1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * The Mach Operating System project at Carnegie-Mellon University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 34 */ 35 36 /*- 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * GENERAL RULES ON VM_PAGE MANIPULATION 65 * 66 * - A page queue lock is required when adding or removing a page from a 67 * page queue (vm_pagequeues[]), regardless of other locks or the 68 * busy state of a page. 69 * 70 * * In general, no thread besides the page daemon can acquire or 71 * hold more than one page queue lock at a time. 72 * 73 * * The page daemon can acquire and hold any pair of page queue 74 * locks in any order. 75 * 76 * - The object lock is required when inserting or removing 77 * pages from an object (vm_page_insert() or vm_page_remove()). 78 * 79 */ 80 81 /* 82 * Resident memory management module. 83 */ 84 85 #include <sys/cdefs.h> 86 __FBSDID("$FreeBSD$"); 87 88 #include "opt_vm.h" 89 90 #include <sys/param.h> 91 #include <sys/systm.h> 92 #include <sys/lock.h> 93 #include <sys/kernel.h> 94 #include <sys/limits.h> 95 #include <sys/malloc.h> 96 #include <sys/mman.h> 97 #include <sys/msgbuf.h> 98 #include <sys/mutex.h> 99 #include <sys/proc.h> 100 #include <sys/rwlock.h> 101 #include <sys/sysctl.h> 102 #include <sys/vmmeter.h> 103 #include <sys/vnode.h> 104 105 #include <vm/vm.h> 106 #include <vm/pmap.h> 107 #include <vm/vm_param.h> 108 #include <vm/vm_kern.h> 109 #include <vm/vm_object.h> 110 #include <vm/vm_page.h> 111 #include <vm/vm_pageout.h> 112 #include <vm/vm_pager.h> 113 #include <vm/vm_phys.h> 114 #include <vm/vm_radix.h> 115 #include <vm/vm_reserv.h> 116 #include <vm/vm_extern.h> 117 #include <vm/uma.h> 118 #include <vm/uma_int.h> 119 120 #include <machine/md_var.h> 121 122 /* 123 * Associated with page of user-allocatable memory is a 124 * page structure. 125 */ 126 127 struct vm_pagequeue vm_pagequeues[PQ_COUNT] = { 128 [PQ_INACTIVE] = { 129 .pq_pl = TAILQ_HEAD_INITIALIZER( 130 vm_pagequeues[PQ_INACTIVE].pq_pl), 131 .pq_cnt = &cnt.v_inactive_count, 132 .pq_name = "vm inactive pagequeue" 133 }, 134 [PQ_ACTIVE] = { 135 .pq_pl = TAILQ_HEAD_INITIALIZER( 136 vm_pagequeues[PQ_ACTIVE].pq_pl), 137 .pq_cnt = &cnt.v_active_count, 138 .pq_name = "vm active pagequeue" 139 } 140 }; 141 struct mtx_padalign vm_page_queue_free_mtx; 142 143 struct mtx_padalign pa_lock[PA_LOCK_COUNT]; 144 145 vm_page_t vm_page_array; 146 long vm_page_array_size; 147 long first_page; 148 int vm_page_zero_count; 149 150 static int boot_pages = UMA_BOOT_PAGES; 151 TUNABLE_INT("vm.boot_pages", &boot_pages); 152 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0, 153 "number of pages allocated for bootstrapping the VM system"); 154 155 static int pa_tryrelock_restart; 156 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD, 157 &pa_tryrelock_restart, 0, "Number of tryrelock restarts"); 158 159 static uma_zone_t fakepg_zone; 160 161 static struct vnode *vm_page_alloc_init(vm_page_t m); 162 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 163 static void vm_page_enqueue(int queue, vm_page_t m); 164 static void vm_page_init_fakepg(void *dummy); 165 static void vm_page_insert_after(vm_page_t m, vm_object_t object, 166 vm_pindex_t pindex, vm_page_t mpred); 167 168 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL); 169 170 static void 171 vm_page_init_fakepg(void *dummy) 172 { 173 174 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 175 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 176 } 177 178 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 179 #if PAGE_SIZE == 32768 180 #ifdef CTASSERT 181 CTASSERT(sizeof(u_long) >= 8); 182 #endif 183 #endif 184 185 /* 186 * Try to acquire a physical address lock while a pmap is locked. If we 187 * fail to trylock we unlock and lock the pmap directly and cache the 188 * locked pa in *locked. The caller should then restart their loop in case 189 * the virtual to physical mapping has changed. 190 */ 191 int 192 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked) 193 { 194 vm_paddr_t lockpa; 195 196 lockpa = *locked; 197 *locked = pa; 198 if (lockpa) { 199 PA_LOCK_ASSERT(lockpa, MA_OWNED); 200 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa)) 201 return (0); 202 PA_UNLOCK(lockpa); 203 } 204 if (PA_TRYLOCK(pa)) 205 return (0); 206 PMAP_UNLOCK(pmap); 207 atomic_add_int(&pa_tryrelock_restart, 1); 208 PA_LOCK(pa); 209 PMAP_LOCK(pmap); 210 return (EAGAIN); 211 } 212 213 /* 214 * vm_set_page_size: 215 * 216 * Sets the page size, perhaps based upon the memory 217 * size. Must be called before any use of page-size 218 * dependent functions. 219 */ 220 void 221 vm_set_page_size(void) 222 { 223 if (cnt.v_page_size == 0) 224 cnt.v_page_size = PAGE_SIZE; 225 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 226 panic("vm_set_page_size: page size not a power of two"); 227 } 228 229 /* 230 * vm_page_blacklist_lookup: 231 * 232 * See if a physical address in this page has been listed 233 * in the blacklist tunable. Entries in the tunable are 234 * separated by spaces or commas. If an invalid integer is 235 * encountered then the rest of the string is skipped. 236 */ 237 static int 238 vm_page_blacklist_lookup(char *list, vm_paddr_t pa) 239 { 240 vm_paddr_t bad; 241 char *cp, *pos; 242 243 for (pos = list; *pos != '\0'; pos = cp) { 244 bad = strtoq(pos, &cp, 0); 245 if (*cp != '\0') { 246 if (*cp == ' ' || *cp == ',') { 247 cp++; 248 if (cp == pos) 249 continue; 250 } else 251 break; 252 } 253 if (pa == trunc_page(bad)) 254 return (1); 255 } 256 return (0); 257 } 258 259 /* 260 * vm_page_startup: 261 * 262 * Initializes the resident memory module. 263 * 264 * Allocates memory for the page cells, and 265 * for the object/offset-to-page hash table headers. 266 * Each page cell is initialized and placed on the free list. 267 */ 268 vm_offset_t 269 vm_page_startup(vm_offset_t vaddr) 270 { 271 vm_offset_t mapped; 272 vm_paddr_t page_range; 273 vm_paddr_t new_end; 274 int i; 275 vm_paddr_t pa; 276 vm_paddr_t last_pa; 277 char *list; 278 279 /* the biggest memory array is the second group of pages */ 280 vm_paddr_t end; 281 vm_paddr_t biggestsize; 282 vm_paddr_t low_water, high_water; 283 int biggestone; 284 285 biggestsize = 0; 286 biggestone = 0; 287 vaddr = round_page(vaddr); 288 289 for (i = 0; phys_avail[i + 1]; i += 2) { 290 phys_avail[i] = round_page(phys_avail[i]); 291 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 292 } 293 294 low_water = phys_avail[0]; 295 high_water = phys_avail[1]; 296 297 for (i = 0; phys_avail[i + 1]; i += 2) { 298 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 299 300 if (size > biggestsize) { 301 biggestone = i; 302 biggestsize = size; 303 } 304 if (phys_avail[i] < low_water) 305 low_water = phys_avail[i]; 306 if (phys_avail[i + 1] > high_water) 307 high_water = phys_avail[i + 1]; 308 } 309 310 #ifdef XEN 311 low_water = 0; 312 #endif 313 314 end = phys_avail[biggestone+1]; 315 316 /* 317 * Initialize the page and queue locks. 318 */ 319 mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF); 320 for (i = 0; i < PA_LOCK_COUNT; i++) 321 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 322 for (i = 0; i < PQ_COUNT; i++) 323 vm_pagequeue_init_lock(&vm_pagequeues[i]); 324 325 /* 326 * Allocate memory for use when boot strapping the kernel memory 327 * allocator. 328 */ 329 new_end = end - (boot_pages * UMA_SLAB_SIZE); 330 new_end = trunc_page(new_end); 331 mapped = pmap_map(&vaddr, new_end, end, 332 VM_PROT_READ | VM_PROT_WRITE); 333 bzero((void *)mapped, end - new_end); 334 uma_startup((void *)mapped, boot_pages); 335 336 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \ 337 defined(__mips__) 338 /* 339 * Allocate a bitmap to indicate that a random physical page 340 * needs to be included in a minidump. 341 * 342 * The amd64 port needs this to indicate which direct map pages 343 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 344 * 345 * However, i386 still needs this workspace internally within the 346 * minidump code. In theory, they are not needed on i386, but are 347 * included should the sf_buf code decide to use them. 348 */ 349 last_pa = 0; 350 for (i = 0; dump_avail[i + 1] != 0; i += 2) 351 if (dump_avail[i + 1] > last_pa) 352 last_pa = dump_avail[i + 1]; 353 page_range = last_pa / PAGE_SIZE; 354 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 355 new_end -= vm_page_dump_size; 356 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 357 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 358 bzero((void *)vm_page_dump, vm_page_dump_size); 359 #endif 360 #ifdef __amd64__ 361 /* 362 * Request that the physical pages underlying the message buffer be 363 * included in a crash dump. Since the message buffer is accessed 364 * through the direct map, they are not automatically included. 365 */ 366 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 367 last_pa = pa + round_page(msgbufsize); 368 while (pa < last_pa) { 369 dump_add_page(pa); 370 pa += PAGE_SIZE; 371 } 372 #endif 373 /* 374 * Compute the number of pages of memory that will be available for 375 * use (taking into account the overhead of a page structure per 376 * page). 377 */ 378 first_page = low_water / PAGE_SIZE; 379 #ifdef VM_PHYSSEG_SPARSE 380 page_range = 0; 381 for (i = 0; phys_avail[i + 1] != 0; i += 2) 382 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 383 #elif defined(VM_PHYSSEG_DENSE) 384 page_range = high_water / PAGE_SIZE - first_page; 385 #else 386 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 387 #endif 388 end = new_end; 389 390 /* 391 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 392 */ 393 vaddr += PAGE_SIZE; 394 395 /* 396 * Initialize the mem entry structures now, and put them in the free 397 * queue. 398 */ 399 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 400 mapped = pmap_map(&vaddr, new_end, end, 401 VM_PROT_READ | VM_PROT_WRITE); 402 vm_page_array = (vm_page_t) mapped; 403 #if VM_NRESERVLEVEL > 0 404 /* 405 * Allocate memory for the reservation management system's data 406 * structures. 407 */ 408 new_end = vm_reserv_startup(&vaddr, new_end, high_water); 409 #endif 410 #if defined(__amd64__) || defined(__mips__) 411 /* 412 * pmap_map on amd64 and mips can come out of the direct-map, not kvm 413 * like i386, so the pages must be tracked for a crashdump to include 414 * this data. This includes the vm_page_array and the early UMA 415 * bootstrap pages. 416 */ 417 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 418 dump_add_page(pa); 419 #endif 420 phys_avail[biggestone + 1] = new_end; 421 422 /* 423 * Clear all of the page structures 424 */ 425 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 426 for (i = 0; i < page_range; i++) 427 vm_page_array[i].order = VM_NFREEORDER; 428 vm_page_array_size = page_range; 429 430 /* 431 * Initialize the physical memory allocator. 432 */ 433 vm_phys_init(); 434 435 /* 436 * Add every available physical page that is not blacklisted to 437 * the free lists. 438 */ 439 cnt.v_page_count = 0; 440 cnt.v_free_count = 0; 441 list = getenv("vm.blacklist"); 442 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 443 pa = phys_avail[i]; 444 last_pa = phys_avail[i + 1]; 445 while (pa < last_pa) { 446 if (list != NULL && 447 vm_page_blacklist_lookup(list, pa)) 448 printf("Skipping page with pa 0x%jx\n", 449 (uintmax_t)pa); 450 else 451 vm_phys_add_page(pa); 452 pa += PAGE_SIZE; 453 } 454 } 455 freeenv(list); 456 #if VM_NRESERVLEVEL > 0 457 /* 458 * Initialize the reservation management system. 459 */ 460 vm_reserv_init(); 461 #endif 462 return (vaddr); 463 } 464 465 void 466 vm_page_reference(vm_page_t m) 467 { 468 469 vm_page_aflag_set(m, PGA_REFERENCED); 470 } 471 472 void 473 vm_page_busy(vm_page_t m) 474 { 475 476 VM_OBJECT_ASSERT_WLOCKED(m->object); 477 KASSERT((m->oflags & VPO_BUSY) == 0, 478 ("vm_page_busy: page already busy!!!")); 479 m->oflags |= VPO_BUSY; 480 } 481 482 /* 483 * vm_page_flash: 484 * 485 * wakeup anyone waiting for the page. 486 */ 487 void 488 vm_page_flash(vm_page_t m) 489 { 490 491 VM_OBJECT_ASSERT_WLOCKED(m->object); 492 if (m->oflags & VPO_WANTED) { 493 m->oflags &= ~VPO_WANTED; 494 wakeup(m); 495 } 496 } 497 498 /* 499 * vm_page_wakeup: 500 * 501 * clear the VPO_BUSY flag and wakeup anyone waiting for the 502 * page. 503 * 504 */ 505 void 506 vm_page_wakeup(vm_page_t m) 507 { 508 509 VM_OBJECT_ASSERT_WLOCKED(m->object); 510 KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!")); 511 m->oflags &= ~VPO_BUSY; 512 vm_page_flash(m); 513 } 514 515 void 516 vm_page_io_start(vm_page_t m) 517 { 518 519 VM_OBJECT_ASSERT_WLOCKED(m->object); 520 m->busy++; 521 } 522 523 void 524 vm_page_io_finish(vm_page_t m) 525 { 526 527 VM_OBJECT_ASSERT_WLOCKED(m->object); 528 KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m)); 529 m->busy--; 530 if (m->busy == 0) 531 vm_page_flash(m); 532 } 533 534 /* 535 * Keep page from being freed by the page daemon 536 * much of the same effect as wiring, except much lower 537 * overhead and should be used only for *very* temporary 538 * holding ("wiring"). 539 */ 540 void 541 vm_page_hold(vm_page_t mem) 542 { 543 544 vm_page_lock_assert(mem, MA_OWNED); 545 mem->hold_count++; 546 } 547 548 void 549 vm_page_unhold(vm_page_t mem) 550 { 551 552 vm_page_lock_assert(mem, MA_OWNED); 553 --mem->hold_count; 554 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 555 if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0) 556 vm_page_free_toq(mem); 557 } 558 559 /* 560 * vm_page_unhold_pages: 561 * 562 * Unhold each of the pages that is referenced by the given array. 563 */ 564 void 565 vm_page_unhold_pages(vm_page_t *ma, int count) 566 { 567 struct mtx *mtx, *new_mtx; 568 569 mtx = NULL; 570 for (; count != 0; count--) { 571 /* 572 * Avoid releasing and reacquiring the same page lock. 573 */ 574 new_mtx = vm_page_lockptr(*ma); 575 if (mtx != new_mtx) { 576 if (mtx != NULL) 577 mtx_unlock(mtx); 578 mtx = new_mtx; 579 mtx_lock(mtx); 580 } 581 vm_page_unhold(*ma); 582 ma++; 583 } 584 if (mtx != NULL) 585 mtx_unlock(mtx); 586 } 587 588 vm_page_t 589 PHYS_TO_VM_PAGE(vm_paddr_t pa) 590 { 591 vm_page_t m; 592 593 #ifdef VM_PHYSSEG_SPARSE 594 m = vm_phys_paddr_to_vm_page(pa); 595 if (m == NULL) 596 m = vm_phys_fictitious_to_vm_page(pa); 597 return (m); 598 #elif defined(VM_PHYSSEG_DENSE) 599 long pi; 600 601 pi = atop(pa); 602 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 603 m = &vm_page_array[pi - first_page]; 604 return (m); 605 } 606 return (vm_phys_fictitious_to_vm_page(pa)); 607 #else 608 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 609 #endif 610 } 611 612 /* 613 * vm_page_getfake: 614 * 615 * Create a fictitious page with the specified physical address and 616 * memory attribute. The memory attribute is the only the machine- 617 * dependent aspect of a fictitious page that must be initialized. 618 */ 619 vm_page_t 620 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 621 { 622 vm_page_t m; 623 624 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 625 vm_page_initfake(m, paddr, memattr); 626 return (m); 627 } 628 629 void 630 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 631 { 632 633 if ((m->flags & PG_FICTITIOUS) != 0) { 634 /* 635 * The page's memattr might have changed since the 636 * previous initialization. Update the pmap to the 637 * new memattr. 638 */ 639 goto memattr; 640 } 641 m->phys_addr = paddr; 642 m->queue = PQ_NONE; 643 /* Fictitious pages don't use "segind". */ 644 m->flags = PG_FICTITIOUS; 645 /* Fictitious pages don't use "order" or "pool". */ 646 m->oflags = VPO_BUSY | VPO_UNMANAGED; 647 m->wire_count = 1; 648 pmap_page_init(m); 649 memattr: 650 pmap_page_set_memattr(m, memattr); 651 } 652 653 /* 654 * vm_page_putfake: 655 * 656 * Release a fictitious page. 657 */ 658 void 659 vm_page_putfake(vm_page_t m) 660 { 661 662 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 663 KASSERT((m->flags & PG_FICTITIOUS) != 0, 664 ("vm_page_putfake: bad page %p", m)); 665 uma_zfree(fakepg_zone, m); 666 } 667 668 /* 669 * vm_page_updatefake: 670 * 671 * Update the given fictitious page to the specified physical address and 672 * memory attribute. 673 */ 674 void 675 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 676 { 677 678 KASSERT((m->flags & PG_FICTITIOUS) != 0, 679 ("vm_page_updatefake: bad page %p", m)); 680 m->phys_addr = paddr; 681 pmap_page_set_memattr(m, memattr); 682 } 683 684 /* 685 * vm_page_free: 686 * 687 * Free a page. 688 */ 689 void 690 vm_page_free(vm_page_t m) 691 { 692 693 m->flags &= ~PG_ZERO; 694 vm_page_free_toq(m); 695 } 696 697 /* 698 * vm_page_free_zero: 699 * 700 * Free a page to the zerod-pages queue 701 */ 702 void 703 vm_page_free_zero(vm_page_t m) 704 { 705 706 m->flags |= PG_ZERO; 707 vm_page_free_toq(m); 708 } 709 710 /* 711 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES() 712 * array which is not the request page. 713 */ 714 void 715 vm_page_readahead_finish(vm_page_t m) 716 { 717 718 if (m->valid != 0) { 719 /* 720 * Since the page is not the requested page, whether 721 * it should be activated or deactivated is not 722 * obvious. Empirical results have shown that 723 * deactivating the page is usually the best choice, 724 * unless the page is wanted by another thread. 725 */ 726 if (m->oflags & VPO_WANTED) { 727 vm_page_lock(m); 728 vm_page_activate(m); 729 vm_page_unlock(m); 730 } else { 731 vm_page_lock(m); 732 vm_page_deactivate(m); 733 vm_page_unlock(m); 734 } 735 vm_page_wakeup(m); 736 } else { 737 /* 738 * Free the completely invalid page. Such page state 739 * occurs due to the short read operation which did 740 * not covered our page at all, or in case when a read 741 * error happens. 742 */ 743 vm_page_lock(m); 744 vm_page_free(m); 745 vm_page_unlock(m); 746 } 747 } 748 749 /* 750 * vm_page_sleep: 751 * 752 * Sleep and release the page lock. 753 * 754 * The object containing the given page must be locked. 755 */ 756 void 757 vm_page_sleep(vm_page_t m, const char *msg) 758 { 759 760 VM_OBJECT_ASSERT_WLOCKED(m->object); 761 if (mtx_owned(vm_page_lockptr(m))) 762 vm_page_unlock(m); 763 764 /* 765 * It's possible that while we sleep, the page will get 766 * unbusied and freed. If we are holding the object 767 * lock, we will assume we hold a reference to the object 768 * such that even if m->object changes, we can re-lock 769 * it. 770 */ 771 m->oflags |= VPO_WANTED; 772 VM_OBJECT_SLEEP(m->object, m, PVM, msg, 0); 773 } 774 775 /* 776 * vm_page_dirty_KBI: [ internal use only ] 777 * 778 * Set all bits in the page's dirty field. 779 * 780 * The object containing the specified page must be locked if the 781 * call is made from the machine-independent layer. 782 * 783 * See vm_page_clear_dirty_mask(). 784 * 785 * This function should only be called by vm_page_dirty(). 786 */ 787 void 788 vm_page_dirty_KBI(vm_page_t m) 789 { 790 791 /* These assertions refer to this operation by its public name. */ 792 KASSERT((m->flags & PG_CACHED) == 0, 793 ("vm_page_dirty: page in cache!")); 794 KASSERT(!VM_PAGE_IS_FREE(m), 795 ("vm_page_dirty: page is free!")); 796 KASSERT(m->valid == VM_PAGE_BITS_ALL, 797 ("vm_page_dirty: page is invalid!")); 798 m->dirty = VM_PAGE_BITS_ALL; 799 } 800 801 /* 802 * vm_page_insert: [ internal use only ] 803 * 804 * Inserts the given mem entry into the object and object list. 805 * 806 * The object must be locked. 807 */ 808 void 809 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 810 { 811 vm_page_t mpred; 812 813 VM_OBJECT_ASSERT_WLOCKED(object); 814 mpred = vm_radix_lookup_le(&object->rtree, pindex); 815 vm_page_insert_after(m, object, pindex, mpred); 816 } 817 818 /* 819 * vm_page_insert_after: 820 * 821 * Inserts the page "m" into the specified object at offset "pindex". 822 * 823 * The page "mpred" must immediately precede the offset "pindex" within 824 * the specified object. 825 * 826 * The object must be locked. 827 */ 828 static void 829 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 830 vm_page_t mpred) 831 { 832 vm_page_t msucc; 833 834 VM_OBJECT_ASSERT_WLOCKED(object); 835 KASSERT(m->object == NULL, 836 ("vm_page_insert_after: page already inserted")); 837 if (mpred != NULL) { 838 KASSERT(mpred->object == object || 839 (mpred->flags & PG_SLAB) != 0, 840 ("vm_page_insert_after: object doesn't contain mpred")); 841 KASSERT(mpred->pindex < pindex, 842 ("vm_page_insert_after: mpred doesn't precede pindex")); 843 msucc = TAILQ_NEXT(mpred, listq); 844 } else 845 msucc = TAILQ_FIRST(&object->memq); 846 if (msucc != NULL) 847 KASSERT(msucc->pindex > pindex, 848 ("vm_page_insert_after: msucc doesn't succeed pindex")); 849 850 /* 851 * Record the object/offset pair in this page 852 */ 853 m->object = object; 854 m->pindex = pindex; 855 856 /* 857 * Now link into the object's ordered list of backed pages. 858 */ 859 if (mpred != NULL) 860 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 861 else 862 TAILQ_INSERT_HEAD(&object->memq, m, listq); 863 vm_radix_insert(&object->rtree, m); 864 865 /* 866 * Show that the object has one more resident page. 867 */ 868 object->resident_page_count++; 869 870 /* 871 * Hold the vnode until the last page is released. 872 */ 873 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 874 vhold(object->handle); 875 876 /* 877 * Since we are inserting a new and possibly dirty page, 878 * update the object's OBJ_MIGHTBEDIRTY flag. 879 */ 880 if (pmap_page_is_write_mapped(m)) 881 vm_object_set_writeable_dirty(object); 882 } 883 884 /* 885 * vm_page_remove: 886 * 887 * Removes the given mem entry from the object/offset-page 888 * table and the object page list, but do not invalidate/terminate 889 * the backing store. 890 * 891 * The object must be locked. The page must be locked if it is managed. 892 */ 893 void 894 vm_page_remove(vm_page_t m) 895 { 896 vm_object_t object; 897 898 if ((m->oflags & VPO_UNMANAGED) == 0) 899 vm_page_lock_assert(m, MA_OWNED); 900 if ((object = m->object) == NULL) 901 return; 902 VM_OBJECT_ASSERT_WLOCKED(object); 903 if (m->oflags & VPO_BUSY) { 904 m->oflags &= ~VPO_BUSY; 905 vm_page_flash(m); 906 } 907 908 /* 909 * Now remove from the object's list of backed pages. 910 */ 911 vm_radix_remove(&object->rtree, m->pindex); 912 TAILQ_REMOVE(&object->memq, m, listq); 913 914 /* 915 * And show that the object has one fewer resident page. 916 */ 917 object->resident_page_count--; 918 919 /* 920 * The vnode may now be recycled. 921 */ 922 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 923 vdrop(object->handle); 924 925 m->object = NULL; 926 } 927 928 /* 929 * vm_page_lookup: 930 * 931 * Returns the page associated with the object/offset 932 * pair specified; if none is found, NULL is returned. 933 * 934 * The object must be locked. 935 */ 936 vm_page_t 937 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 938 { 939 940 VM_OBJECT_ASSERT_LOCKED(object); 941 return (vm_radix_lookup(&object->rtree, pindex)); 942 } 943 944 /* 945 * vm_page_find_least: 946 * 947 * Returns the page associated with the object with least pindex 948 * greater than or equal to the parameter pindex, or NULL. 949 * 950 * The object must be locked. 951 */ 952 vm_page_t 953 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 954 { 955 vm_page_t m; 956 957 VM_OBJECT_ASSERT_LOCKED(object); 958 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 959 m = vm_radix_lookup_ge(&object->rtree, pindex); 960 return (m); 961 } 962 963 /* 964 * Returns the given page's successor (by pindex) within the object if it is 965 * resident; if none is found, NULL is returned. 966 * 967 * The object must be locked. 968 */ 969 vm_page_t 970 vm_page_next(vm_page_t m) 971 { 972 vm_page_t next; 973 974 VM_OBJECT_ASSERT_WLOCKED(m->object); 975 if ((next = TAILQ_NEXT(m, listq)) != NULL && 976 next->pindex != m->pindex + 1) 977 next = NULL; 978 return (next); 979 } 980 981 /* 982 * Returns the given page's predecessor (by pindex) within the object if it is 983 * resident; if none is found, NULL is returned. 984 * 985 * The object must be locked. 986 */ 987 vm_page_t 988 vm_page_prev(vm_page_t m) 989 { 990 vm_page_t prev; 991 992 VM_OBJECT_ASSERT_WLOCKED(m->object); 993 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL && 994 prev->pindex != m->pindex - 1) 995 prev = NULL; 996 return (prev); 997 } 998 999 /* 1000 * vm_page_rename: 1001 * 1002 * Move the given memory entry from its 1003 * current object to the specified target object/offset. 1004 * 1005 * Note: swap associated with the page must be invalidated by the move. We 1006 * have to do this for several reasons: (1) we aren't freeing the 1007 * page, (2) we are dirtying the page, (3) the VM system is probably 1008 * moving the page from object A to B, and will then later move 1009 * the backing store from A to B and we can't have a conflict. 1010 * 1011 * Note: we *always* dirty the page. It is necessary both for the 1012 * fact that we moved it, and because we may be invalidating 1013 * swap. If the page is on the cache, we have to deactivate it 1014 * or vm_page_dirty() will panic. Dirty pages are not allowed 1015 * on the cache. 1016 * 1017 * The objects must be locked. The page must be locked if it is managed. 1018 */ 1019 void 1020 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1021 { 1022 1023 vm_page_remove(m); 1024 vm_page_insert(m, new_object, new_pindex); 1025 vm_page_dirty(m); 1026 } 1027 1028 /* 1029 * Convert all of the given object's cached pages that have a 1030 * pindex within the given range into free pages. If the value 1031 * zero is given for "end", then the range's upper bound is 1032 * infinity. If the given object is backed by a vnode and it 1033 * transitions from having one or more cached pages to none, the 1034 * vnode's hold count is reduced. 1035 */ 1036 void 1037 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1038 { 1039 vm_page_t m; 1040 boolean_t empty; 1041 1042 mtx_lock(&vm_page_queue_free_mtx); 1043 if (__predict_false(vm_radix_is_empty(&object->cache))) { 1044 mtx_unlock(&vm_page_queue_free_mtx); 1045 return; 1046 } 1047 while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) { 1048 if (end != 0 && m->pindex >= end) 1049 break; 1050 vm_radix_remove(&object->cache, m->pindex); 1051 m->object = NULL; 1052 m->valid = 0; 1053 /* Clear PG_CACHED and set PG_FREE. */ 1054 m->flags ^= PG_CACHED | PG_FREE; 1055 KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE, 1056 ("vm_page_cache_free: page %p has inconsistent flags", m)); 1057 cnt.v_cache_count--; 1058 cnt.v_free_count++; 1059 } 1060 empty = vm_radix_is_empty(&object->cache); 1061 mtx_unlock(&vm_page_queue_free_mtx); 1062 if (object->type == OBJT_VNODE && empty) 1063 vdrop(object->handle); 1064 } 1065 1066 /* 1067 * Returns the cached page that is associated with the given 1068 * object and offset. If, however, none exists, returns NULL. 1069 * 1070 * The free page queue must be locked. 1071 */ 1072 static inline vm_page_t 1073 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex) 1074 { 1075 1076 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1077 return (vm_radix_lookup(&object->cache, pindex)); 1078 } 1079 1080 /* 1081 * Remove the given cached page from its containing object's 1082 * collection of cached pages. 1083 * 1084 * The free page queue must be locked. 1085 */ 1086 static void 1087 vm_page_cache_remove(vm_page_t m) 1088 { 1089 1090 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1091 KASSERT((m->flags & PG_CACHED) != 0, 1092 ("vm_page_cache_remove: page %p is not cached", m)); 1093 vm_radix_remove(&m->object->cache, m->pindex); 1094 m->object = NULL; 1095 cnt.v_cache_count--; 1096 } 1097 1098 /* 1099 * Transfer all of the cached pages with offset greater than or 1100 * equal to 'offidxstart' from the original object's cache to the 1101 * new object's cache. However, any cached pages with offset 1102 * greater than or equal to the new object's size are kept in the 1103 * original object. Initially, the new object's cache must be 1104 * empty. Offset 'offidxstart' in the original object must 1105 * correspond to offset zero in the new object. 1106 * 1107 * The new object must be locked. 1108 */ 1109 void 1110 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart, 1111 vm_object_t new_object) 1112 { 1113 vm_page_t m; 1114 1115 /* 1116 * Insertion into an object's collection of cached pages 1117 * requires the object to be locked. In contrast, removal does 1118 * not. 1119 */ 1120 VM_OBJECT_ASSERT_WLOCKED(new_object); 1121 KASSERT(vm_radix_is_empty(&new_object->cache), 1122 ("vm_page_cache_transfer: object %p has cached pages", 1123 new_object)); 1124 mtx_lock(&vm_page_queue_free_mtx); 1125 while ((m = vm_radix_lookup_ge(&orig_object->cache, 1126 offidxstart)) != NULL) { 1127 /* 1128 * Transfer all of the pages with offset greater than or 1129 * equal to 'offidxstart' from the original object's 1130 * cache to the new object's cache. 1131 */ 1132 if ((m->pindex - offidxstart) >= new_object->size) 1133 break; 1134 vm_radix_remove(&orig_object->cache, m->pindex); 1135 /* Update the page's object and offset. */ 1136 m->object = new_object; 1137 m->pindex -= offidxstart; 1138 vm_radix_insert(&new_object->cache, m); 1139 } 1140 mtx_unlock(&vm_page_queue_free_mtx); 1141 } 1142 1143 /* 1144 * Returns TRUE if a cached page is associated with the given object and 1145 * offset, and FALSE otherwise. 1146 * 1147 * The object must be locked. 1148 */ 1149 boolean_t 1150 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex) 1151 { 1152 vm_page_t m; 1153 1154 /* 1155 * Insertion into an object's collection of cached pages requires the 1156 * object to be locked. Therefore, if the object is locked and the 1157 * object's collection is empty, there is no need to acquire the free 1158 * page queues lock in order to prove that the specified page doesn't 1159 * exist. 1160 */ 1161 VM_OBJECT_ASSERT_WLOCKED(object); 1162 if (__predict_true(vm_object_cache_is_empty(object))) 1163 return (FALSE); 1164 mtx_lock(&vm_page_queue_free_mtx); 1165 m = vm_page_cache_lookup(object, pindex); 1166 mtx_unlock(&vm_page_queue_free_mtx); 1167 return (m != NULL); 1168 } 1169 1170 /* 1171 * vm_page_alloc: 1172 * 1173 * Allocate and return a page that is associated with the specified 1174 * object and offset pair. By default, this page has the flag VPO_BUSY 1175 * set. 1176 * 1177 * The caller must always specify an allocation class. 1178 * 1179 * allocation classes: 1180 * VM_ALLOC_NORMAL normal process request 1181 * VM_ALLOC_SYSTEM system *really* needs a page 1182 * VM_ALLOC_INTERRUPT interrupt time request 1183 * 1184 * optional allocation flags: 1185 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1186 * intends to allocate 1187 * VM_ALLOC_IFCACHED return page only if it is cached 1188 * VM_ALLOC_IFNOTCACHED return NULL, do not reactivate if the page 1189 * is cached 1190 * VM_ALLOC_NOBUSY do not set the flag VPO_BUSY on the page 1191 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1192 * VM_ALLOC_NOOBJ page is not associated with an object and 1193 * should not have the flag VPO_BUSY set 1194 * VM_ALLOC_WIRED wire the allocated page 1195 * VM_ALLOC_ZERO prefer a zeroed page 1196 * 1197 * This routine may not sleep. 1198 */ 1199 vm_page_t 1200 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1201 { 1202 struct vnode *vp = NULL; 1203 vm_object_t m_object; 1204 vm_page_t m, mpred; 1205 int flags, req_class; 1206 1207 mpred = 0; /* XXX: pacify gcc */ 1208 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0), 1209 ("vm_page_alloc: inconsistent object/req")); 1210 if (object != NULL) 1211 VM_OBJECT_ASSERT_WLOCKED(object); 1212 1213 req_class = req & VM_ALLOC_CLASS_MASK; 1214 1215 /* 1216 * The page daemon is allowed to dig deeper into the free page list. 1217 */ 1218 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1219 req_class = VM_ALLOC_SYSTEM; 1220 1221 if (object != NULL) { 1222 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1223 KASSERT(mpred == NULL || mpred->pindex != pindex, 1224 ("vm_page_alloc: pindex already allocated")); 1225 } 1226 mtx_lock(&vm_page_queue_free_mtx); 1227 if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved || 1228 (req_class == VM_ALLOC_SYSTEM && 1229 cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) || 1230 (req_class == VM_ALLOC_INTERRUPT && 1231 cnt.v_free_count + cnt.v_cache_count > 0)) { 1232 /* 1233 * Allocate from the free queue if the number of free pages 1234 * exceeds the minimum for the request class. 1235 */ 1236 if (object != NULL && 1237 (m = vm_page_cache_lookup(object, pindex)) != NULL) { 1238 if ((req & VM_ALLOC_IFNOTCACHED) != 0) { 1239 mtx_unlock(&vm_page_queue_free_mtx); 1240 return (NULL); 1241 } 1242 if (vm_phys_unfree_page(m)) 1243 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0); 1244 #if VM_NRESERVLEVEL > 0 1245 else if (!vm_reserv_reactivate_page(m)) 1246 #else 1247 else 1248 #endif 1249 panic("vm_page_alloc: cache page %p is missing" 1250 " from the free queue", m); 1251 } else if ((req & VM_ALLOC_IFCACHED) != 0) { 1252 mtx_unlock(&vm_page_queue_free_mtx); 1253 return (NULL); 1254 #if VM_NRESERVLEVEL > 0 1255 } else if (object == NULL || (object->flags & (OBJ_COLORED | 1256 OBJ_FICTITIOUS)) != OBJ_COLORED || (m = 1257 vm_reserv_alloc_page(object, pindex, mpred)) == NULL) { 1258 #else 1259 } else { 1260 #endif 1261 m = vm_phys_alloc_pages(object != NULL ? 1262 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 1263 #if VM_NRESERVLEVEL > 0 1264 if (m == NULL && vm_reserv_reclaim_inactive()) { 1265 m = vm_phys_alloc_pages(object != NULL ? 1266 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 1267 0); 1268 } 1269 #endif 1270 } 1271 } else { 1272 /* 1273 * Not allocatable, give up. 1274 */ 1275 mtx_unlock(&vm_page_queue_free_mtx); 1276 atomic_add_int(&vm_pageout_deficit, 1277 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 1278 pagedaemon_wakeup(); 1279 return (NULL); 1280 } 1281 1282 /* 1283 * At this point we had better have found a good page. 1284 */ 1285 KASSERT(m != NULL, ("vm_page_alloc: missing page")); 1286 KASSERT(m->queue == PQ_NONE, 1287 ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue)); 1288 KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m)); 1289 KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m)); 1290 KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m)); 1291 KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m)); 1292 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1293 ("vm_page_alloc: page %p has unexpected memattr %d", m, 1294 pmap_page_get_memattr(m))); 1295 if ((m->flags & PG_CACHED) != 0) { 1296 KASSERT((m->flags & PG_ZERO) == 0, 1297 ("vm_page_alloc: cached page %p is PG_ZERO", m)); 1298 KASSERT(m->valid != 0, 1299 ("vm_page_alloc: cached page %p is invalid", m)); 1300 if (m->object == object && m->pindex == pindex) 1301 cnt.v_reactivated++; 1302 else 1303 m->valid = 0; 1304 m_object = m->object; 1305 vm_page_cache_remove(m); 1306 if (m_object->type == OBJT_VNODE && 1307 vm_object_cache_is_empty(m_object)) 1308 vp = m_object->handle; 1309 } else { 1310 KASSERT(VM_PAGE_IS_FREE(m), 1311 ("vm_page_alloc: page %p is not free", m)); 1312 KASSERT(m->valid == 0, 1313 ("vm_page_alloc: free page %p is valid", m)); 1314 cnt.v_free_count--; 1315 } 1316 1317 /* 1318 * Only the PG_ZERO flag is inherited. The PG_CACHED or PG_FREE flag 1319 * must be cleared before the free page queues lock is released. 1320 */ 1321 flags = 0; 1322 if (m->flags & PG_ZERO) { 1323 vm_page_zero_count--; 1324 if (req & VM_ALLOC_ZERO) 1325 flags = PG_ZERO; 1326 } 1327 if (req & VM_ALLOC_NODUMP) 1328 flags |= PG_NODUMP; 1329 m->flags = flags; 1330 mtx_unlock(&vm_page_queue_free_mtx); 1331 m->aflags = 0; 1332 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 1333 VPO_UNMANAGED : 0; 1334 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0) 1335 m->oflags |= VPO_BUSY; 1336 if (req & VM_ALLOC_WIRED) { 1337 /* 1338 * The page lock is not required for wiring a page until that 1339 * page is inserted into the object. 1340 */ 1341 atomic_add_int(&cnt.v_wire_count, 1); 1342 m->wire_count = 1; 1343 } 1344 m->act_count = 0; 1345 1346 if (object != NULL) { 1347 /* Ignore device objects; the pager sets "memattr" for them. */ 1348 if (object->memattr != VM_MEMATTR_DEFAULT && 1349 (object->flags & OBJ_FICTITIOUS) == 0) 1350 pmap_page_set_memattr(m, object->memattr); 1351 vm_page_insert_after(m, object, pindex, mpred); 1352 } else 1353 m->pindex = pindex; 1354 1355 /* 1356 * The following call to vdrop() must come after the above call 1357 * to vm_page_insert() in case both affect the same object and 1358 * vnode. Otherwise, the affected vnode's hold count could 1359 * temporarily become zero. 1360 */ 1361 if (vp != NULL) 1362 vdrop(vp); 1363 1364 /* 1365 * Don't wakeup too often - wakeup the pageout daemon when 1366 * we would be nearly out of memory. 1367 */ 1368 if (vm_paging_needed()) 1369 pagedaemon_wakeup(); 1370 1371 return (m); 1372 } 1373 1374 /* 1375 * vm_page_alloc_contig: 1376 * 1377 * Allocate a contiguous set of physical pages of the given size "npages" 1378 * from the free lists. All of the physical pages must be at or above 1379 * the given physical address "low" and below the given physical address 1380 * "high". The given value "alignment" determines the alignment of the 1381 * first physical page in the set. If the given value "boundary" is 1382 * non-zero, then the set of physical pages cannot cross any physical 1383 * address boundary that is a multiple of that value. Both "alignment" 1384 * and "boundary" must be a power of two. 1385 * 1386 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 1387 * then the memory attribute setting for the physical pages is configured 1388 * to the object's memory attribute setting. Otherwise, the memory 1389 * attribute setting for the physical pages is configured to "memattr", 1390 * overriding the object's memory attribute setting. However, if the 1391 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 1392 * memory attribute setting for the physical pages cannot be configured 1393 * to VM_MEMATTR_DEFAULT. 1394 * 1395 * The caller must always specify an allocation class. 1396 * 1397 * allocation classes: 1398 * VM_ALLOC_NORMAL normal process request 1399 * VM_ALLOC_SYSTEM system *really* needs a page 1400 * VM_ALLOC_INTERRUPT interrupt time request 1401 * 1402 * optional allocation flags: 1403 * VM_ALLOC_NOBUSY do not set the flag VPO_BUSY on the page 1404 * VM_ALLOC_NOOBJ page is not associated with an object and 1405 * should not have the flag VPO_BUSY set 1406 * VM_ALLOC_WIRED wire the allocated page 1407 * VM_ALLOC_ZERO prefer a zeroed page 1408 * 1409 * This routine may not sleep. 1410 */ 1411 vm_page_t 1412 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 1413 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1414 vm_paddr_t boundary, vm_memattr_t memattr) 1415 { 1416 struct vnode *drop; 1417 vm_page_t deferred_vdrop_list, m, m_ret; 1418 u_int flags, oflags; 1419 int req_class; 1420 1421 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0), 1422 ("vm_page_alloc_contig: inconsistent object/req")); 1423 if (object != NULL) { 1424 VM_OBJECT_ASSERT_WLOCKED(object); 1425 KASSERT(object->type == OBJT_PHYS, 1426 ("vm_page_alloc_contig: object %p isn't OBJT_PHYS", 1427 object)); 1428 } 1429 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 1430 req_class = req & VM_ALLOC_CLASS_MASK; 1431 1432 /* 1433 * The page daemon is allowed to dig deeper into the free page list. 1434 */ 1435 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1436 req_class = VM_ALLOC_SYSTEM; 1437 1438 deferred_vdrop_list = NULL; 1439 mtx_lock(&vm_page_queue_free_mtx); 1440 if (cnt.v_free_count + cnt.v_cache_count >= npages + 1441 cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM && 1442 cnt.v_free_count + cnt.v_cache_count >= npages + 1443 cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT && 1444 cnt.v_free_count + cnt.v_cache_count >= npages)) { 1445 #if VM_NRESERVLEVEL > 0 1446 retry: 1447 if (object == NULL || (object->flags & OBJ_COLORED) == 0 || 1448 (m_ret = vm_reserv_alloc_contig(object, pindex, npages, 1449 low, high, alignment, boundary)) == NULL) 1450 #endif 1451 m_ret = vm_phys_alloc_contig(npages, low, high, 1452 alignment, boundary); 1453 } else { 1454 mtx_unlock(&vm_page_queue_free_mtx); 1455 atomic_add_int(&vm_pageout_deficit, npages); 1456 pagedaemon_wakeup(); 1457 return (NULL); 1458 } 1459 if (m_ret != NULL) 1460 for (m = m_ret; m < &m_ret[npages]; m++) { 1461 drop = vm_page_alloc_init(m); 1462 if (drop != NULL) { 1463 /* 1464 * Enqueue the vnode for deferred vdrop(). 1465 * 1466 * Once the pages are removed from the free 1467 * page list, "pageq" can be safely abused to 1468 * construct a short-lived list of vnodes. 1469 */ 1470 m->pageq.tqe_prev = (void *)drop; 1471 m->pageq.tqe_next = deferred_vdrop_list; 1472 deferred_vdrop_list = m; 1473 } 1474 } 1475 else { 1476 #if VM_NRESERVLEVEL > 0 1477 if (vm_reserv_reclaim_contig(npages, low, high, alignment, 1478 boundary)) 1479 goto retry; 1480 #endif 1481 } 1482 mtx_unlock(&vm_page_queue_free_mtx); 1483 if (m_ret == NULL) 1484 return (NULL); 1485 1486 /* 1487 * Initialize the pages. Only the PG_ZERO flag is inherited. 1488 */ 1489 flags = 0; 1490 if ((req & VM_ALLOC_ZERO) != 0) 1491 flags = PG_ZERO; 1492 if ((req & VM_ALLOC_NODUMP) != 0) 1493 flags |= PG_NODUMP; 1494 if ((req & VM_ALLOC_WIRED) != 0) 1495 atomic_add_int(&cnt.v_wire_count, npages); 1496 oflags = VPO_UNMANAGED; 1497 if (object != NULL) { 1498 if ((req & VM_ALLOC_NOBUSY) == 0) 1499 oflags |= VPO_BUSY; 1500 if (object->memattr != VM_MEMATTR_DEFAULT && 1501 memattr == VM_MEMATTR_DEFAULT) 1502 memattr = object->memattr; 1503 } 1504 for (m = m_ret; m < &m_ret[npages]; m++) { 1505 m->aflags = 0; 1506 m->flags = (m->flags | PG_NODUMP) & flags; 1507 if ((req & VM_ALLOC_WIRED) != 0) 1508 m->wire_count = 1; 1509 /* Unmanaged pages don't use "act_count". */ 1510 m->oflags = oflags; 1511 if (memattr != VM_MEMATTR_DEFAULT) 1512 pmap_page_set_memattr(m, memattr); 1513 if (object != NULL) 1514 vm_page_insert(m, object, pindex); 1515 else 1516 m->pindex = pindex; 1517 pindex++; 1518 } 1519 while (deferred_vdrop_list != NULL) { 1520 vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev); 1521 deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next; 1522 } 1523 if (vm_paging_needed()) 1524 pagedaemon_wakeup(); 1525 return (m_ret); 1526 } 1527 1528 /* 1529 * Initialize a page that has been freshly dequeued from a freelist. 1530 * The caller has to drop the vnode returned, if it is not NULL. 1531 * 1532 * This function may only be used to initialize unmanaged pages. 1533 * 1534 * To be called with vm_page_queue_free_mtx held. 1535 */ 1536 static struct vnode * 1537 vm_page_alloc_init(vm_page_t m) 1538 { 1539 struct vnode *drop; 1540 vm_object_t m_object; 1541 1542 KASSERT(m->queue == PQ_NONE, 1543 ("vm_page_alloc_init: page %p has unexpected queue %d", 1544 m, m->queue)); 1545 KASSERT(m->wire_count == 0, 1546 ("vm_page_alloc_init: page %p is wired", m)); 1547 KASSERT(m->hold_count == 0, 1548 ("vm_page_alloc_init: page %p is held", m)); 1549 KASSERT(m->busy == 0, 1550 ("vm_page_alloc_init: page %p is busy", m)); 1551 KASSERT(m->dirty == 0, 1552 ("vm_page_alloc_init: page %p is dirty", m)); 1553 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1554 ("vm_page_alloc_init: page %p has unexpected memattr %d", 1555 m, pmap_page_get_memattr(m))); 1556 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1557 drop = NULL; 1558 if ((m->flags & PG_CACHED) != 0) { 1559 KASSERT((m->flags & PG_ZERO) == 0, 1560 ("vm_page_alloc_init: cached page %p is PG_ZERO", m)); 1561 m->valid = 0; 1562 m_object = m->object; 1563 vm_page_cache_remove(m); 1564 if (m_object->type == OBJT_VNODE && 1565 vm_object_cache_is_empty(m_object)) 1566 drop = m_object->handle; 1567 } else { 1568 KASSERT(VM_PAGE_IS_FREE(m), 1569 ("vm_page_alloc_init: page %p is not free", m)); 1570 KASSERT(m->valid == 0, 1571 ("vm_page_alloc_init: free page %p is valid", m)); 1572 cnt.v_free_count--; 1573 if ((m->flags & PG_ZERO) != 0) 1574 vm_page_zero_count--; 1575 } 1576 /* Don't clear the PG_ZERO flag; we'll need it later. */ 1577 m->flags &= PG_ZERO; 1578 return (drop); 1579 } 1580 1581 /* 1582 * vm_page_alloc_freelist: 1583 * 1584 * Allocate a physical page from the specified free page list. 1585 * 1586 * The caller must always specify an allocation class. 1587 * 1588 * allocation classes: 1589 * VM_ALLOC_NORMAL normal process request 1590 * VM_ALLOC_SYSTEM system *really* needs a page 1591 * VM_ALLOC_INTERRUPT interrupt time request 1592 * 1593 * optional allocation flags: 1594 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1595 * intends to allocate 1596 * VM_ALLOC_WIRED wire the allocated page 1597 * VM_ALLOC_ZERO prefer a zeroed page 1598 * 1599 * This routine may not sleep. 1600 */ 1601 vm_page_t 1602 vm_page_alloc_freelist(int flind, int req) 1603 { 1604 struct vnode *drop; 1605 vm_page_t m; 1606 u_int flags; 1607 int req_class; 1608 1609 req_class = req & VM_ALLOC_CLASS_MASK; 1610 1611 /* 1612 * The page daemon is allowed to dig deeper into the free page list. 1613 */ 1614 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1615 req_class = VM_ALLOC_SYSTEM; 1616 1617 /* 1618 * Do not allocate reserved pages unless the req has asked for it. 1619 */ 1620 mtx_lock(&vm_page_queue_free_mtx); 1621 if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved || 1622 (req_class == VM_ALLOC_SYSTEM && 1623 cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) || 1624 (req_class == VM_ALLOC_INTERRUPT && 1625 cnt.v_free_count + cnt.v_cache_count > 0)) 1626 m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0); 1627 else { 1628 mtx_unlock(&vm_page_queue_free_mtx); 1629 atomic_add_int(&vm_pageout_deficit, 1630 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 1631 pagedaemon_wakeup(); 1632 return (NULL); 1633 } 1634 if (m == NULL) { 1635 mtx_unlock(&vm_page_queue_free_mtx); 1636 return (NULL); 1637 } 1638 drop = vm_page_alloc_init(m); 1639 mtx_unlock(&vm_page_queue_free_mtx); 1640 1641 /* 1642 * Initialize the page. Only the PG_ZERO flag is inherited. 1643 */ 1644 m->aflags = 0; 1645 flags = 0; 1646 if ((req & VM_ALLOC_ZERO) != 0) 1647 flags = PG_ZERO; 1648 m->flags &= flags; 1649 if ((req & VM_ALLOC_WIRED) != 0) { 1650 /* 1651 * The page lock is not required for wiring a page that does 1652 * not belong to an object. 1653 */ 1654 atomic_add_int(&cnt.v_wire_count, 1); 1655 m->wire_count = 1; 1656 } 1657 /* Unmanaged pages don't use "act_count". */ 1658 m->oflags = VPO_UNMANAGED; 1659 if (drop != NULL) 1660 vdrop(drop); 1661 if (vm_paging_needed()) 1662 pagedaemon_wakeup(); 1663 return (m); 1664 } 1665 1666 /* 1667 * vm_wait: (also see VM_WAIT macro) 1668 * 1669 * Sleep until free pages are available for allocation. 1670 * - Called in various places before memory allocations. 1671 */ 1672 void 1673 vm_wait(void) 1674 { 1675 1676 mtx_lock(&vm_page_queue_free_mtx); 1677 if (curproc == pageproc) { 1678 vm_pageout_pages_needed = 1; 1679 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, 1680 PDROP | PSWP, "VMWait", 0); 1681 } else { 1682 if (!vm_pages_needed) { 1683 vm_pages_needed = 1; 1684 wakeup(&vm_pages_needed); 1685 } 1686 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, 1687 "vmwait", 0); 1688 } 1689 } 1690 1691 /* 1692 * vm_waitpfault: (also see VM_WAITPFAULT macro) 1693 * 1694 * Sleep until free pages are available for allocation. 1695 * - Called only in vm_fault so that processes page faulting 1696 * can be easily tracked. 1697 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 1698 * processes will be able to grab memory first. Do not change 1699 * this balance without careful testing first. 1700 */ 1701 void 1702 vm_waitpfault(void) 1703 { 1704 1705 mtx_lock(&vm_page_queue_free_mtx); 1706 if (!vm_pages_needed) { 1707 vm_pages_needed = 1; 1708 wakeup(&vm_pages_needed); 1709 } 1710 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, 1711 "pfault", 0); 1712 } 1713 1714 /* 1715 * vm_page_dequeue: 1716 * 1717 * Remove the given page from its current page queue. 1718 * 1719 * The page must be locked. 1720 */ 1721 void 1722 vm_page_dequeue(vm_page_t m) 1723 { 1724 struct vm_pagequeue *pq; 1725 1726 vm_page_lock_assert(m, MA_OWNED); 1727 KASSERT(m->queue != PQ_NONE, 1728 ("vm_page_dequeue: page %p is not queued", m)); 1729 pq = &vm_pagequeues[m->queue]; 1730 vm_pagequeue_lock(pq); 1731 m->queue = PQ_NONE; 1732 TAILQ_REMOVE(&pq->pq_pl, m, pageq); 1733 (*pq->pq_cnt)--; 1734 vm_pagequeue_unlock(pq); 1735 } 1736 1737 /* 1738 * vm_page_dequeue_locked: 1739 * 1740 * Remove the given page from its current page queue. 1741 * 1742 * The page and page queue must be locked. 1743 */ 1744 void 1745 vm_page_dequeue_locked(vm_page_t m) 1746 { 1747 struct vm_pagequeue *pq; 1748 1749 vm_page_lock_assert(m, MA_OWNED); 1750 pq = &vm_pagequeues[m->queue]; 1751 vm_pagequeue_assert_locked(pq); 1752 m->queue = PQ_NONE; 1753 TAILQ_REMOVE(&pq->pq_pl, m, pageq); 1754 (*pq->pq_cnt)--; 1755 } 1756 1757 /* 1758 * vm_page_enqueue: 1759 * 1760 * Add the given page to the specified page queue. 1761 * 1762 * The page must be locked. 1763 */ 1764 static void 1765 vm_page_enqueue(int queue, vm_page_t m) 1766 { 1767 struct vm_pagequeue *pq; 1768 1769 vm_page_lock_assert(m, MA_OWNED); 1770 pq = &vm_pagequeues[queue]; 1771 vm_pagequeue_lock(pq); 1772 m->queue = queue; 1773 TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq); 1774 ++*pq->pq_cnt; 1775 vm_pagequeue_unlock(pq); 1776 } 1777 1778 /* 1779 * vm_page_requeue: 1780 * 1781 * Move the given page to the tail of its current page queue. 1782 * 1783 * The page must be locked. 1784 */ 1785 void 1786 vm_page_requeue(vm_page_t m) 1787 { 1788 struct vm_pagequeue *pq; 1789 1790 vm_page_lock_assert(m, MA_OWNED); 1791 KASSERT(m->queue != PQ_NONE, 1792 ("vm_page_requeue: page %p is not queued", m)); 1793 pq = &vm_pagequeues[m->queue]; 1794 vm_pagequeue_lock(pq); 1795 TAILQ_REMOVE(&pq->pq_pl, m, pageq); 1796 TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq); 1797 vm_pagequeue_unlock(pq); 1798 } 1799 1800 /* 1801 * vm_page_requeue_locked: 1802 * 1803 * Move the given page to the tail of its current page queue. 1804 * 1805 * The page queue must be locked. 1806 */ 1807 void 1808 vm_page_requeue_locked(vm_page_t m) 1809 { 1810 struct vm_pagequeue *pq; 1811 1812 KASSERT(m->queue != PQ_NONE, 1813 ("vm_page_requeue_locked: page %p is not queued", m)); 1814 pq = &vm_pagequeues[m->queue]; 1815 vm_pagequeue_assert_locked(pq); 1816 TAILQ_REMOVE(&pq->pq_pl, m, pageq); 1817 TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq); 1818 } 1819 1820 /* 1821 * vm_page_activate: 1822 * 1823 * Put the specified page on the active list (if appropriate). 1824 * Ensure that act_count is at least ACT_INIT but do not otherwise 1825 * mess with it. 1826 * 1827 * The page must be locked. 1828 */ 1829 void 1830 vm_page_activate(vm_page_t m) 1831 { 1832 int queue; 1833 1834 vm_page_lock_assert(m, MA_OWNED); 1835 if ((queue = m->queue) != PQ_ACTIVE) { 1836 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 1837 if (m->act_count < ACT_INIT) 1838 m->act_count = ACT_INIT; 1839 if (queue != PQ_NONE) 1840 vm_page_dequeue(m); 1841 vm_page_enqueue(PQ_ACTIVE, m); 1842 } else 1843 KASSERT(queue == PQ_NONE, 1844 ("vm_page_activate: wired page %p is queued", m)); 1845 } else { 1846 if (m->act_count < ACT_INIT) 1847 m->act_count = ACT_INIT; 1848 } 1849 } 1850 1851 /* 1852 * vm_page_free_wakeup: 1853 * 1854 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1855 * routine is called when a page has been added to the cache or free 1856 * queues. 1857 * 1858 * The page queues must be locked. 1859 */ 1860 static inline void 1861 vm_page_free_wakeup(void) 1862 { 1863 1864 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1865 /* 1866 * if pageout daemon needs pages, then tell it that there are 1867 * some free. 1868 */ 1869 if (vm_pageout_pages_needed && 1870 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1871 wakeup(&vm_pageout_pages_needed); 1872 vm_pageout_pages_needed = 0; 1873 } 1874 /* 1875 * wakeup processes that are waiting on memory if we hit a 1876 * high water mark. And wakeup scheduler process if we have 1877 * lots of memory. this process will swapin processes. 1878 */ 1879 if (vm_pages_needed && !vm_page_count_min()) { 1880 vm_pages_needed = 0; 1881 wakeup(&cnt.v_free_count); 1882 } 1883 } 1884 1885 /* 1886 * vm_page_free_toq: 1887 * 1888 * Returns the given page to the free list, 1889 * disassociating it with any VM object. 1890 * 1891 * The object must be locked. The page must be locked if it is managed. 1892 */ 1893 void 1894 vm_page_free_toq(vm_page_t m) 1895 { 1896 1897 if ((m->oflags & VPO_UNMANAGED) == 0) { 1898 vm_page_lock_assert(m, MA_OWNED); 1899 KASSERT(!pmap_page_is_mapped(m), 1900 ("vm_page_free_toq: freeing mapped page %p", m)); 1901 } else 1902 KASSERT(m->queue == PQ_NONE, 1903 ("vm_page_free_toq: unmanaged page %p is queued", m)); 1904 PCPU_INC(cnt.v_tfree); 1905 1906 if (VM_PAGE_IS_FREE(m)) 1907 panic("vm_page_free: freeing free page %p", m); 1908 else if (m->busy != 0) 1909 panic("vm_page_free: freeing busy page %p", m); 1910 1911 /* 1912 * Unqueue, then remove page. Note that we cannot destroy 1913 * the page here because we do not want to call the pager's 1914 * callback routine until after we've put the page on the 1915 * appropriate free queue. 1916 */ 1917 vm_page_remque(m); 1918 vm_page_remove(m); 1919 1920 /* 1921 * If fictitious remove object association and 1922 * return, otherwise delay object association removal. 1923 */ 1924 if ((m->flags & PG_FICTITIOUS) != 0) { 1925 return; 1926 } 1927 1928 m->valid = 0; 1929 vm_page_undirty(m); 1930 1931 if (m->wire_count != 0) 1932 panic("vm_page_free: freeing wired page %p", m); 1933 if (m->hold_count != 0) { 1934 m->flags &= ~PG_ZERO; 1935 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 1936 ("vm_page_free: freeing PG_UNHOLDFREE page %p", m)); 1937 m->flags |= PG_UNHOLDFREE; 1938 } else { 1939 /* 1940 * Restore the default memory attribute to the page. 1941 */ 1942 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 1943 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 1944 1945 /* 1946 * Insert the page into the physical memory allocator's 1947 * cache/free page queues. 1948 */ 1949 mtx_lock(&vm_page_queue_free_mtx); 1950 m->flags |= PG_FREE; 1951 cnt.v_free_count++; 1952 #if VM_NRESERVLEVEL > 0 1953 if (!vm_reserv_free_page(m)) 1954 #else 1955 if (TRUE) 1956 #endif 1957 vm_phys_free_pages(m, 0); 1958 if ((m->flags & PG_ZERO) != 0) 1959 ++vm_page_zero_count; 1960 else 1961 vm_page_zero_idle_wakeup(); 1962 vm_page_free_wakeup(); 1963 mtx_unlock(&vm_page_queue_free_mtx); 1964 } 1965 } 1966 1967 /* 1968 * vm_page_wire: 1969 * 1970 * Mark this page as wired down by yet 1971 * another map, removing it from paging queues 1972 * as necessary. 1973 * 1974 * If the page is fictitious, then its wire count must remain one. 1975 * 1976 * The page must be locked. 1977 */ 1978 void 1979 vm_page_wire(vm_page_t m) 1980 { 1981 1982 /* 1983 * Only bump the wire statistics if the page is not already wired, 1984 * and only unqueue the page if it is on some queue (if it is unmanaged 1985 * it is already off the queues). 1986 */ 1987 vm_page_lock_assert(m, MA_OWNED); 1988 if ((m->flags & PG_FICTITIOUS) != 0) { 1989 KASSERT(m->wire_count == 1, 1990 ("vm_page_wire: fictitious page %p's wire count isn't one", 1991 m)); 1992 return; 1993 } 1994 if (m->wire_count == 0) { 1995 KASSERT((m->oflags & VPO_UNMANAGED) == 0 || 1996 m->queue == PQ_NONE, 1997 ("vm_page_wire: unmanaged page %p is queued", m)); 1998 vm_page_remque(m); 1999 atomic_add_int(&cnt.v_wire_count, 1); 2000 } 2001 m->wire_count++; 2002 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 2003 } 2004 2005 /* 2006 * vm_page_unwire: 2007 * 2008 * Release one wiring of the specified page, potentially enabling it to be 2009 * paged again. If paging is enabled, then the value of the parameter 2010 * "activate" determines to which queue the page is added. If "activate" is 2011 * non-zero, then the page is added to the active queue. Otherwise, it is 2012 * added to the inactive queue. 2013 * 2014 * However, unless the page belongs to an object, it is not enqueued because 2015 * it cannot be paged out. 2016 * 2017 * If a page is fictitious, then its wire count must always be one. 2018 * 2019 * A managed page must be locked. 2020 */ 2021 void 2022 vm_page_unwire(vm_page_t m, int activate) 2023 { 2024 2025 if ((m->oflags & VPO_UNMANAGED) == 0) 2026 vm_page_lock_assert(m, MA_OWNED); 2027 if ((m->flags & PG_FICTITIOUS) != 0) { 2028 KASSERT(m->wire_count == 1, 2029 ("vm_page_unwire: fictitious page %p's wire count isn't one", m)); 2030 return; 2031 } 2032 if (m->wire_count > 0) { 2033 m->wire_count--; 2034 if (m->wire_count == 0) { 2035 atomic_subtract_int(&cnt.v_wire_count, 1); 2036 if ((m->oflags & VPO_UNMANAGED) != 0 || 2037 m->object == NULL) 2038 return; 2039 if (!activate) 2040 m->flags &= ~PG_WINATCFLS; 2041 vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m); 2042 } 2043 } else 2044 panic("vm_page_unwire: page %p's wire count is zero", m); 2045 } 2046 2047 /* 2048 * Move the specified page to the inactive queue. 2049 * 2050 * Many pages placed on the inactive queue should actually go 2051 * into the cache, but it is difficult to figure out which. What 2052 * we do instead, if the inactive target is well met, is to put 2053 * clean pages at the head of the inactive queue instead of the tail. 2054 * This will cause them to be moved to the cache more quickly and 2055 * if not actively re-referenced, reclaimed more quickly. If we just 2056 * stick these pages at the end of the inactive queue, heavy filesystem 2057 * meta-data accesses can cause an unnecessary paging load on memory bound 2058 * processes. This optimization causes one-time-use metadata to be 2059 * reused more quickly. 2060 * 2061 * Normally athead is 0 resulting in LRU operation. athead is set 2062 * to 1 if we want this page to be 'as if it were placed in the cache', 2063 * except without unmapping it from the process address space. 2064 * 2065 * The page must be locked. 2066 */ 2067 static inline void 2068 _vm_page_deactivate(vm_page_t m, int athead) 2069 { 2070 struct vm_pagequeue *pq; 2071 int queue; 2072 2073 vm_page_lock_assert(m, MA_OWNED); 2074 2075 /* 2076 * Ignore if already inactive. 2077 */ 2078 if ((queue = m->queue) == PQ_INACTIVE) 2079 return; 2080 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 2081 if (queue != PQ_NONE) 2082 vm_page_dequeue(m); 2083 m->flags &= ~PG_WINATCFLS; 2084 pq = &vm_pagequeues[PQ_INACTIVE]; 2085 vm_pagequeue_lock(pq); 2086 m->queue = PQ_INACTIVE; 2087 if (athead) 2088 TAILQ_INSERT_HEAD(&pq->pq_pl, m, pageq); 2089 else 2090 TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq); 2091 cnt.v_inactive_count++; 2092 vm_pagequeue_unlock(pq); 2093 } 2094 } 2095 2096 /* 2097 * Move the specified page to the inactive queue. 2098 * 2099 * The page must be locked. 2100 */ 2101 void 2102 vm_page_deactivate(vm_page_t m) 2103 { 2104 2105 _vm_page_deactivate(m, 0); 2106 } 2107 2108 /* 2109 * vm_page_try_to_cache: 2110 * 2111 * Returns 0 on failure, 1 on success 2112 */ 2113 int 2114 vm_page_try_to_cache(vm_page_t m) 2115 { 2116 2117 vm_page_lock_assert(m, MA_OWNED); 2118 VM_OBJECT_ASSERT_WLOCKED(m->object); 2119 if (m->dirty || m->hold_count || m->busy || m->wire_count || 2120 (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0) 2121 return (0); 2122 pmap_remove_all(m); 2123 if (m->dirty) 2124 return (0); 2125 vm_page_cache(m); 2126 return (1); 2127 } 2128 2129 /* 2130 * vm_page_try_to_free() 2131 * 2132 * Attempt to free the page. If we cannot free it, we do nothing. 2133 * 1 is returned on success, 0 on failure. 2134 */ 2135 int 2136 vm_page_try_to_free(vm_page_t m) 2137 { 2138 2139 vm_page_lock_assert(m, MA_OWNED); 2140 if (m->object != NULL) 2141 VM_OBJECT_ASSERT_WLOCKED(m->object); 2142 if (m->dirty || m->hold_count || m->busy || m->wire_count || 2143 (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0) 2144 return (0); 2145 pmap_remove_all(m); 2146 if (m->dirty) 2147 return (0); 2148 vm_page_free(m); 2149 return (1); 2150 } 2151 2152 /* 2153 * vm_page_cache 2154 * 2155 * Put the specified page onto the page cache queue (if appropriate). 2156 * 2157 * The object and page must be locked. 2158 */ 2159 void 2160 vm_page_cache(vm_page_t m) 2161 { 2162 vm_object_t object; 2163 boolean_t cache_was_empty; 2164 2165 vm_page_lock_assert(m, MA_OWNED); 2166 object = m->object; 2167 VM_OBJECT_ASSERT_WLOCKED(object); 2168 if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy || 2169 m->hold_count || m->wire_count) 2170 panic("vm_page_cache: attempting to cache busy page"); 2171 KASSERT(!pmap_page_is_mapped(m), 2172 ("vm_page_cache: page %p is mapped", m)); 2173 KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m)); 2174 if (m->valid == 0 || object->type == OBJT_DEFAULT || 2175 (object->type == OBJT_SWAP && 2176 !vm_pager_has_page(object, m->pindex, NULL, NULL))) { 2177 /* 2178 * Hypothesis: A cache-elgible page belonging to a 2179 * default object or swap object but without a backing 2180 * store must be zero filled. 2181 */ 2182 vm_page_free(m); 2183 return; 2184 } 2185 KASSERT((m->flags & PG_CACHED) == 0, 2186 ("vm_page_cache: page %p is already cached", m)); 2187 PCPU_INC(cnt.v_tcached); 2188 2189 /* 2190 * Remove the page from the paging queues. 2191 */ 2192 vm_page_remque(m); 2193 2194 /* 2195 * Remove the page from the object's collection of resident 2196 * pages. 2197 */ 2198 vm_radix_remove(&object->rtree, m->pindex); 2199 TAILQ_REMOVE(&object->memq, m, listq); 2200 object->resident_page_count--; 2201 2202 /* 2203 * Restore the default memory attribute to the page. 2204 */ 2205 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 2206 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 2207 2208 /* 2209 * Insert the page into the object's collection of cached pages 2210 * and the physical memory allocator's cache/free page queues. 2211 */ 2212 m->flags &= ~PG_ZERO; 2213 mtx_lock(&vm_page_queue_free_mtx); 2214 m->flags |= PG_CACHED; 2215 cnt.v_cache_count++; 2216 cache_was_empty = vm_radix_is_empty(&object->cache); 2217 vm_radix_insert(&object->cache, m); 2218 #if VM_NRESERVLEVEL > 0 2219 if (!vm_reserv_free_page(m)) { 2220 #else 2221 if (TRUE) { 2222 #endif 2223 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0); 2224 vm_phys_free_pages(m, 0); 2225 } 2226 vm_page_free_wakeup(); 2227 mtx_unlock(&vm_page_queue_free_mtx); 2228 2229 /* 2230 * Increment the vnode's hold count if this is the object's only 2231 * cached page. Decrement the vnode's hold count if this was 2232 * the object's only resident page. 2233 */ 2234 if (object->type == OBJT_VNODE) { 2235 if (cache_was_empty && object->resident_page_count != 0) 2236 vhold(object->handle); 2237 else if (!cache_was_empty && object->resident_page_count == 0) 2238 vdrop(object->handle); 2239 } 2240 } 2241 2242 /* 2243 * vm_page_advise 2244 * 2245 * Cache, deactivate, or do nothing as appropriate. This routine 2246 * is used by madvise(). 2247 * 2248 * Generally speaking we want to move the page into the cache so 2249 * it gets reused quickly. However, this can result in a silly syndrome 2250 * due to the page recycling too quickly. Small objects will not be 2251 * fully cached. On the other hand, if we move the page to the inactive 2252 * queue we wind up with a problem whereby very large objects 2253 * unnecessarily blow away our inactive and cache queues. 2254 * 2255 * The solution is to move the pages based on a fixed weighting. We 2256 * either leave them alone, deactivate them, or move them to the cache, 2257 * where moving them to the cache has the highest weighting. 2258 * By forcing some pages into other queues we eventually force the 2259 * system to balance the queues, potentially recovering other unrelated 2260 * space from active. The idea is to not force this to happen too 2261 * often. 2262 * 2263 * The object and page must be locked. 2264 */ 2265 void 2266 vm_page_advise(vm_page_t m, int advice) 2267 { 2268 int dnw, head; 2269 2270 vm_page_assert_locked(m); 2271 VM_OBJECT_ASSERT_WLOCKED(m->object); 2272 if (advice == MADV_FREE) { 2273 /* 2274 * Mark the page clean. This will allow the page to be freed 2275 * up by the system. However, such pages are often reused 2276 * quickly by malloc() so we do not do anything that would 2277 * cause a page fault if we can help it. 2278 * 2279 * Specifically, we do not try to actually free the page now 2280 * nor do we try to put it in the cache (which would cause a 2281 * page fault on reuse). 2282 * 2283 * But we do make the page is freeable as we can without 2284 * actually taking the step of unmapping it. 2285 */ 2286 pmap_clear_modify(m); 2287 m->dirty = 0; 2288 m->act_count = 0; 2289 } else if (advice != MADV_DONTNEED) 2290 return; 2291 dnw = PCPU_GET(dnweight); 2292 PCPU_INC(dnweight); 2293 2294 /* 2295 * Occasionally leave the page alone. 2296 */ 2297 if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) { 2298 if (m->act_count >= ACT_INIT) 2299 --m->act_count; 2300 return; 2301 } 2302 2303 /* 2304 * Clear any references to the page. Otherwise, the page daemon will 2305 * immediately reactivate the page. 2306 * 2307 * Perform the pmap_clear_reference() first. Otherwise, a concurrent 2308 * pmap operation, such as pmap_remove(), could clear a reference in 2309 * the pmap and set PGA_REFERENCED on the page before the 2310 * pmap_clear_reference() had completed. Consequently, the page would 2311 * appear referenced based upon an old reference that occurred before 2312 * this function ran. 2313 */ 2314 pmap_clear_reference(m); 2315 vm_page_aflag_clear(m, PGA_REFERENCED); 2316 2317 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 2318 vm_page_dirty(m); 2319 2320 if (m->dirty || (dnw & 0x0070) == 0) { 2321 /* 2322 * Deactivate the page 3 times out of 32. 2323 */ 2324 head = 0; 2325 } else { 2326 /* 2327 * Cache the page 28 times out of every 32. Note that 2328 * the page is deactivated instead of cached, but placed 2329 * at the head of the queue instead of the tail. 2330 */ 2331 head = 1; 2332 } 2333 _vm_page_deactivate(m, head); 2334 } 2335 2336 /* 2337 * Grab a page, waiting until we are waken up due to the page 2338 * changing state. We keep on waiting, if the page continues 2339 * to be in the object. If the page doesn't exist, first allocate it 2340 * and then conditionally zero it. 2341 * 2342 * The caller must always specify the VM_ALLOC_RETRY flag. This is intended 2343 * to facilitate its eventual removal. 2344 * 2345 * This routine may sleep. 2346 * 2347 * The object must be locked on entry. The lock will, however, be released 2348 * and reacquired if the routine sleeps. 2349 */ 2350 vm_page_t 2351 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2352 { 2353 vm_page_t m; 2354 2355 VM_OBJECT_ASSERT_WLOCKED(object); 2356 KASSERT((allocflags & VM_ALLOC_RETRY) != 0, 2357 ("vm_page_grab: VM_ALLOC_RETRY is required")); 2358 retrylookup: 2359 if ((m = vm_page_lookup(object, pindex)) != NULL) { 2360 if ((m->oflags & VPO_BUSY) != 0 || 2361 ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) { 2362 /* 2363 * Reference the page before unlocking and 2364 * sleeping so that the page daemon is less 2365 * likely to reclaim it. 2366 */ 2367 vm_page_aflag_set(m, PGA_REFERENCED); 2368 vm_page_sleep(m, "pgrbwt"); 2369 goto retrylookup; 2370 } else { 2371 if ((allocflags & VM_ALLOC_WIRED) != 0) { 2372 vm_page_lock(m); 2373 vm_page_wire(m); 2374 vm_page_unlock(m); 2375 } 2376 if ((allocflags & VM_ALLOC_NOBUSY) == 0) 2377 vm_page_busy(m); 2378 return (m); 2379 } 2380 } 2381 m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY | 2382 VM_ALLOC_IGN_SBUSY)); 2383 if (m == NULL) { 2384 VM_OBJECT_WUNLOCK(object); 2385 VM_WAIT; 2386 VM_OBJECT_WLOCK(object); 2387 goto retrylookup; 2388 } else if (m->valid != 0) 2389 return (m); 2390 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 2391 pmap_zero_page(m); 2392 return (m); 2393 } 2394 2395 /* 2396 * Mapping function for valid or dirty bits in a page. 2397 * 2398 * Inputs are required to range within a page. 2399 */ 2400 vm_page_bits_t 2401 vm_page_bits(int base, int size) 2402 { 2403 int first_bit; 2404 int last_bit; 2405 2406 KASSERT( 2407 base + size <= PAGE_SIZE, 2408 ("vm_page_bits: illegal base/size %d/%d", base, size) 2409 ); 2410 2411 if (size == 0) /* handle degenerate case */ 2412 return (0); 2413 2414 first_bit = base >> DEV_BSHIFT; 2415 last_bit = (base + size - 1) >> DEV_BSHIFT; 2416 2417 return (((vm_page_bits_t)2 << last_bit) - 2418 ((vm_page_bits_t)1 << first_bit)); 2419 } 2420 2421 /* 2422 * vm_page_set_valid_range: 2423 * 2424 * Sets portions of a page valid. The arguments are expected 2425 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2426 * of any partial chunks touched by the range. The invalid portion of 2427 * such chunks will be zeroed. 2428 * 2429 * (base + size) must be less then or equal to PAGE_SIZE. 2430 */ 2431 void 2432 vm_page_set_valid_range(vm_page_t m, int base, int size) 2433 { 2434 int endoff, frag; 2435 2436 VM_OBJECT_ASSERT_WLOCKED(m->object); 2437 if (size == 0) /* handle degenerate case */ 2438 return; 2439 2440 /* 2441 * If the base is not DEV_BSIZE aligned and the valid 2442 * bit is clear, we have to zero out a portion of the 2443 * first block. 2444 */ 2445 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2446 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 2447 pmap_zero_page_area(m, frag, base - frag); 2448 2449 /* 2450 * If the ending offset is not DEV_BSIZE aligned and the 2451 * valid bit is clear, we have to zero out a portion of 2452 * the last block. 2453 */ 2454 endoff = base + size; 2455 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2456 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 2457 pmap_zero_page_area(m, endoff, 2458 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 2459 2460 /* 2461 * Assert that no previously invalid block that is now being validated 2462 * is already dirty. 2463 */ 2464 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 2465 ("vm_page_set_valid_range: page %p is dirty", m)); 2466 2467 /* 2468 * Set valid bits inclusive of any overlap. 2469 */ 2470 m->valid |= vm_page_bits(base, size); 2471 } 2472 2473 /* 2474 * Clear the given bits from the specified page's dirty field. 2475 */ 2476 static __inline void 2477 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 2478 { 2479 uintptr_t addr; 2480 #if PAGE_SIZE < 16384 2481 int shift; 2482 #endif 2483 2484 /* 2485 * If the object is locked and the page is neither VPO_BUSY nor 2486 * write mapped, then the page's dirty field cannot possibly be 2487 * set by a concurrent pmap operation. 2488 */ 2489 VM_OBJECT_ASSERT_WLOCKED(m->object); 2490 if ((m->oflags & VPO_BUSY) == 0 && !pmap_page_is_write_mapped(m)) 2491 m->dirty &= ~pagebits; 2492 else { 2493 /* 2494 * The pmap layer can call vm_page_dirty() without 2495 * holding a distinguished lock. The combination of 2496 * the object's lock and an atomic operation suffice 2497 * to guarantee consistency of the page dirty field. 2498 * 2499 * For PAGE_SIZE == 32768 case, compiler already 2500 * properly aligns the dirty field, so no forcible 2501 * alignment is needed. Only require existence of 2502 * atomic_clear_64 when page size is 32768. 2503 */ 2504 addr = (uintptr_t)&m->dirty; 2505 #if PAGE_SIZE == 32768 2506 atomic_clear_64((uint64_t *)addr, pagebits); 2507 #elif PAGE_SIZE == 16384 2508 atomic_clear_32((uint32_t *)addr, pagebits); 2509 #else /* PAGE_SIZE <= 8192 */ 2510 /* 2511 * Use a trick to perform a 32-bit atomic on the 2512 * containing aligned word, to not depend on the existence 2513 * of atomic_clear_{8, 16}. 2514 */ 2515 shift = addr & (sizeof(uint32_t) - 1); 2516 #if BYTE_ORDER == BIG_ENDIAN 2517 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY; 2518 #else 2519 shift *= NBBY; 2520 #endif 2521 addr &= ~(sizeof(uint32_t) - 1); 2522 atomic_clear_32((uint32_t *)addr, pagebits << shift); 2523 #endif /* PAGE_SIZE */ 2524 } 2525 } 2526 2527 /* 2528 * vm_page_set_validclean: 2529 * 2530 * Sets portions of a page valid and clean. The arguments are expected 2531 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2532 * of any partial chunks touched by the range. The invalid portion of 2533 * such chunks will be zero'd. 2534 * 2535 * (base + size) must be less then or equal to PAGE_SIZE. 2536 */ 2537 void 2538 vm_page_set_validclean(vm_page_t m, int base, int size) 2539 { 2540 vm_page_bits_t oldvalid, pagebits; 2541 int endoff, frag; 2542 2543 VM_OBJECT_ASSERT_WLOCKED(m->object); 2544 if (size == 0) /* handle degenerate case */ 2545 return; 2546 2547 /* 2548 * If the base is not DEV_BSIZE aligned and the valid 2549 * bit is clear, we have to zero out a portion of the 2550 * first block. 2551 */ 2552 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2553 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 2554 pmap_zero_page_area(m, frag, base - frag); 2555 2556 /* 2557 * If the ending offset is not DEV_BSIZE aligned and the 2558 * valid bit is clear, we have to zero out a portion of 2559 * the last block. 2560 */ 2561 endoff = base + size; 2562 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2563 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 2564 pmap_zero_page_area(m, endoff, 2565 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 2566 2567 /* 2568 * Set valid, clear dirty bits. If validating the entire 2569 * page we can safely clear the pmap modify bit. We also 2570 * use this opportunity to clear the VPO_NOSYNC flag. If a process 2571 * takes a write fault on a MAP_NOSYNC memory area the flag will 2572 * be set again. 2573 * 2574 * We set valid bits inclusive of any overlap, but we can only 2575 * clear dirty bits for DEV_BSIZE chunks that are fully within 2576 * the range. 2577 */ 2578 oldvalid = m->valid; 2579 pagebits = vm_page_bits(base, size); 2580 m->valid |= pagebits; 2581 #if 0 /* NOT YET */ 2582 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 2583 frag = DEV_BSIZE - frag; 2584 base += frag; 2585 size -= frag; 2586 if (size < 0) 2587 size = 0; 2588 } 2589 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 2590 #endif 2591 if (base == 0 && size == PAGE_SIZE) { 2592 /* 2593 * The page can only be modified within the pmap if it is 2594 * mapped, and it can only be mapped if it was previously 2595 * fully valid. 2596 */ 2597 if (oldvalid == VM_PAGE_BITS_ALL) 2598 /* 2599 * Perform the pmap_clear_modify() first. Otherwise, 2600 * a concurrent pmap operation, such as 2601 * pmap_protect(), could clear a modification in the 2602 * pmap and set the dirty field on the page before 2603 * pmap_clear_modify() had begun and after the dirty 2604 * field was cleared here. 2605 */ 2606 pmap_clear_modify(m); 2607 m->dirty = 0; 2608 m->oflags &= ~VPO_NOSYNC; 2609 } else if (oldvalid != VM_PAGE_BITS_ALL) 2610 m->dirty &= ~pagebits; 2611 else 2612 vm_page_clear_dirty_mask(m, pagebits); 2613 } 2614 2615 void 2616 vm_page_clear_dirty(vm_page_t m, int base, int size) 2617 { 2618 2619 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 2620 } 2621 2622 /* 2623 * vm_page_set_invalid: 2624 * 2625 * Invalidates DEV_BSIZE'd chunks within a page. Both the 2626 * valid and dirty bits for the effected areas are cleared. 2627 */ 2628 void 2629 vm_page_set_invalid(vm_page_t m, int base, int size) 2630 { 2631 vm_page_bits_t bits; 2632 2633 VM_OBJECT_ASSERT_WLOCKED(m->object); 2634 bits = vm_page_bits(base, size); 2635 if (m->valid == VM_PAGE_BITS_ALL && bits != 0) 2636 pmap_remove_all(m); 2637 KASSERT(!pmap_page_is_mapped(m), 2638 ("vm_page_set_invalid: page %p is mapped", m)); 2639 m->valid &= ~bits; 2640 m->dirty &= ~bits; 2641 } 2642 2643 /* 2644 * vm_page_zero_invalid() 2645 * 2646 * The kernel assumes that the invalid portions of a page contain 2647 * garbage, but such pages can be mapped into memory by user code. 2648 * When this occurs, we must zero out the non-valid portions of the 2649 * page so user code sees what it expects. 2650 * 2651 * Pages are most often semi-valid when the end of a file is mapped 2652 * into memory and the file's size is not page aligned. 2653 */ 2654 void 2655 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 2656 { 2657 int b; 2658 int i; 2659 2660 VM_OBJECT_ASSERT_WLOCKED(m->object); 2661 /* 2662 * Scan the valid bits looking for invalid sections that 2663 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 2664 * valid bit may be set ) have already been zerod by 2665 * vm_page_set_validclean(). 2666 */ 2667 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 2668 if (i == (PAGE_SIZE / DEV_BSIZE) || 2669 (m->valid & ((vm_page_bits_t)1 << i))) { 2670 if (i > b) { 2671 pmap_zero_page_area(m, 2672 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 2673 } 2674 b = i + 1; 2675 } 2676 } 2677 2678 /* 2679 * setvalid is TRUE when we can safely set the zero'd areas 2680 * as being valid. We can do this if there are no cache consistancy 2681 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 2682 */ 2683 if (setvalid) 2684 m->valid = VM_PAGE_BITS_ALL; 2685 } 2686 2687 /* 2688 * vm_page_is_valid: 2689 * 2690 * Is (partial) page valid? Note that the case where size == 0 2691 * will return FALSE in the degenerate case where the page is 2692 * entirely invalid, and TRUE otherwise. 2693 */ 2694 int 2695 vm_page_is_valid(vm_page_t m, int base, int size) 2696 { 2697 vm_page_bits_t bits; 2698 2699 VM_OBJECT_ASSERT_WLOCKED(m->object); 2700 bits = vm_page_bits(base, size); 2701 return (m->valid != 0 && (m->valid & bits) == bits); 2702 } 2703 2704 /* 2705 * Set the page's dirty bits if the page is modified. 2706 */ 2707 void 2708 vm_page_test_dirty(vm_page_t m) 2709 { 2710 2711 VM_OBJECT_ASSERT_WLOCKED(m->object); 2712 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 2713 vm_page_dirty(m); 2714 } 2715 2716 void 2717 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 2718 { 2719 2720 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 2721 } 2722 2723 void 2724 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 2725 { 2726 2727 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 2728 } 2729 2730 int 2731 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 2732 { 2733 2734 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 2735 } 2736 2737 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 2738 void 2739 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 2740 { 2741 2742 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 2743 } 2744 2745 void 2746 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 2747 { 2748 2749 mtx_assert_(vm_page_lockptr(m), a, file, line); 2750 } 2751 #endif 2752 2753 int so_zerocp_fullpage = 0; 2754 2755 /* 2756 * Replace the given page with a copy. The copied page assumes 2757 * the portion of the given page's "wire_count" that is not the 2758 * responsibility of this copy-on-write mechanism. 2759 * 2760 * The object containing the given page must have a non-zero 2761 * paging-in-progress count and be locked. 2762 */ 2763 void 2764 vm_page_cowfault(vm_page_t m) 2765 { 2766 vm_page_t mnew; 2767 vm_object_t object; 2768 vm_pindex_t pindex; 2769 2770 vm_page_lock_assert(m, MA_OWNED); 2771 object = m->object; 2772 VM_OBJECT_ASSERT_WLOCKED(object); 2773 KASSERT(object->paging_in_progress != 0, 2774 ("vm_page_cowfault: object %p's paging-in-progress count is zero.", 2775 object)); 2776 pindex = m->pindex; 2777 2778 retry_alloc: 2779 pmap_remove_all(m); 2780 vm_page_remove(m); 2781 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY); 2782 if (mnew == NULL) { 2783 vm_page_insert(m, object, pindex); 2784 vm_page_unlock(m); 2785 VM_OBJECT_WUNLOCK(object); 2786 VM_WAIT; 2787 VM_OBJECT_WLOCK(object); 2788 if (m == vm_page_lookup(object, pindex)) { 2789 vm_page_lock(m); 2790 goto retry_alloc; 2791 } else { 2792 /* 2793 * Page disappeared during the wait. 2794 */ 2795 return; 2796 } 2797 } 2798 2799 if (m->cow == 0) { 2800 /* 2801 * check to see if we raced with an xmit complete when 2802 * waiting to allocate a page. If so, put things back 2803 * the way they were 2804 */ 2805 vm_page_unlock(m); 2806 vm_page_lock(mnew); 2807 vm_page_free(mnew); 2808 vm_page_unlock(mnew); 2809 vm_page_insert(m, object, pindex); 2810 } else { /* clear COW & copy page */ 2811 if (!so_zerocp_fullpage) 2812 pmap_copy_page(m, mnew); 2813 mnew->valid = VM_PAGE_BITS_ALL; 2814 vm_page_dirty(mnew); 2815 mnew->wire_count = m->wire_count - m->cow; 2816 m->wire_count = m->cow; 2817 vm_page_unlock(m); 2818 } 2819 } 2820 2821 void 2822 vm_page_cowclear(vm_page_t m) 2823 { 2824 2825 vm_page_lock_assert(m, MA_OWNED); 2826 if (m->cow) { 2827 m->cow--; 2828 /* 2829 * let vm_fault add back write permission lazily 2830 */ 2831 } 2832 /* 2833 * sf_buf_free() will free the page, so we needn't do it here 2834 */ 2835 } 2836 2837 int 2838 vm_page_cowsetup(vm_page_t m) 2839 { 2840 2841 vm_page_lock_assert(m, MA_OWNED); 2842 if ((m->flags & PG_FICTITIOUS) != 0 || 2843 (m->oflags & VPO_UNMANAGED) != 0 || 2844 m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYWLOCK(m->object)) 2845 return (EBUSY); 2846 m->cow++; 2847 pmap_remove_write(m); 2848 VM_OBJECT_WUNLOCK(m->object); 2849 return (0); 2850 } 2851 2852 #ifdef INVARIANTS 2853 void 2854 vm_page_object_lock_assert(vm_page_t m) 2855 { 2856 2857 /* 2858 * Certain of the page's fields may only be modified by the 2859 * holder of the containing object's lock or the setter of the 2860 * page's VPO_BUSY flag. Unfortunately, the setter of the 2861 * VPO_BUSY flag is not recorded, and thus cannot be checked 2862 * here. 2863 */ 2864 if (m->object != NULL && (m->oflags & VPO_BUSY) == 0) 2865 VM_OBJECT_ASSERT_WLOCKED(m->object); 2866 } 2867 #endif 2868 2869 #include "opt_ddb.h" 2870 #ifdef DDB 2871 #include <sys/kernel.h> 2872 2873 #include <ddb/ddb.h> 2874 2875 DB_SHOW_COMMAND(page, vm_page_print_page_info) 2876 { 2877 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 2878 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 2879 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 2880 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 2881 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 2882 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 2883 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 2884 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 2885 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 2886 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 2887 } 2888 2889 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 2890 { 2891 2892 db_printf("PQ_FREE:"); 2893 db_printf(" %d", cnt.v_free_count); 2894 db_printf("\n"); 2895 2896 db_printf("PQ_CACHE:"); 2897 db_printf(" %d", cnt.v_cache_count); 2898 db_printf("\n"); 2899 2900 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 2901 *vm_pagequeues[PQ_ACTIVE].pq_cnt, 2902 *vm_pagequeues[PQ_INACTIVE].pq_cnt); 2903 } 2904 2905 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 2906 { 2907 vm_page_t m; 2908 boolean_t phys; 2909 2910 if (!have_addr) { 2911 db_printf("show pginfo addr\n"); 2912 return; 2913 } 2914 2915 phys = strchr(modif, 'p') != NULL; 2916 if (phys) 2917 m = PHYS_TO_VM_PAGE(addr); 2918 else 2919 m = (vm_page_t)addr; 2920 db_printf( 2921 "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n" 2922 " af 0x%x of 0x%x f 0x%x act %d busy %d valid 0x%x dirty 0x%x\n", 2923 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 2924 m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags, 2925 m->flags, m->act_count, m->busy, m->valid, m->dirty); 2926 } 2927 #endif /* DDB */ 2928