xref: /freebsd/sys/vm/vm_page.c (revision b601c69bdbe8755d26570261d7fd4c02ee4eff74)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD$
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 
67 /*
68  *	Resident memory management module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/vnode.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <sys/lock.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_pageout.h>
85 #include <vm/vm_pager.h>
86 #include <vm/vm_extern.h>
87 
88 static void	vm_page_queue_init __P((void));
89 static vm_page_t vm_page_select_cache __P((vm_object_t, vm_pindex_t));
90 
91 /*
92  *	Associated with page of user-allocatable memory is a
93  *	page structure.
94  */
95 
96 static struct vm_page **vm_page_buckets; /* Array of buckets */
97 static int vm_page_bucket_count;	/* How big is array? */
98 static int vm_page_hash_mask;		/* Mask for hash function */
99 static volatile int vm_page_bucket_generation;
100 
101 struct vpgqueues vm_page_queues[PQ_COUNT];
102 
103 static void
104 vm_page_queue_init(void) {
105 	int i;
106 
107 	for(i=0;i<PQ_L2_SIZE;i++) {
108 		vm_page_queues[PQ_FREE+i].cnt = &cnt.v_free_count;
109 	}
110 	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
111 
112 	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
113 	for(i=0;i<PQ_L2_SIZE;i++) {
114 		vm_page_queues[PQ_CACHE+i].cnt = &cnt.v_cache_count;
115 	}
116 	for(i=0;i<PQ_COUNT;i++) {
117 		TAILQ_INIT(&vm_page_queues[i].pl);
118 	}
119 }
120 
121 vm_page_t vm_page_array = 0;
122 int vm_page_array_size = 0;
123 long first_page = 0;
124 int vm_page_zero_count = 0;
125 
126 static __inline int vm_page_hash __P((vm_object_t object, vm_pindex_t pindex));
127 static void vm_page_free_wakeup __P((void));
128 
129 /*
130  *	vm_set_page_size:
131  *
132  *	Sets the page size, perhaps based upon the memory
133  *	size.  Must be called before any use of page-size
134  *	dependent functions.
135  */
136 void
137 vm_set_page_size()
138 {
139 	if (cnt.v_page_size == 0)
140 		cnt.v_page_size = PAGE_SIZE;
141 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
142 		panic("vm_set_page_size: page size not a power of two");
143 }
144 
145 /*
146  *	vm_add_new_page:
147  *
148  *	Add a new page to the freelist for use by the system.
149  *	Must be called at splhigh().
150  */
151 vm_page_t
152 vm_add_new_page(pa)
153 	vm_offset_t pa;
154 {
155 	vm_page_t m;
156 
157 	++cnt.v_page_count;
158 	++cnt.v_free_count;
159 	m = PHYS_TO_VM_PAGE(pa);
160 	m->phys_addr = pa;
161 	m->flags = 0;
162 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
163 	m->queue = m->pc + PQ_FREE;
164 	TAILQ_INSERT_HEAD(&vm_page_queues[m->queue].pl, m, pageq);
165 	vm_page_queues[m->queue].lcnt++;
166 	return (m);
167 }
168 
169 /*
170  *	vm_page_startup:
171  *
172  *	Initializes the resident memory module.
173  *
174  *	Allocates memory for the page cells, and
175  *	for the object/offset-to-page hash table headers.
176  *	Each page cell is initialized and placed on the free list.
177  */
178 
179 vm_offset_t
180 vm_page_startup(starta, enda, vaddr)
181 	register vm_offset_t starta;
182 	vm_offset_t enda;
183 	register vm_offset_t vaddr;
184 {
185 	register vm_offset_t mapped;
186 	register struct vm_page **bucket;
187 	vm_size_t npages, page_range;
188 	register vm_offset_t new_start;
189 	int i;
190 	vm_offset_t pa;
191 	int nblocks;
192 	vm_offset_t first_managed_page;
193 
194 	/* the biggest memory array is the second group of pages */
195 	vm_offset_t start;
196 	vm_offset_t biggestone, biggestsize;
197 
198 	vm_offset_t total;
199 
200 	total = 0;
201 	biggestsize = 0;
202 	biggestone = 0;
203 	nblocks = 0;
204 	vaddr = round_page(vaddr);
205 
206 	for (i = 0; phys_avail[i + 1]; i += 2) {
207 		phys_avail[i] = round_page(phys_avail[i]);
208 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
209 	}
210 
211 	for (i = 0; phys_avail[i + 1]; i += 2) {
212 		int size = phys_avail[i + 1] - phys_avail[i];
213 
214 		if (size > biggestsize) {
215 			biggestone = i;
216 			biggestsize = size;
217 		}
218 		++nblocks;
219 		total += size;
220 	}
221 
222 	start = phys_avail[biggestone];
223 
224 	/*
225 	 * Initialize the queue headers for the free queue, the active queue
226 	 * and the inactive queue.
227 	 */
228 
229 	vm_page_queue_init();
230 
231 	/*
232 	 * Allocate (and initialize) the hash table buckets.
233 	 *
234 	 * The number of buckets MUST BE a power of 2, and the actual value is
235 	 * the next power of 2 greater than the number of physical pages in
236 	 * the system.
237 	 *
238 	 * We make the hash table approximately 2x the number of pages to
239 	 * reduce the chain length.  This is about the same size using the
240 	 * singly-linked list as the 1x hash table we were using before
241 	 * using TAILQ but the chain length will be smaller.
242 	 *
243 	 * Note: This computation can be tweaked if desired.
244 	 */
245 	vm_page_buckets = (struct vm_page **)vaddr;
246 	bucket = vm_page_buckets;
247 	if (vm_page_bucket_count == 0) {
248 		vm_page_bucket_count = 1;
249 		while (vm_page_bucket_count < atop(total))
250 			vm_page_bucket_count <<= 1;
251 	}
252 	vm_page_bucket_count <<= 1;
253 	vm_page_hash_mask = vm_page_bucket_count - 1;
254 
255 	/*
256 	 * Validate these addresses.
257 	 */
258 
259 	new_start = start + vm_page_bucket_count * sizeof(struct vm_page *);
260 	new_start = round_page(new_start);
261 	mapped = round_page(vaddr);
262 	vaddr = pmap_map(mapped, start, new_start,
263 	    VM_PROT_READ | VM_PROT_WRITE);
264 	start = new_start;
265 	vaddr = round_page(vaddr);
266 	bzero((caddr_t) mapped, vaddr - mapped);
267 
268 	for (i = 0; i < vm_page_bucket_count; i++) {
269 		*bucket = NULL;
270 		bucket++;
271 	}
272 
273 	/*
274 	 * Compute the number of pages of memory that will be available for
275 	 * use (taking into account the overhead of a page structure per
276 	 * page).
277 	 */
278 
279 	first_page = phys_avail[0] / PAGE_SIZE;
280 
281 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
282 	npages = (total - (page_range * sizeof(struct vm_page)) -
283 	    (start - phys_avail[biggestone])) / PAGE_SIZE;
284 
285 	/*
286 	 * Initialize the mem entry structures now, and put them in the free
287 	 * queue.
288 	 */
289 	vm_page_array = (vm_page_t) vaddr;
290 	mapped = vaddr;
291 
292 	/*
293 	 * Validate these addresses.
294 	 */
295 	new_start = round_page(start + page_range * sizeof(struct vm_page));
296 	mapped = pmap_map(mapped, start, new_start,
297 	    VM_PROT_READ | VM_PROT_WRITE);
298 	start = new_start;
299 
300 	first_managed_page = start / PAGE_SIZE;
301 
302 	/*
303 	 * Clear all of the page structures
304 	 */
305 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
306 	vm_page_array_size = page_range;
307 
308 	/*
309 	 * Construct the free queue(s) in descending order (by physical
310 	 * address) so that the first 16MB of physical memory is allocated
311 	 * last rather than first.  On large-memory machines, this avoids
312 	 * the exhaustion of low physical memory before isa_dmainit has run.
313 	 */
314 	cnt.v_page_count = 0;
315 	cnt.v_free_count = 0;
316 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
317 		if (i == biggestone)
318 			pa = ptoa(first_managed_page);
319 		else
320 			pa = phys_avail[i];
321 		while (pa < phys_avail[i + 1] && npages-- > 0) {
322 			vm_add_new_page(pa);
323 			pa += PAGE_SIZE;
324 		}
325 	}
326 	return (mapped);
327 }
328 
329 /*
330  *	vm_page_hash:
331  *
332  *	Distributes the object/offset key pair among hash buckets.
333  *
334  *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
335  *	This routine may not block.
336  *
337  *	We try to randomize the hash based on the object to spread the pages
338  *	out in the hash table without it costing us too much.
339  */
340 static __inline int
341 vm_page_hash(object, pindex)
342 	vm_object_t object;
343 	vm_pindex_t pindex;
344 {
345 	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
346 
347 	return(i & vm_page_hash_mask);
348 }
349 
350 /*
351  *	vm_page_insert:		[ internal use only ]
352  *
353  *	Inserts the given mem entry into the object and object list.
354  *
355  *	The pagetables are not updated but will presumably fault the page
356  *	in if necessary, or if a kernel page the caller will at some point
357  *	enter the page into the kernel's pmap.  We are not allowed to block
358  *	here so we *can't* do this anyway.
359  *
360  *	The object and page must be locked, and must be splhigh.
361  *	This routine may not block.
362  */
363 
364 void
365 vm_page_insert(m, object, pindex)
366 	register vm_page_t m;
367 	register vm_object_t object;
368 	register vm_pindex_t pindex;
369 {
370 	register struct vm_page **bucket;
371 
372 	if (m->object != NULL)
373 		panic("vm_page_insert: already inserted");
374 
375 	/*
376 	 * Record the object/offset pair in this page
377 	 */
378 
379 	m->object = object;
380 	m->pindex = pindex;
381 
382 	/*
383 	 * Insert it into the object_object/offset hash table
384 	 */
385 
386 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
387 	m->hnext = *bucket;
388 	*bucket = m;
389 	vm_page_bucket_generation++;
390 
391 	/*
392 	 * Now link into the object's list of backed pages.
393 	 */
394 
395 	TAILQ_INSERT_TAIL(&object->memq, m, listq);
396 	object->generation++;
397 
398 	/*
399 	 * show that the object has one more resident page.
400 	 */
401 
402 	object->resident_page_count++;
403 
404 	/*
405 	 * Since we are inserting a new and possibly dirty page,
406 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
407 	 */
408 	if (m->flags & PG_WRITEABLE)
409 	    vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
410 }
411 
412 /*
413  *	vm_page_remove:
414  *				NOTE: used by device pager as well -wfj
415  *
416  *	Removes the given mem entry from the object/offset-page
417  *	table and the object page list, but do not invalidate/terminate
418  *	the backing store.
419  *
420  *	The object and page must be locked, and at splhigh.
421  *	The underlying pmap entry (if any) is NOT removed here.
422  *	This routine may not block.
423  */
424 
425 void
426 vm_page_remove(m)
427 	vm_page_t m;
428 {
429 	vm_object_t object;
430 
431 	if (m->object == NULL)
432 		return;
433 
434 	if ((m->flags & PG_BUSY) == 0) {
435 		panic("vm_page_remove: page not busy");
436 	}
437 
438 	/*
439 	 * Basically destroy the page.
440 	 */
441 
442 	vm_page_wakeup(m);
443 
444 	object = m->object;
445 
446 	/*
447 	 * Remove from the object_object/offset hash table.  The object
448 	 * must be on the hash queue, we will panic if it isn't
449 	 *
450 	 * Note: we must NULL-out m->hnext to prevent loops in detached
451 	 * buffers with vm_page_lookup().
452 	 */
453 
454 	{
455 		struct vm_page **bucket;
456 
457 		bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
458 		while (*bucket != m) {
459 			if (*bucket == NULL)
460 				panic("vm_page_remove(): page not found in hash");
461 			bucket = &(*bucket)->hnext;
462 		}
463 		*bucket = m->hnext;
464 		m->hnext = NULL;
465 		vm_page_bucket_generation++;
466 	}
467 
468 	/*
469 	 * Now remove from the object's list of backed pages.
470 	 */
471 
472 	TAILQ_REMOVE(&object->memq, m, listq);
473 
474 	/*
475 	 * And show that the object has one fewer resident page.
476 	 */
477 
478 	object->resident_page_count--;
479 	object->generation++;
480 
481 	m->object = NULL;
482 }
483 
484 /*
485  *	vm_page_lookup:
486  *
487  *	Returns the page associated with the object/offset
488  *	pair specified; if none is found, NULL is returned.
489  *
490  *	NOTE: the code below does not lock.  It will operate properly if
491  *	an interrupt makes a change, but the generation algorithm will not
492  *	operate properly in an SMP environment where both cpu's are able to run
493  *	kernel code simultaneously.
494  *
495  *	The object must be locked.  No side effects.
496  *	This routine may not block.
497  *	This is a critical path routine
498  */
499 
500 vm_page_t
501 vm_page_lookup(object, pindex)
502 	register vm_object_t object;
503 	register vm_pindex_t pindex;
504 {
505 	register vm_page_t m;
506 	register struct vm_page **bucket;
507 	int generation;
508 
509 	/*
510 	 * Search the hash table for this object/offset pair
511 	 */
512 
513 retry:
514 	generation = vm_page_bucket_generation;
515 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
516 	for (m = *bucket; m != NULL; m = m->hnext) {
517 		if ((m->object == object) && (m->pindex == pindex)) {
518 			if (vm_page_bucket_generation != generation)
519 				goto retry;
520 			return (m);
521 		}
522 	}
523 	if (vm_page_bucket_generation != generation)
524 		goto retry;
525 	return (NULL);
526 }
527 
528 /*
529  *	vm_page_rename:
530  *
531  *	Move the given memory entry from its
532  *	current object to the specified target object/offset.
533  *
534  *	The object must be locked.
535  *	This routine may not block.
536  *
537  *	Note: this routine will raise itself to splvm(), the caller need not.
538  *
539  *	Note: swap associated with the page must be invalidated by the move.  We
540  *	      have to do this for several reasons:  (1) we aren't freeing the
541  *	      page, (2) we are dirtying the page, (3) the VM system is probably
542  *	      moving the page from object A to B, and will then later move
543  *	      the backing store from A to B and we can't have a conflict.
544  *
545  *	Note: we *always* dirty the page.  It is necessary both for the
546  *	      fact that we moved it, and because we may be invalidating
547  *	      swap.  If the page is on the cache, we have to deactivate it
548  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
549  *	      on the cache.
550  */
551 
552 void
553 vm_page_rename(m, new_object, new_pindex)
554 	register vm_page_t m;
555 	register vm_object_t new_object;
556 	vm_pindex_t new_pindex;
557 {
558 	int s;
559 
560 	s = splvm();
561 	vm_page_remove(m);
562 	vm_page_insert(m, new_object, new_pindex);
563 	if (m->queue - m->pc == PQ_CACHE)
564 		vm_page_deactivate(m);
565 	vm_page_dirty(m);
566 	splx(s);
567 }
568 
569 /*
570  * vm_page_unqueue_nowakeup:
571  *
572  * 	vm_page_unqueue() without any wakeup
573  *
574  *	This routine must be called at splhigh().
575  *	This routine may not block.
576  */
577 
578 void
579 vm_page_unqueue_nowakeup(m)
580 	vm_page_t m;
581 {
582 	int queue = m->queue;
583 	struct vpgqueues *pq;
584 	if (queue != PQ_NONE) {
585 		pq = &vm_page_queues[queue];
586 		m->queue = PQ_NONE;
587 		TAILQ_REMOVE(&pq->pl, m, pageq);
588 		(*pq->cnt)--;
589 		pq->lcnt--;
590 	}
591 }
592 
593 /*
594  * vm_page_unqueue:
595  *
596  *	Remove a page from its queue.
597  *
598  *	This routine must be called at splhigh().
599  *	This routine may not block.
600  */
601 
602 void
603 vm_page_unqueue(m)
604 	vm_page_t m;
605 {
606 	int queue = m->queue;
607 	struct vpgqueues *pq;
608 	if (queue != PQ_NONE) {
609 		m->queue = PQ_NONE;
610 		pq = &vm_page_queues[queue];
611 		TAILQ_REMOVE(&pq->pl, m, pageq);
612 		(*pq->cnt)--;
613 		pq->lcnt--;
614 		if ((queue - m->pc) == PQ_CACHE) {
615 			if (vm_paging_needed())
616 				pagedaemon_wakeup();
617 		}
618 	}
619 }
620 
621 #if PQ_L2_SIZE > 1
622 
623 /*
624  *	vm_page_list_find:
625  *
626  *	Find a page on the specified queue with color optimization.
627  *
628  *	The page coloring optimization attempts to locate a page
629  *	that does not overload other nearby pages in the object in
630  *	the cpu's L1 or L2 caches.  We need this optimization because
631  *	cpu caches tend to be physical caches, while object spaces tend
632  *	to be virtual.
633  *
634  *	This routine must be called at splvm().
635  *	This routine may not block.
636  *
637  *	This routine may only be called from the vm_page_list_find() macro
638  *	in vm_page.h
639  */
640 vm_page_t
641 _vm_page_list_find(basequeue, index)
642 	int basequeue, index;
643 {
644 	int i;
645 	vm_page_t m = NULL;
646 	struct vpgqueues *pq;
647 
648 	pq = &vm_page_queues[basequeue];
649 
650 	/*
651 	 * Note that for the first loop, index+i and index-i wind up at the
652 	 * same place.  Even though this is not totally optimal, we've already
653 	 * blown it by missing the cache case so we do not care.
654 	 */
655 
656 	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
657 		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
658 			break;
659 
660 		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
661 			break;
662 	}
663 	return(m);
664 }
665 
666 #endif
667 
668 /*
669  *	vm_page_select_cache:
670  *
671  *	Find a page on the cache queue with color optimization.  As pages
672  *	might be found, but not applicable, they are deactivated.  This
673  *	keeps us from using potentially busy cached pages.
674  *
675  *	This routine must be called at splvm().
676  *	This routine may not block.
677  */
678 vm_page_t
679 vm_page_select_cache(object, pindex)
680 	vm_object_t object;
681 	vm_pindex_t pindex;
682 {
683 	vm_page_t m;
684 
685 	while (TRUE) {
686 		m = vm_page_list_find(
687 		    PQ_CACHE,
688 		    (pindex + object->pg_color) & PQ_L2_MASK,
689 		    FALSE
690 		);
691 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
692 			       m->hold_count || m->wire_count)) {
693 			vm_page_deactivate(m);
694 			continue;
695 		}
696 		return m;
697 	}
698 }
699 
700 /*
701  *	vm_page_select_free:
702  *
703  *	Find a free or zero page, with specified preference.  We attempt to
704  *	inline the nominal case and fall back to _vm_page_select_free()
705  *	otherwise.
706  *
707  *	This routine must be called at splvm().
708  *	This routine may not block.
709  */
710 
711 static __inline vm_page_t
712 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
713 {
714 	vm_page_t m;
715 
716 	m = vm_page_list_find(
717 		PQ_FREE,
718 		(pindex + object->pg_color) & PQ_L2_MASK,
719 		prefer_zero
720 	);
721 	return(m);
722 }
723 
724 /*
725  *	vm_page_alloc:
726  *
727  *	Allocate and return a memory cell associated
728  *	with this VM object/offset pair.
729  *
730  *	page_req classes:
731  *	VM_ALLOC_NORMAL		normal process request
732  *	VM_ALLOC_SYSTEM		system *really* needs a page
733  *	VM_ALLOC_INTERRUPT	interrupt time request
734  *	VM_ALLOC_ZERO		zero page
735  *
736  *	Object must be locked.
737  *	This routine may not block.
738  *
739  *	Additional special handling is required when called from an
740  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
741  *	the page cache in this case.
742  */
743 
744 vm_page_t
745 vm_page_alloc(object, pindex, page_req)
746 	vm_object_t object;
747 	vm_pindex_t pindex;
748 	int page_req;
749 {
750 	register vm_page_t m = NULL;
751 	int s;
752 
753 	KASSERT(!vm_page_lookup(object, pindex),
754 		("vm_page_alloc: page already allocated"));
755 
756 	/*
757 	 * The pager is allowed to eat deeper into the free page list.
758 	 */
759 
760 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
761 		page_req = VM_ALLOC_SYSTEM;
762 	};
763 
764 	s = splvm();
765 
766 loop:
767 	if (cnt.v_free_count > cnt.v_free_reserved) {
768 		/*
769 		 * Allocate from the free queue if there are plenty of pages
770 		 * in it.
771 		 */
772 		if (page_req == VM_ALLOC_ZERO)
773 			m = vm_page_select_free(object, pindex, TRUE);
774 		else
775 			m = vm_page_select_free(object, pindex, FALSE);
776 	} else if (
777 	    (page_req == VM_ALLOC_SYSTEM &&
778 	     cnt.v_cache_count == 0 &&
779 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
780 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
781 	) {
782 		/*
783 		 * Interrupt or system, dig deeper into the free list.
784 		 */
785 		m = vm_page_select_free(object, pindex, FALSE);
786 	} else if (page_req != VM_ALLOC_INTERRUPT) {
787 		/*
788 		 * Allocatable from cache (non-interrupt only).  On success,
789 		 * we must free the page and try again, thus ensuring that
790 		 * cnt.v_*_free_min counters are replenished.
791 		 */
792 		m = vm_page_select_cache(object, pindex);
793 		if (m == NULL) {
794 			splx(s);
795 #if defined(DIAGNOSTIC)
796 			if (cnt.v_cache_count > 0)
797 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
798 #endif
799 			vm_pageout_deficit++;
800 			pagedaemon_wakeup();
801 			return (NULL);
802 		}
803 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
804 		vm_page_busy(m);
805 		vm_page_protect(m, VM_PROT_NONE);
806 		vm_page_free(m);
807 		goto loop;
808 	} else {
809 		/*
810 		 * Not allocatable from cache from interrupt, give up.
811 		 */
812 		splx(s);
813 		vm_pageout_deficit++;
814 		pagedaemon_wakeup();
815 		return (NULL);
816 	}
817 
818 	/*
819 	 *  At this point we had better have found a good page.
820 	 */
821 
822 	KASSERT(
823 	    m != NULL,
824 	    ("vm_page_alloc(): missing page on free queue\n")
825 	);
826 
827 	/*
828 	 * Remove from free queue
829 	 */
830 
831 	vm_page_unqueue_nowakeup(m);
832 
833 	/*
834 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
835 	 */
836 
837 	if (m->flags & PG_ZERO) {
838 		vm_page_zero_count--;
839 		m->flags = PG_ZERO | PG_BUSY;
840 	} else {
841 		m->flags = PG_BUSY;
842 	}
843 	m->wire_count = 0;
844 	m->hold_count = 0;
845 	m->act_count = 0;
846 	m->busy = 0;
847 	m->valid = 0;
848 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
849 
850 	/*
851 	 * vm_page_insert() is safe prior to the splx().  Note also that
852 	 * inserting a page here does not insert it into the pmap (which
853 	 * could cause us to block allocating memory).  We cannot block
854 	 * anywhere.
855 	 */
856 
857 	vm_page_insert(m, object, pindex);
858 
859 	/*
860 	 * Don't wakeup too often - wakeup the pageout daemon when
861 	 * we would be nearly out of memory.
862 	 */
863 	if (vm_paging_needed() || cnt.v_free_count < cnt.v_pageout_free_min)
864 		pagedaemon_wakeup();
865 
866 	splx(s);
867 
868 	return (m);
869 }
870 
871 /*
872  *	vm_wait:	(also see VM_WAIT macro)
873  *
874  *	Block until free pages are available for allocation
875  */
876 
877 void
878 vm_wait()
879 {
880 	int s;
881 
882 	s = splvm();
883 	if (curproc == pageproc) {
884 		vm_pageout_pages_needed = 1;
885 		tsleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
886 	} else {
887 		if (!vm_pages_needed) {
888 			vm_pages_needed++;
889 			wakeup(&vm_pages_needed);
890 		}
891 		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
892 	}
893 	splx(s);
894 }
895 
896 /*
897  *	vm_await:	(also see VM_AWAIT macro)
898  *
899  *	asleep on an event that will signal when free pages are available
900  *	for allocation.
901  */
902 
903 void
904 vm_await()
905 {
906 	int s;
907 
908 	s = splvm();
909 	if (curproc == pageproc) {
910 		vm_pageout_pages_needed = 1;
911 		asleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
912 	} else {
913 		if (!vm_pages_needed) {
914 			vm_pages_needed++;
915 			wakeup(&vm_pages_needed);
916 		}
917 		asleep(&cnt.v_free_count, PVM, "vmwait", 0);
918 	}
919 	splx(s);
920 }
921 
922 #if 0
923 /*
924  *	vm_page_sleep:
925  *
926  *	Block until page is no longer busy.
927  */
928 
929 int
930 vm_page_sleep(vm_page_t m, char *msg, char *busy) {
931 	int slept = 0;
932 	if ((busy && *busy) || (m->flags & PG_BUSY)) {
933 		int s;
934 		s = splvm();
935 		if ((busy && *busy) || (m->flags & PG_BUSY)) {
936 			vm_page_flag_set(m, PG_WANTED);
937 			tsleep(m, PVM, msg, 0);
938 			slept = 1;
939 		}
940 		splx(s);
941 	}
942 	return slept;
943 }
944 
945 #endif
946 
947 #if 0
948 
949 /*
950  *	vm_page_asleep:
951  *
952  *	Similar to vm_page_sleep(), but does not block.  Returns 0 if
953  *	the page is not busy, or 1 if the page is busy.
954  *
955  *	This routine has the side effect of calling asleep() if the page
956  *	was busy (1 returned).
957  */
958 
959 int
960 vm_page_asleep(vm_page_t m, char *msg, char *busy) {
961 	int slept = 0;
962 	if ((busy && *busy) || (m->flags & PG_BUSY)) {
963 		int s;
964 		s = splvm();
965 		if ((busy && *busy) || (m->flags & PG_BUSY)) {
966 			vm_page_flag_set(m, PG_WANTED);
967 			asleep(m, PVM, msg, 0);
968 			slept = 1;
969 		}
970 		splx(s);
971 	}
972 	return slept;
973 }
974 
975 #endif
976 
977 /*
978  *	vm_page_activate:
979  *
980  *	Put the specified page on the active list (if appropriate).
981  *	Ensure that act_count is at least ACT_INIT but do not otherwise
982  *	mess with it.
983  *
984  *	The page queues must be locked.
985  *	This routine may not block.
986  */
987 void
988 vm_page_activate(m)
989 	register vm_page_t m;
990 {
991 	int s;
992 
993 	s = splvm();
994 	if (m->queue != PQ_ACTIVE) {
995 		if ((m->queue - m->pc) == PQ_CACHE)
996 			cnt.v_reactivated++;
997 
998 		vm_page_unqueue(m);
999 
1000 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1001 			m->queue = PQ_ACTIVE;
1002 			vm_page_queues[PQ_ACTIVE].lcnt++;
1003 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1004 			if (m->act_count < ACT_INIT)
1005 				m->act_count = ACT_INIT;
1006 			cnt.v_active_count++;
1007 		}
1008 	} else {
1009 		if (m->act_count < ACT_INIT)
1010 			m->act_count = ACT_INIT;
1011 	}
1012 
1013 	splx(s);
1014 }
1015 
1016 /*
1017  *	vm_page_free_wakeup:
1018  *
1019  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1020  *	routine is called when a page has been added to the cache or free
1021  *	queues.
1022  *
1023  *	This routine may not block.
1024  *	This routine must be called at splvm()
1025  */
1026 static __inline void
1027 vm_page_free_wakeup()
1028 {
1029 	/*
1030 	 * if pageout daemon needs pages, then tell it that there are
1031 	 * some free.
1032 	 */
1033 	if (vm_pageout_pages_needed) {
1034 		wakeup(&vm_pageout_pages_needed);
1035 		vm_pageout_pages_needed = 0;
1036 	}
1037 	/*
1038 	 * wakeup processes that are waiting on memory if we hit a
1039 	 * high water mark. And wakeup scheduler process if we have
1040 	 * lots of memory. this process will swapin processes.
1041 	 */
1042 	if (vm_pages_needed && vm_page_count_min()) {
1043 		wakeup(&cnt.v_free_count);
1044 		vm_pages_needed = 0;
1045 	}
1046 }
1047 
1048 /*
1049  *	vm_page_free_toq:
1050  *
1051  *	Returns the given page to the PQ_FREE list,
1052  *	disassociating it with any VM object.
1053  *
1054  *	Object and page must be locked prior to entry.
1055  *	This routine may not block.
1056  */
1057 
1058 void
1059 vm_page_free_toq(vm_page_t m)
1060 {
1061 	int s;
1062 	struct vpgqueues *pq;
1063 	vm_object_t object = m->object;
1064 
1065 	s = splvm();
1066 
1067 	cnt.v_tfree++;
1068 
1069 	if (m->busy || ((m->queue - m->pc) == PQ_FREE) ||
1070 		(m->hold_count != 0)) {
1071 		printf(
1072 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1073 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1074 		    m->hold_count);
1075 		if ((m->queue - m->pc) == PQ_FREE)
1076 			panic("vm_page_free: freeing free page");
1077 		else
1078 			panic("vm_page_free: freeing busy page");
1079 	}
1080 
1081 	/*
1082 	 * unqueue, then remove page.  Note that we cannot destroy
1083 	 * the page here because we do not want to call the pager's
1084 	 * callback routine until after we've put the page on the
1085 	 * appropriate free queue.
1086 	 */
1087 
1088 	vm_page_unqueue_nowakeup(m);
1089 	vm_page_remove(m);
1090 
1091 	/*
1092 	 * If fictitious remove object association and
1093 	 * return, otherwise delay object association removal.
1094 	 */
1095 
1096 	if ((m->flags & PG_FICTITIOUS) != 0) {
1097 		splx(s);
1098 		return;
1099 	}
1100 
1101 	m->valid = 0;
1102 	vm_page_undirty(m);
1103 
1104 	if (m->wire_count != 0) {
1105 		if (m->wire_count > 1) {
1106 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1107 				m->wire_count, (long)m->pindex);
1108 		}
1109 		panic("vm_page_free: freeing wired page\n");
1110 	}
1111 
1112 	/*
1113 	 * If we've exhausted the object's resident pages we want to free
1114 	 * it up.
1115 	 */
1116 
1117 	if (object &&
1118 	    (object->type == OBJT_VNODE) &&
1119 	    ((object->flags & OBJ_DEAD) == 0)
1120 	) {
1121 		struct vnode *vp = (struct vnode *)object->handle;
1122 
1123 		if (vp && VSHOULDFREE(vp))
1124 			vfree(vp);
1125 	}
1126 
1127 	/*
1128 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1129 	 */
1130 
1131 	if (m->flags & PG_UNMANAGED) {
1132 	    m->flags &= ~PG_UNMANAGED;
1133 	} else {
1134 #ifdef __alpha__
1135 	    pmap_page_is_free(m);
1136 #endif
1137 	}
1138 
1139 	m->queue = PQ_FREE + m->pc;
1140 	pq = &vm_page_queues[m->queue];
1141 	pq->lcnt++;
1142 	++(*pq->cnt);
1143 
1144 	/*
1145 	 * Put zero'd pages on the end ( where we look for zero'd pages
1146 	 * first ) and non-zerod pages at the head.
1147 	 */
1148 
1149 	if (m->flags & PG_ZERO) {
1150 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1151 		++vm_page_zero_count;
1152 	} else {
1153 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1154 	}
1155 
1156 	vm_page_free_wakeup();
1157 
1158 	splx(s);
1159 }
1160 
1161 /*
1162  *	vm_page_unmanage:
1163  *
1164  * 	Prevent PV management from being done on the page.  The page is
1165  *	removed from the paging queues as if it were wired, and as a
1166  *	consequence of no longer being managed the pageout daemon will not
1167  *	touch it (since there is no way to locate the pte mappings for the
1168  *	page).  madvise() calls that mess with the pmap will also no longer
1169  *	operate on the page.
1170  *
1171  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1172  *	will clear the flag.
1173  *
1174  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1175  *	physical memory as backing store rather then swap-backed memory and
1176  *	will eventually be extended to support 4MB unmanaged physical
1177  *	mappings.
1178  */
1179 
1180 void
1181 vm_page_unmanage(vm_page_t m)
1182 {
1183 	int s;
1184 
1185 	s = splvm();
1186 	if ((m->flags & PG_UNMANAGED) == 0) {
1187 		if (m->wire_count == 0)
1188 			vm_page_unqueue(m);
1189 	}
1190 	vm_page_flag_set(m, PG_UNMANAGED);
1191 	splx(s);
1192 }
1193 
1194 /*
1195  *	vm_page_wire:
1196  *
1197  *	Mark this page as wired down by yet
1198  *	another map, removing it from paging queues
1199  *	as necessary.
1200  *
1201  *	The page queues must be locked.
1202  *	This routine may not block.
1203  */
1204 void
1205 vm_page_wire(m)
1206 	register vm_page_t m;
1207 {
1208 	int s;
1209 
1210 	/*
1211 	 * Only bump the wire statistics if the page is not already wired,
1212 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1213 	 * it is already off the queues).
1214 	 */
1215 	s = splvm();
1216 	if (m->wire_count == 0) {
1217 		if ((m->flags & PG_UNMANAGED) == 0)
1218 			vm_page_unqueue(m);
1219 		cnt.v_wire_count++;
1220 	}
1221 	m->wire_count++;
1222 	splx(s);
1223 	vm_page_flag_set(m, PG_MAPPED);
1224 }
1225 
1226 /*
1227  *	vm_page_unwire:
1228  *
1229  *	Release one wiring of this page, potentially
1230  *	enabling it to be paged again.
1231  *
1232  *	Many pages placed on the inactive queue should actually go
1233  *	into the cache, but it is difficult to figure out which.  What
1234  *	we do instead, if the inactive target is well met, is to put
1235  *	clean pages at the head of the inactive queue instead of the tail.
1236  *	This will cause them to be moved to the cache more quickly and
1237  *	if not actively re-referenced, freed more quickly.  If we just
1238  *	stick these pages at the end of the inactive queue, heavy filesystem
1239  *	meta-data accesses can cause an unnecessary paging load on memory bound
1240  *	processes.  This optimization causes one-time-use metadata to be
1241  *	reused more quickly.
1242  *
1243  *	A number of routines use vm_page_unwire() to guarantee that the page
1244  *	will go into either the inactive or active queues, and will NEVER
1245  *	be placed in the cache - for example, just after dirtying a page.
1246  *	dirty pages in the cache are not allowed.
1247  *
1248  *	The page queues must be locked.
1249  *	This routine may not block.
1250  */
1251 void
1252 vm_page_unwire(m, activate)
1253 	register vm_page_t m;
1254 	int activate;
1255 {
1256 	int s;
1257 
1258 	s = splvm();
1259 
1260 	if (m->wire_count > 0) {
1261 		m->wire_count--;
1262 		if (m->wire_count == 0) {
1263 			cnt.v_wire_count--;
1264 			if (m->flags & PG_UNMANAGED) {
1265 				;
1266 			} else if (activate) {
1267 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1268 				m->queue = PQ_ACTIVE;
1269 				vm_page_queues[PQ_ACTIVE].lcnt++;
1270 				cnt.v_active_count++;
1271 			} else {
1272 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1273 				m->queue = PQ_INACTIVE;
1274 				vm_page_queues[PQ_INACTIVE].lcnt++;
1275 				cnt.v_inactive_count++;
1276 			}
1277 		}
1278 	} else {
1279 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1280 	}
1281 	splx(s);
1282 }
1283 
1284 
1285 /*
1286  * Move the specified page to the inactive queue.  If the page has
1287  * any associated swap, the swap is deallocated.
1288  *
1289  * Normally athead is 0 resulting in LRU operation.  athead is set
1290  * to 1 if we want this page to be 'as if it were placed in the cache',
1291  * except without unmapping it from the process address space.
1292  *
1293  * This routine may not block.
1294  */
1295 static __inline void
1296 _vm_page_deactivate(vm_page_t m, int athead)
1297 {
1298 	int s;
1299 
1300 	/*
1301 	 * Ignore if already inactive.
1302 	 */
1303 	if (m->queue == PQ_INACTIVE)
1304 		return;
1305 
1306 	s = splvm();
1307 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1308 		if ((m->queue - m->pc) == PQ_CACHE)
1309 			cnt.v_reactivated++;
1310 		vm_page_unqueue(m);
1311 		if (athead)
1312 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1313 		else
1314 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1315 		m->queue = PQ_INACTIVE;
1316 		vm_page_queues[PQ_INACTIVE].lcnt++;
1317 		cnt.v_inactive_count++;
1318 	}
1319 	splx(s);
1320 }
1321 
1322 void
1323 vm_page_deactivate(vm_page_t m)
1324 {
1325     _vm_page_deactivate(m, 0);
1326 }
1327 
1328 /*
1329  * vm_page_cache
1330  *
1331  * Put the specified page onto the page cache queue (if appropriate).
1332  *
1333  * This routine may not block.
1334  */
1335 void
1336 vm_page_cache(m)
1337 	register vm_page_t m;
1338 {
1339 	int s;
1340 
1341 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1342 		printf("vm_page_cache: attempting to cache busy page\n");
1343 		return;
1344 	}
1345 	if ((m->queue - m->pc) == PQ_CACHE)
1346 		return;
1347 
1348 	/*
1349 	 * Remove all pmaps and indicate that the page is not
1350 	 * writeable or mapped.
1351 	 */
1352 
1353 	vm_page_protect(m, VM_PROT_NONE);
1354 	if (m->dirty != 0) {
1355 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1356 			(long)m->pindex);
1357 	}
1358 	s = splvm();
1359 	vm_page_unqueue_nowakeup(m);
1360 	m->queue = PQ_CACHE + m->pc;
1361 	vm_page_queues[m->queue].lcnt++;
1362 	TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1363 	cnt.v_cache_count++;
1364 	vm_page_free_wakeup();
1365 	splx(s);
1366 }
1367 
1368 /*
1369  * vm_page_dontneed
1370  *
1371  *	Cache, deactivate, or do nothing as appropriate.  This routine
1372  *	is typically used by madvise() MADV_DONTNEED.
1373  *
1374  *	Generally speaking we want to move the page into the cache so
1375  *	it gets reused quickly.  However, this can result in a silly syndrome
1376  *	due to the page recycling too quickly.  Small objects will not be
1377  *	fully cached.  On the otherhand, if we move the page to the inactive
1378  *	queue we wind up with a problem whereby very large objects
1379  *	unnecessarily blow away our inactive and cache queues.
1380  *
1381  *	The solution is to move the pages based on a fixed weighting.  We
1382  *	either leave them alone, deactivate them, or move them to the cache,
1383  *	where moving them to the cache has the highest weighting.
1384  *	By forcing some pages into other queues we eventually force the
1385  *	system to balance the queues, potentially recovering other unrelated
1386  *	space from active.  The idea is to not force this to happen too
1387  *	often.
1388  */
1389 
1390 void
1391 vm_page_dontneed(m)
1392 	vm_page_t m;
1393 {
1394 	static int dnweight;
1395 	int dnw;
1396 	int head;
1397 
1398 	dnw = ++dnweight;
1399 
1400 	/*
1401 	 * occassionally leave the page alone
1402 	 */
1403 
1404 	if ((dnw & 0x01F0) == 0 ||
1405 	    m->queue == PQ_INACTIVE ||
1406 	    m->queue - m->pc == PQ_CACHE
1407 	) {
1408 		if (m->act_count >= ACT_INIT)
1409 			--m->act_count;
1410 		return;
1411 	}
1412 
1413 	if (m->dirty == 0)
1414 		vm_page_test_dirty(m);
1415 
1416 	if (m->dirty || (dnw & 0x0070) == 0) {
1417 		/*
1418 		 * Deactivate the page 3 times out of 32.
1419 		 */
1420 		head = 0;
1421 	} else {
1422 		/*
1423 		 * Cache the page 28 times out of every 32.  Note that
1424 		 * the page is deactivated instead of cached, but placed
1425 		 * at the head of the queue instead of the tail.
1426 		 */
1427 		head = 1;
1428 	}
1429 	_vm_page_deactivate(m, head);
1430 }
1431 
1432 /*
1433  * Grab a page, waiting until we are waken up due to the page
1434  * changing state.  We keep on waiting, if the page continues
1435  * to be in the object.  If the page doesn't exist, allocate it.
1436  *
1437  * This routine may block.
1438  */
1439 vm_page_t
1440 vm_page_grab(object, pindex, allocflags)
1441 	vm_object_t object;
1442 	vm_pindex_t pindex;
1443 	int allocflags;
1444 {
1445 
1446 	vm_page_t m;
1447 	int s, generation;
1448 
1449 retrylookup:
1450 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1451 		if (m->busy || (m->flags & PG_BUSY)) {
1452 			generation = object->generation;
1453 
1454 			s = splvm();
1455 			while ((object->generation == generation) &&
1456 					(m->busy || (m->flags & PG_BUSY))) {
1457 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1458 				tsleep(m, PVM, "pgrbwt", 0);
1459 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1460 					splx(s);
1461 					return NULL;
1462 				}
1463 			}
1464 			splx(s);
1465 			goto retrylookup;
1466 		} else {
1467 			vm_page_busy(m);
1468 			return m;
1469 		}
1470 	}
1471 
1472 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1473 	if (m == NULL) {
1474 		VM_WAIT;
1475 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1476 			return NULL;
1477 		goto retrylookup;
1478 	}
1479 
1480 	return m;
1481 }
1482 
1483 /*
1484  * Mapping function for valid bits or for dirty bits in
1485  * a page.  May not block.
1486  *
1487  * Inputs are required to range within a page.
1488  */
1489 
1490 __inline int
1491 vm_page_bits(int base, int size)
1492 {
1493 	int first_bit;
1494 	int last_bit;
1495 
1496 	KASSERT(
1497 	    base + size <= PAGE_SIZE,
1498 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1499 	);
1500 
1501 	if (size == 0)		/* handle degenerate case */
1502 		return(0);
1503 
1504 	first_bit = base >> DEV_BSHIFT;
1505 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1506 
1507 	return ((2 << last_bit) - (1 << first_bit));
1508 }
1509 
1510 /*
1511  *	vm_page_set_validclean:
1512  *
1513  *	Sets portions of a page valid and clean.  The arguments are expected
1514  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1515  *	of any partial chunks touched by the range.  The invalid portion of
1516  *	such chunks will be zero'd.
1517  *
1518  *	This routine may not block.
1519  *
1520  *	(base + size) must be less then or equal to PAGE_SIZE.
1521  */
1522 void
1523 vm_page_set_validclean(m, base, size)
1524 	vm_page_t m;
1525 	int base;
1526 	int size;
1527 {
1528 	int pagebits;
1529 	int frag;
1530 	int endoff;
1531 
1532 	if (size == 0)	/* handle degenerate case */
1533 		return;
1534 
1535 	/*
1536 	 * If the base is not DEV_BSIZE aligned and the valid
1537 	 * bit is clear, we have to zero out a portion of the
1538 	 * first block.
1539 	 */
1540 
1541 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1542 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1543 	) {
1544 		pmap_zero_page_area(
1545 		    VM_PAGE_TO_PHYS(m),
1546 		    frag,
1547 		    base - frag
1548 		);
1549 	}
1550 
1551 	/*
1552 	 * If the ending offset is not DEV_BSIZE aligned and the
1553 	 * valid bit is clear, we have to zero out a portion of
1554 	 * the last block.
1555 	 */
1556 
1557 	endoff = base + size;
1558 
1559 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1560 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1561 	) {
1562 		pmap_zero_page_area(
1563 		    VM_PAGE_TO_PHYS(m),
1564 		    endoff,
1565 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1566 		);
1567 	}
1568 
1569 	/*
1570 	 * Set valid, clear dirty bits.  If validating the entire
1571 	 * page we can safely clear the pmap modify bit.  We also
1572 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1573 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1574 	 * be set again.
1575 	 */
1576 
1577 	pagebits = vm_page_bits(base, size);
1578 	m->valid |= pagebits;
1579 	m->dirty &= ~pagebits;
1580 	if (base == 0 && size == PAGE_SIZE) {
1581 		pmap_clear_modify(m);
1582 		vm_page_flag_clear(m, PG_NOSYNC);
1583 	}
1584 }
1585 
1586 #if 0
1587 
1588 void
1589 vm_page_set_dirty(m, base, size)
1590 	vm_page_t m;
1591 	int base;
1592 	int size;
1593 {
1594 	m->dirty |= vm_page_bits(base, size);
1595 }
1596 
1597 #endif
1598 
1599 void
1600 vm_page_clear_dirty(m, base, size)
1601 	vm_page_t m;
1602 	int base;
1603 	int size;
1604 {
1605 	m->dirty &= ~vm_page_bits(base, size);
1606 }
1607 
1608 /*
1609  *	vm_page_set_invalid:
1610  *
1611  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1612  *	valid and dirty bits for the effected areas are cleared.
1613  *
1614  *	May not block.
1615  */
1616 void
1617 vm_page_set_invalid(m, base, size)
1618 	vm_page_t m;
1619 	int base;
1620 	int size;
1621 {
1622 	int bits;
1623 
1624 	bits = vm_page_bits(base, size);
1625 	m->valid &= ~bits;
1626 	m->dirty &= ~bits;
1627 	m->object->generation++;
1628 }
1629 
1630 /*
1631  * vm_page_zero_invalid()
1632  *
1633  *	The kernel assumes that the invalid portions of a page contain
1634  *	garbage, but such pages can be mapped into memory by user code.
1635  *	When this occurs, we must zero out the non-valid portions of the
1636  *	page so user code sees what it expects.
1637  *
1638  *	Pages are most often semi-valid when the end of a file is mapped
1639  *	into memory and the file's size is not page aligned.
1640  */
1641 
1642 void
1643 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1644 {
1645 	int b;
1646 	int i;
1647 
1648 	/*
1649 	 * Scan the valid bits looking for invalid sections that
1650 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1651 	 * valid bit may be set ) have already been zerod by
1652 	 * vm_page_set_validclean().
1653 	 */
1654 
1655 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1656 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1657 		    (m->valid & (1 << i))
1658 		) {
1659 			if (i > b) {
1660 				pmap_zero_page_area(
1661 				    VM_PAGE_TO_PHYS(m),
1662 				    b << DEV_BSHIFT,
1663 				    (i - b) << DEV_BSHIFT
1664 				);
1665 			}
1666 			b = i + 1;
1667 		}
1668 	}
1669 
1670 	/*
1671 	 * setvalid is TRUE when we can safely set the zero'd areas
1672 	 * as being valid.  We can do this if there are no cache consistancy
1673 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1674 	 */
1675 
1676 	if (setvalid)
1677 		m->valid = VM_PAGE_BITS_ALL;
1678 }
1679 
1680 /*
1681  *	vm_page_is_valid:
1682  *
1683  *	Is (partial) page valid?  Note that the case where size == 0
1684  *	will return FALSE in the degenerate case where the page is
1685  *	entirely invalid, and TRUE otherwise.
1686  *
1687  *	May not block.
1688  */
1689 
1690 int
1691 vm_page_is_valid(m, base, size)
1692 	vm_page_t m;
1693 	int base;
1694 	int size;
1695 {
1696 	int bits = vm_page_bits(base, size);
1697 
1698 	if (m->valid && ((m->valid & bits) == bits))
1699 		return 1;
1700 	else
1701 		return 0;
1702 }
1703 
1704 /*
1705  * update dirty bits from pmap/mmu.  May not block.
1706  */
1707 
1708 void
1709 vm_page_test_dirty(m)
1710 	vm_page_t m;
1711 {
1712 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1713 		vm_page_dirty(m);
1714 	}
1715 }
1716 
1717 /*
1718  * This interface is for merging with malloc() someday.
1719  * Even if we never implement compaction so that contiguous allocation
1720  * works after initialization time, malloc()'s data structures are good
1721  * for statistics and for allocations of less than a page.
1722  */
1723 void *
1724 contigmalloc1(size, type, flags, low, high, alignment, boundary, map)
1725 	unsigned long size;	/* should be size_t here and for malloc() */
1726 	struct malloc_type *type;
1727 	int flags;
1728 	unsigned long low;
1729 	unsigned long high;
1730 	unsigned long alignment;
1731 	unsigned long boundary;
1732 	vm_map_t map;
1733 {
1734 	int i, s, start;
1735 	vm_offset_t addr, phys, tmp_addr;
1736 	int pass;
1737 	vm_page_t pga = vm_page_array;
1738 
1739 	size = round_page(size);
1740 	if (size == 0)
1741 		panic("contigmalloc1: size must not be 0");
1742 	if ((alignment & (alignment - 1)) != 0)
1743 		panic("contigmalloc1: alignment must be a power of 2");
1744 	if ((boundary & (boundary - 1)) != 0)
1745 		panic("contigmalloc1: boundary must be a power of 2");
1746 
1747 	start = 0;
1748 	for (pass = 0; pass <= 1; pass++) {
1749 		s = splvm();
1750 again:
1751 		/*
1752 		 * Find first page in array that is free, within range, aligned, and
1753 		 * such that the boundary won't be crossed.
1754 		 */
1755 		for (i = start; i < cnt.v_page_count; i++) {
1756 			int pqtype;
1757 			phys = VM_PAGE_TO_PHYS(&pga[i]);
1758 			pqtype = pga[i].queue - pga[i].pc;
1759 			if (((pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
1760 			    (phys >= low) && (phys < high) &&
1761 			    ((phys & (alignment - 1)) == 0) &&
1762 			    (((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
1763 				break;
1764 		}
1765 
1766 		/*
1767 		 * If the above failed or we will exceed the upper bound, fail.
1768 		 */
1769 		if ((i == cnt.v_page_count) ||
1770 			((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
1771 			vm_page_t m, next;
1772 
1773 again1:
1774 			for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
1775 				m != NULL;
1776 				m = next) {
1777 
1778 				KASSERT(m->queue == PQ_INACTIVE,
1779 					("contigmalloc1: page %p is not PQ_INACTIVE", m));
1780 
1781 				next = TAILQ_NEXT(m, pageq);
1782 				if (vm_page_sleep_busy(m, TRUE, "vpctw0"))
1783 					goto again1;
1784 				vm_page_test_dirty(m);
1785 				if (m->dirty) {
1786 					if (m->object->type == OBJT_VNODE) {
1787 						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1788 						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1789 						VOP_UNLOCK(m->object->handle, 0, curproc);
1790 						goto again1;
1791 					} else if (m->object->type == OBJT_SWAP ||
1792 								m->object->type == OBJT_DEFAULT) {
1793 						vm_pageout_flush(&m, 1, 0);
1794 						goto again1;
1795 					}
1796 				}
1797 				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1798 					vm_page_cache(m);
1799 			}
1800 
1801 			for (m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1802 				m != NULL;
1803 				m = next) {
1804 
1805 				KASSERT(m->queue == PQ_ACTIVE,
1806 					("contigmalloc1: page %p is not PQ_ACTIVE", m));
1807 
1808 				next = TAILQ_NEXT(m, pageq);
1809 				if (vm_page_sleep_busy(m, TRUE, "vpctw1"))
1810 					goto again1;
1811 				vm_page_test_dirty(m);
1812 				if (m->dirty) {
1813 					if (m->object->type == OBJT_VNODE) {
1814 						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1815 						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1816 						VOP_UNLOCK(m->object->handle, 0, curproc);
1817 						goto again1;
1818 					} else if (m->object->type == OBJT_SWAP ||
1819 								m->object->type == OBJT_DEFAULT) {
1820 						vm_pageout_flush(&m, 1, 0);
1821 						goto again1;
1822 					}
1823 				}
1824 				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1825 					vm_page_cache(m);
1826 			}
1827 
1828 			splx(s);
1829 			continue;
1830 		}
1831 		start = i;
1832 
1833 		/*
1834 		 * Check successive pages for contiguous and free.
1835 		 */
1836 		for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
1837 			int pqtype;
1838 			pqtype = pga[i].queue - pga[i].pc;
1839 			if ((VM_PAGE_TO_PHYS(&pga[i]) !=
1840 			    (VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
1841 			    ((pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
1842 				start++;
1843 				goto again;
1844 			}
1845 		}
1846 
1847 		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1848 			int pqtype;
1849 			vm_page_t m = &pga[i];
1850 
1851 			pqtype = m->queue - m->pc;
1852 			if (pqtype == PQ_CACHE) {
1853 				vm_page_busy(m);
1854 				vm_page_free(m);
1855 			}
1856 
1857 			TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
1858 			vm_page_queues[m->queue].lcnt--;
1859 			cnt.v_free_count--;
1860 			m->valid = VM_PAGE_BITS_ALL;
1861 			m->flags = 0;
1862 			KASSERT(m->dirty == 0, ("contigmalloc1: page %p was dirty", m));
1863 			m->wire_count = 0;
1864 			m->busy = 0;
1865 			m->queue = PQ_NONE;
1866 			m->object = NULL;
1867 			vm_page_wire(m);
1868 		}
1869 
1870 		/*
1871 		 * We've found a contiguous chunk that meets are requirements.
1872 		 * Allocate kernel VM, unfree and assign the physical pages to it and
1873 		 * return kernel VM pointer.
1874 		 */
1875 		tmp_addr = addr = kmem_alloc_pageable(map, size);
1876 		if (addr == 0) {
1877 			/*
1878 			 * XXX We almost never run out of kernel virtual
1879 			 * space, so we don't make the allocated memory
1880 			 * above available.
1881 			 */
1882 			splx(s);
1883 			return (NULL);
1884 		}
1885 
1886 		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1887 			vm_page_t m = &pga[i];
1888 			vm_page_insert(m, kernel_object,
1889 				OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
1890 			pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
1891 			tmp_addr += PAGE_SIZE;
1892 		}
1893 
1894 		splx(s);
1895 		return ((void *)addr);
1896 	}
1897 	return NULL;
1898 }
1899 
1900 void *
1901 contigmalloc(size, type, flags, low, high, alignment, boundary)
1902 	unsigned long size;	/* should be size_t here and for malloc() */
1903 	struct malloc_type *type;
1904 	int flags;
1905 	unsigned long low;
1906 	unsigned long high;
1907 	unsigned long alignment;
1908 	unsigned long boundary;
1909 {
1910 	return contigmalloc1(size, type, flags, low, high, alignment, boundary,
1911 			     kernel_map);
1912 }
1913 
1914 void
1915 contigfree(addr, size, type)
1916 	void *addr;
1917 	unsigned long size;
1918 	struct malloc_type *type;
1919 {
1920 	kmem_free(kernel_map, (vm_offset_t)addr, size);
1921 }
1922 
1923 vm_offset_t
1924 vm_page_alloc_contig(size, low, high, alignment)
1925 	vm_offset_t size;
1926 	vm_offset_t low;
1927 	vm_offset_t high;
1928 	vm_offset_t alignment;
1929 {
1930 	return ((vm_offset_t)contigmalloc1(size, M_DEVBUF, M_NOWAIT, low, high,
1931 					  alignment, 0ul, kernel_map));
1932 }
1933 
1934 #include "opt_ddb.h"
1935 #ifdef DDB
1936 #include <sys/kernel.h>
1937 
1938 #include <ddb/ddb.h>
1939 
1940 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1941 {
1942 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1943 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1944 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1945 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1946 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1947 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1948 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1949 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1950 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1951 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1952 }
1953 
1954 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1955 {
1956 	int i;
1957 	db_printf("PQ_FREE:");
1958 	for(i=0;i<PQ_L2_SIZE;i++) {
1959 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1960 	}
1961 	db_printf("\n");
1962 
1963 	db_printf("PQ_CACHE:");
1964 	for(i=0;i<PQ_L2_SIZE;i++) {
1965 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1966 	}
1967 	db_printf("\n");
1968 
1969 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1970 		vm_page_queues[PQ_ACTIVE].lcnt,
1971 		vm_page_queues[PQ_INACTIVE].lcnt);
1972 }
1973 #endif /* DDB */
1974