); 2029 mret = vm_radix_replace(&object->rtree, mnew); 2030 KASSERT(mret == mold, 2031 ("invalid page replacement, mold=%p, mret=%p", mold, mret)); 2032 KASSERT((mold->oflags & VPO_UNMANAGED) == 2033 (mnew->oflags & VPO_UNMANAGED), 2034 ("vm_page_replace: mismatched VPO_UNMANAGED")); 2035 2036 /* Keep the resident page list in sorted order. */ 2037 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); 2038 TAILQ_REMOVE(&object->memq, mold, listq); 2039 mold->object = NULL; 2040 2041 /* 2042 * The object's resident_page_count does not change because we have 2043 * swapped one page for another, but the generation count should 2044 * change if the page is dirty. 2045 */ 2046 if (pmap_page_is_write_mapped(mnew)) 2047 vm_object_set_writeable_dirty(object); 2048 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF; 2049 vm_page_xunbusy(mold); 2050 2051 return (dropped); 2052 } 2053 2054 void 2055 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 2056 vm_page_t mold) 2057 { 2058 2059 vm_page_assert_xbusied(mnew); 2060 2061 if (vm_page_replace_hold(mnew, object, pindex, mold)) 2062 vm_page_free(mold); 2063 } 2064 2065 /* 2066 * vm_page_iter_rename: 2067 * 2068 * Tries to move the specified page from its current object to a new object 2069 * and pindex, using the given iterator to remove the page from its current 2070 * object. Returns true if the move was successful, and false if the move 2071 * was aborted due to a failed memory allocation. 2072 * 2073 * Panics if a page already resides in the new object at the new pindex. 2074 * 2075 * Note: swap associated with the page must be invalidated by the move. We 2076 * have to do this for several reasons: (1) we aren't freeing the 2077 * page, (2) we are dirtying the page, (3) the VM system is probably 2078 * moving the page from object A to B, and will then later move 2079 * the backing store from A to B and we can't have a conflict. 2080 * 2081 * Note: we *always* dirty the page. It is necessary both for the 2082 * fact that we moved it, and because we may be invalidating 2083 * swap. 2084 * 2085 * The objects must be locked. 2086 */ 2087 bool 2088 vm_page_iter_rename(struct pctrie_iter *old_pages, vm_page_t m, 2089 vm_object_t new_object, vm_pindex_t new_pindex) 2090 { 2091 vm_page_t mpred; 2092 vm_pindex_t opidx; 2093 2094 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 2095 ("%s: page %p is missing object ref", __func__, m)); 2096 VM_OBJECT_ASSERT_WLOCKED(m->object); 2097 VM_OBJECT_ASSERT_WLOCKED(new_object); 2098 2099 /* 2100 * Create a custom version of vm_page_insert() which does not depend 2101 * by m_prev and can cheat on the implementation aspects of the 2102 * function. 2103 */ 2104 opidx = m->pindex; 2105 m->pindex = new_pindex; 2106 if (vm_radix_insert_lookup_lt(&new_object->rtree, m, &mpred) != 0) { 2107 m->pindex = opidx; 2108 return (false); 2109 } 2110 2111 /* 2112 * The operation cannot fail anymore. The removal must happen before 2113 * the listq iterator is tainted. 2114 */ 2115 m->pindex = opidx; 2116 vm_radix_iter_remove(old_pages); 2117 vm_page_remove_radixdone(m); 2118 2119 /* Return back to the new pindex to complete vm_page_insert(). */ 2120 m->pindex = new_pindex; 2121 m->object = new_object; 2122 2123 vm_page_insert_radixdone(m, new_object, mpred); 2124 vm_page_dirty(m); 2125 vm_pager_page_inserted(new_object, m); 2126 return (true); 2127 } 2128 2129 /* 2130 * vm_page_mpred: 2131 * 2132 * Return the greatest page of the object with index <= pindex, 2133 * or NULL, if there is none. Assumes object lock is held. 2134 */ 2135 vm_page_t 2136 vm_page_mpred(vm_object_t object, vm_pindex_t pindex) 2137 { 2138 return (vm_radix_lookup_le(&object->rtree, pindex)); 2139 } 2140 2141 /* 2142 * vm_page_alloc: 2143 * 2144 * Allocate and return a page that is associated with the specified 2145 * object and offset pair. By default, this page is exclusive busied. 2146 * 2147 * The caller must always specify an allocation class. 2148 * 2149 * allocation classes: 2150 * VM_ALLOC_NORMAL normal process request 2151 * VM_ALLOC_SYSTEM system *really* needs a page 2152 * VM_ALLOC_INTERRUPT interrupt time request 2153 * 2154 * optional allocation flags: 2155 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 2156 * intends to allocate 2157 * VM_ALLOC_NOBUSY do not exclusive busy the page 2158 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 2159 * VM_ALLOC_SBUSY shared busy the allocated page 2160 * VM_ALLOC_WIRED wire the allocated page 2161 * VM_ALLOC_ZERO prefer a zeroed page 2162 */ 2163 vm_page_t 2164 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 2165 { 2166 2167 return (vm_page_alloc_after(object, pindex, req, 2168 vm_page_mpred(object, pindex))); 2169 } 2170 2171 /* 2172 * Allocate a page in the specified object with the given page index. To 2173 * optimize insertion of the page into the object, the caller must also specify 2174 * the resident page in the object with largest index smaller than the given 2175 * page index, or NULL if no such page exists. 2176 */ 2177 static vm_page_t 2178 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, 2179 int req, vm_page_t mpred) 2180 { 2181 struct vm_domainset_iter di; 2182 vm_page_t m; 2183 int domain; 2184 2185 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 2186 do { 2187 m = vm_page_alloc_domain_after(object, pindex, domain, req, 2188 mpred); 2189 if (m != NULL) 2190 break; 2191 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 2192 2193 return (m); 2194 } 2195 2196 /* 2197 * Returns true if the number of free pages exceeds the minimum 2198 * for the request class and false otherwise. 2199 */ 2200 static int 2201 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages) 2202 { 2203 u_int limit, old, new; 2204 2205 if (req_class == VM_ALLOC_INTERRUPT) 2206 limit = 0; 2207 else if (req_class == VM_ALLOC_SYSTEM) 2208 limit = vmd->vmd_interrupt_free_min; 2209 else 2210 limit = vmd->vmd_free_reserved; 2211 2212 /* 2213 * Attempt to reserve the pages. Fail if we're below the limit. 2214 */ 2215 limit += npages; 2216 old = atomic_load_int(&vmd->vmd_free_count); 2217 do { 2218 if (old < limit) 2219 return (0); 2220 new = old - npages; 2221 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0); 2222 2223 /* Wake the page daemon if we've crossed the threshold. */ 2224 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old)) 2225 pagedaemon_wakeup(vmd->vmd_domain); 2226 2227 /* Only update bitsets on transitions. */ 2228 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) || 2229 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe)) 2230 vm_domain_set(vmd); 2231 2232 return (1); 2233 } 2234 2235 int 2236 vm_domain_allocate(struct vm_domain *vmd, int req, int npages) 2237 { 2238 int req_class; 2239 2240 /* 2241 * The page daemon is allowed to dig deeper into the free page list. 2242 */ 2243 req_class = req & VM_ALLOC_CLASS_MASK; 2244 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2245 req_class = VM_ALLOC_SYSTEM; 2246 return (_vm_domain_allocate(vmd, req_class, npages)); 2247 } 2248 2249 vm_page_t 2250 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain, 2251 int req, vm_page_t mpred) 2252 { 2253 struct vm_domain *vmd; 2254 vm_page_t m; 2255 int flags; 2256 2257 #define VPA_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \ 2258 VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY | \ 2259 VM_ALLOC_SBUSY | VM_ALLOC_WIRED | \ 2260 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \ 2261 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK) 2262 KASSERT((req & ~VPA_FLAGS) == 0, 2263 ("invalid request %#x", req)); 2264 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2265 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2266 ("invalid request %#x", req)); 2267 KASSERT(mpred == NULL || mpred->pindex < pindex, 2268 ("mpred %p doesn't precede pindex 0x%jx", mpred, 2269 (uintmax_t)pindex)); 2270 VM_OBJECT_ASSERT_WLOCKED(object); 2271 2272 flags = 0; 2273 m = NULL; 2274 if (!vm_pager_can_alloc_page(object, pindex)) 2275 return (NULL); 2276 again: 2277 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) { 2278 m = vm_page_alloc_nofree_domain(domain, req); 2279 if (m != NULL) 2280 goto found; 2281 } 2282 #if VM_NRESERVLEVEL > 0 2283 /* 2284 * Can we allocate the page from a reservation? 2285 */ 2286 if (vm_object_reserv(object) && 2287 (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) != 2288 NULL) { 2289 goto found; 2290 } 2291 #endif 2292 vmd = VM_DOMAIN(domain); 2293 if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) { 2294 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone, 2295 M_NOWAIT | M_NOVM); 2296 if (m != NULL) { 2297 flags |= PG_PCPU_CACHE; 2298 goto found; 2299 } 2300 } 2301 if (vm_domain_allocate(vmd, req, 1)) { 2302 /* 2303 * If not, allocate it from the free page queues. 2304 */ 2305 vm_domain_free_lock(vmd); 2306 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0); 2307 vm_domain_free_unlock(vmd); 2308 if (m == NULL) { 2309 vm_domain_freecnt_inc(vmd, 1); 2310 #if VM_NRESERVLEVEL > 0 2311 if (vm_reserv_reclaim_inactive(domain)) 2312 goto again; 2313 #endif 2314 } 2315 } 2316 if (m == NULL) { 2317 /* 2318 * Not allocatable, give up. 2319 */ 2320 if (vm_domain_alloc_fail(vmd, object, req)) 2321 goto again; 2322 return (NULL); 2323 } 2324 2325 /* 2326 * At this point we had better have found a good page. 2327 */ 2328 found: 2329 vm_page_dequeue(m); 2330 vm_page_alloc_check(m); 2331 2332 /* 2333 * Initialize the page. Only the PG_ZERO flag is inherited. 2334 */ 2335 flags |= m->flags & PG_ZERO; 2336 if ((req & VM_ALLOC_NODUMP) != 0) 2337 flags |= PG_NODUMP; 2338 if ((req & VM_ALLOC_NOFREE) != 0) 2339 flags |= PG_NOFREE; 2340 m->flags = flags; 2341 m->a.flags = 0; 2342 m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0; 2343 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 2344 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2345 else if ((req & VM_ALLOC_SBUSY) != 0) 2346 m->busy_lock = VPB_SHARERS_WORD(1); 2347 else 2348 m->busy_lock = VPB_UNBUSIED; 2349 if (req & VM_ALLOC_WIRED) { 2350 vm_wire_add(1); 2351 m->ref_count = 1; 2352 } 2353 m->a.act_count = 0; 2354 2355 if (vm_page_insert_after(m, object, pindex, mpred)) { 2356 if (req & VM_ALLOC_WIRED) { 2357 vm_wire_sub(1); 2358 m->ref_count = 0; 2359 } 2360 KASSERT(m->object == NULL, ("page %p has object", m)); 2361 m->oflags = VPO_UNMANAGED; 2362 m->busy_lock = VPB_UNBUSIED; 2363 /* Don't change PG_ZERO. */ 2364 vm_page_free_toq(m); 2365 if (req & VM_ALLOC_WAITFAIL) { 2366 VM_OBJECT_WUNLOCK(object); 2367 vm_radix_wait(); 2368 VM_OBJECT_WLOCK(object); 2369 } 2370 return (NULL); 2371 } 2372 2373 /* Ignore device objects; the pager sets "memattr" for them. */ 2374 if (object->memattr != VM_MEMATTR_DEFAULT && 2375 (object->flags & OBJ_FICTITIOUS) == 0) 2376 pmap_page_set_memattr(m, object->memattr); 2377 2378 return (m); 2379 } 2380 2381 /* 2382 * vm_page_alloc_contig: 2383 * 2384 * Allocate a contiguous set of physical pages of the given size "npages" 2385 * from the free lists. All of the physical pages must be at or above 2386 * the given physical address "low" and below the given physical address 2387 * "high". The given value "alignment" determines the alignment of the 2388 * first physical page in the set. If the given value "boundary" is 2389 * non-zero, then the set of physical pages cannot cross any physical 2390 * address boundary that is a multiple of that value. Both "alignment" 2391 * and "boundary" must be a power of two. 2392 * 2393 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 2394 * then the memory attribute setting for the physical pages is configured 2395 * to the object's memory attribute setting. Otherwise, the memory 2396 * attribute setting for the physical pages is configured to "memattr", 2397 * overriding the object's memory attribute setting. However, if the 2398 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 2399 * memory attribute setting for the physical pages cannot be configured 2400 * to VM_MEMATTR_DEFAULT. 2401 * 2402 * The specified object may not contain fictitious pages. 2403 * 2404 * The caller must always specify an allocation class. 2405 * 2406 * allocation classes: 2407 * VM_ALLOC_NORMAL normal process request 2408 * VM_ALLOC_SYSTEM system *really* needs a page 2409 * VM_ALLOC_INTERRUPT interrupt time request 2410 * 2411 * optional allocation flags: 2412 * VM_ALLOC_NOBUSY do not exclusive busy the page 2413 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 2414 * VM_ALLOC_SBUSY shared busy the allocated page 2415 * VM_ALLOC_WIRED wire the allocated page 2416 * VM_ALLOC_ZERO prefer a zeroed page 2417 */ 2418 vm_page_t 2419 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 2420 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2421 vm_paddr_t boundary, vm_memattr_t memattr) 2422 { 2423 struct vm_domainset_iter di; 2424 vm_page_t bounds[2]; 2425 vm_page_t m; 2426 int domain; 2427 int start_segind; 2428 2429 start_segind = -1; 2430 2431 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 2432 do { 2433 m = vm_page_alloc_contig_domain(object, pindex, domain, req, 2434 npages, low, high, alignment, boundary, memattr); 2435 if (m != NULL) 2436 break; 2437 if (start_segind == -1) 2438 start_segind = vm_phys_lookup_segind(low); 2439 if (vm_phys_find_range(bounds, start_segind, domain, 2440 npages, low, high) == -1) { 2441 vm_domainset_iter_ignore(&di, domain); 2442 } 2443 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 2444 2445 return (m); 2446 } 2447 2448 static vm_page_t 2449 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low, 2450 vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 2451 { 2452 struct vm_domain *vmd; 2453 vm_page_t m_ret; 2454 2455 /* 2456 * Can we allocate the pages without the number of free pages falling 2457 * below the lower bound for the allocation class? 2458 */ 2459 vmd = VM_DOMAIN(domain); 2460 if (!vm_domain_allocate(vmd, req, npages)) 2461 return (NULL); 2462 /* 2463 * Try to allocate the pages from the free page queues. 2464 */ 2465 vm_domain_free_lock(vmd); 2466 m_ret = vm_phys_alloc_contig(domain, npages, low, high, 2467 alignment, boundary); 2468 vm_domain_free_unlock(vmd); 2469 if (m_ret != NULL) 2470 return (m_ret); 2471 #if VM_NRESERVLEVEL > 0 2472 /* 2473 * Try to break a reservation to allocate the pages. 2474 */ 2475 if ((req & VM_ALLOC_NORECLAIM) == 0) { 2476 m_ret = vm_reserv_reclaim_contig(domain, npages, low, 2477 high, alignment, boundary); 2478 if (m_ret != NULL) 2479 return (m_ret); 2480 } 2481 #endif 2482 vm_domain_freecnt_inc(vmd, npages); 2483 return (NULL); 2484 } 2485 2486 vm_page_t 2487 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, 2488 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2489 vm_paddr_t boundary, vm_memattr_t memattr) 2490 { 2491 struct pctrie_iter pages; 2492 vm_page_t m, m_ret, mpred; 2493 u_int busy_lock, flags, oflags; 2494 2495 #define VPAC_FLAGS (VPA_FLAGS | VM_ALLOC_NORECLAIM) 2496 KASSERT((req & ~VPAC_FLAGS) == 0, 2497 ("invalid request %#x", req)); 2498 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2499 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2500 ("invalid request %#x", req)); 2501 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) != 2502 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM), 2503 ("invalid request %#x", req)); 2504 VM_OBJECT_ASSERT_WLOCKED(object); 2505 KASSERT((object->flags & OBJ_FICTITIOUS) == 0, 2506 ("vm_page_alloc_contig: object %p has fictitious pages", 2507 object)); 2508 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 2509 2510 vm_page_iter_init(&pages, object); 2511 mpred = vm_radix_iter_lookup_le(&pages, pindex); 2512 KASSERT(mpred == NULL || mpred->pindex != pindex, 2513 ("vm_page_alloc_contig: pindex already allocated")); 2514 for (;;) { 2515 #if VM_NRESERVLEVEL > 0 2516 /* 2517 * Can we allocate the pages from a reservation? 2518 */ 2519 if (vm_object_reserv(object) && 2520 (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req, 2521 mpred, npages, low, high, alignment, boundary)) != NULL) { 2522 break; 2523 } 2524 #endif 2525 if ((m_ret = vm_page_find_contig_domain(domain, req, npages, 2526 low, high, alignment, boundary)) != NULL) 2527 break; 2528 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req)) 2529 return (NULL); 2530 } 2531 2532 /* 2533 * Initialize the pages. Only the PG_ZERO flag is inherited. 2534 */ 2535 flags = PG_ZERO; 2536 if ((req & VM_ALLOC_NODUMP) != 0) 2537 flags |= PG_NODUMP; 2538 oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0; 2539 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 2540 busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2541 else if ((req & VM_ALLOC_SBUSY) != 0) 2542 busy_lock = VPB_SHARERS_WORD(1); 2543 else 2544 busy_lock = VPB_UNBUSIED; 2545 if ((req & VM_ALLOC_WIRED) != 0) 2546 vm_wire_add(npages); 2547 if (object->memattr != VM_MEMATTR_DEFAULT && 2548 memattr == VM_MEMATTR_DEFAULT) 2549 memattr = object->memattr; 2550 for (m = m_ret; m < &m_ret[npages]; m++) { 2551 vm_page_dequeue(m); 2552 vm_page_alloc_check(m); 2553 m->a.flags = 0; 2554 m->flags = (m->flags | PG_NODUMP) & flags; 2555 m->busy_lock = busy_lock; 2556 if ((req & VM_ALLOC_WIRED) != 0) 2557 m->ref_count = 1; 2558 m->a.act_count = 0; 2559 m->oflags = oflags; 2560 if (vm_page_iter_insert(&pages, m, object, pindex, mpred)) { 2561 if ((req & VM_ALLOC_WIRED) != 0) 2562 vm_wire_sub(npages); 2563 KASSERT(m->object == NULL, 2564 ("page %p has object", m)); 2565 mpred = m; 2566 for (m = m_ret; m < &m_ret[npages]; m++) { 2567 if (m <= mpred && 2568 (req & VM_ALLOC_WIRED) != 0) 2569 m->ref_count = 0; 2570 m->oflags = VPO_UNMANAGED; 2571 m->busy_lock = VPB_UNBUSIED; 2572 /* Don't change PG_ZERO. */ 2573 vm_page_free_toq(m); 2574 } 2575 if (req & VM_ALLOC_WAITFAIL) { 2576 VM_OBJECT_WUNLOCK(object); 2577 vm_radix_wait(); 2578 VM_OBJECT_WLOCK(object); 2579 } 2580 return (NULL); 2581 } 2582 mpred = m; 2583 if (memattr != VM_MEMATTR_DEFAULT) 2584 pmap_page_set_memattr(m, memattr); 2585 pindex++; 2586 } 2587 return (m_ret); 2588 } 2589 2590 /* 2591 * Allocate a physical page that is not intended to be inserted into a VM 2592 * object. 2593 */ 2594 vm_page_t 2595 vm_page_alloc_noobj_domain(int domain, int req) 2596 { 2597 struct vm_domain *vmd; 2598 vm_page_t m; 2599 int flags; 2600 2601 #define VPAN_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \ 2602 VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | \ 2603 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED | \ 2604 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \ 2605 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK) 2606 KASSERT((req & ~VPAN_FLAGS) == 0, 2607 ("invalid request %#x", req)); 2608 2609 flags = ((req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0) | 2610 ((req & VM_ALLOC_NOFREE) != 0 ? PG_NOFREE : 0); 2611 vmd = VM_DOMAIN(domain); 2612 again: 2613 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) { 2614 m = vm_page_alloc_nofree_domain(domain, req); 2615 if (m != NULL) 2616 goto found; 2617 } 2618 2619 if (vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) { 2620 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone, 2621 M_NOWAIT | M_NOVM); 2622 if (m != NULL) { 2623 flags |= PG_PCPU_CACHE; 2624 goto found; 2625 } 2626 } 2627 2628 if (vm_domain_allocate(vmd, req, 1)) { 2629 vm_domain_free_lock(vmd); 2630 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0); 2631 vm_domain_free_unlock(vmd); 2632 if (m == NULL) { 2633 vm_domain_freecnt_inc(vmd, 1); 2634 #if VM_NRESERVLEVEL > 0 2635 if (vm_reserv_reclaim_inactive(domain)) 2636 goto again; 2637 #endif 2638 } 2639 } 2640 if (m == NULL) { 2641 if (vm_domain_alloc_fail(vmd, NULL, req)) 2642 goto again; 2643 return (NULL); 2644 } 2645 2646 found: 2647 vm_page_dequeue(m); 2648 vm_page_alloc_check(m); 2649 2650 /* 2651 * Consumers should not rely on a useful default pindex value. 2652 */ 2653 m->pindex = 0xdeadc0dedeadc0de; 2654 m->flags = (m->flags & PG_ZERO) | flags; 2655 m->a.flags = 0; 2656 m->oflags = VPO_UNMANAGED; 2657 m->busy_lock = VPB_UNBUSIED; 2658 if ((req & VM_ALLOC_WIRED) != 0) { 2659 vm_wire_add(1); 2660 m->ref_count = 1; 2661 } 2662 2663 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0) 2664 pmap_zero_page(m); 2665 2666 return (m); 2667 } 2668 2669 #if VM_NRESERVLEVEL > 1 2670 #define VM_NOFREE_IMPORT_ORDER (VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER) 2671 #elif VM_NRESERVLEVEL > 0 2672 #define VM_NOFREE_IMPORT_ORDER VM_LEVEL_0_ORDER 2673 #else 2674 #define VM_NOFREE_IMPORT_ORDER 8 2675 #endif 2676 2677 /* 2678 * Allocate a single NOFREE page. 2679 * 2680 * This routine hands out NOFREE pages from higher-order 2681 * physical memory blocks in order to reduce memory fragmentation. 2682 * When a NOFREE for a given domain chunk is used up, 2683 * the routine will try to fetch a new one from the freelists 2684 * and discard the old one. 2685 */ 2686 static vm_page_t 2687 vm_page_alloc_nofree_domain(int domain, int req) 2688 { 2689 vm_page_t m; 2690 struct vm_domain *vmd; 2691 struct vm_nofreeq *nqp; 2692 2693 KASSERT((req & VM_ALLOC_NOFREE) != 0, ("invalid request %#x", req)); 2694 2695 vmd = VM_DOMAIN(domain); 2696 nqp = &vmd->vmd_nofreeq; 2697 vm_domain_free_lock(vmd); 2698 if (nqp->offs >= (1 << VM_NOFREE_IMPORT_ORDER) || nqp->ma == NULL) { 2699 if (!vm_domain_allocate(vmd, req, 2700 1 << VM_NOFREE_IMPORT_ORDER)) { 2701 vm_domain_free_unlock(vmd); 2702 return (NULL); 2703 } 2704 nqp->ma = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 2705 VM_NOFREE_IMPORT_ORDER); 2706 if (nqp->ma == NULL) { 2707 vm_domain_freecnt_inc(vmd, 1 << VM_NOFREE_IMPORT_ORDER); 2708 vm_domain_free_unlock(vmd); 2709 return (NULL); 2710 } 2711 nqp->offs = 0; 2712 } 2713 m = &nqp->ma[nqp->offs++]; 2714 vm_domain_free_unlock(vmd); 2715 VM_CNT_ADD(v_nofree_count, 1); 2716 2717 return (m); 2718 } 2719 2720 vm_page_t 2721 vm_page_alloc_noobj(int req) 2722 { 2723 struct vm_domainset_iter di; 2724 vm_page_t m; 2725 int domain; 2726 2727 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2728 do { 2729 m = vm_page_alloc_noobj_domain(domain, req); 2730 if (m != NULL) 2731 break; 2732 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2733 2734 return (m); 2735 } 2736 2737 vm_page_t 2738 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low, 2739 vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 2740 vm_memattr_t memattr) 2741 { 2742 struct vm_domainset_iter di; 2743 vm_page_t m; 2744 int domain; 2745 2746 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2747 do { 2748 m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low, 2749 high, alignment, boundary, memattr); 2750 if (m != NULL) 2751 break; 2752 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2753 2754 return (m); 2755 } 2756 2757 vm_page_t 2758 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages, 2759 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 2760 vm_memattr_t memattr) 2761 { 2762 vm_page_t m, m_ret; 2763 u_int flags; 2764 2765 #define VPANC_FLAGS (VPAN_FLAGS | VM_ALLOC_NORECLAIM) 2766 KASSERT((req & ~VPANC_FLAGS) == 0, 2767 ("invalid request %#x", req)); 2768 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) != 2769 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM), 2770 ("invalid request %#x", req)); 2771 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2772 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2773 ("invalid request %#x", req)); 2774 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 2775 2776 while ((m_ret = vm_page_find_contig_domain(domain, req, npages, 2777 low, high, alignment, boundary)) == NULL) { 2778 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req)) 2779 return (NULL); 2780 } 2781 2782 /* 2783 * Initialize the pages. Only the PG_ZERO flag is inherited. 2784 */ 2785 flags = PG_ZERO; 2786 if ((req & VM_ALLOC_NODUMP) != 0) 2787 flags |= PG_NODUMP; 2788 if ((req & VM_ALLOC_WIRED) != 0) 2789 vm_wire_add(npages); 2790 for (m = m_ret; m < &m_ret[npages]; m++) { 2791 vm_page_dequeue(m); 2792 vm_page_alloc_check(m); 2793 2794 /* 2795 * Consumers should not rely on a useful default pindex value. 2796 */ 2797 m->pindex = 0xdeadc0dedeadc0de; 2798 m->a.flags = 0; 2799 m->flags = (m->flags | PG_NODUMP) & flags; 2800 m->busy_lock = VPB_UNBUSIED; 2801 if ((req & VM_ALLOC_WIRED) != 0) 2802 m->ref_count = 1; 2803 m->a.act_count = 0; 2804 m->oflags = VPO_UNMANAGED; 2805 2806 /* 2807 * Zero the page before updating any mappings since the page is 2808 * not yet shared with any devices which might require the 2809 * non-default memory attribute. pmap_page_set_memattr() 2810 * flushes data caches before returning. 2811 */ 2812 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0) 2813 pmap_zero_page(m); 2814 if (memattr != VM_MEMATTR_DEFAULT) 2815 pmap_page_set_memattr(m, memattr); 2816 } 2817 return (m_ret); 2818 } 2819 2820 /* 2821 * Check a page that has been freshly dequeued from a freelist. 2822 */ 2823 static void 2824 vm_page_alloc_check(vm_page_t m) 2825 { 2826 2827 KASSERT(m->object == NULL, ("page %p has object", m)); 2828 KASSERT(m->a.queue == PQ_NONE && 2829 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 2830 ("page %p has unexpected queue %d, flags %#x", 2831 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK))); 2832 KASSERT(m->ref_count == 0, ("page %p has references", m)); 2833 KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m)); 2834 KASSERT(m->dirty == 0, ("page %p is dirty", m)); 2835 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 2836 ("page %p has unexpected memattr %d", 2837 m, pmap_page_get_memattr(m))); 2838 KASSERT(vm_page_none_valid(m), ("free page %p is valid", m)); 2839 pmap_vm_page_alloc_check(m); 2840 } 2841 2842 static int 2843 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags) 2844 { 2845 struct vm_domain *vmd; 2846 struct vm_pgcache *pgcache; 2847 int i; 2848 2849 pgcache = arg; 2850 vmd = VM_DOMAIN(pgcache->domain); 2851 2852 /* 2853 * The page daemon should avoid creating extra memory pressure since its 2854 * main purpose is to replenish the store of free pages. 2855 */ 2856 if (vmd->vmd_severeset || curproc == pageproc || 2857 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt)) 2858 return (0); 2859 domain = vmd->vmd_domain; 2860 vm_domain_free_lock(vmd); 2861 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt, 2862 (vm_page_t *)store); 2863 vm_domain_free_unlock(vmd); 2864 if (cnt != i) 2865 vm_domain_freecnt_inc(vmd, cnt - i); 2866 2867 return (i); 2868 } 2869 2870 static void 2871 vm_page_zone_release(void *arg, void **store, int cnt) 2872 { 2873 struct vm_domain *vmd; 2874 struct vm_pgcache *pgcache; 2875 vm_page_t m; 2876 int i; 2877 2878 pgcache = arg; 2879 vmd = VM_DOMAIN(pgcache->domain); 2880 vm_domain_free_lock(vmd); 2881 for (i = 0; i < cnt; i++) { 2882 m = (vm_page_t)store[i]; 2883 vm_phys_free_pages(m, 0); 2884 } 2885 vm_domain_free_unlock(vmd); 2886 vm_domain_freecnt_inc(vmd, cnt); 2887 } 2888 2889 #define VPSC_ANY 0 /* No restrictions. */ 2890 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ 2891 #define VPSC_NOSUPER 2 /* Skip superpages. */ 2892 2893 /* 2894 * vm_page_scan_contig: 2895 * 2896 * Scan vm_page_array[] between the specified entries "m_start" and 2897 * "m_end" for a run of contiguous physical pages that satisfy the 2898 * specified conditions, and return the lowest page in the run. The 2899 * specified "alignment" determines the alignment of the lowest physical 2900 * page in the run. If the specified "boundary" is non-zero, then the 2901 * run of physical pages cannot span a physical address that is a 2902 * multiple of "boundary". 2903 * 2904 * "m_end" is never dereferenced, so it need not point to a vm_page 2905 * structure within vm_page_array[]. 2906 * 2907 * "npages" must be greater than zero. "m_start" and "m_end" must not 2908 * span a hole (or discontiguity) in the physical address space. Both 2909 * "alignment" and "boundary" must be a power of two. 2910 */ 2911 static vm_page_t 2912 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, 2913 u_long alignment, vm_paddr_t boundary, int options) 2914 { 2915 vm_object_t object; 2916 vm_paddr_t pa; 2917 vm_page_t m, m_run; 2918 #if VM_NRESERVLEVEL > 0 2919 int level; 2920 #endif 2921 int m_inc, order, run_ext, run_len; 2922 2923 KASSERT(npages > 0, ("npages is 0")); 2924 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2925 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2926 m_run = NULL; 2927 run_len = 0; 2928 for (m = m_start; m < m_end && run_len < npages; m += m_inc) { 2929 KASSERT((m->flags & PG_MARKER) == 0, 2930 ("page %p is PG_MARKER", m)); 2931 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1, 2932 ("fictitious page %p has invalid ref count", m)); 2933 2934 /* 2935 * If the current page would be the start of a run, check its 2936 * physical address against the end, alignment, and boundary 2937 * conditions. If it doesn't satisfy these conditions, either 2938 * terminate the scan or advance to the next page that 2939 * satisfies the failed condition. 2940 */ 2941 if (run_len == 0) { 2942 KASSERT(m_run == NULL, ("m_run != NULL")); 2943 if (m + npages > m_end) 2944 break; 2945 pa = VM_PAGE_TO_PHYS(m); 2946 if (!vm_addr_align_ok(pa, alignment)) { 2947 m_inc = atop(roundup2(pa, alignment) - pa); 2948 continue; 2949 } 2950 if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) { 2951 m_inc = atop(roundup2(pa, boundary) - pa); 2952 continue; 2953 } 2954 } else 2955 KASSERT(m_run != NULL, ("m_run == NULL")); 2956 2957 retry: 2958 m_inc = 1; 2959 if (vm_page_wired(m)) 2960 run_ext = 0; 2961 #if VM_NRESERVLEVEL > 0 2962 else if ((level = vm_reserv_level(m)) >= 0 && 2963 (options & VPSC_NORESERV) != 0) { 2964 run_ext = 0; 2965 /* Advance to the end of the reservation. */ 2966 pa = VM_PAGE_TO_PHYS(m); 2967 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - 2968 pa); 2969 } 2970 #endif 2971 else if ((object = atomic_load_ptr(&m->object)) != NULL) { 2972 /* 2973 * The page is considered eligible for relocation if 2974 * and only if it could be laundered or reclaimed by 2975 * the page daemon. 2976 */ 2977 VM_OBJECT_RLOCK(object); 2978 if (object != m->object) { 2979 VM_OBJECT_RUNLOCK(object); 2980 goto retry; 2981 } 2982 /* Don't care: PG_NODUMP, PG_ZERO. */ 2983 if ((object->flags & OBJ_SWAP) == 0 && 2984 object->type != OBJT_VNODE) { 2985 run_ext = 0; 2986 #if VM_NRESERVLEVEL > 0 2987 } else if ((options & VPSC_NOSUPER) != 0 && 2988 (level = vm_reserv_level_iffullpop(m)) >= 0) { 2989 run_ext = 0; 2990 /* Advance to the end of the superpage. */ 2991 pa = VM_PAGE_TO_PHYS(m); 2992 m_inc = atop(roundup2(pa + 1, 2993 vm_reserv_size(level)) - pa); 2994 #endif 2995 } else if (object->memattr == VM_MEMATTR_DEFAULT && 2996 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) { 2997 /* 2998 * The page is allocated but eligible for 2999 * relocation. Extend the current run by one 3000 * page. 3001 */ 3002 KASSERT(pmap_page_get_memattr(m) == 3003 VM_MEMATTR_DEFAULT, 3004 ("page %p has an unexpected memattr", m)); 3005 KASSERT((m->oflags & (VPO_SWAPINPROG | 3006 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 3007 ("page %p has unexpected oflags", m)); 3008 /* Don't care: PGA_NOSYNC. */ 3009 run_ext = 1; 3010 } else 3011 run_ext = 0; 3012 VM_OBJECT_RUNLOCK(object); 3013 #if VM_NRESERVLEVEL > 0 3014 } else if (level >= 0) { 3015 /* 3016 * The page is reserved but not yet allocated. In 3017 * other words, it is still free. Extend the current 3018 * run by one page. 3019 */ 3020 run_ext = 1; 3021 #endif 3022 } else if ((order = m->order) < VM_NFREEORDER) { 3023 /* 3024 * The page is enqueued in the physical memory 3025 * allocator's free page queues. Moreover, it is the 3026 * first page in a power-of-two-sized run of 3027 * contiguous free pages. Add these pages to the end 3028 * of the current run, and jump ahead. 3029 */ 3030 run_ext = 1 << order; 3031 m_inc = 1 << order; 3032 } else { 3033 /* 3034 * Skip the page for one of the following reasons: (1) 3035 * It is enqueued in the physical memory allocator's 3036 * free page queues. However, it is not the first 3037 * page in a run of contiguous free pages. (This case 3038 * rarely occurs because the scan is performed in 3039 * ascending order.) (2) It is not reserved, and it is 3040 * transitioning from free to allocated. (Conversely, 3041 * the transition from allocated to free for managed 3042 * pages is blocked by the page busy lock.) (3) It is 3043 * allocated but not contained by an object and not 3044 * wired, e.g., allocated by Xen's balloon driver. 3045 */ 3046 run_ext = 0; 3047 } 3048 3049 /* 3050 * Extend or reset the current run of pages. 3051 */ 3052 if (run_ext > 0) { 3053 if (run_len == 0) 3054 m_run = m; 3055 run_len += run_ext; 3056 } else { 3057 if (run_len > 0) { 3058 m_run = NULL; 3059 run_len = 0; 3060 } 3061 } 3062 } 3063 if (run_len >= npages) 3064 return (m_run); 3065 return (NULL); 3066 } 3067 3068 /* 3069 * vm_page_reclaim_run: 3070 * 3071 * Try to relocate each of the allocated virtual pages within the 3072 * specified run of physical pages to a new physical address. Free the 3073 * physical pages underlying the relocated virtual pages. A virtual page 3074 * is relocatable if and only if it could be laundered or reclaimed by 3075 * the page daemon. Whenever possible, a virtual page is relocated to a 3076 * physical address above "high". 3077 * 3078 * Returns 0 if every physical page within the run was already free or 3079 * just freed by a successful relocation. Otherwise, returns a non-zero 3080 * value indicating why the last attempt to relocate a virtual page was 3081 * unsuccessful. 3082 * 3083 * "req_class" must be an allocation class. 3084 */ 3085 static int 3086 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run, 3087 vm_paddr_t high) 3088 { 3089 struct vm_domain *vmd; 3090 struct spglist free; 3091 vm_object_t object; 3092 vm_paddr_t pa; 3093 vm_page_t m, m_end, m_new; 3094 int error, order, req; 3095 3096 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, 3097 ("req_class is not an allocation class")); 3098 SLIST_INIT(&free); 3099 error = 0; 3100 m = m_run; 3101 m_end = m_run + npages; 3102 for (; error == 0 && m < m_end; m++) { 3103 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, 3104 ("page %p is PG_FICTITIOUS or PG_MARKER", m)); 3105 3106 /* 3107 * Racily check for wirings. Races are handled once the object 3108 * lock is held and the page is unmapped. 3109 */ 3110 if (vm_page_wired(m)) 3111 error = EBUSY; 3112 else if ((object = atomic_load_ptr(&m->object)) != NULL) { 3113 /* 3114 * The page is relocated if and only if it could be 3115 * laundered or reclaimed by the page daemon. 3116 */ 3117 VM_OBJECT_WLOCK(object); 3118 /* Don't care: PG_NODUMP, PG_ZERO. */ 3119 if (m->object != object || 3120 ((object->flags & OBJ_SWAP) == 0 && 3121 object->type != OBJT_VNODE)) 3122 error = EINVAL; 3123 else if (object->memattr != VM_MEMATTR_DEFAULT) 3124 error = EINVAL; 3125 else if (vm_page_queue(m) != PQ_NONE && 3126 vm_page_tryxbusy(m) != 0) { 3127 if (vm_page_wired(m)) { 3128 vm_page_xunbusy(m); 3129 error = EBUSY; 3130 goto unlock; 3131 } 3132 KASSERT(pmap_page_get_memattr(m) == 3133 VM_MEMATTR_DEFAULT, 3134 ("page %p has an unexpected memattr", m)); 3135 KASSERT(m->oflags == 0, 3136 ("page %p has unexpected oflags", m)); 3137 /* Don't care: PGA_NOSYNC. */ 3138 if (!vm_page_none_valid(m)) { 3139 /* 3140 * First, try to allocate a new page 3141 * that is above "high". Failing 3142 * that, try to allocate a new page 3143 * that is below "m_run". Allocate 3144 * the new page between the end of 3145 * "m_run" and "high" only as a last 3146 * resort. 3147 */ 3148 req = req_class; 3149 if ((m->flags & PG_NODUMP) != 0) 3150 req |= VM_ALLOC_NODUMP; 3151 if (trunc_page(high) != 3152 ~(vm_paddr_t)PAGE_MASK) { 3153 m_new = 3154 vm_page_alloc_noobj_contig( 3155 req, 1, round_page(high), 3156 ~(vm_paddr_t)0, PAGE_SIZE, 3157 0, VM_MEMATTR_DEFAULT); 3158 } else 3159 m_new = NULL; 3160 if (m_new == NULL) { 3161 pa = VM_PAGE_TO_PHYS(m_run); 3162 m_new = 3163 vm_page_alloc_noobj_contig( 3164 req, 1, 0, pa - 1, 3165 PAGE_SIZE, 0, 3166 VM_MEMATTR_DEFAULT); 3167 } 3168 if (m_new == NULL) { 3169 pa += ptoa(npages); 3170 m_new = 3171 vm_page_alloc_noobj_contig( 3172 req, 1, pa, high, PAGE_SIZE, 3173 0, VM_MEMATTR_DEFAULT); 3174 } 3175 if (m_new == NULL) { 3176 vm_page_xunbusy(m); 3177 error = ENOMEM; 3178 goto unlock; 3179 } 3180 3181 /* 3182 * Unmap the page and check for new 3183 * wirings that may have been acquired 3184 * through a pmap lookup. 3185 */ 3186 if (object->ref_count != 0 && 3187 !vm_page_try_remove_all(m)) { 3188 vm_page_xunbusy(m); 3189 vm_page_free(m_new); 3190 error = EBUSY; 3191 goto unlock; 3192 } 3193 3194 /* 3195 * Replace "m" with the new page. For 3196 * vm_page_replace(), "m" must be busy 3197 * and dequeued. Finally, change "m" 3198 * as if vm_page_free() was called. 3199 */ 3200 m_new->a.flags = m->a.flags & 3201 ~PGA_QUEUE_STATE_MASK; 3202 KASSERT(m_new->oflags == VPO_UNMANAGED, 3203 ("page %p is managed", m_new)); 3204 m_new->oflags = 0; 3205 pmap_copy_page(m, m_new); 3206 m_new->valid = m->valid; 3207 m_new->dirty = m->dirty; 3208 m->flags &= ~PG_ZERO; 3209 vm_page_dequeue(m); 3210 if (vm_page_replace_hold(m_new, object, 3211 m->pindex, m) && 3212 vm_page_free_prep(m)) 3213 SLIST_INSERT_HEAD(&free, m, 3214 plinks.s.ss); 3215 3216 /* 3217 * The new page must be deactivated 3218 * before the object is unlocked. 3219 */ 3220 vm_page_deactivate(m_new); 3221 } else { 3222 m->flags &= ~PG_ZERO; 3223 vm_page_dequeue(m); 3224 if (vm_page_free_prep(m)) 3225 SLIST_INSERT_HEAD(&free, m, 3226 plinks.s.ss); 3227 KASSERT(m->dirty == 0, 3228 ("page %p is dirty", m)); 3229 } 3230 } else 3231 error = EBUSY; 3232 unlock: 3233 VM_OBJECT_WUNLOCK(object); 3234 } else { 3235 MPASS(vm_page_domain(m) == domain); 3236 vmd = VM_DOMAIN(domain); 3237 vm_domain_free_lock(vmd); 3238 order = m->order; 3239 if (order < VM_NFREEORDER) { 3240 /* 3241 * The page is enqueued in the physical memory 3242 * allocator's free page queues. Moreover, it 3243 * is the first page in a power-of-two-sized 3244 * run of contiguous free pages. Jump ahead 3245 * to the last page within that run, and 3246 * continue from there. 3247 */ 3248 m += (1 << order) - 1; 3249 } 3250 #if VM_NRESERVLEVEL > 0 3251 else if (vm_reserv_is_page_free(m)) 3252 order = 0; 3253 #endif 3254 vm_domain_free_unlock(vmd); 3255 if (order == VM_NFREEORDER) 3256 error = EINVAL; 3257 } 3258 } 3259 if ((m = SLIST_FIRST(&free)) != NULL) { 3260 int cnt; 3261 3262 vmd = VM_DOMAIN(domain); 3263 cnt = 0; 3264 vm_domain_free_lock(vmd); 3265 do { 3266 MPASS(vm_page_domain(m) == domain); 3267 SLIST_REMOVE_HEAD(&free, plinks.s.ss); 3268 vm_phys_free_pages(m, 0); 3269 cnt++; 3270 } while ((m = SLIST_FIRST(&free)) != NULL); 3271 vm_domain_free_unlock(vmd); 3272 vm_domain_freecnt_inc(vmd, cnt); 3273 } 3274 return (error); 3275 } 3276 3277 #define NRUNS 16 3278 3279 #define RUN_INDEX(count, nruns) ((count) % (nruns)) 3280 3281 #define MIN_RECLAIM 8 3282 3283 /* 3284 * vm_page_reclaim_contig: 3285 * 3286 * Reclaim allocated, contiguous physical memory satisfying the specified 3287 * conditions by relocating the virtual pages using that physical memory. 3288 * Returns 0 if reclamation is successful, ERANGE if the specified domain 3289 * can't possibly satisfy the reclamation request, or ENOMEM if not 3290 * currently able to reclaim the requested number of pages. Since 3291 * relocation requires the allocation of physical pages, reclamation may 3292 * fail with ENOMEM due to a shortage of free pages. When reclamation 3293 * fails in this manner, callers are expected to perform vm_wait() before 3294 * retrying a failed allocation operation, e.g., vm_page_alloc_contig(). 3295 * 3296 * The caller must always specify an allocation class through "req". 3297 * 3298 * allocation classes: 3299 * VM_ALLOC_NORMAL normal process request 3300 * VM_ALLOC_SYSTEM system *really* needs a page 3301 * VM_ALLOC_INTERRUPT interrupt time request 3302 * 3303 * The optional allocation flags are ignored. 3304 * 3305 * "npages" must be greater than zero. Both "alignment" and "boundary" 3306 * must be a power of two. 3307 */ 3308 int 3309 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages, 3310 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 3311 int desired_runs) 3312 { 3313 struct vm_domain *vmd; 3314 vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs; 3315 u_long count, minalign, reclaimed; 3316 int error, i, min_reclaim, nruns, options, req_class; 3317 int segind, start_segind; 3318 int ret; 3319 3320 KASSERT(npages > 0, ("npages is 0")); 3321 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 3322 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 3323 3324 ret = ENOMEM; 3325 3326 /* 3327 * If the caller wants to reclaim multiple runs, try to allocate 3328 * space to store the runs. If that fails, fall back to the old 3329 * behavior of just reclaiming MIN_RECLAIM pages. 3330 */ 3331 if (desired_runs > 1) 3332 m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs), 3333 M_TEMP, M_NOWAIT); 3334 else 3335 m_runs = NULL; 3336 3337 if (m_runs == NULL) { 3338 m_runs = _m_runs; 3339 nruns = NRUNS; 3340 } else { 3341 nruns = NRUNS + desired_runs - 1; 3342 } 3343 min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM); 3344 3345 /* 3346 * The caller will attempt an allocation after some runs have been 3347 * reclaimed and added to the vm_phys buddy lists. Due to limitations 3348 * of vm_phys_alloc_contig(), round up the requested length to the next 3349 * power of two or maximum chunk size, and ensure that each run is 3350 * suitably aligned. 3351 */ 3352 minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1); 3353 npages = roundup2(npages, minalign); 3354 if (alignment < ptoa(minalign)) 3355 alignment = ptoa(minalign); 3356 3357 /* 3358 * The page daemon is allowed to dig deeper into the free page list. 3359 */ 3360 req_class = req & VM_ALLOC_CLASS_MASK; 3361 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 3362 req_class = VM_ALLOC_SYSTEM; 3363 3364 start_segind = vm_phys_lookup_segind(low); 3365 3366 /* 3367 * Return if the number of free pages cannot satisfy the requested 3368 * allocation. 3369 */ 3370 vmd = VM_DOMAIN(domain); 3371 count = vmd->vmd_free_count; 3372 if (count < npages + vmd->vmd_free_reserved || (count < npages + 3373 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || 3374 (count < npages && req_class == VM_ALLOC_INTERRUPT)) 3375 goto done; 3376 3377 /* 3378 * Scan up to three times, relaxing the restrictions ("options") on 3379 * the reclamation of reservations and superpages each time. 3380 */ 3381 for (options = VPSC_NORESERV;;) { 3382 bool phys_range_exists = false; 3383 3384 /* 3385 * Find the highest runs that satisfy the given constraints 3386 * and restrictions, and record them in "m_runs". 3387 */ 3388 count = 0; 3389 segind = start_segind; 3390 while ((segind = vm_phys_find_range(bounds, segind, domain, 3391 npages, low, high)) != -1) { 3392 phys_range_exists = true; 3393 while ((m_run = vm_page_scan_contig(npages, bounds[0], 3394 bounds[1], alignment, boundary, options))) { 3395 bounds[0] = m_run + npages; 3396 m_runs[RUN_INDEX(count, nruns)] = m_run; 3397 count++; 3398 } 3399 segind++; 3400 } 3401 3402 if (!phys_range_exists) { 3403 ret = ERANGE; 3404 goto done; 3405 } 3406 3407 /* 3408 * Reclaim the highest runs in LIFO (descending) order until 3409 * the number of reclaimed pages, "reclaimed", is at least 3410 * "min_reclaim". Reset "reclaimed" each time because each 3411 * reclamation is idempotent, and runs will (likely) recur 3412 * from one scan to the next as restrictions are relaxed. 3413 */ 3414 reclaimed = 0; 3415 for (i = 0; count > 0 && i < nruns; i++) { 3416 count--; 3417 m_run = m_runs[RUN_INDEX(count, nruns)]; 3418 error = vm_page_reclaim_run(req_class, domain, npages, 3419 m_run, high); 3420 if (error == 0) { 3421 reclaimed += npages; 3422 if (reclaimed >= min_reclaim) { 3423 ret = 0; 3424 goto done; 3425 } 3426 } 3427 } 3428 3429 /* 3430 * Either relax the restrictions on the next scan or return if 3431 * the last scan had no restrictions. 3432 */ 3433 if (options == VPSC_NORESERV) 3434 options = VPSC_NOSUPER; 3435 else if (options == VPSC_NOSUPER) 3436 options = VPSC_ANY; 3437 else if (options == VPSC_ANY) { 3438 if (reclaimed != 0) 3439 ret = 0; 3440 goto done; 3441 } 3442 } 3443 done: 3444 if (m_runs != _m_runs) 3445 free(m_runs, M_TEMP); 3446 return (ret); 3447 } 3448 3449 int 3450 vm_page_reclaim_contig_domain(int domain, int req, u_long npages, 3451 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 3452 { 3453 return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low, high, 3454 alignment, boundary, 1)); 3455 } 3456 3457 int 3458 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, 3459 u_long alignment, vm_paddr_t boundary) 3460 { 3461 struct vm_domainset_iter di; 3462 int domain, ret, status; 3463 3464 ret = ERANGE; 3465 3466 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 3467 do { 3468 status = vm_page_reclaim_contig_domain(domain, req, npages, low, 3469 high, alignment, boundary); 3470 if (status == 0) 3471 return (0); 3472 else if (status == ERANGE) 3473 vm_domainset_iter_ignore(&di, domain); 3474 else { 3475 KASSERT(status == ENOMEM, ("Unrecognized error %d " 3476 "from vm_page_reclaim_contig_domain()", status)); 3477 ret = ENOMEM; 3478 } 3479 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 3480 3481 return (ret); 3482 } 3483 3484 /* 3485 * Set the domain in the appropriate page level domainset. 3486 */ 3487 void 3488 vm_domain_set(struct vm_domain *vmd) 3489 { 3490 3491 mtx_lock(&vm_domainset_lock); 3492 if (!vmd->vmd_minset && vm_paging_min(vmd)) { 3493 vmd->vmd_minset = 1; 3494 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains); 3495 } 3496 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) { 3497 vmd->vmd_severeset = 1; 3498 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains); 3499 } 3500 mtx_unlock(&vm_domainset_lock); 3501 } 3502 3503 /* 3504 * Clear the domain from the appropriate page level domainset. 3505 */ 3506 void 3507 vm_domain_clear(struct vm_domain *vmd) 3508 { 3509 3510 mtx_lock(&vm_domainset_lock); 3511 if (vmd->vmd_minset && !vm_paging_min(vmd)) { 3512 vmd->vmd_minset = 0; 3513 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains); 3514 if (vm_min_waiters != 0) { 3515 vm_min_waiters = 0; 3516 wakeup(&vm_min_domains); 3517 } 3518 } 3519 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) { 3520 vmd->vmd_severeset = 0; 3521 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains); 3522 if (vm_severe_waiters != 0) { 3523 vm_severe_waiters = 0; 3524 wakeup(&vm_severe_domains); 3525 } 3526 } 3527 3528 /* 3529 * If pageout daemon needs pages, then tell it that there are 3530 * some free. 3531 */ 3532 if (vmd->vmd_pageout_pages_needed && 3533 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) { 3534 wakeup(&vmd->vmd_pageout_pages_needed); 3535 vmd->vmd_pageout_pages_needed = 0; 3536 } 3537 3538 /* See comments in vm_wait_doms(). */ 3539 if (vm_pageproc_waiters) { 3540 vm_pageproc_waiters = 0; 3541 wakeup(&vm_pageproc_waiters); 3542 } 3543 mtx_unlock(&vm_domainset_lock); 3544 } 3545 3546 /* 3547 * Wait for free pages to exceed the min threshold globally. 3548 */ 3549 void 3550 vm_wait_min(void) 3551 { 3552 3553 mtx_lock(&vm_domainset_lock); 3554 while (vm_page_count_min()) { 3555 vm_min_waiters++; 3556 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0); 3557 } 3558 mtx_unlock(&vm_domainset_lock); 3559 } 3560 3561 /* 3562 * Wait for free pages to exceed the severe threshold globally. 3563 */ 3564 void 3565 vm_wait_severe(void) 3566 { 3567 3568 mtx_lock(&vm_domainset_lock); 3569 while (vm_page_count_severe()) { 3570 vm_severe_waiters++; 3571 msleep(&vm_severe_domains, &vm_domainset_lock, PVM, 3572 "vmwait", 0); 3573 } 3574 mtx_unlock(&vm_domainset_lock); 3575 } 3576 3577 u_int 3578 vm_wait_count(void) 3579 { 3580 3581 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters); 3582 } 3583 3584 int 3585 vm_wait_doms(const domainset_t *wdoms, int mflags) 3586 { 3587 int error; 3588 3589 error = 0; 3590 3591 /* 3592 * We use racey wakeup synchronization to avoid expensive global 3593 * locking for the pageproc when sleeping with a non-specific vm_wait. 3594 * To handle this, we only sleep for one tick in this instance. It 3595 * is expected that most allocations for the pageproc will come from 3596 * kmem or vm_page_grab* which will use the more specific and 3597 * race-free vm_wait_domain(). 3598 */ 3599 if (curproc == pageproc) { 3600 mtx_lock(&vm_domainset_lock); 3601 vm_pageproc_waiters++; 3602 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock, 3603 PVM | PDROP | mflags, "pageprocwait", 1); 3604 } else { 3605 /* 3606 * XXX Ideally we would wait only until the allocation could 3607 * be satisfied. This condition can cause new allocators to 3608 * consume all freed pages while old allocators wait. 3609 */ 3610 mtx_lock(&vm_domainset_lock); 3611 if (vm_page_count_min_set(wdoms)) { 3612 if (pageproc == NULL) 3613 panic("vm_wait in early boot"); 3614 vm_min_waiters++; 3615 error = msleep(&vm_min_domains, &vm_domainset_lock, 3616 PVM | PDROP | mflags, "vmwait", 0); 3617 } else 3618 mtx_unlock(&vm_domainset_lock); 3619 } 3620 return (error); 3621 } 3622 3623 /* 3624 * vm_wait_domain: 3625 * 3626 * Sleep until free pages are available for allocation. 3627 * - Called in various places after failed memory allocations. 3628 */ 3629 void 3630 vm_wait_domain(int domain) 3631 { 3632 struct vm_domain *vmd; 3633 domainset_t wdom; 3634 3635 vmd = VM_DOMAIN(domain); 3636 vm_domain_free_assert_unlocked(vmd); 3637 3638 if (curproc == pageproc) { 3639 mtx_lock(&vm_domainset_lock); 3640 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) { 3641 vmd->vmd_pageout_pages_needed = 1; 3642 msleep(&vmd->vmd_pageout_pages_needed, 3643 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0); 3644 } else 3645 mtx_unlock(&vm_domainset_lock); 3646 } else { 3647 DOMAINSET_ZERO(&wdom); 3648 DOMAINSET_SET(vmd->vmd_domain, &wdom); 3649 vm_wait_doms(&wdom, 0); 3650 } 3651 } 3652 3653 static int 3654 vm_wait_flags(vm_object_t obj, int mflags) 3655 { 3656 struct domainset *d; 3657 3658 d = NULL; 3659 3660 /* 3661 * Carefully fetch pointers only once: the struct domainset 3662 * itself is ummutable but the pointer might change. 3663 */ 3664 if (obj != NULL) 3665 d = obj->domain.dr_policy; 3666 if (d == NULL) 3667 d = curthread->td_domain.dr_policy; 3668 3669 return (vm_wait_doms(&d->ds_mask, mflags)); 3670 } 3671 3672 /* 3673 * vm_wait: 3674 * 3675 * Sleep until free pages are available for allocation in the 3676 * affinity domains of the obj. If obj is NULL, the domain set 3677 * for the calling thread is used. 3678 * Called in various places after failed memory allocations. 3679 */ 3680 void 3681 vm_wait(vm_object_t obj) 3682 { 3683 (void)vm_wait_flags(obj, 0); 3684 } 3685 3686 int 3687 vm_wait_intr(vm_object_t obj) 3688 { 3689 return (vm_wait_flags(obj, PCATCH)); 3690 } 3691 3692 /* 3693 * vm_domain_alloc_fail: 3694 * 3695 * Called when a page allocation function fails. Informs the 3696 * pagedaemon and performs the requested wait. Requires the 3697 * domain_free and object lock on entry. Returns with the 3698 * object lock held and free lock released. Returns an error when 3699 * retry is necessary. 3700 * 3701 */ 3702 static int 3703 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req) 3704 { 3705 3706 vm_domain_free_assert_unlocked(vmd); 3707 3708 atomic_add_int(&vmd->vmd_pageout_deficit, 3709 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 3710 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) { 3711 if (object != NULL) 3712 VM_OBJECT_WUNLOCK(object); 3713 vm_wait_domain(vmd->vmd_domain); 3714 if (object != NULL) 3715 VM_OBJECT_WLOCK(object); 3716 if (req & VM_ALLOC_WAITOK) 3717 return (EAGAIN); 3718 } 3719 3720 return (0); 3721 } 3722 3723 /* 3724 * vm_waitpfault: 3725 * 3726 * Sleep until free pages are available for allocation. 3727 * - Called only in vm_fault so that processes page faulting 3728 * can be easily tracked. 3729 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 3730 * processes will be able to grab memory first. Do not change 3731 * this balance without careful testing first. 3732 */ 3733 void 3734 vm_waitpfault(struct domainset *dset, int timo) 3735 { 3736 3737 /* 3738 * XXX Ideally we would wait only until the allocation could 3739 * be satisfied. This condition can cause new allocators to 3740 * consume all freed pages while old allocators wait. 3741 */ 3742 mtx_lock(&vm_domainset_lock); 3743 if (vm_page_count_min_set(&dset->ds_mask)) { 3744 vm_min_waiters++; 3745 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP, 3746 "pfault", timo); 3747 } else 3748 mtx_unlock(&vm_domainset_lock); 3749 } 3750 3751 static struct vm_pagequeue * 3752 _vm_page_pagequeue(vm_page_t m, uint8_t queue) 3753 { 3754 3755 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]); 3756 } 3757 3758 #ifdef INVARIANTS 3759 static struct vm_pagequeue * 3760 vm_page_pagequeue(vm_page_t m) 3761 { 3762 3763 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue)); 3764 } 3765 #endif 3766 3767 static __always_inline bool 3768 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) 3769 { 3770 vm_page_astate_t tmp; 3771 3772 tmp = *old; 3773 do { 3774 if (__predict_true(vm_page_astate_fcmpset(m, old, new))) 3775 return (true); 3776 counter_u64_add(pqstate_commit_retries, 1); 3777 } while (old->_bits == tmp._bits); 3778 3779 return (false); 3780 } 3781 3782 /* 3783 * Do the work of committing a queue state update that moves the page out of 3784 * its current queue. 3785 */ 3786 static bool 3787 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m, 3788 vm_page_astate_t *old, vm_page_astate_t new) 3789 { 3790 vm_page_t next; 3791 3792 vm_pagequeue_assert_locked(pq); 3793 KASSERT(vm_page_pagequeue(m) == pq, 3794 ("%s: queue %p does not match page %p", __func__, pq, m)); 3795 KASSERT(old->queue != PQ_NONE && new.queue != old->queue, 3796 ("%s: invalid queue indices %d %d", 3797 __func__, old->queue, new.queue)); 3798 3799 /* 3800 * Once the queue index of the page changes there is nothing 3801 * synchronizing with further updates to the page's physical 3802 * queue state. Therefore we must speculatively remove the page 3803 * from the queue now and be prepared to roll back if the queue 3804 * state update fails. If the page is not physically enqueued then 3805 * we just update its queue index. 3806 */ 3807 if ((old->flags & PGA_ENQUEUED) != 0) { 3808 new.flags &= ~PGA_ENQUEUED; 3809 next = TAILQ_NEXT(m, plinks.q); 3810 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3811 vm_pagequeue_cnt_dec(pq); 3812 if (!vm_page_pqstate_fcmpset(m, old, new)) { 3813 if (next == NULL) 3814 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3815 else 3816 TAILQ_INSERT_BEFORE(next, m, plinks.q); 3817 vm_pagequeue_cnt_inc(pq); 3818 return (false); 3819 } else { 3820 return (true); 3821 } 3822 } else { 3823 return (vm_page_pqstate_fcmpset(m, old, new)); 3824 } 3825 } 3826 3827 static bool 3828 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old, 3829 vm_page_astate_t new) 3830 { 3831 struct vm_pagequeue *pq; 3832 vm_page_astate_t as; 3833 bool ret; 3834 3835 pq = _vm_page_pagequeue(m, old->queue); 3836 3837 /* 3838 * The queue field and PGA_ENQUEUED flag are stable only so long as the 3839 * corresponding page queue lock is held. 3840 */ 3841 vm_pagequeue_lock(pq); 3842 as = vm_page_astate_load(m); 3843 if (__predict_false(as._bits != old->_bits)) { 3844 *old = as; 3845 ret = false; 3846 } else { 3847 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new); 3848 } 3849 vm_pagequeue_unlock(pq); 3850 return (ret); 3851 } 3852 3853 /* 3854 * Commit a queue state update that enqueues or requeues a page. 3855 */ 3856 static bool 3857 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m, 3858 vm_page_astate_t *old, vm_page_astate_t new) 3859 { 3860 struct vm_domain *vmd; 3861 3862 vm_pagequeue_assert_locked(pq); 3863 KASSERT(old->queue != PQ_NONE && new.queue == old->queue, 3864 ("%s: invalid queue indices %d %d", 3865 __func__, old->queue, new.queue)); 3866 3867 new.flags |= PGA_ENQUEUED; 3868 if (!vm_page_pqstate_fcmpset(m, old, new)) 3869 return (false); 3870 3871 if ((old->flags & PGA_ENQUEUED) != 0) 3872 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3873 else 3874 vm_pagequeue_cnt_inc(pq); 3875 3876 /* 3877 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if 3878 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be 3879 * applied, even if it was set first. 3880 */ 3881 if ((old->flags & PGA_REQUEUE_HEAD) != 0) { 3882 vmd = vm_pagequeue_domain(m); 3883 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE], 3884 ("%s: invalid page queue for page %p", __func__, m)); 3885 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 3886 } else { 3887 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3888 } 3889 return (true); 3890 } 3891 3892 /* 3893 * Commit a queue state update that encodes a request for a deferred queue 3894 * operation. 3895 */ 3896 static bool 3897 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old, 3898 vm_page_astate_t new) 3899 { 3900 3901 KASSERT(old->queue == new.queue || new.queue != PQ_NONE, 3902 ("%s: invalid state, queue %d flags %x", 3903 __func__, new.queue, new.flags)); 3904 3905 if (old->_bits != new._bits && 3906 !vm_page_pqstate_fcmpset(m, old, new)) 3907 return (false); 3908 vm_page_pqbatch_submit(m, new.queue); 3909 return (true); 3910 } 3911 3912 /* 3913 * A generic queue state update function. This handles more cases than the 3914 * specialized functions above. 3915 */ 3916 bool 3917 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) 3918 { 3919 3920 if (old->_bits == new._bits) 3921 return (true); 3922 3923 if (old->queue != PQ_NONE && new.queue != old->queue) { 3924 if (!vm_page_pqstate_commit_dequeue(m, old, new)) 3925 return (false); 3926 if (new.queue != PQ_NONE) 3927 vm_page_pqbatch_submit(m, new.queue); 3928 } else { 3929 if (!vm_page_pqstate_fcmpset(m, old, new)) 3930 return (false); 3931 if (new.queue != PQ_NONE && 3932 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0) 3933 vm_page_pqbatch_submit(m, new.queue); 3934 } 3935 return (true); 3936 } 3937 3938 /* 3939 * Apply deferred queue state updates to a page. 3940 */ 3941 static inline void 3942 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue) 3943 { 3944 vm_page_astate_t new, old; 3945 3946 CRITICAL_ASSERT(curthread); 3947 vm_pagequeue_assert_locked(pq); 3948 KASSERT(queue < PQ_COUNT, 3949 ("%s: invalid queue index %d", __func__, queue)); 3950 KASSERT(pq == _vm_page_pagequeue(m, queue), 3951 ("%s: page %p does not belong to queue %p", __func__, m, pq)); 3952 3953 for (old = vm_page_astate_load(m);;) { 3954 if (__predict_false(old.queue != queue || 3955 (old.flags & PGA_QUEUE_OP_MASK) == 0)) { 3956 counter_u64_add(queue_nops, 1); 3957 break; 3958 } 3959 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3960 ("%s: page %p is unmanaged", __func__, m)); 3961 3962 new = old; 3963 if ((old.flags & PGA_DEQUEUE) != 0) { 3964 new.flags &= ~PGA_QUEUE_OP_MASK; 3965 new.queue = PQ_NONE; 3966 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq, 3967 m, &old, new))) { 3968 counter_u64_add(queue_ops, 1); 3969 break; 3970 } 3971 } else { 3972 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD); 3973 if (__predict_true(_vm_page_pqstate_commit_requeue(pq, 3974 m, &old, new))) { 3975 counter_u64_add(queue_ops, 1); 3976 break; 3977 } 3978 } 3979 } 3980 } 3981 3982 static void 3983 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq, 3984 uint8_t queue) 3985 { 3986 int i; 3987 3988 for (i = 0; i < bq->bq_cnt; i++) 3989 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue); 3990 vm_batchqueue_init(bq); 3991 } 3992 3993 /* 3994 * vm_page_pqbatch_submit: [ internal use only ] 3995 * 3996 * Enqueue a page in the specified page queue's batched work queue. 3997 * The caller must have encoded the requested operation in the page 3998 * structure's a.flags field. 3999 */ 4000 void 4001 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue) 4002 { 4003 struct vm_batchqueue *bq; 4004 struct vm_pagequeue *pq; 4005 int domain, slots_remaining; 4006 4007 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue)); 4008 4009 domain = vm_page_domain(m); 4010 critical_enter(); 4011 bq = DPCPU_PTR(pqbatch[domain][queue]); 4012 slots_remaining = vm_batchqueue_insert(bq, m); 4013 if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) { 4014 /* keep building the bq */ 4015 critical_exit(); 4016 return; 4017 } else if (slots_remaining > 0 ) { 4018 /* Try to process the bq if we can get the lock */ 4019 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue]; 4020 if (vm_pagequeue_trylock(pq)) { 4021 vm_pqbatch_process(pq, bq, queue); 4022 vm_pagequeue_unlock(pq); 4023 } 4024 critical_exit(); 4025 return; 4026 } 4027 critical_exit(); 4028 4029 /* if we make it here, the bq is full so wait for the lock */ 4030 4031 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue]; 4032 vm_pagequeue_lock(pq); 4033 critical_enter(); 4034 bq = DPCPU_PTR(pqbatch[domain][queue]); 4035 vm_pqbatch_process(pq, bq, queue); 4036 vm_pqbatch_process_page(pq, m, queue); 4037 vm_pagequeue_unlock(pq); 4038 critical_exit(); 4039 } 4040 4041 /* 4042 * vm_page_pqbatch_drain: [ internal use only ] 4043 * 4044 * Force all per-CPU page queue batch queues to be drained. This is 4045 * intended for use in severe memory shortages, to ensure that pages 4046 * do not remain stuck in the batch queues. 4047 */ 4048 void 4049 vm_page_pqbatch_drain(void) 4050 { 4051 struct thread *td; 4052 struct vm_domain *vmd; 4053 struct vm_pagequeue *pq; 4054 int cpu, domain, queue; 4055 4056 td = curthread; 4057 CPU_FOREACH(cpu) { 4058 thread_lock(td); 4059 sched_bind(td, cpu); 4060 thread_unlock(td); 4061 4062 for (domain = 0; domain < vm_ndomains; domain++) { 4063 vmd = VM_DOMAIN(domain); 4064 for (queue = 0; queue < PQ_COUNT; queue++) { 4065 pq = &vmd->vmd_pagequeues[queue]; 4066 vm_pagequeue_lock(pq); 4067 critical_enter(); 4068 vm_pqbatch_process(pq, 4069 DPCPU_PTR(pqbatch[domain][queue]), queue); 4070 critical_exit(); 4071 vm_pagequeue_unlock(pq); 4072 } 4073 } 4074 } 4075 thread_lock(td); 4076 sched_unbind(td); 4077 thread_unlock(td); 4078 } 4079 4080 /* 4081 * vm_page_dequeue_deferred: [ internal use only ] 4082 * 4083 * Request removal of the given page from its current page 4084 * queue. Physical removal from the queue may be deferred 4085 * indefinitely. 4086 */ 4087 void 4088 vm_page_dequeue_deferred(vm_page_t m) 4089 { 4090 vm_page_astate_t new, old; 4091 4092 old = vm_page_astate_load(m); 4093 do { 4094 if (old.queue == PQ_NONE) { 4095 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, 4096 ("%s: page %p has unexpected queue state", 4097 __func__, m)); 4098 break; 4099 } 4100 new = old; 4101 new.flags |= PGA_DEQUEUE; 4102 } while (!vm_page_pqstate_commit_request(m, &old, new)); 4103 } 4104 4105 /* 4106 * vm_page_dequeue: 4107 * 4108 * Remove the page from whichever page queue it's in, if any, before 4109 * returning. 4110 */ 4111 void 4112 vm_page_dequeue(vm_page_t m) 4113 { 4114 vm_page_astate_t new, old; 4115 4116 old = vm_page_astate_load(m); 4117 do { 4118 if (old.queue == PQ_NONE) { 4119 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, 4120 ("%s: page %p has unexpected queue state", 4121 __func__, m)); 4122 break; 4123 } 4124 new = old; 4125 new.flags &= ~PGA_QUEUE_OP_MASK; 4126 new.queue = PQ_NONE; 4127 } while (!vm_page_pqstate_commit_dequeue(m, &old, new)); 4128 4129 } 4130 4131 /* 4132 * Schedule the given page for insertion into the specified page queue. 4133 * Physical insertion of the page may be deferred indefinitely. 4134 */ 4135 static void 4136 vm_page_enqueue(vm_page_t m, uint8_t queue) 4137 { 4138 4139 KASSERT(m->a.queue == PQ_NONE && 4140 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 4141 ("%s: page %p is already enqueued", __func__, m)); 4142 KASSERT(m->ref_count > 0, 4143 ("%s: page %p does not carry any references", __func__, m)); 4144 4145 m->a.queue = queue; 4146 if ((m->a.flags & PGA_REQUEUE) == 0) 4147 vm_page_aflag_set(m, PGA_REQUEUE); 4148 vm_page_pqbatch_submit(m, queue); 4149 } 4150 4151 /* 4152 * vm_page_free_prep: 4153 * 4154 * Prepares the given page to be put on the free list, 4155 * disassociating it from any VM object. The caller may return 4156 * the page to the free list only if this function returns true. 4157 * 4158 * The object, if it exists, must be locked, and then the page must 4159 * be xbusy. Otherwise the page must be not busied. A managed 4160 * page must be unmapped. 4161 */ 4162 static bool 4163 vm_page_free_prep(vm_page_t m) 4164 { 4165 4166 /* 4167 * Synchronize with threads that have dropped a reference to this 4168 * page. 4169 */ 4170 atomic_thread_fence_acq(); 4171 4172 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP) 4173 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) { 4174 uint64_t *p; 4175 int i; 4176 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 4177 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++) 4178 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx", 4179 m, i, (uintmax_t)*p)); 4180 } 4181 #endif 4182 KASSERT((m->flags & PG_NOFREE) == 0, 4183 ("%s: attempting to free a PG_NOFREE page", __func__)); 4184 if ((m->oflags & VPO_UNMANAGED) == 0) { 4185 KASSERT(!pmap_page_is_mapped(m), 4186 ("vm_page_free_prep: freeing mapped page %p", m)); 4187 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0, 4188 ("vm_page_free_prep: mapping flags set in page %p", m)); 4189 } else { 4190 KASSERT(m->a.queue == PQ_NONE, 4191 ("vm_page_free_prep: unmanaged page %p is queued", m)); 4192 } 4193 VM_CNT_INC(v_tfree); 4194 4195 if (m->object != NULL) { 4196 vm_page_radix_remove(m); 4197 vm_page_free_object_prep(m); 4198 } else 4199 vm_page_assert_unbusied(m); 4200 4201 vm_page_busy_free(m); 4202 4203 /* 4204 * If fictitious remove object association and 4205 * return. 4206 */ 4207 if ((m->flags & PG_FICTITIOUS) != 0) { 4208 KASSERT(m->ref_count == 1, 4209 ("fictitious page %p is referenced", m)); 4210 KASSERT(m->a.queue == PQ_NONE, 4211 ("fictitious page %p is queued", m)); 4212 return (false); 4213 } 4214 4215 /* 4216 * Pages need not be dequeued before they are returned to the physical 4217 * memory allocator, but they must at least be marked for a deferred 4218 * dequeue. 4219 */ 4220 if ((m->oflags & VPO_UNMANAGED) == 0) 4221 vm_page_dequeue_deferred(m); 4222 4223 m->valid = 0; 4224 vm_page_undirty(m); 4225 4226 if (m->ref_count != 0) 4227 panic("vm_page_free_prep: page %p has references", m); 4228 4229 /* 4230 * Restore the default memory attribute to the page. 4231 */ 4232 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 4233 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 4234 4235 #if VM_NRESERVLEVEL > 0 4236 /* 4237 * Determine whether the page belongs to a reservation. If the page was 4238 * allocated from a per-CPU cache, it cannot belong to a reservation, so 4239 * as an optimization, we avoid the check in that case. 4240 */ 4241 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m)) 4242 return (false); 4243 #endif 4244 4245 return (true); 4246 } 4247 4248 /* 4249 * vm_page_free_toq: 4250 * 4251 * Returns the given page to the free list, disassociating it 4252 * from any VM object. 4253 * 4254 * The object must be locked. The page must be exclusively busied if it 4255 * belongs to an object. 4256 */ 4257 static void 4258 vm_page_free_toq(vm_page_t m) 4259 { 4260 struct vm_domain *vmd; 4261 uma_zone_t zone; 4262 4263 if (!vm_page_free_prep(m)) 4264 return; 4265 4266 vmd = vm_pagequeue_domain(m); 4267 zone = vmd->vmd_pgcache[m->pool].zone; 4268 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) { 4269 uma_zfree(zone, m); 4270 return; 4271 } 4272 vm_domain_free_lock(vmd); 4273 vm_phys_free_pages(m, 0); 4274 vm_domain_free_unlock(vmd); 4275 vm_domain_freecnt_inc(vmd, 1); 4276 } 4277 4278 /* 4279 * vm_page_free_pages_toq: 4280 * 4281 * Returns a list of pages to the free list, disassociating it 4282 * from any VM object. In other words, this is equivalent to 4283 * calling vm_page_free_toq() for each page of a list of VM objects. 4284 */ 4285 int 4286 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count) 4287 { 4288 vm_page_t m; 4289 int count; 4290 4291 if (SLIST_EMPTY(free)) 4292 return (0); 4293 4294 count = 0; 4295 while ((m = SLIST_FIRST(free)) != NULL) { 4296 count++; 4297 SLIST_REMOVE_HEAD(free, plinks.s.ss); 4298 vm_page_free_toq(m); 4299 } 4300 4301 if (update_wire_count) 4302 vm_wire_sub(count); 4303 return (count); 4304 } 4305 4306 /* 4307 * Mark this page as wired down. For managed pages, this prevents reclamation 4308 * by the page daemon, or when the containing object, if any, is destroyed. 4309 */ 4310 void 4311 vm_page_wire(vm_page_t m) 4312 { 4313 u_int old; 4314 4315 #ifdef INVARIANTS 4316 if (m->object != NULL && !vm_page_busied(m) && 4317 !vm_object_busied(m->object)) 4318 VM_OBJECT_ASSERT_LOCKED(m->object); 4319 #endif 4320 KASSERT((m->flags & PG_FICTITIOUS) == 0 || 4321 VPRC_WIRE_COUNT(m->ref_count) >= 1, 4322 ("vm_page_wire: fictitious page %p has zero wirings", m)); 4323 4324 old = atomic_fetchadd_int(&m->ref_count, 1); 4325 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX, 4326 ("vm_page_wire: counter overflow for page %p", m)); 4327 if (VPRC_WIRE_COUNT(old) == 0) { 4328 if ((m->oflags & VPO_UNMANAGED) == 0) 4329 vm_page_aflag_set(m, PGA_DEQUEUE); 4330 vm_wire_add(1); 4331 } 4332 } 4333 4334 /* 4335 * Attempt to wire a mapped page following a pmap lookup of that page. 4336 * This may fail if a thread is concurrently tearing down mappings of the page. 4337 * The transient failure is acceptable because it translates to the 4338 * failure of the caller pmap_extract_and_hold(), which should be then 4339 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages(). 4340 */ 4341 bool 4342 vm_page_wire_mapped(vm_page_t m) 4343 { 4344 u_int old; 4345 4346 old = atomic_load_int(&m->ref_count); 4347 do { 4348 KASSERT(old > 0, 4349 ("vm_page_wire_mapped: wiring unreferenced page %p", m)); 4350 if ((old & VPRC_BLOCKED) != 0) 4351 return (false); 4352 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1)); 4353 4354 if (VPRC_WIRE_COUNT(old) == 0) { 4355 if ((m->oflags & VPO_UNMANAGED) == 0) 4356 vm_page_aflag_set(m, PGA_DEQUEUE); 4357 vm_wire_add(1); 4358 } 4359 return (true); 4360 } 4361 4362 /* 4363 * Release a wiring reference to a managed page. If the page still belongs to 4364 * an object, update its position in the page queues to reflect the reference. 4365 * If the wiring was the last reference to the page, free the page. 4366 */ 4367 static void 4368 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse) 4369 { 4370 u_int old; 4371 4372 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4373 ("%s: page %p is unmanaged", __func__, m)); 4374 4375 /* 4376 * Update LRU state before releasing the wiring reference. 4377 * Use a release store when updating the reference count to 4378 * synchronize with vm_page_free_prep(). 4379 */ 4380 old = atomic_load_int(&m->ref_count); 4381 do { 4382 u_int count; 4383 4384 KASSERT(VPRC_WIRE_COUNT(old) > 0, 4385 ("vm_page_unwire: wire count underflow for page %p", m)); 4386 4387 count = old & ~VPRC_BLOCKED; 4388 if (count > VPRC_OBJREF + 1) { 4389 /* 4390 * The page has at least one other wiring reference. An 4391 * earlier iteration of this loop may have called 4392 * vm_page_release_toq() and cleared PGA_DEQUEUE, so 4393 * re-set it if necessary. 4394 */ 4395 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0) 4396 vm_page_aflag_set(m, PGA_DEQUEUE); 4397 } else if (count == VPRC_OBJREF + 1) { 4398 /* 4399 * This is the last wiring. Clear PGA_DEQUEUE and 4400 * update the page's queue state to reflect the 4401 * reference. If the page does not belong to an object 4402 * (i.e., the VPRC_OBJREF bit is clear), we only need to 4403 * clear leftover queue state. 4404 */ 4405 vm_page_release_toq(m, nqueue, noreuse); 4406 } else if (count == 1) { 4407 vm_page_aflag_clear(m, PGA_DEQUEUE); 4408 } 4409 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1)); 4410 4411 if (VPRC_WIRE_COUNT(old) == 1) { 4412 vm_wire_sub(1); 4413 if (old == 1) 4414 vm_page_free(m); 4415 } 4416 } 4417 4418 /* 4419 * Release one wiring of the specified page, potentially allowing it to be 4420 * paged out. 4421 * 4422 * Only managed pages belonging to an object can be paged out. If the number 4423 * of wirings transitions to zero and the page is eligible for page out, then 4424 * the page is added to the specified paging queue. If the released wiring 4425 * represented the last reference to the page, the page is freed. 4426 */ 4427 void 4428 vm_page_unwire(vm_page_t m, uint8_t nqueue) 4429 { 4430 4431 KASSERT(nqueue < PQ_COUNT, 4432 ("vm_page_unwire: invalid queue %u request for page %p", 4433 nqueue, m)); 4434 4435 if ((m->oflags & VPO_UNMANAGED) != 0) { 4436 if (vm_page_unwire_noq(m) && m->ref_count == 0) 4437 vm_page_free(m); 4438 return; 4439 } 4440 vm_page_unwire_managed(m, nqueue, false); 4441 } 4442 4443 /* 4444 * Unwire a page without (re-)inserting it into a page queue. It is up 4445 * to the caller to enqueue, requeue, or free the page as appropriate. 4446 * In most cases involving managed pages, vm_page_unwire() should be used 4447 * instead. 4448 */ 4449 bool 4450 vm_page_unwire_noq(vm_page_t m) 4451 { 4452 u_int old; 4453 4454 old = vm_page_drop(m, 1); 4455 KASSERT(VPRC_WIRE_COUNT(old) != 0, 4456 ("%s: counter underflow for page %p", __func__, m)); 4457 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1, 4458 ("%s: missing ref on fictitious page %p", __func__, m)); 4459 4460 if (VPRC_WIRE_COUNT(old) > 1) 4461 return (false); 4462 if ((m->oflags & VPO_UNMANAGED) == 0) 4463 vm_page_aflag_clear(m, PGA_DEQUEUE); 4464 vm_wire_sub(1); 4465 return (true); 4466 } 4467 4468 /* 4469 * Ensure that the page ends up in the specified page queue. If the page is 4470 * active or being moved to the active queue, ensure that its act_count is 4471 * at least ACT_INIT but do not otherwise mess with it. 4472 */ 4473 static __always_inline void 4474 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag) 4475 { 4476 vm_page_astate_t old, new; 4477 4478 KASSERT(m->ref_count > 0, 4479 ("%s: page %p does not carry any references", __func__, m)); 4480 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD, 4481 ("%s: invalid flags %x", __func__, nflag)); 4482 4483 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m)) 4484 return; 4485 4486 old = vm_page_astate_load(m); 4487 do { 4488 if ((old.flags & PGA_DEQUEUE) != 0) 4489 break; 4490 new = old; 4491 new.flags &= ~PGA_QUEUE_OP_MASK; 4492 if (nqueue == PQ_ACTIVE) 4493 new.act_count = max(old.act_count, ACT_INIT); 4494 if (old.queue == nqueue) { 4495 /* 4496 * There is no need to requeue pages already in the 4497 * active queue. 4498 */ 4499 if (nqueue != PQ_ACTIVE || 4500 (old.flags & PGA_ENQUEUED) == 0) 4501 new.flags |= nflag; 4502 } else { 4503 new.flags |= nflag; 4504 new.queue = nqueue; 4505 } 4506 } while (!vm_page_pqstate_commit(m, &old, new)); 4507 } 4508 4509 /* 4510 * Put the specified page on the active list (if appropriate). 4511 */ 4512 void 4513 vm_page_activate(vm_page_t m) 4514 { 4515 4516 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE); 4517 } 4518 4519 /* 4520 * Move the specified page to the tail of the inactive queue, or requeue 4521 * the page if it is already in the inactive queue. 4522 */ 4523 void 4524 vm_page_deactivate(vm_page_t m) 4525 { 4526 4527 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE); 4528 } 4529 4530 void 4531 vm_page_deactivate_noreuse(vm_page_t m) 4532 { 4533 4534 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD); 4535 } 4536 4537 /* 4538 * Put a page in the laundry, or requeue it if it is already there. 4539 */ 4540 void 4541 vm_page_launder(vm_page_t m) 4542 { 4543 4544 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE); 4545 } 4546 4547 /* 4548 * Put a page in the PQ_UNSWAPPABLE holding queue. 4549 */ 4550 void 4551 vm_page_unswappable(vm_page_t m) 4552 { 4553 4554 VM_OBJECT_ASSERT_LOCKED(m->object); 4555 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4556 ("page %p already unswappable", m)); 4557 4558 vm_page_dequeue(m); 4559 vm_page_enqueue(m, PQ_UNSWAPPABLE); 4560 } 4561 4562 /* 4563 * Release a page back to the page queues in preparation for unwiring. 4564 */ 4565 static void 4566 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse) 4567 { 4568 vm_page_astate_t old, new; 4569 uint16_t nflag; 4570 4571 /* 4572 * Use a check of the valid bits to determine whether we should 4573 * accelerate reclamation of the page. The object lock might not be 4574 * held here, in which case the check is racy. At worst we will either 4575 * accelerate reclamation of a valid page and violate LRU, or 4576 * unnecessarily defer reclamation of an invalid page. 4577 * 4578 * If we were asked to not cache the page, place it near the head of the 4579 * inactive queue so that is reclaimed sooner. 4580 */ 4581 if (noreuse || vm_page_none_valid(m)) { 4582 nqueue = PQ_INACTIVE; 4583 nflag = PGA_REQUEUE_HEAD; 4584 } else { 4585 nflag = PGA_REQUEUE; 4586 } 4587 4588 old = vm_page_astate_load(m); 4589 do { 4590 new = old; 4591 4592 /* 4593 * If the page is already in the active queue and we are not 4594 * trying to accelerate reclamation, simply mark it as 4595 * referenced and avoid any queue operations. 4596 */ 4597 new.flags &= ~PGA_QUEUE_OP_MASK; 4598 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE && 4599 (old.flags & PGA_ENQUEUED) != 0) 4600 new.flags |= PGA_REFERENCED; 4601 else { 4602 new.flags |= nflag; 4603 new.queue = nqueue; 4604 } 4605 } while (!vm_page_pqstate_commit(m, &old, new)); 4606 } 4607 4608 /* 4609 * Unwire a page and either attempt to free it or re-add it to the page queues. 4610 */ 4611 void 4612 vm_page_release(vm_page_t m, int flags) 4613 { 4614 vm_object_t object; 4615 4616 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4617 ("vm_page_release: page %p is unmanaged", m)); 4618 4619 if ((flags & VPR_TRYFREE) != 0) { 4620 for (;;) { 4621 object = atomic_load_ptr(&m->object); 4622 if (object == NULL) 4623 break; 4624 /* Depends on type-stability. */ 4625 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) 4626 break; 4627 if (object == m->object) { 4628 vm_page_release_locked(m, flags); 4629 VM_OBJECT_WUNLOCK(object); 4630 return; 4631 } 4632 VM_OBJECT_WUNLOCK(object); 4633 } 4634 } 4635 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0); 4636 } 4637 4638 /* See vm_page_release(). */ 4639 void 4640 vm_page_release_locked(vm_page_t m, int flags) 4641 { 4642 4643 VM_OBJECT_ASSERT_WLOCKED(m->object); 4644 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4645 ("vm_page_release_locked: page %p is unmanaged", m)); 4646 4647 if (vm_page_unwire_noq(m)) { 4648 if ((flags & VPR_TRYFREE) != 0 && 4649 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) && 4650 m->dirty == 0 && vm_page_tryxbusy(m)) { 4651 /* 4652 * An unlocked lookup may have wired the page before the 4653 * busy lock was acquired, in which case the page must 4654 * not be freed. 4655 */ 4656 if (__predict_true(!vm_page_wired(m))) { 4657 vm_page_free(m); 4658 return; 4659 } 4660 vm_page_xunbusy(m); 4661 } else { 4662 vm_page_release_toq(m, PQ_INACTIVE, flags != 0); 4663 } 4664 } 4665 } 4666 4667 static bool 4668 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t)) 4669 { 4670 u_int old; 4671 4672 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0, 4673 ("vm_page_try_blocked_op: page %p has no object", m)); 4674 KASSERT(vm_page_busied(m), 4675 ("vm_page_try_blocked_op: page %p is not busy", m)); 4676 VM_OBJECT_ASSERT_LOCKED(m->object); 4677 4678 old = atomic_load_int(&m->ref_count); 4679 do { 4680 KASSERT(old != 0, 4681 ("vm_page_try_blocked_op: page %p has no references", m)); 4682 KASSERT((old & VPRC_BLOCKED) == 0, 4683 ("vm_page_try_blocked_op: page %p blocks wirings", m)); 4684 if (VPRC_WIRE_COUNT(old) != 0) 4685 return (false); 4686 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED)); 4687 4688 (op)(m); 4689 4690 /* 4691 * If the object is read-locked, new wirings may be created via an 4692 * object lookup. 4693 */ 4694 old = vm_page_drop(m, VPRC_BLOCKED); 4695 KASSERT(!VM_OBJECT_WOWNED(m->object) || 4696 old == (VPRC_BLOCKED | VPRC_OBJREF), 4697 ("vm_page_try_blocked_op: unexpected refcount value %u for %p", 4698 old, m)); 4699 return (true); 4700 } 4701 4702 /* 4703 * Atomically check for wirings and remove all mappings of the page. 4704 */ 4705 bool 4706 vm_page_try_remove_all(vm_page_t m) 4707 { 4708 4709 return (vm_page_try_blocked_op(m, pmap_remove_all)); 4710 } 4711 4712 /* 4713 * Atomically check for wirings and remove all writeable mappings of the page. 4714 */ 4715 bool 4716 vm_page_try_remove_write(vm_page_t m) 4717 { 4718 4719 return (vm_page_try_blocked_op(m, pmap_remove_write)); 4720 } 4721 4722 /* 4723 * vm_page_advise 4724 * 4725 * Apply the specified advice to the given page. 4726 */ 4727 void 4728 vm_page_advise(vm_page_t m, int advice) 4729 { 4730 4731 VM_OBJECT_ASSERT_WLOCKED(m->object); 4732 vm_page_assert_xbusied(m); 4733 4734 if (advice == MADV_FREE) 4735 /* 4736 * Mark the page clean. This will allow the page to be freed 4737 * without first paging it out. MADV_FREE pages are often 4738 * quickly reused by malloc(3), so we do not do anything that 4739 * would result in a page fault on a later access. 4740 */ 4741 vm_page_undirty(m); 4742 else if (advice != MADV_DONTNEED) { 4743 if (advice == MADV_WILLNEED) 4744 vm_page_activate(m); 4745 return; 4746 } 4747 4748 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 4749 vm_page_dirty(m); 4750 4751 /* 4752 * Clear any references to the page. Otherwise, the page daemon will 4753 * immediately reactivate the page. 4754 */ 4755 vm_page_aflag_clear(m, PGA_REFERENCED); 4756 4757 /* 4758 * Place clean pages near the head of the inactive queue rather than 4759 * the tail, thus defeating the queue's LRU operation and ensuring that 4760 * the page will be reused quickly. Dirty pages not already in the 4761 * laundry are moved there. 4762 */ 4763 if (m->dirty == 0) 4764 vm_page_deactivate_noreuse(m); 4765 else if (!vm_page_in_laundry(m)) 4766 vm_page_launder(m); 4767 } 4768 4769 /* 4770 * vm_page_grab_release 4771 * 4772 * Helper routine for grab functions to release busy on return. 4773 */ 4774 static inline void 4775 vm_page_grab_release(vm_page_t m, int allocflags) 4776 { 4777 4778 if ((allocflags & VM_ALLOC_NOBUSY) != 0) { 4779 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4780 vm_page_sunbusy(m); 4781 else 4782 vm_page_xunbusy(m); 4783 } 4784 } 4785 4786 /* 4787 * vm_page_grab_sleep 4788 * 4789 * Sleep for busy according to VM_ALLOC_ parameters. Returns true 4790 * if the caller should retry and false otherwise. 4791 * 4792 * If the object is locked on entry the object will be unlocked with 4793 * false returns and still locked but possibly having been dropped 4794 * with true returns. 4795 */ 4796 static bool 4797 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex, 4798 const char *wmesg, int allocflags, bool locked) 4799 { 4800 4801 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 4802 return (false); 4803 4804 /* 4805 * Reference the page before unlocking and sleeping so that 4806 * the page daemon is less likely to reclaim it. 4807 */ 4808 if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0) 4809 vm_page_reference(m); 4810 4811 if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) && 4812 locked) 4813 VM_OBJECT_WLOCK(object); 4814 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 4815 return (false); 4816 4817 return (true); 4818 } 4819 4820 /* 4821 * Assert that the grab flags are valid. 4822 */ 4823 static inline void 4824 vm_page_grab_check(int allocflags) 4825 { 4826 4827 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 || 4828 (allocflags & VM_ALLOC_WIRED) != 0, 4829 ("vm_page_grab*: the pages must be busied or wired")); 4830 4831 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4832 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4833 ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 4834 } 4835 4836 /* 4837 * Calculate the page allocation flags for grab. 4838 */ 4839 static inline int 4840 vm_page_grab_pflags(int allocflags) 4841 { 4842 int pflags; 4843 4844 pflags = allocflags & 4845 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL | 4846 VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY); 4847 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 4848 pflags |= VM_ALLOC_WAITFAIL; 4849 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4850 pflags |= VM_ALLOC_SBUSY; 4851 4852 return (pflags); 4853 } 4854 4855 /* 4856 * Grab a page, waiting until we are waken up due to the page 4857 * changing state. We keep on waiting, if the page continues 4858 * to be in the object. If the page doesn't exist, first allocate it 4859 * and then conditionally zero it. 4860 * 4861 * This routine may sleep. 4862 * 4863 * The object must be locked on entry. The lock will, however, be released 4864 * and reacquired if the routine sleeps. 4865 */ 4866 vm_page_t 4867 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 4868 { 4869 vm_page_t m; 4870 4871 VM_OBJECT_ASSERT_WLOCKED(object); 4872 vm_page_grab_check(allocflags); 4873 4874 retrylookup: 4875 if ((m = vm_page_lookup(object, pindex)) != NULL) { 4876 if (!vm_page_tryacquire(m, allocflags)) { 4877 if (vm_page_grab_sleep(object, m, pindex, "pgrbwt", 4878 allocflags, true)) 4879 goto retrylookup; 4880 return (NULL); 4881 } 4882 goto out; 4883 } 4884 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4885 return (NULL); 4886 m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags)); 4887 if (m == NULL) { 4888 if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0) 4889 return (NULL); 4890 goto retrylookup; 4891 } 4892 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 4893 pmap_zero_page(m); 4894 4895 out: 4896 vm_page_grab_release(m, allocflags); 4897 4898 return (m); 4899 } 4900 4901 /* 4902 * Attempt to validate a page, locklessly acquiring it if necessary, given a 4903 * (object, pindex) tuple and either an invalided page or NULL. The resulting 4904 * page will be validated against the identity tuple, and busied or wired as 4905 * requested. A NULL page returned guarantees that the page was not in radix at 4906 * the time of the call but callers must perform higher level synchronization or 4907 * retry the operation under a lock if they require an atomic answer. This is 4908 * the only lock free validation routine, other routines can depend on the 4909 * resulting page state. 4910 * 4911 * The return value PAGE_NOT_ACQUIRED indicates that the operation failed due to 4912 * caller flags. 4913 */ 4914 #define PAGE_NOT_ACQUIRED ((vm_page_t)1) 4915 static vm_page_t 4916 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, vm_page_t m, 4917 int allocflags) 4918 { 4919 if (m == NULL) 4920 m = vm_page_lookup_unlocked(object, pindex); 4921 for (; m != NULL; m = vm_page_lookup_unlocked(object, pindex)) { 4922 if (vm_page_trybusy(m, allocflags)) { 4923 if (m->object == object && m->pindex == pindex) { 4924 if ((allocflags & VM_ALLOC_WIRED) != 0) 4925 vm_page_wire(m); 4926 vm_page_grab_release(m, allocflags); 4927 break; 4928 } 4929 /* relookup. */ 4930 vm_page_busy_release(m); 4931 cpu_spinwait(); 4932 continue; 4933 } 4934 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp", 4935 allocflags, false)) 4936 return (PAGE_NOT_ACQUIRED); 4937 } 4938 return (m); 4939 } 4940 4941 /* 4942 * Try to locklessly grab a page and fall back to the object lock if NOCREAT 4943 * is not set. 4944 */ 4945 vm_page_t 4946 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags) 4947 { 4948 vm_page_t m; 4949 4950 vm_page_grab_check(allocflags); 4951 m = vm_page_acquire_unlocked(object, pindex, NULL, allocflags); 4952 if (m == PAGE_NOT_ACQUIRED) 4953 return (NULL); 4954 if (m != NULL) 4955 return (m); 4956 4957 /* 4958 * The radix lockless lookup should never return a false negative 4959 * errors. If the user specifies NOCREAT they are guaranteed there 4960 * was no page present at the instant of the call. A NOCREAT caller 4961 * must handle create races gracefully. 4962 */ 4963 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4964 return (NULL); 4965 4966 VM_OBJECT_WLOCK(object); 4967 m = vm_page_grab(object, pindex, allocflags); 4968 VM_OBJECT_WUNLOCK(object); 4969 4970 return (m); 4971 } 4972 4973 /* 4974 * Grab a page and make it valid, paging in if necessary. Pages missing from 4975 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied 4976 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought 4977 * in simultaneously. Additional pages will be left on a paging queue but 4978 * will neither be wired nor busy regardless of allocflags. 4979 */ 4980 int 4981 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags) 4982 { 4983 vm_page_t m; 4984 vm_page_t ma[VM_INITIAL_PAGEIN]; 4985 int after, i, pflags, rv; 4986 4987 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4988 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4989 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 4990 KASSERT((allocflags & 4991 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0, 4992 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags)); 4993 VM_OBJECT_ASSERT_WLOCKED(object); 4994 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY | 4995 VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY); 4996 pflags |= VM_ALLOC_WAITFAIL; 4997 4998 retrylookup: 4999 if ((m = vm_page_lookup(object, pindex)) != NULL) { 5000 /* 5001 * If the page is fully valid it can only become invalid 5002 * with the object lock held. If it is not valid it can 5003 * become valid with the busy lock held. Therefore, we 5004 * may unnecessarily lock the exclusive busy here if we 5005 * race with I/O completion not using the object lock. 5006 * However, we will not end up with an invalid page and a 5007 * shared lock. 5008 */ 5009 if (!vm_page_trybusy(m, 5010 vm_page_all_valid(m) ? allocflags : 0)) { 5011 (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt", 5012 allocflags, true); 5013 goto retrylookup; 5014 } 5015 if (vm_page_all_valid(m)) 5016 goto out; 5017 if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 5018 vm_page_busy_release(m); 5019 *mp = NULL; 5020 return (VM_PAGER_FAIL); 5021 } 5022 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 5023 *mp = NULL; 5024 return (VM_PAGER_FAIL); 5025 } else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) { 5026 if (!vm_pager_can_alloc_page(object, pindex)) { 5027 *mp = NULL; 5028 return (VM_PAGER_AGAIN); 5029 } 5030 goto retrylookup; 5031 } 5032 5033 vm_page_assert_xbusied(m); 5034 if (vm_pager_has_page(object, pindex, NULL, &after)) { 5035 after = MIN(after, VM_INITIAL_PAGEIN); 5036 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT); 5037 after = MAX(after, 1); 5038 ma[0] = m; 5039 for (i = 1; i < after; i++) { 5040 if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) { 5041 if (vm_page_any_valid(ma[i]) || 5042 !vm_page_tryxbusy(ma[i])) 5043 break; 5044 } else { 5045 ma[i] = vm_page_alloc(object, m->pindex + i, 5046 VM_ALLOC_NORMAL); 5047 if (ma[i] == NULL) 5048 break; 5049 } 5050 } 5051 after = i; 5052 vm_object_pip_add(object, after); 5053 VM_OBJECT_WUNLOCK(object); 5054 rv = vm_pager_get_pages(object, ma, after, NULL, NULL); 5055 VM_OBJECT_WLOCK(object); 5056 vm_object_pip_wakeupn(object, after); 5057 /* Pager may have replaced a page. */ 5058 m = ma[0]; 5059 if (rv != VM_PAGER_OK) { 5060 for (i = 0; i < after; i++) { 5061 if (!vm_page_wired(ma[i])) 5062 vm_page_free(ma[i]); 5063 else 5064 vm_page_xunbusy(ma[i]); 5065 } 5066 *mp = NULL; 5067 return (rv); 5068 } 5069 for (i = 1; i < after; i++) 5070 vm_page_readahead_finish(ma[i]); 5071 MPASS(vm_page_all_valid(m)); 5072 } else { 5073 vm_page_zero_invalid(m, TRUE); 5074 } 5075 out: 5076 if ((allocflags & VM_ALLOC_WIRED) != 0) 5077 vm_page_wire(m); 5078 if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m)) 5079 vm_page_busy_downgrade(m); 5080 else if ((allocflags & VM_ALLOC_NOBUSY) != 0) 5081 vm_page_busy_release(m); 5082 *mp = m; 5083 return (VM_PAGER_OK); 5084 } 5085 5086 /* 5087 * Locklessly grab a valid page. If the page is not valid or not yet 5088 * allocated this will fall back to the object lock method. 5089 */ 5090 int 5091 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object, 5092 vm_pindex_t pindex, int allocflags) 5093 { 5094 vm_page_t m; 5095 int flags; 5096 int error; 5097 5098 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 5099 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 5100 ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY " 5101 "mismatch")); 5102 KASSERT((allocflags & 5103 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0, 5104 ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags)); 5105 5106 /* 5107 * Attempt a lockless lookup and busy. We need at least an sbusy 5108 * before we can inspect the valid field and return a wired page. 5109 */ 5110 flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED); 5111 vm_page_grab_check(flags); 5112 m = vm_page_acquire_unlocked(object, pindex, NULL, flags); 5113 if (m == PAGE_NOT_ACQUIRED) 5114 return (VM_PAGER_FAIL); 5115 if (m != NULL) { 5116 if (vm_page_all_valid(m)) { 5117 if ((allocflags & VM_ALLOC_WIRED) != 0) 5118 vm_page_wire(m); 5119 vm_page_grab_release(m, allocflags); 5120 *mp = m; 5121 return (VM_PAGER_OK); 5122 } 5123 vm_page_busy_release(m); 5124 } 5125 if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 5126 *mp = NULL; 5127 return (VM_PAGER_FAIL); 5128 } 5129 VM_OBJECT_WLOCK(object); 5130 error = vm_page_grab_valid(mp, object, pindex, allocflags); 5131 VM_OBJECT_WUNLOCK(object); 5132 5133 return (error); 5134 } 5135 5136 /* 5137 * Return the specified range of pages from the given object. For each 5138 * page offset within the range, if a page already exists within the object 5139 * at that offset and it is busy, then wait for it to change state. If, 5140 * instead, the page doesn't exist, then allocate it. 5141 * 5142 * The caller must always specify an allocation class. 5143 * 5144 * allocation classes: 5145 * VM_ALLOC_NORMAL normal process request 5146 * VM_ALLOC_SYSTEM system *really* needs the pages 5147 * 5148 * The caller must always specify that the pages are to be busied and/or 5149 * wired. 5150 * 5151 * optional allocation flags: 5152 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages 5153 * VM_ALLOC_NOBUSY do not exclusive busy the page 5154 * VM_ALLOC_NOWAIT do not sleep 5155 * VM_ALLOC_SBUSY set page to sbusy state 5156 * VM_ALLOC_WIRED wire the pages 5157 * VM_ALLOC_ZERO zero and validate any invalid pages 5158 * 5159 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it 5160 * may return a partial prefix of the requested range. 5161 */ 5162 int 5163 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, 5164 vm_page_t *ma, int count) 5165 { 5166 vm_page_t m, mpred; 5167 int pflags; 5168 int i; 5169 5170 VM_OBJECT_ASSERT_WLOCKED(object); 5171 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0, 5172 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed")); 5173 KASSERT(count > 0, 5174 ("vm_page_grab_pages: invalid page count %d", count)); 5175 vm_page_grab_check(allocflags); 5176 5177 pflags = vm_page_grab_pflags(allocflags); 5178 i = 0; 5179 retrylookup: 5180 m = vm_page_mpred(object, pindex + i); 5181 if (m == NULL || m->pindex != pindex + i) { 5182 mpred = m; 5183 m = NULL; 5184 } else 5185 mpred = TAILQ_PREV(m, pglist, listq); 5186 for (; i < count; i++) { 5187 if (m != NULL) { 5188 if (!vm_page_tryacquire(m, allocflags)) { 5189 if (vm_page_grab_sleep(object, m, pindex + i, 5190 "grbmaw", allocflags, true)) 5191 goto retrylookup; 5192 break; 5193 } 5194 } else { 5195 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 5196 break; 5197 m = vm_page_alloc_after(object, pindex + i, 5198 pflags | VM_ALLOC_COUNT(count - i), mpred); 5199 if (m == NULL) { 5200 if ((allocflags & (VM_ALLOC_NOWAIT | 5201 VM_ALLOC_WAITFAIL)) != 0) 5202 break; 5203 goto retrylookup; 5204 } 5205 } 5206 if (vm_page_none_valid(m) && 5207 (allocflags & VM_ALLOC_ZERO) != 0) { 5208 if ((m->flags & PG_ZERO) == 0) 5209 pmap_zero_page(m); 5210 vm_page_valid(m); 5211 } 5212 vm_page_grab_release(m, allocflags); 5213 ma[i] = mpred = m; 5214 m = vm_page_next(m); 5215 } 5216 return (i); 5217 } 5218 5219 /* 5220 * Unlocked variant of vm_page_grab_pages(). This accepts the same flags 5221 * and will fall back to the locked variant to handle allocation. 5222 */ 5223 int 5224 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex, 5225 int allocflags, vm_page_t *ma, int count) 5226 { 5227 vm_page_t m; 5228 int flags; 5229 int i; 5230 5231 KASSERT(count > 0, 5232 ("vm_page_grab_pages_unlocked: invalid page count %d", count)); 5233 vm_page_grab_check(allocflags); 5234 5235 /* 5236 * Modify flags for lockless acquire to hold the page until we 5237 * set it valid if necessary. 5238 */ 5239 flags = allocflags & ~VM_ALLOC_NOBUSY; 5240 vm_page_grab_check(flags); 5241 m = NULL; 5242 for (i = 0; i < count; i++, pindex++) { 5243 /* 5244 * We may see a false NULL here because the previous page has 5245 * been removed or just inserted and the list is loaded without 5246 * barriers. Switch to radix to verify. 5247 */ 5248 if (m == NULL || QMD_IS_TRASHED(m) || m->pindex != pindex || 5249 atomic_load_ptr(&m->object) != object) { 5250 /* 5251 * This guarantees the result is instantaneously 5252 * correct. 5253 */ 5254 m = NULL; 5255 } 5256 m = vm_page_acquire_unlocked(object, pindex, m, flags); 5257 if (m == PAGE_NOT_ACQUIRED) 5258 return (i); 5259 if (m == NULL) 5260 break; 5261 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) { 5262 if ((m->flags & PG_ZERO) == 0) 5263 pmap_zero_page(m); 5264 vm_page_valid(m); 5265 } 5266 /* m will still be wired or busy according to flags. */ 5267 vm_page_grab_release(m, allocflags); 5268 ma[i] = m; 5269 m = TAILQ_NEXT(m, listq); 5270 } 5271 if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0) 5272 return (i); 5273 count -= i; 5274 VM_OBJECT_WLOCK(object); 5275 i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count); 5276 VM_OBJECT_WUNLOCK(object); 5277 5278 return (i); 5279 } 5280 5281 /* 5282 * Mapping function for valid or dirty bits in a page. 5283 * 5284 * Inputs are required to range within a page. 5285 */ 5286 vm_page_bits_t 5287 vm_page_bits(int base, int size) 5288 { 5289 int first_bit; 5290 int last_bit; 5291 5292 KASSERT( 5293 base + size <= PAGE_SIZE, 5294 ("vm_page_bits: illegal base/size %d/%d", base, size) 5295 ); 5296 5297 if (size == 0) /* handle degenerate case */ 5298 return (0); 5299 5300 first_bit = base >> DEV_BSHIFT; 5301 last_bit = (base + size - 1) >> DEV_BSHIFT; 5302 5303 return (((vm_page_bits_t)2 << last_bit) - 5304 ((vm_page_bits_t)1 << first_bit)); 5305 } 5306 5307 void 5308 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set) 5309 { 5310 5311 #if PAGE_SIZE == 32768 5312 atomic_set_64((uint64_t *)bits, set); 5313 #elif PAGE_SIZE == 16384 5314 atomic_set_32((uint32_t *)bits, set); 5315 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16) 5316 atomic_set_16((uint16_t *)bits, set); 5317 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8) 5318 atomic_set_8((uint8_t *)bits, set); 5319 #else /* PAGE_SIZE <= 8192 */ 5320 uintptr_t addr; 5321 int shift; 5322 5323 addr = (uintptr_t)bits; 5324 /* 5325 * Use a trick to perform a 32-bit atomic on the 5326 * containing aligned word, to not depend on the existence 5327 * of atomic_{set, clear}_{8, 16}. 5328 */ 5329 shift = addr & (sizeof(uint32_t) - 1); 5330 #if BYTE_ORDER == BIG_ENDIAN 5331 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5332 #else 5333 shift *= NBBY; 5334 #endif 5335 addr &= ~(sizeof(uint32_t) - 1); 5336 atomic_set_32((uint32_t *)addr, set << shift); 5337 #endif /* PAGE_SIZE */ 5338 } 5339 5340 static inline void 5341 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear) 5342 { 5343 5344 #if PAGE_SIZE == 32768 5345 atomic_clear_64((uint64_t *)bits, clear); 5346 #elif PAGE_SIZE == 16384 5347 atomic_clear_32((uint32_t *)bits, clear); 5348 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16) 5349 atomic_clear_16((uint16_t *)bits, clear); 5350 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8) 5351 atomic_clear_8((uint8_t *)bits, clear); 5352 #else /* PAGE_SIZE <= 8192 */ 5353 uintptr_t addr; 5354 int shift; 5355 5356 addr = (uintptr_t)bits; 5357 /* 5358 * Use a trick to perform a 32-bit atomic on the 5359 * containing aligned word, to not depend on the existence 5360 * of atomic_{set, clear}_{8, 16}. 5361 */ 5362 shift = addr & (sizeof(uint32_t) - 1); 5363 #if BYTE_ORDER == BIG_ENDIAN 5364 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5365 #else 5366 shift *= NBBY; 5367 #endif 5368 addr &= ~(sizeof(uint32_t) - 1); 5369 atomic_clear_32((uint32_t *)addr, clear << shift); 5370 #endif /* PAGE_SIZE */ 5371 } 5372 5373 static inline vm_page_bits_t 5374 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits) 5375 { 5376 #if PAGE_SIZE == 32768 5377 uint64_t old; 5378 5379 old = *bits; 5380 while (atomic_fcmpset_64(bits, &old, newbits) == 0); 5381 return (old); 5382 #elif PAGE_SIZE == 16384 5383 uint32_t old; 5384 5385 old = *bits; 5386 while (atomic_fcmpset_32(bits, &old, newbits) == 0); 5387 return (old); 5388 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16) 5389 uint16_t old; 5390 5391 old = *bits; 5392 while (atomic_fcmpset_16(bits, &old, newbits) == 0); 5393 return (old); 5394 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8) 5395 uint8_t old; 5396 5397 old = *bits; 5398 while (atomic_fcmpset_8(bits, &old, newbits) == 0); 5399 return (old); 5400 #else /* PAGE_SIZE <= 4096*/ 5401 uintptr_t addr; 5402 uint32_t old, new, mask; 5403 int shift; 5404 5405 addr = (uintptr_t)bits; 5406 /* 5407 * Use a trick to perform a 32-bit atomic on the 5408 * containing aligned word, to not depend on the existence 5409 * of atomic_{set, swap, clear}_{8, 16}. 5410 */ 5411 shift = addr & (sizeof(uint32_t) - 1); 5412 #if BYTE_ORDER == BIG_ENDIAN 5413 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5414 #else 5415 shift *= NBBY; 5416 #endif 5417 addr &= ~(sizeof(uint32_t) - 1); 5418 mask = VM_PAGE_BITS_ALL << shift; 5419 5420 old = *bits; 5421 do { 5422 new = old & ~mask; 5423 new |= newbits << shift; 5424 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0); 5425 return (old >> shift); 5426 #endif /* PAGE_SIZE */ 5427 } 5428 5429 /* 5430 * vm_page_set_valid_range: 5431 * 5432 * Sets portions of a page valid. The arguments are expected 5433 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 5434 * of any partial chunks touched by the range. The invalid portion of 5435 * such chunks will be zeroed. 5436 * 5437 * (base + size) must be less then or equal to PAGE_SIZE. 5438 */ 5439 void 5440 vm_page_set_valid_range(vm_page_t m, int base, int size) 5441 { 5442 int endoff, frag; 5443 vm_page_bits_t pagebits; 5444 5445 vm_page_assert_busied(m); 5446 if (size == 0) /* handle degenerate case */ 5447 return; 5448 5449 /* 5450 * If the base is not DEV_BSIZE aligned and the valid 5451 * bit is clear, we have to zero out a portion of the 5452 * first block. 5453 */ 5454 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 5455 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 5456 pmap_zero_page_area(m, frag, base - frag); 5457 5458 /* 5459 * If the ending offset is not DEV_BSIZE aligned and the 5460 * valid bit is clear, we have to zero out a portion of 5461 * the last block. 5462 */ 5463 endoff = base + size; 5464 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 5465 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 5466 pmap_zero_page_area(m, endoff, 5467 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 5468 5469 /* 5470 * Assert that no previously invalid block that is now being validated 5471 * is already dirty. 5472 */ 5473 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 5474 ("vm_page_set_valid_range: page %p is dirty", m)); 5475 5476 /* 5477 * Set valid bits inclusive of any overlap. 5478 */ 5479 pagebits = vm_page_bits(base, size); 5480 if (vm_page_xbusied(m)) 5481 m->valid |= pagebits; 5482 else 5483 vm_page_bits_set(m, &m->valid, pagebits); 5484 } 5485 5486 /* 5487 * Set the page dirty bits and free the invalid swap space if 5488 * present. Returns the previous dirty bits. 5489 */ 5490 vm_page_bits_t 5491 vm_page_set_dirty(vm_page_t m) 5492 { 5493 vm_page_bits_t old; 5494 5495 VM_PAGE_OBJECT_BUSY_ASSERT(m); 5496 5497 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) { 5498 old = m->dirty; 5499 m->dirty = VM_PAGE_BITS_ALL; 5500 } else 5501 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL); 5502 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0) 5503 vm_pager_page_unswapped(m); 5504 5505 return (old); 5506 } 5507 5508 /* 5509 * Clear the given bits from the specified page's dirty field. 5510 */ 5511 static __inline void 5512 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 5513 { 5514 5515 vm_page_assert_busied(m); 5516 5517 /* 5518 * If the page is xbusied and not write mapped we are the 5519 * only thread that can modify dirty bits. Otherwise, The pmap 5520 * layer can call vm_page_dirty() without holding a distinguished 5521 * lock. The combination of page busy and atomic operations 5522 * suffice to guarantee consistency of the page dirty field. 5523 */ 5524 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 5525 m->dirty &= ~pagebits; 5526 else 5527 vm_page_bits_clear(m, &m->dirty, pagebits); 5528 } 5529 5530 /* 5531 * vm_page_set_validclean: 5532 * 5533 * Sets portions of a page valid and clean. The arguments are expected 5534 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 5535 * of any partial chunks touched by the range. The invalid portion of 5536 * such chunks will be zero'd. 5537 * 5538 * (base + size) must be less then or equal to PAGE_SIZE. 5539 */ 5540 void 5541 vm_page_set_validclean(vm_page_t m, int base, int size) 5542 { 5543 vm_page_bits_t oldvalid, pagebits; 5544 int endoff, frag; 5545 5546 vm_page_assert_busied(m); 5547 if (size == 0) /* handle degenerate case */ 5548 return; 5549 5550 /* 5551 * If the base is not DEV_BSIZE aligned and the valid 5552 * bit is clear, we have to zero out a portion of the 5553 * first block. 5554 */ 5555 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 5556 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 5557 pmap_zero_page_area(m, frag, base - frag); 5558 5559 /* 5560 * If the ending offset is not DEV_BSIZE aligned and the 5561 * valid bit is clear, we have to zero out a portion of 5562 * the last block. 5563 */ 5564 endoff = base + size; 5565 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 5566 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 5567 pmap_zero_page_area(m, endoff, 5568 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 5569 5570 /* 5571 * Set valid, clear dirty bits. If validating the entire 5572 * page we can safely clear the pmap modify bit. We also 5573 * use this opportunity to clear the PGA_NOSYNC flag. If a process 5574 * takes a write fault on a MAP_NOSYNC memory area the flag will 5575 * be set again. 5576 * 5577 * We set valid bits inclusive of any overlap, but we can only 5578 * clear dirty bits for DEV_BSIZE chunks that are fully within 5579 * the range. 5580 */ 5581 oldvalid = m->valid; 5582 pagebits = vm_page_bits(base, size); 5583 if (vm_page_xbusied(m)) 5584 m->valid |= pagebits; 5585 else 5586 vm_page_bits_set(m, &m->valid, pagebits); 5587 #if 0 /* NOT YET */ 5588 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 5589 frag = DEV_BSIZE - frag; 5590 base += frag; 5591 size -= frag; 5592 if (size < 0) 5593 size = 0; 5594 } 5595 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 5596 #endif 5597 if (base == 0 && size == PAGE_SIZE) { 5598 /* 5599 * The page can only be modified within the pmap if it is 5600 * mapped, and it can only be mapped if it was previously 5601 * fully valid. 5602 */ 5603 if (oldvalid == VM_PAGE_BITS_ALL) 5604 /* 5605 * Perform the pmap_clear_modify() first. Otherwise, 5606 * a concurrent pmap operation, such as 5607 * pmap_protect(), could clear a modification in the 5608 * pmap and set the dirty field on the page before 5609 * pmap_clear_modify() had begun and after the dirty 5610 * field was cleared here. 5611 */ 5612 pmap_clear_modify(m); 5613 m->dirty = 0; 5614 vm_page_aflag_clear(m, PGA_NOSYNC); 5615 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m)) 5616 m->dirty &= ~pagebits; 5617 else 5618 vm_page_clear_dirty_mask(m, pagebits); 5619 } 5620 5621 void 5622 vm_page_clear_dirty(vm_page_t m, int base, int size) 5623 { 5624 5625 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 5626 } 5627 5628 /* 5629 * vm_page_set_invalid: 5630 * 5631 * Invalidates DEV_BSIZE'd chunks within a page. Both the 5632 * valid and dirty bits for the effected areas are cleared. 5633 */ 5634 void 5635 vm_page_set_invalid(vm_page_t m, int base, int size) 5636 { 5637 vm_page_bits_t bits; 5638 vm_object_t object; 5639 5640 /* 5641 * The object lock is required so that pages can't be mapped 5642 * read-only while we're in the process of invalidating them. 5643 */ 5644 object = m->object; 5645 VM_OBJECT_ASSERT_WLOCKED(object); 5646 vm_page_assert_busied(m); 5647 5648 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 5649 size >= object->un_pager.vnp.vnp_size) 5650 bits = VM_PAGE_BITS_ALL; 5651 else 5652 bits = vm_page_bits(base, size); 5653 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0) 5654 pmap_remove_all(m); 5655 KASSERT((bits == 0 && vm_page_all_valid(m)) || 5656 !pmap_page_is_mapped(m), 5657 ("vm_page_set_invalid: page %p is mapped", m)); 5658 if (vm_page_xbusied(m)) { 5659 m->valid &= ~bits; 5660 m->dirty &= ~bits; 5661 } else { 5662 vm_page_bits_clear(m, &m->valid, bits); 5663 vm_page_bits_clear(m, &m->dirty, bits); 5664 } 5665 } 5666 5667 /* 5668 * vm_page_invalid: 5669 * 5670 * Invalidates the entire page. The page must be busy, unmapped, and 5671 * the enclosing object must be locked. The object locks protects 5672 * against concurrent read-only pmap enter which is done without 5673 * busy. 5674 */ 5675 void 5676 vm_page_invalid(vm_page_t m) 5677 { 5678 5679 vm_page_assert_busied(m); 5680 VM_OBJECT_ASSERT_WLOCKED(m->object); 5681 MPASS(!pmap_page_is_mapped(m)); 5682 5683 if (vm_page_xbusied(m)) 5684 m->valid = 0; 5685 else 5686 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL); 5687 } 5688 5689 /* 5690 * vm_page_zero_invalid() 5691 * 5692 * The kernel assumes that the invalid portions of a page contain 5693 * garbage, but such pages can be mapped into memory by user code. 5694 * When this occurs, we must zero out the non-valid portions of the 5695 * page so user code sees what it expects. 5696 * 5697 * Pages are most often semi-valid when the end of a file is mapped 5698 * into memory and the file's size is not page aligned. 5699 */ 5700 void 5701 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 5702 { 5703 int b; 5704 int i; 5705 5706 /* 5707 * Scan the valid bits looking for invalid sections that 5708 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the 5709 * valid bit may be set ) have already been zeroed by 5710 * vm_page_set_validclean(). 5711 */ 5712 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 5713 if (i == (PAGE_SIZE / DEV_BSIZE) || 5714 (m->valid & ((vm_page_bits_t)1 << i))) { 5715 if (i > b) { 5716 pmap_zero_page_area(m, 5717 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 5718 } 5719 b = i + 1; 5720 } 5721 } 5722 5723 /* 5724 * setvalid is TRUE when we can safely set the zero'd areas 5725 * as being valid. We can do this if there are no cache consistency 5726 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 5727 */ 5728 if (setvalid) 5729 vm_page_valid(m); 5730 } 5731 5732 /* 5733 * vm_page_is_valid: 5734 * 5735 * Is (partial) page valid? Note that the case where size == 0 5736 * will return FALSE in the degenerate case where the page is 5737 * entirely invalid, and TRUE otherwise. 5738 * 5739 * Some callers envoke this routine without the busy lock held and 5740 * handle races via higher level locks. Typical callers should 5741 * hold a busy lock to prevent invalidation. 5742 */ 5743 int 5744 vm_page_is_valid(vm_page_t m, int base, int size) 5745 { 5746 vm_page_bits_t bits; 5747 5748 bits = vm_page_bits(base, size); 5749 return (vm_page_any_valid(m) && (m->valid & bits) == bits); 5750 } 5751 5752 /* 5753 * Returns true if all of the specified predicates are true for the entire 5754 * (super)page and false otherwise. 5755 */ 5756 bool 5757 vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m) 5758 { 5759 vm_object_t object; 5760 int i, npages; 5761 5762 object = m->object; 5763 if (skip_m != NULL && skip_m->object != object) 5764 return (false); 5765 VM_OBJECT_ASSERT_LOCKED(object); 5766 KASSERT(psind <= m->psind, 5767 ("psind %d > psind %d of m %p", psind, m->psind, m)); 5768 npages = atop(pagesizes[psind]); 5769 5770 /* 5771 * The physically contiguous pages that make up a superpage, i.e., a 5772 * page with a page size index ("psind") greater than zero, will 5773 * occupy adjacent entries in vm_page_array[]. 5774 */ 5775 for (i = 0; i < npages; i++) { 5776 /* Always test object consistency, including "skip_m". */ 5777 if (m[i].object != object) 5778 return (false); 5779 if (&m[i] == skip_m) 5780 continue; 5781 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i])) 5782 return (false); 5783 if ((flags & PS_ALL_DIRTY) != 0) { 5784 /* 5785 * Calling vm_page_test_dirty() or pmap_is_modified() 5786 * might stop this case from spuriously returning 5787 * "false". However, that would require a write lock 5788 * on the object containing "m[i]". 5789 */ 5790 if (m[i].dirty != VM_PAGE_BITS_ALL) 5791 return (false); 5792 } 5793 if ((flags & PS_ALL_VALID) != 0 && 5794 m[i].valid != VM_PAGE_BITS_ALL) 5795 return (false); 5796 } 5797 return (true); 5798 } 5799 5800 /* 5801 * Set the page's dirty bits if the page is modified. 5802 */ 5803 void 5804 vm_page_test_dirty(vm_page_t m) 5805 { 5806 5807 vm_page_assert_busied(m); 5808 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 5809 vm_page_dirty(m); 5810 } 5811 5812 void 5813 vm_page_valid(vm_page_t m) 5814 { 5815 5816 vm_page_assert_busied(m); 5817 if (vm_page_xbusied(m)) 5818 m->valid = VM_PAGE_BITS_ALL; 5819 else 5820 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL); 5821 } 5822 5823 void 5824 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 5825 { 5826 5827 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 5828 } 5829 5830 void 5831 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 5832 { 5833 5834 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 5835 } 5836 5837 int 5838 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 5839 { 5840 5841 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 5842 } 5843 5844 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 5845 void 5846 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 5847 { 5848 5849 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 5850 } 5851 5852 void 5853 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 5854 { 5855 5856 mtx_assert_(vm_page_lockptr(m), a, file, line); 5857 } 5858 #endif 5859 5860 #ifdef INVARIANTS 5861 void 5862 vm_page_object_busy_assert(vm_page_t m) 5863 { 5864 5865 /* 5866 * Certain of the page's fields may only be modified by the 5867 * holder of a page or object busy. 5868 */ 5869 if (m->object != NULL && !vm_page_busied(m)) 5870 VM_OBJECT_ASSERT_BUSY(m->object); 5871 } 5872 5873 void 5874 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits) 5875 { 5876 5877 if ((bits & PGA_WRITEABLE) == 0) 5878 return; 5879 5880 /* 5881 * The PGA_WRITEABLE flag can only be set if the page is 5882 * managed, is exclusively busied or the object is locked. 5883 * Currently, this flag is only set by pmap_enter(). 5884 */ 5885 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 5886 ("PGA_WRITEABLE on unmanaged page")); 5887 if (!vm_page_xbusied(m)) 5888 VM_OBJECT_ASSERT_BUSY(m->object); 5889 } 5890 #endif 5891 5892 #include "opt_ddb.h" 5893 #ifdef DDB 5894 #include <sys/kernel.h> 5895 5896 #include <ddb/ddb.h> 5897 5898 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE) 5899 { 5900 5901 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count()); 5902 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count()); 5903 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count()); 5904 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count()); 5905 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count()); 5906 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 5907 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 5908 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 5909 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 5910 } 5911 5912 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE) 5913 { 5914 int dom; 5915 5916 db_printf("pq_free %d\n", vm_free_count()); 5917 for (dom = 0; dom < vm_ndomains; dom++) { 5918 db_printf( 5919 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n", 5920 dom, 5921 vm_dom[dom].vmd_page_count, 5922 vm_dom[dom].vmd_free_count, 5923 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 5924 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 5925 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt, 5926 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt); 5927 } 5928 } 5929 5930 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 5931 { 5932 vm_page_t m; 5933 boolean_t phys, virt; 5934 5935 if (!have_addr) { 5936 db_printf("show pginfo addr\n"); 5937 return; 5938 } 5939 5940 phys = strchr(modif, 'p') != NULL; 5941 virt = strchr(modif, 'v') != NULL; 5942 if (virt) 5943 m = PHYS_TO_VM_PAGE(pmap_kextract(addr)); 5944 else if (phys) 5945 m = PHYS_TO_VM_PAGE(addr); 5946 else 5947 m = (vm_page_t)addr; 5948 db_printf( 5949 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n" 5950 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 5951 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 5952 m->a.queue, m->ref_count, m->a.flags, m->oflags, 5953 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty); 5954 } 5955 #endif /* DDB */ 5956