1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * The Mach Operating System project at Carnegie-Mellon University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 36 */ 37 38 /*- 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 65 /* 66 * Resident memory management module. 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_vm.h" 73 74 #include <sys/param.h> 75 #include <sys/systm.h> 76 #include <sys/counter.h> 77 #include <sys/domainset.h> 78 #include <sys/kernel.h> 79 #include <sys/limits.h> 80 #include <sys/linker.h> 81 #include <sys/lock.h> 82 #include <sys/malloc.h> 83 #include <sys/mman.h> 84 #include <sys/msgbuf.h> 85 #include <sys/mutex.h> 86 #include <sys/proc.h> 87 #include <sys/rwlock.h> 88 #include <sys/sleepqueue.h> 89 #include <sys/sbuf.h> 90 #include <sys/sched.h> 91 #include <sys/smp.h> 92 #include <sys/sysctl.h> 93 #include <sys/vmmeter.h> 94 #include <sys/vnode.h> 95 96 #include <vm/vm.h> 97 #include <vm/pmap.h> 98 #include <vm/vm_param.h> 99 #include <vm/vm_domainset.h> 100 #include <vm/vm_kern.h> 101 #include <vm/vm_map.h> 102 #include <vm/vm_object.h> 103 #include <vm/vm_page.h> 104 #include <vm/vm_pageout.h> 105 #include <vm/vm_phys.h> 106 #include <vm/vm_pagequeue.h> 107 #include <vm/vm_pager.h> 108 #include <vm/vm_radix.h> 109 #include <vm/vm_reserv.h> 110 #include <vm/vm_extern.h> 111 #include <vm/uma.h> 112 #include <vm/uma_int.h> 113 114 #include <machine/md_var.h> 115 116 struct vm_domain vm_dom[MAXMEMDOM]; 117 118 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]); 119 120 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT]; 121 122 struct mtx_padalign __exclusive_cache_line vm_domainset_lock; 123 /* The following fields are protected by the domainset lock. */ 124 domainset_t __exclusive_cache_line vm_min_domains; 125 domainset_t __exclusive_cache_line vm_severe_domains; 126 static int vm_min_waiters; 127 static int vm_severe_waiters; 128 static int vm_pageproc_waiters; 129 130 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD, 0, 131 "VM page statistics"); 132 133 static counter_u64_t pqstate_commit_retries = EARLY_COUNTER; 134 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries, 135 CTLFLAG_RD, &pqstate_commit_retries, 136 "Number of failed per-page atomic queue state updates"); 137 138 static counter_u64_t queue_ops = EARLY_COUNTER; 139 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops, 140 CTLFLAG_RD, &queue_ops, 141 "Number of batched queue operations"); 142 143 static counter_u64_t queue_nops = EARLY_COUNTER; 144 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops, 145 CTLFLAG_RD, &queue_nops, 146 "Number of batched queue operations with no effects"); 147 148 static void 149 counter_startup(void) 150 { 151 152 pqstate_commit_retries = counter_u64_alloc(M_WAITOK); 153 queue_ops = counter_u64_alloc(M_WAITOK); 154 queue_nops = counter_u64_alloc(M_WAITOK); 155 } 156 SYSINIT(page_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL); 157 158 /* 159 * bogus page -- for I/O to/from partially complete buffers, 160 * or for paging into sparsely invalid regions. 161 */ 162 vm_page_t bogus_page; 163 164 vm_page_t vm_page_array; 165 long vm_page_array_size; 166 long first_page; 167 168 static TAILQ_HEAD(, vm_page) blacklist_head; 169 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); 170 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | 171 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); 172 173 static uma_zone_t fakepg_zone; 174 175 static void vm_page_alloc_check(vm_page_t m); 176 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, 177 const char *wmesg, bool nonshared, bool locked); 178 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 179 static void vm_page_enqueue(vm_page_t m, uint8_t queue); 180 static bool vm_page_free_prep(vm_page_t m); 181 static void vm_page_free_toq(vm_page_t m); 182 static void vm_page_init(void *dummy); 183 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 184 vm_pindex_t pindex, vm_page_t mpred); 185 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 186 vm_page_t mpred); 187 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue, 188 const uint16_t nflag); 189 static int vm_page_reclaim_run(int req_class, int domain, u_long npages, 190 vm_page_t m_run, vm_paddr_t high); 191 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse); 192 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, 193 int req); 194 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain, 195 int flags); 196 static void vm_page_zone_release(void *arg, void **store, int cnt); 197 198 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL); 199 200 static void 201 vm_page_init(void *dummy) 202 { 203 204 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 205 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 206 bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | 207 VM_ALLOC_NORMAL | VM_ALLOC_WIRED); 208 } 209 210 /* 211 * The cache page zone is initialized later since we need to be able to allocate 212 * pages before UMA is fully initialized. 213 */ 214 static void 215 vm_page_init_cache_zones(void *dummy __unused) 216 { 217 struct vm_domain *vmd; 218 struct vm_pgcache *pgcache; 219 int cache, domain, maxcache, pool; 220 221 maxcache = 0; 222 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache); 223 maxcache *= mp_ncpus; 224 for (domain = 0; domain < vm_ndomains; domain++) { 225 vmd = VM_DOMAIN(domain); 226 for (pool = 0; pool < VM_NFREEPOOL; pool++) { 227 pgcache = &vmd->vmd_pgcache[pool]; 228 pgcache->domain = domain; 229 pgcache->pool = pool; 230 pgcache->zone = uma_zcache_create("vm pgcache", 231 PAGE_SIZE, NULL, NULL, NULL, NULL, 232 vm_page_zone_import, vm_page_zone_release, pgcache, 233 UMA_ZONE_VM); 234 235 /* 236 * Limit each pool's zone to 0.1% of the pages in the 237 * domain. 238 */ 239 cache = maxcache != 0 ? maxcache : 240 vmd->vmd_page_count / 1000; 241 uma_zone_set_maxcache(pgcache->zone, cache); 242 } 243 } 244 } 245 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL); 246 247 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 248 #if PAGE_SIZE == 32768 249 #ifdef CTASSERT 250 CTASSERT(sizeof(u_long) >= 8); 251 #endif 252 #endif 253 254 /* 255 * vm_set_page_size: 256 * 257 * Sets the page size, perhaps based upon the memory 258 * size. Must be called before any use of page-size 259 * dependent functions. 260 */ 261 void 262 vm_set_page_size(void) 263 { 264 if (vm_cnt.v_page_size == 0) 265 vm_cnt.v_page_size = PAGE_SIZE; 266 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 267 panic("vm_set_page_size: page size not a power of two"); 268 } 269 270 /* 271 * vm_page_blacklist_next: 272 * 273 * Find the next entry in the provided string of blacklist 274 * addresses. Entries are separated by space, comma, or newline. 275 * If an invalid integer is encountered then the rest of the 276 * string is skipped. Updates the list pointer to the next 277 * character, or NULL if the string is exhausted or invalid. 278 */ 279 static vm_paddr_t 280 vm_page_blacklist_next(char **list, char *end) 281 { 282 vm_paddr_t bad; 283 char *cp, *pos; 284 285 if (list == NULL || *list == NULL) 286 return (0); 287 if (**list =='\0') { 288 *list = NULL; 289 return (0); 290 } 291 292 /* 293 * If there's no end pointer then the buffer is coming from 294 * the kenv and we know it's null-terminated. 295 */ 296 if (end == NULL) 297 end = *list + strlen(*list); 298 299 /* Ensure that strtoq() won't walk off the end */ 300 if (*end != '\0') { 301 if (*end == '\n' || *end == ' ' || *end == ',') 302 *end = '\0'; 303 else { 304 printf("Blacklist not terminated, skipping\n"); 305 *list = NULL; 306 return (0); 307 } 308 } 309 310 for (pos = *list; *pos != '\0'; pos = cp) { 311 bad = strtoq(pos, &cp, 0); 312 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { 313 if (bad == 0) { 314 if (++cp < end) 315 continue; 316 else 317 break; 318 } 319 } else 320 break; 321 if (*cp == '\0' || ++cp >= end) 322 *list = NULL; 323 else 324 *list = cp; 325 return (trunc_page(bad)); 326 } 327 printf("Garbage in RAM blacklist, skipping\n"); 328 *list = NULL; 329 return (0); 330 } 331 332 bool 333 vm_page_blacklist_add(vm_paddr_t pa, bool verbose) 334 { 335 struct vm_domain *vmd; 336 vm_page_t m; 337 int ret; 338 339 m = vm_phys_paddr_to_vm_page(pa); 340 if (m == NULL) 341 return (true); /* page does not exist, no failure */ 342 343 vmd = vm_pagequeue_domain(m); 344 vm_domain_free_lock(vmd); 345 ret = vm_phys_unfree_page(m); 346 vm_domain_free_unlock(vmd); 347 if (ret != 0) { 348 vm_domain_freecnt_inc(vmd, -1); 349 TAILQ_INSERT_TAIL(&blacklist_head, m, listq); 350 if (verbose) 351 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa); 352 } 353 return (ret); 354 } 355 356 /* 357 * vm_page_blacklist_check: 358 * 359 * Iterate through the provided string of blacklist addresses, pulling 360 * each entry out of the physical allocator free list and putting it 361 * onto a list for reporting via the vm.page_blacklist sysctl. 362 */ 363 static void 364 vm_page_blacklist_check(char *list, char *end) 365 { 366 vm_paddr_t pa; 367 char *next; 368 369 next = list; 370 while (next != NULL) { 371 if ((pa = vm_page_blacklist_next(&next, end)) == 0) 372 continue; 373 vm_page_blacklist_add(pa, bootverbose); 374 } 375 } 376 377 /* 378 * vm_page_blacklist_load: 379 * 380 * Search for a special module named "ram_blacklist". It'll be a 381 * plain text file provided by the user via the loader directive 382 * of the same name. 383 */ 384 static void 385 vm_page_blacklist_load(char **list, char **end) 386 { 387 void *mod; 388 u_char *ptr; 389 u_int len; 390 391 mod = NULL; 392 ptr = NULL; 393 394 mod = preload_search_by_type("ram_blacklist"); 395 if (mod != NULL) { 396 ptr = preload_fetch_addr(mod); 397 len = preload_fetch_size(mod); 398 } 399 *list = ptr; 400 if (ptr != NULL) 401 *end = ptr + len; 402 else 403 *end = NULL; 404 return; 405 } 406 407 static int 408 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) 409 { 410 vm_page_t m; 411 struct sbuf sbuf; 412 int error, first; 413 414 first = 1; 415 error = sysctl_wire_old_buffer(req, 0); 416 if (error != 0) 417 return (error); 418 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 419 TAILQ_FOREACH(m, &blacklist_head, listq) { 420 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", 421 (uintmax_t)m->phys_addr); 422 first = 0; 423 } 424 error = sbuf_finish(&sbuf); 425 sbuf_delete(&sbuf); 426 return (error); 427 } 428 429 /* 430 * Initialize a dummy page for use in scans of the specified paging queue. 431 * In principle, this function only needs to set the flag PG_MARKER. 432 * Nonetheless, it write busies the page as a safety precaution. 433 */ 434 static void 435 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags) 436 { 437 438 bzero(marker, sizeof(*marker)); 439 marker->flags = PG_MARKER; 440 marker->a.flags = aflags; 441 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 442 marker->a.queue = queue; 443 } 444 445 static void 446 vm_page_domain_init(int domain) 447 { 448 struct vm_domain *vmd; 449 struct vm_pagequeue *pq; 450 int i; 451 452 vmd = VM_DOMAIN(domain); 453 bzero(vmd, sizeof(*vmd)); 454 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 455 "vm inactive pagequeue"; 456 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 457 "vm active pagequeue"; 458 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) = 459 "vm laundry pagequeue"; 460 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) = 461 "vm unswappable pagequeue"; 462 vmd->vmd_domain = domain; 463 vmd->vmd_page_count = 0; 464 vmd->vmd_free_count = 0; 465 vmd->vmd_segs = 0; 466 vmd->vmd_oom = FALSE; 467 for (i = 0; i < PQ_COUNT; i++) { 468 pq = &vmd->vmd_pagequeues[i]; 469 TAILQ_INIT(&pq->pq_pl); 470 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 471 MTX_DEF | MTX_DUPOK); 472 pq->pq_pdpages = 0; 473 vm_page_init_marker(&vmd->vmd_markers[i], i, 0); 474 } 475 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF); 476 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF); 477 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain); 478 479 /* 480 * inacthead is used to provide FIFO ordering for LRU-bypassing 481 * insertions. 482 */ 483 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED); 484 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl, 485 &vmd->vmd_inacthead, plinks.q); 486 487 /* 488 * The clock pages are used to implement active queue scanning without 489 * requeues. Scans start at clock[0], which is advanced after the scan 490 * ends. When the two clock hands meet, they are reset and scanning 491 * resumes from the head of the queue. 492 */ 493 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED); 494 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED); 495 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 496 &vmd->vmd_clock[0], plinks.q); 497 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 498 &vmd->vmd_clock[1], plinks.q); 499 } 500 501 /* 502 * Initialize a physical page in preparation for adding it to the free 503 * lists. 504 */ 505 static void 506 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind) 507 { 508 509 m->object = NULL; 510 m->ref_count = 0; 511 m->busy_lock = VPB_UNBUSIED; 512 m->flags = m->a.flags = 0; 513 m->phys_addr = pa; 514 m->a.queue = PQ_NONE; 515 m->psind = 0; 516 m->segind = segind; 517 m->order = VM_NFREEORDER; 518 m->pool = VM_FREEPOOL_DEFAULT; 519 m->valid = m->dirty = 0; 520 pmap_page_init(m); 521 } 522 523 #ifndef PMAP_HAS_PAGE_ARRAY 524 static vm_paddr_t 525 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range) 526 { 527 vm_paddr_t new_end; 528 529 /* 530 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 531 * However, because this page is allocated from KVM, out-of-bounds 532 * accesses using the direct map will not be trapped. 533 */ 534 *vaddr += PAGE_SIZE; 535 536 /* 537 * Allocate physical memory for the page structures, and map it. 538 */ 539 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 540 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end, 541 VM_PROT_READ | VM_PROT_WRITE); 542 vm_page_array_size = page_range; 543 544 return (new_end); 545 } 546 #endif 547 548 /* 549 * vm_page_startup: 550 * 551 * Initializes the resident memory module. Allocates physical memory for 552 * bootstrapping UMA and some data structures that are used to manage 553 * physical pages. Initializes these structures, and populates the free 554 * page queues. 555 */ 556 vm_offset_t 557 vm_page_startup(vm_offset_t vaddr) 558 { 559 struct vm_phys_seg *seg; 560 vm_page_t m; 561 char *list, *listend; 562 vm_paddr_t end, high_avail, low_avail, new_end, size; 563 vm_paddr_t page_range __unused; 564 vm_paddr_t last_pa, pa; 565 u_long pagecount; 566 int biggestone, i, segind; 567 #ifdef WITNESS 568 vm_offset_t mapped; 569 int witness_size; 570 #endif 571 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 572 long ii; 573 #endif 574 575 vaddr = round_page(vaddr); 576 577 vm_phys_early_startup(); 578 biggestone = vm_phys_avail_largest(); 579 end = phys_avail[biggestone+1]; 580 581 /* 582 * Initialize the page and queue locks. 583 */ 584 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF); 585 for (i = 0; i < PA_LOCK_COUNT; i++) 586 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 587 for (i = 0; i < vm_ndomains; i++) 588 vm_page_domain_init(i); 589 590 new_end = end; 591 #ifdef WITNESS 592 witness_size = round_page(witness_startup_count()); 593 new_end -= witness_size; 594 mapped = pmap_map(&vaddr, new_end, new_end + witness_size, 595 VM_PROT_READ | VM_PROT_WRITE); 596 bzero((void *)mapped, witness_size); 597 witness_startup((void *)mapped); 598 #endif 599 600 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 601 defined(__i386__) || defined(__mips__) || defined(__riscv) || \ 602 defined(__powerpc64__) 603 /* 604 * Allocate a bitmap to indicate that a random physical page 605 * needs to be included in a minidump. 606 * 607 * The amd64 port needs this to indicate which direct map pages 608 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 609 * 610 * However, i386 still needs this workspace internally within the 611 * minidump code. In theory, they are not needed on i386, but are 612 * included should the sf_buf code decide to use them. 613 */ 614 last_pa = 0; 615 for (i = 0; dump_avail[i + 1] != 0; i += 2) 616 if (dump_avail[i + 1] > last_pa) 617 last_pa = dump_avail[i + 1]; 618 page_range = last_pa / PAGE_SIZE; 619 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 620 new_end -= vm_page_dump_size; 621 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 622 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 623 bzero((void *)vm_page_dump, vm_page_dump_size); 624 #else 625 (void)last_pa; 626 #endif 627 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 628 defined(__riscv) || defined(__powerpc64__) 629 /* 630 * Include the UMA bootstrap pages, witness pages and vm_page_dump 631 * in a crash dump. When pmap_map() uses the direct map, they are 632 * not automatically included. 633 */ 634 for (pa = new_end; pa < end; pa += PAGE_SIZE) 635 dump_add_page(pa); 636 #endif 637 phys_avail[biggestone + 1] = new_end; 638 #ifdef __amd64__ 639 /* 640 * Request that the physical pages underlying the message buffer be 641 * included in a crash dump. Since the message buffer is accessed 642 * through the direct map, they are not automatically included. 643 */ 644 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 645 last_pa = pa + round_page(msgbufsize); 646 while (pa < last_pa) { 647 dump_add_page(pa); 648 pa += PAGE_SIZE; 649 } 650 #endif 651 /* 652 * Compute the number of pages of memory that will be available for 653 * use, taking into account the overhead of a page structure per page. 654 * In other words, solve 655 * "available physical memory" - round_page(page_range * 656 * sizeof(struct vm_page)) = page_range * PAGE_SIZE 657 * for page_range. 658 */ 659 low_avail = phys_avail[0]; 660 high_avail = phys_avail[1]; 661 for (i = 0; i < vm_phys_nsegs; i++) { 662 if (vm_phys_segs[i].start < low_avail) 663 low_avail = vm_phys_segs[i].start; 664 if (vm_phys_segs[i].end > high_avail) 665 high_avail = vm_phys_segs[i].end; 666 } 667 /* Skip the first chunk. It is already accounted for. */ 668 for (i = 2; phys_avail[i + 1] != 0; i += 2) { 669 if (phys_avail[i] < low_avail) 670 low_avail = phys_avail[i]; 671 if (phys_avail[i + 1] > high_avail) 672 high_avail = phys_avail[i + 1]; 673 } 674 first_page = low_avail / PAGE_SIZE; 675 #ifdef VM_PHYSSEG_SPARSE 676 size = 0; 677 for (i = 0; i < vm_phys_nsegs; i++) 678 size += vm_phys_segs[i].end - vm_phys_segs[i].start; 679 for (i = 0; phys_avail[i + 1] != 0; i += 2) 680 size += phys_avail[i + 1] - phys_avail[i]; 681 #elif defined(VM_PHYSSEG_DENSE) 682 size = high_avail - low_avail; 683 #else 684 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 685 #endif 686 687 #ifdef PMAP_HAS_PAGE_ARRAY 688 pmap_page_array_startup(size / PAGE_SIZE); 689 biggestone = vm_phys_avail_largest(); 690 end = new_end = phys_avail[biggestone + 1]; 691 #else 692 #ifdef VM_PHYSSEG_DENSE 693 /* 694 * In the VM_PHYSSEG_DENSE case, the number of pages can account for 695 * the overhead of a page structure per page only if vm_page_array is 696 * allocated from the last physical memory chunk. Otherwise, we must 697 * allocate page structures representing the physical memory 698 * underlying vm_page_array, even though they will not be used. 699 */ 700 if (new_end != high_avail) 701 page_range = size / PAGE_SIZE; 702 else 703 #endif 704 { 705 page_range = size / (PAGE_SIZE + sizeof(struct vm_page)); 706 707 /* 708 * If the partial bytes remaining are large enough for 709 * a page (PAGE_SIZE) without a corresponding 710 * 'struct vm_page', then new_end will contain an 711 * extra page after subtracting the length of the VM 712 * page array. Compensate by subtracting an extra 713 * page from new_end. 714 */ 715 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) { 716 if (new_end == high_avail) 717 high_avail -= PAGE_SIZE; 718 new_end -= PAGE_SIZE; 719 } 720 } 721 end = new_end; 722 new_end = vm_page_array_alloc(&vaddr, end, page_range); 723 #endif 724 725 #if VM_NRESERVLEVEL > 0 726 /* 727 * Allocate physical memory for the reservation management system's 728 * data structures, and map it. 729 */ 730 new_end = vm_reserv_startup(&vaddr, new_end); 731 #endif 732 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 733 defined(__riscv) || defined(__powerpc64__) 734 /* 735 * Include vm_page_array and vm_reserv_array in a crash dump. 736 */ 737 for (pa = new_end; pa < end; pa += PAGE_SIZE) 738 dump_add_page(pa); 739 #endif 740 phys_avail[biggestone + 1] = new_end; 741 742 /* 743 * Add physical memory segments corresponding to the available 744 * physical pages. 745 */ 746 for (i = 0; phys_avail[i + 1] != 0; i += 2) 747 if (vm_phys_avail_size(i) != 0) 748 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 749 750 /* 751 * Initialize the physical memory allocator. 752 */ 753 vm_phys_init(); 754 755 /* 756 * Initialize the page structures and add every available page to the 757 * physical memory allocator's free lists. 758 */ 759 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 760 for (ii = 0; ii < vm_page_array_size; ii++) { 761 m = &vm_page_array[ii]; 762 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0); 763 m->flags = PG_FICTITIOUS; 764 } 765 #endif 766 vm_cnt.v_page_count = 0; 767 for (segind = 0; segind < vm_phys_nsegs; segind++) { 768 seg = &vm_phys_segs[segind]; 769 for (m = seg->first_page, pa = seg->start; pa < seg->end; 770 m++, pa += PAGE_SIZE) 771 vm_page_init_page(m, pa, segind); 772 773 /* 774 * Add the segment to the free lists only if it is covered by 775 * one of the ranges in phys_avail. Because we've added the 776 * ranges to the vm_phys_segs array, we can assume that each 777 * segment is either entirely contained in one of the ranges, 778 * or doesn't overlap any of them. 779 */ 780 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 781 struct vm_domain *vmd; 782 783 if (seg->start < phys_avail[i] || 784 seg->end > phys_avail[i + 1]) 785 continue; 786 787 m = seg->first_page; 788 pagecount = (u_long)atop(seg->end - seg->start); 789 790 vmd = VM_DOMAIN(seg->domain); 791 vm_domain_free_lock(vmd); 792 vm_phys_enqueue_contig(m, pagecount); 793 vm_domain_free_unlock(vmd); 794 vm_domain_freecnt_inc(vmd, pagecount); 795 vm_cnt.v_page_count += (u_int)pagecount; 796 797 vmd = VM_DOMAIN(seg->domain); 798 vmd->vmd_page_count += (u_int)pagecount; 799 vmd->vmd_segs |= 1UL << m->segind; 800 break; 801 } 802 } 803 804 /* 805 * Remove blacklisted pages from the physical memory allocator. 806 */ 807 TAILQ_INIT(&blacklist_head); 808 vm_page_blacklist_load(&list, &listend); 809 vm_page_blacklist_check(list, listend); 810 811 list = kern_getenv("vm.blacklist"); 812 vm_page_blacklist_check(list, NULL); 813 814 freeenv(list); 815 #if VM_NRESERVLEVEL > 0 816 /* 817 * Initialize the reservation management system. 818 */ 819 vm_reserv_init(); 820 #endif 821 822 return (vaddr); 823 } 824 825 void 826 vm_page_reference(vm_page_t m) 827 { 828 829 vm_page_aflag_set(m, PGA_REFERENCED); 830 } 831 832 static bool 833 vm_page_acquire_flags(vm_page_t m, int allocflags) 834 { 835 bool locked; 836 837 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0) 838 locked = vm_page_trysbusy(m); 839 else 840 locked = vm_page_tryxbusy(m); 841 if (locked && (allocflags & VM_ALLOC_WIRED) != 0) 842 vm_page_wire(m); 843 return (locked); 844 } 845 846 /* 847 * vm_page_busy_sleep_flags 848 * 849 * Sleep for busy according to VM_ALLOC_ parameters. 850 */ 851 static bool 852 vm_page_busy_sleep_flags(vm_object_t object, vm_page_t m, const char *wmesg, 853 int allocflags) 854 { 855 856 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 857 return (false); 858 /* 859 * Reference the page before unlocking and 860 * sleeping so that the page daemon is less 861 * likely to reclaim it. 862 */ 863 if ((allocflags & VM_ALLOC_NOCREAT) == 0) 864 vm_page_aflag_set(m, PGA_REFERENCED); 865 if (_vm_page_busy_sleep(object, m, wmesg, (allocflags & 866 VM_ALLOC_IGN_SBUSY) != 0, true)) 867 VM_OBJECT_WLOCK(object); 868 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 869 return (false); 870 return (true); 871 } 872 873 /* 874 * vm_page_busy_acquire: 875 * 876 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop 877 * and drop the object lock if necessary. 878 */ 879 bool 880 vm_page_busy_acquire(vm_page_t m, int allocflags) 881 { 882 vm_object_t obj; 883 bool locked; 884 885 /* 886 * The page-specific object must be cached because page 887 * identity can change during the sleep, causing the 888 * re-lock of a different object. 889 * It is assumed that a reference to the object is already 890 * held by the callers. 891 */ 892 obj = m->object; 893 for (;;) { 894 if (vm_page_acquire_flags(m, allocflags)) 895 return (true); 896 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 897 return (false); 898 if (obj != NULL) 899 locked = VM_OBJECT_WOWNED(obj); 900 else 901 locked = false; 902 MPASS(locked || vm_page_wired(m)); 903 if (_vm_page_busy_sleep(obj, m, "vmpba", 904 (allocflags & VM_ALLOC_SBUSY) != 0, locked)) 905 VM_OBJECT_WLOCK(obj); 906 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 907 return (false); 908 KASSERT(m->object == obj || m->object == NULL, 909 ("vm_page_busy_acquire: page %p does not belong to %p", 910 m, obj)); 911 } 912 } 913 914 /* 915 * vm_page_busy_downgrade: 916 * 917 * Downgrade an exclusive busy page into a single shared busy page. 918 */ 919 void 920 vm_page_busy_downgrade(vm_page_t m) 921 { 922 u_int x; 923 924 vm_page_assert_xbusied(m); 925 926 x = m->busy_lock; 927 for (;;) { 928 if (atomic_fcmpset_rel_int(&m->busy_lock, 929 &x, VPB_SHARERS_WORD(1))) 930 break; 931 } 932 if ((x & VPB_BIT_WAITERS) != 0) 933 wakeup(m); 934 } 935 936 /* 937 * 938 * vm_page_busy_tryupgrade: 939 * 940 * Attempt to upgrade a single shared busy into an exclusive busy. 941 */ 942 int 943 vm_page_busy_tryupgrade(vm_page_t m) 944 { 945 u_int ce, x; 946 947 vm_page_assert_sbusied(m); 948 949 x = m->busy_lock; 950 ce = VPB_CURTHREAD_EXCLUSIVE; 951 for (;;) { 952 if (VPB_SHARERS(x) > 1) 953 return (0); 954 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 955 ("vm_page_busy_tryupgrade: invalid lock state")); 956 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x, 957 ce | (x & VPB_BIT_WAITERS))) 958 continue; 959 return (1); 960 } 961 } 962 963 /* 964 * vm_page_sbusied: 965 * 966 * Return a positive value if the page is shared busied, 0 otherwise. 967 */ 968 int 969 vm_page_sbusied(vm_page_t m) 970 { 971 u_int x; 972 973 x = m->busy_lock; 974 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 975 } 976 977 /* 978 * vm_page_sunbusy: 979 * 980 * Shared unbusy a page. 981 */ 982 void 983 vm_page_sunbusy(vm_page_t m) 984 { 985 u_int x; 986 987 vm_page_assert_sbusied(m); 988 989 x = m->busy_lock; 990 for (;;) { 991 if (VPB_SHARERS(x) > 1) { 992 if (atomic_fcmpset_int(&m->busy_lock, &x, 993 x - VPB_ONE_SHARER)) 994 break; 995 continue; 996 } 997 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 998 ("vm_page_sunbusy: invalid lock state")); 999 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED)) 1000 continue; 1001 if ((x & VPB_BIT_WAITERS) == 0) 1002 break; 1003 wakeup(m); 1004 break; 1005 } 1006 } 1007 1008 /* 1009 * vm_page_busy_sleep: 1010 * 1011 * Sleep if the page is busy, using the page pointer as wchan. 1012 * This is used to implement the hard-path of busying mechanism. 1013 * 1014 * If nonshared is true, sleep only if the page is xbusy. 1015 * 1016 * The object lock must be held on entry and will be released on exit. 1017 */ 1018 void 1019 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared) 1020 { 1021 vm_object_t obj; 1022 1023 obj = m->object; 1024 VM_OBJECT_ASSERT_LOCKED(obj); 1025 vm_page_lock_assert(m, MA_NOTOWNED); 1026 1027 if (!_vm_page_busy_sleep(obj, m, wmesg, nonshared, true)) 1028 VM_OBJECT_DROP(obj); 1029 } 1030 1031 /* 1032 * _vm_page_busy_sleep: 1033 * 1034 * Internal busy sleep function. 1035 */ 1036 static bool 1037 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, const char *wmesg, 1038 bool nonshared, bool locked) 1039 { 1040 u_int x; 1041 1042 /* 1043 * If the object is busy we must wait for that to drain to zero 1044 * before trying the page again. 1045 */ 1046 if (obj != NULL && vm_object_busied(obj)) { 1047 if (locked) 1048 VM_OBJECT_DROP(obj); 1049 vm_object_busy_wait(obj, wmesg); 1050 return (locked); 1051 } 1052 sleepq_lock(m); 1053 x = m->busy_lock; 1054 if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) || 1055 ((x & VPB_BIT_WAITERS) == 0 && 1056 !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) { 1057 sleepq_release(m); 1058 return (false); 1059 } 1060 if (locked) 1061 VM_OBJECT_DROP(obj); 1062 DROP_GIANT(); 1063 sleepq_add(m, NULL, wmesg, 0, 0); 1064 sleepq_wait(m, PVM); 1065 PICKUP_GIANT(); 1066 return (locked); 1067 } 1068 1069 /* 1070 * vm_page_trysbusy: 1071 * 1072 * Try to shared busy a page. 1073 * If the operation succeeds 1 is returned otherwise 0. 1074 * The operation never sleeps. 1075 */ 1076 int 1077 vm_page_trysbusy(vm_page_t m) 1078 { 1079 vm_object_t obj; 1080 u_int x; 1081 1082 obj = m->object; 1083 x = m->busy_lock; 1084 for (;;) { 1085 if ((x & VPB_BIT_SHARED) == 0) 1086 return (0); 1087 /* 1088 * Reduce the window for transient busies that will trigger 1089 * false negatives in vm_page_ps_test(). 1090 */ 1091 if (obj != NULL && vm_object_busied(obj)) 1092 return (0); 1093 if (atomic_fcmpset_acq_int(&m->busy_lock, &x, 1094 x + VPB_ONE_SHARER)) 1095 break; 1096 } 1097 1098 /* Refetch the object now that we're guaranteed that it is stable. */ 1099 obj = m->object; 1100 if (obj != NULL && vm_object_busied(obj)) { 1101 vm_page_sunbusy(m); 1102 return (0); 1103 } 1104 return (1); 1105 } 1106 1107 /* 1108 * vm_page_tryxbusy: 1109 * 1110 * Try to exclusive busy a page. 1111 * If the operation succeeds 1 is returned otherwise 0. 1112 * The operation never sleeps. 1113 */ 1114 int 1115 vm_page_tryxbusy(vm_page_t m) 1116 { 1117 vm_object_t obj; 1118 1119 if (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED, 1120 VPB_CURTHREAD_EXCLUSIVE) == 0) 1121 return (0); 1122 1123 obj = m->object; 1124 if (obj != NULL && vm_object_busied(obj)) { 1125 vm_page_xunbusy(m); 1126 return (0); 1127 } 1128 return (1); 1129 } 1130 1131 static void 1132 vm_page_xunbusy_hard_tail(vm_page_t m) 1133 { 1134 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 1135 /* Wake the waiter. */ 1136 wakeup(m); 1137 } 1138 1139 /* 1140 * vm_page_xunbusy_hard: 1141 * 1142 * Called when unbusy has failed because there is a waiter. 1143 */ 1144 void 1145 vm_page_xunbusy_hard(vm_page_t m) 1146 { 1147 vm_page_assert_xbusied(m); 1148 vm_page_xunbusy_hard_tail(m); 1149 } 1150 1151 void 1152 vm_page_xunbusy_hard_unchecked(vm_page_t m) 1153 { 1154 vm_page_assert_xbusied_unchecked(m); 1155 vm_page_xunbusy_hard_tail(m); 1156 } 1157 1158 /* 1159 * Avoid releasing and reacquiring the same page lock. 1160 */ 1161 void 1162 vm_page_change_lock(vm_page_t m, struct mtx **mtx) 1163 { 1164 struct mtx *mtx1; 1165 1166 mtx1 = vm_page_lockptr(m); 1167 if (*mtx == mtx1) 1168 return; 1169 if (*mtx != NULL) 1170 mtx_unlock(*mtx); 1171 *mtx = mtx1; 1172 mtx_lock(mtx1); 1173 } 1174 1175 /* 1176 * vm_page_unhold_pages: 1177 * 1178 * Unhold each of the pages that is referenced by the given array. 1179 */ 1180 void 1181 vm_page_unhold_pages(vm_page_t *ma, int count) 1182 { 1183 1184 for (; count != 0; count--) { 1185 vm_page_unwire(*ma, PQ_ACTIVE); 1186 ma++; 1187 } 1188 } 1189 1190 vm_page_t 1191 PHYS_TO_VM_PAGE(vm_paddr_t pa) 1192 { 1193 vm_page_t m; 1194 1195 #ifdef VM_PHYSSEG_SPARSE 1196 m = vm_phys_paddr_to_vm_page(pa); 1197 if (m == NULL) 1198 m = vm_phys_fictitious_to_vm_page(pa); 1199 return (m); 1200 #elif defined(VM_PHYSSEG_DENSE) 1201 long pi; 1202 1203 pi = atop(pa); 1204 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 1205 m = &vm_page_array[pi - first_page]; 1206 return (m); 1207 } 1208 return (vm_phys_fictitious_to_vm_page(pa)); 1209 #else 1210 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 1211 #endif 1212 } 1213 1214 /* 1215 * vm_page_getfake: 1216 * 1217 * Create a fictitious page with the specified physical address and 1218 * memory attribute. The memory attribute is the only the machine- 1219 * dependent aspect of a fictitious page that must be initialized. 1220 */ 1221 vm_page_t 1222 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 1223 { 1224 vm_page_t m; 1225 1226 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 1227 vm_page_initfake(m, paddr, memattr); 1228 return (m); 1229 } 1230 1231 void 1232 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1233 { 1234 1235 if ((m->flags & PG_FICTITIOUS) != 0) { 1236 /* 1237 * The page's memattr might have changed since the 1238 * previous initialization. Update the pmap to the 1239 * new memattr. 1240 */ 1241 goto memattr; 1242 } 1243 m->phys_addr = paddr; 1244 m->a.queue = PQ_NONE; 1245 /* Fictitious pages don't use "segind". */ 1246 m->flags = PG_FICTITIOUS; 1247 /* Fictitious pages don't use "order" or "pool". */ 1248 m->oflags = VPO_UNMANAGED; 1249 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 1250 /* Fictitious pages are unevictable. */ 1251 m->ref_count = 1; 1252 pmap_page_init(m); 1253 memattr: 1254 pmap_page_set_memattr(m, memattr); 1255 } 1256 1257 /* 1258 * vm_page_putfake: 1259 * 1260 * Release a fictitious page. 1261 */ 1262 void 1263 vm_page_putfake(vm_page_t m) 1264 { 1265 1266 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 1267 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1268 ("vm_page_putfake: bad page %p", m)); 1269 vm_page_xunbusy(m); 1270 uma_zfree(fakepg_zone, m); 1271 } 1272 1273 /* 1274 * vm_page_updatefake: 1275 * 1276 * Update the given fictitious page to the specified physical address and 1277 * memory attribute. 1278 */ 1279 void 1280 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1281 { 1282 1283 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1284 ("vm_page_updatefake: bad page %p", m)); 1285 m->phys_addr = paddr; 1286 pmap_page_set_memattr(m, memattr); 1287 } 1288 1289 /* 1290 * vm_page_free: 1291 * 1292 * Free a page. 1293 */ 1294 void 1295 vm_page_free(vm_page_t m) 1296 { 1297 1298 m->flags &= ~PG_ZERO; 1299 vm_page_free_toq(m); 1300 } 1301 1302 /* 1303 * vm_page_free_zero: 1304 * 1305 * Free a page to the zerod-pages queue 1306 */ 1307 void 1308 vm_page_free_zero(vm_page_t m) 1309 { 1310 1311 m->flags |= PG_ZERO; 1312 vm_page_free_toq(m); 1313 } 1314 1315 /* 1316 * Unbusy and handle the page queueing for a page from a getpages request that 1317 * was optionally read ahead or behind. 1318 */ 1319 void 1320 vm_page_readahead_finish(vm_page_t m) 1321 { 1322 1323 /* We shouldn't put invalid pages on queues. */ 1324 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m)); 1325 1326 /* 1327 * Since the page is not the actually needed one, whether it should 1328 * be activated or deactivated is not obvious. Empirical results 1329 * have shown that deactivating the page is usually the best choice, 1330 * unless the page is wanted by another thread. 1331 */ 1332 if ((m->busy_lock & VPB_BIT_WAITERS) != 0) 1333 vm_page_activate(m); 1334 else 1335 vm_page_deactivate(m); 1336 vm_page_xunbusy_unchecked(m); 1337 } 1338 1339 /* 1340 * vm_page_sleep_if_busy: 1341 * 1342 * Sleep and release the object lock if the page is busied. 1343 * Returns TRUE if the thread slept. 1344 * 1345 * The given page must be unlocked and object containing it must 1346 * be locked. 1347 */ 1348 int 1349 vm_page_sleep_if_busy(vm_page_t m, const char *msg) 1350 { 1351 vm_object_t obj; 1352 1353 vm_page_lock_assert(m, MA_NOTOWNED); 1354 VM_OBJECT_ASSERT_WLOCKED(m->object); 1355 1356 /* 1357 * The page-specific object must be cached because page 1358 * identity can change during the sleep, causing the 1359 * re-lock of a different object. 1360 * It is assumed that a reference to the object is already 1361 * held by the callers. 1362 */ 1363 obj = m->object; 1364 if (vm_page_busied(m) || (obj != NULL && obj->busy)) { 1365 vm_page_busy_sleep(m, msg, false); 1366 VM_OBJECT_WLOCK(obj); 1367 return (TRUE); 1368 } 1369 return (FALSE); 1370 } 1371 1372 /* 1373 * vm_page_sleep_if_xbusy: 1374 * 1375 * Sleep and release the object lock if the page is xbusied. 1376 * Returns TRUE if the thread slept. 1377 * 1378 * The given page must be unlocked and object containing it must 1379 * be locked. 1380 */ 1381 int 1382 vm_page_sleep_if_xbusy(vm_page_t m, const char *msg) 1383 { 1384 vm_object_t obj; 1385 1386 vm_page_lock_assert(m, MA_NOTOWNED); 1387 VM_OBJECT_ASSERT_WLOCKED(m->object); 1388 1389 /* 1390 * The page-specific object must be cached because page 1391 * identity can change during the sleep, causing the 1392 * re-lock of a different object. 1393 * It is assumed that a reference to the object is already 1394 * held by the callers. 1395 */ 1396 obj = m->object; 1397 if (vm_page_xbusied(m) || (obj != NULL && obj->busy)) { 1398 vm_page_busy_sleep(m, msg, true); 1399 VM_OBJECT_WLOCK(obj); 1400 return (TRUE); 1401 } 1402 return (FALSE); 1403 } 1404 1405 /* 1406 * vm_page_dirty_KBI: [ internal use only ] 1407 * 1408 * Set all bits in the page's dirty field. 1409 * 1410 * The object containing the specified page must be locked if the 1411 * call is made from the machine-independent layer. 1412 * 1413 * See vm_page_clear_dirty_mask(). 1414 * 1415 * This function should only be called by vm_page_dirty(). 1416 */ 1417 void 1418 vm_page_dirty_KBI(vm_page_t m) 1419 { 1420 1421 /* Refer to this operation by its public name. */ 1422 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!")); 1423 m->dirty = VM_PAGE_BITS_ALL; 1424 } 1425 1426 /* 1427 * vm_page_insert: [ internal use only ] 1428 * 1429 * Inserts the given mem entry into the object and object list. 1430 * 1431 * The object must be locked. 1432 */ 1433 int 1434 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1435 { 1436 vm_page_t mpred; 1437 1438 VM_OBJECT_ASSERT_WLOCKED(object); 1439 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1440 return (vm_page_insert_after(m, object, pindex, mpred)); 1441 } 1442 1443 /* 1444 * vm_page_insert_after: 1445 * 1446 * Inserts the page "m" into the specified object at offset "pindex". 1447 * 1448 * The page "mpred" must immediately precede the offset "pindex" within 1449 * the specified object. 1450 * 1451 * The object must be locked. 1452 */ 1453 static int 1454 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1455 vm_page_t mpred) 1456 { 1457 vm_page_t msucc; 1458 1459 VM_OBJECT_ASSERT_WLOCKED(object); 1460 KASSERT(m->object == NULL, 1461 ("vm_page_insert_after: page already inserted")); 1462 if (mpred != NULL) { 1463 KASSERT(mpred->object == object, 1464 ("vm_page_insert_after: object doesn't contain mpred")); 1465 KASSERT(mpred->pindex < pindex, 1466 ("vm_page_insert_after: mpred doesn't precede pindex")); 1467 msucc = TAILQ_NEXT(mpred, listq); 1468 } else 1469 msucc = TAILQ_FIRST(&object->memq); 1470 if (msucc != NULL) 1471 KASSERT(msucc->pindex > pindex, 1472 ("vm_page_insert_after: msucc doesn't succeed pindex")); 1473 1474 /* 1475 * Record the object/offset pair in this page. 1476 */ 1477 m->object = object; 1478 m->pindex = pindex; 1479 m->ref_count |= VPRC_OBJREF; 1480 1481 /* 1482 * Now link into the object's ordered list of backed pages. 1483 */ 1484 if (vm_radix_insert(&object->rtree, m)) { 1485 m->object = NULL; 1486 m->pindex = 0; 1487 m->ref_count &= ~VPRC_OBJREF; 1488 return (1); 1489 } 1490 vm_page_insert_radixdone(m, object, mpred); 1491 return (0); 1492 } 1493 1494 /* 1495 * vm_page_insert_radixdone: 1496 * 1497 * Complete page "m" insertion into the specified object after the 1498 * radix trie hooking. 1499 * 1500 * The page "mpred" must precede the offset "m->pindex" within the 1501 * specified object. 1502 * 1503 * The object must be locked. 1504 */ 1505 static void 1506 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1507 { 1508 1509 VM_OBJECT_ASSERT_WLOCKED(object); 1510 KASSERT(object != NULL && m->object == object, 1511 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1512 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1513 ("vm_page_insert_radixdone: page %p is missing object ref", m)); 1514 if (mpred != NULL) { 1515 KASSERT(mpred->object == object, 1516 ("vm_page_insert_radixdone: object doesn't contain mpred")); 1517 KASSERT(mpred->pindex < m->pindex, 1518 ("vm_page_insert_radixdone: mpred doesn't precede pindex")); 1519 } 1520 1521 if (mpred != NULL) 1522 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1523 else 1524 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1525 1526 /* 1527 * Show that the object has one more resident page. 1528 */ 1529 object->resident_page_count++; 1530 1531 /* 1532 * Hold the vnode until the last page is released. 1533 */ 1534 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1535 vhold(object->handle); 1536 1537 /* 1538 * Since we are inserting a new and possibly dirty page, 1539 * update the object's generation count. 1540 */ 1541 if (pmap_page_is_write_mapped(m)) 1542 vm_object_set_writeable_dirty(object); 1543 } 1544 1545 /* 1546 * Do the work to remove a page from its object. The caller is responsible for 1547 * updating the page's fields to reflect this removal. 1548 */ 1549 static void 1550 vm_page_object_remove(vm_page_t m) 1551 { 1552 vm_object_t object; 1553 vm_page_t mrem; 1554 1555 vm_page_assert_xbusied(m); 1556 object = m->object; 1557 VM_OBJECT_ASSERT_WLOCKED(object); 1558 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1559 ("page %p is missing its object ref", m)); 1560 1561 /* Deferred free of swap space. */ 1562 if ((m->a.flags & PGA_SWAP_FREE) != 0) 1563 vm_pager_page_unswapped(m); 1564 1565 mrem = vm_radix_remove(&object->rtree, m->pindex); 1566 KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m)); 1567 1568 /* 1569 * Now remove from the object's list of backed pages. 1570 */ 1571 TAILQ_REMOVE(&object->memq, m, listq); 1572 1573 /* 1574 * And show that the object has one fewer resident page. 1575 */ 1576 object->resident_page_count--; 1577 1578 /* 1579 * The vnode may now be recycled. 1580 */ 1581 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1582 vdrop(object->handle); 1583 } 1584 1585 /* 1586 * vm_page_remove: 1587 * 1588 * Removes the specified page from its containing object, but does not 1589 * invalidate any backing storage. Returns true if the object's reference 1590 * was the last reference to the page, and false otherwise. 1591 * 1592 * The object must be locked and the page must be exclusively busied. 1593 * The exclusive busy will be released on return. If this is not the 1594 * final ref and the caller does not hold a wire reference it may not 1595 * continue to access the page. 1596 */ 1597 bool 1598 vm_page_remove(vm_page_t m) 1599 { 1600 bool dropped; 1601 1602 dropped = vm_page_remove_xbusy(m); 1603 vm_page_xunbusy(m); 1604 1605 return (dropped); 1606 } 1607 1608 /* 1609 * vm_page_remove_xbusy 1610 * 1611 * Removes the page but leaves the xbusy held. Returns true if this 1612 * removed the final ref and false otherwise. 1613 */ 1614 bool 1615 vm_page_remove_xbusy(vm_page_t m) 1616 { 1617 1618 vm_page_object_remove(m); 1619 m->object = NULL; 1620 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF); 1621 } 1622 1623 /* 1624 * vm_page_lookup: 1625 * 1626 * Returns the page associated with the object/offset 1627 * pair specified; if none is found, NULL is returned. 1628 * 1629 * The object must be locked. 1630 */ 1631 vm_page_t 1632 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1633 { 1634 1635 VM_OBJECT_ASSERT_LOCKED(object); 1636 return (vm_radix_lookup(&object->rtree, pindex)); 1637 } 1638 1639 /* 1640 * vm_page_find_least: 1641 * 1642 * Returns the page associated with the object with least pindex 1643 * greater than or equal to the parameter pindex, or NULL. 1644 * 1645 * The object must be locked. 1646 */ 1647 vm_page_t 1648 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1649 { 1650 vm_page_t m; 1651 1652 VM_OBJECT_ASSERT_LOCKED(object); 1653 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1654 m = vm_radix_lookup_ge(&object->rtree, pindex); 1655 return (m); 1656 } 1657 1658 /* 1659 * Returns the given page's successor (by pindex) within the object if it is 1660 * resident; if none is found, NULL is returned. 1661 * 1662 * The object must be locked. 1663 */ 1664 vm_page_t 1665 vm_page_next(vm_page_t m) 1666 { 1667 vm_page_t next; 1668 1669 VM_OBJECT_ASSERT_LOCKED(m->object); 1670 if ((next = TAILQ_NEXT(m, listq)) != NULL) { 1671 MPASS(next->object == m->object); 1672 if (next->pindex != m->pindex + 1) 1673 next = NULL; 1674 } 1675 return (next); 1676 } 1677 1678 /* 1679 * Returns the given page's predecessor (by pindex) within the object if it is 1680 * resident; if none is found, NULL is returned. 1681 * 1682 * The object must be locked. 1683 */ 1684 vm_page_t 1685 vm_page_prev(vm_page_t m) 1686 { 1687 vm_page_t prev; 1688 1689 VM_OBJECT_ASSERT_LOCKED(m->object); 1690 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) { 1691 MPASS(prev->object == m->object); 1692 if (prev->pindex != m->pindex - 1) 1693 prev = NULL; 1694 } 1695 return (prev); 1696 } 1697 1698 /* 1699 * Uses the page mnew as a replacement for an existing page at index 1700 * pindex which must be already present in the object. 1701 * 1702 * Both pages must be exclusively busied on enter. The old page is 1703 * unbusied on exit. 1704 * 1705 * A return value of true means mold is now free. If this is not the 1706 * final ref and the caller does not hold a wire reference it may not 1707 * continue to access the page. 1708 */ 1709 static bool 1710 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 1711 vm_page_t mold) 1712 { 1713 vm_page_t mret; 1714 bool dropped; 1715 1716 VM_OBJECT_ASSERT_WLOCKED(object); 1717 vm_page_assert_xbusied(mold); 1718 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0, 1719 ("vm_page_replace: page %p already in object", mnew)); 1720 1721 /* 1722 * This function mostly follows vm_page_insert() and 1723 * vm_page_remove() without the radix, object count and vnode 1724 * dance. Double check such functions for more comments. 1725 */ 1726 1727 mnew->object = object; 1728 mnew->pindex = pindex; 1729 atomic_set_int(&mnew->ref_count, VPRC_OBJREF); 1730 mret = vm_radix_replace(&object->rtree, mnew); 1731 KASSERT(mret == mold, 1732 ("invalid page replacement, mold=%p, mret=%p", mold, mret)); 1733 KASSERT((mold->oflags & VPO_UNMANAGED) == 1734 (mnew->oflags & VPO_UNMANAGED), 1735 ("vm_page_replace: mismatched VPO_UNMANAGED")); 1736 1737 /* Keep the resident page list in sorted order. */ 1738 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); 1739 TAILQ_REMOVE(&object->memq, mold, listq); 1740 mold->object = NULL; 1741 1742 /* 1743 * The object's resident_page_count does not change because we have 1744 * swapped one page for another, but the generation count should 1745 * change if the page is dirty. 1746 */ 1747 if (pmap_page_is_write_mapped(mnew)) 1748 vm_object_set_writeable_dirty(object); 1749 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF; 1750 vm_page_xunbusy(mold); 1751 1752 return (dropped); 1753 } 1754 1755 void 1756 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 1757 vm_page_t mold) 1758 { 1759 1760 vm_page_assert_xbusied(mnew); 1761 1762 if (vm_page_replace_hold(mnew, object, pindex, mold)) 1763 vm_page_free(mold); 1764 } 1765 1766 /* 1767 * vm_page_rename: 1768 * 1769 * Move the given memory entry from its 1770 * current object to the specified target object/offset. 1771 * 1772 * Note: swap associated with the page must be invalidated by the move. We 1773 * have to do this for several reasons: (1) we aren't freeing the 1774 * page, (2) we are dirtying the page, (3) the VM system is probably 1775 * moving the page from object A to B, and will then later move 1776 * the backing store from A to B and we can't have a conflict. 1777 * 1778 * Note: we *always* dirty the page. It is necessary both for the 1779 * fact that we moved it, and because we may be invalidating 1780 * swap. 1781 * 1782 * The objects must be locked. 1783 */ 1784 int 1785 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1786 { 1787 vm_page_t mpred; 1788 vm_pindex_t opidx; 1789 1790 VM_OBJECT_ASSERT_WLOCKED(new_object); 1791 1792 KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m)); 1793 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); 1794 KASSERT(mpred == NULL || mpred->pindex != new_pindex, 1795 ("vm_page_rename: pindex already renamed")); 1796 1797 /* 1798 * Create a custom version of vm_page_insert() which does not depend 1799 * by m_prev and can cheat on the implementation aspects of the 1800 * function. 1801 */ 1802 opidx = m->pindex; 1803 m->pindex = new_pindex; 1804 if (vm_radix_insert(&new_object->rtree, m)) { 1805 m->pindex = opidx; 1806 return (1); 1807 } 1808 1809 /* 1810 * The operation cannot fail anymore. The removal must happen before 1811 * the listq iterator is tainted. 1812 */ 1813 m->pindex = opidx; 1814 vm_page_object_remove(m); 1815 1816 /* Return back to the new pindex to complete vm_page_insert(). */ 1817 m->pindex = new_pindex; 1818 m->object = new_object; 1819 1820 vm_page_insert_radixdone(m, new_object, mpred); 1821 vm_page_dirty(m); 1822 return (0); 1823 } 1824 1825 /* 1826 * vm_page_alloc: 1827 * 1828 * Allocate and return a page that is associated with the specified 1829 * object and offset pair. By default, this page is exclusive busied. 1830 * 1831 * The caller must always specify an allocation class. 1832 * 1833 * allocation classes: 1834 * VM_ALLOC_NORMAL normal process request 1835 * VM_ALLOC_SYSTEM system *really* needs a page 1836 * VM_ALLOC_INTERRUPT interrupt time request 1837 * 1838 * optional allocation flags: 1839 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1840 * intends to allocate 1841 * VM_ALLOC_NOBUSY do not exclusive busy the page 1842 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1843 * VM_ALLOC_NOOBJ page is not associated with an object and 1844 * should not be exclusive busy 1845 * VM_ALLOC_SBUSY shared busy the allocated page 1846 * VM_ALLOC_WIRED wire the allocated page 1847 * VM_ALLOC_ZERO prefer a zeroed page 1848 */ 1849 vm_page_t 1850 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1851 { 1852 1853 return (vm_page_alloc_after(object, pindex, req, object != NULL ? 1854 vm_radix_lookup_le(&object->rtree, pindex) : NULL)); 1855 } 1856 1857 vm_page_t 1858 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain, 1859 int req) 1860 { 1861 1862 return (vm_page_alloc_domain_after(object, pindex, domain, req, 1863 object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) : 1864 NULL)); 1865 } 1866 1867 /* 1868 * Allocate a page in the specified object with the given page index. To 1869 * optimize insertion of the page into the object, the caller must also specifiy 1870 * the resident page in the object with largest index smaller than the given 1871 * page index, or NULL if no such page exists. 1872 */ 1873 vm_page_t 1874 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, 1875 int req, vm_page_t mpred) 1876 { 1877 struct vm_domainset_iter di; 1878 vm_page_t m; 1879 int domain; 1880 1881 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 1882 do { 1883 m = vm_page_alloc_domain_after(object, pindex, domain, req, 1884 mpred); 1885 if (m != NULL) 1886 break; 1887 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 1888 1889 return (m); 1890 } 1891 1892 /* 1893 * Returns true if the number of free pages exceeds the minimum 1894 * for the request class and false otherwise. 1895 */ 1896 static int 1897 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages) 1898 { 1899 u_int limit, old, new; 1900 1901 if (req_class == VM_ALLOC_INTERRUPT) 1902 limit = 0; 1903 else if (req_class == VM_ALLOC_SYSTEM) 1904 limit = vmd->vmd_interrupt_free_min; 1905 else 1906 limit = vmd->vmd_free_reserved; 1907 1908 /* 1909 * Attempt to reserve the pages. Fail if we're below the limit. 1910 */ 1911 limit += npages; 1912 old = vmd->vmd_free_count; 1913 do { 1914 if (old < limit) 1915 return (0); 1916 new = old - npages; 1917 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0); 1918 1919 /* Wake the page daemon if we've crossed the threshold. */ 1920 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old)) 1921 pagedaemon_wakeup(vmd->vmd_domain); 1922 1923 /* Only update bitsets on transitions. */ 1924 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) || 1925 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe)) 1926 vm_domain_set(vmd); 1927 1928 return (1); 1929 } 1930 1931 int 1932 vm_domain_allocate(struct vm_domain *vmd, int req, int npages) 1933 { 1934 int req_class; 1935 1936 /* 1937 * The page daemon is allowed to dig deeper into the free page list. 1938 */ 1939 req_class = req & VM_ALLOC_CLASS_MASK; 1940 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1941 req_class = VM_ALLOC_SYSTEM; 1942 return (_vm_domain_allocate(vmd, req_class, npages)); 1943 } 1944 1945 vm_page_t 1946 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain, 1947 int req, vm_page_t mpred) 1948 { 1949 struct vm_domain *vmd; 1950 vm_page_t m; 1951 int flags, pool; 1952 1953 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1954 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1955 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1956 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1957 ("inconsistent object(%p)/req(%x)", object, req)); 1958 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, 1959 ("Can't sleep and retry object insertion.")); 1960 KASSERT(mpred == NULL || mpred->pindex < pindex, 1961 ("mpred %p doesn't precede pindex 0x%jx", mpred, 1962 (uintmax_t)pindex)); 1963 if (object != NULL) 1964 VM_OBJECT_ASSERT_WLOCKED(object); 1965 1966 flags = 0; 1967 m = NULL; 1968 pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT; 1969 again: 1970 #if VM_NRESERVLEVEL > 0 1971 /* 1972 * Can we allocate the page from a reservation? 1973 */ 1974 if (vm_object_reserv(object) && 1975 (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) != 1976 NULL) { 1977 domain = vm_phys_domain(m); 1978 vmd = VM_DOMAIN(domain); 1979 goto found; 1980 } 1981 #endif 1982 vmd = VM_DOMAIN(domain); 1983 if (vmd->vmd_pgcache[pool].zone != NULL) { 1984 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT); 1985 if (m != NULL) { 1986 flags |= PG_PCPU_CACHE; 1987 goto found; 1988 } 1989 } 1990 if (vm_domain_allocate(vmd, req, 1)) { 1991 /* 1992 * If not, allocate it from the free page queues. 1993 */ 1994 vm_domain_free_lock(vmd); 1995 m = vm_phys_alloc_pages(domain, pool, 0); 1996 vm_domain_free_unlock(vmd); 1997 if (m == NULL) { 1998 vm_domain_freecnt_inc(vmd, 1); 1999 #if VM_NRESERVLEVEL > 0 2000 if (vm_reserv_reclaim_inactive(domain)) 2001 goto again; 2002 #endif 2003 } 2004 } 2005 if (m == NULL) { 2006 /* 2007 * Not allocatable, give up. 2008 */ 2009 if (vm_domain_alloc_fail(vmd, object, req)) 2010 goto again; 2011 return (NULL); 2012 } 2013 2014 /* 2015 * At this point we had better have found a good page. 2016 */ 2017 found: 2018 vm_page_dequeue(m); 2019 vm_page_alloc_check(m); 2020 2021 /* 2022 * Initialize the page. Only the PG_ZERO flag is inherited. 2023 */ 2024 if ((req & VM_ALLOC_ZERO) != 0) 2025 flags |= (m->flags & PG_ZERO); 2026 if ((req & VM_ALLOC_NODUMP) != 0) 2027 flags |= PG_NODUMP; 2028 m->flags = flags; 2029 m->a.flags = 0; 2030 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 2031 VPO_UNMANAGED : 0; 2032 m->busy_lock = VPB_UNBUSIED; 2033 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 2034 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2035 if ((req & VM_ALLOC_SBUSY) != 0) 2036 m->busy_lock = VPB_SHARERS_WORD(1); 2037 if (req & VM_ALLOC_WIRED) { 2038 vm_wire_add(1); 2039 m->ref_count = 1; 2040 } 2041 m->a.act_count = 0; 2042 2043 if (object != NULL) { 2044 if (vm_page_insert_after(m, object, pindex, mpred)) { 2045 if (req & VM_ALLOC_WIRED) { 2046 vm_wire_sub(1); 2047 m->ref_count = 0; 2048 } 2049 KASSERT(m->object == NULL, ("page %p has object", m)); 2050 m->oflags = VPO_UNMANAGED; 2051 m->busy_lock = VPB_UNBUSIED; 2052 /* Don't change PG_ZERO. */ 2053 vm_page_free_toq(m); 2054 if (req & VM_ALLOC_WAITFAIL) { 2055 VM_OBJECT_WUNLOCK(object); 2056 vm_radix_wait(); 2057 VM_OBJECT_WLOCK(object); 2058 } 2059 return (NULL); 2060 } 2061 2062 /* Ignore device objects; the pager sets "memattr" for them. */ 2063 if (object->memattr != VM_MEMATTR_DEFAULT && 2064 (object->flags & OBJ_FICTITIOUS) == 0) 2065 pmap_page_set_memattr(m, object->memattr); 2066 } else 2067 m->pindex = pindex; 2068 2069 return (m); 2070 } 2071 2072 /* 2073 * vm_page_alloc_contig: 2074 * 2075 * Allocate a contiguous set of physical pages of the given size "npages" 2076 * from the free lists. All of the physical pages must be at or above 2077 * the given physical address "low" and below the given physical address 2078 * "high". The given value "alignment" determines the alignment of the 2079 * first physical page in the set. If the given value "boundary" is 2080 * non-zero, then the set of physical pages cannot cross any physical 2081 * address boundary that is a multiple of that value. Both "alignment" 2082 * and "boundary" must be a power of two. 2083 * 2084 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 2085 * then the memory attribute setting for the physical pages is configured 2086 * to the object's memory attribute setting. Otherwise, the memory 2087 * attribute setting for the physical pages is configured to "memattr", 2088 * overriding the object's memory attribute setting. However, if the 2089 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 2090 * memory attribute setting for the physical pages cannot be configured 2091 * to VM_MEMATTR_DEFAULT. 2092 * 2093 * The specified object may not contain fictitious pages. 2094 * 2095 * The caller must always specify an allocation class. 2096 * 2097 * allocation classes: 2098 * VM_ALLOC_NORMAL normal process request 2099 * VM_ALLOC_SYSTEM system *really* needs a page 2100 * VM_ALLOC_INTERRUPT interrupt time request 2101 * 2102 * optional allocation flags: 2103 * VM_ALLOC_NOBUSY do not exclusive busy the page 2104 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 2105 * VM_ALLOC_NOOBJ page is not associated with an object and 2106 * should not be exclusive busy 2107 * VM_ALLOC_SBUSY shared busy the allocated page 2108 * VM_ALLOC_WIRED wire the allocated page 2109 * VM_ALLOC_ZERO prefer a zeroed page 2110 */ 2111 vm_page_t 2112 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 2113 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2114 vm_paddr_t boundary, vm_memattr_t memattr) 2115 { 2116 struct vm_domainset_iter di; 2117 vm_page_t m; 2118 int domain; 2119 2120 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 2121 do { 2122 m = vm_page_alloc_contig_domain(object, pindex, domain, req, 2123 npages, low, high, alignment, boundary, memattr); 2124 if (m != NULL) 2125 break; 2126 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 2127 2128 return (m); 2129 } 2130 2131 vm_page_t 2132 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, 2133 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2134 vm_paddr_t boundary, vm_memattr_t memattr) 2135 { 2136 struct vm_domain *vmd; 2137 vm_page_t m, m_ret, mpred; 2138 u_int busy_lock, flags, oflags; 2139 2140 mpred = NULL; /* XXX: pacify gcc */ 2141 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 2142 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 2143 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2144 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2145 ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object, 2146 req)); 2147 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, 2148 ("Can't sleep and retry object insertion.")); 2149 if (object != NULL) { 2150 VM_OBJECT_ASSERT_WLOCKED(object); 2151 KASSERT((object->flags & OBJ_FICTITIOUS) == 0, 2152 ("vm_page_alloc_contig: object %p has fictitious pages", 2153 object)); 2154 } 2155 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 2156 2157 if (object != NULL) { 2158 mpred = vm_radix_lookup_le(&object->rtree, pindex); 2159 KASSERT(mpred == NULL || mpred->pindex != pindex, 2160 ("vm_page_alloc_contig: pindex already allocated")); 2161 } 2162 2163 /* 2164 * Can we allocate the pages without the number of free pages falling 2165 * below the lower bound for the allocation class? 2166 */ 2167 m_ret = NULL; 2168 again: 2169 #if VM_NRESERVLEVEL > 0 2170 /* 2171 * Can we allocate the pages from a reservation? 2172 */ 2173 if (vm_object_reserv(object) && 2174 (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req, 2175 mpred, npages, low, high, alignment, boundary)) != NULL) { 2176 domain = vm_phys_domain(m_ret); 2177 vmd = VM_DOMAIN(domain); 2178 goto found; 2179 } 2180 #endif 2181 vmd = VM_DOMAIN(domain); 2182 if (vm_domain_allocate(vmd, req, npages)) { 2183 /* 2184 * allocate them from the free page queues. 2185 */ 2186 vm_domain_free_lock(vmd); 2187 m_ret = vm_phys_alloc_contig(domain, npages, low, high, 2188 alignment, boundary); 2189 vm_domain_free_unlock(vmd); 2190 if (m_ret == NULL) { 2191 vm_domain_freecnt_inc(vmd, npages); 2192 #if VM_NRESERVLEVEL > 0 2193 if (vm_reserv_reclaim_contig(domain, npages, low, 2194 high, alignment, boundary)) 2195 goto again; 2196 #endif 2197 } 2198 } 2199 if (m_ret == NULL) { 2200 if (vm_domain_alloc_fail(vmd, object, req)) 2201 goto again; 2202 return (NULL); 2203 } 2204 #if VM_NRESERVLEVEL > 0 2205 found: 2206 #endif 2207 for (m = m_ret; m < &m_ret[npages]; m++) { 2208 vm_page_dequeue(m); 2209 vm_page_alloc_check(m); 2210 } 2211 2212 /* 2213 * Initialize the pages. Only the PG_ZERO flag is inherited. 2214 */ 2215 flags = 0; 2216 if ((req & VM_ALLOC_ZERO) != 0) 2217 flags = PG_ZERO; 2218 if ((req & VM_ALLOC_NODUMP) != 0) 2219 flags |= PG_NODUMP; 2220 oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 2221 VPO_UNMANAGED : 0; 2222 busy_lock = VPB_UNBUSIED; 2223 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 2224 busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2225 if ((req & VM_ALLOC_SBUSY) != 0) 2226 busy_lock = VPB_SHARERS_WORD(1); 2227 if ((req & VM_ALLOC_WIRED) != 0) 2228 vm_wire_add(npages); 2229 if (object != NULL) { 2230 if (object->memattr != VM_MEMATTR_DEFAULT && 2231 memattr == VM_MEMATTR_DEFAULT) 2232 memattr = object->memattr; 2233 } 2234 for (m = m_ret; m < &m_ret[npages]; m++) { 2235 m->a.flags = 0; 2236 m->flags = (m->flags | PG_NODUMP) & flags; 2237 m->busy_lock = busy_lock; 2238 if ((req & VM_ALLOC_WIRED) != 0) 2239 m->ref_count = 1; 2240 m->a.act_count = 0; 2241 m->oflags = oflags; 2242 if (object != NULL) { 2243 if (vm_page_insert_after(m, object, pindex, mpred)) { 2244 if ((req & VM_ALLOC_WIRED) != 0) 2245 vm_wire_sub(npages); 2246 KASSERT(m->object == NULL, 2247 ("page %p has object", m)); 2248 mpred = m; 2249 for (m = m_ret; m < &m_ret[npages]; m++) { 2250 if (m <= mpred && 2251 (req & VM_ALLOC_WIRED) != 0) 2252 m->ref_count = 0; 2253 m->oflags = VPO_UNMANAGED; 2254 m->busy_lock = VPB_UNBUSIED; 2255 /* Don't change PG_ZERO. */ 2256 vm_page_free_toq(m); 2257 } 2258 if (req & VM_ALLOC_WAITFAIL) { 2259 VM_OBJECT_WUNLOCK(object); 2260 vm_radix_wait(); 2261 VM_OBJECT_WLOCK(object); 2262 } 2263 return (NULL); 2264 } 2265 mpred = m; 2266 } else 2267 m->pindex = pindex; 2268 if (memattr != VM_MEMATTR_DEFAULT) 2269 pmap_page_set_memattr(m, memattr); 2270 pindex++; 2271 } 2272 return (m_ret); 2273 } 2274 2275 /* 2276 * Check a page that has been freshly dequeued from a freelist. 2277 */ 2278 static void 2279 vm_page_alloc_check(vm_page_t m) 2280 { 2281 2282 KASSERT(m->object == NULL, ("page %p has object", m)); 2283 KASSERT(m->a.queue == PQ_NONE && 2284 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 2285 ("page %p has unexpected queue %d, flags %#x", 2286 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK))); 2287 KASSERT(m->ref_count == 0, ("page %p has references", m)); 2288 KASSERT(!vm_page_busied(m), ("page %p is busy", m)); 2289 KASSERT(m->dirty == 0, ("page %p is dirty", m)); 2290 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 2291 ("page %p has unexpected memattr %d", 2292 m, pmap_page_get_memattr(m))); 2293 KASSERT(m->valid == 0, ("free page %p is valid", m)); 2294 } 2295 2296 /* 2297 * vm_page_alloc_freelist: 2298 * 2299 * Allocate a physical page from the specified free page list. 2300 * 2301 * The caller must always specify an allocation class. 2302 * 2303 * allocation classes: 2304 * VM_ALLOC_NORMAL normal process request 2305 * VM_ALLOC_SYSTEM system *really* needs a page 2306 * VM_ALLOC_INTERRUPT interrupt time request 2307 * 2308 * optional allocation flags: 2309 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 2310 * intends to allocate 2311 * VM_ALLOC_WIRED wire the allocated page 2312 * VM_ALLOC_ZERO prefer a zeroed page 2313 */ 2314 vm_page_t 2315 vm_page_alloc_freelist(int freelist, int req) 2316 { 2317 struct vm_domainset_iter di; 2318 vm_page_t m; 2319 int domain; 2320 2321 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2322 do { 2323 m = vm_page_alloc_freelist_domain(domain, freelist, req); 2324 if (m != NULL) 2325 break; 2326 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2327 2328 return (m); 2329 } 2330 2331 vm_page_t 2332 vm_page_alloc_freelist_domain(int domain, int freelist, int req) 2333 { 2334 struct vm_domain *vmd; 2335 vm_page_t m; 2336 u_int flags; 2337 2338 m = NULL; 2339 vmd = VM_DOMAIN(domain); 2340 again: 2341 if (vm_domain_allocate(vmd, req, 1)) { 2342 vm_domain_free_lock(vmd); 2343 m = vm_phys_alloc_freelist_pages(domain, freelist, 2344 VM_FREEPOOL_DIRECT, 0); 2345 vm_domain_free_unlock(vmd); 2346 if (m == NULL) 2347 vm_domain_freecnt_inc(vmd, 1); 2348 } 2349 if (m == NULL) { 2350 if (vm_domain_alloc_fail(vmd, NULL, req)) 2351 goto again; 2352 return (NULL); 2353 } 2354 vm_page_dequeue(m); 2355 vm_page_alloc_check(m); 2356 2357 /* 2358 * Initialize the page. Only the PG_ZERO flag is inherited. 2359 */ 2360 m->a.flags = 0; 2361 flags = 0; 2362 if ((req & VM_ALLOC_ZERO) != 0) 2363 flags = PG_ZERO; 2364 m->flags &= flags; 2365 if ((req & VM_ALLOC_WIRED) != 0) { 2366 vm_wire_add(1); 2367 m->ref_count = 1; 2368 } 2369 /* Unmanaged pages don't use "act_count". */ 2370 m->oflags = VPO_UNMANAGED; 2371 return (m); 2372 } 2373 2374 static int 2375 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags) 2376 { 2377 struct vm_domain *vmd; 2378 struct vm_pgcache *pgcache; 2379 int i; 2380 2381 pgcache = arg; 2382 vmd = VM_DOMAIN(pgcache->domain); 2383 2384 /* 2385 * The page daemon should avoid creating extra memory pressure since its 2386 * main purpose is to replenish the store of free pages. 2387 */ 2388 if (vmd->vmd_severeset || curproc == pageproc || 2389 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt)) 2390 return (0); 2391 domain = vmd->vmd_domain; 2392 vm_domain_free_lock(vmd); 2393 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt, 2394 (vm_page_t *)store); 2395 vm_domain_free_unlock(vmd); 2396 if (cnt != i) 2397 vm_domain_freecnt_inc(vmd, cnt - i); 2398 2399 return (i); 2400 } 2401 2402 static void 2403 vm_page_zone_release(void *arg, void **store, int cnt) 2404 { 2405 struct vm_domain *vmd; 2406 struct vm_pgcache *pgcache; 2407 vm_page_t m; 2408 int i; 2409 2410 pgcache = arg; 2411 vmd = VM_DOMAIN(pgcache->domain); 2412 vm_domain_free_lock(vmd); 2413 for (i = 0; i < cnt; i++) { 2414 m = (vm_page_t)store[i]; 2415 vm_phys_free_pages(m, 0); 2416 } 2417 vm_domain_free_unlock(vmd); 2418 vm_domain_freecnt_inc(vmd, cnt); 2419 } 2420 2421 #define VPSC_ANY 0 /* No restrictions. */ 2422 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ 2423 #define VPSC_NOSUPER 2 /* Skip superpages. */ 2424 2425 /* 2426 * vm_page_scan_contig: 2427 * 2428 * Scan vm_page_array[] between the specified entries "m_start" and 2429 * "m_end" for a run of contiguous physical pages that satisfy the 2430 * specified conditions, and return the lowest page in the run. The 2431 * specified "alignment" determines the alignment of the lowest physical 2432 * page in the run. If the specified "boundary" is non-zero, then the 2433 * run of physical pages cannot span a physical address that is a 2434 * multiple of "boundary". 2435 * 2436 * "m_end" is never dereferenced, so it need not point to a vm_page 2437 * structure within vm_page_array[]. 2438 * 2439 * "npages" must be greater than zero. "m_start" and "m_end" must not 2440 * span a hole (or discontiguity) in the physical address space. Both 2441 * "alignment" and "boundary" must be a power of two. 2442 */ 2443 vm_page_t 2444 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, 2445 u_long alignment, vm_paddr_t boundary, int options) 2446 { 2447 struct mtx *m_mtx; 2448 vm_object_t object; 2449 vm_paddr_t pa; 2450 vm_page_t m, m_run; 2451 #if VM_NRESERVLEVEL > 0 2452 int level; 2453 #endif 2454 int m_inc, order, run_ext, run_len; 2455 2456 KASSERT(npages > 0, ("npages is 0")); 2457 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2458 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2459 m_run = NULL; 2460 run_len = 0; 2461 m_mtx = NULL; 2462 for (m = m_start; m < m_end && run_len < npages; m += m_inc) { 2463 KASSERT((m->flags & PG_MARKER) == 0, 2464 ("page %p is PG_MARKER", m)); 2465 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1, 2466 ("fictitious page %p has invalid ref count", m)); 2467 2468 /* 2469 * If the current page would be the start of a run, check its 2470 * physical address against the end, alignment, and boundary 2471 * conditions. If it doesn't satisfy these conditions, either 2472 * terminate the scan or advance to the next page that 2473 * satisfies the failed condition. 2474 */ 2475 if (run_len == 0) { 2476 KASSERT(m_run == NULL, ("m_run != NULL")); 2477 if (m + npages > m_end) 2478 break; 2479 pa = VM_PAGE_TO_PHYS(m); 2480 if ((pa & (alignment - 1)) != 0) { 2481 m_inc = atop(roundup2(pa, alignment) - pa); 2482 continue; 2483 } 2484 if (rounddown2(pa ^ (pa + ptoa(npages) - 1), 2485 boundary) != 0) { 2486 m_inc = atop(roundup2(pa, boundary) - pa); 2487 continue; 2488 } 2489 } else 2490 KASSERT(m_run != NULL, ("m_run == NULL")); 2491 2492 vm_page_change_lock(m, &m_mtx); 2493 m_inc = 1; 2494 retry: 2495 if (vm_page_wired(m)) 2496 run_ext = 0; 2497 #if VM_NRESERVLEVEL > 0 2498 else if ((level = vm_reserv_level(m)) >= 0 && 2499 (options & VPSC_NORESERV) != 0) { 2500 run_ext = 0; 2501 /* Advance to the end of the reservation. */ 2502 pa = VM_PAGE_TO_PHYS(m); 2503 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - 2504 pa); 2505 } 2506 #endif 2507 else if ((object = m->object) != NULL) { 2508 /* 2509 * The page is considered eligible for relocation if 2510 * and only if it could be laundered or reclaimed by 2511 * the page daemon. 2512 */ 2513 if (!VM_OBJECT_TRYRLOCK(object)) { 2514 mtx_unlock(m_mtx); 2515 VM_OBJECT_RLOCK(object); 2516 mtx_lock(m_mtx); 2517 if (m->object != object) { 2518 /* 2519 * The page may have been freed. 2520 */ 2521 VM_OBJECT_RUNLOCK(object); 2522 goto retry; 2523 } 2524 } 2525 /* Don't care: PG_NODUMP, PG_ZERO. */ 2526 if (object->type != OBJT_DEFAULT && 2527 object->type != OBJT_SWAP && 2528 object->type != OBJT_VNODE) { 2529 run_ext = 0; 2530 #if VM_NRESERVLEVEL > 0 2531 } else if ((options & VPSC_NOSUPER) != 0 && 2532 (level = vm_reserv_level_iffullpop(m)) >= 0) { 2533 run_ext = 0; 2534 /* Advance to the end of the superpage. */ 2535 pa = VM_PAGE_TO_PHYS(m); 2536 m_inc = atop(roundup2(pa + 1, 2537 vm_reserv_size(level)) - pa); 2538 #endif 2539 } else if (object->memattr == VM_MEMATTR_DEFAULT && 2540 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m) && 2541 !vm_page_wired(m)) { 2542 /* 2543 * The page is allocated but eligible for 2544 * relocation. Extend the current run by one 2545 * page. 2546 */ 2547 KASSERT(pmap_page_get_memattr(m) == 2548 VM_MEMATTR_DEFAULT, 2549 ("page %p has an unexpected memattr", m)); 2550 KASSERT((m->oflags & (VPO_SWAPINPROG | 2551 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2552 ("page %p has unexpected oflags", m)); 2553 /* Don't care: PGA_NOSYNC. */ 2554 run_ext = 1; 2555 } else 2556 run_ext = 0; 2557 VM_OBJECT_RUNLOCK(object); 2558 #if VM_NRESERVLEVEL > 0 2559 } else if (level >= 0) { 2560 /* 2561 * The page is reserved but not yet allocated. In 2562 * other words, it is still free. Extend the current 2563 * run by one page. 2564 */ 2565 run_ext = 1; 2566 #endif 2567 } else if ((order = m->order) < VM_NFREEORDER) { 2568 /* 2569 * The page is enqueued in the physical memory 2570 * allocator's free page queues. Moreover, it is the 2571 * first page in a power-of-two-sized run of 2572 * contiguous free pages. Add these pages to the end 2573 * of the current run, and jump ahead. 2574 */ 2575 run_ext = 1 << order; 2576 m_inc = 1 << order; 2577 } else { 2578 /* 2579 * Skip the page for one of the following reasons: (1) 2580 * It is enqueued in the physical memory allocator's 2581 * free page queues. However, it is not the first 2582 * page in a run of contiguous free pages. (This case 2583 * rarely occurs because the scan is performed in 2584 * ascending order.) (2) It is not reserved, and it is 2585 * transitioning from free to allocated. (Conversely, 2586 * the transition from allocated to free for managed 2587 * pages is blocked by the page lock.) (3) It is 2588 * allocated but not contained by an object and not 2589 * wired, e.g., allocated by Xen's balloon driver. 2590 */ 2591 run_ext = 0; 2592 } 2593 2594 /* 2595 * Extend or reset the current run of pages. 2596 */ 2597 if (run_ext > 0) { 2598 if (run_len == 0) 2599 m_run = m; 2600 run_len += run_ext; 2601 } else { 2602 if (run_len > 0) { 2603 m_run = NULL; 2604 run_len = 0; 2605 } 2606 } 2607 } 2608 if (m_mtx != NULL) 2609 mtx_unlock(m_mtx); 2610 if (run_len >= npages) 2611 return (m_run); 2612 return (NULL); 2613 } 2614 2615 /* 2616 * vm_page_reclaim_run: 2617 * 2618 * Try to relocate each of the allocated virtual pages within the 2619 * specified run of physical pages to a new physical address. Free the 2620 * physical pages underlying the relocated virtual pages. A virtual page 2621 * is relocatable if and only if it could be laundered or reclaimed by 2622 * the page daemon. Whenever possible, a virtual page is relocated to a 2623 * physical address above "high". 2624 * 2625 * Returns 0 if every physical page within the run was already free or 2626 * just freed by a successful relocation. Otherwise, returns a non-zero 2627 * value indicating why the last attempt to relocate a virtual page was 2628 * unsuccessful. 2629 * 2630 * "req_class" must be an allocation class. 2631 */ 2632 static int 2633 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run, 2634 vm_paddr_t high) 2635 { 2636 struct vm_domain *vmd; 2637 struct mtx *m_mtx; 2638 struct spglist free; 2639 vm_object_t object; 2640 vm_paddr_t pa; 2641 vm_page_t m, m_end, m_new; 2642 int error, order, req; 2643 2644 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, 2645 ("req_class is not an allocation class")); 2646 SLIST_INIT(&free); 2647 error = 0; 2648 m = m_run; 2649 m_end = m_run + npages; 2650 m_mtx = NULL; 2651 for (; error == 0 && m < m_end; m++) { 2652 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, 2653 ("page %p is PG_FICTITIOUS or PG_MARKER", m)); 2654 2655 /* 2656 * Avoid releasing and reacquiring the same page lock. 2657 */ 2658 vm_page_change_lock(m, &m_mtx); 2659 retry: 2660 /* 2661 * Racily check for wirings. Races are handled below. 2662 */ 2663 if (vm_page_wired(m)) 2664 error = EBUSY; 2665 else if ((object = m->object) != NULL) { 2666 /* 2667 * The page is relocated if and only if it could be 2668 * laundered or reclaimed by the page daemon. 2669 */ 2670 if (!VM_OBJECT_TRYWLOCK(object)) { 2671 mtx_unlock(m_mtx); 2672 VM_OBJECT_WLOCK(object); 2673 mtx_lock(m_mtx); 2674 if (m->object != object) { 2675 /* 2676 * The page may have been freed. 2677 */ 2678 VM_OBJECT_WUNLOCK(object); 2679 goto retry; 2680 } 2681 } 2682 /* Don't care: PG_NODUMP, PG_ZERO. */ 2683 if (object->type != OBJT_DEFAULT && 2684 object->type != OBJT_SWAP && 2685 object->type != OBJT_VNODE) 2686 error = EINVAL; 2687 else if (object->memattr != VM_MEMATTR_DEFAULT) 2688 error = EINVAL; 2689 else if (vm_page_queue(m) != PQ_NONE && 2690 vm_page_tryxbusy(m) != 0) { 2691 if (vm_page_wired(m)) { 2692 vm_page_xunbusy(m); 2693 error = EBUSY; 2694 goto unlock; 2695 } 2696 KASSERT(pmap_page_get_memattr(m) == 2697 VM_MEMATTR_DEFAULT, 2698 ("page %p has an unexpected memattr", m)); 2699 KASSERT(m->oflags == 0, 2700 ("page %p has unexpected oflags", m)); 2701 /* Don't care: PGA_NOSYNC. */ 2702 if (!vm_page_none_valid(m)) { 2703 /* 2704 * First, try to allocate a new page 2705 * that is above "high". Failing 2706 * that, try to allocate a new page 2707 * that is below "m_run". Allocate 2708 * the new page between the end of 2709 * "m_run" and "high" only as a last 2710 * resort. 2711 */ 2712 req = req_class | VM_ALLOC_NOOBJ; 2713 if ((m->flags & PG_NODUMP) != 0) 2714 req |= VM_ALLOC_NODUMP; 2715 if (trunc_page(high) != 2716 ~(vm_paddr_t)PAGE_MASK) { 2717 m_new = vm_page_alloc_contig( 2718 NULL, 0, req, 1, 2719 round_page(high), 2720 ~(vm_paddr_t)0, 2721 PAGE_SIZE, 0, 2722 VM_MEMATTR_DEFAULT); 2723 } else 2724 m_new = NULL; 2725 if (m_new == NULL) { 2726 pa = VM_PAGE_TO_PHYS(m_run); 2727 m_new = vm_page_alloc_contig( 2728 NULL, 0, req, 1, 2729 0, pa - 1, PAGE_SIZE, 0, 2730 VM_MEMATTR_DEFAULT); 2731 } 2732 if (m_new == NULL) { 2733 pa += ptoa(npages); 2734 m_new = vm_page_alloc_contig( 2735 NULL, 0, req, 1, 2736 pa, high, PAGE_SIZE, 0, 2737 VM_MEMATTR_DEFAULT); 2738 } 2739 if (m_new == NULL) { 2740 vm_page_xunbusy(m); 2741 error = ENOMEM; 2742 goto unlock; 2743 } 2744 2745 /* 2746 * Unmap the page and check for new 2747 * wirings that may have been acquired 2748 * through a pmap lookup. 2749 */ 2750 if (object->ref_count != 0 && 2751 !vm_page_try_remove_all(m)) { 2752 vm_page_xunbusy(m); 2753 vm_page_free(m_new); 2754 error = EBUSY; 2755 goto unlock; 2756 } 2757 2758 /* 2759 * Replace "m" with the new page. For 2760 * vm_page_replace(), "m" must be busy 2761 * and dequeued. Finally, change "m" 2762 * as if vm_page_free() was called. 2763 */ 2764 m_new->a.flags = m->a.flags & 2765 ~PGA_QUEUE_STATE_MASK; 2766 KASSERT(m_new->oflags == VPO_UNMANAGED, 2767 ("page %p is managed", m_new)); 2768 m_new->oflags = 0; 2769 pmap_copy_page(m, m_new); 2770 m_new->valid = m->valid; 2771 m_new->dirty = m->dirty; 2772 m->flags &= ~PG_ZERO; 2773 vm_page_dequeue(m); 2774 if (vm_page_replace_hold(m_new, object, 2775 m->pindex, m) && 2776 vm_page_free_prep(m)) 2777 SLIST_INSERT_HEAD(&free, m, 2778 plinks.s.ss); 2779 2780 /* 2781 * The new page must be deactivated 2782 * before the object is unlocked. 2783 */ 2784 vm_page_change_lock(m_new, &m_mtx); 2785 vm_page_deactivate(m_new); 2786 } else { 2787 m->flags &= ~PG_ZERO; 2788 vm_page_dequeue(m); 2789 if (vm_page_free_prep(m)) 2790 SLIST_INSERT_HEAD(&free, m, 2791 plinks.s.ss); 2792 KASSERT(m->dirty == 0, 2793 ("page %p is dirty", m)); 2794 } 2795 } else 2796 error = EBUSY; 2797 unlock: 2798 VM_OBJECT_WUNLOCK(object); 2799 } else { 2800 MPASS(vm_phys_domain(m) == domain); 2801 vmd = VM_DOMAIN(domain); 2802 vm_domain_free_lock(vmd); 2803 order = m->order; 2804 if (order < VM_NFREEORDER) { 2805 /* 2806 * The page is enqueued in the physical memory 2807 * allocator's free page queues. Moreover, it 2808 * is the first page in a power-of-two-sized 2809 * run of contiguous free pages. Jump ahead 2810 * to the last page within that run, and 2811 * continue from there. 2812 */ 2813 m += (1 << order) - 1; 2814 } 2815 #if VM_NRESERVLEVEL > 0 2816 else if (vm_reserv_is_page_free(m)) 2817 order = 0; 2818 #endif 2819 vm_domain_free_unlock(vmd); 2820 if (order == VM_NFREEORDER) 2821 error = EINVAL; 2822 } 2823 } 2824 if (m_mtx != NULL) 2825 mtx_unlock(m_mtx); 2826 if ((m = SLIST_FIRST(&free)) != NULL) { 2827 int cnt; 2828 2829 vmd = VM_DOMAIN(domain); 2830 cnt = 0; 2831 vm_domain_free_lock(vmd); 2832 do { 2833 MPASS(vm_phys_domain(m) == domain); 2834 SLIST_REMOVE_HEAD(&free, plinks.s.ss); 2835 vm_phys_free_pages(m, 0); 2836 cnt++; 2837 } while ((m = SLIST_FIRST(&free)) != NULL); 2838 vm_domain_free_unlock(vmd); 2839 vm_domain_freecnt_inc(vmd, cnt); 2840 } 2841 return (error); 2842 } 2843 2844 #define NRUNS 16 2845 2846 CTASSERT(powerof2(NRUNS)); 2847 2848 #define RUN_INDEX(count) ((count) & (NRUNS - 1)) 2849 2850 #define MIN_RECLAIM 8 2851 2852 /* 2853 * vm_page_reclaim_contig: 2854 * 2855 * Reclaim allocated, contiguous physical memory satisfying the specified 2856 * conditions by relocating the virtual pages using that physical memory. 2857 * Returns true if reclamation is successful and false otherwise. Since 2858 * relocation requires the allocation of physical pages, reclamation may 2859 * fail due to a shortage of free pages. When reclamation fails, callers 2860 * are expected to perform vm_wait() before retrying a failed allocation 2861 * operation, e.g., vm_page_alloc_contig(). 2862 * 2863 * The caller must always specify an allocation class through "req". 2864 * 2865 * allocation classes: 2866 * VM_ALLOC_NORMAL normal process request 2867 * VM_ALLOC_SYSTEM system *really* needs a page 2868 * VM_ALLOC_INTERRUPT interrupt time request 2869 * 2870 * The optional allocation flags are ignored. 2871 * 2872 * "npages" must be greater than zero. Both "alignment" and "boundary" 2873 * must be a power of two. 2874 */ 2875 bool 2876 vm_page_reclaim_contig_domain(int domain, int req, u_long npages, 2877 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 2878 { 2879 struct vm_domain *vmd; 2880 vm_paddr_t curr_low; 2881 vm_page_t m_run, m_runs[NRUNS]; 2882 u_long count, reclaimed; 2883 int error, i, options, req_class; 2884 2885 KASSERT(npages > 0, ("npages is 0")); 2886 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2887 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2888 req_class = req & VM_ALLOC_CLASS_MASK; 2889 2890 /* 2891 * The page daemon is allowed to dig deeper into the free page list. 2892 */ 2893 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2894 req_class = VM_ALLOC_SYSTEM; 2895 2896 /* 2897 * Return if the number of free pages cannot satisfy the requested 2898 * allocation. 2899 */ 2900 vmd = VM_DOMAIN(domain); 2901 count = vmd->vmd_free_count; 2902 if (count < npages + vmd->vmd_free_reserved || (count < npages + 2903 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || 2904 (count < npages && req_class == VM_ALLOC_INTERRUPT)) 2905 return (false); 2906 2907 /* 2908 * Scan up to three times, relaxing the restrictions ("options") on 2909 * the reclamation of reservations and superpages each time. 2910 */ 2911 for (options = VPSC_NORESERV;;) { 2912 /* 2913 * Find the highest runs that satisfy the given constraints 2914 * and restrictions, and record them in "m_runs". 2915 */ 2916 curr_low = low; 2917 count = 0; 2918 for (;;) { 2919 m_run = vm_phys_scan_contig(domain, npages, curr_low, 2920 high, alignment, boundary, options); 2921 if (m_run == NULL) 2922 break; 2923 curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages); 2924 m_runs[RUN_INDEX(count)] = m_run; 2925 count++; 2926 } 2927 2928 /* 2929 * Reclaim the highest runs in LIFO (descending) order until 2930 * the number of reclaimed pages, "reclaimed", is at least 2931 * MIN_RECLAIM. Reset "reclaimed" each time because each 2932 * reclamation is idempotent, and runs will (likely) recur 2933 * from one scan to the next as restrictions are relaxed. 2934 */ 2935 reclaimed = 0; 2936 for (i = 0; count > 0 && i < NRUNS; i++) { 2937 count--; 2938 m_run = m_runs[RUN_INDEX(count)]; 2939 error = vm_page_reclaim_run(req_class, domain, npages, 2940 m_run, high); 2941 if (error == 0) { 2942 reclaimed += npages; 2943 if (reclaimed >= MIN_RECLAIM) 2944 return (true); 2945 } 2946 } 2947 2948 /* 2949 * Either relax the restrictions on the next scan or return if 2950 * the last scan had no restrictions. 2951 */ 2952 if (options == VPSC_NORESERV) 2953 options = VPSC_NOSUPER; 2954 else if (options == VPSC_NOSUPER) 2955 options = VPSC_ANY; 2956 else if (options == VPSC_ANY) 2957 return (reclaimed != 0); 2958 } 2959 } 2960 2961 bool 2962 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, 2963 u_long alignment, vm_paddr_t boundary) 2964 { 2965 struct vm_domainset_iter di; 2966 int domain; 2967 bool ret; 2968 2969 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2970 do { 2971 ret = vm_page_reclaim_contig_domain(domain, req, npages, low, 2972 high, alignment, boundary); 2973 if (ret) 2974 break; 2975 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2976 2977 return (ret); 2978 } 2979 2980 /* 2981 * Set the domain in the appropriate page level domainset. 2982 */ 2983 void 2984 vm_domain_set(struct vm_domain *vmd) 2985 { 2986 2987 mtx_lock(&vm_domainset_lock); 2988 if (!vmd->vmd_minset && vm_paging_min(vmd)) { 2989 vmd->vmd_minset = 1; 2990 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains); 2991 } 2992 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) { 2993 vmd->vmd_severeset = 1; 2994 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains); 2995 } 2996 mtx_unlock(&vm_domainset_lock); 2997 } 2998 2999 /* 3000 * Clear the domain from the appropriate page level domainset. 3001 */ 3002 void 3003 vm_domain_clear(struct vm_domain *vmd) 3004 { 3005 3006 mtx_lock(&vm_domainset_lock); 3007 if (vmd->vmd_minset && !vm_paging_min(vmd)) { 3008 vmd->vmd_minset = 0; 3009 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains); 3010 if (vm_min_waiters != 0) { 3011 vm_min_waiters = 0; 3012 wakeup(&vm_min_domains); 3013 } 3014 } 3015 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) { 3016 vmd->vmd_severeset = 0; 3017 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains); 3018 if (vm_severe_waiters != 0) { 3019 vm_severe_waiters = 0; 3020 wakeup(&vm_severe_domains); 3021 } 3022 } 3023 3024 /* 3025 * If pageout daemon needs pages, then tell it that there are 3026 * some free. 3027 */ 3028 if (vmd->vmd_pageout_pages_needed && 3029 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) { 3030 wakeup(&vmd->vmd_pageout_pages_needed); 3031 vmd->vmd_pageout_pages_needed = 0; 3032 } 3033 3034 /* See comments in vm_wait_doms(). */ 3035 if (vm_pageproc_waiters) { 3036 vm_pageproc_waiters = 0; 3037 wakeup(&vm_pageproc_waiters); 3038 } 3039 mtx_unlock(&vm_domainset_lock); 3040 } 3041 3042 /* 3043 * Wait for free pages to exceed the min threshold globally. 3044 */ 3045 void 3046 vm_wait_min(void) 3047 { 3048 3049 mtx_lock(&vm_domainset_lock); 3050 while (vm_page_count_min()) { 3051 vm_min_waiters++; 3052 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0); 3053 } 3054 mtx_unlock(&vm_domainset_lock); 3055 } 3056 3057 /* 3058 * Wait for free pages to exceed the severe threshold globally. 3059 */ 3060 void 3061 vm_wait_severe(void) 3062 { 3063 3064 mtx_lock(&vm_domainset_lock); 3065 while (vm_page_count_severe()) { 3066 vm_severe_waiters++; 3067 msleep(&vm_severe_domains, &vm_domainset_lock, PVM, 3068 "vmwait", 0); 3069 } 3070 mtx_unlock(&vm_domainset_lock); 3071 } 3072 3073 u_int 3074 vm_wait_count(void) 3075 { 3076 3077 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters); 3078 } 3079 3080 void 3081 vm_wait_doms(const domainset_t *wdoms) 3082 { 3083 3084 /* 3085 * We use racey wakeup synchronization to avoid expensive global 3086 * locking for the pageproc when sleeping with a non-specific vm_wait. 3087 * To handle this, we only sleep for one tick in this instance. It 3088 * is expected that most allocations for the pageproc will come from 3089 * kmem or vm_page_grab* which will use the more specific and 3090 * race-free vm_wait_domain(). 3091 */ 3092 if (curproc == pageproc) { 3093 mtx_lock(&vm_domainset_lock); 3094 vm_pageproc_waiters++; 3095 msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP, 3096 "pageprocwait", 1); 3097 } else { 3098 /* 3099 * XXX Ideally we would wait only until the allocation could 3100 * be satisfied. This condition can cause new allocators to 3101 * consume all freed pages while old allocators wait. 3102 */ 3103 mtx_lock(&vm_domainset_lock); 3104 if (vm_page_count_min_set(wdoms)) { 3105 vm_min_waiters++; 3106 msleep(&vm_min_domains, &vm_domainset_lock, 3107 PVM | PDROP, "vmwait", 0); 3108 } else 3109 mtx_unlock(&vm_domainset_lock); 3110 } 3111 } 3112 3113 /* 3114 * vm_wait_domain: 3115 * 3116 * Sleep until free pages are available for allocation. 3117 * - Called in various places after failed memory allocations. 3118 */ 3119 void 3120 vm_wait_domain(int domain) 3121 { 3122 struct vm_domain *vmd; 3123 domainset_t wdom; 3124 3125 vmd = VM_DOMAIN(domain); 3126 vm_domain_free_assert_unlocked(vmd); 3127 3128 if (curproc == pageproc) { 3129 mtx_lock(&vm_domainset_lock); 3130 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) { 3131 vmd->vmd_pageout_pages_needed = 1; 3132 msleep(&vmd->vmd_pageout_pages_needed, 3133 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0); 3134 } else 3135 mtx_unlock(&vm_domainset_lock); 3136 } else { 3137 if (pageproc == NULL) 3138 panic("vm_wait in early boot"); 3139 DOMAINSET_ZERO(&wdom); 3140 DOMAINSET_SET(vmd->vmd_domain, &wdom); 3141 vm_wait_doms(&wdom); 3142 } 3143 } 3144 3145 /* 3146 * vm_wait: 3147 * 3148 * Sleep until free pages are available for allocation in the 3149 * affinity domains of the obj. If obj is NULL, the domain set 3150 * for the calling thread is used. 3151 * Called in various places after failed memory allocations. 3152 */ 3153 void 3154 vm_wait(vm_object_t obj) 3155 { 3156 struct domainset *d; 3157 3158 d = NULL; 3159 3160 /* 3161 * Carefully fetch pointers only once: the struct domainset 3162 * itself is ummutable but the pointer might change. 3163 */ 3164 if (obj != NULL) 3165 d = obj->domain.dr_policy; 3166 if (d == NULL) 3167 d = curthread->td_domain.dr_policy; 3168 3169 vm_wait_doms(&d->ds_mask); 3170 } 3171 3172 /* 3173 * vm_domain_alloc_fail: 3174 * 3175 * Called when a page allocation function fails. Informs the 3176 * pagedaemon and performs the requested wait. Requires the 3177 * domain_free and object lock on entry. Returns with the 3178 * object lock held and free lock released. Returns an error when 3179 * retry is necessary. 3180 * 3181 */ 3182 static int 3183 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req) 3184 { 3185 3186 vm_domain_free_assert_unlocked(vmd); 3187 3188 atomic_add_int(&vmd->vmd_pageout_deficit, 3189 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 3190 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) { 3191 if (object != NULL) 3192 VM_OBJECT_WUNLOCK(object); 3193 vm_wait_domain(vmd->vmd_domain); 3194 if (object != NULL) 3195 VM_OBJECT_WLOCK(object); 3196 if (req & VM_ALLOC_WAITOK) 3197 return (EAGAIN); 3198 } 3199 3200 return (0); 3201 } 3202 3203 /* 3204 * vm_waitpfault: 3205 * 3206 * Sleep until free pages are available for allocation. 3207 * - Called only in vm_fault so that processes page faulting 3208 * can be easily tracked. 3209 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 3210 * processes will be able to grab memory first. Do not change 3211 * this balance without careful testing first. 3212 */ 3213 void 3214 vm_waitpfault(struct domainset *dset, int timo) 3215 { 3216 3217 /* 3218 * XXX Ideally we would wait only until the allocation could 3219 * be satisfied. This condition can cause new allocators to 3220 * consume all freed pages while old allocators wait. 3221 */ 3222 mtx_lock(&vm_domainset_lock); 3223 if (vm_page_count_min_set(&dset->ds_mask)) { 3224 vm_min_waiters++; 3225 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP, 3226 "pfault", timo); 3227 } else 3228 mtx_unlock(&vm_domainset_lock); 3229 } 3230 3231 static struct vm_pagequeue * 3232 _vm_page_pagequeue(vm_page_t m, uint8_t queue) 3233 { 3234 3235 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]); 3236 } 3237 3238 #ifdef INVARIANTS 3239 static struct vm_pagequeue * 3240 vm_page_pagequeue(vm_page_t m) 3241 { 3242 3243 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue)); 3244 } 3245 #endif 3246 3247 static __always_inline bool 3248 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) 3249 { 3250 vm_page_astate_t tmp; 3251 3252 tmp = *old; 3253 do { 3254 if (__predict_true(vm_page_astate_fcmpset(m, old, new))) 3255 return (true); 3256 counter_u64_add(pqstate_commit_retries, 1); 3257 } while (old->_bits == tmp._bits); 3258 3259 return (false); 3260 } 3261 3262 /* 3263 * Do the work of committing a queue state update that moves the page out of 3264 * its current queue. 3265 */ 3266 static bool 3267 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m, 3268 vm_page_astate_t *old, vm_page_astate_t new) 3269 { 3270 vm_page_t next; 3271 3272 vm_pagequeue_assert_locked(pq); 3273 KASSERT(vm_page_pagequeue(m) == pq, 3274 ("%s: queue %p does not match page %p", __func__, pq, m)); 3275 KASSERT(old->queue != PQ_NONE && new.queue != old->queue, 3276 ("%s: invalid queue indices %d %d", 3277 __func__, old->queue, new.queue)); 3278 3279 /* 3280 * Once the queue index of the page changes there is nothing 3281 * synchronizing with further updates to the page's physical 3282 * queue state. Therefore we must speculatively remove the page 3283 * from the queue now and be prepared to roll back if the queue 3284 * state update fails. If the page is not physically enqueued then 3285 * we just update its queue index. 3286 */ 3287 if ((old->flags & PGA_ENQUEUED) != 0) { 3288 new.flags &= ~PGA_ENQUEUED; 3289 next = TAILQ_NEXT(m, plinks.q); 3290 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3291 vm_pagequeue_cnt_dec(pq); 3292 if (!vm_page_pqstate_fcmpset(m, old, new)) { 3293 if (next == NULL) 3294 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3295 else 3296 TAILQ_INSERT_BEFORE(next, m, plinks.q); 3297 vm_pagequeue_cnt_inc(pq); 3298 return (false); 3299 } else { 3300 return (true); 3301 } 3302 } else { 3303 return (vm_page_pqstate_fcmpset(m, old, new)); 3304 } 3305 } 3306 3307 static bool 3308 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old, 3309 vm_page_astate_t new) 3310 { 3311 struct vm_pagequeue *pq; 3312 vm_page_astate_t as; 3313 bool ret; 3314 3315 pq = _vm_page_pagequeue(m, old->queue); 3316 3317 /* 3318 * The queue field and PGA_ENQUEUED flag are stable only so long as the 3319 * corresponding page queue lock is held. 3320 */ 3321 vm_pagequeue_lock(pq); 3322 as = vm_page_astate_load(m); 3323 if (__predict_false(as._bits != old->_bits)) { 3324 *old = as; 3325 ret = false; 3326 } else { 3327 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new); 3328 } 3329 vm_pagequeue_unlock(pq); 3330 return (ret); 3331 } 3332 3333 /* 3334 * Commit a queue state update that enqueues or requeues a page. 3335 */ 3336 static bool 3337 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m, 3338 vm_page_astate_t *old, vm_page_astate_t new) 3339 { 3340 struct vm_domain *vmd; 3341 3342 vm_pagequeue_assert_locked(pq); 3343 KASSERT(old->queue != PQ_NONE && new.queue == old->queue, 3344 ("%s: invalid queue indices %d %d", 3345 __func__, old->queue, new.queue)); 3346 3347 new.flags |= PGA_ENQUEUED; 3348 if (!vm_page_pqstate_fcmpset(m, old, new)) 3349 return (false); 3350 3351 if ((old->flags & PGA_ENQUEUED) != 0) 3352 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3353 else 3354 vm_pagequeue_cnt_inc(pq); 3355 3356 /* 3357 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if 3358 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be 3359 * applied, even if it was set first. 3360 */ 3361 if ((old->flags & PGA_REQUEUE_HEAD) != 0) { 3362 vmd = vm_pagequeue_domain(m); 3363 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE], 3364 ("%s: invalid page queue for page %p", __func__, m)); 3365 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 3366 } else { 3367 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3368 } 3369 return (true); 3370 } 3371 3372 /* 3373 * Commit a queue state update that encodes a request for a deferred queue 3374 * operation. 3375 */ 3376 static bool 3377 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old, 3378 vm_page_astate_t new) 3379 { 3380 3381 KASSERT(old->queue == new.queue || new.queue != PQ_NONE, 3382 ("%s: invalid state, queue %d flags %x", 3383 __func__, new.queue, new.flags)); 3384 3385 if (old->_bits != new._bits && 3386 !vm_page_pqstate_fcmpset(m, old, new)) 3387 return (false); 3388 vm_page_pqbatch_submit(m, new.queue); 3389 return (true); 3390 } 3391 3392 /* 3393 * A generic queue state update function. This handles more cases than the 3394 * specialized functions above. 3395 */ 3396 bool 3397 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) 3398 { 3399 3400 if (old->_bits == new._bits) 3401 return (true); 3402 3403 if (old->queue != PQ_NONE && new.queue != old->queue) { 3404 if (!vm_page_pqstate_commit_dequeue(m, old, new)) 3405 return (false); 3406 if (new.queue != PQ_NONE) 3407 vm_page_pqbatch_submit(m, new.queue); 3408 } else { 3409 if (!vm_page_pqstate_fcmpset(m, old, new)) 3410 return (false); 3411 if (new.queue != PQ_NONE && 3412 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0) 3413 vm_page_pqbatch_submit(m, new.queue); 3414 } 3415 return (true); 3416 } 3417 3418 /* 3419 * Apply deferred queue state updates to a page. 3420 */ 3421 static inline void 3422 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue) 3423 { 3424 vm_page_astate_t new, old; 3425 3426 CRITICAL_ASSERT(curthread); 3427 vm_pagequeue_assert_locked(pq); 3428 KASSERT(queue < PQ_COUNT, 3429 ("%s: invalid queue index %d", __func__, queue)); 3430 KASSERT(pq == _vm_page_pagequeue(m, queue), 3431 ("%s: page %p does not belong to queue %p", __func__, m, pq)); 3432 3433 for (old = vm_page_astate_load(m);;) { 3434 if (__predict_false(old.queue != queue || 3435 (old.flags & PGA_QUEUE_OP_MASK) == 0)) { 3436 counter_u64_add(queue_nops, 1); 3437 break; 3438 } 3439 KASSERT(old.queue != PQ_NONE || (old.flags & PGA_QUEUE_STATE_MASK) == 0, 3440 ("%s: page %p has unexpected queue state", __func__, m)); 3441 3442 new = old; 3443 if ((old.flags & PGA_DEQUEUE) != 0) { 3444 new.flags &= ~PGA_QUEUE_OP_MASK; 3445 new.queue = PQ_NONE; 3446 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq, 3447 m, &old, new))) { 3448 counter_u64_add(queue_ops, 1); 3449 break; 3450 } 3451 } else { 3452 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD); 3453 if (__predict_true(_vm_page_pqstate_commit_requeue(pq, 3454 m, &old, new))) { 3455 counter_u64_add(queue_ops, 1); 3456 break; 3457 } 3458 } 3459 } 3460 } 3461 3462 static void 3463 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq, 3464 uint8_t queue) 3465 { 3466 int i; 3467 3468 for (i = 0; i < bq->bq_cnt; i++) 3469 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue); 3470 vm_batchqueue_init(bq); 3471 } 3472 3473 /* 3474 * vm_page_pqbatch_submit: [ internal use only ] 3475 * 3476 * Enqueue a page in the specified page queue's batched work queue. 3477 * The caller must have encoded the requested operation in the page 3478 * structure's a.flags field. 3479 */ 3480 void 3481 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue) 3482 { 3483 struct vm_batchqueue *bq; 3484 struct vm_pagequeue *pq; 3485 int domain; 3486 3487 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3488 ("page %p is unmanaged", m)); 3489 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue)); 3490 3491 domain = vm_phys_domain(m); 3492 pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue]; 3493 3494 critical_enter(); 3495 bq = DPCPU_PTR(pqbatch[domain][queue]); 3496 if (vm_batchqueue_insert(bq, m)) { 3497 critical_exit(); 3498 return; 3499 } 3500 critical_exit(); 3501 vm_pagequeue_lock(pq); 3502 critical_enter(); 3503 bq = DPCPU_PTR(pqbatch[domain][queue]); 3504 vm_pqbatch_process(pq, bq, queue); 3505 vm_pqbatch_process_page(pq, m, queue); 3506 vm_pagequeue_unlock(pq); 3507 critical_exit(); 3508 } 3509 3510 /* 3511 * vm_page_pqbatch_drain: [ internal use only ] 3512 * 3513 * Force all per-CPU page queue batch queues to be drained. This is 3514 * intended for use in severe memory shortages, to ensure that pages 3515 * do not remain stuck in the batch queues. 3516 */ 3517 void 3518 vm_page_pqbatch_drain(void) 3519 { 3520 struct thread *td; 3521 struct vm_domain *vmd; 3522 struct vm_pagequeue *pq; 3523 int cpu, domain, queue; 3524 3525 td = curthread; 3526 CPU_FOREACH(cpu) { 3527 thread_lock(td); 3528 sched_bind(td, cpu); 3529 thread_unlock(td); 3530 3531 for (domain = 0; domain < vm_ndomains; domain++) { 3532 vmd = VM_DOMAIN(domain); 3533 for (queue = 0; queue < PQ_COUNT; queue++) { 3534 pq = &vmd->vmd_pagequeues[queue]; 3535 vm_pagequeue_lock(pq); 3536 critical_enter(); 3537 vm_pqbatch_process(pq, 3538 DPCPU_PTR(pqbatch[domain][queue]), queue); 3539 critical_exit(); 3540 vm_pagequeue_unlock(pq); 3541 } 3542 } 3543 } 3544 thread_lock(td); 3545 sched_unbind(td); 3546 thread_unlock(td); 3547 } 3548 3549 /* 3550 * vm_page_dequeue_deferred: [ internal use only ] 3551 * 3552 * Request removal of the given page from its current page 3553 * queue. Physical removal from the queue may be deferred 3554 * indefinitely. 3555 * 3556 * The page must be locked. 3557 */ 3558 void 3559 vm_page_dequeue_deferred(vm_page_t m) 3560 { 3561 vm_page_astate_t new, old; 3562 3563 old = vm_page_astate_load(m); 3564 do { 3565 if (old.queue == PQ_NONE) { 3566 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, 3567 ("%s: page %p has unexpected queue state", 3568 __func__, m)); 3569 break; 3570 } 3571 new = old; 3572 new.flags |= PGA_DEQUEUE; 3573 } while (!vm_page_pqstate_commit_request(m, &old, new)); 3574 } 3575 3576 /* 3577 * vm_page_dequeue: 3578 * 3579 * Remove the page from whichever page queue it's in, if any, before 3580 * returning. 3581 */ 3582 void 3583 vm_page_dequeue(vm_page_t m) 3584 { 3585 vm_page_astate_t new, old; 3586 3587 old = vm_page_astate_load(m); 3588 do { 3589 if (old.queue == PQ_NONE) { 3590 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, 3591 ("%s: page %p has unexpected queue state", 3592 __func__, m)); 3593 break; 3594 } 3595 new = old; 3596 new.flags &= ~PGA_QUEUE_OP_MASK; 3597 new.queue = PQ_NONE; 3598 } while (!vm_page_pqstate_commit_dequeue(m, &old, new)); 3599 3600 } 3601 3602 /* 3603 * Schedule the given page for insertion into the specified page queue. 3604 * Physical insertion of the page may be deferred indefinitely. 3605 */ 3606 static void 3607 vm_page_enqueue(vm_page_t m, uint8_t queue) 3608 { 3609 3610 KASSERT(m->a.queue == PQ_NONE && 3611 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 3612 ("%s: page %p is already enqueued", __func__, m)); 3613 KASSERT(m->ref_count > 0, 3614 ("%s: page %p does not carry any references", __func__, m)); 3615 3616 m->a.queue = queue; 3617 if ((m->a.flags & PGA_REQUEUE) == 0) 3618 vm_page_aflag_set(m, PGA_REQUEUE); 3619 vm_page_pqbatch_submit(m, queue); 3620 } 3621 3622 /* 3623 * vm_page_free_prep: 3624 * 3625 * Prepares the given page to be put on the free list, 3626 * disassociating it from any VM object. The caller may return 3627 * the page to the free list only if this function returns true. 3628 * 3629 * The object must be locked. The page must be locked if it is 3630 * managed. 3631 */ 3632 static bool 3633 vm_page_free_prep(vm_page_t m) 3634 { 3635 3636 /* 3637 * Synchronize with threads that have dropped a reference to this 3638 * page. 3639 */ 3640 atomic_thread_fence_acq(); 3641 3642 if (vm_page_sbusied(m)) 3643 panic("vm_page_free_prep: freeing shared busy page %p", m); 3644 3645 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP) 3646 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) { 3647 uint64_t *p; 3648 int i; 3649 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 3650 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++) 3651 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx", 3652 m, i, (uintmax_t)*p)); 3653 } 3654 #endif 3655 if ((m->oflags & VPO_UNMANAGED) == 0) { 3656 KASSERT(!pmap_page_is_mapped(m), 3657 ("vm_page_free_prep: freeing mapped page %p", m)); 3658 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0, 3659 ("vm_page_free_prep: mapping flags set in page %p", m)); 3660 } else { 3661 KASSERT(m->a.queue == PQ_NONE, 3662 ("vm_page_free_prep: unmanaged page %p is queued", m)); 3663 } 3664 VM_CNT_INC(v_tfree); 3665 3666 if (m->object != NULL) { 3667 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) == 3668 ((m->object->flags & OBJ_UNMANAGED) != 0), 3669 ("vm_page_free_prep: managed flag mismatch for page %p", 3670 m)); 3671 vm_page_object_remove(m); 3672 3673 /* 3674 * The object reference can be released without an atomic 3675 * operation. 3676 */ 3677 KASSERT((m->flags & PG_FICTITIOUS) != 0 || 3678 m->ref_count == VPRC_OBJREF, 3679 ("vm_page_free_prep: page %p has unexpected ref_count %u", 3680 m, m->ref_count)); 3681 m->object = NULL; 3682 m->ref_count -= VPRC_OBJREF; 3683 vm_page_xunbusy(m); 3684 } 3685 3686 if (vm_page_xbusied(m)) 3687 panic("vm_page_free_prep: freeing exclusive busy page %p", m); 3688 3689 /* 3690 * If fictitious remove object association and 3691 * return. 3692 */ 3693 if ((m->flags & PG_FICTITIOUS) != 0) { 3694 KASSERT(m->ref_count == 1, 3695 ("fictitious page %p is referenced", m)); 3696 KASSERT(m->a.queue == PQ_NONE, 3697 ("fictitious page %p is queued", m)); 3698 return (false); 3699 } 3700 3701 /* 3702 * Pages need not be dequeued before they are returned to the physical 3703 * memory allocator, but they must at least be marked for a deferred 3704 * dequeue. 3705 */ 3706 if ((m->oflags & VPO_UNMANAGED) == 0) 3707 vm_page_dequeue_deferred(m); 3708 3709 m->valid = 0; 3710 vm_page_undirty(m); 3711 3712 if (m->ref_count != 0) 3713 panic("vm_page_free_prep: page %p has references", m); 3714 3715 /* 3716 * Restore the default memory attribute to the page. 3717 */ 3718 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 3719 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 3720 3721 #if VM_NRESERVLEVEL > 0 3722 /* 3723 * Determine whether the page belongs to a reservation. If the page was 3724 * allocated from a per-CPU cache, it cannot belong to a reservation, so 3725 * as an optimization, we avoid the check in that case. 3726 */ 3727 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m)) 3728 return (false); 3729 #endif 3730 3731 return (true); 3732 } 3733 3734 /* 3735 * vm_page_free_toq: 3736 * 3737 * Returns the given page to the free list, disassociating it 3738 * from any VM object. 3739 * 3740 * The object must be locked. The page must be locked if it is 3741 * managed. 3742 */ 3743 static void 3744 vm_page_free_toq(vm_page_t m) 3745 { 3746 struct vm_domain *vmd; 3747 uma_zone_t zone; 3748 3749 if (!vm_page_free_prep(m)) 3750 return; 3751 3752 vmd = vm_pagequeue_domain(m); 3753 zone = vmd->vmd_pgcache[m->pool].zone; 3754 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) { 3755 uma_zfree(zone, m); 3756 return; 3757 } 3758 vm_domain_free_lock(vmd); 3759 vm_phys_free_pages(m, 0); 3760 vm_domain_free_unlock(vmd); 3761 vm_domain_freecnt_inc(vmd, 1); 3762 } 3763 3764 /* 3765 * vm_page_free_pages_toq: 3766 * 3767 * Returns a list of pages to the free list, disassociating it 3768 * from any VM object. In other words, this is equivalent to 3769 * calling vm_page_free_toq() for each page of a list of VM objects. 3770 * 3771 * The objects must be locked. The pages must be locked if it is 3772 * managed. 3773 */ 3774 void 3775 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count) 3776 { 3777 vm_page_t m; 3778 int count; 3779 3780 if (SLIST_EMPTY(free)) 3781 return; 3782 3783 count = 0; 3784 while ((m = SLIST_FIRST(free)) != NULL) { 3785 count++; 3786 SLIST_REMOVE_HEAD(free, plinks.s.ss); 3787 vm_page_free_toq(m); 3788 } 3789 3790 if (update_wire_count) 3791 vm_wire_sub(count); 3792 } 3793 3794 /* 3795 * Mark this page as wired down, preventing reclamation by the page daemon 3796 * or when the containing object is destroyed. 3797 */ 3798 void 3799 vm_page_wire(vm_page_t m) 3800 { 3801 u_int old; 3802 3803 KASSERT(m->object != NULL, 3804 ("vm_page_wire: page %p does not belong to an object", m)); 3805 if (!vm_page_busied(m) && !vm_object_busied(m->object)) 3806 VM_OBJECT_ASSERT_LOCKED(m->object); 3807 KASSERT((m->flags & PG_FICTITIOUS) == 0 || 3808 VPRC_WIRE_COUNT(m->ref_count) >= 1, 3809 ("vm_page_wire: fictitious page %p has zero wirings", m)); 3810 3811 old = atomic_fetchadd_int(&m->ref_count, 1); 3812 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX, 3813 ("vm_page_wire: counter overflow for page %p", m)); 3814 if (VPRC_WIRE_COUNT(old) == 0) { 3815 if ((m->oflags & VPO_UNMANAGED) == 0) 3816 vm_page_aflag_set(m, PGA_DEQUEUE); 3817 vm_wire_add(1); 3818 } 3819 } 3820 3821 /* 3822 * Attempt to wire a mapped page following a pmap lookup of that page. 3823 * This may fail if a thread is concurrently tearing down mappings of the page. 3824 * The transient failure is acceptable because it translates to the 3825 * failure of the caller pmap_extract_and_hold(), which should be then 3826 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages(). 3827 */ 3828 bool 3829 vm_page_wire_mapped(vm_page_t m) 3830 { 3831 u_int old; 3832 3833 old = m->ref_count; 3834 do { 3835 KASSERT(old > 0, 3836 ("vm_page_wire_mapped: wiring unreferenced page %p", m)); 3837 if ((old & VPRC_BLOCKED) != 0) 3838 return (false); 3839 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1)); 3840 3841 if (VPRC_WIRE_COUNT(old) == 0) { 3842 if ((m->oflags & VPO_UNMANAGED) == 0) 3843 vm_page_aflag_set(m, PGA_DEQUEUE); 3844 vm_wire_add(1); 3845 } 3846 return (true); 3847 } 3848 3849 /* 3850 * Release a wiring reference to a managed page. If the page still belongs to 3851 * an object, update its position in the page queues to reflect the reference. 3852 * If the wiring was the last reference to the page, free the page. 3853 */ 3854 static void 3855 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse) 3856 { 3857 u_int old; 3858 3859 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3860 ("%s: page %p is unmanaged", __func__, m)); 3861 3862 /* 3863 * Update LRU state before releasing the wiring reference. 3864 * Use a release store when updating the reference count to 3865 * synchronize with vm_page_free_prep(). 3866 */ 3867 old = m->ref_count; 3868 do { 3869 KASSERT(VPRC_WIRE_COUNT(old) > 0, 3870 ("vm_page_unwire: wire count underflow for page %p", m)); 3871 3872 if (old > VPRC_OBJREF + 1) { 3873 /* 3874 * The page has at least one other wiring reference. An 3875 * earlier iteration of this loop may have called 3876 * vm_page_release_toq() and cleared PGA_DEQUEUE, so 3877 * re-set it if necessary. 3878 */ 3879 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0) 3880 vm_page_aflag_set(m, PGA_DEQUEUE); 3881 } else if (old == VPRC_OBJREF + 1) { 3882 /* 3883 * This is the last wiring. Clear PGA_DEQUEUE and 3884 * update the page's queue state to reflect the 3885 * reference. If the page does not belong to an object 3886 * (i.e., the VPRC_OBJREF bit is clear), we only need to 3887 * clear leftover queue state. 3888 */ 3889 vm_page_release_toq(m, nqueue, false); 3890 } else if (old == 1) { 3891 vm_page_aflag_clear(m, PGA_DEQUEUE); 3892 } 3893 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1)); 3894 3895 if (VPRC_WIRE_COUNT(old) == 1) { 3896 vm_wire_sub(1); 3897 if (old == 1) 3898 vm_page_free(m); 3899 } 3900 } 3901 3902 /* 3903 * Release one wiring of the specified page, potentially allowing it to be 3904 * paged out. 3905 * 3906 * Only managed pages belonging to an object can be paged out. If the number 3907 * of wirings transitions to zero and the page is eligible for page out, then 3908 * the page is added to the specified paging queue. If the released wiring 3909 * represented the last reference to the page, the page is freed. 3910 * 3911 * A managed page must be locked. 3912 */ 3913 void 3914 vm_page_unwire(vm_page_t m, uint8_t nqueue) 3915 { 3916 3917 KASSERT(nqueue < PQ_COUNT, 3918 ("vm_page_unwire: invalid queue %u request for page %p", 3919 nqueue, m)); 3920 3921 if ((m->oflags & VPO_UNMANAGED) != 0) { 3922 if (vm_page_unwire_noq(m) && m->ref_count == 0) 3923 vm_page_free(m); 3924 return; 3925 } 3926 vm_page_unwire_managed(m, nqueue, false); 3927 } 3928 3929 /* 3930 * Unwire a page without (re-)inserting it into a page queue. It is up 3931 * to the caller to enqueue, requeue, or free the page as appropriate. 3932 * In most cases involving managed pages, vm_page_unwire() should be used 3933 * instead. 3934 */ 3935 bool 3936 vm_page_unwire_noq(vm_page_t m) 3937 { 3938 u_int old; 3939 3940 old = vm_page_drop(m, 1); 3941 KASSERT(VPRC_WIRE_COUNT(old) != 0, 3942 ("vm_page_unref: counter underflow for page %p", m)); 3943 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1, 3944 ("vm_page_unref: missing ref on fictitious page %p", m)); 3945 3946 if (VPRC_WIRE_COUNT(old) > 1) 3947 return (false); 3948 if ((m->oflags & VPO_UNMANAGED) == 0) 3949 vm_page_aflag_clear(m, PGA_DEQUEUE); 3950 vm_wire_sub(1); 3951 return (true); 3952 } 3953 3954 /* 3955 * Ensure that the page ends up in the specified page queue. If the page is 3956 * active or being moved to the active queue, ensure that its act_count is 3957 * at least ACT_INIT but do not otherwise mess with it. 3958 * 3959 * A managed page must be locked. 3960 */ 3961 static __always_inline void 3962 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag) 3963 { 3964 vm_page_astate_t old, new; 3965 3966 KASSERT(m->ref_count > 0, 3967 ("%s: page %p does not carry any references", __func__, m)); 3968 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD, 3969 ("%s: invalid flags %x", __func__, nflag)); 3970 3971 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m)) 3972 return; 3973 3974 old = vm_page_astate_load(m); 3975 do { 3976 if ((old.flags & PGA_DEQUEUE) != 0) 3977 break; 3978 new = old; 3979 new.flags &= ~PGA_QUEUE_OP_MASK; 3980 if (nqueue == PQ_ACTIVE) 3981 new.act_count = max(old.act_count, ACT_INIT); 3982 if (old.queue == nqueue) { 3983 if (nqueue != PQ_ACTIVE) 3984 new.flags |= nflag; 3985 } else { 3986 new.flags |= nflag; 3987 new.queue = nqueue; 3988 } 3989 } while (!vm_page_pqstate_commit(m, &old, new)); 3990 } 3991 3992 /* 3993 * Put the specified page on the active list (if appropriate). 3994 */ 3995 void 3996 vm_page_activate(vm_page_t m) 3997 { 3998 3999 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE); 4000 } 4001 4002 /* 4003 * Move the specified page to the tail of the inactive queue, or requeue 4004 * the page if it is already in the inactive queue. 4005 */ 4006 void 4007 vm_page_deactivate(vm_page_t m) 4008 { 4009 4010 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE); 4011 } 4012 4013 void 4014 vm_page_deactivate_noreuse(vm_page_t m) 4015 { 4016 4017 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD); 4018 } 4019 4020 /* 4021 * Put a page in the laundry, or requeue it if it is already there. 4022 */ 4023 void 4024 vm_page_launder(vm_page_t m) 4025 { 4026 4027 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE); 4028 } 4029 4030 /* 4031 * Put a page in the PQ_UNSWAPPABLE holding queue. 4032 */ 4033 void 4034 vm_page_unswappable(vm_page_t m) 4035 { 4036 4037 KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0, 4038 ("page %p already unswappable", m)); 4039 4040 vm_page_dequeue(m); 4041 vm_page_enqueue(m, PQ_UNSWAPPABLE); 4042 } 4043 4044 /* 4045 * Release a page back to the page queues in preparation for unwiring. 4046 */ 4047 static void 4048 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse) 4049 { 4050 vm_page_astate_t old, new; 4051 uint16_t nflag; 4052 4053 /* 4054 * Use a check of the valid bits to determine whether we should 4055 * accelerate reclamation of the page. The object lock might not be 4056 * held here, in which case the check is racy. At worst we will either 4057 * accelerate reclamation of a valid page and violate LRU, or 4058 * unnecessarily defer reclamation of an invalid page. 4059 * 4060 * If we were asked to not cache the page, place it near the head of the 4061 * inactive queue so that is reclaimed sooner. 4062 */ 4063 if (noreuse || m->valid == 0) { 4064 nqueue = PQ_INACTIVE; 4065 nflag = PGA_REQUEUE_HEAD; 4066 } else { 4067 nflag = PGA_REQUEUE; 4068 } 4069 4070 old = vm_page_astate_load(m); 4071 do { 4072 new = old; 4073 4074 /* 4075 * If the page is already in the active queue and we are not 4076 * trying to accelerate reclamation, simply mark it as 4077 * referenced and avoid any queue operations. 4078 */ 4079 new.flags &= ~PGA_QUEUE_OP_MASK; 4080 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE) 4081 new.flags |= PGA_REFERENCED; 4082 else { 4083 new.flags |= nflag; 4084 new.queue = nqueue; 4085 } 4086 } while (!vm_page_pqstate_commit(m, &old, new)); 4087 } 4088 4089 /* 4090 * Unwire a page and either attempt to free it or re-add it to the page queues. 4091 */ 4092 void 4093 vm_page_release(vm_page_t m, int flags) 4094 { 4095 vm_object_t object; 4096 4097 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4098 ("vm_page_release: page %p is unmanaged", m)); 4099 4100 if ((flags & VPR_TRYFREE) != 0) { 4101 for (;;) { 4102 object = (vm_object_t)atomic_load_ptr(&m->object); 4103 if (object == NULL) 4104 break; 4105 /* Depends on type-stability. */ 4106 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) 4107 break; 4108 if (object == m->object) { 4109 vm_page_release_locked(m, flags); 4110 VM_OBJECT_WUNLOCK(object); 4111 return; 4112 } 4113 VM_OBJECT_WUNLOCK(object); 4114 } 4115 } 4116 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0); 4117 } 4118 4119 /* See vm_page_release(). */ 4120 void 4121 vm_page_release_locked(vm_page_t m, int flags) 4122 { 4123 4124 VM_OBJECT_ASSERT_WLOCKED(m->object); 4125 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4126 ("vm_page_release_locked: page %p is unmanaged", m)); 4127 4128 if (vm_page_unwire_noq(m)) { 4129 if ((flags & VPR_TRYFREE) != 0 && 4130 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) && 4131 m->dirty == 0 && vm_page_tryxbusy(m)) { 4132 vm_page_free(m); 4133 } else { 4134 vm_page_release_toq(m, PQ_INACTIVE, flags != 0); 4135 } 4136 } 4137 } 4138 4139 static bool 4140 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t)) 4141 { 4142 u_int old; 4143 4144 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0, 4145 ("vm_page_try_blocked_op: page %p has no object", m)); 4146 KASSERT(vm_page_busied(m), 4147 ("vm_page_try_blocked_op: page %p is not busy", m)); 4148 VM_OBJECT_ASSERT_LOCKED(m->object); 4149 4150 old = m->ref_count; 4151 do { 4152 KASSERT(old != 0, 4153 ("vm_page_try_blocked_op: page %p has no references", m)); 4154 if (VPRC_WIRE_COUNT(old) != 0) 4155 return (false); 4156 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED)); 4157 4158 (op)(m); 4159 4160 /* 4161 * If the object is read-locked, new wirings may be created via an 4162 * object lookup. 4163 */ 4164 old = vm_page_drop(m, VPRC_BLOCKED); 4165 KASSERT(!VM_OBJECT_WOWNED(m->object) || 4166 old == (VPRC_BLOCKED | VPRC_OBJREF), 4167 ("vm_page_try_blocked_op: unexpected refcount value %u for %p", 4168 old, m)); 4169 return (true); 4170 } 4171 4172 /* 4173 * Atomically check for wirings and remove all mappings of the page. 4174 */ 4175 bool 4176 vm_page_try_remove_all(vm_page_t m) 4177 { 4178 4179 return (vm_page_try_blocked_op(m, pmap_remove_all)); 4180 } 4181 4182 /* 4183 * Atomically check for wirings and remove all writeable mappings of the page. 4184 */ 4185 bool 4186 vm_page_try_remove_write(vm_page_t m) 4187 { 4188 4189 return (vm_page_try_blocked_op(m, pmap_remove_write)); 4190 } 4191 4192 /* 4193 * vm_page_advise 4194 * 4195 * Apply the specified advice to the given page. 4196 * 4197 * The object and page must be locked. 4198 */ 4199 void 4200 vm_page_advise(vm_page_t m, int advice) 4201 { 4202 4203 VM_OBJECT_ASSERT_WLOCKED(m->object); 4204 if (advice == MADV_FREE) 4205 /* 4206 * Mark the page clean. This will allow the page to be freed 4207 * without first paging it out. MADV_FREE pages are often 4208 * quickly reused by malloc(3), so we do not do anything that 4209 * would result in a page fault on a later access. 4210 */ 4211 vm_page_undirty(m); 4212 else if (advice != MADV_DONTNEED) { 4213 if (advice == MADV_WILLNEED) 4214 vm_page_activate(m); 4215 return; 4216 } 4217 4218 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 4219 vm_page_dirty(m); 4220 4221 /* 4222 * Clear any references to the page. Otherwise, the page daemon will 4223 * immediately reactivate the page. 4224 */ 4225 vm_page_aflag_clear(m, PGA_REFERENCED); 4226 4227 /* 4228 * Place clean pages near the head of the inactive queue rather than 4229 * the tail, thus defeating the queue's LRU operation and ensuring that 4230 * the page will be reused quickly. Dirty pages not already in the 4231 * laundry are moved there. 4232 */ 4233 if (m->dirty == 0) 4234 vm_page_deactivate_noreuse(m); 4235 else if (!vm_page_in_laundry(m)) 4236 vm_page_launder(m); 4237 } 4238 4239 static inline int 4240 vm_page_grab_pflags(int allocflags) 4241 { 4242 int pflags; 4243 4244 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 || 4245 (allocflags & VM_ALLOC_WIRED) != 0, 4246 ("vm_page_grab_pflags: the pages must be busied or wired")); 4247 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4248 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4249 ("vm_page_grab_pflags: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY " 4250 "mismatch")); 4251 pflags = allocflags & 4252 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL | 4253 VM_ALLOC_NOBUSY); 4254 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 4255 pflags |= VM_ALLOC_WAITFAIL; 4256 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4257 pflags |= VM_ALLOC_SBUSY; 4258 4259 return (pflags); 4260 } 4261 4262 /* 4263 * Grab a page, waiting until we are waken up due to the page 4264 * changing state. We keep on waiting, if the page continues 4265 * to be in the object. If the page doesn't exist, first allocate it 4266 * and then conditionally zero it. 4267 * 4268 * This routine may sleep. 4269 * 4270 * The object must be locked on entry. The lock will, however, be released 4271 * and reacquired if the routine sleeps. 4272 */ 4273 vm_page_t 4274 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 4275 { 4276 vm_page_t m; 4277 int pflags; 4278 4279 VM_OBJECT_ASSERT_WLOCKED(object); 4280 pflags = vm_page_grab_pflags(allocflags); 4281 retrylookup: 4282 if ((m = vm_page_lookup(object, pindex)) != NULL) { 4283 if (!vm_page_acquire_flags(m, allocflags)) { 4284 if (vm_page_busy_sleep_flags(object, m, "pgrbwt", 4285 allocflags)) 4286 goto retrylookup; 4287 return (NULL); 4288 } 4289 goto out; 4290 } 4291 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4292 return (NULL); 4293 m = vm_page_alloc(object, pindex, pflags); 4294 if (m == NULL) { 4295 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 4296 return (NULL); 4297 goto retrylookup; 4298 } 4299 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 4300 pmap_zero_page(m); 4301 4302 out: 4303 if ((allocflags & VM_ALLOC_NOBUSY) != 0) { 4304 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4305 vm_page_sunbusy(m); 4306 else 4307 vm_page_xunbusy(m); 4308 } 4309 return (m); 4310 } 4311 4312 /* 4313 * Grab a page and make it valid, paging in if necessary. Pages missing from 4314 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied 4315 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought 4316 * in simultaneously. Additional pages will be left on a paging queue but 4317 * will neither be wired nor busy regardless of allocflags. 4318 */ 4319 int 4320 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags) 4321 { 4322 vm_page_t m; 4323 vm_page_t ma[VM_INITIAL_PAGEIN]; 4324 bool sleep, xbusy; 4325 int after, i, pflags, rv; 4326 4327 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4328 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4329 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 4330 KASSERT((allocflags & 4331 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0, 4332 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags)); 4333 VM_OBJECT_ASSERT_WLOCKED(object); 4334 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY); 4335 pflags |= VM_ALLOC_WAITFAIL; 4336 4337 retrylookup: 4338 xbusy = false; 4339 if ((m = vm_page_lookup(object, pindex)) != NULL) { 4340 /* 4341 * If the page is fully valid it can only become invalid 4342 * with the object lock held. If it is not valid it can 4343 * become valid with the busy lock held. Therefore, we 4344 * may unnecessarily lock the exclusive busy here if we 4345 * race with I/O completion not using the object lock. 4346 * However, we will not end up with an invalid page and a 4347 * shared lock. 4348 */ 4349 if (!vm_page_all_valid(m) || 4350 (allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) == 0) { 4351 sleep = !vm_page_tryxbusy(m); 4352 xbusy = true; 4353 } else 4354 sleep = !vm_page_trysbusy(m); 4355 if (sleep) { 4356 (void)vm_page_busy_sleep_flags(object, m, "pgrbwt", 4357 allocflags); 4358 goto retrylookup; 4359 } 4360 if ((allocflags & VM_ALLOC_NOCREAT) != 0 && 4361 !vm_page_all_valid(m)) { 4362 if (xbusy) 4363 vm_page_xunbusy(m); 4364 else 4365 vm_page_sunbusy(m); 4366 *mp = NULL; 4367 return (VM_PAGER_FAIL); 4368 } 4369 if ((allocflags & VM_ALLOC_WIRED) != 0) 4370 vm_page_wire(m); 4371 if (vm_page_all_valid(m)) 4372 goto out; 4373 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 4374 *mp = NULL; 4375 return (VM_PAGER_FAIL); 4376 } else if ((m = vm_page_alloc(object, pindex, pflags)) != NULL) { 4377 xbusy = true; 4378 } else { 4379 goto retrylookup; 4380 } 4381 4382 vm_page_assert_xbusied(m); 4383 MPASS(xbusy); 4384 if (vm_pager_has_page(object, pindex, NULL, &after)) { 4385 after = MIN(after, VM_INITIAL_PAGEIN); 4386 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT); 4387 after = MAX(after, 1); 4388 ma[0] = m; 4389 for (i = 1; i < after; i++) { 4390 if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) { 4391 if (ma[i]->valid || !vm_page_tryxbusy(ma[i])) 4392 break; 4393 } else { 4394 ma[i] = vm_page_alloc(object, m->pindex + i, 4395 VM_ALLOC_NORMAL); 4396 if (ma[i] == NULL) 4397 break; 4398 } 4399 } 4400 after = i; 4401 vm_object_pip_add(object, after); 4402 VM_OBJECT_WUNLOCK(object); 4403 rv = vm_pager_get_pages(object, ma, after, NULL, NULL); 4404 VM_OBJECT_WLOCK(object); 4405 vm_object_pip_wakeupn(object, after); 4406 /* Pager may have replaced a page. */ 4407 m = ma[0]; 4408 if (rv != VM_PAGER_OK) { 4409 if ((allocflags & VM_ALLOC_WIRED) != 0) 4410 vm_page_unwire_noq(m); 4411 for (i = 0; i < after; i++) { 4412 if (!vm_page_wired(ma[i])) 4413 vm_page_free(ma[i]); 4414 else 4415 vm_page_xunbusy(ma[i]); 4416 } 4417 *mp = NULL; 4418 return (rv); 4419 } 4420 for (i = 1; i < after; i++) 4421 vm_page_readahead_finish(ma[i]); 4422 MPASS(vm_page_all_valid(m)); 4423 } else { 4424 vm_page_zero_invalid(m, TRUE); 4425 } 4426 out: 4427 if ((allocflags & VM_ALLOC_NOBUSY) != 0) { 4428 if (xbusy) 4429 vm_page_xunbusy(m); 4430 else 4431 vm_page_sunbusy(m); 4432 } 4433 if ((allocflags & VM_ALLOC_SBUSY) != 0 && xbusy) 4434 vm_page_busy_downgrade(m); 4435 *mp = m; 4436 return (VM_PAGER_OK); 4437 } 4438 4439 /* 4440 * Return the specified range of pages from the given object. For each 4441 * page offset within the range, if a page already exists within the object 4442 * at that offset and it is busy, then wait for it to change state. If, 4443 * instead, the page doesn't exist, then allocate it. 4444 * 4445 * The caller must always specify an allocation class. 4446 * 4447 * allocation classes: 4448 * VM_ALLOC_NORMAL normal process request 4449 * VM_ALLOC_SYSTEM system *really* needs the pages 4450 * 4451 * The caller must always specify that the pages are to be busied and/or 4452 * wired. 4453 * 4454 * optional allocation flags: 4455 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages 4456 * VM_ALLOC_NOBUSY do not exclusive busy the page 4457 * VM_ALLOC_NOWAIT do not sleep 4458 * VM_ALLOC_SBUSY set page to sbusy state 4459 * VM_ALLOC_WIRED wire the pages 4460 * VM_ALLOC_ZERO zero and validate any invalid pages 4461 * 4462 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it 4463 * may return a partial prefix of the requested range. 4464 */ 4465 int 4466 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, 4467 vm_page_t *ma, int count) 4468 { 4469 vm_page_t m, mpred; 4470 int pflags; 4471 int i; 4472 4473 VM_OBJECT_ASSERT_WLOCKED(object); 4474 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0, 4475 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed")); 4476 4477 pflags = vm_page_grab_pflags(allocflags); 4478 if (count == 0) 4479 return (0); 4480 4481 i = 0; 4482 retrylookup: 4483 m = vm_radix_lookup_le(&object->rtree, pindex + i); 4484 if (m == NULL || m->pindex != pindex + i) { 4485 mpred = m; 4486 m = NULL; 4487 } else 4488 mpred = TAILQ_PREV(m, pglist, listq); 4489 for (; i < count; i++) { 4490 if (m != NULL) { 4491 if (!vm_page_acquire_flags(m, allocflags)) { 4492 if (vm_page_busy_sleep_flags(object, m, 4493 "grbmaw", allocflags)) 4494 goto retrylookup; 4495 break; 4496 } 4497 } else { 4498 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4499 break; 4500 m = vm_page_alloc_after(object, pindex + i, 4501 pflags | VM_ALLOC_COUNT(count - i), mpred); 4502 if (m == NULL) { 4503 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 4504 break; 4505 goto retrylookup; 4506 } 4507 } 4508 if (vm_page_none_valid(m) && 4509 (allocflags & VM_ALLOC_ZERO) != 0) { 4510 if ((m->flags & PG_ZERO) == 0) 4511 pmap_zero_page(m); 4512 vm_page_valid(m); 4513 } 4514 if ((allocflags & VM_ALLOC_NOBUSY) != 0) { 4515 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4516 vm_page_sunbusy(m); 4517 else 4518 vm_page_xunbusy(m); 4519 } 4520 ma[i] = mpred = m; 4521 m = vm_page_next(m); 4522 } 4523 return (i); 4524 } 4525 4526 /* 4527 * Mapping function for valid or dirty bits in a page. 4528 * 4529 * Inputs are required to range within a page. 4530 */ 4531 vm_page_bits_t 4532 vm_page_bits(int base, int size) 4533 { 4534 int first_bit; 4535 int last_bit; 4536 4537 KASSERT( 4538 base + size <= PAGE_SIZE, 4539 ("vm_page_bits: illegal base/size %d/%d", base, size) 4540 ); 4541 4542 if (size == 0) /* handle degenerate case */ 4543 return (0); 4544 4545 first_bit = base >> DEV_BSHIFT; 4546 last_bit = (base + size - 1) >> DEV_BSHIFT; 4547 4548 return (((vm_page_bits_t)2 << last_bit) - 4549 ((vm_page_bits_t)1 << first_bit)); 4550 } 4551 4552 void 4553 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set) 4554 { 4555 4556 #if PAGE_SIZE == 32768 4557 atomic_set_64((uint64_t *)bits, set); 4558 #elif PAGE_SIZE == 16384 4559 atomic_set_32((uint32_t *)bits, set); 4560 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16) 4561 atomic_set_16((uint16_t *)bits, set); 4562 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8) 4563 atomic_set_8((uint8_t *)bits, set); 4564 #else /* PAGE_SIZE <= 8192 */ 4565 uintptr_t addr; 4566 int shift; 4567 4568 addr = (uintptr_t)bits; 4569 /* 4570 * Use a trick to perform a 32-bit atomic on the 4571 * containing aligned word, to not depend on the existence 4572 * of atomic_{set, clear}_{8, 16}. 4573 */ 4574 shift = addr & (sizeof(uint32_t) - 1); 4575 #if BYTE_ORDER == BIG_ENDIAN 4576 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 4577 #else 4578 shift *= NBBY; 4579 #endif 4580 addr &= ~(sizeof(uint32_t) - 1); 4581 atomic_set_32((uint32_t *)addr, set << shift); 4582 #endif /* PAGE_SIZE */ 4583 } 4584 4585 static inline void 4586 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear) 4587 { 4588 4589 #if PAGE_SIZE == 32768 4590 atomic_clear_64((uint64_t *)bits, clear); 4591 #elif PAGE_SIZE == 16384 4592 atomic_clear_32((uint32_t *)bits, clear); 4593 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16) 4594 atomic_clear_16((uint16_t *)bits, clear); 4595 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8) 4596 atomic_clear_8((uint8_t *)bits, clear); 4597 #else /* PAGE_SIZE <= 8192 */ 4598 uintptr_t addr; 4599 int shift; 4600 4601 addr = (uintptr_t)bits; 4602 /* 4603 * Use a trick to perform a 32-bit atomic on the 4604 * containing aligned word, to not depend on the existence 4605 * of atomic_{set, clear}_{8, 16}. 4606 */ 4607 shift = addr & (sizeof(uint32_t) - 1); 4608 #if BYTE_ORDER == BIG_ENDIAN 4609 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 4610 #else 4611 shift *= NBBY; 4612 #endif 4613 addr &= ~(sizeof(uint32_t) - 1); 4614 atomic_clear_32((uint32_t *)addr, clear << shift); 4615 #endif /* PAGE_SIZE */ 4616 } 4617 4618 static inline vm_page_bits_t 4619 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits) 4620 { 4621 #if PAGE_SIZE == 32768 4622 uint64_t old; 4623 4624 old = *bits; 4625 while (atomic_fcmpset_64(bits, &old, newbits) == 0); 4626 return (old); 4627 #elif PAGE_SIZE == 16384 4628 uint32_t old; 4629 4630 old = *bits; 4631 while (atomic_fcmpset_32(bits, &old, newbits) == 0); 4632 return (old); 4633 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16) 4634 uint16_t old; 4635 4636 old = *bits; 4637 while (atomic_fcmpset_16(bits, &old, newbits) == 0); 4638 return (old); 4639 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8) 4640 uint8_t old; 4641 4642 old = *bits; 4643 while (atomic_fcmpset_8(bits, &old, newbits) == 0); 4644 return (old); 4645 #else /* PAGE_SIZE <= 4096*/ 4646 uintptr_t addr; 4647 uint32_t old, new, mask; 4648 int shift; 4649 4650 addr = (uintptr_t)bits; 4651 /* 4652 * Use a trick to perform a 32-bit atomic on the 4653 * containing aligned word, to not depend on the existence 4654 * of atomic_{set, swap, clear}_{8, 16}. 4655 */ 4656 shift = addr & (sizeof(uint32_t) - 1); 4657 #if BYTE_ORDER == BIG_ENDIAN 4658 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 4659 #else 4660 shift *= NBBY; 4661 #endif 4662 addr &= ~(sizeof(uint32_t) - 1); 4663 mask = VM_PAGE_BITS_ALL << shift; 4664 4665 old = *bits; 4666 do { 4667 new = old & ~mask; 4668 new |= newbits << shift; 4669 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0); 4670 return (old >> shift); 4671 #endif /* PAGE_SIZE */ 4672 } 4673 4674 /* 4675 * vm_page_set_valid_range: 4676 * 4677 * Sets portions of a page valid. The arguments are expected 4678 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 4679 * of any partial chunks touched by the range. The invalid portion of 4680 * such chunks will be zeroed. 4681 * 4682 * (base + size) must be less then or equal to PAGE_SIZE. 4683 */ 4684 void 4685 vm_page_set_valid_range(vm_page_t m, int base, int size) 4686 { 4687 int endoff, frag; 4688 vm_page_bits_t pagebits; 4689 4690 vm_page_assert_busied(m); 4691 if (size == 0) /* handle degenerate case */ 4692 return; 4693 4694 /* 4695 * If the base is not DEV_BSIZE aligned and the valid 4696 * bit is clear, we have to zero out a portion of the 4697 * first block. 4698 */ 4699 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 4700 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 4701 pmap_zero_page_area(m, frag, base - frag); 4702 4703 /* 4704 * If the ending offset is not DEV_BSIZE aligned and the 4705 * valid bit is clear, we have to zero out a portion of 4706 * the last block. 4707 */ 4708 endoff = base + size; 4709 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 4710 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 4711 pmap_zero_page_area(m, endoff, 4712 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 4713 4714 /* 4715 * Assert that no previously invalid block that is now being validated 4716 * is already dirty. 4717 */ 4718 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 4719 ("vm_page_set_valid_range: page %p is dirty", m)); 4720 4721 /* 4722 * Set valid bits inclusive of any overlap. 4723 */ 4724 pagebits = vm_page_bits(base, size); 4725 if (vm_page_xbusied(m)) 4726 m->valid |= pagebits; 4727 else 4728 vm_page_bits_set(m, &m->valid, pagebits); 4729 } 4730 4731 /* 4732 * Set the page dirty bits and free the invalid swap space if 4733 * present. Returns the previous dirty bits. 4734 */ 4735 vm_page_bits_t 4736 vm_page_set_dirty(vm_page_t m) 4737 { 4738 vm_page_bits_t old; 4739 4740 VM_PAGE_OBJECT_BUSY_ASSERT(m); 4741 4742 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) { 4743 old = m->dirty; 4744 m->dirty = VM_PAGE_BITS_ALL; 4745 } else 4746 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL); 4747 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0) 4748 vm_pager_page_unswapped(m); 4749 4750 return (old); 4751 } 4752 4753 /* 4754 * Clear the given bits from the specified page's dirty field. 4755 */ 4756 static __inline void 4757 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 4758 { 4759 4760 vm_page_assert_busied(m); 4761 4762 /* 4763 * If the page is xbusied and not write mapped we are the 4764 * only thread that can modify dirty bits. Otherwise, The pmap 4765 * layer can call vm_page_dirty() without holding a distinguished 4766 * lock. The combination of page busy and atomic operations 4767 * suffice to guarantee consistency of the page dirty field. 4768 */ 4769 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 4770 m->dirty &= ~pagebits; 4771 else 4772 vm_page_bits_clear(m, &m->dirty, pagebits); 4773 } 4774 4775 /* 4776 * vm_page_set_validclean: 4777 * 4778 * Sets portions of a page valid and clean. The arguments are expected 4779 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 4780 * of any partial chunks touched by the range. The invalid portion of 4781 * such chunks will be zero'd. 4782 * 4783 * (base + size) must be less then or equal to PAGE_SIZE. 4784 */ 4785 void 4786 vm_page_set_validclean(vm_page_t m, int base, int size) 4787 { 4788 vm_page_bits_t oldvalid, pagebits; 4789 int endoff, frag; 4790 4791 vm_page_assert_busied(m); 4792 if (size == 0) /* handle degenerate case */ 4793 return; 4794 4795 /* 4796 * If the base is not DEV_BSIZE aligned and the valid 4797 * bit is clear, we have to zero out a portion of the 4798 * first block. 4799 */ 4800 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 4801 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 4802 pmap_zero_page_area(m, frag, base - frag); 4803 4804 /* 4805 * If the ending offset is not DEV_BSIZE aligned and the 4806 * valid bit is clear, we have to zero out a portion of 4807 * the last block. 4808 */ 4809 endoff = base + size; 4810 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 4811 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 4812 pmap_zero_page_area(m, endoff, 4813 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 4814 4815 /* 4816 * Set valid, clear dirty bits. If validating the entire 4817 * page we can safely clear the pmap modify bit. We also 4818 * use this opportunity to clear the PGA_NOSYNC flag. If a process 4819 * takes a write fault on a MAP_NOSYNC memory area the flag will 4820 * be set again. 4821 * 4822 * We set valid bits inclusive of any overlap, but we can only 4823 * clear dirty bits for DEV_BSIZE chunks that are fully within 4824 * the range. 4825 */ 4826 oldvalid = m->valid; 4827 pagebits = vm_page_bits(base, size); 4828 if (vm_page_xbusied(m)) 4829 m->valid |= pagebits; 4830 else 4831 vm_page_bits_set(m, &m->valid, pagebits); 4832 #if 0 /* NOT YET */ 4833 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 4834 frag = DEV_BSIZE - frag; 4835 base += frag; 4836 size -= frag; 4837 if (size < 0) 4838 size = 0; 4839 } 4840 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 4841 #endif 4842 if (base == 0 && size == PAGE_SIZE) { 4843 /* 4844 * The page can only be modified within the pmap if it is 4845 * mapped, and it can only be mapped if it was previously 4846 * fully valid. 4847 */ 4848 if (oldvalid == VM_PAGE_BITS_ALL) 4849 /* 4850 * Perform the pmap_clear_modify() first. Otherwise, 4851 * a concurrent pmap operation, such as 4852 * pmap_protect(), could clear a modification in the 4853 * pmap and set the dirty field on the page before 4854 * pmap_clear_modify() had begun and after the dirty 4855 * field was cleared here. 4856 */ 4857 pmap_clear_modify(m); 4858 m->dirty = 0; 4859 vm_page_aflag_clear(m, PGA_NOSYNC); 4860 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m)) 4861 m->dirty &= ~pagebits; 4862 else 4863 vm_page_clear_dirty_mask(m, pagebits); 4864 } 4865 4866 void 4867 vm_page_clear_dirty(vm_page_t m, int base, int size) 4868 { 4869 4870 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 4871 } 4872 4873 /* 4874 * vm_page_set_invalid: 4875 * 4876 * Invalidates DEV_BSIZE'd chunks within a page. Both the 4877 * valid and dirty bits for the effected areas are cleared. 4878 */ 4879 void 4880 vm_page_set_invalid(vm_page_t m, int base, int size) 4881 { 4882 vm_page_bits_t bits; 4883 vm_object_t object; 4884 4885 /* 4886 * The object lock is required so that pages can't be mapped 4887 * read-only while we're in the process of invalidating them. 4888 */ 4889 object = m->object; 4890 VM_OBJECT_ASSERT_WLOCKED(object); 4891 vm_page_assert_busied(m); 4892 4893 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 4894 size >= object->un_pager.vnp.vnp_size) 4895 bits = VM_PAGE_BITS_ALL; 4896 else 4897 bits = vm_page_bits(base, size); 4898 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0) 4899 pmap_remove_all(m); 4900 KASSERT((bits == 0 && vm_page_all_valid(m)) || 4901 !pmap_page_is_mapped(m), 4902 ("vm_page_set_invalid: page %p is mapped", m)); 4903 if (vm_page_xbusied(m)) { 4904 m->valid &= ~bits; 4905 m->dirty &= ~bits; 4906 } else { 4907 vm_page_bits_clear(m, &m->valid, bits); 4908 vm_page_bits_clear(m, &m->dirty, bits); 4909 } 4910 } 4911 4912 /* 4913 * vm_page_invalid: 4914 * 4915 * Invalidates the entire page. The page must be busy, unmapped, and 4916 * the enclosing object must be locked. The object locks protects 4917 * against concurrent read-only pmap enter which is done without 4918 * busy. 4919 */ 4920 void 4921 vm_page_invalid(vm_page_t m) 4922 { 4923 4924 vm_page_assert_busied(m); 4925 VM_OBJECT_ASSERT_LOCKED(m->object); 4926 MPASS(!pmap_page_is_mapped(m)); 4927 4928 if (vm_page_xbusied(m)) 4929 m->valid = 0; 4930 else 4931 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL); 4932 } 4933 4934 /* 4935 * vm_page_zero_invalid() 4936 * 4937 * The kernel assumes that the invalid portions of a page contain 4938 * garbage, but such pages can be mapped into memory by user code. 4939 * When this occurs, we must zero out the non-valid portions of the 4940 * page so user code sees what it expects. 4941 * 4942 * Pages are most often semi-valid when the end of a file is mapped 4943 * into memory and the file's size is not page aligned. 4944 */ 4945 void 4946 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 4947 { 4948 int b; 4949 int i; 4950 4951 /* 4952 * Scan the valid bits looking for invalid sections that 4953 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the 4954 * valid bit may be set ) have already been zeroed by 4955 * vm_page_set_validclean(). 4956 */ 4957 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 4958 if (i == (PAGE_SIZE / DEV_BSIZE) || 4959 (m->valid & ((vm_page_bits_t)1 << i))) { 4960 if (i > b) { 4961 pmap_zero_page_area(m, 4962 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 4963 } 4964 b = i + 1; 4965 } 4966 } 4967 4968 /* 4969 * setvalid is TRUE when we can safely set the zero'd areas 4970 * as being valid. We can do this if there are no cache consistancy 4971 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 4972 */ 4973 if (setvalid) 4974 vm_page_valid(m); 4975 } 4976 4977 /* 4978 * vm_page_is_valid: 4979 * 4980 * Is (partial) page valid? Note that the case where size == 0 4981 * will return FALSE in the degenerate case where the page is 4982 * entirely invalid, and TRUE otherwise. 4983 * 4984 * Some callers envoke this routine without the busy lock held and 4985 * handle races via higher level locks. Typical callers should 4986 * hold a busy lock to prevent invalidation. 4987 */ 4988 int 4989 vm_page_is_valid(vm_page_t m, int base, int size) 4990 { 4991 vm_page_bits_t bits; 4992 4993 bits = vm_page_bits(base, size); 4994 return (m->valid != 0 && (m->valid & bits) == bits); 4995 } 4996 4997 /* 4998 * Returns true if all of the specified predicates are true for the entire 4999 * (super)page and false otherwise. 5000 */ 5001 bool 5002 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m) 5003 { 5004 vm_object_t object; 5005 int i, npages; 5006 5007 object = m->object; 5008 if (skip_m != NULL && skip_m->object != object) 5009 return (false); 5010 VM_OBJECT_ASSERT_LOCKED(object); 5011 npages = atop(pagesizes[m->psind]); 5012 5013 /* 5014 * The physically contiguous pages that make up a superpage, i.e., a 5015 * page with a page size index ("psind") greater than zero, will 5016 * occupy adjacent entries in vm_page_array[]. 5017 */ 5018 for (i = 0; i < npages; i++) { 5019 /* Always test object consistency, including "skip_m". */ 5020 if (m[i].object != object) 5021 return (false); 5022 if (&m[i] == skip_m) 5023 continue; 5024 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i])) 5025 return (false); 5026 if ((flags & PS_ALL_DIRTY) != 0) { 5027 /* 5028 * Calling vm_page_test_dirty() or pmap_is_modified() 5029 * might stop this case from spuriously returning 5030 * "false". However, that would require a write lock 5031 * on the object containing "m[i]". 5032 */ 5033 if (m[i].dirty != VM_PAGE_BITS_ALL) 5034 return (false); 5035 } 5036 if ((flags & PS_ALL_VALID) != 0 && 5037 m[i].valid != VM_PAGE_BITS_ALL) 5038 return (false); 5039 } 5040 return (true); 5041 } 5042 5043 /* 5044 * Set the page's dirty bits if the page is modified. 5045 */ 5046 void 5047 vm_page_test_dirty(vm_page_t m) 5048 { 5049 5050 vm_page_assert_busied(m); 5051 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 5052 vm_page_dirty(m); 5053 } 5054 5055 void 5056 vm_page_valid(vm_page_t m) 5057 { 5058 5059 vm_page_assert_busied(m); 5060 if (vm_page_xbusied(m)) 5061 m->valid = VM_PAGE_BITS_ALL; 5062 else 5063 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL); 5064 } 5065 5066 void 5067 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 5068 { 5069 5070 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 5071 } 5072 5073 void 5074 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 5075 { 5076 5077 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 5078 } 5079 5080 int 5081 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 5082 { 5083 5084 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 5085 } 5086 5087 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 5088 void 5089 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 5090 { 5091 5092 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 5093 } 5094 5095 void 5096 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 5097 { 5098 5099 mtx_assert_(vm_page_lockptr(m), a, file, line); 5100 } 5101 #endif 5102 5103 #ifdef INVARIANTS 5104 void 5105 vm_page_object_busy_assert(vm_page_t m) 5106 { 5107 5108 /* 5109 * Certain of the page's fields may only be modified by the 5110 * holder of a page or object busy. 5111 */ 5112 if (m->object != NULL && !vm_page_busied(m)) 5113 VM_OBJECT_ASSERT_BUSY(m->object); 5114 } 5115 5116 void 5117 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits) 5118 { 5119 5120 if ((bits & PGA_WRITEABLE) == 0) 5121 return; 5122 5123 /* 5124 * The PGA_WRITEABLE flag can only be set if the page is 5125 * managed, is exclusively busied or the object is locked. 5126 * Currently, this flag is only set by pmap_enter(). 5127 */ 5128 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 5129 ("PGA_WRITEABLE on unmanaged page")); 5130 if (!vm_page_xbusied(m)) 5131 VM_OBJECT_ASSERT_BUSY(m->object); 5132 } 5133 #endif 5134 5135 #include "opt_ddb.h" 5136 #ifdef DDB 5137 #include <sys/kernel.h> 5138 5139 #include <ddb/ddb.h> 5140 5141 DB_SHOW_COMMAND(page, vm_page_print_page_info) 5142 { 5143 5144 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count()); 5145 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count()); 5146 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count()); 5147 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count()); 5148 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count()); 5149 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 5150 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 5151 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 5152 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 5153 } 5154 5155 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 5156 { 5157 int dom; 5158 5159 db_printf("pq_free %d\n", vm_free_count()); 5160 for (dom = 0; dom < vm_ndomains; dom++) { 5161 db_printf( 5162 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n", 5163 dom, 5164 vm_dom[dom].vmd_page_count, 5165 vm_dom[dom].vmd_free_count, 5166 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 5167 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 5168 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt, 5169 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt); 5170 } 5171 } 5172 5173 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 5174 { 5175 vm_page_t m; 5176 boolean_t phys, virt; 5177 5178 if (!have_addr) { 5179 db_printf("show pginfo addr\n"); 5180 return; 5181 } 5182 5183 phys = strchr(modif, 'p') != NULL; 5184 virt = strchr(modif, 'v') != NULL; 5185 if (virt) 5186 m = PHYS_TO_VM_PAGE(pmap_kextract(addr)); 5187 else if (phys) 5188 m = PHYS_TO_VM_PAGE(addr); 5189 else 5190 m = (vm_page_t)addr; 5191 db_printf( 5192 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref %u\n" 5193 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 5194 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 5195 m->a.queue, m->ref_count, m->a.flags, m->oflags, 5196 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty); 5197 } 5198 #endif /* DDB */ 5199