1 /* 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 37 * $FreeBSD$ 38 */ 39 40 /* 41 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 42 * All rights reserved. 43 * 44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 45 * 46 * Permission to use, copy, modify and distribute this software and 47 * its documentation is hereby granted, provided that both the copyright 48 * notice and this permission notice appear in all copies of the 49 * software, derivative works or modified versions, and any portions 50 * thereof, and that both notices appear in supporting documentation. 51 * 52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 55 * 56 * Carnegie Mellon requests users of this software to return to 57 * 58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 59 * School of Computer Science 60 * Carnegie Mellon University 61 * Pittsburgh PA 15213-3890 62 * 63 * any improvements or extensions that they make and grant Carnegie the 64 * rights to redistribute these changes. 65 */ 66 67 /* 68 * GENERAL RULES ON VM_PAGE MANIPULATION 69 * 70 * - a pageq mutex is required when adding or removing a page from a 71 * page queue (vm_page_queue[]), regardless of other mutexes or the 72 * busy state of a page. 73 * 74 * - a hash chain mutex is required when associating or disassociating 75 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 76 * regardless of other mutexes or the busy state of a page. 77 * 78 * - either a hash chain mutex OR a busied page is required in order 79 * to modify the page flags. A hash chain mutex must be obtained in 80 * order to busy a page. A page's flags cannot be modified by a 81 * hash chain mutex if the page is marked busy. 82 * 83 * - The object memq mutex is held when inserting or removing 84 * pages from an object (vm_page_insert() or vm_page_remove()). This 85 * is different from the object's main mutex. 86 * 87 * Generally speaking, you have to be aware of side effects when running 88 * vm_page ops. A vm_page_lookup() will return with the hash chain 89 * locked, whether it was able to lookup the page or not. vm_page_free(), 90 * vm_page_cache(), vm_page_activate(), and a number of other routines 91 * will release the hash chain mutex for you. Intermediate manipulation 92 * routines such as vm_page_flag_set() expect the hash chain to be held 93 * on entry and the hash chain will remain held on return. 94 * 95 * pageq scanning can only occur with the pageq in question locked. 96 * We have a known bottleneck with the active queue, but the cache 97 * and free queues are actually arrays already. 98 */ 99 100 /* 101 * Resident memory management module. 102 */ 103 104 #include <sys/param.h> 105 #include <sys/systm.h> 106 #include <sys/lock.h> 107 #include <sys/malloc.h> 108 #include <sys/mutex.h> 109 #include <sys/proc.h> 110 #include <sys/vmmeter.h> 111 #include <sys/vnode.h> 112 113 #include <vm/vm.h> 114 #include <vm/vm_param.h> 115 #include <vm/vm_kern.h> 116 #include <vm/vm_object.h> 117 #include <vm/vm_page.h> 118 #include <vm/vm_pageout.h> 119 #include <vm/vm_pager.h> 120 #include <vm/vm_extern.h> 121 #include <vm/uma.h> 122 #include <vm/uma_int.h> 123 124 /* 125 * Associated with page of user-allocatable memory is a 126 * page structure. 127 */ 128 static struct mtx vm_page_buckets_mtx; 129 static struct vm_page **vm_page_buckets; /* Array of buckets */ 130 static int vm_page_bucket_count; /* How big is array? */ 131 static int vm_page_hash_mask; /* Mask for hash function */ 132 133 struct mtx vm_page_queue_mtx; 134 struct mtx vm_page_queue_free_mtx; 135 136 vm_page_t vm_page_array = 0; 137 int vm_page_array_size = 0; 138 long first_page = 0; 139 int vm_page_zero_count = 0; 140 141 /* 142 * vm_set_page_size: 143 * 144 * Sets the page size, perhaps based upon the memory 145 * size. Must be called before any use of page-size 146 * dependent functions. 147 */ 148 void 149 vm_set_page_size(void) 150 { 151 if (cnt.v_page_size == 0) 152 cnt.v_page_size = PAGE_SIZE; 153 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 154 panic("vm_set_page_size: page size not a power of two"); 155 } 156 157 /* 158 * vm_page_startup: 159 * 160 * Initializes the resident memory module. 161 * 162 * Allocates memory for the page cells, and 163 * for the object/offset-to-page hash table headers. 164 * Each page cell is initialized and placed on the free list. 165 */ 166 vm_offset_t 167 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr) 168 { 169 vm_offset_t mapped; 170 struct vm_page **bucket; 171 vm_size_t npages, page_range; 172 vm_offset_t new_end; 173 int i; 174 vm_offset_t pa; 175 int nblocks; 176 vm_offset_t last_pa; 177 178 /* the biggest memory array is the second group of pages */ 179 vm_offset_t end; 180 vm_offset_t biggestone, biggestsize; 181 182 vm_offset_t total; 183 vm_size_t bootpages; 184 185 total = 0; 186 biggestsize = 0; 187 biggestone = 0; 188 nblocks = 0; 189 vaddr = round_page(vaddr); 190 191 for (i = 0; phys_avail[i + 1]; i += 2) { 192 phys_avail[i] = round_page(phys_avail[i]); 193 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 194 } 195 196 for (i = 0; phys_avail[i + 1]; i += 2) { 197 vm_size_t size = phys_avail[i + 1] - phys_avail[i]; 198 199 if (size > biggestsize) { 200 biggestone = i; 201 biggestsize = size; 202 } 203 ++nblocks; 204 total += size; 205 } 206 207 end = phys_avail[biggestone+1]; 208 209 /* 210 * Initialize the locks. 211 */ 212 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF); 213 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 214 MTX_SPIN); 215 216 /* 217 * Initialize the queue headers for the free queue, the active queue 218 * and the inactive queue. 219 */ 220 vm_pageq_init(); 221 222 /* 223 * Allocate memory for use when boot strapping the kernel memory allocator 224 */ 225 bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE; 226 new_end = end - bootpages; 227 new_end = trunc_page(new_end); 228 mapped = pmap_map(&vaddr, new_end, end, 229 VM_PROT_READ | VM_PROT_WRITE); 230 bzero((caddr_t) mapped, end - new_end); 231 uma_startup((caddr_t)mapped); 232 233 end = new_end; 234 235 /* 236 * Allocate (and initialize) the hash table buckets. 237 * 238 * The number of buckets MUST BE a power of 2, and the actual value is 239 * the next power of 2 greater than the number of physical pages in 240 * the system. 241 * 242 * We make the hash table approximately 2x the number of pages to 243 * reduce the chain length. This is about the same size using the 244 * singly-linked list as the 1x hash table we were using before 245 * using TAILQ but the chain length will be smaller. 246 * 247 * Note: This computation can be tweaked if desired. 248 */ 249 if (vm_page_bucket_count == 0) { 250 vm_page_bucket_count = 1; 251 while (vm_page_bucket_count < atop(total)) 252 vm_page_bucket_count <<= 1; 253 } 254 vm_page_bucket_count <<= 1; 255 vm_page_hash_mask = vm_page_bucket_count - 1; 256 257 /* 258 * Validate these addresses. 259 */ 260 new_end = end - vm_page_bucket_count * sizeof(struct vm_page *); 261 new_end = trunc_page(new_end); 262 mapped = pmap_map(&vaddr, new_end, end, 263 VM_PROT_READ | VM_PROT_WRITE); 264 bzero((caddr_t) mapped, end - new_end); 265 266 mtx_init(&vm_page_buckets_mtx, "vm page buckets mutex", NULL, MTX_SPIN); 267 vm_page_buckets = (struct vm_page **)mapped; 268 bucket = vm_page_buckets; 269 for (i = 0; i < vm_page_bucket_count; i++) { 270 *bucket = NULL; 271 bucket++; 272 } 273 274 /* 275 * Compute the number of pages of memory that will be available for 276 * use (taking into account the overhead of a page structure per 277 * page). 278 */ 279 first_page = phys_avail[0] / PAGE_SIZE; 280 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 281 npages = (total - (page_range * sizeof(struct vm_page)) - 282 (end - new_end)) / PAGE_SIZE; 283 end = new_end; 284 285 /* 286 * Initialize the mem entry structures now, and put them in the free 287 * queue. 288 */ 289 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 290 mapped = pmap_map(&vaddr, new_end, end, 291 VM_PROT_READ | VM_PROT_WRITE); 292 vm_page_array = (vm_page_t) mapped; 293 294 /* 295 * Clear all of the page structures 296 */ 297 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 298 vm_page_array_size = page_range; 299 300 /* 301 * Construct the free queue(s) in descending order (by physical 302 * address) so that the first 16MB of physical memory is allocated 303 * last rather than first. On large-memory machines, this avoids 304 * the exhaustion of low physical memory before isa_dmainit has run. 305 */ 306 cnt.v_page_count = 0; 307 cnt.v_free_count = 0; 308 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 309 pa = phys_avail[i]; 310 if (i == biggestone) 311 last_pa = new_end; 312 else 313 last_pa = phys_avail[i + 1]; 314 while (pa < last_pa && npages-- > 0) { 315 vm_pageq_add_new_page(pa); 316 pa += PAGE_SIZE; 317 } 318 } 319 return (vaddr); 320 } 321 322 void 323 vm_page_flag_set(vm_page_t m, unsigned short bits) 324 { 325 GIANT_REQUIRED; 326 m->flags |= bits; 327 } 328 329 void 330 vm_page_flag_clear(vm_page_t m, unsigned short bits) 331 { 332 GIANT_REQUIRED; 333 m->flags &= ~bits; 334 } 335 336 void 337 vm_page_busy(vm_page_t m) 338 { 339 KASSERT((m->flags & PG_BUSY) == 0, 340 ("vm_page_busy: page already busy!!!")); 341 vm_page_flag_set(m, PG_BUSY); 342 } 343 344 /* 345 * vm_page_flash: 346 * 347 * wakeup anyone waiting for the page. 348 */ 349 void 350 vm_page_flash(vm_page_t m) 351 { 352 if (m->flags & PG_WANTED) { 353 vm_page_flag_clear(m, PG_WANTED); 354 wakeup(m); 355 } 356 } 357 358 /* 359 * vm_page_wakeup: 360 * 361 * clear the PG_BUSY flag and wakeup anyone waiting for the 362 * page. 363 * 364 */ 365 void 366 vm_page_wakeup(vm_page_t m) 367 { 368 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 369 vm_page_flag_clear(m, PG_BUSY); 370 vm_page_flash(m); 371 } 372 373 /* 374 * 375 * 376 */ 377 void 378 vm_page_io_start(vm_page_t m) 379 { 380 381 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 382 m->busy++; 383 } 384 385 void 386 vm_page_io_finish(vm_page_t m) 387 { 388 389 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 390 m->busy--; 391 if (m->busy == 0) 392 vm_page_flash(m); 393 } 394 395 /* 396 * Keep page from being freed by the page daemon 397 * much of the same effect as wiring, except much lower 398 * overhead and should be used only for *very* temporary 399 * holding ("wiring"). 400 */ 401 void 402 vm_page_hold(vm_page_t mem) 403 { 404 GIANT_REQUIRED; 405 mem->hold_count++; 406 } 407 408 void 409 vm_page_unhold(vm_page_t mem) 410 { 411 GIANT_REQUIRED; 412 --mem->hold_count; 413 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 414 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) 415 vm_page_free_toq(mem); 416 } 417 418 /* 419 * vm_page_protect: 420 * 421 * Reduce the protection of a page. This routine never raises the 422 * protection and therefore can be safely called if the page is already 423 * at VM_PROT_NONE (it will be a NOP effectively ). 424 */ 425 void 426 vm_page_protect(vm_page_t mem, int prot) 427 { 428 if (prot == VM_PROT_NONE) { 429 if (pmap_page_is_mapped(mem) || (mem->flags & PG_WRITEABLE)) { 430 pmap_page_protect(mem, VM_PROT_NONE); 431 vm_page_flag_clear(mem, PG_WRITEABLE); 432 } 433 } else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) { 434 pmap_page_protect(mem, VM_PROT_READ); 435 vm_page_flag_clear(mem, PG_WRITEABLE); 436 } 437 } 438 439 /* 440 * vm_page_copy: 441 * 442 * Copy one page to another 443 */ 444 void 445 vm_page_copy(vm_page_t src_m, vm_page_t dest_m) 446 { 447 pmap_copy_page(src_m, dest_m); 448 dest_m->valid = VM_PAGE_BITS_ALL; 449 } 450 451 /* 452 * vm_page_free: 453 * 454 * Free a page 455 * 456 * The clearing of PG_ZERO is a temporary safety until the code can be 457 * reviewed to determine that PG_ZERO is being properly cleared on 458 * write faults or maps. PG_ZERO was previously cleared in 459 * vm_page_alloc(). 460 */ 461 void 462 vm_page_free(vm_page_t m) 463 { 464 vm_page_flag_clear(m, PG_ZERO); 465 vm_page_free_toq(m); 466 vm_page_zero_idle_wakeup(); 467 } 468 469 /* 470 * vm_page_free_zero: 471 * 472 * Free a page to the zerod-pages queue 473 */ 474 void 475 vm_page_free_zero(vm_page_t m) 476 { 477 vm_page_flag_set(m, PG_ZERO); 478 vm_page_free_toq(m); 479 } 480 481 /* 482 * vm_page_sleep_busy: 483 * 484 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE) 485 * m->busy is zero. Returns TRUE if it had to sleep ( including if 486 * it almost had to sleep and made temporary spl*() mods), FALSE 487 * otherwise. 488 * 489 * This routine assumes that interrupts can only remove the busy 490 * status from a page, not set the busy status or change it from 491 * PG_BUSY to m->busy or vise versa (which would create a timing 492 * window). 493 */ 494 int 495 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg) 496 { 497 GIANT_REQUIRED; 498 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 499 int s = splvm(); 500 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 501 /* 502 * Page is busy. Wait and retry. 503 */ 504 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 505 tsleep(m, PVM, msg, 0); 506 } 507 splx(s); 508 return (TRUE); 509 /* not reached */ 510 } 511 return (FALSE); 512 } 513 514 /* 515 * vm_page_sleep_if_busy: 516 * 517 * Sleep and release the page queues lock if PG_BUSY is set or, 518 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the 519 * thread slept and the page queues lock was released. 520 * Otherwise, retains the page queues lock and returns FALSE. 521 */ 522 int 523 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg) 524 { 525 526 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 527 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 528 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 529 msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0); 530 return (TRUE); 531 } 532 return (FALSE); 533 } 534 535 /* 536 * vm_page_dirty: 537 * 538 * make page all dirty 539 */ 540 void 541 vm_page_dirty(vm_page_t m) 542 { 543 KASSERT(m->queue - m->pc != PQ_CACHE, 544 ("vm_page_dirty: page in cache!")); 545 m->dirty = VM_PAGE_BITS_ALL; 546 } 547 548 /* 549 * vm_page_splay: 550 * 551 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 552 * the vm_page containing the given pindex. If, however, that 553 * pindex is not found in the vm_object, returns a vm_page that is 554 * adjacent to the pindex, coming before or after it. 555 */ 556 static vm_page_t 557 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 558 { 559 struct vm_page dummy; 560 vm_page_t lefttreemax, righttreemin, y; 561 562 if (root == NULL) 563 return (root); 564 lefttreemax = righttreemin = &dummy; 565 for (;; root = y) { 566 if (pindex < root->pindex) { 567 if ((y = root->left) == NULL) 568 break; 569 if (pindex < y->pindex) { 570 /* Rotate right. */ 571 root->left = y->right; 572 y->right = root; 573 root = y; 574 if ((y = root->left) == NULL) 575 break; 576 } 577 /* Link into the new root's right tree. */ 578 righttreemin->left = root; 579 righttreemin = root; 580 } else if (pindex > root->pindex) { 581 if ((y = root->right) == NULL) 582 break; 583 if (pindex > y->pindex) { 584 /* Rotate left. */ 585 root->right = y->left; 586 y->left = root; 587 root = y; 588 if ((y = root->right) == NULL) 589 break; 590 } 591 /* Link into the new root's left tree. */ 592 lefttreemax->right = root; 593 lefttreemax = root; 594 } else 595 break; 596 } 597 /* Assemble the new root. */ 598 lefttreemax->right = root->left; 599 righttreemin->left = root->right; 600 root->left = dummy.right; 601 root->right = dummy.left; 602 return (root); 603 } 604 605 /* 606 * vm_page_insert: [ internal use only ] 607 * 608 * Inserts the given mem entry into the object and object list. 609 * 610 * The pagetables are not updated but will presumably fault the page 611 * in if necessary, or if a kernel page the caller will at some point 612 * enter the page into the kernel's pmap. We are not allowed to block 613 * here so we *can't* do this anyway. 614 * 615 * The object and page must be locked, and must be splhigh. 616 * This routine may not block. 617 */ 618 void 619 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 620 { 621 vm_page_t root; 622 623 GIANT_REQUIRED; 624 625 if (m->object != NULL) 626 panic("vm_page_insert: already inserted"); 627 628 /* 629 * Record the object/offset pair in this page 630 */ 631 m->object = object; 632 m->pindex = pindex; 633 634 /* 635 * Now link into the object's ordered list of backed pages. 636 */ 637 root = vm_page_splay(pindex, object->root); 638 if (root == NULL) { 639 m->left = NULL; 640 m->right = NULL; 641 TAILQ_INSERT_TAIL(&object->memq, m, listq); 642 } else if (pindex < root->pindex) { 643 m->left = root->left; 644 m->right = root; 645 root->left = NULL; 646 TAILQ_INSERT_BEFORE(root, m, listq); 647 } else { 648 m->right = root->right; 649 m->left = root; 650 root->right = NULL; 651 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 652 } 653 object->root = m; 654 object->generation++; 655 656 /* 657 * show that the object has one more resident page. 658 */ 659 object->resident_page_count++; 660 661 /* 662 * Since we are inserting a new and possibly dirty page, 663 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 664 */ 665 if (m->flags & PG_WRITEABLE) 666 vm_object_set_writeable_dirty(object); 667 } 668 669 /* 670 * vm_page_remove: 671 * NOTE: used by device pager as well -wfj 672 * 673 * Removes the given mem entry from the object/offset-page 674 * table and the object page list, but do not invalidate/terminate 675 * the backing store. 676 * 677 * The object and page must be locked, and at splhigh. 678 * The underlying pmap entry (if any) is NOT removed here. 679 * This routine may not block. 680 */ 681 void 682 vm_page_remove(vm_page_t m) 683 { 684 vm_object_t object; 685 vm_page_t root; 686 687 GIANT_REQUIRED; 688 689 if (m->object == NULL) 690 return; 691 692 if ((m->flags & PG_BUSY) == 0) { 693 panic("vm_page_remove: page not busy"); 694 } 695 696 /* 697 * Basically destroy the page. 698 */ 699 vm_page_wakeup(m); 700 701 object = m->object; 702 703 /* 704 * Now remove from the object's list of backed pages. 705 */ 706 if (m != object->root) 707 vm_page_splay(m->pindex, object->root); 708 if (m->left == NULL) 709 root = m->right; 710 else { 711 root = vm_page_splay(m->pindex, m->left); 712 root->right = m->right; 713 } 714 object->root = root; 715 TAILQ_REMOVE(&object->memq, m, listq); 716 717 /* 718 * And show that the object has one fewer resident page. 719 */ 720 object->resident_page_count--; 721 object->generation++; 722 723 m->object = NULL; 724 } 725 726 /* 727 * vm_page_lookup: 728 * 729 * Returns the page associated with the object/offset 730 * pair specified; if none is found, NULL is returned. 731 * 732 * The object must be locked. 733 * This routine may not block. 734 * This is a critical path routine 735 */ 736 vm_page_t 737 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 738 { 739 vm_page_t m; 740 741 GIANT_REQUIRED; 742 743 m = vm_page_splay(pindex, object->root); 744 if ((object->root = m) != NULL && m->pindex != pindex) 745 m = NULL; 746 return (m); 747 } 748 749 /* 750 * vm_page_rename: 751 * 752 * Move the given memory entry from its 753 * current object to the specified target object/offset. 754 * 755 * The object must be locked. 756 * This routine may not block. 757 * 758 * Note: this routine will raise itself to splvm(), the caller need not. 759 * 760 * Note: swap associated with the page must be invalidated by the move. We 761 * have to do this for several reasons: (1) we aren't freeing the 762 * page, (2) we are dirtying the page, (3) the VM system is probably 763 * moving the page from object A to B, and will then later move 764 * the backing store from A to B and we can't have a conflict. 765 * 766 * Note: we *always* dirty the page. It is necessary both for the 767 * fact that we moved it, and because we may be invalidating 768 * swap. If the page is on the cache, we have to deactivate it 769 * or vm_page_dirty() will panic. Dirty pages are not allowed 770 * on the cache. 771 */ 772 void 773 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 774 { 775 int s; 776 777 s = splvm(); 778 vm_page_lock_queues(); 779 vm_page_remove(m); 780 vm_page_insert(m, new_object, new_pindex); 781 if (m->queue - m->pc == PQ_CACHE) 782 vm_page_deactivate(m); 783 vm_page_dirty(m); 784 vm_page_unlock_queues(); 785 splx(s); 786 } 787 788 /* 789 * vm_page_select_cache: 790 * 791 * Find a page on the cache queue with color optimization. As pages 792 * might be found, but not applicable, they are deactivated. This 793 * keeps us from using potentially busy cached pages. 794 * 795 * This routine must be called at splvm(). 796 * This routine may not block. 797 */ 798 static vm_page_t 799 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex) 800 { 801 vm_page_t m; 802 803 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 804 while (TRUE) { 805 m = vm_pageq_find( 806 PQ_CACHE, 807 (pindex + object->pg_color) & PQ_L2_MASK, 808 FALSE 809 ); 810 if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 811 m->hold_count || m->wire_count)) { 812 vm_page_deactivate(m); 813 continue; 814 } 815 return m; 816 } 817 } 818 819 /* 820 * vm_page_select_free: 821 * 822 * Find a free or zero page, with specified preference. 823 * 824 * This routine must be called at splvm(). 825 * This routine may not block. 826 */ 827 static __inline vm_page_t 828 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero) 829 { 830 vm_page_t m; 831 832 m = vm_pageq_find( 833 PQ_FREE, 834 (pindex + object->pg_color) & PQ_L2_MASK, 835 prefer_zero 836 ); 837 return (m); 838 } 839 840 /* 841 * vm_page_alloc: 842 * 843 * Allocate and return a memory cell associated 844 * with this VM object/offset pair. 845 * 846 * page_req classes: 847 * VM_ALLOC_NORMAL normal process request 848 * VM_ALLOC_SYSTEM system *really* needs a page 849 * VM_ALLOC_INTERRUPT interrupt time request 850 * VM_ALLOC_ZERO zero page 851 * 852 * This routine may not block. 853 * 854 * Additional special handling is required when called from an 855 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with 856 * the page cache in this case. 857 */ 858 vm_page_t 859 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 860 { 861 vm_page_t m = NULL; 862 int page_req, s; 863 864 GIANT_REQUIRED; 865 866 KASSERT(!vm_page_lookup(object, pindex), 867 ("vm_page_alloc: page already allocated")); 868 869 page_req = req & VM_ALLOC_CLASS_MASK; 870 871 /* 872 * The pager is allowed to eat deeper into the free page list. 873 */ 874 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 875 page_req = VM_ALLOC_SYSTEM; 876 }; 877 878 s = splvm(); 879 loop: 880 mtx_lock_spin(&vm_page_queue_free_mtx); 881 if (cnt.v_free_count > cnt.v_free_reserved) { 882 /* 883 * Allocate from the free queue if there are plenty of pages 884 * in it. 885 */ 886 m = vm_page_select_free(object, pindex, 887 (req & VM_ALLOC_ZERO) != 0); 888 } else if ( 889 (page_req == VM_ALLOC_SYSTEM && 890 cnt.v_cache_count == 0 && 891 cnt.v_free_count > cnt.v_interrupt_free_min) || 892 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0) 893 ) { 894 /* 895 * Interrupt or system, dig deeper into the free list. 896 */ 897 m = vm_page_select_free(object, pindex, FALSE); 898 } else if (page_req != VM_ALLOC_INTERRUPT) { 899 mtx_unlock_spin(&vm_page_queue_free_mtx); 900 /* 901 * Allocatable from cache (non-interrupt only). On success, 902 * we must free the page and try again, thus ensuring that 903 * cnt.v_*_free_min counters are replenished. 904 */ 905 vm_page_lock_queues(); 906 if ((m = vm_page_select_cache(object, pindex)) == NULL) { 907 vm_page_unlock_queues(); 908 splx(s); 909 #if defined(DIAGNOSTIC) 910 if (cnt.v_cache_count > 0) 911 printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count); 912 #endif 913 vm_pageout_deficit++; 914 pagedaemon_wakeup(); 915 return (NULL); 916 } 917 KASSERT(m->dirty == 0, ("Found dirty cache page %p", m)); 918 vm_page_busy(m); 919 vm_page_protect(m, VM_PROT_NONE); 920 vm_page_free(m); 921 vm_page_unlock_queues(); 922 goto loop; 923 } else { 924 /* 925 * Not allocatable from cache from interrupt, give up. 926 */ 927 mtx_unlock_spin(&vm_page_queue_free_mtx); 928 splx(s); 929 vm_pageout_deficit++; 930 pagedaemon_wakeup(); 931 return (NULL); 932 } 933 934 /* 935 * At this point we had better have found a good page. 936 */ 937 938 KASSERT( 939 m != NULL, 940 ("vm_page_alloc(): missing page on free queue\n") 941 ); 942 943 /* 944 * Remove from free queue 945 */ 946 947 vm_pageq_remove_nowakeup(m); 948 949 /* 950 * Initialize structure. Only the PG_ZERO flag is inherited. 951 */ 952 if (m->flags & PG_ZERO) { 953 vm_page_zero_count--; 954 m->flags = PG_ZERO | PG_BUSY; 955 } else { 956 m->flags = PG_BUSY; 957 } 958 if (req & VM_ALLOC_WIRED) { 959 cnt.v_wire_count++; 960 m->wire_count = 1; 961 } else 962 m->wire_count = 0; 963 m->hold_count = 0; 964 m->act_count = 0; 965 m->busy = 0; 966 m->valid = 0; 967 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 968 mtx_unlock_spin(&vm_page_queue_free_mtx); 969 970 /* 971 * vm_page_insert() is safe prior to the splx(). Note also that 972 * inserting a page here does not insert it into the pmap (which 973 * could cause us to block allocating memory). We cannot block 974 * anywhere. 975 */ 976 vm_page_insert(m, object, pindex); 977 978 /* 979 * Don't wakeup too often - wakeup the pageout daemon when 980 * we would be nearly out of memory. 981 */ 982 if (vm_paging_needed()) 983 pagedaemon_wakeup(); 984 985 splx(s); 986 return (m); 987 } 988 989 /* 990 * vm_wait: (also see VM_WAIT macro) 991 * 992 * Block until free pages are available for allocation 993 * - Called in various places before memory allocations. 994 */ 995 void 996 vm_wait(void) 997 { 998 int s; 999 1000 s = splvm(); 1001 if (curproc == pageproc) { 1002 vm_pageout_pages_needed = 1; 1003 tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0); 1004 } else { 1005 if (!vm_pages_needed) { 1006 vm_pages_needed = 1; 1007 wakeup(&vm_pages_needed); 1008 } 1009 tsleep(&cnt.v_free_count, PVM, "vmwait", 0); 1010 } 1011 splx(s); 1012 } 1013 1014 /* 1015 * vm_waitpfault: (also see VM_WAITPFAULT macro) 1016 * 1017 * Block until free pages are available for allocation 1018 * - Called only in vm_fault so that processes page faulting 1019 * can be easily tracked. 1020 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 1021 * processes will be able to grab memory first. Do not change 1022 * this balance without careful testing first. 1023 */ 1024 void 1025 vm_waitpfault(void) 1026 { 1027 int s; 1028 1029 s = splvm(); 1030 if (!vm_pages_needed) { 1031 vm_pages_needed = 1; 1032 wakeup(&vm_pages_needed); 1033 } 1034 tsleep(&cnt.v_free_count, PUSER, "pfault", 0); 1035 splx(s); 1036 } 1037 1038 /* 1039 * vm_page_activate: 1040 * 1041 * Put the specified page on the active list (if appropriate). 1042 * Ensure that act_count is at least ACT_INIT but do not otherwise 1043 * mess with it. 1044 * 1045 * The page queues must be locked. 1046 * This routine may not block. 1047 */ 1048 void 1049 vm_page_activate(vm_page_t m) 1050 { 1051 int s; 1052 1053 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1054 s = splvm(); 1055 if (m->queue != PQ_ACTIVE) { 1056 if ((m->queue - m->pc) == PQ_CACHE) 1057 cnt.v_reactivated++; 1058 vm_pageq_remove(m); 1059 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1060 if (m->act_count < ACT_INIT) 1061 m->act_count = ACT_INIT; 1062 vm_pageq_enqueue(PQ_ACTIVE, m); 1063 } 1064 } else { 1065 if (m->act_count < ACT_INIT) 1066 m->act_count = ACT_INIT; 1067 } 1068 splx(s); 1069 } 1070 1071 /* 1072 * vm_page_free_wakeup: 1073 * 1074 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1075 * routine is called when a page has been added to the cache or free 1076 * queues. 1077 * 1078 * This routine may not block. 1079 * This routine must be called at splvm() 1080 */ 1081 static __inline void 1082 vm_page_free_wakeup(void) 1083 { 1084 /* 1085 * if pageout daemon needs pages, then tell it that there are 1086 * some free. 1087 */ 1088 if (vm_pageout_pages_needed && 1089 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1090 wakeup(&vm_pageout_pages_needed); 1091 vm_pageout_pages_needed = 0; 1092 } 1093 /* 1094 * wakeup processes that are waiting on memory if we hit a 1095 * high water mark. And wakeup scheduler process if we have 1096 * lots of memory. this process will swapin processes. 1097 */ 1098 if (vm_pages_needed && !vm_page_count_min()) { 1099 vm_pages_needed = 0; 1100 wakeup(&cnt.v_free_count); 1101 } 1102 } 1103 1104 /* 1105 * vm_page_free_toq: 1106 * 1107 * Returns the given page to the PQ_FREE list, 1108 * disassociating it with any VM object. 1109 * 1110 * Object and page must be locked prior to entry. 1111 * This routine may not block. 1112 */ 1113 1114 void 1115 vm_page_free_toq(vm_page_t m) 1116 { 1117 int s; 1118 struct vpgqueues *pq; 1119 vm_object_t object = m->object; 1120 1121 GIANT_REQUIRED; 1122 s = splvm(); 1123 cnt.v_tfree++; 1124 1125 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1126 printf( 1127 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 1128 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 1129 m->hold_count); 1130 if ((m->queue - m->pc) == PQ_FREE) 1131 panic("vm_page_free: freeing free page"); 1132 else 1133 panic("vm_page_free: freeing busy page"); 1134 } 1135 1136 /* 1137 * unqueue, then remove page. Note that we cannot destroy 1138 * the page here because we do not want to call the pager's 1139 * callback routine until after we've put the page on the 1140 * appropriate free queue. 1141 */ 1142 vm_pageq_remove_nowakeup(m); 1143 vm_page_remove(m); 1144 1145 /* 1146 * If fictitious remove object association and 1147 * return, otherwise delay object association removal. 1148 */ 1149 if ((m->flags & PG_FICTITIOUS) != 0) { 1150 splx(s); 1151 return; 1152 } 1153 1154 m->valid = 0; 1155 vm_page_undirty(m); 1156 1157 if (m->wire_count != 0) { 1158 if (m->wire_count > 1) { 1159 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1160 m->wire_count, (long)m->pindex); 1161 } 1162 panic("vm_page_free: freeing wired page\n"); 1163 } 1164 1165 /* 1166 * If we've exhausted the object's resident pages we want to free 1167 * it up. 1168 */ 1169 if (object && 1170 (object->type == OBJT_VNODE) && 1171 ((object->flags & OBJ_DEAD) == 0) 1172 ) { 1173 struct vnode *vp = (struct vnode *)object->handle; 1174 1175 if (vp) { 1176 VI_LOCK(vp); 1177 if (VSHOULDFREE(vp)) 1178 vfree(vp); 1179 VI_UNLOCK(vp); 1180 } 1181 } 1182 1183 /* 1184 * Clear the UNMANAGED flag when freeing an unmanaged page. 1185 */ 1186 if (m->flags & PG_UNMANAGED) { 1187 m->flags &= ~PG_UNMANAGED; 1188 } else { 1189 #ifdef __alpha__ 1190 pmap_page_is_free(m); 1191 #endif 1192 } 1193 1194 if (m->hold_count != 0) { 1195 m->flags &= ~PG_ZERO; 1196 m->queue = PQ_HOLD; 1197 } else 1198 m->queue = PQ_FREE + m->pc; 1199 pq = &vm_page_queues[m->queue]; 1200 mtx_lock_spin(&vm_page_queue_free_mtx); 1201 pq->lcnt++; 1202 ++(*pq->cnt); 1203 1204 /* 1205 * Put zero'd pages on the end ( where we look for zero'd pages 1206 * first ) and non-zerod pages at the head. 1207 */ 1208 if (m->flags & PG_ZERO) { 1209 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1210 ++vm_page_zero_count; 1211 } else { 1212 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1213 } 1214 mtx_unlock_spin(&vm_page_queue_free_mtx); 1215 vm_page_free_wakeup(); 1216 splx(s); 1217 } 1218 1219 /* 1220 * vm_page_unmanage: 1221 * 1222 * Prevent PV management from being done on the page. The page is 1223 * removed from the paging queues as if it were wired, and as a 1224 * consequence of no longer being managed the pageout daemon will not 1225 * touch it (since there is no way to locate the pte mappings for the 1226 * page). madvise() calls that mess with the pmap will also no longer 1227 * operate on the page. 1228 * 1229 * Beyond that the page is still reasonably 'normal'. Freeing the page 1230 * will clear the flag. 1231 * 1232 * This routine is used by OBJT_PHYS objects - objects using unswappable 1233 * physical memory as backing store rather then swap-backed memory and 1234 * will eventually be extended to support 4MB unmanaged physical 1235 * mappings. 1236 */ 1237 void 1238 vm_page_unmanage(vm_page_t m) 1239 { 1240 int s; 1241 1242 s = splvm(); 1243 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1244 if ((m->flags & PG_UNMANAGED) == 0) { 1245 if (m->wire_count == 0) 1246 vm_pageq_remove(m); 1247 } 1248 vm_page_flag_set(m, PG_UNMANAGED); 1249 splx(s); 1250 } 1251 1252 /* 1253 * vm_page_wire: 1254 * 1255 * Mark this page as wired down by yet 1256 * another map, removing it from paging queues 1257 * as necessary. 1258 * 1259 * The page queues must be locked. 1260 * This routine may not block. 1261 */ 1262 void 1263 vm_page_wire(vm_page_t m) 1264 { 1265 int s; 1266 1267 /* 1268 * Only bump the wire statistics if the page is not already wired, 1269 * and only unqueue the page if it is on some queue (if it is unmanaged 1270 * it is already off the queues). 1271 */ 1272 s = splvm(); 1273 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1274 if (m->wire_count == 0) { 1275 if ((m->flags & PG_UNMANAGED) == 0) 1276 vm_pageq_remove(m); 1277 cnt.v_wire_count++; 1278 } 1279 m->wire_count++; 1280 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1281 splx(s); 1282 } 1283 1284 /* 1285 * vm_page_unwire: 1286 * 1287 * Release one wiring of this page, potentially 1288 * enabling it to be paged again. 1289 * 1290 * Many pages placed on the inactive queue should actually go 1291 * into the cache, but it is difficult to figure out which. What 1292 * we do instead, if the inactive target is well met, is to put 1293 * clean pages at the head of the inactive queue instead of the tail. 1294 * This will cause them to be moved to the cache more quickly and 1295 * if not actively re-referenced, freed more quickly. If we just 1296 * stick these pages at the end of the inactive queue, heavy filesystem 1297 * meta-data accesses can cause an unnecessary paging load on memory bound 1298 * processes. This optimization causes one-time-use metadata to be 1299 * reused more quickly. 1300 * 1301 * BUT, if we are in a low-memory situation we have no choice but to 1302 * put clean pages on the cache queue. 1303 * 1304 * A number of routines use vm_page_unwire() to guarantee that the page 1305 * will go into either the inactive or active queues, and will NEVER 1306 * be placed in the cache - for example, just after dirtying a page. 1307 * dirty pages in the cache are not allowed. 1308 * 1309 * The page queues must be locked. 1310 * This routine may not block. 1311 */ 1312 void 1313 vm_page_unwire(vm_page_t m, int activate) 1314 { 1315 int s; 1316 1317 s = splvm(); 1318 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1319 if (m->wire_count > 0) { 1320 m->wire_count--; 1321 if (m->wire_count == 0) { 1322 cnt.v_wire_count--; 1323 if (m->flags & PG_UNMANAGED) { 1324 ; 1325 } else if (activate) 1326 vm_pageq_enqueue(PQ_ACTIVE, m); 1327 else { 1328 vm_page_flag_clear(m, PG_WINATCFLS); 1329 vm_pageq_enqueue(PQ_INACTIVE, m); 1330 } 1331 } 1332 } else { 1333 panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count); 1334 } 1335 splx(s); 1336 } 1337 1338 1339 /* 1340 * Move the specified page to the inactive queue. If the page has 1341 * any associated swap, the swap is deallocated. 1342 * 1343 * Normally athead is 0 resulting in LRU operation. athead is set 1344 * to 1 if we want this page to be 'as if it were placed in the cache', 1345 * except without unmapping it from the process address space. 1346 * 1347 * This routine may not block. 1348 */ 1349 static __inline void 1350 _vm_page_deactivate(vm_page_t m, int athead) 1351 { 1352 int s; 1353 1354 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1355 /* 1356 * Ignore if already inactive. 1357 */ 1358 if (m->queue == PQ_INACTIVE) 1359 return; 1360 1361 s = splvm(); 1362 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1363 if ((m->queue - m->pc) == PQ_CACHE) 1364 cnt.v_reactivated++; 1365 vm_page_flag_clear(m, PG_WINATCFLS); 1366 vm_pageq_remove(m); 1367 if (athead) 1368 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1369 else 1370 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1371 m->queue = PQ_INACTIVE; 1372 vm_page_queues[PQ_INACTIVE].lcnt++; 1373 cnt.v_inactive_count++; 1374 } 1375 splx(s); 1376 } 1377 1378 void 1379 vm_page_deactivate(vm_page_t m) 1380 { 1381 _vm_page_deactivate(m, 0); 1382 } 1383 1384 /* 1385 * vm_page_try_to_cache: 1386 * 1387 * Returns 0 on failure, 1 on success 1388 */ 1389 int 1390 vm_page_try_to_cache(vm_page_t m) 1391 { 1392 1393 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1394 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1395 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1396 return (0); 1397 } 1398 vm_page_test_dirty(m); 1399 if (m->dirty) 1400 return (0); 1401 vm_page_cache(m); 1402 return (1); 1403 } 1404 1405 /* 1406 * vm_page_try_to_free() 1407 * 1408 * Attempt to free the page. If we cannot free it, we do nothing. 1409 * 1 is returned on success, 0 on failure. 1410 */ 1411 int 1412 vm_page_try_to_free(vm_page_t m) 1413 { 1414 1415 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1416 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1417 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1418 return (0); 1419 } 1420 vm_page_test_dirty(m); 1421 if (m->dirty) 1422 return (0); 1423 vm_page_busy(m); 1424 vm_page_protect(m, VM_PROT_NONE); 1425 vm_page_free(m); 1426 return (1); 1427 } 1428 1429 /* 1430 * vm_page_cache 1431 * 1432 * Put the specified page onto the page cache queue (if appropriate). 1433 * 1434 * This routine may not block. 1435 */ 1436 void 1437 vm_page_cache(vm_page_t m) 1438 { 1439 int s; 1440 1441 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1442 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) { 1443 printf("vm_page_cache: attempting to cache busy page\n"); 1444 return; 1445 } 1446 if ((m->queue - m->pc) == PQ_CACHE) 1447 return; 1448 1449 /* 1450 * Remove all pmaps and indicate that the page is not 1451 * writeable or mapped. 1452 */ 1453 vm_page_protect(m, VM_PROT_NONE); 1454 if (m->dirty != 0) { 1455 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1456 (long)m->pindex); 1457 } 1458 s = splvm(); 1459 vm_pageq_remove_nowakeup(m); 1460 vm_pageq_enqueue(PQ_CACHE + m->pc, m); 1461 vm_page_free_wakeup(); 1462 splx(s); 1463 } 1464 1465 /* 1466 * vm_page_dontneed 1467 * 1468 * Cache, deactivate, or do nothing as appropriate. This routine 1469 * is typically used by madvise() MADV_DONTNEED. 1470 * 1471 * Generally speaking we want to move the page into the cache so 1472 * it gets reused quickly. However, this can result in a silly syndrome 1473 * due to the page recycling too quickly. Small objects will not be 1474 * fully cached. On the otherhand, if we move the page to the inactive 1475 * queue we wind up with a problem whereby very large objects 1476 * unnecessarily blow away our inactive and cache queues. 1477 * 1478 * The solution is to move the pages based on a fixed weighting. We 1479 * either leave them alone, deactivate them, or move them to the cache, 1480 * where moving them to the cache has the highest weighting. 1481 * By forcing some pages into other queues we eventually force the 1482 * system to balance the queues, potentially recovering other unrelated 1483 * space from active. The idea is to not force this to happen too 1484 * often. 1485 */ 1486 void 1487 vm_page_dontneed(vm_page_t m) 1488 { 1489 static int dnweight; 1490 int dnw; 1491 int head; 1492 1493 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1494 dnw = ++dnweight; 1495 1496 /* 1497 * occassionally leave the page alone 1498 */ 1499 if ((dnw & 0x01F0) == 0 || 1500 m->queue == PQ_INACTIVE || 1501 m->queue - m->pc == PQ_CACHE 1502 ) { 1503 if (m->act_count >= ACT_INIT) 1504 --m->act_count; 1505 return; 1506 } 1507 1508 if (m->dirty == 0) 1509 vm_page_test_dirty(m); 1510 1511 if (m->dirty || (dnw & 0x0070) == 0) { 1512 /* 1513 * Deactivate the page 3 times out of 32. 1514 */ 1515 head = 0; 1516 } else { 1517 /* 1518 * Cache the page 28 times out of every 32. Note that 1519 * the page is deactivated instead of cached, but placed 1520 * at the head of the queue instead of the tail. 1521 */ 1522 head = 1; 1523 } 1524 _vm_page_deactivate(m, head); 1525 } 1526 1527 /* 1528 * Grab a page, waiting until we are waken up due to the page 1529 * changing state. We keep on waiting, if the page continues 1530 * to be in the object. If the page doesn't exist, allocate it. 1531 * 1532 * This routine may block. 1533 */ 1534 vm_page_t 1535 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1536 { 1537 vm_page_t m; 1538 int s, generation; 1539 1540 GIANT_REQUIRED; 1541 retrylookup: 1542 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1543 vm_page_lock_queues(); 1544 if (m->busy || (m->flags & PG_BUSY)) { 1545 generation = object->generation; 1546 1547 s = splvm(); 1548 while ((object->generation == generation) && 1549 (m->busy || (m->flags & PG_BUSY))) { 1550 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1551 msleep(m, &vm_page_queue_mtx, PVM, "pgrbwt", 0); 1552 if ((allocflags & VM_ALLOC_RETRY) == 0) { 1553 vm_page_unlock_queues(); 1554 splx(s); 1555 return NULL; 1556 } 1557 } 1558 vm_page_unlock_queues(); 1559 splx(s); 1560 goto retrylookup; 1561 } else { 1562 if (allocflags & VM_ALLOC_WIRED) 1563 vm_page_wire(m); 1564 vm_page_busy(m); 1565 vm_page_unlock_queues(); 1566 return m; 1567 } 1568 } 1569 1570 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1571 if (m == NULL) { 1572 VM_WAIT; 1573 if ((allocflags & VM_ALLOC_RETRY) == 0) 1574 return NULL; 1575 goto retrylookup; 1576 } 1577 1578 return m; 1579 } 1580 1581 /* 1582 * Mapping function for valid bits or for dirty bits in 1583 * a page. May not block. 1584 * 1585 * Inputs are required to range within a page. 1586 */ 1587 __inline int 1588 vm_page_bits(int base, int size) 1589 { 1590 int first_bit; 1591 int last_bit; 1592 1593 KASSERT( 1594 base + size <= PAGE_SIZE, 1595 ("vm_page_bits: illegal base/size %d/%d", base, size) 1596 ); 1597 1598 if (size == 0) /* handle degenerate case */ 1599 return (0); 1600 1601 first_bit = base >> DEV_BSHIFT; 1602 last_bit = (base + size - 1) >> DEV_BSHIFT; 1603 1604 return ((2 << last_bit) - (1 << first_bit)); 1605 } 1606 1607 /* 1608 * vm_page_set_validclean: 1609 * 1610 * Sets portions of a page valid and clean. The arguments are expected 1611 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1612 * of any partial chunks touched by the range. The invalid portion of 1613 * such chunks will be zero'd. 1614 * 1615 * This routine may not block. 1616 * 1617 * (base + size) must be less then or equal to PAGE_SIZE. 1618 */ 1619 void 1620 vm_page_set_validclean(vm_page_t m, int base, int size) 1621 { 1622 int pagebits; 1623 int frag; 1624 int endoff; 1625 1626 GIANT_REQUIRED; 1627 if (size == 0) /* handle degenerate case */ 1628 return; 1629 1630 /* 1631 * If the base is not DEV_BSIZE aligned and the valid 1632 * bit is clear, we have to zero out a portion of the 1633 * first block. 1634 */ 1635 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1636 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1637 pmap_zero_page_area(m, frag, base - frag); 1638 1639 /* 1640 * If the ending offset is not DEV_BSIZE aligned and the 1641 * valid bit is clear, we have to zero out a portion of 1642 * the last block. 1643 */ 1644 endoff = base + size; 1645 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1646 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1647 pmap_zero_page_area(m, endoff, 1648 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1649 1650 /* 1651 * Set valid, clear dirty bits. If validating the entire 1652 * page we can safely clear the pmap modify bit. We also 1653 * use this opportunity to clear the PG_NOSYNC flag. If a process 1654 * takes a write fault on a MAP_NOSYNC memory area the flag will 1655 * be set again. 1656 * 1657 * We set valid bits inclusive of any overlap, but we can only 1658 * clear dirty bits for DEV_BSIZE chunks that are fully within 1659 * the range. 1660 */ 1661 pagebits = vm_page_bits(base, size); 1662 m->valid |= pagebits; 1663 #if 0 /* NOT YET */ 1664 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1665 frag = DEV_BSIZE - frag; 1666 base += frag; 1667 size -= frag; 1668 if (size < 0) 1669 size = 0; 1670 } 1671 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1672 #endif 1673 m->dirty &= ~pagebits; 1674 if (base == 0 && size == PAGE_SIZE) { 1675 pmap_clear_modify(m); 1676 vm_page_flag_clear(m, PG_NOSYNC); 1677 } 1678 } 1679 1680 #if 0 1681 1682 void 1683 vm_page_set_dirty(vm_page_t m, int base, int size) 1684 { 1685 m->dirty |= vm_page_bits(base, size); 1686 } 1687 1688 #endif 1689 1690 void 1691 vm_page_clear_dirty(vm_page_t m, int base, int size) 1692 { 1693 GIANT_REQUIRED; 1694 m->dirty &= ~vm_page_bits(base, size); 1695 } 1696 1697 /* 1698 * vm_page_set_invalid: 1699 * 1700 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1701 * valid and dirty bits for the effected areas are cleared. 1702 * 1703 * May not block. 1704 */ 1705 void 1706 vm_page_set_invalid(vm_page_t m, int base, int size) 1707 { 1708 int bits; 1709 1710 GIANT_REQUIRED; 1711 bits = vm_page_bits(base, size); 1712 m->valid &= ~bits; 1713 m->dirty &= ~bits; 1714 m->object->generation++; 1715 } 1716 1717 /* 1718 * vm_page_zero_invalid() 1719 * 1720 * The kernel assumes that the invalid portions of a page contain 1721 * garbage, but such pages can be mapped into memory by user code. 1722 * When this occurs, we must zero out the non-valid portions of the 1723 * page so user code sees what it expects. 1724 * 1725 * Pages are most often semi-valid when the end of a file is mapped 1726 * into memory and the file's size is not page aligned. 1727 */ 1728 void 1729 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1730 { 1731 int b; 1732 int i; 1733 1734 /* 1735 * Scan the valid bits looking for invalid sections that 1736 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1737 * valid bit may be set ) have already been zerod by 1738 * vm_page_set_validclean(). 1739 */ 1740 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1741 if (i == (PAGE_SIZE / DEV_BSIZE) || 1742 (m->valid & (1 << i)) 1743 ) { 1744 if (i > b) { 1745 pmap_zero_page_area(m, 1746 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1747 } 1748 b = i + 1; 1749 } 1750 } 1751 1752 /* 1753 * setvalid is TRUE when we can safely set the zero'd areas 1754 * as being valid. We can do this if there are no cache consistancy 1755 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1756 */ 1757 if (setvalid) 1758 m->valid = VM_PAGE_BITS_ALL; 1759 } 1760 1761 /* 1762 * vm_page_is_valid: 1763 * 1764 * Is (partial) page valid? Note that the case where size == 0 1765 * will return FALSE in the degenerate case where the page is 1766 * entirely invalid, and TRUE otherwise. 1767 * 1768 * May not block. 1769 */ 1770 int 1771 vm_page_is_valid(vm_page_t m, int base, int size) 1772 { 1773 int bits = vm_page_bits(base, size); 1774 1775 if (m->valid && ((m->valid & bits) == bits)) 1776 return 1; 1777 else 1778 return 0; 1779 } 1780 1781 /* 1782 * update dirty bits from pmap/mmu. May not block. 1783 */ 1784 void 1785 vm_page_test_dirty(vm_page_t m) 1786 { 1787 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1788 vm_page_dirty(m); 1789 } 1790 } 1791 1792 int so_zerocp_fullpage = 0; 1793 1794 void 1795 vm_page_cowfault(vm_page_t m) 1796 { 1797 vm_page_t mnew; 1798 vm_object_t object; 1799 vm_pindex_t pindex; 1800 1801 object = m->object; 1802 pindex = m->pindex; 1803 vm_page_busy(m); 1804 1805 retry_alloc: 1806 vm_page_remove(m); 1807 /* 1808 * An interrupt allocation is requested because the page 1809 * queues lock is held. 1810 */ 1811 mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT); 1812 if (mnew == NULL) { 1813 vm_page_insert(m, object, pindex); 1814 vm_page_unlock_queues(); 1815 VM_WAIT; 1816 vm_page_lock_queues(); 1817 goto retry_alloc; 1818 } 1819 1820 if (m->cow == 0) { 1821 /* 1822 * check to see if we raced with an xmit complete when 1823 * waiting to allocate a page. If so, put things back 1824 * the way they were 1825 */ 1826 vm_page_busy(mnew); 1827 vm_page_free(mnew); 1828 vm_page_insert(m, object, pindex); 1829 } else { /* clear COW & copy page */ 1830 if (so_zerocp_fullpage) { 1831 mnew->valid = VM_PAGE_BITS_ALL; 1832 } else { 1833 vm_page_copy(m, mnew); 1834 } 1835 vm_page_dirty(mnew); 1836 vm_page_flag_clear(mnew, PG_BUSY); 1837 } 1838 } 1839 1840 void 1841 vm_page_cowclear(vm_page_t m) 1842 { 1843 1844 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1845 if (m->cow) { 1846 m->cow--; 1847 /* 1848 * let vm_fault add back write permission lazily 1849 */ 1850 } 1851 /* 1852 * sf_buf_free() will free the page, so we needn't do it here 1853 */ 1854 } 1855 1856 void 1857 vm_page_cowsetup(vm_page_t m) 1858 { 1859 1860 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1861 m->cow++; 1862 vm_page_protect(m, VM_PROT_READ); 1863 } 1864 1865 #include "opt_ddb.h" 1866 #ifdef DDB 1867 #include <sys/kernel.h> 1868 1869 #include <ddb/ddb.h> 1870 1871 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1872 { 1873 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 1874 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 1875 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 1876 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 1877 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 1878 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 1879 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 1880 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 1881 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 1882 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 1883 } 1884 1885 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1886 { 1887 int i; 1888 db_printf("PQ_FREE:"); 1889 for (i = 0; i < PQ_L2_SIZE; i++) { 1890 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 1891 } 1892 db_printf("\n"); 1893 1894 db_printf("PQ_CACHE:"); 1895 for (i = 0; i < PQ_L2_SIZE; i++) { 1896 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 1897 } 1898 db_printf("\n"); 1899 1900 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1901 vm_page_queues[PQ_ACTIVE].lcnt, 1902 vm_page_queues[PQ_INACTIVE].lcnt); 1903 } 1904 #endif /* DDB */ 1905