xref: /freebsd/sys/vm/vm_page.c (revision a98ff317388a00b992f1bf8404dee596f9383f5e)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- A page queue lock is required when adding or removing a page from a
67  *	  page queue (vm_pagequeues[]), regardless of other locks or the
68  *	  busy state of a page.
69  *
70  *		* In general, no thread besides the page daemon can acquire or
71  *		  hold more than one page queue lock at a time.
72  *
73  *		* The page daemon can acquire and hold any pair of page queue
74  *		  locks in any order.
75  *
76  *	- The object lock is required when inserting or removing
77  *	  pages from an object (vm_page_insert() or vm_page_remove()).
78  *
79  */
80 
81 /*
82  *	Resident memory management module.
83  */
84 
85 #include <sys/cdefs.h>
86 __FBSDID("$FreeBSD$");
87 
88 #include "opt_vm.h"
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/lock.h>
93 #include <sys/kernel.h>
94 #include <sys/limits.h>
95 #include <sys/malloc.h>
96 #include <sys/mman.h>
97 #include <sys/msgbuf.h>
98 #include <sys/mutex.h>
99 #include <sys/proc.h>
100 #include <sys/rwlock.h>
101 #include <sys/sysctl.h>
102 #include <sys/vmmeter.h>
103 #include <sys/vnode.h>
104 
105 #include <vm/vm.h>
106 #include <vm/pmap.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_object.h>
110 #include <vm/vm_page.h>
111 #include <vm/vm_pageout.h>
112 #include <vm/vm_pager.h>
113 #include <vm/vm_phys.h>
114 #include <vm/vm_radix.h>
115 #include <vm/vm_reserv.h>
116 #include <vm/vm_extern.h>
117 #include <vm/uma.h>
118 #include <vm/uma_int.h>
119 
120 #include <machine/md_var.h>
121 
122 /*
123  *	Associated with page of user-allocatable memory is a
124  *	page structure.
125  */
126 
127 struct vm_pagequeue vm_pagequeues[PQ_COUNT] = {
128 	[PQ_INACTIVE] = {
129 		.pq_pl = TAILQ_HEAD_INITIALIZER(
130 		    vm_pagequeues[PQ_INACTIVE].pq_pl),
131 		.pq_cnt = &cnt.v_inactive_count,
132 		.pq_name = "vm inactive pagequeue"
133 	},
134 	[PQ_ACTIVE] = {
135 		.pq_pl = TAILQ_HEAD_INITIALIZER(
136 		    vm_pagequeues[PQ_ACTIVE].pq_pl),
137 		.pq_cnt = &cnt.v_active_count,
138 		.pq_name = "vm active pagequeue"
139 	}
140 };
141 struct mtx_padalign vm_page_queue_free_mtx;
142 
143 struct mtx_padalign pa_lock[PA_LOCK_COUNT];
144 
145 vm_page_t vm_page_array;
146 long vm_page_array_size;
147 long first_page;
148 int vm_page_zero_count;
149 
150 static int boot_pages = UMA_BOOT_PAGES;
151 TUNABLE_INT("vm.boot_pages", &boot_pages);
152 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
153 	"number of pages allocated for bootstrapping the VM system");
154 
155 static int pa_tryrelock_restart;
156 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
157     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
158 
159 static uma_zone_t fakepg_zone;
160 
161 static struct vnode *vm_page_alloc_init(vm_page_t m);
162 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
163 static void vm_page_enqueue(int queue, vm_page_t m);
164 static void vm_page_init_fakepg(void *dummy);
165 static void vm_page_insert_after(vm_page_t m, vm_object_t object,
166     vm_pindex_t pindex, vm_page_t mpred);
167 
168 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
169 
170 static void
171 vm_page_init_fakepg(void *dummy)
172 {
173 
174 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
175 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
176 }
177 
178 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
179 #if PAGE_SIZE == 32768
180 #ifdef CTASSERT
181 CTASSERT(sizeof(u_long) >= 8);
182 #endif
183 #endif
184 
185 /*
186  * Try to acquire a physical address lock while a pmap is locked.  If we
187  * fail to trylock we unlock and lock the pmap directly and cache the
188  * locked pa in *locked.  The caller should then restart their loop in case
189  * the virtual to physical mapping has changed.
190  */
191 int
192 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
193 {
194 	vm_paddr_t lockpa;
195 
196 	lockpa = *locked;
197 	*locked = pa;
198 	if (lockpa) {
199 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
200 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
201 			return (0);
202 		PA_UNLOCK(lockpa);
203 	}
204 	if (PA_TRYLOCK(pa))
205 		return (0);
206 	PMAP_UNLOCK(pmap);
207 	atomic_add_int(&pa_tryrelock_restart, 1);
208 	PA_LOCK(pa);
209 	PMAP_LOCK(pmap);
210 	return (EAGAIN);
211 }
212 
213 /*
214  *	vm_set_page_size:
215  *
216  *	Sets the page size, perhaps based upon the memory
217  *	size.  Must be called before any use of page-size
218  *	dependent functions.
219  */
220 void
221 vm_set_page_size(void)
222 {
223 	if (cnt.v_page_size == 0)
224 		cnt.v_page_size = PAGE_SIZE;
225 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
226 		panic("vm_set_page_size: page size not a power of two");
227 }
228 
229 /*
230  *	vm_page_blacklist_lookup:
231  *
232  *	See if a physical address in this page has been listed
233  *	in the blacklist tunable.  Entries in the tunable are
234  *	separated by spaces or commas.  If an invalid integer is
235  *	encountered then the rest of the string is skipped.
236  */
237 static int
238 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
239 {
240 	vm_paddr_t bad;
241 	char *cp, *pos;
242 
243 	for (pos = list; *pos != '\0'; pos = cp) {
244 		bad = strtoq(pos, &cp, 0);
245 		if (*cp != '\0') {
246 			if (*cp == ' ' || *cp == ',') {
247 				cp++;
248 				if (cp == pos)
249 					continue;
250 			} else
251 				break;
252 		}
253 		if (pa == trunc_page(bad))
254 			return (1);
255 	}
256 	return (0);
257 }
258 
259 /*
260  *	vm_page_startup:
261  *
262  *	Initializes the resident memory module.
263  *
264  *	Allocates memory for the page cells, and
265  *	for the object/offset-to-page hash table headers.
266  *	Each page cell is initialized and placed on the free list.
267  */
268 vm_offset_t
269 vm_page_startup(vm_offset_t vaddr)
270 {
271 	vm_offset_t mapped;
272 	vm_paddr_t page_range;
273 	vm_paddr_t new_end;
274 	int i;
275 	vm_paddr_t pa;
276 	vm_paddr_t last_pa;
277 	char *list;
278 
279 	/* the biggest memory array is the second group of pages */
280 	vm_paddr_t end;
281 	vm_paddr_t biggestsize;
282 	vm_paddr_t low_water, high_water;
283 	int biggestone;
284 
285 	biggestsize = 0;
286 	biggestone = 0;
287 	vaddr = round_page(vaddr);
288 
289 	for (i = 0; phys_avail[i + 1]; i += 2) {
290 		phys_avail[i] = round_page(phys_avail[i]);
291 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
292 	}
293 
294 	low_water = phys_avail[0];
295 	high_water = phys_avail[1];
296 
297 	for (i = 0; phys_avail[i + 1]; i += 2) {
298 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
299 
300 		if (size > biggestsize) {
301 			biggestone = i;
302 			biggestsize = size;
303 		}
304 		if (phys_avail[i] < low_water)
305 			low_water = phys_avail[i];
306 		if (phys_avail[i + 1] > high_water)
307 			high_water = phys_avail[i + 1];
308 	}
309 
310 #ifdef XEN
311 	low_water = 0;
312 #endif
313 
314 	end = phys_avail[biggestone+1];
315 
316 	/*
317 	 * Initialize the page and queue locks.
318 	 */
319 	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
320 	for (i = 0; i < PA_LOCK_COUNT; i++)
321 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
322 	for (i = 0; i < PQ_COUNT; i++)
323 		vm_pagequeue_init_lock(&vm_pagequeues[i]);
324 
325 	/*
326 	 * Allocate memory for use when boot strapping the kernel memory
327 	 * allocator.
328 	 */
329 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
330 	new_end = trunc_page(new_end);
331 	mapped = pmap_map(&vaddr, new_end, end,
332 	    VM_PROT_READ | VM_PROT_WRITE);
333 	bzero((void *)mapped, end - new_end);
334 	uma_startup((void *)mapped, boot_pages);
335 
336 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
337     defined(__mips__)
338 	/*
339 	 * Allocate a bitmap to indicate that a random physical page
340 	 * needs to be included in a minidump.
341 	 *
342 	 * The amd64 port needs this to indicate which direct map pages
343 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
344 	 *
345 	 * However, i386 still needs this workspace internally within the
346 	 * minidump code.  In theory, they are not needed on i386, but are
347 	 * included should the sf_buf code decide to use them.
348 	 */
349 	last_pa = 0;
350 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
351 		if (dump_avail[i + 1] > last_pa)
352 			last_pa = dump_avail[i + 1];
353 	page_range = last_pa / PAGE_SIZE;
354 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
355 	new_end -= vm_page_dump_size;
356 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
357 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
358 	bzero((void *)vm_page_dump, vm_page_dump_size);
359 #endif
360 #ifdef __amd64__
361 	/*
362 	 * Request that the physical pages underlying the message buffer be
363 	 * included in a crash dump.  Since the message buffer is accessed
364 	 * through the direct map, they are not automatically included.
365 	 */
366 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
367 	last_pa = pa + round_page(msgbufsize);
368 	while (pa < last_pa) {
369 		dump_add_page(pa);
370 		pa += PAGE_SIZE;
371 	}
372 #endif
373 	/*
374 	 * Compute the number of pages of memory that will be available for
375 	 * use (taking into account the overhead of a page structure per
376 	 * page).
377 	 */
378 	first_page = low_water / PAGE_SIZE;
379 #ifdef VM_PHYSSEG_SPARSE
380 	page_range = 0;
381 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
382 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
383 #elif defined(VM_PHYSSEG_DENSE)
384 	page_range = high_water / PAGE_SIZE - first_page;
385 #else
386 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
387 #endif
388 	end = new_end;
389 
390 	/*
391 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
392 	 */
393 	vaddr += PAGE_SIZE;
394 
395 	/*
396 	 * Initialize the mem entry structures now, and put them in the free
397 	 * queue.
398 	 */
399 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
400 	mapped = pmap_map(&vaddr, new_end, end,
401 	    VM_PROT_READ | VM_PROT_WRITE);
402 	vm_page_array = (vm_page_t) mapped;
403 #if VM_NRESERVLEVEL > 0
404 	/*
405 	 * Allocate memory for the reservation management system's data
406 	 * structures.
407 	 */
408 	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
409 #endif
410 #if defined(__amd64__) || defined(__mips__)
411 	/*
412 	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
413 	 * like i386, so the pages must be tracked for a crashdump to include
414 	 * this data.  This includes the vm_page_array and the early UMA
415 	 * bootstrap pages.
416 	 */
417 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
418 		dump_add_page(pa);
419 #endif
420 	phys_avail[biggestone + 1] = new_end;
421 
422 	/*
423 	 * Clear all of the page structures
424 	 */
425 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
426 	for (i = 0; i < page_range; i++)
427 		vm_page_array[i].order = VM_NFREEORDER;
428 	vm_page_array_size = page_range;
429 
430 	/*
431 	 * Initialize the physical memory allocator.
432 	 */
433 	vm_phys_init();
434 
435 	/*
436 	 * Add every available physical page that is not blacklisted to
437 	 * the free lists.
438 	 */
439 	cnt.v_page_count = 0;
440 	cnt.v_free_count = 0;
441 	list = getenv("vm.blacklist");
442 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
443 		pa = phys_avail[i];
444 		last_pa = phys_avail[i + 1];
445 		while (pa < last_pa) {
446 			if (list != NULL &&
447 			    vm_page_blacklist_lookup(list, pa))
448 				printf("Skipping page with pa 0x%jx\n",
449 				    (uintmax_t)pa);
450 			else
451 				vm_phys_add_page(pa);
452 			pa += PAGE_SIZE;
453 		}
454 	}
455 	freeenv(list);
456 #if VM_NRESERVLEVEL > 0
457 	/*
458 	 * Initialize the reservation management system.
459 	 */
460 	vm_reserv_init();
461 #endif
462 	return (vaddr);
463 }
464 
465 void
466 vm_page_reference(vm_page_t m)
467 {
468 
469 	vm_page_aflag_set(m, PGA_REFERENCED);
470 }
471 
472 void
473 vm_page_busy(vm_page_t m)
474 {
475 
476 	VM_OBJECT_ASSERT_WLOCKED(m->object);
477 	KASSERT((m->oflags & VPO_BUSY) == 0,
478 	    ("vm_page_busy: page already busy!!!"));
479 	m->oflags |= VPO_BUSY;
480 }
481 
482 /*
483  *      vm_page_flash:
484  *
485  *      wakeup anyone waiting for the page.
486  */
487 void
488 vm_page_flash(vm_page_t m)
489 {
490 
491 	VM_OBJECT_ASSERT_WLOCKED(m->object);
492 	if (m->oflags & VPO_WANTED) {
493 		m->oflags &= ~VPO_WANTED;
494 		wakeup(m);
495 	}
496 }
497 
498 /*
499  *      vm_page_wakeup:
500  *
501  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
502  *      page.
503  *
504  */
505 void
506 vm_page_wakeup(vm_page_t m)
507 {
508 
509 	VM_OBJECT_ASSERT_WLOCKED(m->object);
510 	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
511 	m->oflags &= ~VPO_BUSY;
512 	vm_page_flash(m);
513 }
514 
515 void
516 vm_page_io_start(vm_page_t m)
517 {
518 
519 	VM_OBJECT_ASSERT_WLOCKED(m->object);
520 	m->busy++;
521 }
522 
523 void
524 vm_page_io_finish(vm_page_t m)
525 {
526 
527 	VM_OBJECT_ASSERT_WLOCKED(m->object);
528 	KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m));
529 	m->busy--;
530 	if (m->busy == 0)
531 		vm_page_flash(m);
532 }
533 
534 /*
535  * Keep page from being freed by the page daemon
536  * much of the same effect as wiring, except much lower
537  * overhead and should be used only for *very* temporary
538  * holding ("wiring").
539  */
540 void
541 vm_page_hold(vm_page_t mem)
542 {
543 
544 	vm_page_lock_assert(mem, MA_OWNED);
545         mem->hold_count++;
546 }
547 
548 void
549 vm_page_unhold(vm_page_t mem)
550 {
551 
552 	vm_page_lock_assert(mem, MA_OWNED);
553 	--mem->hold_count;
554 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
555 	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
556 		vm_page_free_toq(mem);
557 }
558 
559 /*
560  *	vm_page_unhold_pages:
561  *
562  *	Unhold each of the pages that is referenced by the given array.
563  */
564 void
565 vm_page_unhold_pages(vm_page_t *ma, int count)
566 {
567 	struct mtx *mtx, *new_mtx;
568 
569 	mtx = NULL;
570 	for (; count != 0; count--) {
571 		/*
572 		 * Avoid releasing and reacquiring the same page lock.
573 		 */
574 		new_mtx = vm_page_lockptr(*ma);
575 		if (mtx != new_mtx) {
576 			if (mtx != NULL)
577 				mtx_unlock(mtx);
578 			mtx = new_mtx;
579 			mtx_lock(mtx);
580 		}
581 		vm_page_unhold(*ma);
582 		ma++;
583 	}
584 	if (mtx != NULL)
585 		mtx_unlock(mtx);
586 }
587 
588 vm_page_t
589 PHYS_TO_VM_PAGE(vm_paddr_t pa)
590 {
591 	vm_page_t m;
592 
593 #ifdef VM_PHYSSEG_SPARSE
594 	m = vm_phys_paddr_to_vm_page(pa);
595 	if (m == NULL)
596 		m = vm_phys_fictitious_to_vm_page(pa);
597 	return (m);
598 #elif defined(VM_PHYSSEG_DENSE)
599 	long pi;
600 
601 	pi = atop(pa);
602 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
603 		m = &vm_page_array[pi - first_page];
604 		return (m);
605 	}
606 	return (vm_phys_fictitious_to_vm_page(pa));
607 #else
608 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
609 #endif
610 }
611 
612 /*
613  *	vm_page_getfake:
614  *
615  *	Create a fictitious page with the specified physical address and
616  *	memory attribute.  The memory attribute is the only the machine-
617  *	dependent aspect of a fictitious page that must be initialized.
618  */
619 vm_page_t
620 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
621 {
622 	vm_page_t m;
623 
624 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
625 	vm_page_initfake(m, paddr, memattr);
626 	return (m);
627 }
628 
629 void
630 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
631 {
632 
633 	if ((m->flags & PG_FICTITIOUS) != 0) {
634 		/*
635 		 * The page's memattr might have changed since the
636 		 * previous initialization.  Update the pmap to the
637 		 * new memattr.
638 		 */
639 		goto memattr;
640 	}
641 	m->phys_addr = paddr;
642 	m->queue = PQ_NONE;
643 	/* Fictitious pages don't use "segind". */
644 	m->flags = PG_FICTITIOUS;
645 	/* Fictitious pages don't use "order" or "pool". */
646 	m->oflags = VPO_BUSY | VPO_UNMANAGED;
647 	m->wire_count = 1;
648 	pmap_page_init(m);
649 memattr:
650 	pmap_page_set_memattr(m, memattr);
651 }
652 
653 /*
654  *	vm_page_putfake:
655  *
656  *	Release a fictitious page.
657  */
658 void
659 vm_page_putfake(vm_page_t m)
660 {
661 
662 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
663 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
664 	    ("vm_page_putfake: bad page %p", m));
665 	uma_zfree(fakepg_zone, m);
666 }
667 
668 /*
669  *	vm_page_updatefake:
670  *
671  *	Update the given fictitious page to the specified physical address and
672  *	memory attribute.
673  */
674 void
675 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
676 {
677 
678 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
679 	    ("vm_page_updatefake: bad page %p", m));
680 	m->phys_addr = paddr;
681 	pmap_page_set_memattr(m, memattr);
682 }
683 
684 /*
685  *	vm_page_free:
686  *
687  *	Free a page.
688  */
689 void
690 vm_page_free(vm_page_t m)
691 {
692 
693 	m->flags &= ~PG_ZERO;
694 	vm_page_free_toq(m);
695 }
696 
697 /*
698  *	vm_page_free_zero:
699  *
700  *	Free a page to the zerod-pages queue
701  */
702 void
703 vm_page_free_zero(vm_page_t m)
704 {
705 
706 	m->flags |= PG_ZERO;
707 	vm_page_free_toq(m);
708 }
709 
710 /*
711  * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
712  * array which is not the request page.
713  */
714 void
715 vm_page_readahead_finish(vm_page_t m)
716 {
717 
718 	if (m->valid != 0) {
719 		/*
720 		 * Since the page is not the requested page, whether
721 		 * it should be activated or deactivated is not
722 		 * obvious.  Empirical results have shown that
723 		 * deactivating the page is usually the best choice,
724 		 * unless the page is wanted by another thread.
725 		 */
726 		if (m->oflags & VPO_WANTED) {
727 			vm_page_lock(m);
728 			vm_page_activate(m);
729 			vm_page_unlock(m);
730 		} else {
731 			vm_page_lock(m);
732 			vm_page_deactivate(m);
733 			vm_page_unlock(m);
734 		}
735 		vm_page_wakeup(m);
736 	} else {
737 		/*
738 		 * Free the completely invalid page.  Such page state
739 		 * occurs due to the short read operation which did
740 		 * not covered our page at all, or in case when a read
741 		 * error happens.
742 		 */
743 		vm_page_lock(m);
744 		vm_page_free(m);
745 		vm_page_unlock(m);
746 	}
747 }
748 
749 /*
750  *	vm_page_sleep:
751  *
752  *	Sleep and release the page lock.
753  *
754  *	The object containing the given page must be locked.
755  */
756 void
757 vm_page_sleep(vm_page_t m, const char *msg)
758 {
759 
760 	VM_OBJECT_ASSERT_WLOCKED(m->object);
761 	if (mtx_owned(vm_page_lockptr(m)))
762 		vm_page_unlock(m);
763 
764 	/*
765 	 * It's possible that while we sleep, the page will get
766 	 * unbusied and freed.  If we are holding the object
767 	 * lock, we will assume we hold a reference to the object
768 	 * such that even if m->object changes, we can re-lock
769 	 * it.
770 	 */
771 	m->oflags |= VPO_WANTED;
772 	VM_OBJECT_SLEEP(m->object, m, PVM, msg, 0);
773 }
774 
775 /*
776  *	vm_page_dirty_KBI:		[ internal use only ]
777  *
778  *	Set all bits in the page's dirty field.
779  *
780  *	The object containing the specified page must be locked if the
781  *	call is made from the machine-independent layer.
782  *
783  *	See vm_page_clear_dirty_mask().
784  *
785  *	This function should only be called by vm_page_dirty().
786  */
787 void
788 vm_page_dirty_KBI(vm_page_t m)
789 {
790 
791 	/* These assertions refer to this operation by its public name. */
792 	KASSERT((m->flags & PG_CACHED) == 0,
793 	    ("vm_page_dirty: page in cache!"));
794 	KASSERT(!VM_PAGE_IS_FREE(m),
795 	    ("vm_page_dirty: page is free!"));
796 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
797 	    ("vm_page_dirty: page is invalid!"));
798 	m->dirty = VM_PAGE_BITS_ALL;
799 }
800 
801 /*
802  *	vm_page_insert:		[ internal use only ]
803  *
804  *	Inserts the given mem entry into the object and object list.
805  *
806  *	The object must be locked.
807  */
808 void
809 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
810 {
811 	vm_page_t mpred;
812 
813 	VM_OBJECT_ASSERT_WLOCKED(object);
814 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
815 	vm_page_insert_after(m, object, pindex, mpred);
816 }
817 
818 /*
819  *	vm_page_insert_after:
820  *
821  *	Inserts the page "m" into the specified object at offset "pindex".
822  *
823  *	The page "mpred" must immediately precede the offset "pindex" within
824  *	the specified object.
825  *
826  *	The object must be locked.
827  */
828 static void
829 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
830     vm_page_t mpred)
831 {
832 	vm_page_t msucc;
833 
834 	VM_OBJECT_ASSERT_WLOCKED(object);
835 	KASSERT(m->object == NULL,
836 	    ("vm_page_insert_after: page already inserted"));
837 	if (mpred != NULL) {
838 		KASSERT(mpred->object == object ||
839 		    (mpred->flags & PG_SLAB) != 0,
840 		    ("vm_page_insert_after: object doesn't contain mpred"));
841 		KASSERT(mpred->pindex < pindex,
842 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
843 		msucc = TAILQ_NEXT(mpred, listq);
844 	} else
845 		msucc = TAILQ_FIRST(&object->memq);
846 	if (msucc != NULL)
847 		KASSERT(msucc->pindex > pindex,
848 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
849 
850 	/*
851 	 * Record the object/offset pair in this page
852 	 */
853 	m->object = object;
854 	m->pindex = pindex;
855 
856 	/*
857 	 * Now link into the object's ordered list of backed pages.
858 	 */
859 	if (mpred != NULL)
860 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
861 	else
862 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
863 	vm_radix_insert(&object->rtree, m);
864 
865 	/*
866 	 * Show that the object has one more resident page.
867 	 */
868 	object->resident_page_count++;
869 
870 	/*
871 	 * Hold the vnode until the last page is released.
872 	 */
873 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
874 		vhold(object->handle);
875 
876 	/*
877 	 * Since we are inserting a new and possibly dirty page,
878 	 * update the object's OBJ_MIGHTBEDIRTY flag.
879 	 */
880 	if (pmap_page_is_write_mapped(m))
881 		vm_object_set_writeable_dirty(object);
882 }
883 
884 /*
885  *	vm_page_remove:
886  *
887  *	Removes the given mem entry from the object/offset-page
888  *	table and the object page list, but do not invalidate/terminate
889  *	the backing store.
890  *
891  *	The object must be locked.  The page must be locked if it is managed.
892  */
893 void
894 vm_page_remove(vm_page_t m)
895 {
896 	vm_object_t object;
897 
898 	if ((m->oflags & VPO_UNMANAGED) == 0)
899 		vm_page_lock_assert(m, MA_OWNED);
900 	if ((object = m->object) == NULL)
901 		return;
902 	VM_OBJECT_ASSERT_WLOCKED(object);
903 	if (m->oflags & VPO_BUSY) {
904 		m->oflags &= ~VPO_BUSY;
905 		vm_page_flash(m);
906 	}
907 
908 	/*
909 	 * Now remove from the object's list of backed pages.
910 	 */
911 	vm_radix_remove(&object->rtree, m->pindex);
912 	TAILQ_REMOVE(&object->memq, m, listq);
913 
914 	/*
915 	 * And show that the object has one fewer resident page.
916 	 */
917 	object->resident_page_count--;
918 
919 	/*
920 	 * The vnode may now be recycled.
921 	 */
922 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
923 		vdrop(object->handle);
924 
925 	m->object = NULL;
926 }
927 
928 /*
929  *	vm_page_lookup:
930  *
931  *	Returns the page associated with the object/offset
932  *	pair specified; if none is found, NULL is returned.
933  *
934  *	The object must be locked.
935  */
936 vm_page_t
937 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
938 {
939 
940 	VM_OBJECT_ASSERT_LOCKED(object);
941 	return (vm_radix_lookup(&object->rtree, pindex));
942 }
943 
944 /*
945  *	vm_page_find_least:
946  *
947  *	Returns the page associated with the object with least pindex
948  *	greater than or equal to the parameter pindex, or NULL.
949  *
950  *	The object must be locked.
951  */
952 vm_page_t
953 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
954 {
955 	vm_page_t m;
956 
957 	VM_OBJECT_ASSERT_LOCKED(object);
958 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
959 		m = vm_radix_lookup_ge(&object->rtree, pindex);
960 	return (m);
961 }
962 
963 /*
964  * Returns the given page's successor (by pindex) within the object if it is
965  * resident; if none is found, NULL is returned.
966  *
967  * The object must be locked.
968  */
969 vm_page_t
970 vm_page_next(vm_page_t m)
971 {
972 	vm_page_t next;
973 
974 	VM_OBJECT_ASSERT_WLOCKED(m->object);
975 	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
976 	    next->pindex != m->pindex + 1)
977 		next = NULL;
978 	return (next);
979 }
980 
981 /*
982  * Returns the given page's predecessor (by pindex) within the object if it is
983  * resident; if none is found, NULL is returned.
984  *
985  * The object must be locked.
986  */
987 vm_page_t
988 vm_page_prev(vm_page_t m)
989 {
990 	vm_page_t prev;
991 
992 	VM_OBJECT_ASSERT_WLOCKED(m->object);
993 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
994 	    prev->pindex != m->pindex - 1)
995 		prev = NULL;
996 	return (prev);
997 }
998 
999 /*
1000  *	vm_page_rename:
1001  *
1002  *	Move the given memory entry from its
1003  *	current object to the specified target object/offset.
1004  *
1005  *	Note: swap associated with the page must be invalidated by the move.  We
1006  *	      have to do this for several reasons:  (1) we aren't freeing the
1007  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1008  *	      moving the page from object A to B, and will then later move
1009  *	      the backing store from A to B and we can't have a conflict.
1010  *
1011  *	Note: we *always* dirty the page.  It is necessary both for the
1012  *	      fact that we moved it, and because we may be invalidating
1013  *	      swap.  If the page is on the cache, we have to deactivate it
1014  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1015  *	      on the cache.
1016  *
1017  *	The objects must be locked.  The page must be locked if it is managed.
1018  */
1019 void
1020 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1021 {
1022 
1023 	vm_page_remove(m);
1024 	vm_page_insert(m, new_object, new_pindex);
1025 	vm_page_dirty(m);
1026 }
1027 
1028 /*
1029  *	Convert all of the given object's cached pages that have a
1030  *	pindex within the given range into free pages.  If the value
1031  *	zero is given for "end", then the range's upper bound is
1032  *	infinity.  If the given object is backed by a vnode and it
1033  *	transitions from having one or more cached pages to none, the
1034  *	vnode's hold count is reduced.
1035  */
1036 void
1037 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1038 {
1039 	vm_page_t m;
1040 	boolean_t empty;
1041 
1042 	mtx_lock(&vm_page_queue_free_mtx);
1043 	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1044 		mtx_unlock(&vm_page_queue_free_mtx);
1045 		return;
1046 	}
1047 	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1048 		if (end != 0 && m->pindex >= end)
1049 			break;
1050 		vm_radix_remove(&object->cache, m->pindex);
1051 		m->object = NULL;
1052 		m->valid = 0;
1053 		/* Clear PG_CACHED and set PG_FREE. */
1054 		m->flags ^= PG_CACHED | PG_FREE;
1055 		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1056 		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1057 		cnt.v_cache_count--;
1058 		cnt.v_free_count++;
1059 	}
1060 	empty = vm_radix_is_empty(&object->cache);
1061 	mtx_unlock(&vm_page_queue_free_mtx);
1062 	if (object->type == OBJT_VNODE && empty)
1063 		vdrop(object->handle);
1064 }
1065 
1066 /*
1067  *	Returns the cached page that is associated with the given
1068  *	object and offset.  If, however, none exists, returns NULL.
1069  *
1070  *	The free page queue must be locked.
1071  */
1072 static inline vm_page_t
1073 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1074 {
1075 
1076 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1077 	return (vm_radix_lookup(&object->cache, pindex));
1078 }
1079 
1080 /*
1081  *	Remove the given cached page from its containing object's
1082  *	collection of cached pages.
1083  *
1084  *	The free page queue must be locked.
1085  */
1086 static void
1087 vm_page_cache_remove(vm_page_t m)
1088 {
1089 
1090 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1091 	KASSERT((m->flags & PG_CACHED) != 0,
1092 	    ("vm_page_cache_remove: page %p is not cached", m));
1093 	vm_radix_remove(&m->object->cache, m->pindex);
1094 	m->object = NULL;
1095 	cnt.v_cache_count--;
1096 }
1097 
1098 /*
1099  *	Transfer all of the cached pages with offset greater than or
1100  *	equal to 'offidxstart' from the original object's cache to the
1101  *	new object's cache.  However, any cached pages with offset
1102  *	greater than or equal to the new object's size are kept in the
1103  *	original object.  Initially, the new object's cache must be
1104  *	empty.  Offset 'offidxstart' in the original object must
1105  *	correspond to offset zero in the new object.
1106  *
1107  *	The new object must be locked.
1108  */
1109 void
1110 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1111     vm_object_t new_object)
1112 {
1113 	vm_page_t m;
1114 
1115 	/*
1116 	 * Insertion into an object's collection of cached pages
1117 	 * requires the object to be locked.  In contrast, removal does
1118 	 * not.
1119 	 */
1120 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1121 	KASSERT(vm_radix_is_empty(&new_object->cache),
1122 	    ("vm_page_cache_transfer: object %p has cached pages",
1123 	    new_object));
1124 	mtx_lock(&vm_page_queue_free_mtx);
1125 	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1126 	    offidxstart)) != NULL) {
1127 		/*
1128 		 * Transfer all of the pages with offset greater than or
1129 		 * equal to 'offidxstart' from the original object's
1130 		 * cache to the new object's cache.
1131 		 */
1132 		if ((m->pindex - offidxstart) >= new_object->size)
1133 			break;
1134 		vm_radix_remove(&orig_object->cache, m->pindex);
1135 		/* Update the page's object and offset. */
1136 		m->object = new_object;
1137 		m->pindex -= offidxstart;
1138 		vm_radix_insert(&new_object->cache, m);
1139 	}
1140 	mtx_unlock(&vm_page_queue_free_mtx);
1141 }
1142 
1143 /*
1144  *	Returns TRUE if a cached page is associated with the given object and
1145  *	offset, and FALSE otherwise.
1146  *
1147  *	The object must be locked.
1148  */
1149 boolean_t
1150 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1151 {
1152 	vm_page_t m;
1153 
1154 	/*
1155 	 * Insertion into an object's collection of cached pages requires the
1156 	 * object to be locked.  Therefore, if the object is locked and the
1157 	 * object's collection is empty, there is no need to acquire the free
1158 	 * page queues lock in order to prove that the specified page doesn't
1159 	 * exist.
1160 	 */
1161 	VM_OBJECT_ASSERT_WLOCKED(object);
1162 	if (__predict_true(vm_object_cache_is_empty(object)))
1163 		return (FALSE);
1164 	mtx_lock(&vm_page_queue_free_mtx);
1165 	m = vm_page_cache_lookup(object, pindex);
1166 	mtx_unlock(&vm_page_queue_free_mtx);
1167 	return (m != NULL);
1168 }
1169 
1170 /*
1171  *	vm_page_alloc:
1172  *
1173  *	Allocate and return a page that is associated with the specified
1174  *	object and offset pair.  By default, this page has the flag VPO_BUSY
1175  *	set.
1176  *
1177  *	The caller must always specify an allocation class.
1178  *
1179  *	allocation classes:
1180  *	VM_ALLOC_NORMAL		normal process request
1181  *	VM_ALLOC_SYSTEM		system *really* needs a page
1182  *	VM_ALLOC_INTERRUPT	interrupt time request
1183  *
1184  *	optional allocation flags:
1185  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1186  *				intends to allocate
1187  *	VM_ALLOC_IFCACHED	return page only if it is cached
1188  *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1189  *				is cached
1190  *	VM_ALLOC_NOBUSY		do not set the flag VPO_BUSY on the page
1191  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1192  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1193  *				should not have the flag VPO_BUSY set
1194  *	VM_ALLOC_WIRED		wire the allocated page
1195  *	VM_ALLOC_ZERO		prefer a zeroed page
1196  *
1197  *	This routine may not sleep.
1198  */
1199 vm_page_t
1200 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1201 {
1202 	struct vnode *vp = NULL;
1203 	vm_object_t m_object;
1204 	vm_page_t m, mpred;
1205 	int flags, req_class;
1206 
1207 	mpred = 0;	/* XXX: pacify gcc */
1208 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0),
1209 	    ("vm_page_alloc: inconsistent object/req"));
1210 	if (object != NULL)
1211 		VM_OBJECT_ASSERT_WLOCKED(object);
1212 
1213 	req_class = req & VM_ALLOC_CLASS_MASK;
1214 
1215 	/*
1216 	 * The page daemon is allowed to dig deeper into the free page list.
1217 	 */
1218 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1219 		req_class = VM_ALLOC_SYSTEM;
1220 
1221 	if (object != NULL) {
1222 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1223 		KASSERT(mpred == NULL || mpred->pindex != pindex,
1224 		   ("vm_page_alloc: pindex already allocated"));
1225 	}
1226 	mtx_lock(&vm_page_queue_free_mtx);
1227 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1228 	    (req_class == VM_ALLOC_SYSTEM &&
1229 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1230 	    (req_class == VM_ALLOC_INTERRUPT &&
1231 	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1232 		/*
1233 		 * Allocate from the free queue if the number of free pages
1234 		 * exceeds the minimum for the request class.
1235 		 */
1236 		if (object != NULL &&
1237 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1238 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1239 				mtx_unlock(&vm_page_queue_free_mtx);
1240 				return (NULL);
1241 			}
1242 			if (vm_phys_unfree_page(m))
1243 				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1244 #if VM_NRESERVLEVEL > 0
1245 			else if (!vm_reserv_reactivate_page(m))
1246 #else
1247 			else
1248 #endif
1249 				panic("vm_page_alloc: cache page %p is missing"
1250 				    " from the free queue", m);
1251 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1252 			mtx_unlock(&vm_page_queue_free_mtx);
1253 			return (NULL);
1254 #if VM_NRESERVLEVEL > 0
1255 		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1256 		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1257 		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1258 #else
1259 		} else {
1260 #endif
1261 			m = vm_phys_alloc_pages(object != NULL ?
1262 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1263 #if VM_NRESERVLEVEL > 0
1264 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1265 				m = vm_phys_alloc_pages(object != NULL ?
1266 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1267 				    0);
1268 			}
1269 #endif
1270 		}
1271 	} else {
1272 		/*
1273 		 * Not allocatable, give up.
1274 		 */
1275 		mtx_unlock(&vm_page_queue_free_mtx);
1276 		atomic_add_int(&vm_pageout_deficit,
1277 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1278 		pagedaemon_wakeup();
1279 		return (NULL);
1280 	}
1281 
1282 	/*
1283 	 *  At this point we had better have found a good page.
1284 	 */
1285 	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1286 	KASSERT(m->queue == PQ_NONE,
1287 	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1288 	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1289 	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1290 	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1291 	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1292 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1293 	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1294 	    pmap_page_get_memattr(m)));
1295 	if ((m->flags & PG_CACHED) != 0) {
1296 		KASSERT((m->flags & PG_ZERO) == 0,
1297 		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1298 		KASSERT(m->valid != 0,
1299 		    ("vm_page_alloc: cached page %p is invalid", m));
1300 		if (m->object == object && m->pindex == pindex)
1301 	  		cnt.v_reactivated++;
1302 		else
1303 			m->valid = 0;
1304 		m_object = m->object;
1305 		vm_page_cache_remove(m);
1306 		if (m_object->type == OBJT_VNODE &&
1307 		    vm_object_cache_is_empty(m_object))
1308 			vp = m_object->handle;
1309 	} else {
1310 		KASSERT(VM_PAGE_IS_FREE(m),
1311 		    ("vm_page_alloc: page %p is not free", m));
1312 		KASSERT(m->valid == 0,
1313 		    ("vm_page_alloc: free page %p is valid", m));
1314 		cnt.v_free_count--;
1315 	}
1316 
1317 	/*
1318 	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1319 	 * must be cleared before the free page queues lock is released.
1320 	 */
1321 	flags = 0;
1322 	if (m->flags & PG_ZERO) {
1323 		vm_page_zero_count--;
1324 		if (req & VM_ALLOC_ZERO)
1325 			flags = PG_ZERO;
1326 	}
1327 	if (req & VM_ALLOC_NODUMP)
1328 		flags |= PG_NODUMP;
1329 	m->flags = flags;
1330 	mtx_unlock(&vm_page_queue_free_mtx);
1331 	m->aflags = 0;
1332 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1333 	    VPO_UNMANAGED : 0;
1334 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0)
1335 		m->oflags |= VPO_BUSY;
1336 	if (req & VM_ALLOC_WIRED) {
1337 		/*
1338 		 * The page lock is not required for wiring a page until that
1339 		 * page is inserted into the object.
1340 		 */
1341 		atomic_add_int(&cnt.v_wire_count, 1);
1342 		m->wire_count = 1;
1343 	}
1344 	m->act_count = 0;
1345 
1346 	if (object != NULL) {
1347 		/* Ignore device objects; the pager sets "memattr" for them. */
1348 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1349 		    (object->flags & OBJ_FICTITIOUS) == 0)
1350 			pmap_page_set_memattr(m, object->memattr);
1351 		vm_page_insert_after(m, object, pindex, mpred);
1352 	} else
1353 		m->pindex = pindex;
1354 
1355 	/*
1356 	 * The following call to vdrop() must come after the above call
1357 	 * to vm_page_insert() in case both affect the same object and
1358 	 * vnode.  Otherwise, the affected vnode's hold count could
1359 	 * temporarily become zero.
1360 	 */
1361 	if (vp != NULL)
1362 		vdrop(vp);
1363 
1364 	/*
1365 	 * Don't wakeup too often - wakeup the pageout daemon when
1366 	 * we would be nearly out of memory.
1367 	 */
1368 	if (vm_paging_needed())
1369 		pagedaemon_wakeup();
1370 
1371 	return (m);
1372 }
1373 
1374 /*
1375  *	vm_page_alloc_contig:
1376  *
1377  *	Allocate a contiguous set of physical pages of the given size "npages"
1378  *	from the free lists.  All of the physical pages must be at or above
1379  *	the given physical address "low" and below the given physical address
1380  *	"high".  The given value "alignment" determines the alignment of the
1381  *	first physical page in the set.  If the given value "boundary" is
1382  *	non-zero, then the set of physical pages cannot cross any physical
1383  *	address boundary that is a multiple of that value.  Both "alignment"
1384  *	and "boundary" must be a power of two.
1385  *
1386  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1387  *	then the memory attribute setting for the physical pages is configured
1388  *	to the object's memory attribute setting.  Otherwise, the memory
1389  *	attribute setting for the physical pages is configured to "memattr",
1390  *	overriding the object's memory attribute setting.  However, if the
1391  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1392  *	memory attribute setting for the physical pages cannot be configured
1393  *	to VM_MEMATTR_DEFAULT.
1394  *
1395  *	The caller must always specify an allocation class.
1396  *
1397  *	allocation classes:
1398  *	VM_ALLOC_NORMAL		normal process request
1399  *	VM_ALLOC_SYSTEM		system *really* needs a page
1400  *	VM_ALLOC_INTERRUPT	interrupt time request
1401  *
1402  *	optional allocation flags:
1403  *	VM_ALLOC_NOBUSY		do not set the flag VPO_BUSY on the page
1404  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1405  *				should not have the flag VPO_BUSY set
1406  *	VM_ALLOC_WIRED		wire the allocated page
1407  *	VM_ALLOC_ZERO		prefer a zeroed page
1408  *
1409  *	This routine may not sleep.
1410  */
1411 vm_page_t
1412 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1413     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1414     vm_paddr_t boundary, vm_memattr_t memattr)
1415 {
1416 	struct vnode *drop;
1417 	vm_page_t deferred_vdrop_list, m, m_ret;
1418 	u_int flags, oflags;
1419 	int req_class;
1420 
1421 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0),
1422 	    ("vm_page_alloc_contig: inconsistent object/req"));
1423 	if (object != NULL) {
1424 		VM_OBJECT_ASSERT_WLOCKED(object);
1425 		KASSERT(object->type == OBJT_PHYS,
1426 		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1427 		    object));
1428 	}
1429 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1430 	req_class = req & VM_ALLOC_CLASS_MASK;
1431 
1432 	/*
1433 	 * The page daemon is allowed to dig deeper into the free page list.
1434 	 */
1435 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1436 		req_class = VM_ALLOC_SYSTEM;
1437 
1438 	deferred_vdrop_list = NULL;
1439 	mtx_lock(&vm_page_queue_free_mtx);
1440 	if (cnt.v_free_count + cnt.v_cache_count >= npages +
1441 	    cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1442 	    cnt.v_free_count + cnt.v_cache_count >= npages +
1443 	    cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1444 	    cnt.v_free_count + cnt.v_cache_count >= npages)) {
1445 #if VM_NRESERVLEVEL > 0
1446 retry:
1447 		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1448 		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1449 		    low, high, alignment, boundary)) == NULL)
1450 #endif
1451 			m_ret = vm_phys_alloc_contig(npages, low, high,
1452 			    alignment, boundary);
1453 	} else {
1454 		mtx_unlock(&vm_page_queue_free_mtx);
1455 		atomic_add_int(&vm_pageout_deficit, npages);
1456 		pagedaemon_wakeup();
1457 		return (NULL);
1458 	}
1459 	if (m_ret != NULL)
1460 		for (m = m_ret; m < &m_ret[npages]; m++) {
1461 			drop = vm_page_alloc_init(m);
1462 			if (drop != NULL) {
1463 				/*
1464 				 * Enqueue the vnode for deferred vdrop().
1465 				 *
1466 				 * Once the pages are removed from the free
1467 				 * page list, "pageq" can be safely abused to
1468 				 * construct a short-lived list of vnodes.
1469 				 */
1470 				m->pageq.tqe_prev = (void *)drop;
1471 				m->pageq.tqe_next = deferred_vdrop_list;
1472 				deferred_vdrop_list = m;
1473 			}
1474 		}
1475 	else {
1476 #if VM_NRESERVLEVEL > 0
1477 		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1478 		    boundary))
1479 			goto retry;
1480 #endif
1481 	}
1482 	mtx_unlock(&vm_page_queue_free_mtx);
1483 	if (m_ret == NULL)
1484 		return (NULL);
1485 
1486 	/*
1487 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1488 	 */
1489 	flags = 0;
1490 	if ((req & VM_ALLOC_ZERO) != 0)
1491 		flags = PG_ZERO;
1492 	if ((req & VM_ALLOC_NODUMP) != 0)
1493 		flags |= PG_NODUMP;
1494 	if ((req & VM_ALLOC_WIRED) != 0)
1495 		atomic_add_int(&cnt.v_wire_count, npages);
1496 	oflags = VPO_UNMANAGED;
1497 	if (object != NULL) {
1498 		if ((req & VM_ALLOC_NOBUSY) == 0)
1499 			oflags |= VPO_BUSY;
1500 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1501 		    memattr == VM_MEMATTR_DEFAULT)
1502 			memattr = object->memattr;
1503 	}
1504 	for (m = m_ret; m < &m_ret[npages]; m++) {
1505 		m->aflags = 0;
1506 		m->flags = (m->flags | PG_NODUMP) & flags;
1507 		if ((req & VM_ALLOC_WIRED) != 0)
1508 			m->wire_count = 1;
1509 		/* Unmanaged pages don't use "act_count". */
1510 		m->oflags = oflags;
1511 		if (memattr != VM_MEMATTR_DEFAULT)
1512 			pmap_page_set_memattr(m, memattr);
1513 		if (object != NULL)
1514 			vm_page_insert(m, object, pindex);
1515 		else
1516 			m->pindex = pindex;
1517 		pindex++;
1518 	}
1519 	while (deferred_vdrop_list != NULL) {
1520 		vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev);
1521 		deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next;
1522 	}
1523 	if (vm_paging_needed())
1524 		pagedaemon_wakeup();
1525 	return (m_ret);
1526 }
1527 
1528 /*
1529  * Initialize a page that has been freshly dequeued from a freelist.
1530  * The caller has to drop the vnode returned, if it is not NULL.
1531  *
1532  * This function may only be used to initialize unmanaged pages.
1533  *
1534  * To be called with vm_page_queue_free_mtx held.
1535  */
1536 static struct vnode *
1537 vm_page_alloc_init(vm_page_t m)
1538 {
1539 	struct vnode *drop;
1540 	vm_object_t m_object;
1541 
1542 	KASSERT(m->queue == PQ_NONE,
1543 	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1544 	    m, m->queue));
1545 	KASSERT(m->wire_count == 0,
1546 	    ("vm_page_alloc_init: page %p is wired", m));
1547 	KASSERT(m->hold_count == 0,
1548 	    ("vm_page_alloc_init: page %p is held", m));
1549 	KASSERT(m->busy == 0,
1550 	    ("vm_page_alloc_init: page %p is busy", m));
1551 	KASSERT(m->dirty == 0,
1552 	    ("vm_page_alloc_init: page %p is dirty", m));
1553 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1554 	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1555 	    m, pmap_page_get_memattr(m)));
1556 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1557 	drop = NULL;
1558 	if ((m->flags & PG_CACHED) != 0) {
1559 		KASSERT((m->flags & PG_ZERO) == 0,
1560 		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1561 		m->valid = 0;
1562 		m_object = m->object;
1563 		vm_page_cache_remove(m);
1564 		if (m_object->type == OBJT_VNODE &&
1565 		    vm_object_cache_is_empty(m_object))
1566 			drop = m_object->handle;
1567 	} else {
1568 		KASSERT(VM_PAGE_IS_FREE(m),
1569 		    ("vm_page_alloc_init: page %p is not free", m));
1570 		KASSERT(m->valid == 0,
1571 		    ("vm_page_alloc_init: free page %p is valid", m));
1572 		cnt.v_free_count--;
1573 		if ((m->flags & PG_ZERO) != 0)
1574 			vm_page_zero_count--;
1575 	}
1576 	/* Don't clear the PG_ZERO flag; we'll need it later. */
1577 	m->flags &= PG_ZERO;
1578 	return (drop);
1579 }
1580 
1581 /*
1582  * 	vm_page_alloc_freelist:
1583  *
1584  *	Allocate a physical page from the specified free page list.
1585  *
1586  *	The caller must always specify an allocation class.
1587  *
1588  *	allocation classes:
1589  *	VM_ALLOC_NORMAL		normal process request
1590  *	VM_ALLOC_SYSTEM		system *really* needs a page
1591  *	VM_ALLOC_INTERRUPT	interrupt time request
1592  *
1593  *	optional allocation flags:
1594  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1595  *				intends to allocate
1596  *	VM_ALLOC_WIRED		wire the allocated page
1597  *	VM_ALLOC_ZERO		prefer a zeroed page
1598  *
1599  *	This routine may not sleep.
1600  */
1601 vm_page_t
1602 vm_page_alloc_freelist(int flind, int req)
1603 {
1604 	struct vnode *drop;
1605 	vm_page_t m;
1606 	u_int flags;
1607 	int req_class;
1608 
1609 	req_class = req & VM_ALLOC_CLASS_MASK;
1610 
1611 	/*
1612 	 * The page daemon is allowed to dig deeper into the free page list.
1613 	 */
1614 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1615 		req_class = VM_ALLOC_SYSTEM;
1616 
1617 	/*
1618 	 * Do not allocate reserved pages unless the req has asked for it.
1619 	 */
1620 	mtx_lock(&vm_page_queue_free_mtx);
1621 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1622 	    (req_class == VM_ALLOC_SYSTEM &&
1623 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1624 	    (req_class == VM_ALLOC_INTERRUPT &&
1625 	    cnt.v_free_count + cnt.v_cache_count > 0))
1626 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1627 	else {
1628 		mtx_unlock(&vm_page_queue_free_mtx);
1629 		atomic_add_int(&vm_pageout_deficit,
1630 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1631 		pagedaemon_wakeup();
1632 		return (NULL);
1633 	}
1634 	if (m == NULL) {
1635 		mtx_unlock(&vm_page_queue_free_mtx);
1636 		return (NULL);
1637 	}
1638 	drop = vm_page_alloc_init(m);
1639 	mtx_unlock(&vm_page_queue_free_mtx);
1640 
1641 	/*
1642 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1643 	 */
1644 	m->aflags = 0;
1645 	flags = 0;
1646 	if ((req & VM_ALLOC_ZERO) != 0)
1647 		flags = PG_ZERO;
1648 	m->flags &= flags;
1649 	if ((req & VM_ALLOC_WIRED) != 0) {
1650 		/*
1651 		 * The page lock is not required for wiring a page that does
1652 		 * not belong to an object.
1653 		 */
1654 		atomic_add_int(&cnt.v_wire_count, 1);
1655 		m->wire_count = 1;
1656 	}
1657 	/* Unmanaged pages don't use "act_count". */
1658 	m->oflags = VPO_UNMANAGED;
1659 	if (drop != NULL)
1660 		vdrop(drop);
1661 	if (vm_paging_needed())
1662 		pagedaemon_wakeup();
1663 	return (m);
1664 }
1665 
1666 /*
1667  *	vm_wait:	(also see VM_WAIT macro)
1668  *
1669  *	Sleep until free pages are available for allocation.
1670  *	- Called in various places before memory allocations.
1671  */
1672 void
1673 vm_wait(void)
1674 {
1675 
1676 	mtx_lock(&vm_page_queue_free_mtx);
1677 	if (curproc == pageproc) {
1678 		vm_pageout_pages_needed = 1;
1679 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1680 		    PDROP | PSWP, "VMWait", 0);
1681 	} else {
1682 		if (!vm_pages_needed) {
1683 			vm_pages_needed = 1;
1684 			wakeup(&vm_pages_needed);
1685 		}
1686 		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1687 		    "vmwait", 0);
1688 	}
1689 }
1690 
1691 /*
1692  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1693  *
1694  *	Sleep until free pages are available for allocation.
1695  *	- Called only in vm_fault so that processes page faulting
1696  *	  can be easily tracked.
1697  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1698  *	  processes will be able to grab memory first.  Do not change
1699  *	  this balance without careful testing first.
1700  */
1701 void
1702 vm_waitpfault(void)
1703 {
1704 
1705 	mtx_lock(&vm_page_queue_free_mtx);
1706 	if (!vm_pages_needed) {
1707 		vm_pages_needed = 1;
1708 		wakeup(&vm_pages_needed);
1709 	}
1710 	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1711 	    "pfault", 0);
1712 }
1713 
1714 /*
1715  *	vm_page_dequeue:
1716  *
1717  *	Remove the given page from its current page queue.
1718  *
1719  *	The page must be locked.
1720  */
1721 void
1722 vm_page_dequeue(vm_page_t m)
1723 {
1724 	struct vm_pagequeue *pq;
1725 
1726 	vm_page_lock_assert(m, MA_OWNED);
1727 	KASSERT(m->queue != PQ_NONE,
1728 	    ("vm_page_dequeue: page %p is not queued", m));
1729 	pq = &vm_pagequeues[m->queue];
1730 	vm_pagequeue_lock(pq);
1731 	m->queue = PQ_NONE;
1732 	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1733 	(*pq->pq_cnt)--;
1734 	vm_pagequeue_unlock(pq);
1735 }
1736 
1737 /*
1738  *	vm_page_dequeue_locked:
1739  *
1740  *	Remove the given page from its current page queue.
1741  *
1742  *	The page and page queue must be locked.
1743  */
1744 void
1745 vm_page_dequeue_locked(vm_page_t m)
1746 {
1747 	struct vm_pagequeue *pq;
1748 
1749 	vm_page_lock_assert(m, MA_OWNED);
1750 	pq = &vm_pagequeues[m->queue];
1751 	vm_pagequeue_assert_locked(pq);
1752 	m->queue = PQ_NONE;
1753 	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1754 	(*pq->pq_cnt)--;
1755 }
1756 
1757 /*
1758  *	vm_page_enqueue:
1759  *
1760  *	Add the given page to the specified page queue.
1761  *
1762  *	The page must be locked.
1763  */
1764 static void
1765 vm_page_enqueue(int queue, vm_page_t m)
1766 {
1767 	struct vm_pagequeue *pq;
1768 
1769 	vm_page_lock_assert(m, MA_OWNED);
1770 	pq = &vm_pagequeues[queue];
1771 	vm_pagequeue_lock(pq);
1772 	m->queue = queue;
1773 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
1774 	++*pq->pq_cnt;
1775 	vm_pagequeue_unlock(pq);
1776 }
1777 
1778 /*
1779  *	vm_page_requeue:
1780  *
1781  *	Move the given page to the tail of its current page queue.
1782  *
1783  *	The page must be locked.
1784  */
1785 void
1786 vm_page_requeue(vm_page_t m)
1787 {
1788 	struct vm_pagequeue *pq;
1789 
1790 	vm_page_lock_assert(m, MA_OWNED);
1791 	KASSERT(m->queue != PQ_NONE,
1792 	    ("vm_page_requeue: page %p is not queued", m));
1793 	pq = &vm_pagequeues[m->queue];
1794 	vm_pagequeue_lock(pq);
1795 	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1796 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
1797 	vm_pagequeue_unlock(pq);
1798 }
1799 
1800 /*
1801  *	vm_page_requeue_locked:
1802  *
1803  *	Move the given page to the tail of its current page queue.
1804  *
1805  *	The page queue must be locked.
1806  */
1807 void
1808 vm_page_requeue_locked(vm_page_t m)
1809 {
1810 	struct vm_pagequeue *pq;
1811 
1812 	KASSERT(m->queue != PQ_NONE,
1813 	    ("vm_page_requeue_locked: page %p is not queued", m));
1814 	pq = &vm_pagequeues[m->queue];
1815 	vm_pagequeue_assert_locked(pq);
1816 	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1817 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
1818 }
1819 
1820 /*
1821  *	vm_page_activate:
1822  *
1823  *	Put the specified page on the active list (if appropriate).
1824  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1825  *	mess with it.
1826  *
1827  *	The page must be locked.
1828  */
1829 void
1830 vm_page_activate(vm_page_t m)
1831 {
1832 	int queue;
1833 
1834 	vm_page_lock_assert(m, MA_OWNED);
1835 	if ((queue = m->queue) != PQ_ACTIVE) {
1836 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
1837 			if (m->act_count < ACT_INIT)
1838 				m->act_count = ACT_INIT;
1839 			if (queue != PQ_NONE)
1840 				vm_page_dequeue(m);
1841 			vm_page_enqueue(PQ_ACTIVE, m);
1842 		} else
1843 			KASSERT(queue == PQ_NONE,
1844 			    ("vm_page_activate: wired page %p is queued", m));
1845 	} else {
1846 		if (m->act_count < ACT_INIT)
1847 			m->act_count = ACT_INIT;
1848 	}
1849 }
1850 
1851 /*
1852  *	vm_page_free_wakeup:
1853  *
1854  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1855  *	routine is called when a page has been added to the cache or free
1856  *	queues.
1857  *
1858  *	The page queues must be locked.
1859  */
1860 static inline void
1861 vm_page_free_wakeup(void)
1862 {
1863 
1864 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1865 	/*
1866 	 * if pageout daemon needs pages, then tell it that there are
1867 	 * some free.
1868 	 */
1869 	if (vm_pageout_pages_needed &&
1870 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1871 		wakeup(&vm_pageout_pages_needed);
1872 		vm_pageout_pages_needed = 0;
1873 	}
1874 	/*
1875 	 * wakeup processes that are waiting on memory if we hit a
1876 	 * high water mark. And wakeup scheduler process if we have
1877 	 * lots of memory. this process will swapin processes.
1878 	 */
1879 	if (vm_pages_needed && !vm_page_count_min()) {
1880 		vm_pages_needed = 0;
1881 		wakeup(&cnt.v_free_count);
1882 	}
1883 }
1884 
1885 /*
1886  *	vm_page_free_toq:
1887  *
1888  *	Returns the given page to the free list,
1889  *	disassociating it with any VM object.
1890  *
1891  *	The object must be locked.  The page must be locked if it is managed.
1892  */
1893 void
1894 vm_page_free_toq(vm_page_t m)
1895 {
1896 
1897 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1898 		vm_page_lock_assert(m, MA_OWNED);
1899 		KASSERT(!pmap_page_is_mapped(m),
1900 		    ("vm_page_free_toq: freeing mapped page %p", m));
1901 	} else
1902 		KASSERT(m->queue == PQ_NONE,
1903 		    ("vm_page_free_toq: unmanaged page %p is queued", m));
1904 	PCPU_INC(cnt.v_tfree);
1905 
1906 	if (VM_PAGE_IS_FREE(m))
1907 		panic("vm_page_free: freeing free page %p", m);
1908 	else if (m->busy != 0)
1909 		panic("vm_page_free: freeing busy page %p", m);
1910 
1911 	/*
1912 	 * Unqueue, then remove page.  Note that we cannot destroy
1913 	 * the page here because we do not want to call the pager's
1914 	 * callback routine until after we've put the page on the
1915 	 * appropriate free queue.
1916 	 */
1917 	vm_page_remque(m);
1918 	vm_page_remove(m);
1919 
1920 	/*
1921 	 * If fictitious remove object association and
1922 	 * return, otherwise delay object association removal.
1923 	 */
1924 	if ((m->flags & PG_FICTITIOUS) != 0) {
1925 		return;
1926 	}
1927 
1928 	m->valid = 0;
1929 	vm_page_undirty(m);
1930 
1931 	if (m->wire_count != 0)
1932 		panic("vm_page_free: freeing wired page %p", m);
1933 	if (m->hold_count != 0) {
1934 		m->flags &= ~PG_ZERO;
1935 		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
1936 		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
1937 		m->flags |= PG_UNHOLDFREE;
1938 	} else {
1939 		/*
1940 		 * Restore the default memory attribute to the page.
1941 		 */
1942 		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1943 			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1944 
1945 		/*
1946 		 * Insert the page into the physical memory allocator's
1947 		 * cache/free page queues.
1948 		 */
1949 		mtx_lock(&vm_page_queue_free_mtx);
1950 		m->flags |= PG_FREE;
1951 		cnt.v_free_count++;
1952 #if VM_NRESERVLEVEL > 0
1953 		if (!vm_reserv_free_page(m))
1954 #else
1955 		if (TRUE)
1956 #endif
1957 			vm_phys_free_pages(m, 0);
1958 		if ((m->flags & PG_ZERO) != 0)
1959 			++vm_page_zero_count;
1960 		else
1961 			vm_page_zero_idle_wakeup();
1962 		vm_page_free_wakeup();
1963 		mtx_unlock(&vm_page_queue_free_mtx);
1964 	}
1965 }
1966 
1967 /*
1968  *	vm_page_wire:
1969  *
1970  *	Mark this page as wired down by yet
1971  *	another map, removing it from paging queues
1972  *	as necessary.
1973  *
1974  *	If the page is fictitious, then its wire count must remain one.
1975  *
1976  *	The page must be locked.
1977  */
1978 void
1979 vm_page_wire(vm_page_t m)
1980 {
1981 
1982 	/*
1983 	 * Only bump the wire statistics if the page is not already wired,
1984 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1985 	 * it is already off the queues).
1986 	 */
1987 	vm_page_lock_assert(m, MA_OWNED);
1988 	if ((m->flags & PG_FICTITIOUS) != 0) {
1989 		KASSERT(m->wire_count == 1,
1990 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
1991 		    m));
1992 		return;
1993 	}
1994 	if (m->wire_count == 0) {
1995 		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
1996 		    m->queue == PQ_NONE,
1997 		    ("vm_page_wire: unmanaged page %p is queued", m));
1998 		vm_page_remque(m);
1999 		atomic_add_int(&cnt.v_wire_count, 1);
2000 	}
2001 	m->wire_count++;
2002 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2003 }
2004 
2005 /*
2006  * vm_page_unwire:
2007  *
2008  * Release one wiring of the specified page, potentially enabling it to be
2009  * paged again.  If paging is enabled, then the value of the parameter
2010  * "activate" determines to which queue the page is added.  If "activate" is
2011  * non-zero, then the page is added to the active queue.  Otherwise, it is
2012  * added to the inactive queue.
2013  *
2014  * However, unless the page belongs to an object, it is not enqueued because
2015  * it cannot be paged out.
2016  *
2017  * If a page is fictitious, then its wire count must always be one.
2018  *
2019  * A managed page must be locked.
2020  */
2021 void
2022 vm_page_unwire(vm_page_t m, int activate)
2023 {
2024 
2025 	if ((m->oflags & VPO_UNMANAGED) == 0)
2026 		vm_page_lock_assert(m, MA_OWNED);
2027 	if ((m->flags & PG_FICTITIOUS) != 0) {
2028 		KASSERT(m->wire_count == 1,
2029 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2030 		return;
2031 	}
2032 	if (m->wire_count > 0) {
2033 		m->wire_count--;
2034 		if (m->wire_count == 0) {
2035 			atomic_subtract_int(&cnt.v_wire_count, 1);
2036 			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2037 			    m->object == NULL)
2038 				return;
2039 			if (!activate)
2040 				m->flags &= ~PG_WINATCFLS;
2041 			vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m);
2042 		}
2043 	} else
2044 		panic("vm_page_unwire: page %p's wire count is zero", m);
2045 }
2046 
2047 /*
2048  * Move the specified page to the inactive queue.
2049  *
2050  * Many pages placed on the inactive queue should actually go
2051  * into the cache, but it is difficult to figure out which.  What
2052  * we do instead, if the inactive target is well met, is to put
2053  * clean pages at the head of the inactive queue instead of the tail.
2054  * This will cause them to be moved to the cache more quickly and
2055  * if not actively re-referenced, reclaimed more quickly.  If we just
2056  * stick these pages at the end of the inactive queue, heavy filesystem
2057  * meta-data accesses can cause an unnecessary paging load on memory bound
2058  * processes.  This optimization causes one-time-use metadata to be
2059  * reused more quickly.
2060  *
2061  * Normally athead is 0 resulting in LRU operation.  athead is set
2062  * to 1 if we want this page to be 'as if it were placed in the cache',
2063  * except without unmapping it from the process address space.
2064  *
2065  * The page must be locked.
2066  */
2067 static inline void
2068 _vm_page_deactivate(vm_page_t m, int athead)
2069 {
2070 	struct vm_pagequeue *pq;
2071 	int queue;
2072 
2073 	vm_page_lock_assert(m, MA_OWNED);
2074 
2075 	/*
2076 	 * Ignore if already inactive.
2077 	 */
2078 	if ((queue = m->queue) == PQ_INACTIVE)
2079 		return;
2080 	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2081 		if (queue != PQ_NONE)
2082 			vm_page_dequeue(m);
2083 		m->flags &= ~PG_WINATCFLS;
2084 		pq = &vm_pagequeues[PQ_INACTIVE];
2085 		vm_pagequeue_lock(pq);
2086 		m->queue = PQ_INACTIVE;
2087 		if (athead)
2088 			TAILQ_INSERT_HEAD(&pq->pq_pl, m, pageq);
2089 		else
2090 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
2091 		cnt.v_inactive_count++;
2092 		vm_pagequeue_unlock(pq);
2093 	}
2094 }
2095 
2096 /*
2097  * Move the specified page to the inactive queue.
2098  *
2099  * The page must be locked.
2100  */
2101 void
2102 vm_page_deactivate(vm_page_t m)
2103 {
2104 
2105 	_vm_page_deactivate(m, 0);
2106 }
2107 
2108 /*
2109  * vm_page_try_to_cache:
2110  *
2111  * Returns 0 on failure, 1 on success
2112  */
2113 int
2114 vm_page_try_to_cache(vm_page_t m)
2115 {
2116 
2117 	vm_page_lock_assert(m, MA_OWNED);
2118 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2119 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2120 	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2121 		return (0);
2122 	pmap_remove_all(m);
2123 	if (m->dirty)
2124 		return (0);
2125 	vm_page_cache(m);
2126 	return (1);
2127 }
2128 
2129 /*
2130  * vm_page_try_to_free()
2131  *
2132  *	Attempt to free the page.  If we cannot free it, we do nothing.
2133  *	1 is returned on success, 0 on failure.
2134  */
2135 int
2136 vm_page_try_to_free(vm_page_t m)
2137 {
2138 
2139 	vm_page_lock_assert(m, MA_OWNED);
2140 	if (m->object != NULL)
2141 		VM_OBJECT_ASSERT_WLOCKED(m->object);
2142 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2143 	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2144 		return (0);
2145 	pmap_remove_all(m);
2146 	if (m->dirty)
2147 		return (0);
2148 	vm_page_free(m);
2149 	return (1);
2150 }
2151 
2152 /*
2153  * vm_page_cache
2154  *
2155  * Put the specified page onto the page cache queue (if appropriate).
2156  *
2157  * The object and page must be locked.
2158  */
2159 void
2160 vm_page_cache(vm_page_t m)
2161 {
2162 	vm_object_t object;
2163 	boolean_t cache_was_empty;
2164 
2165 	vm_page_lock_assert(m, MA_OWNED);
2166 	object = m->object;
2167 	VM_OBJECT_ASSERT_WLOCKED(object);
2168 	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy ||
2169 	    m->hold_count || m->wire_count)
2170 		panic("vm_page_cache: attempting to cache busy page");
2171 	KASSERT(!pmap_page_is_mapped(m),
2172 	    ("vm_page_cache: page %p is mapped", m));
2173 	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2174 	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2175 	    (object->type == OBJT_SWAP &&
2176 	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2177 		/*
2178 		 * Hypothesis: A cache-elgible page belonging to a
2179 		 * default object or swap object but without a backing
2180 		 * store must be zero filled.
2181 		 */
2182 		vm_page_free(m);
2183 		return;
2184 	}
2185 	KASSERT((m->flags & PG_CACHED) == 0,
2186 	    ("vm_page_cache: page %p is already cached", m));
2187 	PCPU_INC(cnt.v_tcached);
2188 
2189 	/*
2190 	 * Remove the page from the paging queues.
2191 	 */
2192 	vm_page_remque(m);
2193 
2194 	/*
2195 	 * Remove the page from the object's collection of resident
2196 	 * pages.
2197 	 */
2198 	vm_radix_remove(&object->rtree, m->pindex);
2199 	TAILQ_REMOVE(&object->memq, m, listq);
2200 	object->resident_page_count--;
2201 
2202 	/*
2203 	 * Restore the default memory attribute to the page.
2204 	 */
2205 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2206 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2207 
2208 	/*
2209 	 * Insert the page into the object's collection of cached pages
2210 	 * and the physical memory allocator's cache/free page queues.
2211 	 */
2212 	m->flags &= ~PG_ZERO;
2213 	mtx_lock(&vm_page_queue_free_mtx);
2214 	m->flags |= PG_CACHED;
2215 	cnt.v_cache_count++;
2216 	cache_was_empty = vm_radix_is_empty(&object->cache);
2217 	vm_radix_insert(&object->cache, m);
2218 #if VM_NRESERVLEVEL > 0
2219 	if (!vm_reserv_free_page(m)) {
2220 #else
2221 	if (TRUE) {
2222 #endif
2223 		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2224 		vm_phys_free_pages(m, 0);
2225 	}
2226 	vm_page_free_wakeup();
2227 	mtx_unlock(&vm_page_queue_free_mtx);
2228 
2229 	/*
2230 	 * Increment the vnode's hold count if this is the object's only
2231 	 * cached page.  Decrement the vnode's hold count if this was
2232 	 * the object's only resident page.
2233 	 */
2234 	if (object->type == OBJT_VNODE) {
2235 		if (cache_was_empty && object->resident_page_count != 0)
2236 			vhold(object->handle);
2237 		else if (!cache_was_empty && object->resident_page_count == 0)
2238 			vdrop(object->handle);
2239 	}
2240 }
2241 
2242 /*
2243  * vm_page_advise
2244  *
2245  *	Cache, deactivate, or do nothing as appropriate.  This routine
2246  *	is used by madvise().
2247  *
2248  *	Generally speaking we want to move the page into the cache so
2249  *	it gets reused quickly.  However, this can result in a silly syndrome
2250  *	due to the page recycling too quickly.  Small objects will not be
2251  *	fully cached.  On the other hand, if we move the page to the inactive
2252  *	queue we wind up with a problem whereby very large objects
2253  *	unnecessarily blow away our inactive and cache queues.
2254  *
2255  *	The solution is to move the pages based on a fixed weighting.  We
2256  *	either leave them alone, deactivate them, or move them to the cache,
2257  *	where moving them to the cache has the highest weighting.
2258  *	By forcing some pages into other queues we eventually force the
2259  *	system to balance the queues, potentially recovering other unrelated
2260  *	space from active.  The idea is to not force this to happen too
2261  *	often.
2262  *
2263  *	The object and page must be locked.
2264  */
2265 void
2266 vm_page_advise(vm_page_t m, int advice)
2267 {
2268 	int dnw, head;
2269 
2270 	vm_page_assert_locked(m);
2271 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2272 	if (advice == MADV_FREE) {
2273 		/*
2274 		 * Mark the page clean.  This will allow the page to be freed
2275 		 * up by the system.  However, such pages are often reused
2276 		 * quickly by malloc() so we do not do anything that would
2277 		 * cause a page fault if we can help it.
2278 		 *
2279 		 * Specifically, we do not try to actually free the page now
2280 		 * nor do we try to put it in the cache (which would cause a
2281 		 * page fault on reuse).
2282 		 *
2283 		 * But we do make the page is freeable as we can without
2284 		 * actually taking the step of unmapping it.
2285 		 */
2286 		pmap_clear_modify(m);
2287 		m->dirty = 0;
2288 		m->act_count = 0;
2289 	} else if (advice != MADV_DONTNEED)
2290 		return;
2291 	dnw = PCPU_GET(dnweight);
2292 	PCPU_INC(dnweight);
2293 
2294 	/*
2295 	 * Occasionally leave the page alone.
2296 	 */
2297 	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2298 		if (m->act_count >= ACT_INIT)
2299 			--m->act_count;
2300 		return;
2301 	}
2302 
2303 	/*
2304 	 * Clear any references to the page.  Otherwise, the page daemon will
2305 	 * immediately reactivate the page.
2306 	 *
2307 	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2308 	 * pmap operation, such as pmap_remove(), could clear a reference in
2309 	 * the pmap and set PGA_REFERENCED on the page before the
2310 	 * pmap_clear_reference() had completed.  Consequently, the page would
2311 	 * appear referenced based upon an old reference that occurred before
2312 	 * this function ran.
2313 	 */
2314 	pmap_clear_reference(m);
2315 	vm_page_aflag_clear(m, PGA_REFERENCED);
2316 
2317 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
2318 		vm_page_dirty(m);
2319 
2320 	if (m->dirty || (dnw & 0x0070) == 0) {
2321 		/*
2322 		 * Deactivate the page 3 times out of 32.
2323 		 */
2324 		head = 0;
2325 	} else {
2326 		/*
2327 		 * Cache the page 28 times out of every 32.  Note that
2328 		 * the page is deactivated instead of cached, but placed
2329 		 * at the head of the queue instead of the tail.
2330 		 */
2331 		head = 1;
2332 	}
2333 	_vm_page_deactivate(m, head);
2334 }
2335 
2336 /*
2337  * Grab a page, waiting until we are waken up due to the page
2338  * changing state.  We keep on waiting, if the page continues
2339  * to be in the object.  If the page doesn't exist, first allocate it
2340  * and then conditionally zero it.
2341  *
2342  * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2343  * to facilitate its eventual removal.
2344  *
2345  * This routine may sleep.
2346  *
2347  * The object must be locked on entry.  The lock will, however, be released
2348  * and reacquired if the routine sleeps.
2349  */
2350 vm_page_t
2351 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2352 {
2353 	vm_page_t m;
2354 
2355 	VM_OBJECT_ASSERT_WLOCKED(object);
2356 	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2357 	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2358 retrylookup:
2359 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2360 		if ((m->oflags & VPO_BUSY) != 0 ||
2361 		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2362 			/*
2363 			 * Reference the page before unlocking and
2364 			 * sleeping so that the page daemon is less
2365 			 * likely to reclaim it.
2366 			 */
2367 			vm_page_aflag_set(m, PGA_REFERENCED);
2368 			vm_page_sleep(m, "pgrbwt");
2369 			goto retrylookup;
2370 		} else {
2371 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2372 				vm_page_lock(m);
2373 				vm_page_wire(m);
2374 				vm_page_unlock(m);
2375 			}
2376 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2377 				vm_page_busy(m);
2378 			return (m);
2379 		}
2380 	}
2381 	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2382 	    VM_ALLOC_IGN_SBUSY));
2383 	if (m == NULL) {
2384 		VM_OBJECT_WUNLOCK(object);
2385 		VM_WAIT;
2386 		VM_OBJECT_WLOCK(object);
2387 		goto retrylookup;
2388 	} else if (m->valid != 0)
2389 		return (m);
2390 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2391 		pmap_zero_page(m);
2392 	return (m);
2393 }
2394 
2395 /*
2396  * Mapping function for valid or dirty bits in a page.
2397  *
2398  * Inputs are required to range within a page.
2399  */
2400 vm_page_bits_t
2401 vm_page_bits(int base, int size)
2402 {
2403 	int first_bit;
2404 	int last_bit;
2405 
2406 	KASSERT(
2407 	    base + size <= PAGE_SIZE,
2408 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2409 	);
2410 
2411 	if (size == 0)		/* handle degenerate case */
2412 		return (0);
2413 
2414 	first_bit = base >> DEV_BSHIFT;
2415 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2416 
2417 	return (((vm_page_bits_t)2 << last_bit) -
2418 	    ((vm_page_bits_t)1 << first_bit));
2419 }
2420 
2421 /*
2422  *	vm_page_set_valid_range:
2423  *
2424  *	Sets portions of a page valid.  The arguments are expected
2425  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2426  *	of any partial chunks touched by the range.  The invalid portion of
2427  *	such chunks will be zeroed.
2428  *
2429  *	(base + size) must be less then or equal to PAGE_SIZE.
2430  */
2431 void
2432 vm_page_set_valid_range(vm_page_t m, int base, int size)
2433 {
2434 	int endoff, frag;
2435 
2436 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2437 	if (size == 0)	/* handle degenerate case */
2438 		return;
2439 
2440 	/*
2441 	 * If the base is not DEV_BSIZE aligned and the valid
2442 	 * bit is clear, we have to zero out a portion of the
2443 	 * first block.
2444 	 */
2445 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2446 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2447 		pmap_zero_page_area(m, frag, base - frag);
2448 
2449 	/*
2450 	 * If the ending offset is not DEV_BSIZE aligned and the
2451 	 * valid bit is clear, we have to zero out a portion of
2452 	 * the last block.
2453 	 */
2454 	endoff = base + size;
2455 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2456 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2457 		pmap_zero_page_area(m, endoff,
2458 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2459 
2460 	/*
2461 	 * Assert that no previously invalid block that is now being validated
2462 	 * is already dirty.
2463 	 */
2464 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2465 	    ("vm_page_set_valid_range: page %p is dirty", m));
2466 
2467 	/*
2468 	 * Set valid bits inclusive of any overlap.
2469 	 */
2470 	m->valid |= vm_page_bits(base, size);
2471 }
2472 
2473 /*
2474  * Clear the given bits from the specified page's dirty field.
2475  */
2476 static __inline void
2477 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2478 {
2479 	uintptr_t addr;
2480 #if PAGE_SIZE < 16384
2481 	int shift;
2482 #endif
2483 
2484 	/*
2485 	 * If the object is locked and the page is neither VPO_BUSY nor
2486 	 * write mapped, then the page's dirty field cannot possibly be
2487 	 * set by a concurrent pmap operation.
2488 	 */
2489 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2490 	if ((m->oflags & VPO_BUSY) == 0 && !pmap_page_is_write_mapped(m))
2491 		m->dirty &= ~pagebits;
2492 	else {
2493 		/*
2494 		 * The pmap layer can call vm_page_dirty() without
2495 		 * holding a distinguished lock.  The combination of
2496 		 * the object's lock and an atomic operation suffice
2497 		 * to guarantee consistency of the page dirty field.
2498 		 *
2499 		 * For PAGE_SIZE == 32768 case, compiler already
2500 		 * properly aligns the dirty field, so no forcible
2501 		 * alignment is needed. Only require existence of
2502 		 * atomic_clear_64 when page size is 32768.
2503 		 */
2504 		addr = (uintptr_t)&m->dirty;
2505 #if PAGE_SIZE == 32768
2506 		atomic_clear_64((uint64_t *)addr, pagebits);
2507 #elif PAGE_SIZE == 16384
2508 		atomic_clear_32((uint32_t *)addr, pagebits);
2509 #else		/* PAGE_SIZE <= 8192 */
2510 		/*
2511 		 * Use a trick to perform a 32-bit atomic on the
2512 		 * containing aligned word, to not depend on the existence
2513 		 * of atomic_clear_{8, 16}.
2514 		 */
2515 		shift = addr & (sizeof(uint32_t) - 1);
2516 #if BYTE_ORDER == BIG_ENDIAN
2517 		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2518 #else
2519 		shift *= NBBY;
2520 #endif
2521 		addr &= ~(sizeof(uint32_t) - 1);
2522 		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2523 #endif		/* PAGE_SIZE */
2524 	}
2525 }
2526 
2527 /*
2528  *	vm_page_set_validclean:
2529  *
2530  *	Sets portions of a page valid and clean.  The arguments are expected
2531  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2532  *	of any partial chunks touched by the range.  The invalid portion of
2533  *	such chunks will be zero'd.
2534  *
2535  *	(base + size) must be less then or equal to PAGE_SIZE.
2536  */
2537 void
2538 vm_page_set_validclean(vm_page_t m, int base, int size)
2539 {
2540 	vm_page_bits_t oldvalid, pagebits;
2541 	int endoff, frag;
2542 
2543 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2544 	if (size == 0)	/* handle degenerate case */
2545 		return;
2546 
2547 	/*
2548 	 * If the base is not DEV_BSIZE aligned and the valid
2549 	 * bit is clear, we have to zero out a portion of the
2550 	 * first block.
2551 	 */
2552 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2553 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2554 		pmap_zero_page_area(m, frag, base - frag);
2555 
2556 	/*
2557 	 * If the ending offset is not DEV_BSIZE aligned and the
2558 	 * valid bit is clear, we have to zero out a portion of
2559 	 * the last block.
2560 	 */
2561 	endoff = base + size;
2562 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2563 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2564 		pmap_zero_page_area(m, endoff,
2565 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2566 
2567 	/*
2568 	 * Set valid, clear dirty bits.  If validating the entire
2569 	 * page we can safely clear the pmap modify bit.  We also
2570 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2571 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2572 	 * be set again.
2573 	 *
2574 	 * We set valid bits inclusive of any overlap, but we can only
2575 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2576 	 * the range.
2577 	 */
2578 	oldvalid = m->valid;
2579 	pagebits = vm_page_bits(base, size);
2580 	m->valid |= pagebits;
2581 #if 0	/* NOT YET */
2582 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2583 		frag = DEV_BSIZE - frag;
2584 		base += frag;
2585 		size -= frag;
2586 		if (size < 0)
2587 			size = 0;
2588 	}
2589 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2590 #endif
2591 	if (base == 0 && size == PAGE_SIZE) {
2592 		/*
2593 		 * The page can only be modified within the pmap if it is
2594 		 * mapped, and it can only be mapped if it was previously
2595 		 * fully valid.
2596 		 */
2597 		if (oldvalid == VM_PAGE_BITS_ALL)
2598 			/*
2599 			 * Perform the pmap_clear_modify() first.  Otherwise,
2600 			 * a concurrent pmap operation, such as
2601 			 * pmap_protect(), could clear a modification in the
2602 			 * pmap and set the dirty field on the page before
2603 			 * pmap_clear_modify() had begun and after the dirty
2604 			 * field was cleared here.
2605 			 */
2606 			pmap_clear_modify(m);
2607 		m->dirty = 0;
2608 		m->oflags &= ~VPO_NOSYNC;
2609 	} else if (oldvalid != VM_PAGE_BITS_ALL)
2610 		m->dirty &= ~pagebits;
2611 	else
2612 		vm_page_clear_dirty_mask(m, pagebits);
2613 }
2614 
2615 void
2616 vm_page_clear_dirty(vm_page_t m, int base, int size)
2617 {
2618 
2619 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2620 }
2621 
2622 /*
2623  *	vm_page_set_invalid:
2624  *
2625  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2626  *	valid and dirty bits for the effected areas are cleared.
2627  */
2628 void
2629 vm_page_set_invalid(vm_page_t m, int base, int size)
2630 {
2631 	vm_page_bits_t bits;
2632 
2633 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2634 	bits = vm_page_bits(base, size);
2635 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2636 		pmap_remove_all(m);
2637 	KASSERT(!pmap_page_is_mapped(m),
2638 	    ("vm_page_set_invalid: page %p is mapped", m));
2639 	m->valid &= ~bits;
2640 	m->dirty &= ~bits;
2641 }
2642 
2643 /*
2644  * vm_page_zero_invalid()
2645  *
2646  *	The kernel assumes that the invalid portions of a page contain
2647  *	garbage, but such pages can be mapped into memory by user code.
2648  *	When this occurs, we must zero out the non-valid portions of the
2649  *	page so user code sees what it expects.
2650  *
2651  *	Pages are most often semi-valid when the end of a file is mapped
2652  *	into memory and the file's size is not page aligned.
2653  */
2654 void
2655 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2656 {
2657 	int b;
2658 	int i;
2659 
2660 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2661 	/*
2662 	 * Scan the valid bits looking for invalid sections that
2663 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2664 	 * valid bit may be set ) have already been zerod by
2665 	 * vm_page_set_validclean().
2666 	 */
2667 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2668 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2669 		    (m->valid & ((vm_page_bits_t)1 << i))) {
2670 			if (i > b) {
2671 				pmap_zero_page_area(m,
2672 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2673 			}
2674 			b = i + 1;
2675 		}
2676 	}
2677 
2678 	/*
2679 	 * setvalid is TRUE when we can safely set the zero'd areas
2680 	 * as being valid.  We can do this if there are no cache consistancy
2681 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2682 	 */
2683 	if (setvalid)
2684 		m->valid = VM_PAGE_BITS_ALL;
2685 }
2686 
2687 /*
2688  *	vm_page_is_valid:
2689  *
2690  *	Is (partial) page valid?  Note that the case where size == 0
2691  *	will return FALSE in the degenerate case where the page is
2692  *	entirely invalid, and TRUE otherwise.
2693  */
2694 int
2695 vm_page_is_valid(vm_page_t m, int base, int size)
2696 {
2697 	vm_page_bits_t bits;
2698 
2699 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2700 	bits = vm_page_bits(base, size);
2701 	return (m->valid != 0 && (m->valid & bits) == bits);
2702 }
2703 
2704 /*
2705  * Set the page's dirty bits if the page is modified.
2706  */
2707 void
2708 vm_page_test_dirty(vm_page_t m)
2709 {
2710 
2711 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2712 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2713 		vm_page_dirty(m);
2714 }
2715 
2716 void
2717 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
2718 {
2719 
2720 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
2721 }
2722 
2723 void
2724 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
2725 {
2726 
2727 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
2728 }
2729 
2730 int
2731 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
2732 {
2733 
2734 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
2735 }
2736 
2737 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
2738 void
2739 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
2740 {
2741 
2742 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
2743 }
2744 
2745 void
2746 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
2747 {
2748 
2749 	mtx_assert_(vm_page_lockptr(m), a, file, line);
2750 }
2751 #endif
2752 
2753 int so_zerocp_fullpage = 0;
2754 
2755 /*
2756  *	Replace the given page with a copy.  The copied page assumes
2757  *	the portion of the given page's "wire_count" that is not the
2758  *	responsibility of this copy-on-write mechanism.
2759  *
2760  *	The object containing the given page must have a non-zero
2761  *	paging-in-progress count and be locked.
2762  */
2763 void
2764 vm_page_cowfault(vm_page_t m)
2765 {
2766 	vm_page_t mnew;
2767 	vm_object_t object;
2768 	vm_pindex_t pindex;
2769 
2770 	vm_page_lock_assert(m, MA_OWNED);
2771 	object = m->object;
2772 	VM_OBJECT_ASSERT_WLOCKED(object);
2773 	KASSERT(object->paging_in_progress != 0,
2774 	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2775 	    object));
2776 	pindex = m->pindex;
2777 
2778  retry_alloc:
2779 	pmap_remove_all(m);
2780 	vm_page_remove(m);
2781 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2782 	if (mnew == NULL) {
2783 		vm_page_insert(m, object, pindex);
2784 		vm_page_unlock(m);
2785 		VM_OBJECT_WUNLOCK(object);
2786 		VM_WAIT;
2787 		VM_OBJECT_WLOCK(object);
2788 		if (m == vm_page_lookup(object, pindex)) {
2789 			vm_page_lock(m);
2790 			goto retry_alloc;
2791 		} else {
2792 			/*
2793 			 * Page disappeared during the wait.
2794 			 */
2795 			return;
2796 		}
2797 	}
2798 
2799 	if (m->cow == 0) {
2800 		/*
2801 		 * check to see if we raced with an xmit complete when
2802 		 * waiting to allocate a page.  If so, put things back
2803 		 * the way they were
2804 		 */
2805 		vm_page_unlock(m);
2806 		vm_page_lock(mnew);
2807 		vm_page_free(mnew);
2808 		vm_page_unlock(mnew);
2809 		vm_page_insert(m, object, pindex);
2810 	} else { /* clear COW & copy page */
2811 		if (!so_zerocp_fullpage)
2812 			pmap_copy_page(m, mnew);
2813 		mnew->valid = VM_PAGE_BITS_ALL;
2814 		vm_page_dirty(mnew);
2815 		mnew->wire_count = m->wire_count - m->cow;
2816 		m->wire_count = m->cow;
2817 		vm_page_unlock(m);
2818 	}
2819 }
2820 
2821 void
2822 vm_page_cowclear(vm_page_t m)
2823 {
2824 
2825 	vm_page_lock_assert(m, MA_OWNED);
2826 	if (m->cow) {
2827 		m->cow--;
2828 		/*
2829 		 * let vm_fault add back write permission  lazily
2830 		 */
2831 	}
2832 	/*
2833 	 *  sf_buf_free() will free the page, so we needn't do it here
2834 	 */
2835 }
2836 
2837 int
2838 vm_page_cowsetup(vm_page_t m)
2839 {
2840 
2841 	vm_page_lock_assert(m, MA_OWNED);
2842 	if ((m->flags & PG_FICTITIOUS) != 0 ||
2843 	    (m->oflags & VPO_UNMANAGED) != 0 ||
2844 	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYWLOCK(m->object))
2845 		return (EBUSY);
2846 	m->cow++;
2847 	pmap_remove_write(m);
2848 	VM_OBJECT_WUNLOCK(m->object);
2849 	return (0);
2850 }
2851 
2852 #ifdef INVARIANTS
2853 void
2854 vm_page_object_lock_assert(vm_page_t m)
2855 {
2856 
2857 	/*
2858 	 * Certain of the page's fields may only be modified by the
2859 	 * holder of the containing object's lock or the setter of the
2860 	 * page's VPO_BUSY flag.  Unfortunately, the setter of the
2861 	 * VPO_BUSY flag is not recorded, and thus cannot be checked
2862 	 * here.
2863 	 */
2864 	if (m->object != NULL && (m->oflags & VPO_BUSY) == 0)
2865 		VM_OBJECT_ASSERT_WLOCKED(m->object);
2866 }
2867 #endif
2868 
2869 #include "opt_ddb.h"
2870 #ifdef DDB
2871 #include <sys/kernel.h>
2872 
2873 #include <ddb/ddb.h>
2874 
2875 DB_SHOW_COMMAND(page, vm_page_print_page_info)
2876 {
2877 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2878 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2879 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2880 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2881 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2882 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2883 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2884 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2885 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2886 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2887 }
2888 
2889 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2890 {
2891 
2892 	db_printf("PQ_FREE:");
2893 	db_printf(" %d", cnt.v_free_count);
2894 	db_printf("\n");
2895 
2896 	db_printf("PQ_CACHE:");
2897 	db_printf(" %d", cnt.v_cache_count);
2898 	db_printf("\n");
2899 
2900 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2901 		*vm_pagequeues[PQ_ACTIVE].pq_cnt,
2902 		*vm_pagequeues[PQ_INACTIVE].pq_cnt);
2903 }
2904 
2905 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
2906 {
2907 	vm_page_t m;
2908 	boolean_t phys;
2909 
2910 	if (!have_addr) {
2911 		db_printf("show pginfo addr\n");
2912 		return;
2913 	}
2914 
2915 	phys = strchr(modif, 'p') != NULL;
2916 	if (phys)
2917 		m = PHYS_TO_VM_PAGE(addr);
2918 	else
2919 		m = (vm_page_t)addr;
2920 	db_printf(
2921     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
2922     "  af 0x%x of 0x%x f 0x%x act %d busy %d valid 0x%x dirty 0x%x\n",
2923 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
2924 	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
2925 	    m->flags, m->act_count, m->busy, m->valid, m->dirty);
2926 }
2927 #endif /* DDB */
2928