1 /* 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 33 */ 34 35 /* 36 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 37 * All rights reserved. 38 * 39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 40 * 41 * Permission to use, copy, modify and distribute this software and 42 * its documentation is hereby granted, provided that both the copyright 43 * notice and this permission notice appear in all copies of the 44 * software, derivative works or modified versions, and any portions 45 * thereof, and that both notices appear in supporting documentation. 46 * 47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 48 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 50 * 51 * Carnegie Mellon requests users of this software to return to 52 * 53 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 54 * School of Computer Science 55 * Carnegie Mellon University 56 * Pittsburgh PA 15213-3890 57 * 58 * any improvements or extensions that they make and grant Carnegie the 59 * rights to redistribute these changes. 60 */ 61 62 /* 63 * GENERAL RULES ON VM_PAGE MANIPULATION 64 * 65 * - a pageq mutex is required when adding or removing a page from a 66 * page queue (vm_page_queue[]), regardless of other mutexes or the 67 * busy state of a page. 68 * 69 * - a hash chain mutex is required when associating or disassociating 70 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 71 * regardless of other mutexes or the busy state of a page. 72 * 73 * - either a hash chain mutex OR a busied page is required in order 74 * to modify the page flags. A hash chain mutex must be obtained in 75 * order to busy a page. A page's flags cannot be modified by a 76 * hash chain mutex if the page is marked busy. 77 * 78 * - The object memq mutex is held when inserting or removing 79 * pages from an object (vm_page_insert() or vm_page_remove()). This 80 * is different from the object's main mutex. 81 * 82 * Generally speaking, you have to be aware of side effects when running 83 * vm_page ops. A vm_page_lookup() will return with the hash chain 84 * locked, whether it was able to lookup the page or not. vm_page_free(), 85 * vm_page_cache(), vm_page_activate(), and a number of other routines 86 * will release the hash chain mutex for you. Intermediate manipulation 87 * routines such as vm_page_flag_set() expect the hash chain to be held 88 * on entry and the hash chain will remain held on return. 89 * 90 * pageq scanning can only occur with the pageq in question locked. 91 * We have a known bottleneck with the active queue, but the cache 92 * and free queues are actually arrays already. 93 */ 94 95 /* 96 * Resident memory management module. 97 */ 98 99 #include <sys/cdefs.h> 100 __FBSDID("$FreeBSD$"); 101 102 #include <sys/param.h> 103 #include <sys/systm.h> 104 #include <sys/lock.h> 105 #include <sys/malloc.h> 106 #include <sys/mutex.h> 107 #include <sys/proc.h> 108 #include <sys/vmmeter.h> 109 #include <sys/vnode.h> 110 111 #include <vm/vm.h> 112 #include <vm/vm_param.h> 113 #include <vm/vm_kern.h> 114 #include <vm/vm_object.h> 115 #include <vm/vm_page.h> 116 #include <vm/vm_pageout.h> 117 #include <vm/vm_pager.h> 118 #include <vm/vm_extern.h> 119 #include <vm/uma.h> 120 #include <vm/uma_int.h> 121 122 /* 123 * Associated with page of user-allocatable memory is a 124 * page structure. 125 */ 126 127 struct mtx vm_page_queue_mtx; 128 struct mtx vm_page_queue_free_mtx; 129 130 vm_page_t vm_page_array = 0; 131 int vm_page_array_size = 0; 132 long first_page = 0; 133 int vm_page_zero_count = 0; 134 135 /* 136 * vm_set_page_size: 137 * 138 * Sets the page size, perhaps based upon the memory 139 * size. Must be called before any use of page-size 140 * dependent functions. 141 */ 142 void 143 vm_set_page_size(void) 144 { 145 if (cnt.v_page_size == 0) 146 cnt.v_page_size = PAGE_SIZE; 147 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 148 panic("vm_set_page_size: page size not a power of two"); 149 } 150 151 /* 152 * vm_page_startup: 153 * 154 * Initializes the resident memory module. 155 * 156 * Allocates memory for the page cells, and 157 * for the object/offset-to-page hash table headers. 158 * Each page cell is initialized and placed on the free list. 159 */ 160 vm_offset_t 161 vm_page_startup(vm_offset_t vaddr) 162 { 163 vm_offset_t mapped; 164 vm_size_t npages; 165 vm_paddr_t page_range; 166 vm_paddr_t new_end; 167 int i; 168 vm_paddr_t pa; 169 int nblocks; 170 vm_paddr_t last_pa; 171 172 /* the biggest memory array is the second group of pages */ 173 vm_paddr_t end; 174 vm_paddr_t biggestsize; 175 int biggestone; 176 177 vm_paddr_t total; 178 vm_size_t bootpages; 179 180 total = 0; 181 biggestsize = 0; 182 biggestone = 0; 183 nblocks = 0; 184 vaddr = round_page(vaddr); 185 186 for (i = 0; phys_avail[i + 1]; i += 2) { 187 phys_avail[i] = round_page(phys_avail[i]); 188 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 189 } 190 191 for (i = 0; phys_avail[i + 1]; i += 2) { 192 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 193 194 if (size > biggestsize) { 195 biggestone = i; 196 biggestsize = size; 197 } 198 ++nblocks; 199 total += size; 200 } 201 202 end = phys_avail[biggestone+1]; 203 204 /* 205 * Initialize the locks. 206 */ 207 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF); 208 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 209 MTX_SPIN); 210 211 /* 212 * Initialize the queue headers for the free queue, the active queue 213 * and the inactive queue. 214 */ 215 vm_pageq_init(); 216 217 /* 218 * Allocate memory for use when boot strapping the kernel memory 219 * allocator. 220 */ 221 bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE; 222 new_end = end - bootpages; 223 new_end = trunc_page(new_end); 224 mapped = pmap_map(&vaddr, new_end, end, 225 VM_PROT_READ | VM_PROT_WRITE); 226 bzero((caddr_t) mapped, end - new_end); 227 uma_startup((caddr_t)mapped); 228 229 /* 230 * Compute the number of pages of memory that will be available for 231 * use (taking into account the overhead of a page structure per 232 * page). 233 */ 234 first_page = phys_avail[0] / PAGE_SIZE; 235 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 236 npages = (total - (page_range * sizeof(struct vm_page)) - 237 (end - new_end)) / PAGE_SIZE; 238 end = new_end; 239 240 /* 241 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 242 */ 243 vaddr += PAGE_SIZE; 244 245 /* 246 * Initialize the mem entry structures now, and put them in the free 247 * queue. 248 */ 249 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 250 mapped = pmap_map(&vaddr, new_end, end, 251 VM_PROT_READ | VM_PROT_WRITE); 252 vm_page_array = (vm_page_t) mapped; 253 phys_avail[biggestone + 1] = new_end; 254 255 /* 256 * Clear all of the page structures 257 */ 258 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 259 vm_page_array_size = page_range; 260 261 /* 262 * Construct the free queue(s) in descending order (by physical 263 * address) so that the first 16MB of physical memory is allocated 264 * last rather than first. On large-memory machines, this avoids 265 * the exhaustion of low physical memory before isa_dmainit has run. 266 */ 267 cnt.v_page_count = 0; 268 cnt.v_free_count = 0; 269 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 270 pa = phys_avail[i]; 271 last_pa = phys_avail[i + 1]; 272 while (pa < last_pa && npages-- > 0) { 273 vm_pageq_add_new_page(pa); 274 pa += PAGE_SIZE; 275 } 276 } 277 return (vaddr); 278 } 279 280 void 281 vm_page_flag_set(vm_page_t m, unsigned short bits) 282 { 283 284 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 285 m->flags |= bits; 286 } 287 288 void 289 vm_page_flag_clear(vm_page_t m, unsigned short bits) 290 { 291 292 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 293 m->flags &= ~bits; 294 } 295 296 void 297 vm_page_busy(vm_page_t m) 298 { 299 KASSERT((m->flags & PG_BUSY) == 0, 300 ("vm_page_busy: page already busy!!!")); 301 vm_page_flag_set(m, PG_BUSY); 302 } 303 304 /* 305 * vm_page_flash: 306 * 307 * wakeup anyone waiting for the page. 308 */ 309 void 310 vm_page_flash(vm_page_t m) 311 { 312 if (m->flags & PG_WANTED) { 313 vm_page_flag_clear(m, PG_WANTED); 314 wakeup(m); 315 } 316 } 317 318 /* 319 * vm_page_wakeup: 320 * 321 * clear the PG_BUSY flag and wakeup anyone waiting for the 322 * page. 323 * 324 */ 325 void 326 vm_page_wakeup(vm_page_t m) 327 { 328 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 329 vm_page_flag_clear(m, PG_BUSY); 330 vm_page_flash(m); 331 } 332 333 void 334 vm_page_io_start(vm_page_t m) 335 { 336 337 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 338 m->busy++; 339 } 340 341 void 342 vm_page_io_finish(vm_page_t m) 343 { 344 345 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 346 m->busy--; 347 if (m->busy == 0) 348 vm_page_flash(m); 349 } 350 351 /* 352 * Keep page from being freed by the page daemon 353 * much of the same effect as wiring, except much lower 354 * overhead and should be used only for *very* temporary 355 * holding ("wiring"). 356 */ 357 void 358 vm_page_hold(vm_page_t mem) 359 { 360 361 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 362 mem->hold_count++; 363 } 364 365 void 366 vm_page_unhold(vm_page_t mem) 367 { 368 369 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 370 --mem->hold_count; 371 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 372 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) 373 vm_page_free_toq(mem); 374 } 375 376 /* 377 * vm_page_free: 378 * 379 * Free a page 380 * 381 * The clearing of PG_ZERO is a temporary safety until the code can be 382 * reviewed to determine that PG_ZERO is being properly cleared on 383 * write faults or maps. PG_ZERO was previously cleared in 384 * vm_page_alloc(). 385 */ 386 void 387 vm_page_free(vm_page_t m) 388 { 389 vm_page_flag_clear(m, PG_ZERO); 390 vm_page_free_toq(m); 391 vm_page_zero_idle_wakeup(); 392 } 393 394 /* 395 * vm_page_free_zero: 396 * 397 * Free a page to the zerod-pages queue 398 */ 399 void 400 vm_page_free_zero(vm_page_t m) 401 { 402 vm_page_flag_set(m, PG_ZERO); 403 vm_page_free_toq(m); 404 } 405 406 /* 407 * vm_page_sleep_if_busy: 408 * 409 * Sleep and release the page queues lock if PG_BUSY is set or, 410 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the 411 * thread slept and the page queues lock was released. 412 * Otherwise, retains the page queues lock and returns FALSE. 413 */ 414 int 415 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg) 416 { 417 vm_object_t object; 418 int is_object_locked; 419 420 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 421 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 422 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 423 /* 424 * It's possible that while we sleep, the page will get 425 * unbusied and freed. If we are holding the object 426 * lock, we will assume we hold a reference to the object 427 * such that even if m->object changes, we can re-lock 428 * it. 429 * 430 * Remove mtx_owned() after vm_object locking is finished. 431 */ 432 object = m->object; 433 if ((is_object_locked = object != NULL && 434 mtx_owned(&object->mtx))) 435 mtx_unlock(&object->mtx); 436 msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0); 437 if (is_object_locked) 438 mtx_lock(&object->mtx); 439 return (TRUE); 440 } 441 return (FALSE); 442 } 443 444 /* 445 * vm_page_dirty: 446 * 447 * make page all dirty 448 */ 449 void 450 vm_page_dirty(vm_page_t m) 451 { 452 KASSERT(m->queue - m->pc != PQ_CACHE, 453 ("vm_page_dirty: page in cache!")); 454 KASSERT(m->queue - m->pc != PQ_FREE, 455 ("vm_page_dirty: page is free!")); 456 m->dirty = VM_PAGE_BITS_ALL; 457 } 458 459 /* 460 * vm_page_splay: 461 * 462 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 463 * the vm_page containing the given pindex. If, however, that 464 * pindex is not found in the vm_object, returns a vm_page that is 465 * adjacent to the pindex, coming before or after it. 466 */ 467 vm_page_t 468 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 469 { 470 struct vm_page dummy; 471 vm_page_t lefttreemax, righttreemin, y; 472 473 if (root == NULL) 474 return (root); 475 lefttreemax = righttreemin = &dummy; 476 for (;; root = y) { 477 if (pindex < root->pindex) { 478 if ((y = root->left) == NULL) 479 break; 480 if (pindex < y->pindex) { 481 /* Rotate right. */ 482 root->left = y->right; 483 y->right = root; 484 root = y; 485 if ((y = root->left) == NULL) 486 break; 487 } 488 /* Link into the new root's right tree. */ 489 righttreemin->left = root; 490 righttreemin = root; 491 } else if (pindex > root->pindex) { 492 if ((y = root->right) == NULL) 493 break; 494 if (pindex > y->pindex) { 495 /* Rotate left. */ 496 root->right = y->left; 497 y->left = root; 498 root = y; 499 if ((y = root->right) == NULL) 500 break; 501 } 502 /* Link into the new root's left tree. */ 503 lefttreemax->right = root; 504 lefttreemax = root; 505 } else 506 break; 507 } 508 /* Assemble the new root. */ 509 lefttreemax->right = root->left; 510 righttreemin->left = root->right; 511 root->left = dummy.right; 512 root->right = dummy.left; 513 return (root); 514 } 515 516 /* 517 * vm_page_insert: [ internal use only ] 518 * 519 * Inserts the given mem entry into the object and object list. 520 * 521 * The pagetables are not updated but will presumably fault the page 522 * in if necessary, or if a kernel page the caller will at some point 523 * enter the page into the kernel's pmap. We are not allowed to block 524 * here so we *can't* do this anyway. 525 * 526 * The object and page must be locked. 527 * This routine may not block. 528 */ 529 void 530 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 531 { 532 vm_page_t root; 533 534 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 535 if (m->object != NULL) 536 panic("vm_page_insert: page already inserted"); 537 538 /* 539 * Record the object/offset pair in this page 540 */ 541 m->object = object; 542 m->pindex = pindex; 543 544 /* 545 * Now link into the object's ordered list of backed pages. 546 */ 547 root = object->root; 548 if (root == NULL) { 549 m->left = NULL; 550 m->right = NULL; 551 TAILQ_INSERT_TAIL(&object->memq, m, listq); 552 } else { 553 root = vm_page_splay(pindex, root); 554 if (pindex < root->pindex) { 555 m->left = root->left; 556 m->right = root; 557 root->left = NULL; 558 TAILQ_INSERT_BEFORE(root, m, listq); 559 } else if (pindex == root->pindex) 560 panic("vm_page_insert: offset already allocated"); 561 else { 562 m->right = root->right; 563 m->left = root; 564 root->right = NULL; 565 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 566 } 567 } 568 object->root = m; 569 object->generation++; 570 571 /* 572 * show that the object has one more resident page. 573 */ 574 object->resident_page_count++; 575 576 /* 577 * Since we are inserting a new and possibly dirty page, 578 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 579 */ 580 if (m->flags & PG_WRITEABLE) 581 vm_object_set_writeable_dirty(object); 582 } 583 584 /* 585 * vm_page_remove: 586 * NOTE: used by device pager as well -wfj 587 * 588 * Removes the given mem entry from the object/offset-page 589 * table and the object page list, but do not invalidate/terminate 590 * the backing store. 591 * 592 * The object and page must be locked. 593 * The underlying pmap entry (if any) is NOT removed here. 594 * This routine may not block. 595 */ 596 void 597 vm_page_remove(vm_page_t m) 598 { 599 vm_object_t object; 600 vm_page_t root; 601 602 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 603 if (m->object == NULL) 604 return; 605 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 606 if ((m->flags & PG_BUSY) == 0) { 607 panic("vm_page_remove: page not busy"); 608 } 609 610 /* 611 * Basically destroy the page. 612 */ 613 vm_page_wakeup(m); 614 615 object = m->object; 616 617 /* 618 * Now remove from the object's list of backed pages. 619 */ 620 if (m != object->root) 621 vm_page_splay(m->pindex, object->root); 622 if (m->left == NULL) 623 root = m->right; 624 else { 625 root = vm_page_splay(m->pindex, m->left); 626 root->right = m->right; 627 } 628 object->root = root; 629 TAILQ_REMOVE(&object->memq, m, listq); 630 631 /* 632 * And show that the object has one fewer resident page. 633 */ 634 object->resident_page_count--; 635 object->generation++; 636 637 m->object = NULL; 638 } 639 640 /* 641 * vm_page_lookup: 642 * 643 * Returns the page associated with the object/offset 644 * pair specified; if none is found, NULL is returned. 645 * 646 * The object must be locked. 647 * This routine may not block. 648 * This is a critical path routine 649 */ 650 vm_page_t 651 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 652 { 653 vm_page_t m; 654 655 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 656 if ((m = object->root) != NULL && m->pindex != pindex) { 657 m = vm_page_splay(pindex, m); 658 if ((object->root = m)->pindex != pindex) 659 m = NULL; 660 } 661 return (m); 662 } 663 664 /* 665 * vm_page_rename: 666 * 667 * Move the given memory entry from its 668 * current object to the specified target object/offset. 669 * 670 * The object must be locked. 671 * This routine may not block. 672 * 673 * Note: swap associated with the page must be invalidated by the move. We 674 * have to do this for several reasons: (1) we aren't freeing the 675 * page, (2) we are dirtying the page, (3) the VM system is probably 676 * moving the page from object A to B, and will then later move 677 * the backing store from A to B and we can't have a conflict. 678 * 679 * Note: we *always* dirty the page. It is necessary both for the 680 * fact that we moved it, and because we may be invalidating 681 * swap. If the page is on the cache, we have to deactivate it 682 * or vm_page_dirty() will panic. Dirty pages are not allowed 683 * on the cache. 684 */ 685 void 686 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 687 { 688 689 vm_page_remove(m); 690 vm_page_insert(m, new_object, new_pindex); 691 if (m->queue - m->pc == PQ_CACHE) 692 vm_page_deactivate(m); 693 vm_page_dirty(m); 694 } 695 696 /* 697 * vm_page_select_cache: 698 * 699 * Find a page on the cache queue with color optimization. As pages 700 * might be found, but not applicable, they are deactivated. This 701 * keeps us from using potentially busy cached pages. 702 * 703 * This routine may not block. 704 */ 705 vm_page_t 706 vm_page_select_cache(int color) 707 { 708 vm_page_t m; 709 710 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 711 while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) { 712 if ((m->flags & PG_BUSY) == 0 && m->busy == 0 && 713 m->hold_count == 0 && (VM_OBJECT_TRYLOCK(m->object) || 714 VM_OBJECT_LOCKED(m->object))) { 715 KASSERT(m->dirty == 0, 716 ("Found dirty cache page %p", m)); 717 KASSERT(!pmap_page_is_mapped(m), 718 ("Found mapped cache page %p", m)); 719 KASSERT((m->flags & PG_UNMANAGED) == 0, 720 ("Found unmanaged cache page %p", m)); 721 KASSERT(m->wire_count == 0, 722 ("Found wired cache page %p", m)); 723 break; 724 } 725 vm_page_deactivate(m); 726 } 727 return (m); 728 } 729 730 /* 731 * vm_page_alloc: 732 * 733 * Allocate and return a memory cell associated 734 * with this VM object/offset pair. 735 * 736 * page_req classes: 737 * VM_ALLOC_NORMAL normal process request 738 * VM_ALLOC_SYSTEM system *really* needs a page 739 * VM_ALLOC_INTERRUPT interrupt time request 740 * VM_ALLOC_ZERO zero page 741 * 742 * This routine may not block. 743 * 744 * Additional special handling is required when called from an 745 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with 746 * the page cache in this case. 747 */ 748 vm_page_t 749 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 750 { 751 vm_object_t m_object; 752 vm_page_t m = NULL; 753 int color, flags, page_req; 754 755 page_req = req & VM_ALLOC_CLASS_MASK; 756 757 if ((req & VM_ALLOC_NOOBJ) == 0) { 758 KASSERT(object != NULL, 759 ("vm_page_alloc: NULL object.")); 760 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 761 color = (pindex + object->pg_color) & PQ_L2_MASK; 762 } else 763 color = pindex & PQ_L2_MASK; 764 765 /* 766 * The pager is allowed to eat deeper into the free page list. 767 */ 768 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 769 page_req = VM_ALLOC_SYSTEM; 770 }; 771 772 loop: 773 mtx_lock_spin(&vm_page_queue_free_mtx); 774 if (cnt.v_free_count > cnt.v_free_reserved || 775 (page_req == VM_ALLOC_SYSTEM && 776 cnt.v_cache_count == 0 && 777 cnt.v_free_count > cnt.v_interrupt_free_min) || 778 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) { 779 /* 780 * Allocate from the free queue if the number of free pages 781 * exceeds the minimum for the request class. 782 */ 783 m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0); 784 } else if (page_req != VM_ALLOC_INTERRUPT) { 785 mtx_unlock_spin(&vm_page_queue_free_mtx); 786 /* 787 * Allocatable from cache (non-interrupt only). On success, 788 * we must free the page and try again, thus ensuring that 789 * cnt.v_*_free_min counters are replenished. 790 */ 791 vm_page_lock_queues(); 792 if ((m = vm_page_select_cache(color)) == NULL) { 793 #if defined(DIAGNOSTIC) 794 if (cnt.v_cache_count > 0) 795 printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count); 796 #endif 797 vm_page_unlock_queues(); 798 atomic_add_int(&vm_pageout_deficit, 1); 799 pagedaemon_wakeup(); 800 return (NULL); 801 } 802 m_object = m->object; 803 VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED); 804 vm_page_busy(m); 805 vm_page_free(m); 806 vm_page_unlock_queues(); 807 if (m_object != object) 808 VM_OBJECT_UNLOCK(m_object); 809 goto loop; 810 } else { 811 /* 812 * Not allocatable from cache from interrupt, give up. 813 */ 814 mtx_unlock_spin(&vm_page_queue_free_mtx); 815 atomic_add_int(&vm_pageout_deficit, 1); 816 pagedaemon_wakeup(); 817 return (NULL); 818 } 819 820 /* 821 * At this point we had better have found a good page. 822 */ 823 824 KASSERT( 825 m != NULL, 826 ("vm_page_alloc(): missing page on free queue") 827 ); 828 829 /* 830 * Remove from free queue 831 */ 832 vm_pageq_remove_nowakeup(m); 833 834 /* 835 * Initialize structure. Only the PG_ZERO flag is inherited. 836 */ 837 flags = PG_BUSY; 838 if (m->flags & PG_ZERO) { 839 vm_page_zero_count--; 840 if (req & VM_ALLOC_ZERO) 841 flags = PG_ZERO | PG_BUSY; 842 } 843 if (req & VM_ALLOC_NOOBJ) 844 flags &= ~PG_BUSY; 845 m->flags = flags; 846 if (req & VM_ALLOC_WIRED) { 847 atomic_add_int(&cnt.v_wire_count, 1); 848 m->wire_count = 1; 849 } else 850 m->wire_count = 0; 851 m->hold_count = 0; 852 m->act_count = 0; 853 m->busy = 0; 854 m->valid = 0; 855 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 856 mtx_unlock_spin(&vm_page_queue_free_mtx); 857 858 if ((req & VM_ALLOC_NOOBJ) == 0) 859 vm_page_insert(m, object, pindex); 860 else 861 m->pindex = pindex; 862 863 /* 864 * Don't wakeup too often - wakeup the pageout daemon when 865 * we would be nearly out of memory. 866 */ 867 if (vm_paging_needed()) 868 pagedaemon_wakeup(); 869 870 return (m); 871 } 872 873 /* 874 * vm_wait: (also see VM_WAIT macro) 875 * 876 * Block until free pages are available for allocation 877 * - Called in various places before memory allocations. 878 */ 879 void 880 vm_wait(void) 881 { 882 883 vm_page_lock_queues(); 884 if (curproc == pageproc) { 885 vm_pageout_pages_needed = 1; 886 msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx, 887 PDROP | PSWP, "VMWait", 0); 888 } else { 889 if (!vm_pages_needed) { 890 vm_pages_needed = 1; 891 wakeup(&vm_pages_needed); 892 } 893 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM, 894 "vmwait", 0); 895 } 896 } 897 898 /* 899 * vm_waitpfault: (also see VM_WAITPFAULT macro) 900 * 901 * Block until free pages are available for allocation 902 * - Called only in vm_fault so that processes page faulting 903 * can be easily tracked. 904 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 905 * processes will be able to grab memory first. Do not change 906 * this balance without careful testing first. 907 */ 908 void 909 vm_waitpfault(void) 910 { 911 912 vm_page_lock_queues(); 913 if (!vm_pages_needed) { 914 vm_pages_needed = 1; 915 wakeup(&vm_pages_needed); 916 } 917 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER, 918 "pfault", 0); 919 } 920 921 /* 922 * vm_page_activate: 923 * 924 * Put the specified page on the active list (if appropriate). 925 * Ensure that act_count is at least ACT_INIT but do not otherwise 926 * mess with it. 927 * 928 * The page queues must be locked. 929 * This routine may not block. 930 */ 931 void 932 vm_page_activate(vm_page_t m) 933 { 934 935 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 936 if (m->queue != PQ_ACTIVE) { 937 if ((m->queue - m->pc) == PQ_CACHE) 938 cnt.v_reactivated++; 939 vm_pageq_remove(m); 940 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 941 if (m->act_count < ACT_INIT) 942 m->act_count = ACT_INIT; 943 vm_pageq_enqueue(PQ_ACTIVE, m); 944 } 945 } else { 946 if (m->act_count < ACT_INIT) 947 m->act_count = ACT_INIT; 948 } 949 } 950 951 /* 952 * vm_page_free_wakeup: 953 * 954 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 955 * routine is called when a page has been added to the cache or free 956 * queues. 957 * 958 * The page queues must be locked. 959 * This routine may not block. 960 */ 961 static __inline void 962 vm_page_free_wakeup(void) 963 { 964 965 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 966 /* 967 * if pageout daemon needs pages, then tell it that there are 968 * some free. 969 */ 970 if (vm_pageout_pages_needed && 971 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 972 wakeup(&vm_pageout_pages_needed); 973 vm_pageout_pages_needed = 0; 974 } 975 /* 976 * wakeup processes that are waiting on memory if we hit a 977 * high water mark. And wakeup scheduler process if we have 978 * lots of memory. this process will swapin processes. 979 */ 980 if (vm_pages_needed && !vm_page_count_min()) { 981 vm_pages_needed = 0; 982 wakeup(&cnt.v_free_count); 983 } 984 } 985 986 /* 987 * vm_page_free_toq: 988 * 989 * Returns the given page to the PQ_FREE list, 990 * disassociating it with any VM object. 991 * 992 * Object and page must be locked prior to entry. 993 * This routine may not block. 994 */ 995 996 void 997 vm_page_free_toq(vm_page_t m) 998 { 999 struct vpgqueues *pq; 1000 vm_object_t object = m->object; 1001 1002 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1003 cnt.v_tfree++; 1004 1005 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1006 printf( 1007 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 1008 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 1009 m->hold_count); 1010 if ((m->queue - m->pc) == PQ_FREE) 1011 panic("vm_page_free: freeing free page"); 1012 else 1013 panic("vm_page_free: freeing busy page"); 1014 } 1015 1016 /* 1017 * unqueue, then remove page. Note that we cannot destroy 1018 * the page here because we do not want to call the pager's 1019 * callback routine until after we've put the page on the 1020 * appropriate free queue. 1021 */ 1022 vm_pageq_remove_nowakeup(m); 1023 vm_page_remove(m); 1024 1025 /* 1026 * If fictitious remove object association and 1027 * return, otherwise delay object association removal. 1028 */ 1029 if ((m->flags & PG_FICTITIOUS) != 0) { 1030 return; 1031 } 1032 1033 m->valid = 0; 1034 vm_page_undirty(m); 1035 1036 if (m->wire_count != 0) { 1037 if (m->wire_count > 1) { 1038 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1039 m->wire_count, (long)m->pindex); 1040 } 1041 panic("vm_page_free: freeing wired page"); 1042 } 1043 1044 /* 1045 * If we've exhausted the object's resident pages we want to free 1046 * it up. 1047 */ 1048 if (object && 1049 (object->type == OBJT_VNODE) && 1050 ((object->flags & OBJ_DEAD) == 0) 1051 ) { 1052 struct vnode *vp = (struct vnode *)object->handle; 1053 1054 if (vp) { 1055 VI_LOCK(vp); 1056 if (VSHOULDFREE(vp)) 1057 vfree(vp); 1058 VI_UNLOCK(vp); 1059 } 1060 } 1061 1062 /* 1063 * Clear the UNMANAGED flag when freeing an unmanaged page. 1064 */ 1065 if (m->flags & PG_UNMANAGED) { 1066 m->flags &= ~PG_UNMANAGED; 1067 } 1068 1069 if (m->hold_count != 0) { 1070 m->flags &= ~PG_ZERO; 1071 m->queue = PQ_HOLD; 1072 } else 1073 m->queue = PQ_FREE + m->pc; 1074 pq = &vm_page_queues[m->queue]; 1075 mtx_lock_spin(&vm_page_queue_free_mtx); 1076 pq->lcnt++; 1077 ++(*pq->cnt); 1078 1079 /* 1080 * Put zero'd pages on the end ( where we look for zero'd pages 1081 * first ) and non-zerod pages at the head. 1082 */ 1083 if (m->flags & PG_ZERO) { 1084 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1085 ++vm_page_zero_count; 1086 } else { 1087 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1088 } 1089 mtx_unlock_spin(&vm_page_queue_free_mtx); 1090 vm_page_free_wakeup(); 1091 } 1092 1093 /* 1094 * vm_page_unmanage: 1095 * 1096 * Prevent PV management from being done on the page. The page is 1097 * removed from the paging queues as if it were wired, and as a 1098 * consequence of no longer being managed the pageout daemon will not 1099 * touch it (since there is no way to locate the pte mappings for the 1100 * page). madvise() calls that mess with the pmap will also no longer 1101 * operate on the page. 1102 * 1103 * Beyond that the page is still reasonably 'normal'. Freeing the page 1104 * will clear the flag. 1105 * 1106 * This routine is used by OBJT_PHYS objects - objects using unswappable 1107 * physical memory as backing store rather then swap-backed memory and 1108 * will eventually be extended to support 4MB unmanaged physical 1109 * mappings. 1110 */ 1111 void 1112 vm_page_unmanage(vm_page_t m) 1113 { 1114 1115 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1116 if ((m->flags & PG_UNMANAGED) == 0) { 1117 if (m->wire_count == 0) 1118 vm_pageq_remove(m); 1119 } 1120 vm_page_flag_set(m, PG_UNMANAGED); 1121 } 1122 1123 /* 1124 * vm_page_wire: 1125 * 1126 * Mark this page as wired down by yet 1127 * another map, removing it from paging queues 1128 * as necessary. 1129 * 1130 * The page queues must be locked. 1131 * This routine may not block. 1132 */ 1133 void 1134 vm_page_wire(vm_page_t m) 1135 { 1136 1137 /* 1138 * Only bump the wire statistics if the page is not already wired, 1139 * and only unqueue the page if it is on some queue (if it is unmanaged 1140 * it is already off the queues). 1141 */ 1142 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1143 if (m->flags & PG_FICTITIOUS) 1144 return; 1145 if (m->wire_count == 0) { 1146 if ((m->flags & PG_UNMANAGED) == 0) 1147 vm_pageq_remove(m); 1148 atomic_add_int(&cnt.v_wire_count, 1); 1149 } 1150 m->wire_count++; 1151 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1152 } 1153 1154 /* 1155 * vm_page_unwire: 1156 * 1157 * Release one wiring of this page, potentially 1158 * enabling it to be paged again. 1159 * 1160 * Many pages placed on the inactive queue should actually go 1161 * into the cache, but it is difficult to figure out which. What 1162 * we do instead, if the inactive target is well met, is to put 1163 * clean pages at the head of the inactive queue instead of the tail. 1164 * This will cause them to be moved to the cache more quickly and 1165 * if not actively re-referenced, freed more quickly. If we just 1166 * stick these pages at the end of the inactive queue, heavy filesystem 1167 * meta-data accesses can cause an unnecessary paging load on memory bound 1168 * processes. This optimization causes one-time-use metadata to be 1169 * reused more quickly. 1170 * 1171 * BUT, if we are in a low-memory situation we have no choice but to 1172 * put clean pages on the cache queue. 1173 * 1174 * A number of routines use vm_page_unwire() to guarantee that the page 1175 * will go into either the inactive or active queues, and will NEVER 1176 * be placed in the cache - for example, just after dirtying a page. 1177 * dirty pages in the cache are not allowed. 1178 * 1179 * The page queues must be locked. 1180 * This routine may not block. 1181 */ 1182 void 1183 vm_page_unwire(vm_page_t m, int activate) 1184 { 1185 1186 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1187 if (m->flags & PG_FICTITIOUS) 1188 return; 1189 if (m->wire_count > 0) { 1190 m->wire_count--; 1191 if (m->wire_count == 0) { 1192 atomic_subtract_int(&cnt.v_wire_count, 1); 1193 if (m->flags & PG_UNMANAGED) { 1194 ; 1195 } else if (activate) 1196 vm_pageq_enqueue(PQ_ACTIVE, m); 1197 else { 1198 vm_page_flag_clear(m, PG_WINATCFLS); 1199 vm_pageq_enqueue(PQ_INACTIVE, m); 1200 } 1201 } 1202 } else { 1203 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 1204 } 1205 } 1206 1207 1208 /* 1209 * Move the specified page to the inactive queue. If the page has 1210 * any associated swap, the swap is deallocated. 1211 * 1212 * Normally athead is 0 resulting in LRU operation. athead is set 1213 * to 1 if we want this page to be 'as if it were placed in the cache', 1214 * except without unmapping it from the process address space. 1215 * 1216 * This routine may not block. 1217 */ 1218 static __inline void 1219 _vm_page_deactivate(vm_page_t m, int athead) 1220 { 1221 1222 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1223 1224 /* 1225 * Ignore if already inactive. 1226 */ 1227 if (m->queue == PQ_INACTIVE) 1228 return; 1229 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1230 if ((m->queue - m->pc) == PQ_CACHE) 1231 cnt.v_reactivated++; 1232 vm_page_flag_clear(m, PG_WINATCFLS); 1233 vm_pageq_remove(m); 1234 if (athead) 1235 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1236 else 1237 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1238 m->queue = PQ_INACTIVE; 1239 vm_page_queues[PQ_INACTIVE].lcnt++; 1240 cnt.v_inactive_count++; 1241 } 1242 } 1243 1244 void 1245 vm_page_deactivate(vm_page_t m) 1246 { 1247 _vm_page_deactivate(m, 0); 1248 } 1249 1250 /* 1251 * vm_page_try_to_cache: 1252 * 1253 * Returns 0 on failure, 1 on success 1254 */ 1255 int 1256 vm_page_try_to_cache(vm_page_t m) 1257 { 1258 1259 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1260 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1261 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1262 return (0); 1263 } 1264 pmap_remove_all(m); 1265 if (m->dirty) 1266 return (0); 1267 vm_page_cache(m); 1268 return (1); 1269 } 1270 1271 /* 1272 * vm_page_try_to_free() 1273 * 1274 * Attempt to free the page. If we cannot free it, we do nothing. 1275 * 1 is returned on success, 0 on failure. 1276 */ 1277 int 1278 vm_page_try_to_free(vm_page_t m) 1279 { 1280 1281 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1282 if (m->object != NULL) 1283 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1284 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1285 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1286 return (0); 1287 } 1288 pmap_remove_all(m); 1289 if (m->dirty) 1290 return (0); 1291 vm_page_busy(m); 1292 vm_page_free(m); 1293 return (1); 1294 } 1295 1296 /* 1297 * vm_page_cache 1298 * 1299 * Put the specified page onto the page cache queue (if appropriate). 1300 * 1301 * This routine may not block. 1302 */ 1303 void 1304 vm_page_cache(vm_page_t m) 1305 { 1306 1307 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1308 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 1309 m->hold_count || m->wire_count) { 1310 printf("vm_page_cache: attempting to cache busy page\n"); 1311 return; 1312 } 1313 if ((m->queue - m->pc) == PQ_CACHE) 1314 return; 1315 1316 /* 1317 * Remove all pmaps and indicate that the page is not 1318 * writeable or mapped. 1319 */ 1320 pmap_remove_all(m); 1321 if (m->dirty != 0) { 1322 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1323 (long)m->pindex); 1324 } 1325 vm_pageq_remove_nowakeup(m); 1326 vm_pageq_enqueue(PQ_CACHE + m->pc, m); 1327 vm_page_free_wakeup(); 1328 } 1329 1330 /* 1331 * vm_page_dontneed 1332 * 1333 * Cache, deactivate, or do nothing as appropriate. This routine 1334 * is typically used by madvise() MADV_DONTNEED. 1335 * 1336 * Generally speaking we want to move the page into the cache so 1337 * it gets reused quickly. However, this can result in a silly syndrome 1338 * due to the page recycling too quickly. Small objects will not be 1339 * fully cached. On the otherhand, if we move the page to the inactive 1340 * queue we wind up with a problem whereby very large objects 1341 * unnecessarily blow away our inactive and cache queues. 1342 * 1343 * The solution is to move the pages based on a fixed weighting. We 1344 * either leave them alone, deactivate them, or move them to the cache, 1345 * where moving them to the cache has the highest weighting. 1346 * By forcing some pages into other queues we eventually force the 1347 * system to balance the queues, potentially recovering other unrelated 1348 * space from active. The idea is to not force this to happen too 1349 * often. 1350 */ 1351 void 1352 vm_page_dontneed(vm_page_t m) 1353 { 1354 static int dnweight; 1355 int dnw; 1356 int head; 1357 1358 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1359 dnw = ++dnweight; 1360 1361 /* 1362 * occassionally leave the page alone 1363 */ 1364 if ((dnw & 0x01F0) == 0 || 1365 m->queue == PQ_INACTIVE || 1366 m->queue - m->pc == PQ_CACHE 1367 ) { 1368 if (m->act_count >= ACT_INIT) 1369 --m->act_count; 1370 return; 1371 } 1372 1373 if (m->dirty == 0 && pmap_is_modified(m)) 1374 vm_page_dirty(m); 1375 1376 if (m->dirty || (dnw & 0x0070) == 0) { 1377 /* 1378 * Deactivate the page 3 times out of 32. 1379 */ 1380 head = 0; 1381 } else { 1382 /* 1383 * Cache the page 28 times out of every 32. Note that 1384 * the page is deactivated instead of cached, but placed 1385 * at the head of the queue instead of the tail. 1386 */ 1387 head = 1; 1388 } 1389 _vm_page_deactivate(m, head); 1390 } 1391 1392 /* 1393 * Grab a page, waiting until we are waken up due to the page 1394 * changing state. We keep on waiting, if the page continues 1395 * to be in the object. If the page doesn't exist, first allocate it 1396 * and then conditionally zero it. 1397 * 1398 * This routine may block. 1399 */ 1400 vm_page_t 1401 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1402 { 1403 vm_page_t m; 1404 1405 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1406 retrylookup: 1407 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1408 vm_page_lock_queues(); 1409 if (m->busy || (m->flags & PG_BUSY)) { 1410 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1411 VM_OBJECT_UNLOCK(object); 1412 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0); 1413 VM_OBJECT_LOCK(object); 1414 if ((allocflags & VM_ALLOC_RETRY) == 0) 1415 return (NULL); 1416 goto retrylookup; 1417 } else { 1418 if (allocflags & VM_ALLOC_WIRED) 1419 vm_page_wire(m); 1420 vm_page_busy(m); 1421 vm_page_unlock_queues(); 1422 return (m); 1423 } 1424 } 1425 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1426 if (m == NULL) { 1427 VM_OBJECT_UNLOCK(object); 1428 VM_WAIT; 1429 VM_OBJECT_LOCK(object); 1430 if ((allocflags & VM_ALLOC_RETRY) == 0) 1431 return (NULL); 1432 goto retrylookup; 1433 } 1434 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 1435 pmap_zero_page(m); 1436 return (m); 1437 } 1438 1439 /* 1440 * Mapping function for valid bits or for dirty bits in 1441 * a page. May not block. 1442 * 1443 * Inputs are required to range within a page. 1444 */ 1445 __inline int 1446 vm_page_bits(int base, int size) 1447 { 1448 int first_bit; 1449 int last_bit; 1450 1451 KASSERT( 1452 base + size <= PAGE_SIZE, 1453 ("vm_page_bits: illegal base/size %d/%d", base, size) 1454 ); 1455 1456 if (size == 0) /* handle degenerate case */ 1457 return (0); 1458 1459 first_bit = base >> DEV_BSHIFT; 1460 last_bit = (base + size - 1) >> DEV_BSHIFT; 1461 1462 return ((2 << last_bit) - (1 << first_bit)); 1463 } 1464 1465 /* 1466 * vm_page_set_validclean: 1467 * 1468 * Sets portions of a page valid and clean. The arguments are expected 1469 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1470 * of any partial chunks touched by the range. The invalid portion of 1471 * such chunks will be zero'd. 1472 * 1473 * This routine may not block. 1474 * 1475 * (base + size) must be less then or equal to PAGE_SIZE. 1476 */ 1477 void 1478 vm_page_set_validclean(vm_page_t m, int base, int size) 1479 { 1480 int pagebits; 1481 int frag; 1482 int endoff; 1483 1484 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1485 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1486 if (size == 0) /* handle degenerate case */ 1487 return; 1488 1489 /* 1490 * If the base is not DEV_BSIZE aligned and the valid 1491 * bit is clear, we have to zero out a portion of the 1492 * first block. 1493 */ 1494 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1495 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1496 pmap_zero_page_area(m, frag, base - frag); 1497 1498 /* 1499 * If the ending offset is not DEV_BSIZE aligned and the 1500 * valid bit is clear, we have to zero out a portion of 1501 * the last block. 1502 */ 1503 endoff = base + size; 1504 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1505 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1506 pmap_zero_page_area(m, endoff, 1507 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1508 1509 /* 1510 * Set valid, clear dirty bits. If validating the entire 1511 * page we can safely clear the pmap modify bit. We also 1512 * use this opportunity to clear the PG_NOSYNC flag. If a process 1513 * takes a write fault on a MAP_NOSYNC memory area the flag will 1514 * be set again. 1515 * 1516 * We set valid bits inclusive of any overlap, but we can only 1517 * clear dirty bits for DEV_BSIZE chunks that are fully within 1518 * the range. 1519 */ 1520 pagebits = vm_page_bits(base, size); 1521 m->valid |= pagebits; 1522 #if 0 /* NOT YET */ 1523 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1524 frag = DEV_BSIZE - frag; 1525 base += frag; 1526 size -= frag; 1527 if (size < 0) 1528 size = 0; 1529 } 1530 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1531 #endif 1532 m->dirty &= ~pagebits; 1533 if (base == 0 && size == PAGE_SIZE) { 1534 pmap_clear_modify(m); 1535 vm_page_flag_clear(m, PG_NOSYNC); 1536 } 1537 } 1538 1539 void 1540 vm_page_clear_dirty(vm_page_t m, int base, int size) 1541 { 1542 1543 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1544 m->dirty &= ~vm_page_bits(base, size); 1545 } 1546 1547 /* 1548 * vm_page_set_invalid: 1549 * 1550 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1551 * valid and dirty bits for the effected areas are cleared. 1552 * 1553 * May not block. 1554 */ 1555 void 1556 vm_page_set_invalid(vm_page_t m, int base, int size) 1557 { 1558 int bits; 1559 1560 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1561 bits = vm_page_bits(base, size); 1562 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1563 m->valid &= ~bits; 1564 m->dirty &= ~bits; 1565 m->object->generation++; 1566 } 1567 1568 /* 1569 * vm_page_zero_invalid() 1570 * 1571 * The kernel assumes that the invalid portions of a page contain 1572 * garbage, but such pages can be mapped into memory by user code. 1573 * When this occurs, we must zero out the non-valid portions of the 1574 * page so user code sees what it expects. 1575 * 1576 * Pages are most often semi-valid when the end of a file is mapped 1577 * into memory and the file's size is not page aligned. 1578 */ 1579 void 1580 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1581 { 1582 int b; 1583 int i; 1584 1585 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1586 /* 1587 * Scan the valid bits looking for invalid sections that 1588 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1589 * valid bit may be set ) have already been zerod by 1590 * vm_page_set_validclean(). 1591 */ 1592 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1593 if (i == (PAGE_SIZE / DEV_BSIZE) || 1594 (m->valid & (1 << i)) 1595 ) { 1596 if (i > b) { 1597 pmap_zero_page_area(m, 1598 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1599 } 1600 b = i + 1; 1601 } 1602 } 1603 1604 /* 1605 * setvalid is TRUE when we can safely set the zero'd areas 1606 * as being valid. We can do this if there are no cache consistancy 1607 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1608 */ 1609 if (setvalid) 1610 m->valid = VM_PAGE_BITS_ALL; 1611 } 1612 1613 /* 1614 * vm_page_is_valid: 1615 * 1616 * Is (partial) page valid? Note that the case where size == 0 1617 * will return FALSE in the degenerate case where the page is 1618 * entirely invalid, and TRUE otherwise. 1619 * 1620 * May not block. 1621 */ 1622 int 1623 vm_page_is_valid(vm_page_t m, int base, int size) 1624 { 1625 int bits = vm_page_bits(base, size); 1626 1627 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1628 if (m->valid && ((m->valid & bits) == bits)) 1629 return 1; 1630 else 1631 return 0; 1632 } 1633 1634 /* 1635 * update dirty bits from pmap/mmu. May not block. 1636 */ 1637 void 1638 vm_page_test_dirty(vm_page_t m) 1639 { 1640 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1641 vm_page_dirty(m); 1642 } 1643 } 1644 1645 int so_zerocp_fullpage = 0; 1646 1647 void 1648 vm_page_cowfault(vm_page_t m) 1649 { 1650 vm_page_t mnew; 1651 vm_object_t object; 1652 vm_pindex_t pindex; 1653 1654 object = m->object; 1655 pindex = m->pindex; 1656 vm_page_busy(m); 1657 1658 retry_alloc: 1659 vm_page_remove(m); 1660 /* 1661 * An interrupt allocation is requested because the page 1662 * queues lock is held. 1663 */ 1664 mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT); 1665 if (mnew == NULL) { 1666 vm_page_insert(m, object, pindex); 1667 vm_page_unlock_queues(); 1668 VM_OBJECT_UNLOCK(object); 1669 VM_WAIT; 1670 VM_OBJECT_LOCK(object); 1671 vm_page_lock_queues(); 1672 goto retry_alloc; 1673 } 1674 1675 if (m->cow == 0) { 1676 /* 1677 * check to see if we raced with an xmit complete when 1678 * waiting to allocate a page. If so, put things back 1679 * the way they were 1680 */ 1681 vm_page_busy(mnew); 1682 vm_page_free(mnew); 1683 vm_page_insert(m, object, pindex); 1684 } else { /* clear COW & copy page */ 1685 if (!so_zerocp_fullpage) 1686 pmap_copy_page(m, mnew); 1687 mnew->valid = VM_PAGE_BITS_ALL; 1688 vm_page_dirty(mnew); 1689 vm_page_flag_clear(mnew, PG_BUSY); 1690 } 1691 } 1692 1693 void 1694 vm_page_cowclear(vm_page_t m) 1695 { 1696 1697 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1698 if (m->cow) { 1699 m->cow--; 1700 /* 1701 * let vm_fault add back write permission lazily 1702 */ 1703 } 1704 /* 1705 * sf_buf_free() will free the page, so we needn't do it here 1706 */ 1707 } 1708 1709 void 1710 vm_page_cowsetup(vm_page_t m) 1711 { 1712 1713 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1714 m->cow++; 1715 pmap_page_protect(m, VM_PROT_READ); 1716 } 1717 1718 #include "opt_ddb.h" 1719 #ifdef DDB 1720 #include <sys/kernel.h> 1721 1722 #include <ddb/ddb.h> 1723 1724 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1725 { 1726 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 1727 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 1728 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 1729 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 1730 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 1731 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 1732 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 1733 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 1734 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 1735 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 1736 } 1737 1738 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1739 { 1740 int i; 1741 db_printf("PQ_FREE:"); 1742 for (i = 0; i < PQ_L2_SIZE; i++) { 1743 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 1744 } 1745 db_printf("\n"); 1746 1747 db_printf("PQ_CACHE:"); 1748 for (i = 0; i < PQ_L2_SIZE; i++) { 1749 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 1750 } 1751 db_printf("\n"); 1752 1753 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1754 vm_page_queues[PQ_ACTIVE].lcnt, 1755 vm_page_queues[PQ_INACTIVE].lcnt); 1756 } 1757 #endif /* DDB */ 1758