xref: /freebsd/sys/vm/vm_page.c (revision b52f49a9a0f22207ad5130ad8faba08de3ed23d8)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  */
38 
39 /*
40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41  * All rights reserved.
42  *
43  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44  *
45  * Permission to use, copy, modify and distribute this software and
46  * its documentation is hereby granted, provided that both the copyright
47  * notice and this permission notice appear in all copies of the
48  * software, derivative works or modified versions, and any portions
49  * thereof, and that both notices appear in supporting documentation.
50  *
51  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
52  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
53  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54  *
55  * Carnegie Mellon requests users of this software to return to
56  *
57  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
58  *  School of Computer Science
59  *  Carnegie Mellon University
60  *  Pittsburgh PA 15213-3890
61  *
62  * any improvements or extensions that they make and grant Carnegie the
63  * rights to redistribute these changes.
64  */
65 
66 /*
67  *			GENERAL RULES ON VM_PAGE MANIPULATION
68  *
69  *	- a pageq mutex is required when adding or removing a page from a
70  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
71  *	  busy state of a page.
72  *
73  *	- a hash chain mutex is required when associating or disassociating
74  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
75  *	  regardless of other mutexes or the busy state of a page.
76  *
77  *	- either a hash chain mutex OR a busied page is required in order
78  *	  to modify the page flags.  A hash chain mutex must be obtained in
79  *	  order to busy a page.  A page's flags cannot be modified by a
80  *	  hash chain mutex if the page is marked busy.
81  *
82  *	- The object memq mutex is held when inserting or removing
83  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
84  *	  is different from the object's main mutex.
85  *
86  *	Generally speaking, you have to be aware of side effects when running
87  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
88  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
89  *	vm_page_cache(), vm_page_activate(), and a number of other routines
90  *	will release the hash chain mutex for you.  Intermediate manipulation
91  *	routines such as vm_page_flag_set() expect the hash chain to be held
92  *	on entry and the hash chain will remain held on return.
93  *
94  *	pageq scanning can only occur with the pageq in question locked.
95  *	We have a known bottleneck with the active queue, but the cache
96  *	and free queues are actually arrays already.
97  */
98 
99 /*
100  *	Resident memory management module.
101  */
102 
103 #include <sys/cdefs.h>
104 __FBSDID("$FreeBSD$");
105 
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/lock.h>
109 #include <sys/malloc.h>
110 #include <sys/mutex.h>
111 #include <sys/proc.h>
112 #include <sys/vmmeter.h>
113 #include <sys/vnode.h>
114 
115 #include <vm/vm.h>
116 #include <vm/vm_param.h>
117 #include <vm/vm_kern.h>
118 #include <vm/vm_object.h>
119 #include <vm/vm_page.h>
120 #include <vm/vm_pageout.h>
121 #include <vm/vm_pager.h>
122 #include <vm/vm_extern.h>
123 #include <vm/uma.h>
124 #include <vm/uma_int.h>
125 
126 /*
127  *	Associated with page of user-allocatable memory is a
128  *	page structure.
129  */
130 
131 struct mtx vm_page_queue_mtx;
132 struct mtx vm_page_queue_free_mtx;
133 
134 vm_page_t vm_page_array = 0;
135 int vm_page_array_size = 0;
136 long first_page = 0;
137 int vm_page_zero_count = 0;
138 
139 /*
140  *	vm_set_page_size:
141  *
142  *	Sets the page size, perhaps based upon the memory
143  *	size.  Must be called before any use of page-size
144  *	dependent functions.
145  */
146 void
147 vm_set_page_size(void)
148 {
149 	if (cnt.v_page_size == 0)
150 		cnt.v_page_size = PAGE_SIZE;
151 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
152 		panic("vm_set_page_size: page size not a power of two");
153 }
154 
155 /*
156  *	vm_page_startup:
157  *
158  *	Initializes the resident memory module.
159  *
160  *	Allocates memory for the page cells, and
161  *	for the object/offset-to-page hash table headers.
162  *	Each page cell is initialized and placed on the free list.
163  */
164 vm_offset_t
165 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
166 {
167 	vm_offset_t mapped;
168 	vm_size_t npages;
169 	vm_paddr_t page_range;
170 	vm_paddr_t new_end;
171 	int i;
172 	vm_paddr_t pa;
173 	int nblocks;
174 	vm_paddr_t last_pa;
175 
176 	/* the biggest memory array is the second group of pages */
177 	vm_paddr_t end;
178 	vm_paddr_t biggestsize;
179 	int biggestone;
180 
181 	vm_paddr_t total;
182 	vm_size_t bootpages;
183 
184 	total = 0;
185 	biggestsize = 0;
186 	biggestone = 0;
187 	nblocks = 0;
188 	vaddr = round_page(vaddr);
189 
190 	for (i = 0; phys_avail[i + 1]; i += 2) {
191 		phys_avail[i] = round_page(phys_avail[i]);
192 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
193 	}
194 
195 	for (i = 0; phys_avail[i + 1]; i += 2) {
196 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
197 
198 		if (size > biggestsize) {
199 			biggestone = i;
200 			biggestsize = size;
201 		}
202 		++nblocks;
203 		total += size;
204 	}
205 
206 	end = phys_avail[biggestone+1];
207 
208 	/*
209 	 * Initialize the locks.
210 	 */
211 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
212 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
213 	   MTX_SPIN);
214 
215 	/*
216 	 * Initialize the queue headers for the free queue, the active queue
217 	 * and the inactive queue.
218 	 */
219 	vm_pageq_init();
220 
221 	/*
222 	 * Allocate memory for use when boot strapping the kernel memory
223 	 * allocator.
224 	 */
225 	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
226 	new_end = end - bootpages;
227 	new_end = trunc_page(new_end);
228 	mapped = pmap_map(&vaddr, new_end, end,
229 	    VM_PROT_READ | VM_PROT_WRITE);
230 	bzero((caddr_t) mapped, end - new_end);
231 	uma_startup((caddr_t)mapped);
232 
233 	/*
234 	 * Compute the number of pages of memory that will be available for
235 	 * use (taking into account the overhead of a page structure per
236 	 * page).
237 	 */
238 	first_page = phys_avail[0] / PAGE_SIZE;
239 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
240 	npages = (total - (page_range * sizeof(struct vm_page)) -
241 	    (end - new_end)) / PAGE_SIZE;
242 	end = new_end;
243 
244 	/*
245 	 * Initialize the mem entry structures now, and put them in the free
246 	 * queue.
247 	 */
248 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
249 	mapped = pmap_map(&vaddr, new_end, end,
250 	    VM_PROT_READ | VM_PROT_WRITE);
251 	vm_page_array = (vm_page_t) mapped;
252 	phys_avail[biggestone + 1] = new_end;
253 
254 	/*
255 	 * Clear all of the page structures
256 	 */
257 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
258 	vm_page_array_size = page_range;
259 
260 	/*
261 	 * Construct the free queue(s) in descending order (by physical
262 	 * address) so that the first 16MB of physical memory is allocated
263 	 * last rather than first.  On large-memory machines, this avoids
264 	 * the exhaustion of low physical memory before isa_dmainit has run.
265 	 */
266 	cnt.v_page_count = 0;
267 	cnt.v_free_count = 0;
268 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
269 		pa = phys_avail[i];
270 		last_pa = phys_avail[i + 1];
271 		while (pa < last_pa && npages-- > 0) {
272 			vm_pageq_add_new_page(pa);
273 			pa += PAGE_SIZE;
274 		}
275 	}
276 	return (vaddr);
277 }
278 
279 void
280 vm_page_flag_set(vm_page_t m, unsigned short bits)
281 {
282 
283 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
284 	m->flags |= bits;
285 }
286 
287 void
288 vm_page_flag_clear(vm_page_t m, unsigned short bits)
289 {
290 
291 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
292 	m->flags &= ~bits;
293 }
294 
295 void
296 vm_page_busy(vm_page_t m)
297 {
298 	KASSERT((m->flags & PG_BUSY) == 0,
299 	    ("vm_page_busy: page already busy!!!"));
300 	vm_page_flag_set(m, PG_BUSY);
301 }
302 
303 /*
304  *      vm_page_flash:
305  *
306  *      wakeup anyone waiting for the page.
307  */
308 void
309 vm_page_flash(vm_page_t m)
310 {
311 	if (m->flags & PG_WANTED) {
312 		vm_page_flag_clear(m, PG_WANTED);
313 		wakeup(m);
314 	}
315 }
316 
317 /*
318  *      vm_page_wakeup:
319  *
320  *      clear the PG_BUSY flag and wakeup anyone waiting for the
321  *      page.
322  *
323  */
324 void
325 vm_page_wakeup(vm_page_t m)
326 {
327 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
328 	vm_page_flag_clear(m, PG_BUSY);
329 	vm_page_flash(m);
330 }
331 
332 void
333 vm_page_io_start(vm_page_t m)
334 {
335 
336 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
337 	m->busy++;
338 }
339 
340 void
341 vm_page_io_finish(vm_page_t m)
342 {
343 
344 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
345 	m->busy--;
346 	if (m->busy == 0)
347 		vm_page_flash(m);
348 }
349 
350 /*
351  * Keep page from being freed by the page daemon
352  * much of the same effect as wiring, except much lower
353  * overhead and should be used only for *very* temporary
354  * holding ("wiring").
355  */
356 void
357 vm_page_hold(vm_page_t mem)
358 {
359 
360 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
361         mem->hold_count++;
362 }
363 
364 void
365 vm_page_unhold(vm_page_t mem)
366 {
367 
368 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
369 	--mem->hold_count;
370 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
371 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
372 		vm_page_free_toq(mem);
373 }
374 
375 /*
376  *	vm_page_copy:
377  *
378  *	Copy one page to another
379  */
380 void
381 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
382 {
383 	pmap_copy_page(src_m, dest_m);
384 	dest_m->valid = VM_PAGE_BITS_ALL;
385 }
386 
387 /*
388  *	vm_page_free:
389  *
390  *	Free a page
391  *
392  *	The clearing of PG_ZERO is a temporary safety until the code can be
393  *	reviewed to determine that PG_ZERO is being properly cleared on
394  *	write faults or maps.  PG_ZERO was previously cleared in
395  *	vm_page_alloc().
396  */
397 void
398 vm_page_free(vm_page_t m)
399 {
400 	vm_page_flag_clear(m, PG_ZERO);
401 	vm_page_free_toq(m);
402 	vm_page_zero_idle_wakeup();
403 }
404 
405 /*
406  *	vm_page_free_zero:
407  *
408  *	Free a page to the zerod-pages queue
409  */
410 void
411 vm_page_free_zero(vm_page_t m)
412 {
413 	vm_page_flag_set(m, PG_ZERO);
414 	vm_page_free_toq(m);
415 }
416 
417 /*
418  *	vm_page_sleep_if_busy:
419  *
420  *	Sleep and release the page queues lock if PG_BUSY is set or,
421  *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
422  *	thread slept and the page queues lock was released.
423  *	Otherwise, retains the page queues lock and returns FALSE.
424  */
425 int
426 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
427 {
428 	int is_object_locked;
429 
430 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
431 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
432 		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
433 		/*
434 		 * Remove mtx_owned() after vm_object locking is finished.
435 		 */
436 		if ((is_object_locked = m->object != NULL &&
437 		     mtx_owned(&m->object->mtx)))
438 			mtx_unlock(&m->object->mtx);
439 		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
440 		if (is_object_locked)
441 			mtx_lock(&m->object->mtx);
442 		return (TRUE);
443 	}
444 	return (FALSE);
445 }
446 
447 /*
448  *	vm_page_dirty:
449  *
450  *	make page all dirty
451  */
452 void
453 vm_page_dirty(vm_page_t m)
454 {
455 	KASSERT(m->queue - m->pc != PQ_CACHE,
456 	    ("vm_page_dirty: page in cache!"));
457 	KASSERT(m->queue - m->pc != PQ_FREE,
458 	    ("vm_page_dirty: page is free!"));
459 	m->dirty = VM_PAGE_BITS_ALL;
460 }
461 
462 /*
463  *	vm_page_splay:
464  *
465  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
466  *	the vm_page containing the given pindex.  If, however, that
467  *	pindex is not found in the vm_object, returns a vm_page that is
468  *	adjacent to the pindex, coming before or after it.
469  */
470 vm_page_t
471 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
472 {
473 	struct vm_page dummy;
474 	vm_page_t lefttreemax, righttreemin, y;
475 
476 	if (root == NULL)
477 		return (root);
478 	lefttreemax = righttreemin = &dummy;
479 	for (;; root = y) {
480 		if (pindex < root->pindex) {
481 			if ((y = root->left) == NULL)
482 				break;
483 			if (pindex < y->pindex) {
484 				/* Rotate right. */
485 				root->left = y->right;
486 				y->right = root;
487 				root = y;
488 				if ((y = root->left) == NULL)
489 					break;
490 			}
491 			/* Link into the new root's right tree. */
492 			righttreemin->left = root;
493 			righttreemin = root;
494 		} else if (pindex > root->pindex) {
495 			if ((y = root->right) == NULL)
496 				break;
497 			if (pindex > y->pindex) {
498 				/* Rotate left. */
499 				root->right = y->left;
500 				y->left = root;
501 				root = y;
502 				if ((y = root->right) == NULL)
503 					break;
504 			}
505 			/* Link into the new root's left tree. */
506 			lefttreemax->right = root;
507 			lefttreemax = root;
508 		} else
509 			break;
510 	}
511 	/* Assemble the new root. */
512 	lefttreemax->right = root->left;
513 	righttreemin->left = root->right;
514 	root->left = dummy.right;
515 	root->right = dummy.left;
516 	return (root);
517 }
518 
519 /*
520  *	vm_page_insert:		[ internal use only ]
521  *
522  *	Inserts the given mem entry into the object and object list.
523  *
524  *	The pagetables are not updated but will presumably fault the page
525  *	in if necessary, or if a kernel page the caller will at some point
526  *	enter the page into the kernel's pmap.  We are not allowed to block
527  *	here so we *can't* do this anyway.
528  *
529  *	The object and page must be locked, and must be splhigh.
530  *	This routine may not block.
531  */
532 void
533 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
534 {
535 	vm_page_t root;
536 
537 	if (!VM_OBJECT_LOCKED(object))
538 		GIANT_REQUIRED;
539 	if (m->object != NULL)
540 		panic("vm_page_insert: already inserted");
541 
542 	/*
543 	 * Record the object/offset pair in this page
544 	 */
545 	m->object = object;
546 	m->pindex = pindex;
547 
548 	/*
549 	 * Now link into the object's ordered list of backed pages.
550 	 */
551 	root = object->root;
552 	if (root == NULL) {
553 		m->left = NULL;
554 		m->right = NULL;
555 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
556 	} else {
557 		root = vm_page_splay(pindex, root);
558 		if (pindex < root->pindex) {
559 			m->left = root->left;
560 			m->right = root;
561 			root->left = NULL;
562 			TAILQ_INSERT_BEFORE(root, m, listq);
563 		} else {
564 			m->right = root->right;
565 			m->left = root;
566 			root->right = NULL;
567 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
568 		}
569 	}
570 	object->root = m;
571 	object->generation++;
572 
573 	/*
574 	 * show that the object has one more resident page.
575 	 */
576 	object->resident_page_count++;
577 
578 	/*
579 	 * Since we are inserting a new and possibly dirty page,
580 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
581 	 */
582 	if (m->flags & PG_WRITEABLE)
583 		vm_object_set_writeable_dirty(object);
584 }
585 
586 /*
587  *	vm_page_remove:
588  *				NOTE: used by device pager as well -wfj
589  *
590  *	Removes the given mem entry from the object/offset-page
591  *	table and the object page list, but do not invalidate/terminate
592  *	the backing store.
593  *
594  *	The object and page must be locked, and at splhigh.
595  *	The underlying pmap entry (if any) is NOT removed here.
596  *	This routine may not block.
597  */
598 void
599 vm_page_remove(vm_page_t m)
600 {
601 	vm_object_t object;
602 	vm_page_t root;
603 
604 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
605 	if (m->object == NULL)
606 		return;
607 	if (!VM_OBJECT_LOCKED(m->object))
608 		GIANT_REQUIRED;
609 	if ((m->flags & PG_BUSY) == 0) {
610 		panic("vm_page_remove: page not busy");
611 	}
612 
613 	/*
614 	 * Basically destroy the page.
615 	 */
616 	vm_page_wakeup(m);
617 
618 	object = m->object;
619 
620 	/*
621 	 * Now remove from the object's list of backed pages.
622 	 */
623 	if (m != object->root)
624 		vm_page_splay(m->pindex, object->root);
625 	if (m->left == NULL)
626 		root = m->right;
627 	else {
628 		root = vm_page_splay(m->pindex, m->left);
629 		root->right = m->right;
630 	}
631 	object->root = root;
632 	TAILQ_REMOVE(&object->memq, m, listq);
633 
634 	/*
635 	 * And show that the object has one fewer resident page.
636 	 */
637 	object->resident_page_count--;
638 	object->generation++;
639 
640 	m->object = NULL;
641 }
642 
643 /*
644  *	vm_page_lookup:
645  *
646  *	Returns the page associated with the object/offset
647  *	pair specified; if none is found, NULL is returned.
648  *
649  *	The object must be locked.
650  *	This routine may not block.
651  *	This is a critical path routine
652  */
653 vm_page_t
654 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
655 {
656 	vm_page_t m;
657 
658 	if (!VM_OBJECT_LOCKED(object))
659 		GIANT_REQUIRED;
660 	m = vm_page_splay(pindex, object->root);
661 	if ((object->root = m) != NULL && m->pindex != pindex)
662 		m = NULL;
663 	return (m);
664 }
665 
666 /*
667  *	vm_page_rename:
668  *
669  *	Move the given memory entry from its
670  *	current object to the specified target object/offset.
671  *
672  *	The object must be locked.
673  *	This routine may not block.
674  *
675  *	Note: this routine will raise itself to splvm(), the caller need not.
676  *
677  *	Note: swap associated with the page must be invalidated by the move.  We
678  *	      have to do this for several reasons:  (1) we aren't freeing the
679  *	      page, (2) we are dirtying the page, (3) the VM system is probably
680  *	      moving the page from object A to B, and will then later move
681  *	      the backing store from A to B and we can't have a conflict.
682  *
683  *	Note: we *always* dirty the page.  It is necessary both for the
684  *	      fact that we moved it, and because we may be invalidating
685  *	      swap.  If the page is on the cache, we have to deactivate it
686  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
687  *	      on the cache.
688  */
689 void
690 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
691 {
692 	int s;
693 
694 	s = splvm();
695 	vm_page_remove(m);
696 	vm_page_insert(m, new_object, new_pindex);
697 	if (m->queue - m->pc == PQ_CACHE)
698 		vm_page_deactivate(m);
699 	vm_page_dirty(m);
700 	splx(s);
701 }
702 
703 /*
704  *	vm_page_select_cache:
705  *
706  *	Find a page on the cache queue with color optimization.  As pages
707  *	might be found, but not applicable, they are deactivated.  This
708  *	keeps us from using potentially busy cached pages.
709  *
710  *	This routine must be called at splvm().
711  *	This routine may not block.
712  */
713 static vm_page_t
714 vm_page_select_cache(vm_pindex_t color)
715 {
716 	vm_page_t m;
717 
718 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
719 	while (TRUE) {
720 		m = vm_pageq_find(PQ_CACHE, color & PQ_L2_MASK, FALSE);
721 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
722 			       m->hold_count || m->wire_count)) {
723 			vm_page_deactivate(m);
724 			continue;
725 		}
726 		return m;
727 	}
728 }
729 
730 /*
731  *	vm_page_select_free:
732  *
733  *	Find a free or zero page, with specified preference.
734  *
735  *	This routine must be called at splvm().
736  *	This routine may not block.
737  */
738 static __inline vm_page_t
739 vm_page_select_free(vm_pindex_t color, boolean_t prefer_zero)
740 {
741 	vm_page_t m;
742 
743 	m = vm_pageq_find(PQ_FREE, color & PQ_L2_MASK, prefer_zero);
744 	return (m);
745 }
746 
747 /*
748  *	vm_page_alloc:
749  *
750  *	Allocate and return a memory cell associated
751  *	with this VM object/offset pair.
752  *
753  *	page_req classes:
754  *	VM_ALLOC_NORMAL		normal process request
755  *	VM_ALLOC_SYSTEM		system *really* needs a page
756  *	VM_ALLOC_INTERRUPT	interrupt time request
757  *	VM_ALLOC_ZERO		zero page
758  *
759  *	This routine may not block.
760  *
761  *	Additional special handling is required when called from an
762  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
763  *	the page cache in this case.
764  */
765 vm_page_t
766 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
767 {
768 	vm_page_t m = NULL;
769 	vm_pindex_t color;
770 	int flags, page_req, s;
771 
772 	page_req = req & VM_ALLOC_CLASS_MASK;
773 
774 	if ((req & VM_ALLOC_NOOBJ) == 0) {
775 		KASSERT(object != NULL,
776 		    ("vm_page_alloc: NULL object."));
777 		KASSERT(!vm_page_lookup(object, pindex),
778 		    ("vm_page_alloc: page already allocated"));
779 		color = pindex + object->pg_color;
780 	} else
781 		color = pindex;
782 
783 	/*
784 	 * The pager is allowed to eat deeper into the free page list.
785 	 */
786 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
787 		page_req = VM_ALLOC_SYSTEM;
788 	};
789 
790 	s = splvm();
791 loop:
792 	mtx_lock_spin(&vm_page_queue_free_mtx);
793 	if (cnt.v_free_count > cnt.v_free_reserved ||
794 	    (page_req == VM_ALLOC_SYSTEM &&
795 	     cnt.v_cache_count == 0 &&
796 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
797 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
798 		/*
799 		 * Allocate from the free queue if the number of free pages
800 		 * exceeds the minimum for the request class.
801 		 */
802 		m = vm_page_select_free(color, (req & VM_ALLOC_ZERO) != 0);
803 	} else if (page_req != VM_ALLOC_INTERRUPT) {
804 		mtx_unlock_spin(&vm_page_queue_free_mtx);
805 		/*
806 		 * Allocatable from cache (non-interrupt only).  On success,
807 		 * we must free the page and try again, thus ensuring that
808 		 * cnt.v_*_free_min counters are replenished.
809 		 */
810 		vm_page_lock_queues();
811 		if ((m = vm_page_select_cache(color)) == NULL) {
812 			vm_page_unlock_queues();
813 			splx(s);
814 #if defined(DIAGNOSTIC)
815 			if (cnt.v_cache_count > 0)
816 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
817 #endif
818 			atomic_add_int(&vm_pageout_deficit, 1);
819 			pagedaemon_wakeup();
820 			return (NULL);
821 		}
822 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
823 		vm_page_busy(m);
824 		pmap_remove_all(m);
825 		vm_page_free(m);
826 		vm_page_unlock_queues();
827 		goto loop;
828 	} else {
829 		/*
830 		 * Not allocatable from cache from interrupt, give up.
831 		 */
832 		mtx_unlock_spin(&vm_page_queue_free_mtx);
833 		splx(s);
834 		atomic_add_int(&vm_pageout_deficit, 1);
835 		pagedaemon_wakeup();
836 		return (NULL);
837 	}
838 
839 	/*
840 	 *  At this point we had better have found a good page.
841 	 */
842 
843 	KASSERT(
844 	    m != NULL,
845 	    ("vm_page_alloc(): missing page on free queue\n")
846 	);
847 
848 	/*
849 	 * Remove from free queue
850 	 */
851 
852 	vm_pageq_remove_nowakeup(m);
853 
854 	/*
855 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
856 	 */
857 	flags = PG_BUSY;
858 	if (m->flags & PG_ZERO) {
859 		vm_page_zero_count--;
860 		if (req & VM_ALLOC_ZERO)
861 			flags = PG_ZERO | PG_BUSY;
862 	}
863 	m->flags = flags;
864 	if (req & VM_ALLOC_WIRED) {
865 		atomic_add_int(&cnt.v_wire_count, 1);
866 		m->wire_count = 1;
867 	} else
868 		m->wire_count = 0;
869 	m->hold_count = 0;
870 	m->act_count = 0;
871 	m->busy = 0;
872 	m->valid = 0;
873 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
874 	mtx_unlock_spin(&vm_page_queue_free_mtx);
875 
876 	/*
877 	 * vm_page_insert() is safe prior to the splx().  Note also that
878 	 * inserting a page here does not insert it into the pmap (which
879 	 * could cause us to block allocating memory).  We cannot block
880 	 * anywhere.
881 	 */
882 	if ((req & VM_ALLOC_NOOBJ) == 0)
883 		vm_page_insert(m, object, pindex);
884 
885 	/*
886 	 * Don't wakeup too often - wakeup the pageout daemon when
887 	 * we would be nearly out of memory.
888 	 */
889 	if (vm_paging_needed())
890 		pagedaemon_wakeup();
891 
892 	splx(s);
893 	return (m);
894 }
895 
896 /*
897  *	vm_wait:	(also see VM_WAIT macro)
898  *
899  *	Block until free pages are available for allocation
900  *	- Called in various places before memory allocations.
901  */
902 void
903 vm_wait(void)
904 {
905 	int s;
906 
907 	s = splvm();
908 	vm_page_lock_queues();
909 	if (curproc == pageproc) {
910 		vm_pageout_pages_needed = 1;
911 		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
912 		    PDROP | PSWP, "VMWait", 0);
913 	} else {
914 		if (!vm_pages_needed) {
915 			vm_pages_needed = 1;
916 			wakeup(&vm_pages_needed);
917 		}
918 		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
919 		    "vmwait", 0);
920 	}
921 	splx(s);
922 }
923 
924 /*
925  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
926  *
927  *	Block until free pages are available for allocation
928  *	- Called only in vm_fault so that processes page faulting
929  *	  can be easily tracked.
930  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
931  *	  processes will be able to grab memory first.  Do not change
932  *	  this balance without careful testing first.
933  */
934 void
935 vm_waitpfault(void)
936 {
937 	int s;
938 
939 	s = splvm();
940 	vm_page_lock_queues();
941 	if (!vm_pages_needed) {
942 		vm_pages_needed = 1;
943 		wakeup(&vm_pages_needed);
944 	}
945 	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
946 	    "pfault", 0);
947 	splx(s);
948 }
949 
950 /*
951  *	vm_page_activate:
952  *
953  *	Put the specified page on the active list (if appropriate).
954  *	Ensure that act_count is at least ACT_INIT but do not otherwise
955  *	mess with it.
956  *
957  *	The page queues must be locked.
958  *	This routine may not block.
959  */
960 void
961 vm_page_activate(vm_page_t m)
962 {
963 	int s;
964 
965 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
966 	s = splvm();
967 	if (m->queue != PQ_ACTIVE) {
968 		if ((m->queue - m->pc) == PQ_CACHE)
969 			cnt.v_reactivated++;
970 		vm_pageq_remove(m);
971 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
972 			if (m->act_count < ACT_INIT)
973 				m->act_count = ACT_INIT;
974 			vm_pageq_enqueue(PQ_ACTIVE, m);
975 		}
976 	} else {
977 		if (m->act_count < ACT_INIT)
978 			m->act_count = ACT_INIT;
979 	}
980 	splx(s);
981 }
982 
983 /*
984  *	vm_page_free_wakeup:
985  *
986  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
987  *	routine is called when a page has been added to the cache or free
988  *	queues.
989  *
990  *	This routine may not block.
991  *	This routine must be called at splvm()
992  */
993 static __inline void
994 vm_page_free_wakeup(void)
995 {
996 
997 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
998 	/*
999 	 * if pageout daemon needs pages, then tell it that there are
1000 	 * some free.
1001 	 */
1002 	if (vm_pageout_pages_needed &&
1003 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1004 		wakeup(&vm_pageout_pages_needed);
1005 		vm_pageout_pages_needed = 0;
1006 	}
1007 	/*
1008 	 * wakeup processes that are waiting on memory if we hit a
1009 	 * high water mark. And wakeup scheduler process if we have
1010 	 * lots of memory. this process will swapin processes.
1011 	 */
1012 	if (vm_pages_needed && !vm_page_count_min()) {
1013 		vm_pages_needed = 0;
1014 		wakeup(&cnt.v_free_count);
1015 	}
1016 }
1017 
1018 /*
1019  *	vm_page_free_toq:
1020  *
1021  *	Returns the given page to the PQ_FREE list,
1022  *	disassociating it with any VM object.
1023  *
1024  *	Object and page must be locked prior to entry.
1025  *	This routine may not block.
1026  */
1027 
1028 void
1029 vm_page_free_toq(vm_page_t m)
1030 {
1031 	int s;
1032 	struct vpgqueues *pq;
1033 	vm_object_t object = m->object;
1034 
1035 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1036 	s = splvm();
1037 	cnt.v_tfree++;
1038 
1039 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1040 		printf(
1041 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1042 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1043 		    m->hold_count);
1044 		if ((m->queue - m->pc) == PQ_FREE)
1045 			panic("vm_page_free: freeing free page");
1046 		else
1047 			panic("vm_page_free: freeing busy page");
1048 	}
1049 
1050 	/*
1051 	 * unqueue, then remove page.  Note that we cannot destroy
1052 	 * the page here because we do not want to call the pager's
1053 	 * callback routine until after we've put the page on the
1054 	 * appropriate free queue.
1055 	 */
1056 	vm_pageq_remove_nowakeup(m);
1057 	vm_page_remove(m);
1058 
1059 	/*
1060 	 * If fictitious remove object association and
1061 	 * return, otherwise delay object association removal.
1062 	 */
1063 	if ((m->flags & PG_FICTITIOUS) != 0) {
1064 		splx(s);
1065 		return;
1066 	}
1067 
1068 	m->valid = 0;
1069 	vm_page_undirty(m);
1070 
1071 	if (m->wire_count != 0) {
1072 		if (m->wire_count > 1) {
1073 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1074 				m->wire_count, (long)m->pindex);
1075 		}
1076 		panic("vm_page_free: freeing wired page\n");
1077 	}
1078 
1079 	/*
1080 	 * If we've exhausted the object's resident pages we want to free
1081 	 * it up.
1082 	 */
1083 	if (object &&
1084 	    (object->type == OBJT_VNODE) &&
1085 	    ((object->flags & OBJ_DEAD) == 0)
1086 	) {
1087 		struct vnode *vp = (struct vnode *)object->handle;
1088 
1089 		if (vp) {
1090 			VI_LOCK(vp);
1091 			if (VSHOULDFREE(vp))
1092 				vfree(vp);
1093 			VI_UNLOCK(vp);
1094 		}
1095 	}
1096 
1097 	/*
1098 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1099 	 */
1100 	if (m->flags & PG_UNMANAGED) {
1101 		m->flags &= ~PG_UNMANAGED;
1102 	}
1103 
1104 	if (m->hold_count != 0) {
1105 		m->flags &= ~PG_ZERO;
1106 		m->queue = PQ_HOLD;
1107 	} else
1108 		m->queue = PQ_FREE + m->pc;
1109 	pq = &vm_page_queues[m->queue];
1110 	mtx_lock_spin(&vm_page_queue_free_mtx);
1111 	pq->lcnt++;
1112 	++(*pq->cnt);
1113 
1114 	/*
1115 	 * Put zero'd pages on the end ( where we look for zero'd pages
1116 	 * first ) and non-zerod pages at the head.
1117 	 */
1118 	if (m->flags & PG_ZERO) {
1119 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1120 		++vm_page_zero_count;
1121 	} else {
1122 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1123 	}
1124 	mtx_unlock_spin(&vm_page_queue_free_mtx);
1125 	vm_page_free_wakeup();
1126 	splx(s);
1127 }
1128 
1129 /*
1130  *	vm_page_unmanage:
1131  *
1132  * 	Prevent PV management from being done on the page.  The page is
1133  *	removed from the paging queues as if it were wired, and as a
1134  *	consequence of no longer being managed the pageout daemon will not
1135  *	touch it (since there is no way to locate the pte mappings for the
1136  *	page).  madvise() calls that mess with the pmap will also no longer
1137  *	operate on the page.
1138  *
1139  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1140  *	will clear the flag.
1141  *
1142  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1143  *	physical memory as backing store rather then swap-backed memory and
1144  *	will eventually be extended to support 4MB unmanaged physical
1145  *	mappings.
1146  */
1147 void
1148 vm_page_unmanage(vm_page_t m)
1149 {
1150 	int s;
1151 
1152 	s = splvm();
1153 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1154 	if ((m->flags & PG_UNMANAGED) == 0) {
1155 		if (m->wire_count == 0)
1156 			vm_pageq_remove(m);
1157 	}
1158 	vm_page_flag_set(m, PG_UNMANAGED);
1159 	splx(s);
1160 }
1161 
1162 /*
1163  *	vm_page_wire:
1164  *
1165  *	Mark this page as wired down by yet
1166  *	another map, removing it from paging queues
1167  *	as necessary.
1168  *
1169  *	The page queues must be locked.
1170  *	This routine may not block.
1171  */
1172 void
1173 vm_page_wire(vm_page_t m)
1174 {
1175 	int s;
1176 
1177 	/*
1178 	 * Only bump the wire statistics if the page is not already wired,
1179 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1180 	 * it is already off the queues).
1181 	 */
1182 	s = splvm();
1183 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1184 	if (m->wire_count == 0) {
1185 		if ((m->flags & PG_UNMANAGED) == 0)
1186 			vm_pageq_remove(m);
1187 		atomic_add_int(&cnt.v_wire_count, 1);
1188 	}
1189 	m->wire_count++;
1190 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1191 	splx(s);
1192 }
1193 
1194 /*
1195  *	vm_page_unwire:
1196  *
1197  *	Release one wiring of this page, potentially
1198  *	enabling it to be paged again.
1199  *
1200  *	Many pages placed on the inactive queue should actually go
1201  *	into the cache, but it is difficult to figure out which.  What
1202  *	we do instead, if the inactive target is well met, is to put
1203  *	clean pages at the head of the inactive queue instead of the tail.
1204  *	This will cause them to be moved to the cache more quickly and
1205  *	if not actively re-referenced, freed more quickly.  If we just
1206  *	stick these pages at the end of the inactive queue, heavy filesystem
1207  *	meta-data accesses can cause an unnecessary paging load on memory bound
1208  *	processes.  This optimization causes one-time-use metadata to be
1209  *	reused more quickly.
1210  *
1211  *	BUT, if we are in a low-memory situation we have no choice but to
1212  *	put clean pages on the cache queue.
1213  *
1214  *	A number of routines use vm_page_unwire() to guarantee that the page
1215  *	will go into either the inactive or active queues, and will NEVER
1216  *	be placed in the cache - for example, just after dirtying a page.
1217  *	dirty pages in the cache are not allowed.
1218  *
1219  *	The page queues must be locked.
1220  *	This routine may not block.
1221  */
1222 void
1223 vm_page_unwire(vm_page_t m, int activate)
1224 {
1225 	int s;
1226 
1227 	s = splvm();
1228 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1229 	if (m->wire_count > 0) {
1230 		m->wire_count--;
1231 		if (m->wire_count == 0) {
1232 			atomic_subtract_int(&cnt.v_wire_count, 1);
1233 			if (m->flags & PG_UNMANAGED) {
1234 				;
1235 			} else if (activate)
1236 				vm_pageq_enqueue(PQ_ACTIVE, m);
1237 			else {
1238 				vm_page_flag_clear(m, PG_WINATCFLS);
1239 				vm_pageq_enqueue(PQ_INACTIVE, m);
1240 			}
1241 		}
1242 	} else {
1243 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1244 	}
1245 	splx(s);
1246 }
1247 
1248 
1249 /*
1250  * Move the specified page to the inactive queue.  If the page has
1251  * any associated swap, the swap is deallocated.
1252  *
1253  * Normally athead is 0 resulting in LRU operation.  athead is set
1254  * to 1 if we want this page to be 'as if it were placed in the cache',
1255  * except without unmapping it from the process address space.
1256  *
1257  * This routine may not block.
1258  */
1259 static __inline void
1260 _vm_page_deactivate(vm_page_t m, int athead)
1261 {
1262 	int s;
1263 
1264 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1265 	/*
1266 	 * Ignore if already inactive.
1267 	 */
1268 	if (m->queue == PQ_INACTIVE)
1269 		return;
1270 
1271 	s = splvm();
1272 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1273 		if ((m->queue - m->pc) == PQ_CACHE)
1274 			cnt.v_reactivated++;
1275 		vm_page_flag_clear(m, PG_WINATCFLS);
1276 		vm_pageq_remove(m);
1277 		if (athead)
1278 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1279 		else
1280 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1281 		m->queue = PQ_INACTIVE;
1282 		vm_page_queues[PQ_INACTIVE].lcnt++;
1283 		cnt.v_inactive_count++;
1284 	}
1285 	splx(s);
1286 }
1287 
1288 void
1289 vm_page_deactivate(vm_page_t m)
1290 {
1291     _vm_page_deactivate(m, 0);
1292 }
1293 
1294 /*
1295  * vm_page_try_to_cache:
1296  *
1297  * Returns 0 on failure, 1 on success
1298  */
1299 int
1300 vm_page_try_to_cache(vm_page_t m)
1301 {
1302 
1303 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1304 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1305 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1306 		return (0);
1307 	}
1308 	vm_page_test_dirty(m);
1309 	if (m->dirty)
1310 		return (0);
1311 	vm_page_cache(m);
1312 	return (1);
1313 }
1314 
1315 /*
1316  * vm_page_try_to_free()
1317  *
1318  *	Attempt to free the page.  If we cannot free it, we do nothing.
1319  *	1 is returned on success, 0 on failure.
1320  */
1321 int
1322 vm_page_try_to_free(vm_page_t m)
1323 {
1324 
1325 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1326 	if (m->object != NULL)
1327 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1328 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1329 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1330 		return (0);
1331 	}
1332 	vm_page_test_dirty(m);
1333 	if (m->dirty)
1334 		return (0);
1335 	vm_page_busy(m);
1336 	pmap_remove_all(m);
1337 	vm_page_free(m);
1338 	return (1);
1339 }
1340 
1341 /*
1342  * vm_page_cache
1343  *
1344  * Put the specified page onto the page cache queue (if appropriate).
1345  *
1346  * This routine may not block.
1347  */
1348 void
1349 vm_page_cache(vm_page_t m)
1350 {
1351 	int s;
1352 
1353 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1354 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1355 		printf("vm_page_cache: attempting to cache busy page\n");
1356 		return;
1357 	}
1358 	if ((m->queue - m->pc) == PQ_CACHE)
1359 		return;
1360 
1361 	/*
1362 	 * Remove all pmaps and indicate that the page is not
1363 	 * writeable or mapped.
1364 	 */
1365 	pmap_remove_all(m);
1366 	if (m->dirty != 0) {
1367 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1368 			(long)m->pindex);
1369 	}
1370 	s = splvm();
1371 	vm_pageq_remove_nowakeup(m);
1372 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1373 	vm_page_free_wakeup();
1374 	splx(s);
1375 }
1376 
1377 /*
1378  * vm_page_dontneed
1379  *
1380  *	Cache, deactivate, or do nothing as appropriate.  This routine
1381  *	is typically used by madvise() MADV_DONTNEED.
1382  *
1383  *	Generally speaking we want to move the page into the cache so
1384  *	it gets reused quickly.  However, this can result in a silly syndrome
1385  *	due to the page recycling too quickly.  Small objects will not be
1386  *	fully cached.  On the otherhand, if we move the page to the inactive
1387  *	queue we wind up with a problem whereby very large objects
1388  *	unnecessarily blow away our inactive and cache queues.
1389  *
1390  *	The solution is to move the pages based on a fixed weighting.  We
1391  *	either leave them alone, deactivate them, or move them to the cache,
1392  *	where moving them to the cache has the highest weighting.
1393  *	By forcing some pages into other queues we eventually force the
1394  *	system to balance the queues, potentially recovering other unrelated
1395  *	space from active.  The idea is to not force this to happen too
1396  *	often.
1397  */
1398 void
1399 vm_page_dontneed(vm_page_t m)
1400 {
1401 	static int dnweight;
1402 	int dnw;
1403 	int head;
1404 
1405 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1406 	dnw = ++dnweight;
1407 
1408 	/*
1409 	 * occassionally leave the page alone
1410 	 */
1411 	if ((dnw & 0x01F0) == 0 ||
1412 	    m->queue == PQ_INACTIVE ||
1413 	    m->queue - m->pc == PQ_CACHE
1414 	) {
1415 		if (m->act_count >= ACT_INIT)
1416 			--m->act_count;
1417 		return;
1418 	}
1419 
1420 	if (m->dirty == 0)
1421 		vm_page_test_dirty(m);
1422 
1423 	if (m->dirty || (dnw & 0x0070) == 0) {
1424 		/*
1425 		 * Deactivate the page 3 times out of 32.
1426 		 */
1427 		head = 0;
1428 	} else {
1429 		/*
1430 		 * Cache the page 28 times out of every 32.  Note that
1431 		 * the page is deactivated instead of cached, but placed
1432 		 * at the head of the queue instead of the tail.
1433 		 */
1434 		head = 1;
1435 	}
1436 	_vm_page_deactivate(m, head);
1437 }
1438 
1439 /*
1440  * Grab a page, waiting until we are waken up due to the page
1441  * changing state.  We keep on waiting, if the page continues
1442  * to be in the object.  If the page doesn't exist, allocate it.
1443  *
1444  * This routine may block.
1445  */
1446 vm_page_t
1447 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1448 {
1449 	vm_page_t m;
1450 	int s, generation, is_object_locked;
1451 
1452 	/*
1453 	 * Remove is_object_locked after vm_object locking is finished.
1454 	 */
1455 	if (!(is_object_locked = VM_OBJECT_LOCKED(object)))
1456 		GIANT_REQUIRED;
1457 retrylookup:
1458 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1459 		vm_page_lock_queues();
1460 		if (m->busy || (m->flags & PG_BUSY)) {
1461 			generation = object->generation;
1462 
1463 			s = splvm();
1464 			while ((object->generation == generation) &&
1465 					(m->busy || (m->flags & PG_BUSY))) {
1466 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1467 				if (is_object_locked)
1468 					VM_OBJECT_UNLOCK(object);
1469 				msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1470 				if (is_object_locked)
1471 					VM_OBJECT_LOCK(object);
1472 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1473 					splx(s);
1474 					return NULL;
1475 				}
1476 				vm_page_lock_queues();
1477 			}
1478 			vm_page_unlock_queues();
1479 			splx(s);
1480 			goto retrylookup;
1481 		} else {
1482 			if (allocflags & VM_ALLOC_WIRED)
1483 				vm_page_wire(m);
1484 			vm_page_busy(m);
1485 			vm_page_unlock_queues();
1486 			return m;
1487 		}
1488 	}
1489 
1490 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1491 	if (m == NULL) {
1492 		if (is_object_locked)
1493 			VM_OBJECT_UNLOCK(object);
1494 		VM_WAIT;
1495 		if (is_object_locked)
1496 			VM_OBJECT_LOCK(object);
1497 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1498 			return NULL;
1499 		goto retrylookup;
1500 	}
1501 
1502 	return m;
1503 }
1504 
1505 /*
1506  * Mapping function for valid bits or for dirty bits in
1507  * a page.  May not block.
1508  *
1509  * Inputs are required to range within a page.
1510  */
1511 __inline int
1512 vm_page_bits(int base, int size)
1513 {
1514 	int first_bit;
1515 	int last_bit;
1516 
1517 	KASSERT(
1518 	    base + size <= PAGE_SIZE,
1519 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1520 	);
1521 
1522 	if (size == 0)		/* handle degenerate case */
1523 		return (0);
1524 
1525 	first_bit = base >> DEV_BSHIFT;
1526 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1527 
1528 	return ((2 << last_bit) - (1 << first_bit));
1529 }
1530 
1531 /*
1532  *	vm_page_set_validclean:
1533  *
1534  *	Sets portions of a page valid and clean.  The arguments are expected
1535  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1536  *	of any partial chunks touched by the range.  The invalid portion of
1537  *	such chunks will be zero'd.
1538  *
1539  *	This routine may not block.
1540  *
1541  *	(base + size) must be less then or equal to PAGE_SIZE.
1542  */
1543 void
1544 vm_page_set_validclean(vm_page_t m, int base, int size)
1545 {
1546 	int pagebits;
1547 	int frag;
1548 	int endoff;
1549 
1550 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1551 	if (size == 0)	/* handle degenerate case */
1552 		return;
1553 
1554 	/*
1555 	 * If the base is not DEV_BSIZE aligned and the valid
1556 	 * bit is clear, we have to zero out a portion of the
1557 	 * first block.
1558 	 */
1559 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1560 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1561 		pmap_zero_page_area(m, frag, base - frag);
1562 
1563 	/*
1564 	 * If the ending offset is not DEV_BSIZE aligned and the
1565 	 * valid bit is clear, we have to zero out a portion of
1566 	 * the last block.
1567 	 */
1568 	endoff = base + size;
1569 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1570 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1571 		pmap_zero_page_area(m, endoff,
1572 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1573 
1574 	/*
1575 	 * Set valid, clear dirty bits.  If validating the entire
1576 	 * page we can safely clear the pmap modify bit.  We also
1577 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1578 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1579 	 * be set again.
1580 	 *
1581 	 * We set valid bits inclusive of any overlap, but we can only
1582 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1583 	 * the range.
1584 	 */
1585 	pagebits = vm_page_bits(base, size);
1586 	m->valid |= pagebits;
1587 #if 0	/* NOT YET */
1588 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1589 		frag = DEV_BSIZE - frag;
1590 		base += frag;
1591 		size -= frag;
1592 		if (size < 0)
1593 			size = 0;
1594 	}
1595 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1596 #endif
1597 	m->dirty &= ~pagebits;
1598 	if (base == 0 && size == PAGE_SIZE) {
1599 		pmap_clear_modify(m);
1600 		vm_page_flag_clear(m, PG_NOSYNC);
1601 	}
1602 }
1603 
1604 #if 0
1605 
1606 void
1607 vm_page_set_dirty(vm_page_t m, int base, int size)
1608 {
1609 	m->dirty |= vm_page_bits(base, size);
1610 }
1611 
1612 #endif
1613 
1614 void
1615 vm_page_clear_dirty(vm_page_t m, int base, int size)
1616 {
1617 	GIANT_REQUIRED;
1618 	m->dirty &= ~vm_page_bits(base, size);
1619 }
1620 
1621 /*
1622  *	vm_page_set_invalid:
1623  *
1624  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1625  *	valid and dirty bits for the effected areas are cleared.
1626  *
1627  *	May not block.
1628  */
1629 void
1630 vm_page_set_invalid(vm_page_t m, int base, int size)
1631 {
1632 	int bits;
1633 
1634 	GIANT_REQUIRED;
1635 	bits = vm_page_bits(base, size);
1636 	m->valid &= ~bits;
1637 	m->dirty &= ~bits;
1638 	m->object->generation++;
1639 }
1640 
1641 /*
1642  * vm_page_zero_invalid()
1643  *
1644  *	The kernel assumes that the invalid portions of a page contain
1645  *	garbage, but such pages can be mapped into memory by user code.
1646  *	When this occurs, we must zero out the non-valid portions of the
1647  *	page so user code sees what it expects.
1648  *
1649  *	Pages are most often semi-valid when the end of a file is mapped
1650  *	into memory and the file's size is not page aligned.
1651  */
1652 void
1653 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1654 {
1655 	int b;
1656 	int i;
1657 
1658 	/*
1659 	 * Scan the valid bits looking for invalid sections that
1660 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1661 	 * valid bit may be set ) have already been zerod by
1662 	 * vm_page_set_validclean().
1663 	 */
1664 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1665 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1666 		    (m->valid & (1 << i))
1667 		) {
1668 			if (i > b) {
1669 				pmap_zero_page_area(m,
1670 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1671 			}
1672 			b = i + 1;
1673 		}
1674 	}
1675 
1676 	/*
1677 	 * setvalid is TRUE when we can safely set the zero'd areas
1678 	 * as being valid.  We can do this if there are no cache consistancy
1679 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1680 	 */
1681 	if (setvalid)
1682 		m->valid = VM_PAGE_BITS_ALL;
1683 }
1684 
1685 /*
1686  *	vm_page_is_valid:
1687  *
1688  *	Is (partial) page valid?  Note that the case where size == 0
1689  *	will return FALSE in the degenerate case where the page is
1690  *	entirely invalid, and TRUE otherwise.
1691  *
1692  *	May not block.
1693  */
1694 int
1695 vm_page_is_valid(vm_page_t m, int base, int size)
1696 {
1697 	int bits = vm_page_bits(base, size);
1698 
1699 	if (m->valid && ((m->valid & bits) == bits))
1700 		return 1;
1701 	else
1702 		return 0;
1703 }
1704 
1705 /*
1706  * update dirty bits from pmap/mmu.  May not block.
1707  */
1708 void
1709 vm_page_test_dirty(vm_page_t m)
1710 {
1711 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1712 		vm_page_dirty(m);
1713 	}
1714 }
1715 
1716 int so_zerocp_fullpage = 0;
1717 
1718 void
1719 vm_page_cowfault(vm_page_t m)
1720 {
1721 	vm_page_t mnew;
1722 	vm_object_t object;
1723 	vm_pindex_t pindex;
1724 
1725 	object = m->object;
1726 	pindex = m->pindex;
1727 	vm_page_busy(m);
1728 
1729  retry_alloc:
1730 	vm_page_remove(m);
1731 	/*
1732 	 * An interrupt allocation is requested because the page
1733 	 * queues lock is held.
1734 	 */
1735 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1736 	if (mnew == NULL) {
1737 		vm_page_insert(m, object, pindex);
1738 		vm_page_unlock_queues();
1739 		VM_OBJECT_UNLOCK(object);
1740 		VM_WAIT;
1741 		VM_OBJECT_LOCK(object);
1742 		vm_page_lock_queues();
1743 		goto retry_alloc;
1744 	}
1745 
1746 	if (m->cow == 0) {
1747 		/*
1748 		 * check to see if we raced with an xmit complete when
1749 		 * waiting to allocate a page.  If so, put things back
1750 		 * the way they were
1751 		 */
1752 		vm_page_busy(mnew);
1753 		vm_page_free(mnew);
1754 		vm_page_insert(m, object, pindex);
1755 	} else { /* clear COW & copy page */
1756 		if (so_zerocp_fullpage) {
1757 			mnew->valid = VM_PAGE_BITS_ALL;
1758 		} else {
1759 			vm_page_copy(m, mnew);
1760 		}
1761 		vm_page_dirty(mnew);
1762 		vm_page_flag_clear(mnew, PG_BUSY);
1763 	}
1764 }
1765 
1766 void
1767 vm_page_cowclear(vm_page_t m)
1768 {
1769 
1770 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1771 	if (m->cow) {
1772 		m->cow--;
1773 		/*
1774 		 * let vm_fault add back write permission  lazily
1775 		 */
1776 	}
1777 	/*
1778 	 *  sf_buf_free() will free the page, so we needn't do it here
1779 	 */
1780 }
1781 
1782 void
1783 vm_page_cowsetup(vm_page_t m)
1784 {
1785 
1786 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1787 	m->cow++;
1788 	pmap_page_protect(m, VM_PROT_READ);
1789 }
1790 
1791 #include "opt_ddb.h"
1792 #ifdef DDB
1793 #include <sys/kernel.h>
1794 
1795 #include <ddb/ddb.h>
1796 
1797 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1798 {
1799 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1800 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1801 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1802 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1803 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1804 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1805 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1806 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1807 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1808 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1809 }
1810 
1811 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1812 {
1813 	int i;
1814 	db_printf("PQ_FREE:");
1815 	for (i = 0; i < PQ_L2_SIZE; i++) {
1816 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1817 	}
1818 	db_printf("\n");
1819 
1820 	db_printf("PQ_CACHE:");
1821 	for (i = 0; i < PQ_L2_SIZE; i++) {
1822 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1823 	}
1824 	db_printf("\n");
1825 
1826 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1827 		vm_page_queues[PQ_ACTIVE].lcnt,
1828 		vm_page_queues[PQ_INACTIVE].lcnt);
1829 }
1830 #endif /* DDB */
1831