xref: /freebsd/sys/vm/vm_page.c (revision a3d9bf49b57923118c339642594246ef73872ee8)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
36  */
37 
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *	Resident memory management module.
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_vm.h"
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 #include <vm/uma_int.h>
113 
114 #include <machine/md_var.h>
115 
116 struct vm_domain vm_dom[MAXMEMDOM];
117 
118 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
119 
120 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
121 
122 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
123 /* The following fields are protected by the domainset lock. */
124 domainset_t __exclusive_cache_line vm_min_domains;
125 domainset_t __exclusive_cache_line vm_severe_domains;
126 static int vm_min_waiters;
127 static int vm_severe_waiters;
128 static int vm_pageproc_waiters;
129 
130 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
131     "VM page statistics");
132 
133 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
134 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
135     CTLFLAG_RD, &pqstate_commit_retries,
136     "Number of failed per-page atomic queue state updates");
137 
138 static COUNTER_U64_DEFINE_EARLY(queue_ops);
139 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
140     CTLFLAG_RD, &queue_ops,
141     "Number of batched queue operations");
142 
143 static COUNTER_U64_DEFINE_EARLY(queue_nops);
144 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
145     CTLFLAG_RD, &queue_nops,
146     "Number of batched queue operations with no effects");
147 
148 /*
149  * bogus page -- for I/O to/from partially complete buffers,
150  * or for paging into sparsely invalid regions.
151  */
152 vm_page_t bogus_page;
153 
154 vm_page_t vm_page_array;
155 long vm_page_array_size;
156 long first_page;
157 
158 struct bitset *vm_page_dump;
159 long vm_page_dump_pages;
160 
161 static TAILQ_HEAD(, vm_page) blacklist_head;
162 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
163 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
164     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
165 
166 static uma_zone_t fakepg_zone;
167 
168 static void vm_page_alloc_check(vm_page_t m);
169 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
170     vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
171 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
172 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
173 static bool vm_page_free_prep(vm_page_t m);
174 static void vm_page_free_toq(vm_page_t m);
175 static void vm_page_init(void *dummy);
176 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
177     vm_pindex_t pindex, vm_page_t mpred);
178 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
179     vm_page_t mpred);
180 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
181     const uint16_t nflag);
182 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
183     vm_page_t m_run, vm_paddr_t high);
184 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
185 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
186     int req);
187 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
188     int flags);
189 static void vm_page_zone_release(void *arg, void **store, int cnt);
190 
191 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
192 
193 static void
194 vm_page_init(void *dummy)
195 {
196 
197 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
198 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
199 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
200 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
201 }
202 
203 /*
204  * The cache page zone is initialized later since we need to be able to allocate
205  * pages before UMA is fully initialized.
206  */
207 static void
208 vm_page_init_cache_zones(void *dummy __unused)
209 {
210 	struct vm_domain *vmd;
211 	struct vm_pgcache *pgcache;
212 	int cache, domain, maxcache, pool;
213 
214 	maxcache = 0;
215 	TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache);
216 	maxcache *= mp_ncpus;
217 	for (domain = 0; domain < vm_ndomains; domain++) {
218 		vmd = VM_DOMAIN(domain);
219 		for (pool = 0; pool < VM_NFREEPOOL; pool++) {
220 			pgcache = &vmd->vmd_pgcache[pool];
221 			pgcache->domain = domain;
222 			pgcache->pool = pool;
223 			pgcache->zone = uma_zcache_create("vm pgcache",
224 			    PAGE_SIZE, NULL, NULL, NULL, NULL,
225 			    vm_page_zone_import, vm_page_zone_release, pgcache,
226 			    UMA_ZONE_VM);
227 
228 			/*
229 			 * Limit each pool's zone to 0.1% of the pages in the
230 			 * domain.
231 			 */
232 			cache = maxcache != 0 ? maxcache :
233 			    vmd->vmd_page_count / 1000;
234 			uma_zone_set_maxcache(pgcache->zone, cache);
235 		}
236 	}
237 }
238 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
239 
240 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
241 #if PAGE_SIZE == 32768
242 #ifdef CTASSERT
243 CTASSERT(sizeof(u_long) >= 8);
244 #endif
245 #endif
246 
247 /*
248  *	vm_set_page_size:
249  *
250  *	Sets the page size, perhaps based upon the memory
251  *	size.  Must be called before any use of page-size
252  *	dependent functions.
253  */
254 void
255 vm_set_page_size(void)
256 {
257 	if (vm_cnt.v_page_size == 0)
258 		vm_cnt.v_page_size = PAGE_SIZE;
259 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
260 		panic("vm_set_page_size: page size not a power of two");
261 }
262 
263 /*
264  *	vm_page_blacklist_next:
265  *
266  *	Find the next entry in the provided string of blacklist
267  *	addresses.  Entries are separated by space, comma, or newline.
268  *	If an invalid integer is encountered then the rest of the
269  *	string is skipped.  Updates the list pointer to the next
270  *	character, or NULL if the string is exhausted or invalid.
271  */
272 static vm_paddr_t
273 vm_page_blacklist_next(char **list, char *end)
274 {
275 	vm_paddr_t bad;
276 	char *cp, *pos;
277 
278 	if (list == NULL || *list == NULL)
279 		return (0);
280 	if (**list =='\0') {
281 		*list = NULL;
282 		return (0);
283 	}
284 
285 	/*
286 	 * If there's no end pointer then the buffer is coming from
287 	 * the kenv and we know it's null-terminated.
288 	 */
289 	if (end == NULL)
290 		end = *list + strlen(*list);
291 
292 	/* Ensure that strtoq() won't walk off the end */
293 	if (*end != '\0') {
294 		if (*end == '\n' || *end == ' ' || *end  == ',')
295 			*end = '\0';
296 		else {
297 			printf("Blacklist not terminated, skipping\n");
298 			*list = NULL;
299 			return (0);
300 		}
301 	}
302 
303 	for (pos = *list; *pos != '\0'; pos = cp) {
304 		bad = strtoq(pos, &cp, 0);
305 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
306 			if (bad == 0) {
307 				if (++cp < end)
308 					continue;
309 				else
310 					break;
311 			}
312 		} else
313 			break;
314 		if (*cp == '\0' || ++cp >= end)
315 			*list = NULL;
316 		else
317 			*list = cp;
318 		return (trunc_page(bad));
319 	}
320 	printf("Garbage in RAM blacklist, skipping\n");
321 	*list = NULL;
322 	return (0);
323 }
324 
325 bool
326 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
327 {
328 	struct vm_domain *vmd;
329 	vm_page_t m;
330 	int ret;
331 
332 	m = vm_phys_paddr_to_vm_page(pa);
333 	if (m == NULL)
334 		return (true); /* page does not exist, no failure */
335 
336 	vmd = vm_pagequeue_domain(m);
337 	vm_domain_free_lock(vmd);
338 	ret = vm_phys_unfree_page(m);
339 	vm_domain_free_unlock(vmd);
340 	if (ret != 0) {
341 		vm_domain_freecnt_inc(vmd, -1);
342 		TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
343 		if (verbose)
344 			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
345 	}
346 	return (ret);
347 }
348 
349 /*
350  *	vm_page_blacklist_check:
351  *
352  *	Iterate through the provided string of blacklist addresses, pulling
353  *	each entry out of the physical allocator free list and putting it
354  *	onto a list for reporting via the vm.page_blacklist sysctl.
355  */
356 static void
357 vm_page_blacklist_check(char *list, char *end)
358 {
359 	vm_paddr_t pa;
360 	char *next;
361 
362 	next = list;
363 	while (next != NULL) {
364 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
365 			continue;
366 		vm_page_blacklist_add(pa, bootverbose);
367 	}
368 }
369 
370 /*
371  *	vm_page_blacklist_load:
372  *
373  *	Search for a special module named "ram_blacklist".  It'll be a
374  *	plain text file provided by the user via the loader directive
375  *	of the same name.
376  */
377 static void
378 vm_page_blacklist_load(char **list, char **end)
379 {
380 	void *mod;
381 	u_char *ptr;
382 	u_int len;
383 
384 	mod = NULL;
385 	ptr = NULL;
386 
387 	mod = preload_search_by_type("ram_blacklist");
388 	if (mod != NULL) {
389 		ptr = preload_fetch_addr(mod);
390 		len = preload_fetch_size(mod);
391         }
392 	*list = ptr;
393 	if (ptr != NULL)
394 		*end = ptr + len;
395 	else
396 		*end = NULL;
397 	return;
398 }
399 
400 static int
401 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
402 {
403 	vm_page_t m;
404 	struct sbuf sbuf;
405 	int error, first;
406 
407 	first = 1;
408 	error = sysctl_wire_old_buffer(req, 0);
409 	if (error != 0)
410 		return (error);
411 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
412 	TAILQ_FOREACH(m, &blacklist_head, listq) {
413 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
414 		    (uintmax_t)m->phys_addr);
415 		first = 0;
416 	}
417 	error = sbuf_finish(&sbuf);
418 	sbuf_delete(&sbuf);
419 	return (error);
420 }
421 
422 /*
423  * Initialize a dummy page for use in scans of the specified paging queue.
424  * In principle, this function only needs to set the flag PG_MARKER.
425  * Nonetheless, it write busies the page as a safety precaution.
426  */
427 void
428 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
429 {
430 
431 	bzero(marker, sizeof(*marker));
432 	marker->flags = PG_MARKER;
433 	marker->a.flags = aflags;
434 	marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
435 	marker->a.queue = queue;
436 }
437 
438 static void
439 vm_page_domain_init(int domain)
440 {
441 	struct vm_domain *vmd;
442 	struct vm_pagequeue *pq;
443 	int i;
444 
445 	vmd = VM_DOMAIN(domain);
446 	bzero(vmd, sizeof(*vmd));
447 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
448 	    "vm inactive pagequeue";
449 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
450 	    "vm active pagequeue";
451 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
452 	    "vm laundry pagequeue";
453 	*__DECONST(const char **,
454 	    &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
455 	    "vm unswappable pagequeue";
456 	vmd->vmd_domain = domain;
457 	vmd->vmd_page_count = 0;
458 	vmd->vmd_free_count = 0;
459 	vmd->vmd_segs = 0;
460 	vmd->vmd_oom = FALSE;
461 	for (i = 0; i < PQ_COUNT; i++) {
462 		pq = &vmd->vmd_pagequeues[i];
463 		TAILQ_INIT(&pq->pq_pl);
464 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
465 		    MTX_DEF | MTX_DUPOK);
466 		pq->pq_pdpages = 0;
467 		vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
468 	}
469 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
470 	mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
471 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
472 
473 	/*
474 	 * inacthead is used to provide FIFO ordering for LRU-bypassing
475 	 * insertions.
476 	 */
477 	vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
478 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
479 	    &vmd->vmd_inacthead, plinks.q);
480 
481 	/*
482 	 * The clock pages are used to implement active queue scanning without
483 	 * requeues.  Scans start at clock[0], which is advanced after the scan
484 	 * ends.  When the two clock hands meet, they are reset and scanning
485 	 * resumes from the head of the queue.
486 	 */
487 	vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
488 	vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
489 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
490 	    &vmd->vmd_clock[0], plinks.q);
491 	TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
492 	    &vmd->vmd_clock[1], plinks.q);
493 }
494 
495 /*
496  * Initialize a physical page in preparation for adding it to the free
497  * lists.
498  */
499 static void
500 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
501 {
502 
503 	m->object = NULL;
504 	m->ref_count = 0;
505 	m->busy_lock = VPB_FREED;
506 	m->flags = m->a.flags = 0;
507 	m->phys_addr = pa;
508 	m->a.queue = PQ_NONE;
509 	m->psind = 0;
510 	m->segind = segind;
511 	m->order = VM_NFREEORDER;
512 	m->pool = VM_FREEPOOL_DEFAULT;
513 	m->valid = m->dirty = 0;
514 	pmap_page_init(m);
515 }
516 
517 #ifndef PMAP_HAS_PAGE_ARRAY
518 static vm_paddr_t
519 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
520 {
521 	vm_paddr_t new_end;
522 
523 	/*
524 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
525 	 * However, because this page is allocated from KVM, out-of-bounds
526 	 * accesses using the direct map will not be trapped.
527 	 */
528 	*vaddr += PAGE_SIZE;
529 
530 	/*
531 	 * Allocate physical memory for the page structures, and map it.
532 	 */
533 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
534 	vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
535 	    VM_PROT_READ | VM_PROT_WRITE);
536 	vm_page_array_size = page_range;
537 
538 	return (new_end);
539 }
540 #endif
541 
542 /*
543  *	vm_page_startup:
544  *
545  *	Initializes the resident memory module.  Allocates physical memory for
546  *	bootstrapping UMA and some data structures that are used to manage
547  *	physical pages.  Initializes these structures, and populates the free
548  *	page queues.
549  */
550 vm_offset_t
551 vm_page_startup(vm_offset_t vaddr)
552 {
553 	struct vm_phys_seg *seg;
554 	vm_page_t m;
555 	char *list, *listend;
556 	vm_paddr_t end, high_avail, low_avail, new_end, size;
557 	vm_paddr_t page_range __unused;
558 	vm_paddr_t last_pa, pa;
559 	u_long pagecount;
560 #if MINIDUMP_PAGE_TRACKING
561 	u_long vm_page_dump_size;
562 #endif
563 	int biggestone, i, segind;
564 #ifdef WITNESS
565 	vm_offset_t mapped;
566 	int witness_size;
567 #endif
568 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
569 	long ii;
570 #endif
571 
572 	vaddr = round_page(vaddr);
573 
574 	vm_phys_early_startup();
575 	biggestone = vm_phys_avail_largest();
576 	end = phys_avail[biggestone+1];
577 
578 	/*
579 	 * Initialize the page and queue locks.
580 	 */
581 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
582 	for (i = 0; i < PA_LOCK_COUNT; i++)
583 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
584 	for (i = 0; i < vm_ndomains; i++)
585 		vm_page_domain_init(i);
586 
587 	new_end = end;
588 #ifdef WITNESS
589 	witness_size = round_page(witness_startup_count());
590 	new_end -= witness_size;
591 	mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
592 	    VM_PROT_READ | VM_PROT_WRITE);
593 	bzero((void *)mapped, witness_size);
594 	witness_startup((void *)mapped);
595 #endif
596 
597 #if MINIDUMP_PAGE_TRACKING
598 	/*
599 	 * Allocate a bitmap to indicate that a random physical page
600 	 * needs to be included in a minidump.
601 	 *
602 	 * The amd64 port needs this to indicate which direct map pages
603 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
604 	 *
605 	 * However, i386 still needs this workspace internally within the
606 	 * minidump code.  In theory, they are not needed on i386, but are
607 	 * included should the sf_buf code decide to use them.
608 	 */
609 	last_pa = 0;
610 	vm_page_dump_pages = 0;
611 	for (i = 0; dump_avail[i + 1] != 0; i += 2) {
612 		vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
613 		    dump_avail[i] / PAGE_SIZE;
614 		if (dump_avail[i + 1] > last_pa)
615 			last_pa = dump_avail[i + 1];
616 	}
617 	vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
618 	new_end -= vm_page_dump_size;
619 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
620 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
621 	bzero((void *)vm_page_dump, vm_page_dump_size);
622 #else
623 	(void)last_pa;
624 #endif
625 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
626     defined(__riscv) || defined(__powerpc64__)
627 	/*
628 	 * Include the UMA bootstrap pages, witness pages and vm_page_dump
629 	 * in a crash dump.  When pmap_map() uses the direct map, they are
630 	 * not automatically included.
631 	 */
632 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
633 		dump_add_page(pa);
634 #endif
635 	phys_avail[biggestone + 1] = new_end;
636 #ifdef __amd64__
637 	/*
638 	 * Request that the physical pages underlying the message buffer be
639 	 * included in a crash dump.  Since the message buffer is accessed
640 	 * through the direct map, they are not automatically included.
641 	 */
642 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
643 	last_pa = pa + round_page(msgbufsize);
644 	while (pa < last_pa) {
645 		dump_add_page(pa);
646 		pa += PAGE_SIZE;
647 	}
648 #endif
649 	/*
650 	 * Compute the number of pages of memory that will be available for
651 	 * use, taking into account the overhead of a page structure per page.
652 	 * In other words, solve
653 	 *	"available physical memory" - round_page(page_range *
654 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
655 	 * for page_range.
656 	 */
657 	low_avail = phys_avail[0];
658 	high_avail = phys_avail[1];
659 	for (i = 0; i < vm_phys_nsegs; i++) {
660 		if (vm_phys_segs[i].start < low_avail)
661 			low_avail = vm_phys_segs[i].start;
662 		if (vm_phys_segs[i].end > high_avail)
663 			high_avail = vm_phys_segs[i].end;
664 	}
665 	/* Skip the first chunk.  It is already accounted for. */
666 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
667 		if (phys_avail[i] < low_avail)
668 			low_avail = phys_avail[i];
669 		if (phys_avail[i + 1] > high_avail)
670 			high_avail = phys_avail[i + 1];
671 	}
672 	first_page = low_avail / PAGE_SIZE;
673 #ifdef VM_PHYSSEG_SPARSE
674 	size = 0;
675 	for (i = 0; i < vm_phys_nsegs; i++)
676 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
677 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
678 		size += phys_avail[i + 1] - phys_avail[i];
679 #elif defined(VM_PHYSSEG_DENSE)
680 	size = high_avail - low_avail;
681 #else
682 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
683 #endif
684 
685 #ifdef PMAP_HAS_PAGE_ARRAY
686 	pmap_page_array_startup(size / PAGE_SIZE);
687 	biggestone = vm_phys_avail_largest();
688 	end = new_end = phys_avail[biggestone + 1];
689 #else
690 #ifdef VM_PHYSSEG_DENSE
691 	/*
692 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
693 	 * the overhead of a page structure per page only if vm_page_array is
694 	 * allocated from the last physical memory chunk.  Otherwise, we must
695 	 * allocate page structures representing the physical memory
696 	 * underlying vm_page_array, even though they will not be used.
697 	 */
698 	if (new_end != high_avail)
699 		page_range = size / PAGE_SIZE;
700 	else
701 #endif
702 	{
703 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
704 
705 		/*
706 		 * If the partial bytes remaining are large enough for
707 		 * a page (PAGE_SIZE) without a corresponding
708 		 * 'struct vm_page', then new_end will contain an
709 		 * extra page after subtracting the length of the VM
710 		 * page array.  Compensate by subtracting an extra
711 		 * page from new_end.
712 		 */
713 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
714 			if (new_end == high_avail)
715 				high_avail -= PAGE_SIZE;
716 			new_end -= PAGE_SIZE;
717 		}
718 	}
719 	end = new_end;
720 	new_end = vm_page_array_alloc(&vaddr, end, page_range);
721 #endif
722 
723 #if VM_NRESERVLEVEL > 0
724 	/*
725 	 * Allocate physical memory for the reservation management system's
726 	 * data structures, and map it.
727 	 */
728 	new_end = vm_reserv_startup(&vaddr, new_end);
729 #endif
730 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
731     defined(__riscv) || defined(__powerpc64__)
732 	/*
733 	 * Include vm_page_array and vm_reserv_array in a crash dump.
734 	 */
735 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
736 		dump_add_page(pa);
737 #endif
738 	phys_avail[biggestone + 1] = new_end;
739 
740 	/*
741 	 * Add physical memory segments corresponding to the available
742 	 * physical pages.
743 	 */
744 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
745 		if (vm_phys_avail_size(i) != 0)
746 			vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
747 
748 	/*
749 	 * Initialize the physical memory allocator.
750 	 */
751 	vm_phys_init();
752 
753 	/*
754 	 * Initialize the page structures and add every available page to the
755 	 * physical memory allocator's free lists.
756 	 */
757 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
758 	for (ii = 0; ii < vm_page_array_size; ii++) {
759 		m = &vm_page_array[ii];
760 		vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
761 		m->flags = PG_FICTITIOUS;
762 	}
763 #endif
764 	vm_cnt.v_page_count = 0;
765 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
766 		seg = &vm_phys_segs[segind];
767 		for (m = seg->first_page, pa = seg->start; pa < seg->end;
768 		    m++, pa += PAGE_SIZE)
769 			vm_page_init_page(m, pa, segind);
770 
771 		/*
772 		 * Add the segment to the free lists only if it is covered by
773 		 * one of the ranges in phys_avail.  Because we've added the
774 		 * ranges to the vm_phys_segs array, we can assume that each
775 		 * segment is either entirely contained in one of the ranges,
776 		 * or doesn't overlap any of them.
777 		 */
778 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
779 			struct vm_domain *vmd;
780 
781 			if (seg->start < phys_avail[i] ||
782 			    seg->end > phys_avail[i + 1])
783 				continue;
784 
785 			m = seg->first_page;
786 			pagecount = (u_long)atop(seg->end - seg->start);
787 
788 			vmd = VM_DOMAIN(seg->domain);
789 			vm_domain_free_lock(vmd);
790 			vm_phys_enqueue_contig(m, pagecount);
791 			vm_domain_free_unlock(vmd);
792 			vm_domain_freecnt_inc(vmd, pagecount);
793 			vm_cnt.v_page_count += (u_int)pagecount;
794 
795 			vmd = VM_DOMAIN(seg->domain);
796 			vmd->vmd_page_count += (u_int)pagecount;
797 			vmd->vmd_segs |= 1UL << m->segind;
798 			break;
799 		}
800 	}
801 
802 	/*
803 	 * Remove blacklisted pages from the physical memory allocator.
804 	 */
805 	TAILQ_INIT(&blacklist_head);
806 	vm_page_blacklist_load(&list, &listend);
807 	vm_page_blacklist_check(list, listend);
808 
809 	list = kern_getenv("vm.blacklist");
810 	vm_page_blacklist_check(list, NULL);
811 
812 	freeenv(list);
813 #if VM_NRESERVLEVEL > 0
814 	/*
815 	 * Initialize the reservation management system.
816 	 */
817 	vm_reserv_init();
818 #endif
819 
820 	return (vaddr);
821 }
822 
823 void
824 vm_page_reference(vm_page_t m)
825 {
826 
827 	vm_page_aflag_set(m, PGA_REFERENCED);
828 }
829 
830 /*
831  *	vm_page_trybusy
832  *
833  *	Helper routine for grab functions to trylock busy.
834  *
835  *	Returns true on success and false on failure.
836  */
837 static bool
838 vm_page_trybusy(vm_page_t m, int allocflags)
839 {
840 
841 	if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
842 		return (vm_page_trysbusy(m));
843 	else
844 		return (vm_page_tryxbusy(m));
845 }
846 
847 /*
848  *	vm_page_tryacquire
849  *
850  *	Helper routine for grab functions to trylock busy and wire.
851  *
852  *	Returns true on success and false on failure.
853  */
854 static inline bool
855 vm_page_tryacquire(vm_page_t m, int allocflags)
856 {
857 	bool locked;
858 
859 	locked = vm_page_trybusy(m, allocflags);
860 	if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
861 		vm_page_wire(m);
862 	return (locked);
863 }
864 
865 /*
866  *	vm_page_busy_acquire:
867  *
868  *	Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
869  *	and drop the object lock if necessary.
870  */
871 bool
872 vm_page_busy_acquire(vm_page_t m, int allocflags)
873 {
874 	vm_object_t obj;
875 	bool locked;
876 
877 	/*
878 	 * The page-specific object must be cached because page
879 	 * identity can change during the sleep, causing the
880 	 * re-lock of a different object.
881 	 * It is assumed that a reference to the object is already
882 	 * held by the callers.
883 	 */
884 	obj = m->object;
885 	for (;;) {
886 		if (vm_page_tryacquire(m, allocflags))
887 			return (true);
888 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
889 			return (false);
890 		if (obj != NULL)
891 			locked = VM_OBJECT_WOWNED(obj);
892 		else
893 			locked = false;
894 		MPASS(locked || vm_page_wired(m));
895 		if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
896 		    locked) && locked)
897 			VM_OBJECT_WLOCK(obj);
898 		if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
899 			return (false);
900 		KASSERT(m->object == obj || m->object == NULL,
901 		    ("vm_page_busy_acquire: page %p does not belong to %p",
902 		    m, obj));
903 	}
904 }
905 
906 /*
907  *	vm_page_busy_downgrade:
908  *
909  *	Downgrade an exclusive busy page into a single shared busy page.
910  */
911 void
912 vm_page_busy_downgrade(vm_page_t m)
913 {
914 	u_int x;
915 
916 	vm_page_assert_xbusied(m);
917 
918 	x = vm_page_busy_fetch(m);
919 	for (;;) {
920 		if (atomic_fcmpset_rel_int(&m->busy_lock,
921 		    &x, VPB_SHARERS_WORD(1)))
922 			break;
923 	}
924 	if ((x & VPB_BIT_WAITERS) != 0)
925 		wakeup(m);
926 }
927 
928 /*
929  *
930  *	vm_page_busy_tryupgrade:
931  *
932  *	Attempt to upgrade a single shared busy into an exclusive busy.
933  */
934 int
935 vm_page_busy_tryupgrade(vm_page_t m)
936 {
937 	u_int ce, x;
938 
939 	vm_page_assert_sbusied(m);
940 
941 	x = vm_page_busy_fetch(m);
942 	ce = VPB_CURTHREAD_EXCLUSIVE;
943 	for (;;) {
944 		if (VPB_SHARERS(x) > 1)
945 			return (0);
946 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
947 		    ("vm_page_busy_tryupgrade: invalid lock state"));
948 		if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
949 		    ce | (x & VPB_BIT_WAITERS)))
950 			continue;
951 		return (1);
952 	}
953 }
954 
955 /*
956  *	vm_page_sbusied:
957  *
958  *	Return a positive value if the page is shared busied, 0 otherwise.
959  */
960 int
961 vm_page_sbusied(vm_page_t m)
962 {
963 	u_int x;
964 
965 	x = vm_page_busy_fetch(m);
966 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
967 }
968 
969 /*
970  *	vm_page_sunbusy:
971  *
972  *	Shared unbusy a page.
973  */
974 void
975 vm_page_sunbusy(vm_page_t m)
976 {
977 	u_int x;
978 
979 	vm_page_assert_sbusied(m);
980 
981 	x = vm_page_busy_fetch(m);
982 	for (;;) {
983 		KASSERT(x != VPB_FREED,
984 		    ("vm_page_sunbusy: Unlocking freed page."));
985 		if (VPB_SHARERS(x) > 1) {
986 			if (atomic_fcmpset_int(&m->busy_lock, &x,
987 			    x - VPB_ONE_SHARER))
988 				break;
989 			continue;
990 		}
991 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
992 		    ("vm_page_sunbusy: invalid lock state"));
993 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
994 			continue;
995 		if ((x & VPB_BIT_WAITERS) == 0)
996 			break;
997 		wakeup(m);
998 		break;
999 	}
1000 }
1001 
1002 /*
1003  *	vm_page_busy_sleep:
1004  *
1005  *	Sleep if the page is busy, using the page pointer as wchan.
1006  *	This is used to implement the hard-path of busying mechanism.
1007  *
1008  *	If nonshared is true, sleep only if the page is xbusy.
1009  *
1010  *	The object lock must be held on entry and will be released on exit.
1011  */
1012 void
1013 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1014 {
1015 	vm_object_t obj;
1016 
1017 	obj = m->object;
1018 	VM_OBJECT_ASSERT_LOCKED(obj);
1019 	vm_page_lock_assert(m, MA_NOTOWNED);
1020 
1021 	if (!_vm_page_busy_sleep(obj, m, m->pindex, wmesg,
1022 	    nonshared ? VM_ALLOC_SBUSY : 0 , true))
1023 		VM_OBJECT_DROP(obj);
1024 }
1025 
1026 /*
1027  *	vm_page_busy_sleep_unlocked:
1028  *
1029  *	Sleep if the page is busy, using the page pointer as wchan.
1030  *	This is used to implement the hard-path of busying mechanism.
1031  *
1032  *	If nonshared is true, sleep only if the page is xbusy.
1033  *
1034  *	The object lock must not be held on entry.  The operation will
1035  *	return if the page changes identity.
1036  */
1037 void
1038 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1039     const char *wmesg, bool nonshared)
1040 {
1041 
1042 	VM_OBJECT_ASSERT_UNLOCKED(obj);
1043 	vm_page_lock_assert(m, MA_NOTOWNED);
1044 
1045 	_vm_page_busy_sleep(obj, m, pindex, wmesg,
1046 	    nonshared ? VM_ALLOC_SBUSY : 0, false);
1047 }
1048 
1049 /*
1050  *	_vm_page_busy_sleep:
1051  *
1052  *	Internal busy sleep function.  Verifies the page identity and
1053  *	lockstate against parameters.  Returns true if it sleeps and
1054  *	false otherwise.
1055  *
1056  *	If locked is true the lock will be dropped for any true returns
1057  *	and held for any false returns.
1058  */
1059 static bool
1060 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1061     const char *wmesg, int allocflags, bool locked)
1062 {
1063 	bool xsleep;
1064 	u_int x;
1065 
1066 	/*
1067 	 * If the object is busy we must wait for that to drain to zero
1068 	 * before trying the page again.
1069 	 */
1070 	if (obj != NULL && vm_object_busied(obj)) {
1071 		if (locked)
1072 			VM_OBJECT_DROP(obj);
1073 		vm_object_busy_wait(obj, wmesg);
1074 		return (true);
1075 	}
1076 
1077 	if (!vm_page_busied(m))
1078 		return (false);
1079 
1080 	xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1081 	sleepq_lock(m);
1082 	x = vm_page_busy_fetch(m);
1083 	do {
1084 		/*
1085 		 * If the page changes objects or becomes unlocked we can
1086 		 * simply return.
1087 		 */
1088 		if (x == VPB_UNBUSIED ||
1089 		    (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1090 		    m->object != obj || m->pindex != pindex) {
1091 			sleepq_release(m);
1092 			return (false);
1093 		}
1094 		if ((x & VPB_BIT_WAITERS) != 0)
1095 			break;
1096 	} while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1097 	if (locked)
1098 		VM_OBJECT_DROP(obj);
1099 	DROP_GIANT();
1100 	sleepq_add(m, NULL, wmesg, 0, 0);
1101 	sleepq_wait(m, PVM);
1102 	PICKUP_GIANT();
1103 	return (true);
1104 }
1105 
1106 /*
1107  *	vm_page_trysbusy:
1108  *
1109  *	Try to shared busy a page.
1110  *	If the operation succeeds 1 is returned otherwise 0.
1111  *	The operation never sleeps.
1112  */
1113 int
1114 vm_page_trysbusy(vm_page_t m)
1115 {
1116 	vm_object_t obj;
1117 	u_int x;
1118 
1119 	obj = m->object;
1120 	x = vm_page_busy_fetch(m);
1121 	for (;;) {
1122 		if ((x & VPB_BIT_SHARED) == 0)
1123 			return (0);
1124 		/*
1125 		 * Reduce the window for transient busies that will trigger
1126 		 * false negatives in vm_page_ps_test().
1127 		 */
1128 		if (obj != NULL && vm_object_busied(obj))
1129 			return (0);
1130 		if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1131 		    x + VPB_ONE_SHARER))
1132 			break;
1133 	}
1134 
1135 	/* Refetch the object now that we're guaranteed that it is stable. */
1136 	obj = m->object;
1137 	if (obj != NULL && vm_object_busied(obj)) {
1138 		vm_page_sunbusy(m);
1139 		return (0);
1140 	}
1141 	return (1);
1142 }
1143 
1144 /*
1145  *	vm_page_tryxbusy:
1146  *
1147  *	Try to exclusive busy a page.
1148  *	If the operation succeeds 1 is returned otherwise 0.
1149  *	The operation never sleeps.
1150  */
1151 int
1152 vm_page_tryxbusy(vm_page_t m)
1153 {
1154 	vm_object_t obj;
1155 
1156         if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1157             VPB_CURTHREAD_EXCLUSIVE) == 0)
1158 		return (0);
1159 
1160 	obj = m->object;
1161 	if (obj != NULL && vm_object_busied(obj)) {
1162 		vm_page_xunbusy(m);
1163 		return (0);
1164 	}
1165 	return (1);
1166 }
1167 
1168 static void
1169 vm_page_xunbusy_hard_tail(vm_page_t m)
1170 {
1171 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1172 	/* Wake the waiter. */
1173 	wakeup(m);
1174 }
1175 
1176 /*
1177  *	vm_page_xunbusy_hard:
1178  *
1179  *	Called when unbusy has failed because there is a waiter.
1180  */
1181 void
1182 vm_page_xunbusy_hard(vm_page_t m)
1183 {
1184 	vm_page_assert_xbusied(m);
1185 	vm_page_xunbusy_hard_tail(m);
1186 }
1187 
1188 void
1189 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1190 {
1191 	vm_page_assert_xbusied_unchecked(m);
1192 	vm_page_xunbusy_hard_tail(m);
1193 }
1194 
1195 static void
1196 vm_page_busy_free(vm_page_t m)
1197 {
1198 	u_int x;
1199 
1200 	atomic_thread_fence_rel();
1201 	x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1202 	if ((x & VPB_BIT_WAITERS) != 0)
1203 		wakeup(m);
1204 }
1205 
1206 /*
1207  *	vm_page_unhold_pages:
1208  *
1209  *	Unhold each of the pages that is referenced by the given array.
1210  */
1211 void
1212 vm_page_unhold_pages(vm_page_t *ma, int count)
1213 {
1214 
1215 	for (; count != 0; count--) {
1216 		vm_page_unwire(*ma, PQ_ACTIVE);
1217 		ma++;
1218 	}
1219 }
1220 
1221 vm_page_t
1222 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1223 {
1224 	vm_page_t m;
1225 
1226 #ifdef VM_PHYSSEG_SPARSE
1227 	m = vm_phys_paddr_to_vm_page(pa);
1228 	if (m == NULL)
1229 		m = vm_phys_fictitious_to_vm_page(pa);
1230 	return (m);
1231 #elif defined(VM_PHYSSEG_DENSE)
1232 	long pi;
1233 
1234 	pi = atop(pa);
1235 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1236 		m = &vm_page_array[pi - first_page];
1237 		return (m);
1238 	}
1239 	return (vm_phys_fictitious_to_vm_page(pa));
1240 #else
1241 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1242 #endif
1243 }
1244 
1245 /*
1246  *	vm_page_getfake:
1247  *
1248  *	Create a fictitious page with the specified physical address and
1249  *	memory attribute.  The memory attribute is the only the machine-
1250  *	dependent aspect of a fictitious page that must be initialized.
1251  */
1252 vm_page_t
1253 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1254 {
1255 	vm_page_t m;
1256 
1257 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1258 	vm_page_initfake(m, paddr, memattr);
1259 	return (m);
1260 }
1261 
1262 void
1263 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1264 {
1265 
1266 	if ((m->flags & PG_FICTITIOUS) != 0) {
1267 		/*
1268 		 * The page's memattr might have changed since the
1269 		 * previous initialization.  Update the pmap to the
1270 		 * new memattr.
1271 		 */
1272 		goto memattr;
1273 	}
1274 	m->phys_addr = paddr;
1275 	m->a.queue = PQ_NONE;
1276 	/* Fictitious pages don't use "segind". */
1277 	m->flags = PG_FICTITIOUS;
1278 	/* Fictitious pages don't use "order" or "pool". */
1279 	m->oflags = VPO_UNMANAGED;
1280 	m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1281 	/* Fictitious pages are unevictable. */
1282 	m->ref_count = 1;
1283 	pmap_page_init(m);
1284 memattr:
1285 	pmap_page_set_memattr(m, memattr);
1286 }
1287 
1288 /*
1289  *	vm_page_putfake:
1290  *
1291  *	Release a fictitious page.
1292  */
1293 void
1294 vm_page_putfake(vm_page_t m)
1295 {
1296 
1297 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1298 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1299 	    ("vm_page_putfake: bad page %p", m));
1300 	vm_page_assert_xbusied(m);
1301 	vm_page_busy_free(m);
1302 	uma_zfree(fakepg_zone, m);
1303 }
1304 
1305 /*
1306  *	vm_page_updatefake:
1307  *
1308  *	Update the given fictitious page to the specified physical address and
1309  *	memory attribute.
1310  */
1311 void
1312 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1313 {
1314 
1315 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1316 	    ("vm_page_updatefake: bad page %p", m));
1317 	m->phys_addr = paddr;
1318 	pmap_page_set_memattr(m, memattr);
1319 }
1320 
1321 /*
1322  *	vm_page_free:
1323  *
1324  *	Free a page.
1325  */
1326 void
1327 vm_page_free(vm_page_t m)
1328 {
1329 
1330 	m->flags &= ~PG_ZERO;
1331 	vm_page_free_toq(m);
1332 }
1333 
1334 /*
1335  *	vm_page_free_zero:
1336  *
1337  *	Free a page to the zerod-pages queue
1338  */
1339 void
1340 vm_page_free_zero(vm_page_t m)
1341 {
1342 
1343 	m->flags |= PG_ZERO;
1344 	vm_page_free_toq(m);
1345 }
1346 
1347 /*
1348  * Unbusy and handle the page queueing for a page from a getpages request that
1349  * was optionally read ahead or behind.
1350  */
1351 void
1352 vm_page_readahead_finish(vm_page_t m)
1353 {
1354 
1355 	/* We shouldn't put invalid pages on queues. */
1356 	KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1357 
1358 	/*
1359 	 * Since the page is not the actually needed one, whether it should
1360 	 * be activated or deactivated is not obvious.  Empirical results
1361 	 * have shown that deactivating the page is usually the best choice,
1362 	 * unless the page is wanted by another thread.
1363 	 */
1364 	if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1365 		vm_page_activate(m);
1366 	else
1367 		vm_page_deactivate(m);
1368 	vm_page_xunbusy_unchecked(m);
1369 }
1370 
1371 /*
1372  * Destroy the identity of an invalid page and free it if possible.
1373  * This is intended to be used when reading a page from backing store fails.
1374  */
1375 void
1376 vm_page_free_invalid(vm_page_t m)
1377 {
1378 
1379 	KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1380 	KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1381 	KASSERT(m->object != NULL, ("page %p has no object", m));
1382 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1383 
1384 	/*
1385 	 * We may be attempting to free the page as part of the handling for an
1386 	 * I/O error, in which case the page was xbusied by a different thread.
1387 	 */
1388 	vm_page_xbusy_claim(m);
1389 
1390 	/*
1391 	 * If someone has wired this page while the object lock
1392 	 * was not held, then the thread that unwires is responsible
1393 	 * for freeing the page.  Otherwise just free the page now.
1394 	 * The wire count of this unmapped page cannot change while
1395 	 * we have the page xbusy and the page's object wlocked.
1396 	 */
1397 	if (vm_page_remove(m))
1398 		vm_page_free(m);
1399 }
1400 
1401 /*
1402  *	vm_page_sleep_if_busy:
1403  *
1404  *	Sleep and release the object lock if the page is busied.
1405  *	Returns TRUE if the thread slept.
1406  *
1407  *	The given page must be unlocked and object containing it must
1408  *	be locked.
1409  */
1410 int
1411 vm_page_sleep_if_busy(vm_page_t m, const char *wmesg)
1412 {
1413 	vm_object_t obj;
1414 
1415 	vm_page_lock_assert(m, MA_NOTOWNED);
1416 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1417 
1418 	/*
1419 	 * The page-specific object must be cached because page
1420 	 * identity can change during the sleep, causing the
1421 	 * re-lock of a different object.
1422 	 * It is assumed that a reference to the object is already
1423 	 * held by the callers.
1424 	 */
1425 	obj = m->object;
1426 	if (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, 0, true)) {
1427 		VM_OBJECT_WLOCK(obj);
1428 		return (TRUE);
1429 	}
1430 	return (FALSE);
1431 }
1432 
1433 /*
1434  *	vm_page_sleep_if_xbusy:
1435  *
1436  *	Sleep and release the object lock if the page is xbusied.
1437  *	Returns TRUE if the thread slept.
1438  *
1439  *	The given page must be unlocked and object containing it must
1440  *	be locked.
1441  */
1442 int
1443 vm_page_sleep_if_xbusy(vm_page_t m, const char *wmesg)
1444 {
1445 	vm_object_t obj;
1446 
1447 	vm_page_lock_assert(m, MA_NOTOWNED);
1448 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1449 
1450 	/*
1451 	 * The page-specific object must be cached because page
1452 	 * identity can change during the sleep, causing the
1453 	 * re-lock of a different object.
1454 	 * It is assumed that a reference to the object is already
1455 	 * held by the callers.
1456 	 */
1457 	obj = m->object;
1458 	if (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, VM_ALLOC_SBUSY,
1459 	    true)) {
1460 		VM_OBJECT_WLOCK(obj);
1461 		return (TRUE);
1462 	}
1463 	return (FALSE);
1464 }
1465 
1466 /*
1467  *	vm_page_dirty_KBI:		[ internal use only ]
1468  *
1469  *	Set all bits in the page's dirty field.
1470  *
1471  *	The object containing the specified page must be locked if the
1472  *	call is made from the machine-independent layer.
1473  *
1474  *	See vm_page_clear_dirty_mask().
1475  *
1476  *	This function should only be called by vm_page_dirty().
1477  */
1478 void
1479 vm_page_dirty_KBI(vm_page_t m)
1480 {
1481 
1482 	/* Refer to this operation by its public name. */
1483 	KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1484 	m->dirty = VM_PAGE_BITS_ALL;
1485 }
1486 
1487 /*
1488  *	vm_page_insert:		[ internal use only ]
1489  *
1490  *	Inserts the given mem entry into the object and object list.
1491  *
1492  *	The object must be locked.
1493  */
1494 int
1495 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1496 {
1497 	vm_page_t mpred;
1498 
1499 	VM_OBJECT_ASSERT_WLOCKED(object);
1500 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1501 	return (vm_page_insert_after(m, object, pindex, mpred));
1502 }
1503 
1504 /*
1505  *	vm_page_insert_after:
1506  *
1507  *	Inserts the page "m" into the specified object at offset "pindex".
1508  *
1509  *	The page "mpred" must immediately precede the offset "pindex" within
1510  *	the specified object.
1511  *
1512  *	The object must be locked.
1513  */
1514 static int
1515 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1516     vm_page_t mpred)
1517 {
1518 	vm_page_t msucc;
1519 
1520 	VM_OBJECT_ASSERT_WLOCKED(object);
1521 	KASSERT(m->object == NULL,
1522 	    ("vm_page_insert_after: page already inserted"));
1523 	if (mpred != NULL) {
1524 		KASSERT(mpred->object == object,
1525 		    ("vm_page_insert_after: object doesn't contain mpred"));
1526 		KASSERT(mpred->pindex < pindex,
1527 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1528 		msucc = TAILQ_NEXT(mpred, listq);
1529 	} else
1530 		msucc = TAILQ_FIRST(&object->memq);
1531 	if (msucc != NULL)
1532 		KASSERT(msucc->pindex > pindex,
1533 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1534 
1535 	/*
1536 	 * Record the object/offset pair in this page.
1537 	 */
1538 	m->object = object;
1539 	m->pindex = pindex;
1540 	m->ref_count |= VPRC_OBJREF;
1541 
1542 	/*
1543 	 * Now link into the object's ordered list of backed pages.
1544 	 */
1545 	if (vm_radix_insert(&object->rtree, m)) {
1546 		m->object = NULL;
1547 		m->pindex = 0;
1548 		m->ref_count &= ~VPRC_OBJREF;
1549 		return (1);
1550 	}
1551 	vm_page_insert_radixdone(m, object, mpred);
1552 	return (0);
1553 }
1554 
1555 /*
1556  *	vm_page_insert_radixdone:
1557  *
1558  *	Complete page "m" insertion into the specified object after the
1559  *	radix trie hooking.
1560  *
1561  *	The page "mpred" must precede the offset "m->pindex" within the
1562  *	specified object.
1563  *
1564  *	The object must be locked.
1565  */
1566 static void
1567 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1568 {
1569 
1570 	VM_OBJECT_ASSERT_WLOCKED(object);
1571 	KASSERT(object != NULL && m->object == object,
1572 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1573 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1574 	    ("vm_page_insert_radixdone: page %p is missing object ref", m));
1575 	if (mpred != NULL) {
1576 		KASSERT(mpred->object == object,
1577 		    ("vm_page_insert_radixdone: object doesn't contain mpred"));
1578 		KASSERT(mpred->pindex < m->pindex,
1579 		    ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1580 	}
1581 
1582 	if (mpred != NULL)
1583 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1584 	else
1585 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1586 
1587 	/*
1588 	 * Show that the object has one more resident page.
1589 	 */
1590 	object->resident_page_count++;
1591 
1592 	/*
1593 	 * Hold the vnode until the last page is released.
1594 	 */
1595 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1596 		vhold(object->handle);
1597 
1598 	/*
1599 	 * Since we are inserting a new and possibly dirty page,
1600 	 * update the object's generation count.
1601 	 */
1602 	if (pmap_page_is_write_mapped(m))
1603 		vm_object_set_writeable_dirty(object);
1604 }
1605 
1606 /*
1607  * Do the work to remove a page from its object.  The caller is responsible for
1608  * updating the page's fields to reflect this removal.
1609  */
1610 static void
1611 vm_page_object_remove(vm_page_t m)
1612 {
1613 	vm_object_t object;
1614 	vm_page_t mrem;
1615 
1616 	vm_page_assert_xbusied(m);
1617 	object = m->object;
1618 	VM_OBJECT_ASSERT_WLOCKED(object);
1619 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1620 	    ("page %p is missing its object ref", m));
1621 
1622 	/* Deferred free of swap space. */
1623 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1624 		vm_pager_page_unswapped(m);
1625 
1626 	m->object = NULL;
1627 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1628 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1629 
1630 	/*
1631 	 * Now remove from the object's list of backed pages.
1632 	 */
1633 	TAILQ_REMOVE(&object->memq, m, listq);
1634 
1635 	/*
1636 	 * And show that the object has one fewer resident page.
1637 	 */
1638 	object->resident_page_count--;
1639 
1640 	/*
1641 	 * The vnode may now be recycled.
1642 	 */
1643 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1644 		vdrop(object->handle);
1645 }
1646 
1647 /*
1648  *	vm_page_remove:
1649  *
1650  *	Removes the specified page from its containing object, but does not
1651  *	invalidate any backing storage.  Returns true if the object's reference
1652  *	was the last reference to the page, and false otherwise.
1653  *
1654  *	The object must be locked and the page must be exclusively busied.
1655  *	The exclusive busy will be released on return.  If this is not the
1656  *	final ref and the caller does not hold a wire reference it may not
1657  *	continue to access the page.
1658  */
1659 bool
1660 vm_page_remove(vm_page_t m)
1661 {
1662 	bool dropped;
1663 
1664 	dropped = vm_page_remove_xbusy(m);
1665 	vm_page_xunbusy(m);
1666 
1667 	return (dropped);
1668 }
1669 
1670 /*
1671  *	vm_page_remove_xbusy
1672  *
1673  *	Removes the page but leaves the xbusy held.  Returns true if this
1674  *	removed the final ref and false otherwise.
1675  */
1676 bool
1677 vm_page_remove_xbusy(vm_page_t m)
1678 {
1679 
1680 	vm_page_object_remove(m);
1681 	return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1682 }
1683 
1684 /*
1685  *	vm_page_lookup:
1686  *
1687  *	Returns the page associated with the object/offset
1688  *	pair specified; if none is found, NULL is returned.
1689  *
1690  *	The object must be locked.
1691  */
1692 vm_page_t
1693 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1694 {
1695 
1696 	VM_OBJECT_ASSERT_LOCKED(object);
1697 	return (vm_radix_lookup(&object->rtree, pindex));
1698 }
1699 
1700 /*
1701  *	vm_page_relookup:
1702  *
1703  *	Returns a page that must already have been busied by
1704  *	the caller.  Used for bogus page replacement.
1705  */
1706 vm_page_t
1707 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1708 {
1709 	vm_page_t m;
1710 
1711 	m = vm_radix_lookup_unlocked(&object->rtree, pindex);
1712 	KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1713 	    m->object == object && m->pindex == pindex,
1714 	    ("vm_page_relookup: Invalid page %p", m));
1715 	return (m);
1716 }
1717 
1718 /*
1719  * This should only be used by lockless functions for releasing transient
1720  * incorrect acquires.  The page may have been freed after we acquired a
1721  * busy lock.  In this case busy_lock == VPB_FREED and we have nothing
1722  * further to do.
1723  */
1724 static void
1725 vm_page_busy_release(vm_page_t m)
1726 {
1727 	u_int x;
1728 
1729 	x = vm_page_busy_fetch(m);
1730 	for (;;) {
1731 		if (x == VPB_FREED)
1732 			break;
1733 		if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1734 			if (atomic_fcmpset_int(&m->busy_lock, &x,
1735 			    x - VPB_ONE_SHARER))
1736 				break;
1737 			continue;
1738 		}
1739 		KASSERT((x & VPB_BIT_SHARED) != 0 ||
1740 		    (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1741 		    ("vm_page_busy_release: %p xbusy not owned.", m));
1742 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1743 			continue;
1744 		if ((x & VPB_BIT_WAITERS) != 0)
1745 			wakeup(m);
1746 		break;
1747 	}
1748 }
1749 
1750 /*
1751  *	vm_page_find_least:
1752  *
1753  *	Returns the page associated with the object with least pindex
1754  *	greater than or equal to the parameter pindex, or NULL.
1755  *
1756  *	The object must be locked.
1757  */
1758 vm_page_t
1759 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1760 {
1761 	vm_page_t m;
1762 
1763 	VM_OBJECT_ASSERT_LOCKED(object);
1764 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1765 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1766 	return (m);
1767 }
1768 
1769 /*
1770  * Returns the given page's successor (by pindex) within the object if it is
1771  * resident; if none is found, NULL is returned.
1772  *
1773  * The object must be locked.
1774  */
1775 vm_page_t
1776 vm_page_next(vm_page_t m)
1777 {
1778 	vm_page_t next;
1779 
1780 	VM_OBJECT_ASSERT_LOCKED(m->object);
1781 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1782 		MPASS(next->object == m->object);
1783 		if (next->pindex != m->pindex + 1)
1784 			next = NULL;
1785 	}
1786 	return (next);
1787 }
1788 
1789 /*
1790  * Returns the given page's predecessor (by pindex) within the object if it is
1791  * resident; if none is found, NULL is returned.
1792  *
1793  * The object must be locked.
1794  */
1795 vm_page_t
1796 vm_page_prev(vm_page_t m)
1797 {
1798 	vm_page_t prev;
1799 
1800 	VM_OBJECT_ASSERT_LOCKED(m->object);
1801 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1802 		MPASS(prev->object == m->object);
1803 		if (prev->pindex != m->pindex - 1)
1804 			prev = NULL;
1805 	}
1806 	return (prev);
1807 }
1808 
1809 /*
1810  * Uses the page mnew as a replacement for an existing page at index
1811  * pindex which must be already present in the object.
1812  *
1813  * Both pages must be exclusively busied on enter.  The old page is
1814  * unbusied on exit.
1815  *
1816  * A return value of true means mold is now free.  If this is not the
1817  * final ref and the caller does not hold a wire reference it may not
1818  * continue to access the page.
1819  */
1820 static bool
1821 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1822     vm_page_t mold)
1823 {
1824 	vm_page_t mret;
1825 	bool dropped;
1826 
1827 	VM_OBJECT_ASSERT_WLOCKED(object);
1828 	vm_page_assert_xbusied(mold);
1829 	KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1830 	    ("vm_page_replace: page %p already in object", mnew));
1831 
1832 	/*
1833 	 * This function mostly follows vm_page_insert() and
1834 	 * vm_page_remove() without the radix, object count and vnode
1835 	 * dance.  Double check such functions for more comments.
1836 	 */
1837 
1838 	mnew->object = object;
1839 	mnew->pindex = pindex;
1840 	atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1841 	mret = vm_radix_replace(&object->rtree, mnew);
1842 	KASSERT(mret == mold,
1843 	    ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1844 	KASSERT((mold->oflags & VPO_UNMANAGED) ==
1845 	    (mnew->oflags & VPO_UNMANAGED),
1846 	    ("vm_page_replace: mismatched VPO_UNMANAGED"));
1847 
1848 	/* Keep the resident page list in sorted order. */
1849 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1850 	TAILQ_REMOVE(&object->memq, mold, listq);
1851 	mold->object = NULL;
1852 
1853 	/*
1854 	 * The object's resident_page_count does not change because we have
1855 	 * swapped one page for another, but the generation count should
1856 	 * change if the page is dirty.
1857 	 */
1858 	if (pmap_page_is_write_mapped(mnew))
1859 		vm_object_set_writeable_dirty(object);
1860 	dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1861 	vm_page_xunbusy(mold);
1862 
1863 	return (dropped);
1864 }
1865 
1866 void
1867 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1868     vm_page_t mold)
1869 {
1870 
1871 	vm_page_assert_xbusied(mnew);
1872 
1873 	if (vm_page_replace_hold(mnew, object, pindex, mold))
1874 		vm_page_free(mold);
1875 }
1876 
1877 /*
1878  *	vm_page_rename:
1879  *
1880  *	Move the given memory entry from its
1881  *	current object to the specified target object/offset.
1882  *
1883  *	Note: swap associated with the page must be invalidated by the move.  We
1884  *	      have to do this for several reasons:  (1) we aren't freeing the
1885  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1886  *	      moving the page from object A to B, and will then later move
1887  *	      the backing store from A to B and we can't have a conflict.
1888  *
1889  *	Note: we *always* dirty the page.  It is necessary both for the
1890  *	      fact that we moved it, and because we may be invalidating
1891  *	      swap.
1892  *
1893  *	The objects must be locked.
1894  */
1895 int
1896 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1897 {
1898 	vm_page_t mpred;
1899 	vm_pindex_t opidx;
1900 
1901 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1902 
1903 	KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1904 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1905 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1906 	    ("vm_page_rename: pindex already renamed"));
1907 
1908 	/*
1909 	 * Create a custom version of vm_page_insert() which does not depend
1910 	 * by m_prev and can cheat on the implementation aspects of the
1911 	 * function.
1912 	 */
1913 	opidx = m->pindex;
1914 	m->pindex = new_pindex;
1915 	if (vm_radix_insert(&new_object->rtree, m)) {
1916 		m->pindex = opidx;
1917 		return (1);
1918 	}
1919 
1920 	/*
1921 	 * The operation cannot fail anymore.  The removal must happen before
1922 	 * the listq iterator is tainted.
1923 	 */
1924 	m->pindex = opidx;
1925 	vm_page_object_remove(m);
1926 
1927 	/* Return back to the new pindex to complete vm_page_insert(). */
1928 	m->pindex = new_pindex;
1929 	m->object = new_object;
1930 
1931 	vm_page_insert_radixdone(m, new_object, mpred);
1932 	vm_page_dirty(m);
1933 	return (0);
1934 }
1935 
1936 /*
1937  *	vm_page_alloc:
1938  *
1939  *	Allocate and return a page that is associated with the specified
1940  *	object and offset pair.  By default, this page is exclusive busied.
1941  *
1942  *	The caller must always specify an allocation class.
1943  *
1944  *	allocation classes:
1945  *	VM_ALLOC_NORMAL		normal process request
1946  *	VM_ALLOC_SYSTEM		system *really* needs a page
1947  *	VM_ALLOC_INTERRUPT	interrupt time request
1948  *
1949  *	optional allocation flags:
1950  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1951  *				intends to allocate
1952  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1953  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1954  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1955  *				should not be exclusive busy
1956  *	VM_ALLOC_SBUSY		shared busy the allocated page
1957  *	VM_ALLOC_WIRED		wire the allocated page
1958  *	VM_ALLOC_ZERO		prefer a zeroed page
1959  */
1960 vm_page_t
1961 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1962 {
1963 
1964 	return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1965 	    vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1966 }
1967 
1968 vm_page_t
1969 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1970     int req)
1971 {
1972 
1973 	return (vm_page_alloc_domain_after(object, pindex, domain, req,
1974 	    object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1975 	    NULL));
1976 }
1977 
1978 /*
1979  * Allocate a page in the specified object with the given page index.  To
1980  * optimize insertion of the page into the object, the caller must also specifiy
1981  * the resident page in the object with largest index smaller than the given
1982  * page index, or NULL if no such page exists.
1983  */
1984 vm_page_t
1985 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1986     int req, vm_page_t mpred)
1987 {
1988 	struct vm_domainset_iter di;
1989 	vm_page_t m;
1990 	int domain;
1991 
1992 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1993 	do {
1994 		m = vm_page_alloc_domain_after(object, pindex, domain, req,
1995 		    mpred);
1996 		if (m != NULL)
1997 			break;
1998 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
1999 
2000 	return (m);
2001 }
2002 
2003 /*
2004  * Returns true if the number of free pages exceeds the minimum
2005  * for the request class and false otherwise.
2006  */
2007 static int
2008 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
2009 {
2010 	u_int limit, old, new;
2011 
2012 	if (req_class == VM_ALLOC_INTERRUPT)
2013 		limit = 0;
2014 	else if (req_class == VM_ALLOC_SYSTEM)
2015 		limit = vmd->vmd_interrupt_free_min;
2016 	else
2017 		limit = vmd->vmd_free_reserved;
2018 
2019 	/*
2020 	 * Attempt to reserve the pages.  Fail if we're below the limit.
2021 	 */
2022 	limit += npages;
2023 	old = vmd->vmd_free_count;
2024 	do {
2025 		if (old < limit)
2026 			return (0);
2027 		new = old - npages;
2028 	} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
2029 
2030 	/* Wake the page daemon if we've crossed the threshold. */
2031 	if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
2032 		pagedaemon_wakeup(vmd->vmd_domain);
2033 
2034 	/* Only update bitsets on transitions. */
2035 	if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
2036 	    (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2037 		vm_domain_set(vmd);
2038 
2039 	return (1);
2040 }
2041 
2042 int
2043 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2044 {
2045 	int req_class;
2046 
2047 	/*
2048 	 * The page daemon is allowed to dig deeper into the free page list.
2049 	 */
2050 	req_class = req & VM_ALLOC_CLASS_MASK;
2051 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2052 		req_class = VM_ALLOC_SYSTEM;
2053 	return (_vm_domain_allocate(vmd, req_class, npages));
2054 }
2055 
2056 vm_page_t
2057 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
2058     int req, vm_page_t mpred)
2059 {
2060 	struct vm_domain *vmd;
2061 	vm_page_t m;
2062 	int flags, pool;
2063 
2064 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2065 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2066 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2067 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2068 	    ("inconsistent object(%p)/req(%x)", object, req));
2069 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2070 	    ("Can't sleep and retry object insertion."));
2071 	KASSERT(mpred == NULL || mpred->pindex < pindex,
2072 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
2073 	    (uintmax_t)pindex));
2074 	if (object != NULL)
2075 		VM_OBJECT_ASSERT_WLOCKED(object);
2076 
2077 	flags = 0;
2078 	m = NULL;
2079 	pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
2080 again:
2081 #if VM_NRESERVLEVEL > 0
2082 	/*
2083 	 * Can we allocate the page from a reservation?
2084 	 */
2085 	if (vm_object_reserv(object) &&
2086 	    (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2087 	    NULL) {
2088 		goto found;
2089 	}
2090 #endif
2091 	vmd = VM_DOMAIN(domain);
2092 	if (vmd->vmd_pgcache[pool].zone != NULL) {
2093 		m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT | M_NOVM);
2094 		if (m != NULL) {
2095 			flags |= PG_PCPU_CACHE;
2096 			goto found;
2097 		}
2098 	}
2099 	if (vm_domain_allocate(vmd, req, 1)) {
2100 		/*
2101 		 * If not, allocate it from the free page queues.
2102 		 */
2103 		vm_domain_free_lock(vmd);
2104 		m = vm_phys_alloc_pages(domain, pool, 0);
2105 		vm_domain_free_unlock(vmd);
2106 		if (m == NULL) {
2107 			vm_domain_freecnt_inc(vmd, 1);
2108 #if VM_NRESERVLEVEL > 0
2109 			if (vm_reserv_reclaim_inactive(domain))
2110 				goto again;
2111 #endif
2112 		}
2113 	}
2114 	if (m == NULL) {
2115 		/*
2116 		 * Not allocatable, give up.
2117 		 */
2118 		if (vm_domain_alloc_fail(vmd, object, req))
2119 			goto again;
2120 		return (NULL);
2121 	}
2122 
2123 	/*
2124 	 * At this point we had better have found a good page.
2125 	 */
2126 found:
2127 	vm_page_dequeue(m);
2128 	vm_page_alloc_check(m);
2129 
2130 	/*
2131 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2132 	 */
2133 	if ((req & VM_ALLOC_ZERO) != 0)
2134 		flags |= (m->flags & PG_ZERO);
2135 	if ((req & VM_ALLOC_NODUMP) != 0)
2136 		flags |= PG_NODUMP;
2137 	m->flags = flags;
2138 	m->a.flags = 0;
2139 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2140 	    VPO_UNMANAGED : 0;
2141 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2142 		m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2143 	else if ((req & VM_ALLOC_SBUSY) != 0)
2144 		m->busy_lock = VPB_SHARERS_WORD(1);
2145 	else
2146 		m->busy_lock = VPB_UNBUSIED;
2147 	if (req & VM_ALLOC_WIRED) {
2148 		vm_wire_add(1);
2149 		m->ref_count = 1;
2150 	}
2151 	m->a.act_count = 0;
2152 
2153 	if (object != NULL) {
2154 		if (vm_page_insert_after(m, object, pindex, mpred)) {
2155 			if (req & VM_ALLOC_WIRED) {
2156 				vm_wire_sub(1);
2157 				m->ref_count = 0;
2158 			}
2159 			KASSERT(m->object == NULL, ("page %p has object", m));
2160 			m->oflags = VPO_UNMANAGED;
2161 			m->busy_lock = VPB_UNBUSIED;
2162 			/* Don't change PG_ZERO. */
2163 			vm_page_free_toq(m);
2164 			if (req & VM_ALLOC_WAITFAIL) {
2165 				VM_OBJECT_WUNLOCK(object);
2166 				vm_radix_wait();
2167 				VM_OBJECT_WLOCK(object);
2168 			}
2169 			return (NULL);
2170 		}
2171 
2172 		/* Ignore device objects; the pager sets "memattr" for them. */
2173 		if (object->memattr != VM_MEMATTR_DEFAULT &&
2174 		    (object->flags & OBJ_FICTITIOUS) == 0)
2175 			pmap_page_set_memattr(m, object->memattr);
2176 	} else
2177 		m->pindex = pindex;
2178 
2179 	return (m);
2180 }
2181 
2182 /*
2183  *	vm_page_alloc_contig:
2184  *
2185  *	Allocate a contiguous set of physical pages of the given size "npages"
2186  *	from the free lists.  All of the physical pages must be at or above
2187  *	the given physical address "low" and below the given physical address
2188  *	"high".  The given value "alignment" determines the alignment of the
2189  *	first physical page in the set.  If the given value "boundary" is
2190  *	non-zero, then the set of physical pages cannot cross any physical
2191  *	address boundary that is a multiple of that value.  Both "alignment"
2192  *	and "boundary" must be a power of two.
2193  *
2194  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2195  *	then the memory attribute setting for the physical pages is configured
2196  *	to the object's memory attribute setting.  Otherwise, the memory
2197  *	attribute setting for the physical pages is configured to "memattr",
2198  *	overriding the object's memory attribute setting.  However, if the
2199  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2200  *	memory attribute setting for the physical pages cannot be configured
2201  *	to VM_MEMATTR_DEFAULT.
2202  *
2203  *	The specified object may not contain fictitious pages.
2204  *
2205  *	The caller must always specify an allocation class.
2206  *
2207  *	allocation classes:
2208  *	VM_ALLOC_NORMAL		normal process request
2209  *	VM_ALLOC_SYSTEM		system *really* needs a page
2210  *	VM_ALLOC_INTERRUPT	interrupt time request
2211  *
2212  *	optional allocation flags:
2213  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
2214  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
2215  *	VM_ALLOC_NOOBJ		page is not associated with an object and
2216  *				should not be exclusive busy
2217  *	VM_ALLOC_SBUSY		shared busy the allocated page
2218  *	VM_ALLOC_WIRED		wire the allocated page
2219  *	VM_ALLOC_ZERO		prefer a zeroed page
2220  */
2221 vm_page_t
2222 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2223     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2224     vm_paddr_t boundary, vm_memattr_t memattr)
2225 {
2226 	struct vm_domainset_iter di;
2227 	vm_page_t m;
2228 	int domain;
2229 
2230 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2231 	do {
2232 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2233 		    npages, low, high, alignment, boundary, memattr);
2234 		if (m != NULL)
2235 			break;
2236 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
2237 
2238 	return (m);
2239 }
2240 
2241 vm_page_t
2242 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2243     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2244     vm_paddr_t boundary, vm_memattr_t memattr)
2245 {
2246 	struct vm_domain *vmd;
2247 	vm_page_t m, m_ret, mpred;
2248 	u_int busy_lock, flags, oflags;
2249 
2250 	mpred = NULL;	/* XXX: pacify gcc */
2251 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2252 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2253 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2254 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2255 	    ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2256 	    req));
2257 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2258 	    ("Can't sleep and retry object insertion."));
2259 	if (object != NULL) {
2260 		VM_OBJECT_ASSERT_WLOCKED(object);
2261 		KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2262 		    ("vm_page_alloc_contig: object %p has fictitious pages",
2263 		    object));
2264 	}
2265 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2266 
2267 	if (object != NULL) {
2268 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
2269 		KASSERT(mpred == NULL || mpred->pindex != pindex,
2270 		    ("vm_page_alloc_contig: pindex already allocated"));
2271 	}
2272 
2273 	/*
2274 	 * Can we allocate the pages without the number of free pages falling
2275 	 * below the lower bound for the allocation class?
2276 	 */
2277 	m_ret = NULL;
2278 again:
2279 #if VM_NRESERVLEVEL > 0
2280 	/*
2281 	 * Can we allocate the pages from a reservation?
2282 	 */
2283 	if (vm_object_reserv(object) &&
2284 	    (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2285 	    mpred, npages, low, high, alignment, boundary)) != NULL) {
2286 		goto found;
2287 	}
2288 #endif
2289 	vmd = VM_DOMAIN(domain);
2290 	if (vm_domain_allocate(vmd, req, npages)) {
2291 		/*
2292 		 * allocate them from the free page queues.
2293 		 */
2294 		vm_domain_free_lock(vmd);
2295 		m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2296 		    alignment, boundary);
2297 		vm_domain_free_unlock(vmd);
2298 		if (m_ret == NULL) {
2299 			vm_domain_freecnt_inc(vmd, npages);
2300 #if VM_NRESERVLEVEL > 0
2301 			if (vm_reserv_reclaim_contig(domain, npages, low,
2302 			    high, alignment, boundary))
2303 				goto again;
2304 #endif
2305 		}
2306 	}
2307 	if (m_ret == NULL) {
2308 		if (vm_domain_alloc_fail(vmd, object, req))
2309 			goto again;
2310 		return (NULL);
2311 	}
2312 #if VM_NRESERVLEVEL > 0
2313 found:
2314 #endif
2315 	for (m = m_ret; m < &m_ret[npages]; m++) {
2316 		vm_page_dequeue(m);
2317 		vm_page_alloc_check(m);
2318 	}
2319 
2320 	/*
2321 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2322 	 */
2323 	flags = 0;
2324 	if ((req & VM_ALLOC_ZERO) != 0)
2325 		flags = PG_ZERO;
2326 	if ((req & VM_ALLOC_NODUMP) != 0)
2327 		flags |= PG_NODUMP;
2328 	oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2329 	    VPO_UNMANAGED : 0;
2330 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2331 		busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2332 	else if ((req & VM_ALLOC_SBUSY) != 0)
2333 		busy_lock = VPB_SHARERS_WORD(1);
2334 	else
2335 		busy_lock = VPB_UNBUSIED;
2336 	if ((req & VM_ALLOC_WIRED) != 0)
2337 		vm_wire_add(npages);
2338 	if (object != NULL) {
2339 		if (object->memattr != VM_MEMATTR_DEFAULT &&
2340 		    memattr == VM_MEMATTR_DEFAULT)
2341 			memattr = object->memattr;
2342 	}
2343 	for (m = m_ret; m < &m_ret[npages]; m++) {
2344 		m->a.flags = 0;
2345 		m->flags = (m->flags | PG_NODUMP) & flags;
2346 		m->busy_lock = busy_lock;
2347 		if ((req & VM_ALLOC_WIRED) != 0)
2348 			m->ref_count = 1;
2349 		m->a.act_count = 0;
2350 		m->oflags = oflags;
2351 		if (object != NULL) {
2352 			if (vm_page_insert_after(m, object, pindex, mpred)) {
2353 				if ((req & VM_ALLOC_WIRED) != 0)
2354 					vm_wire_sub(npages);
2355 				KASSERT(m->object == NULL,
2356 				    ("page %p has object", m));
2357 				mpred = m;
2358 				for (m = m_ret; m < &m_ret[npages]; m++) {
2359 					if (m <= mpred &&
2360 					    (req & VM_ALLOC_WIRED) != 0)
2361 						m->ref_count = 0;
2362 					m->oflags = VPO_UNMANAGED;
2363 					m->busy_lock = VPB_UNBUSIED;
2364 					/* Don't change PG_ZERO. */
2365 					vm_page_free_toq(m);
2366 				}
2367 				if (req & VM_ALLOC_WAITFAIL) {
2368 					VM_OBJECT_WUNLOCK(object);
2369 					vm_radix_wait();
2370 					VM_OBJECT_WLOCK(object);
2371 				}
2372 				return (NULL);
2373 			}
2374 			mpred = m;
2375 		} else
2376 			m->pindex = pindex;
2377 		if (memattr != VM_MEMATTR_DEFAULT)
2378 			pmap_page_set_memattr(m, memattr);
2379 		pindex++;
2380 	}
2381 	return (m_ret);
2382 }
2383 
2384 /*
2385  * Check a page that has been freshly dequeued from a freelist.
2386  */
2387 static void
2388 vm_page_alloc_check(vm_page_t m)
2389 {
2390 
2391 	KASSERT(m->object == NULL, ("page %p has object", m));
2392 	KASSERT(m->a.queue == PQ_NONE &&
2393 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2394 	    ("page %p has unexpected queue %d, flags %#x",
2395 	    m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2396 	KASSERT(m->ref_count == 0, ("page %p has references", m));
2397 	KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2398 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2399 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2400 	    ("page %p has unexpected memattr %d",
2401 	    m, pmap_page_get_memattr(m)));
2402 	KASSERT(m->valid == 0, ("free page %p is valid", m));
2403 }
2404 
2405 /*
2406  * 	vm_page_alloc_freelist:
2407  *
2408  *	Allocate a physical page from the specified free page list.
2409  *
2410  *	The caller must always specify an allocation class.
2411  *
2412  *	allocation classes:
2413  *	VM_ALLOC_NORMAL		normal process request
2414  *	VM_ALLOC_SYSTEM		system *really* needs a page
2415  *	VM_ALLOC_INTERRUPT	interrupt time request
2416  *
2417  *	optional allocation flags:
2418  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2419  *				intends to allocate
2420  *	VM_ALLOC_WIRED		wire the allocated page
2421  *	VM_ALLOC_ZERO		prefer a zeroed page
2422  */
2423 vm_page_t
2424 vm_page_alloc_freelist(int freelist, int req)
2425 {
2426 	struct vm_domainset_iter di;
2427 	vm_page_t m;
2428 	int domain;
2429 
2430 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2431 	do {
2432 		m = vm_page_alloc_freelist_domain(domain, freelist, req);
2433 		if (m != NULL)
2434 			break;
2435 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2436 
2437 	return (m);
2438 }
2439 
2440 vm_page_t
2441 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2442 {
2443 	struct vm_domain *vmd;
2444 	vm_page_t m;
2445 	u_int flags;
2446 
2447 	m = NULL;
2448 	vmd = VM_DOMAIN(domain);
2449 again:
2450 	if (vm_domain_allocate(vmd, req, 1)) {
2451 		vm_domain_free_lock(vmd);
2452 		m = vm_phys_alloc_freelist_pages(domain, freelist,
2453 		    VM_FREEPOOL_DIRECT, 0);
2454 		vm_domain_free_unlock(vmd);
2455 		if (m == NULL)
2456 			vm_domain_freecnt_inc(vmd, 1);
2457 	}
2458 	if (m == NULL) {
2459 		if (vm_domain_alloc_fail(vmd, NULL, req))
2460 			goto again;
2461 		return (NULL);
2462 	}
2463 	vm_page_dequeue(m);
2464 	vm_page_alloc_check(m);
2465 
2466 	/*
2467 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2468 	 */
2469 	m->a.flags = 0;
2470 	flags = 0;
2471 	if ((req & VM_ALLOC_ZERO) != 0)
2472 		flags = PG_ZERO;
2473 	m->flags &= flags;
2474 	if ((req & VM_ALLOC_WIRED) != 0) {
2475 		vm_wire_add(1);
2476 		m->ref_count = 1;
2477 	}
2478 	/* Unmanaged pages don't use "act_count". */
2479 	m->oflags = VPO_UNMANAGED;
2480 	return (m);
2481 }
2482 
2483 static int
2484 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2485 {
2486 	struct vm_domain *vmd;
2487 	struct vm_pgcache *pgcache;
2488 	int i;
2489 
2490 	pgcache = arg;
2491 	vmd = VM_DOMAIN(pgcache->domain);
2492 
2493 	/*
2494 	 * The page daemon should avoid creating extra memory pressure since its
2495 	 * main purpose is to replenish the store of free pages.
2496 	 */
2497 	if (vmd->vmd_severeset || curproc == pageproc ||
2498 	    !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2499 		return (0);
2500 	domain = vmd->vmd_domain;
2501 	vm_domain_free_lock(vmd);
2502 	i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2503 	    (vm_page_t *)store);
2504 	vm_domain_free_unlock(vmd);
2505 	if (cnt != i)
2506 		vm_domain_freecnt_inc(vmd, cnt - i);
2507 
2508 	return (i);
2509 }
2510 
2511 static void
2512 vm_page_zone_release(void *arg, void **store, int cnt)
2513 {
2514 	struct vm_domain *vmd;
2515 	struct vm_pgcache *pgcache;
2516 	vm_page_t m;
2517 	int i;
2518 
2519 	pgcache = arg;
2520 	vmd = VM_DOMAIN(pgcache->domain);
2521 	vm_domain_free_lock(vmd);
2522 	for (i = 0; i < cnt; i++) {
2523 		m = (vm_page_t)store[i];
2524 		vm_phys_free_pages(m, 0);
2525 	}
2526 	vm_domain_free_unlock(vmd);
2527 	vm_domain_freecnt_inc(vmd, cnt);
2528 }
2529 
2530 #define	VPSC_ANY	0	/* No restrictions. */
2531 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2532 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2533 
2534 /*
2535  *	vm_page_scan_contig:
2536  *
2537  *	Scan vm_page_array[] between the specified entries "m_start" and
2538  *	"m_end" for a run of contiguous physical pages that satisfy the
2539  *	specified conditions, and return the lowest page in the run.  The
2540  *	specified "alignment" determines the alignment of the lowest physical
2541  *	page in the run.  If the specified "boundary" is non-zero, then the
2542  *	run of physical pages cannot span a physical address that is a
2543  *	multiple of "boundary".
2544  *
2545  *	"m_end" is never dereferenced, so it need not point to a vm_page
2546  *	structure within vm_page_array[].
2547  *
2548  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2549  *	span a hole (or discontiguity) in the physical address space.  Both
2550  *	"alignment" and "boundary" must be a power of two.
2551  */
2552 vm_page_t
2553 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2554     u_long alignment, vm_paddr_t boundary, int options)
2555 {
2556 	vm_object_t object;
2557 	vm_paddr_t pa;
2558 	vm_page_t m, m_run;
2559 #if VM_NRESERVLEVEL > 0
2560 	int level;
2561 #endif
2562 	int m_inc, order, run_ext, run_len;
2563 
2564 	KASSERT(npages > 0, ("npages is 0"));
2565 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2566 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2567 	m_run = NULL;
2568 	run_len = 0;
2569 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2570 		KASSERT((m->flags & PG_MARKER) == 0,
2571 		    ("page %p is PG_MARKER", m));
2572 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2573 		    ("fictitious page %p has invalid ref count", m));
2574 
2575 		/*
2576 		 * If the current page would be the start of a run, check its
2577 		 * physical address against the end, alignment, and boundary
2578 		 * conditions.  If it doesn't satisfy these conditions, either
2579 		 * terminate the scan or advance to the next page that
2580 		 * satisfies the failed condition.
2581 		 */
2582 		if (run_len == 0) {
2583 			KASSERT(m_run == NULL, ("m_run != NULL"));
2584 			if (m + npages > m_end)
2585 				break;
2586 			pa = VM_PAGE_TO_PHYS(m);
2587 			if ((pa & (alignment - 1)) != 0) {
2588 				m_inc = atop(roundup2(pa, alignment) - pa);
2589 				continue;
2590 			}
2591 			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2592 			    boundary) != 0) {
2593 				m_inc = atop(roundup2(pa, boundary) - pa);
2594 				continue;
2595 			}
2596 		} else
2597 			KASSERT(m_run != NULL, ("m_run == NULL"));
2598 
2599 retry:
2600 		m_inc = 1;
2601 		if (vm_page_wired(m))
2602 			run_ext = 0;
2603 #if VM_NRESERVLEVEL > 0
2604 		else if ((level = vm_reserv_level(m)) >= 0 &&
2605 		    (options & VPSC_NORESERV) != 0) {
2606 			run_ext = 0;
2607 			/* Advance to the end of the reservation. */
2608 			pa = VM_PAGE_TO_PHYS(m);
2609 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2610 			    pa);
2611 		}
2612 #endif
2613 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2614 			/*
2615 			 * The page is considered eligible for relocation if
2616 			 * and only if it could be laundered or reclaimed by
2617 			 * the page daemon.
2618 			 */
2619 			VM_OBJECT_RLOCK(object);
2620 			if (object != m->object) {
2621 				VM_OBJECT_RUNLOCK(object);
2622 				goto retry;
2623 			}
2624 			/* Don't care: PG_NODUMP, PG_ZERO. */
2625 			if (object->type != OBJT_DEFAULT &&
2626 			    object->type != OBJT_SWAP &&
2627 			    object->type != OBJT_VNODE) {
2628 				run_ext = 0;
2629 #if VM_NRESERVLEVEL > 0
2630 			} else if ((options & VPSC_NOSUPER) != 0 &&
2631 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2632 				run_ext = 0;
2633 				/* Advance to the end of the superpage. */
2634 				pa = VM_PAGE_TO_PHYS(m);
2635 				m_inc = atop(roundup2(pa + 1,
2636 				    vm_reserv_size(level)) - pa);
2637 #endif
2638 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2639 			    vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2640 				/*
2641 				 * The page is allocated but eligible for
2642 				 * relocation.  Extend the current run by one
2643 				 * page.
2644 				 */
2645 				KASSERT(pmap_page_get_memattr(m) ==
2646 				    VM_MEMATTR_DEFAULT,
2647 				    ("page %p has an unexpected memattr", m));
2648 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2649 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2650 				    ("page %p has unexpected oflags", m));
2651 				/* Don't care: PGA_NOSYNC. */
2652 				run_ext = 1;
2653 			} else
2654 				run_ext = 0;
2655 			VM_OBJECT_RUNLOCK(object);
2656 #if VM_NRESERVLEVEL > 0
2657 		} else if (level >= 0) {
2658 			/*
2659 			 * The page is reserved but not yet allocated.  In
2660 			 * other words, it is still free.  Extend the current
2661 			 * run by one page.
2662 			 */
2663 			run_ext = 1;
2664 #endif
2665 		} else if ((order = m->order) < VM_NFREEORDER) {
2666 			/*
2667 			 * The page is enqueued in the physical memory
2668 			 * allocator's free page queues.  Moreover, it is the
2669 			 * first page in a power-of-two-sized run of
2670 			 * contiguous free pages.  Add these pages to the end
2671 			 * of the current run, and jump ahead.
2672 			 */
2673 			run_ext = 1 << order;
2674 			m_inc = 1 << order;
2675 		} else {
2676 			/*
2677 			 * Skip the page for one of the following reasons: (1)
2678 			 * It is enqueued in the physical memory allocator's
2679 			 * free page queues.  However, it is not the first
2680 			 * page in a run of contiguous free pages.  (This case
2681 			 * rarely occurs because the scan is performed in
2682 			 * ascending order.) (2) It is not reserved, and it is
2683 			 * transitioning from free to allocated.  (Conversely,
2684 			 * the transition from allocated to free for managed
2685 			 * pages is blocked by the page busy lock.) (3) It is
2686 			 * allocated but not contained by an object and not
2687 			 * wired, e.g., allocated by Xen's balloon driver.
2688 			 */
2689 			run_ext = 0;
2690 		}
2691 
2692 		/*
2693 		 * Extend or reset the current run of pages.
2694 		 */
2695 		if (run_ext > 0) {
2696 			if (run_len == 0)
2697 				m_run = m;
2698 			run_len += run_ext;
2699 		} else {
2700 			if (run_len > 0) {
2701 				m_run = NULL;
2702 				run_len = 0;
2703 			}
2704 		}
2705 	}
2706 	if (run_len >= npages)
2707 		return (m_run);
2708 	return (NULL);
2709 }
2710 
2711 /*
2712  *	vm_page_reclaim_run:
2713  *
2714  *	Try to relocate each of the allocated virtual pages within the
2715  *	specified run of physical pages to a new physical address.  Free the
2716  *	physical pages underlying the relocated virtual pages.  A virtual page
2717  *	is relocatable if and only if it could be laundered or reclaimed by
2718  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2719  *	physical address above "high".
2720  *
2721  *	Returns 0 if every physical page within the run was already free or
2722  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2723  *	value indicating why the last attempt to relocate a virtual page was
2724  *	unsuccessful.
2725  *
2726  *	"req_class" must be an allocation class.
2727  */
2728 static int
2729 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2730     vm_paddr_t high)
2731 {
2732 	struct vm_domain *vmd;
2733 	struct spglist free;
2734 	vm_object_t object;
2735 	vm_paddr_t pa;
2736 	vm_page_t m, m_end, m_new;
2737 	int error, order, req;
2738 
2739 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2740 	    ("req_class is not an allocation class"));
2741 	SLIST_INIT(&free);
2742 	error = 0;
2743 	m = m_run;
2744 	m_end = m_run + npages;
2745 	for (; error == 0 && m < m_end; m++) {
2746 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2747 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2748 
2749 		/*
2750 		 * Racily check for wirings.  Races are handled once the object
2751 		 * lock is held and the page is unmapped.
2752 		 */
2753 		if (vm_page_wired(m))
2754 			error = EBUSY;
2755 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2756 			/*
2757 			 * The page is relocated if and only if it could be
2758 			 * laundered or reclaimed by the page daemon.
2759 			 */
2760 			VM_OBJECT_WLOCK(object);
2761 			/* Don't care: PG_NODUMP, PG_ZERO. */
2762 			if (m->object != object ||
2763 			    (object->type != OBJT_DEFAULT &&
2764 			    object->type != OBJT_SWAP &&
2765 			    object->type != OBJT_VNODE))
2766 				error = EINVAL;
2767 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2768 				error = EINVAL;
2769 			else if (vm_page_queue(m) != PQ_NONE &&
2770 			    vm_page_tryxbusy(m) != 0) {
2771 				if (vm_page_wired(m)) {
2772 					vm_page_xunbusy(m);
2773 					error = EBUSY;
2774 					goto unlock;
2775 				}
2776 				KASSERT(pmap_page_get_memattr(m) ==
2777 				    VM_MEMATTR_DEFAULT,
2778 				    ("page %p has an unexpected memattr", m));
2779 				KASSERT(m->oflags == 0,
2780 				    ("page %p has unexpected oflags", m));
2781 				/* Don't care: PGA_NOSYNC. */
2782 				if (!vm_page_none_valid(m)) {
2783 					/*
2784 					 * First, try to allocate a new page
2785 					 * that is above "high".  Failing
2786 					 * that, try to allocate a new page
2787 					 * that is below "m_run".  Allocate
2788 					 * the new page between the end of
2789 					 * "m_run" and "high" only as a last
2790 					 * resort.
2791 					 */
2792 					req = req_class | VM_ALLOC_NOOBJ;
2793 					if ((m->flags & PG_NODUMP) != 0)
2794 						req |= VM_ALLOC_NODUMP;
2795 					if (trunc_page(high) !=
2796 					    ~(vm_paddr_t)PAGE_MASK) {
2797 						m_new = vm_page_alloc_contig(
2798 						    NULL, 0, req, 1,
2799 						    round_page(high),
2800 						    ~(vm_paddr_t)0,
2801 						    PAGE_SIZE, 0,
2802 						    VM_MEMATTR_DEFAULT);
2803 					} else
2804 						m_new = NULL;
2805 					if (m_new == NULL) {
2806 						pa = VM_PAGE_TO_PHYS(m_run);
2807 						m_new = vm_page_alloc_contig(
2808 						    NULL, 0, req, 1,
2809 						    0, pa - 1, PAGE_SIZE, 0,
2810 						    VM_MEMATTR_DEFAULT);
2811 					}
2812 					if (m_new == NULL) {
2813 						pa += ptoa(npages);
2814 						m_new = vm_page_alloc_contig(
2815 						    NULL, 0, req, 1,
2816 						    pa, high, PAGE_SIZE, 0,
2817 						    VM_MEMATTR_DEFAULT);
2818 					}
2819 					if (m_new == NULL) {
2820 						vm_page_xunbusy(m);
2821 						error = ENOMEM;
2822 						goto unlock;
2823 					}
2824 
2825 					/*
2826 					 * Unmap the page and check for new
2827 					 * wirings that may have been acquired
2828 					 * through a pmap lookup.
2829 					 */
2830 					if (object->ref_count != 0 &&
2831 					    !vm_page_try_remove_all(m)) {
2832 						vm_page_xunbusy(m);
2833 						vm_page_free(m_new);
2834 						error = EBUSY;
2835 						goto unlock;
2836 					}
2837 
2838 					/*
2839 					 * Replace "m" with the new page.  For
2840 					 * vm_page_replace(), "m" must be busy
2841 					 * and dequeued.  Finally, change "m"
2842 					 * as if vm_page_free() was called.
2843 					 */
2844 					m_new->a.flags = m->a.flags &
2845 					    ~PGA_QUEUE_STATE_MASK;
2846 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2847 					    ("page %p is managed", m_new));
2848 					m_new->oflags = 0;
2849 					pmap_copy_page(m, m_new);
2850 					m_new->valid = m->valid;
2851 					m_new->dirty = m->dirty;
2852 					m->flags &= ~PG_ZERO;
2853 					vm_page_dequeue(m);
2854 					if (vm_page_replace_hold(m_new, object,
2855 					    m->pindex, m) &&
2856 					    vm_page_free_prep(m))
2857 						SLIST_INSERT_HEAD(&free, m,
2858 						    plinks.s.ss);
2859 
2860 					/*
2861 					 * The new page must be deactivated
2862 					 * before the object is unlocked.
2863 					 */
2864 					vm_page_deactivate(m_new);
2865 				} else {
2866 					m->flags &= ~PG_ZERO;
2867 					vm_page_dequeue(m);
2868 					if (vm_page_free_prep(m))
2869 						SLIST_INSERT_HEAD(&free, m,
2870 						    plinks.s.ss);
2871 					KASSERT(m->dirty == 0,
2872 					    ("page %p is dirty", m));
2873 				}
2874 			} else
2875 				error = EBUSY;
2876 unlock:
2877 			VM_OBJECT_WUNLOCK(object);
2878 		} else {
2879 			MPASS(vm_phys_domain(m) == domain);
2880 			vmd = VM_DOMAIN(domain);
2881 			vm_domain_free_lock(vmd);
2882 			order = m->order;
2883 			if (order < VM_NFREEORDER) {
2884 				/*
2885 				 * The page is enqueued in the physical memory
2886 				 * allocator's free page queues.  Moreover, it
2887 				 * is the first page in a power-of-two-sized
2888 				 * run of contiguous free pages.  Jump ahead
2889 				 * to the last page within that run, and
2890 				 * continue from there.
2891 				 */
2892 				m += (1 << order) - 1;
2893 			}
2894 #if VM_NRESERVLEVEL > 0
2895 			else if (vm_reserv_is_page_free(m))
2896 				order = 0;
2897 #endif
2898 			vm_domain_free_unlock(vmd);
2899 			if (order == VM_NFREEORDER)
2900 				error = EINVAL;
2901 		}
2902 	}
2903 	if ((m = SLIST_FIRST(&free)) != NULL) {
2904 		int cnt;
2905 
2906 		vmd = VM_DOMAIN(domain);
2907 		cnt = 0;
2908 		vm_domain_free_lock(vmd);
2909 		do {
2910 			MPASS(vm_phys_domain(m) == domain);
2911 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2912 			vm_phys_free_pages(m, 0);
2913 			cnt++;
2914 		} while ((m = SLIST_FIRST(&free)) != NULL);
2915 		vm_domain_free_unlock(vmd);
2916 		vm_domain_freecnt_inc(vmd, cnt);
2917 	}
2918 	return (error);
2919 }
2920 
2921 #define	NRUNS	16
2922 
2923 CTASSERT(powerof2(NRUNS));
2924 
2925 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2926 
2927 #define	MIN_RECLAIM	8
2928 
2929 /*
2930  *	vm_page_reclaim_contig:
2931  *
2932  *	Reclaim allocated, contiguous physical memory satisfying the specified
2933  *	conditions by relocating the virtual pages using that physical memory.
2934  *	Returns true if reclamation is successful and false otherwise.  Since
2935  *	relocation requires the allocation of physical pages, reclamation may
2936  *	fail due to a shortage of free pages.  When reclamation fails, callers
2937  *	are expected to perform vm_wait() before retrying a failed allocation
2938  *	operation, e.g., vm_page_alloc_contig().
2939  *
2940  *	The caller must always specify an allocation class through "req".
2941  *
2942  *	allocation classes:
2943  *	VM_ALLOC_NORMAL		normal process request
2944  *	VM_ALLOC_SYSTEM		system *really* needs a page
2945  *	VM_ALLOC_INTERRUPT	interrupt time request
2946  *
2947  *	The optional allocation flags are ignored.
2948  *
2949  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2950  *	must be a power of two.
2951  */
2952 bool
2953 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2954     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2955 {
2956 	struct vm_domain *vmd;
2957 	vm_paddr_t curr_low;
2958 	vm_page_t m_run, m_runs[NRUNS];
2959 	u_long count, reclaimed;
2960 	int error, i, options, req_class;
2961 
2962 	KASSERT(npages > 0, ("npages is 0"));
2963 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2964 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2965 	req_class = req & VM_ALLOC_CLASS_MASK;
2966 
2967 	/*
2968 	 * The page daemon is allowed to dig deeper into the free page list.
2969 	 */
2970 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2971 		req_class = VM_ALLOC_SYSTEM;
2972 
2973 	/*
2974 	 * Return if the number of free pages cannot satisfy the requested
2975 	 * allocation.
2976 	 */
2977 	vmd = VM_DOMAIN(domain);
2978 	count = vmd->vmd_free_count;
2979 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
2980 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2981 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2982 		return (false);
2983 
2984 	/*
2985 	 * Scan up to three times, relaxing the restrictions ("options") on
2986 	 * the reclamation of reservations and superpages each time.
2987 	 */
2988 	for (options = VPSC_NORESERV;;) {
2989 		/*
2990 		 * Find the highest runs that satisfy the given constraints
2991 		 * and restrictions, and record them in "m_runs".
2992 		 */
2993 		curr_low = low;
2994 		count = 0;
2995 		for (;;) {
2996 			m_run = vm_phys_scan_contig(domain, npages, curr_low,
2997 			    high, alignment, boundary, options);
2998 			if (m_run == NULL)
2999 				break;
3000 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
3001 			m_runs[RUN_INDEX(count)] = m_run;
3002 			count++;
3003 		}
3004 
3005 		/*
3006 		 * Reclaim the highest runs in LIFO (descending) order until
3007 		 * the number of reclaimed pages, "reclaimed", is at least
3008 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
3009 		 * reclamation is idempotent, and runs will (likely) recur
3010 		 * from one scan to the next as restrictions are relaxed.
3011 		 */
3012 		reclaimed = 0;
3013 		for (i = 0; count > 0 && i < NRUNS; i++) {
3014 			count--;
3015 			m_run = m_runs[RUN_INDEX(count)];
3016 			error = vm_page_reclaim_run(req_class, domain, npages,
3017 			    m_run, high);
3018 			if (error == 0) {
3019 				reclaimed += npages;
3020 				if (reclaimed >= MIN_RECLAIM)
3021 					return (true);
3022 			}
3023 		}
3024 
3025 		/*
3026 		 * Either relax the restrictions on the next scan or return if
3027 		 * the last scan had no restrictions.
3028 		 */
3029 		if (options == VPSC_NORESERV)
3030 			options = VPSC_NOSUPER;
3031 		else if (options == VPSC_NOSUPER)
3032 			options = VPSC_ANY;
3033 		else if (options == VPSC_ANY)
3034 			return (reclaimed != 0);
3035 	}
3036 }
3037 
3038 bool
3039 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3040     u_long alignment, vm_paddr_t boundary)
3041 {
3042 	struct vm_domainset_iter di;
3043 	int domain;
3044 	bool ret;
3045 
3046 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3047 	do {
3048 		ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
3049 		    high, alignment, boundary);
3050 		if (ret)
3051 			break;
3052 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3053 
3054 	return (ret);
3055 }
3056 
3057 /*
3058  * Set the domain in the appropriate page level domainset.
3059  */
3060 void
3061 vm_domain_set(struct vm_domain *vmd)
3062 {
3063 
3064 	mtx_lock(&vm_domainset_lock);
3065 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3066 		vmd->vmd_minset = 1;
3067 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3068 	}
3069 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3070 		vmd->vmd_severeset = 1;
3071 		DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3072 	}
3073 	mtx_unlock(&vm_domainset_lock);
3074 }
3075 
3076 /*
3077  * Clear the domain from the appropriate page level domainset.
3078  */
3079 void
3080 vm_domain_clear(struct vm_domain *vmd)
3081 {
3082 
3083 	mtx_lock(&vm_domainset_lock);
3084 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3085 		vmd->vmd_minset = 0;
3086 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3087 		if (vm_min_waiters != 0) {
3088 			vm_min_waiters = 0;
3089 			wakeup(&vm_min_domains);
3090 		}
3091 	}
3092 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3093 		vmd->vmd_severeset = 0;
3094 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3095 		if (vm_severe_waiters != 0) {
3096 			vm_severe_waiters = 0;
3097 			wakeup(&vm_severe_domains);
3098 		}
3099 	}
3100 
3101 	/*
3102 	 * If pageout daemon needs pages, then tell it that there are
3103 	 * some free.
3104 	 */
3105 	if (vmd->vmd_pageout_pages_needed &&
3106 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3107 		wakeup(&vmd->vmd_pageout_pages_needed);
3108 		vmd->vmd_pageout_pages_needed = 0;
3109 	}
3110 
3111 	/* See comments in vm_wait_doms(). */
3112 	if (vm_pageproc_waiters) {
3113 		vm_pageproc_waiters = 0;
3114 		wakeup(&vm_pageproc_waiters);
3115 	}
3116 	mtx_unlock(&vm_domainset_lock);
3117 }
3118 
3119 /*
3120  * Wait for free pages to exceed the min threshold globally.
3121  */
3122 void
3123 vm_wait_min(void)
3124 {
3125 
3126 	mtx_lock(&vm_domainset_lock);
3127 	while (vm_page_count_min()) {
3128 		vm_min_waiters++;
3129 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3130 	}
3131 	mtx_unlock(&vm_domainset_lock);
3132 }
3133 
3134 /*
3135  * Wait for free pages to exceed the severe threshold globally.
3136  */
3137 void
3138 vm_wait_severe(void)
3139 {
3140 
3141 	mtx_lock(&vm_domainset_lock);
3142 	while (vm_page_count_severe()) {
3143 		vm_severe_waiters++;
3144 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3145 		    "vmwait", 0);
3146 	}
3147 	mtx_unlock(&vm_domainset_lock);
3148 }
3149 
3150 u_int
3151 vm_wait_count(void)
3152 {
3153 
3154 	return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3155 }
3156 
3157 int
3158 vm_wait_doms(const domainset_t *wdoms, int mflags)
3159 {
3160 	int error;
3161 
3162 	error = 0;
3163 
3164 	/*
3165 	 * We use racey wakeup synchronization to avoid expensive global
3166 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
3167 	 * To handle this, we only sleep for one tick in this instance.  It
3168 	 * is expected that most allocations for the pageproc will come from
3169 	 * kmem or vm_page_grab* which will use the more specific and
3170 	 * race-free vm_wait_domain().
3171 	 */
3172 	if (curproc == pageproc) {
3173 		mtx_lock(&vm_domainset_lock);
3174 		vm_pageproc_waiters++;
3175 		error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3176 		    PVM | PDROP | mflags, "pageprocwait", 1);
3177 	} else {
3178 		/*
3179 		 * XXX Ideally we would wait only until the allocation could
3180 		 * be satisfied.  This condition can cause new allocators to
3181 		 * consume all freed pages while old allocators wait.
3182 		 */
3183 		mtx_lock(&vm_domainset_lock);
3184 		if (vm_page_count_min_set(wdoms)) {
3185 			vm_min_waiters++;
3186 			error = msleep(&vm_min_domains, &vm_domainset_lock,
3187 			    PVM | PDROP | mflags, "vmwait", 0);
3188 		} else
3189 			mtx_unlock(&vm_domainset_lock);
3190 	}
3191 	return (error);
3192 }
3193 
3194 /*
3195  *	vm_wait_domain:
3196  *
3197  *	Sleep until free pages are available for allocation.
3198  *	- Called in various places after failed memory allocations.
3199  */
3200 void
3201 vm_wait_domain(int domain)
3202 {
3203 	struct vm_domain *vmd;
3204 	domainset_t wdom;
3205 
3206 	vmd = VM_DOMAIN(domain);
3207 	vm_domain_free_assert_unlocked(vmd);
3208 
3209 	if (curproc == pageproc) {
3210 		mtx_lock(&vm_domainset_lock);
3211 		if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3212 			vmd->vmd_pageout_pages_needed = 1;
3213 			msleep(&vmd->vmd_pageout_pages_needed,
3214 			    &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3215 		} else
3216 			mtx_unlock(&vm_domainset_lock);
3217 	} else {
3218 		if (pageproc == NULL)
3219 			panic("vm_wait in early boot");
3220 		DOMAINSET_ZERO(&wdom);
3221 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
3222 		vm_wait_doms(&wdom, 0);
3223 	}
3224 }
3225 
3226 static int
3227 vm_wait_flags(vm_object_t obj, int mflags)
3228 {
3229 	struct domainset *d;
3230 
3231 	d = NULL;
3232 
3233 	/*
3234 	 * Carefully fetch pointers only once: the struct domainset
3235 	 * itself is ummutable but the pointer might change.
3236 	 */
3237 	if (obj != NULL)
3238 		d = obj->domain.dr_policy;
3239 	if (d == NULL)
3240 		d = curthread->td_domain.dr_policy;
3241 
3242 	return (vm_wait_doms(&d->ds_mask, mflags));
3243 }
3244 
3245 /*
3246  *	vm_wait:
3247  *
3248  *	Sleep until free pages are available for allocation in the
3249  *	affinity domains of the obj.  If obj is NULL, the domain set
3250  *	for the calling thread is used.
3251  *	Called in various places after failed memory allocations.
3252  */
3253 void
3254 vm_wait(vm_object_t obj)
3255 {
3256 	(void)vm_wait_flags(obj, 0);
3257 }
3258 
3259 int
3260 vm_wait_intr(vm_object_t obj)
3261 {
3262 	return (vm_wait_flags(obj, PCATCH));
3263 }
3264 
3265 /*
3266  *	vm_domain_alloc_fail:
3267  *
3268  *	Called when a page allocation function fails.  Informs the
3269  *	pagedaemon and performs the requested wait.  Requires the
3270  *	domain_free and object lock on entry.  Returns with the
3271  *	object lock held and free lock released.  Returns an error when
3272  *	retry is necessary.
3273  *
3274  */
3275 static int
3276 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3277 {
3278 
3279 	vm_domain_free_assert_unlocked(vmd);
3280 
3281 	atomic_add_int(&vmd->vmd_pageout_deficit,
3282 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3283 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3284 		if (object != NULL)
3285 			VM_OBJECT_WUNLOCK(object);
3286 		vm_wait_domain(vmd->vmd_domain);
3287 		if (object != NULL)
3288 			VM_OBJECT_WLOCK(object);
3289 		if (req & VM_ALLOC_WAITOK)
3290 			return (EAGAIN);
3291 	}
3292 
3293 	return (0);
3294 }
3295 
3296 /*
3297  *	vm_waitpfault:
3298  *
3299  *	Sleep until free pages are available for allocation.
3300  *	- Called only in vm_fault so that processes page faulting
3301  *	  can be easily tracked.
3302  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3303  *	  processes will be able to grab memory first.  Do not change
3304  *	  this balance without careful testing first.
3305  */
3306 void
3307 vm_waitpfault(struct domainset *dset, int timo)
3308 {
3309 
3310 	/*
3311 	 * XXX Ideally we would wait only until the allocation could
3312 	 * be satisfied.  This condition can cause new allocators to
3313 	 * consume all freed pages while old allocators wait.
3314 	 */
3315 	mtx_lock(&vm_domainset_lock);
3316 	if (vm_page_count_min_set(&dset->ds_mask)) {
3317 		vm_min_waiters++;
3318 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3319 		    "pfault", timo);
3320 	} else
3321 		mtx_unlock(&vm_domainset_lock);
3322 }
3323 
3324 static struct vm_pagequeue *
3325 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3326 {
3327 
3328 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3329 }
3330 
3331 #ifdef INVARIANTS
3332 static struct vm_pagequeue *
3333 vm_page_pagequeue(vm_page_t m)
3334 {
3335 
3336 	return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3337 }
3338 #endif
3339 
3340 static __always_inline bool
3341 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3342 {
3343 	vm_page_astate_t tmp;
3344 
3345 	tmp = *old;
3346 	do {
3347 		if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3348 			return (true);
3349 		counter_u64_add(pqstate_commit_retries, 1);
3350 	} while (old->_bits == tmp._bits);
3351 
3352 	return (false);
3353 }
3354 
3355 /*
3356  * Do the work of committing a queue state update that moves the page out of
3357  * its current queue.
3358  */
3359 static bool
3360 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3361     vm_page_astate_t *old, vm_page_astate_t new)
3362 {
3363 	vm_page_t next;
3364 
3365 	vm_pagequeue_assert_locked(pq);
3366 	KASSERT(vm_page_pagequeue(m) == pq,
3367 	    ("%s: queue %p does not match page %p", __func__, pq, m));
3368 	KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3369 	    ("%s: invalid queue indices %d %d",
3370 	    __func__, old->queue, new.queue));
3371 
3372 	/*
3373 	 * Once the queue index of the page changes there is nothing
3374 	 * synchronizing with further updates to the page's physical
3375 	 * queue state.  Therefore we must speculatively remove the page
3376 	 * from the queue now and be prepared to roll back if the queue
3377 	 * state update fails.  If the page is not physically enqueued then
3378 	 * we just update its queue index.
3379 	 */
3380 	if ((old->flags & PGA_ENQUEUED) != 0) {
3381 		new.flags &= ~PGA_ENQUEUED;
3382 		next = TAILQ_NEXT(m, plinks.q);
3383 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3384 		vm_pagequeue_cnt_dec(pq);
3385 		if (!vm_page_pqstate_fcmpset(m, old, new)) {
3386 			if (next == NULL)
3387 				TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3388 			else
3389 				TAILQ_INSERT_BEFORE(next, m, plinks.q);
3390 			vm_pagequeue_cnt_inc(pq);
3391 			return (false);
3392 		} else {
3393 			return (true);
3394 		}
3395 	} else {
3396 		return (vm_page_pqstate_fcmpset(m, old, new));
3397 	}
3398 }
3399 
3400 static bool
3401 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3402     vm_page_astate_t new)
3403 {
3404 	struct vm_pagequeue *pq;
3405 	vm_page_astate_t as;
3406 	bool ret;
3407 
3408 	pq = _vm_page_pagequeue(m, old->queue);
3409 
3410 	/*
3411 	 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3412 	 * corresponding page queue lock is held.
3413 	 */
3414 	vm_pagequeue_lock(pq);
3415 	as = vm_page_astate_load(m);
3416 	if (__predict_false(as._bits != old->_bits)) {
3417 		*old = as;
3418 		ret = false;
3419 	} else {
3420 		ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3421 	}
3422 	vm_pagequeue_unlock(pq);
3423 	return (ret);
3424 }
3425 
3426 /*
3427  * Commit a queue state update that enqueues or requeues a page.
3428  */
3429 static bool
3430 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3431     vm_page_astate_t *old, vm_page_astate_t new)
3432 {
3433 	struct vm_domain *vmd;
3434 
3435 	vm_pagequeue_assert_locked(pq);
3436 	KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3437 	    ("%s: invalid queue indices %d %d",
3438 	    __func__, old->queue, new.queue));
3439 
3440 	new.flags |= PGA_ENQUEUED;
3441 	if (!vm_page_pqstate_fcmpset(m, old, new))
3442 		return (false);
3443 
3444 	if ((old->flags & PGA_ENQUEUED) != 0)
3445 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3446 	else
3447 		vm_pagequeue_cnt_inc(pq);
3448 
3449 	/*
3450 	 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3451 	 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3452 	 * applied, even if it was set first.
3453 	 */
3454 	if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3455 		vmd = vm_pagequeue_domain(m);
3456 		KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3457 		    ("%s: invalid page queue for page %p", __func__, m));
3458 		TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3459 	} else {
3460 		TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3461 	}
3462 	return (true);
3463 }
3464 
3465 /*
3466  * Commit a queue state update that encodes a request for a deferred queue
3467  * operation.
3468  */
3469 static bool
3470 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3471     vm_page_astate_t new)
3472 {
3473 
3474 	KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3475 	    ("%s: invalid state, queue %d flags %x",
3476 	    __func__, new.queue, new.flags));
3477 
3478 	if (old->_bits != new._bits &&
3479 	    !vm_page_pqstate_fcmpset(m, old, new))
3480 		return (false);
3481 	vm_page_pqbatch_submit(m, new.queue);
3482 	return (true);
3483 }
3484 
3485 /*
3486  * A generic queue state update function.  This handles more cases than the
3487  * specialized functions above.
3488  */
3489 bool
3490 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3491 {
3492 
3493 	if (old->_bits == new._bits)
3494 		return (true);
3495 
3496 	if (old->queue != PQ_NONE && new.queue != old->queue) {
3497 		if (!vm_page_pqstate_commit_dequeue(m, old, new))
3498 			return (false);
3499 		if (new.queue != PQ_NONE)
3500 			vm_page_pqbatch_submit(m, new.queue);
3501 	} else {
3502 		if (!vm_page_pqstate_fcmpset(m, old, new))
3503 			return (false);
3504 		if (new.queue != PQ_NONE &&
3505 		    ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3506 			vm_page_pqbatch_submit(m, new.queue);
3507 	}
3508 	return (true);
3509 }
3510 
3511 /*
3512  * Apply deferred queue state updates to a page.
3513  */
3514 static inline void
3515 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3516 {
3517 	vm_page_astate_t new, old;
3518 
3519 	CRITICAL_ASSERT(curthread);
3520 	vm_pagequeue_assert_locked(pq);
3521 	KASSERT(queue < PQ_COUNT,
3522 	    ("%s: invalid queue index %d", __func__, queue));
3523 	KASSERT(pq == _vm_page_pagequeue(m, queue),
3524 	    ("%s: page %p does not belong to queue %p", __func__, m, pq));
3525 
3526 	for (old = vm_page_astate_load(m);;) {
3527 		if (__predict_false(old.queue != queue ||
3528 		    (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3529 			counter_u64_add(queue_nops, 1);
3530 			break;
3531 		}
3532 		KASSERT(old.queue != PQ_NONE || (old.flags & PGA_QUEUE_STATE_MASK) == 0,
3533 		    ("%s: page %p has unexpected queue state", __func__, m));
3534 
3535 		new = old;
3536 		if ((old.flags & PGA_DEQUEUE) != 0) {
3537 			new.flags &= ~PGA_QUEUE_OP_MASK;
3538 			new.queue = PQ_NONE;
3539 			if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3540 			    m, &old, new))) {
3541 				counter_u64_add(queue_ops, 1);
3542 				break;
3543 			}
3544 		} else {
3545 			new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3546 			if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3547 			    m, &old, new))) {
3548 				counter_u64_add(queue_ops, 1);
3549 				break;
3550 			}
3551 		}
3552 	}
3553 }
3554 
3555 static void
3556 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3557     uint8_t queue)
3558 {
3559 	int i;
3560 
3561 	for (i = 0; i < bq->bq_cnt; i++)
3562 		vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3563 	vm_batchqueue_init(bq);
3564 }
3565 
3566 /*
3567  *	vm_page_pqbatch_submit:		[ internal use only ]
3568  *
3569  *	Enqueue a page in the specified page queue's batched work queue.
3570  *	The caller must have encoded the requested operation in the page
3571  *	structure's a.flags field.
3572  */
3573 void
3574 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3575 {
3576 	struct vm_batchqueue *bq;
3577 	struct vm_pagequeue *pq;
3578 	int domain;
3579 
3580 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3581 	    ("page %p is unmanaged", m));
3582 	KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3583 
3584 	domain = vm_phys_domain(m);
3585 	pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3586 
3587 	critical_enter();
3588 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3589 	if (vm_batchqueue_insert(bq, m)) {
3590 		critical_exit();
3591 		return;
3592 	}
3593 	critical_exit();
3594 	vm_pagequeue_lock(pq);
3595 	critical_enter();
3596 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3597 	vm_pqbatch_process(pq, bq, queue);
3598 	vm_pqbatch_process_page(pq, m, queue);
3599 	vm_pagequeue_unlock(pq);
3600 	critical_exit();
3601 }
3602 
3603 /*
3604  *	vm_page_pqbatch_drain:		[ internal use only ]
3605  *
3606  *	Force all per-CPU page queue batch queues to be drained.  This is
3607  *	intended for use in severe memory shortages, to ensure that pages
3608  *	do not remain stuck in the batch queues.
3609  */
3610 void
3611 vm_page_pqbatch_drain(void)
3612 {
3613 	struct thread *td;
3614 	struct vm_domain *vmd;
3615 	struct vm_pagequeue *pq;
3616 	int cpu, domain, queue;
3617 
3618 	td = curthread;
3619 	CPU_FOREACH(cpu) {
3620 		thread_lock(td);
3621 		sched_bind(td, cpu);
3622 		thread_unlock(td);
3623 
3624 		for (domain = 0; domain < vm_ndomains; domain++) {
3625 			vmd = VM_DOMAIN(domain);
3626 			for (queue = 0; queue < PQ_COUNT; queue++) {
3627 				pq = &vmd->vmd_pagequeues[queue];
3628 				vm_pagequeue_lock(pq);
3629 				critical_enter();
3630 				vm_pqbatch_process(pq,
3631 				    DPCPU_PTR(pqbatch[domain][queue]), queue);
3632 				critical_exit();
3633 				vm_pagequeue_unlock(pq);
3634 			}
3635 		}
3636 	}
3637 	thread_lock(td);
3638 	sched_unbind(td);
3639 	thread_unlock(td);
3640 }
3641 
3642 /*
3643  *	vm_page_dequeue_deferred:	[ internal use only ]
3644  *
3645  *	Request removal of the given page from its current page
3646  *	queue.  Physical removal from the queue may be deferred
3647  *	indefinitely.
3648  */
3649 void
3650 vm_page_dequeue_deferred(vm_page_t m)
3651 {
3652 	vm_page_astate_t new, old;
3653 
3654 	old = vm_page_astate_load(m);
3655 	do {
3656 		if (old.queue == PQ_NONE) {
3657 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3658 			    ("%s: page %p has unexpected queue state",
3659 			    __func__, m));
3660 			break;
3661 		}
3662 		new = old;
3663 		new.flags |= PGA_DEQUEUE;
3664 	} while (!vm_page_pqstate_commit_request(m, &old, new));
3665 }
3666 
3667 /*
3668  *	vm_page_dequeue:
3669  *
3670  *	Remove the page from whichever page queue it's in, if any, before
3671  *	returning.
3672  */
3673 void
3674 vm_page_dequeue(vm_page_t m)
3675 {
3676 	vm_page_astate_t new, old;
3677 
3678 	old = vm_page_astate_load(m);
3679 	do {
3680 		if (old.queue == PQ_NONE) {
3681 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3682 			    ("%s: page %p has unexpected queue state",
3683 			    __func__, m));
3684 			break;
3685 		}
3686 		new = old;
3687 		new.flags &= ~PGA_QUEUE_OP_MASK;
3688 		new.queue = PQ_NONE;
3689 	} while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3690 
3691 }
3692 
3693 /*
3694  * Schedule the given page for insertion into the specified page queue.
3695  * Physical insertion of the page may be deferred indefinitely.
3696  */
3697 static void
3698 vm_page_enqueue(vm_page_t m, uint8_t queue)
3699 {
3700 
3701 	KASSERT(m->a.queue == PQ_NONE &&
3702 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3703 	    ("%s: page %p is already enqueued", __func__, m));
3704 	KASSERT(m->ref_count > 0,
3705 	    ("%s: page %p does not carry any references", __func__, m));
3706 
3707 	m->a.queue = queue;
3708 	if ((m->a.flags & PGA_REQUEUE) == 0)
3709 		vm_page_aflag_set(m, PGA_REQUEUE);
3710 	vm_page_pqbatch_submit(m, queue);
3711 }
3712 
3713 /*
3714  *	vm_page_free_prep:
3715  *
3716  *	Prepares the given page to be put on the free list,
3717  *	disassociating it from any VM object. The caller may return
3718  *	the page to the free list only if this function returns true.
3719  *
3720  *	The object, if it exists, must be locked, and then the page must
3721  *	be xbusy.  Otherwise the page must be not busied.  A managed
3722  *	page must be unmapped.
3723  */
3724 static bool
3725 vm_page_free_prep(vm_page_t m)
3726 {
3727 
3728 	/*
3729 	 * Synchronize with threads that have dropped a reference to this
3730 	 * page.
3731 	 */
3732 	atomic_thread_fence_acq();
3733 
3734 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3735 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3736 		uint64_t *p;
3737 		int i;
3738 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3739 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3740 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3741 			    m, i, (uintmax_t)*p));
3742 	}
3743 #endif
3744 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3745 		KASSERT(!pmap_page_is_mapped(m),
3746 		    ("vm_page_free_prep: freeing mapped page %p", m));
3747 		KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3748 		    ("vm_page_free_prep: mapping flags set in page %p", m));
3749 	} else {
3750 		KASSERT(m->a.queue == PQ_NONE,
3751 		    ("vm_page_free_prep: unmanaged page %p is queued", m));
3752 	}
3753 	VM_CNT_INC(v_tfree);
3754 
3755 	if (m->object != NULL) {
3756 		KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
3757 		    ((m->object->flags & OBJ_UNMANAGED) != 0),
3758 		    ("vm_page_free_prep: managed flag mismatch for page %p",
3759 		    m));
3760 		vm_page_assert_xbusied(m);
3761 
3762 		/*
3763 		 * The object reference can be released without an atomic
3764 		 * operation.
3765 		 */
3766 		KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3767 		    m->ref_count == VPRC_OBJREF,
3768 		    ("vm_page_free_prep: page %p has unexpected ref_count %u",
3769 		    m, m->ref_count));
3770 		vm_page_object_remove(m);
3771 		m->ref_count -= VPRC_OBJREF;
3772 	} else
3773 		vm_page_assert_unbusied(m);
3774 
3775 	vm_page_busy_free(m);
3776 
3777 	/*
3778 	 * If fictitious remove object association and
3779 	 * return.
3780 	 */
3781 	if ((m->flags & PG_FICTITIOUS) != 0) {
3782 		KASSERT(m->ref_count == 1,
3783 		    ("fictitious page %p is referenced", m));
3784 		KASSERT(m->a.queue == PQ_NONE,
3785 		    ("fictitious page %p is queued", m));
3786 		return (false);
3787 	}
3788 
3789 	/*
3790 	 * Pages need not be dequeued before they are returned to the physical
3791 	 * memory allocator, but they must at least be marked for a deferred
3792 	 * dequeue.
3793 	 */
3794 	if ((m->oflags & VPO_UNMANAGED) == 0)
3795 		vm_page_dequeue_deferred(m);
3796 
3797 	m->valid = 0;
3798 	vm_page_undirty(m);
3799 
3800 	if (m->ref_count != 0)
3801 		panic("vm_page_free_prep: page %p has references", m);
3802 
3803 	/*
3804 	 * Restore the default memory attribute to the page.
3805 	 */
3806 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3807 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3808 
3809 #if VM_NRESERVLEVEL > 0
3810 	/*
3811 	 * Determine whether the page belongs to a reservation.  If the page was
3812 	 * allocated from a per-CPU cache, it cannot belong to a reservation, so
3813 	 * as an optimization, we avoid the check in that case.
3814 	 */
3815 	if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3816 		return (false);
3817 #endif
3818 
3819 	return (true);
3820 }
3821 
3822 /*
3823  *	vm_page_free_toq:
3824  *
3825  *	Returns the given page to the free list, disassociating it
3826  *	from any VM object.
3827  *
3828  *	The object must be locked.  The page must be exclusively busied if it
3829  *	belongs to an object.
3830  */
3831 static void
3832 vm_page_free_toq(vm_page_t m)
3833 {
3834 	struct vm_domain *vmd;
3835 	uma_zone_t zone;
3836 
3837 	if (!vm_page_free_prep(m))
3838 		return;
3839 
3840 	vmd = vm_pagequeue_domain(m);
3841 	zone = vmd->vmd_pgcache[m->pool].zone;
3842 	if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3843 		uma_zfree(zone, m);
3844 		return;
3845 	}
3846 	vm_domain_free_lock(vmd);
3847 	vm_phys_free_pages(m, 0);
3848 	vm_domain_free_unlock(vmd);
3849 	vm_domain_freecnt_inc(vmd, 1);
3850 }
3851 
3852 /*
3853  *	vm_page_free_pages_toq:
3854  *
3855  *	Returns a list of pages to the free list, disassociating it
3856  *	from any VM object.  In other words, this is equivalent to
3857  *	calling vm_page_free_toq() for each page of a list of VM objects.
3858  */
3859 void
3860 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3861 {
3862 	vm_page_t m;
3863 	int count;
3864 
3865 	if (SLIST_EMPTY(free))
3866 		return;
3867 
3868 	count = 0;
3869 	while ((m = SLIST_FIRST(free)) != NULL) {
3870 		count++;
3871 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
3872 		vm_page_free_toq(m);
3873 	}
3874 
3875 	if (update_wire_count)
3876 		vm_wire_sub(count);
3877 }
3878 
3879 /*
3880  * Mark this page as wired down.  For managed pages, this prevents reclamation
3881  * by the page daemon, or when the containing object, if any, is destroyed.
3882  */
3883 void
3884 vm_page_wire(vm_page_t m)
3885 {
3886 	u_int old;
3887 
3888 #ifdef INVARIANTS
3889 	if (m->object != NULL && !vm_page_busied(m) &&
3890 	    !vm_object_busied(m->object))
3891 		VM_OBJECT_ASSERT_LOCKED(m->object);
3892 #endif
3893 	KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3894 	    VPRC_WIRE_COUNT(m->ref_count) >= 1,
3895 	    ("vm_page_wire: fictitious page %p has zero wirings", m));
3896 
3897 	old = atomic_fetchadd_int(&m->ref_count, 1);
3898 	KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3899 	    ("vm_page_wire: counter overflow for page %p", m));
3900 	if (VPRC_WIRE_COUNT(old) == 0) {
3901 		if ((m->oflags & VPO_UNMANAGED) == 0)
3902 			vm_page_aflag_set(m, PGA_DEQUEUE);
3903 		vm_wire_add(1);
3904 	}
3905 }
3906 
3907 /*
3908  * Attempt to wire a mapped page following a pmap lookup of that page.
3909  * This may fail if a thread is concurrently tearing down mappings of the page.
3910  * The transient failure is acceptable because it translates to the
3911  * failure of the caller pmap_extract_and_hold(), which should be then
3912  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
3913  */
3914 bool
3915 vm_page_wire_mapped(vm_page_t m)
3916 {
3917 	u_int old;
3918 
3919 	old = m->ref_count;
3920 	do {
3921 		KASSERT(old > 0,
3922 		    ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3923 		if ((old & VPRC_BLOCKED) != 0)
3924 			return (false);
3925 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3926 
3927 	if (VPRC_WIRE_COUNT(old) == 0) {
3928 		if ((m->oflags & VPO_UNMANAGED) == 0)
3929 			vm_page_aflag_set(m, PGA_DEQUEUE);
3930 		vm_wire_add(1);
3931 	}
3932 	return (true);
3933 }
3934 
3935 /*
3936  * Release a wiring reference to a managed page.  If the page still belongs to
3937  * an object, update its position in the page queues to reflect the reference.
3938  * If the wiring was the last reference to the page, free the page.
3939  */
3940 static void
3941 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
3942 {
3943 	u_int old;
3944 
3945 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3946 	    ("%s: page %p is unmanaged", __func__, m));
3947 
3948 	/*
3949 	 * Update LRU state before releasing the wiring reference.
3950 	 * Use a release store when updating the reference count to
3951 	 * synchronize with vm_page_free_prep().
3952 	 */
3953 	old = m->ref_count;
3954 	do {
3955 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
3956 		    ("vm_page_unwire: wire count underflow for page %p", m));
3957 
3958 		if (old > VPRC_OBJREF + 1) {
3959 			/*
3960 			 * The page has at least one other wiring reference.  An
3961 			 * earlier iteration of this loop may have called
3962 			 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
3963 			 * re-set it if necessary.
3964 			 */
3965 			if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
3966 				vm_page_aflag_set(m, PGA_DEQUEUE);
3967 		} else if (old == VPRC_OBJREF + 1) {
3968 			/*
3969 			 * This is the last wiring.  Clear PGA_DEQUEUE and
3970 			 * update the page's queue state to reflect the
3971 			 * reference.  If the page does not belong to an object
3972 			 * (i.e., the VPRC_OBJREF bit is clear), we only need to
3973 			 * clear leftover queue state.
3974 			 */
3975 			vm_page_release_toq(m, nqueue, false);
3976 		} else if (old == 1) {
3977 			vm_page_aflag_clear(m, PGA_DEQUEUE);
3978 		}
3979 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3980 
3981 	if (VPRC_WIRE_COUNT(old) == 1) {
3982 		vm_wire_sub(1);
3983 		if (old == 1)
3984 			vm_page_free(m);
3985 	}
3986 }
3987 
3988 /*
3989  * Release one wiring of the specified page, potentially allowing it to be
3990  * paged out.
3991  *
3992  * Only managed pages belonging to an object can be paged out.  If the number
3993  * of wirings transitions to zero and the page is eligible for page out, then
3994  * the page is added to the specified paging queue.  If the released wiring
3995  * represented the last reference to the page, the page is freed.
3996  */
3997 void
3998 vm_page_unwire(vm_page_t m, uint8_t nqueue)
3999 {
4000 
4001 	KASSERT(nqueue < PQ_COUNT,
4002 	    ("vm_page_unwire: invalid queue %u request for page %p",
4003 	    nqueue, m));
4004 
4005 	if ((m->oflags & VPO_UNMANAGED) != 0) {
4006 		if (vm_page_unwire_noq(m) && m->ref_count == 0)
4007 			vm_page_free(m);
4008 		return;
4009 	}
4010 	vm_page_unwire_managed(m, nqueue, false);
4011 }
4012 
4013 /*
4014  * Unwire a page without (re-)inserting it into a page queue.  It is up
4015  * to the caller to enqueue, requeue, or free the page as appropriate.
4016  * In most cases involving managed pages, vm_page_unwire() should be used
4017  * instead.
4018  */
4019 bool
4020 vm_page_unwire_noq(vm_page_t m)
4021 {
4022 	u_int old;
4023 
4024 	old = vm_page_drop(m, 1);
4025 	KASSERT(VPRC_WIRE_COUNT(old) != 0,
4026 	    ("vm_page_unref: counter underflow for page %p", m));
4027 	KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4028 	    ("vm_page_unref: missing ref on fictitious page %p", m));
4029 
4030 	if (VPRC_WIRE_COUNT(old) > 1)
4031 		return (false);
4032 	if ((m->oflags & VPO_UNMANAGED) == 0)
4033 		vm_page_aflag_clear(m, PGA_DEQUEUE);
4034 	vm_wire_sub(1);
4035 	return (true);
4036 }
4037 
4038 /*
4039  * Ensure that the page ends up in the specified page queue.  If the page is
4040  * active or being moved to the active queue, ensure that its act_count is
4041  * at least ACT_INIT but do not otherwise mess with it.
4042  */
4043 static __always_inline void
4044 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4045 {
4046 	vm_page_astate_t old, new;
4047 
4048 	KASSERT(m->ref_count > 0,
4049 	    ("%s: page %p does not carry any references", __func__, m));
4050 	KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4051 	    ("%s: invalid flags %x", __func__, nflag));
4052 
4053 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4054 		return;
4055 
4056 	old = vm_page_astate_load(m);
4057 	do {
4058 		if ((old.flags & PGA_DEQUEUE) != 0)
4059 			break;
4060 		new = old;
4061 		new.flags &= ~PGA_QUEUE_OP_MASK;
4062 		if (nqueue == PQ_ACTIVE)
4063 			new.act_count = max(old.act_count, ACT_INIT);
4064 		if (old.queue == nqueue) {
4065 			if (nqueue != PQ_ACTIVE)
4066 				new.flags |= nflag;
4067 		} else {
4068 			new.flags |= nflag;
4069 			new.queue = nqueue;
4070 		}
4071 	} while (!vm_page_pqstate_commit(m, &old, new));
4072 }
4073 
4074 /*
4075  * Put the specified page on the active list (if appropriate).
4076  */
4077 void
4078 vm_page_activate(vm_page_t m)
4079 {
4080 
4081 	vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4082 }
4083 
4084 /*
4085  * Move the specified page to the tail of the inactive queue, or requeue
4086  * the page if it is already in the inactive queue.
4087  */
4088 void
4089 vm_page_deactivate(vm_page_t m)
4090 {
4091 
4092 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4093 }
4094 
4095 void
4096 vm_page_deactivate_noreuse(vm_page_t m)
4097 {
4098 
4099 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4100 }
4101 
4102 /*
4103  * Put a page in the laundry, or requeue it if it is already there.
4104  */
4105 void
4106 vm_page_launder(vm_page_t m)
4107 {
4108 
4109 	vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4110 }
4111 
4112 /*
4113  * Put a page in the PQ_UNSWAPPABLE holding queue.
4114  */
4115 void
4116 vm_page_unswappable(vm_page_t m)
4117 {
4118 
4119 	KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
4120 	    ("page %p already unswappable", m));
4121 
4122 	vm_page_dequeue(m);
4123 	vm_page_enqueue(m, PQ_UNSWAPPABLE);
4124 }
4125 
4126 /*
4127  * Release a page back to the page queues in preparation for unwiring.
4128  */
4129 static void
4130 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4131 {
4132 	vm_page_astate_t old, new;
4133 	uint16_t nflag;
4134 
4135 	/*
4136 	 * Use a check of the valid bits to determine whether we should
4137 	 * accelerate reclamation of the page.  The object lock might not be
4138 	 * held here, in which case the check is racy.  At worst we will either
4139 	 * accelerate reclamation of a valid page and violate LRU, or
4140 	 * unnecessarily defer reclamation of an invalid page.
4141 	 *
4142 	 * If we were asked to not cache the page, place it near the head of the
4143 	 * inactive queue so that is reclaimed sooner.
4144 	 */
4145 	if (noreuse || m->valid == 0) {
4146 		nqueue = PQ_INACTIVE;
4147 		nflag = PGA_REQUEUE_HEAD;
4148 	} else {
4149 		nflag = PGA_REQUEUE;
4150 	}
4151 
4152 	old = vm_page_astate_load(m);
4153 	do {
4154 		new = old;
4155 
4156 		/*
4157 		 * If the page is already in the active queue and we are not
4158 		 * trying to accelerate reclamation, simply mark it as
4159 		 * referenced and avoid any queue operations.
4160 		 */
4161 		new.flags &= ~PGA_QUEUE_OP_MASK;
4162 		if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE)
4163 			new.flags |= PGA_REFERENCED;
4164 		else {
4165 			new.flags |= nflag;
4166 			new.queue = nqueue;
4167 		}
4168 	} while (!vm_page_pqstate_commit(m, &old, new));
4169 }
4170 
4171 /*
4172  * Unwire a page and either attempt to free it or re-add it to the page queues.
4173  */
4174 void
4175 vm_page_release(vm_page_t m, int flags)
4176 {
4177 	vm_object_t object;
4178 
4179 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4180 	    ("vm_page_release: page %p is unmanaged", m));
4181 
4182 	if ((flags & VPR_TRYFREE) != 0) {
4183 		for (;;) {
4184 			object = atomic_load_ptr(&m->object);
4185 			if (object == NULL)
4186 				break;
4187 			/* Depends on type-stability. */
4188 			if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4189 				break;
4190 			if (object == m->object) {
4191 				vm_page_release_locked(m, flags);
4192 				VM_OBJECT_WUNLOCK(object);
4193 				return;
4194 			}
4195 			VM_OBJECT_WUNLOCK(object);
4196 		}
4197 	}
4198 	vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4199 }
4200 
4201 /* See vm_page_release(). */
4202 void
4203 vm_page_release_locked(vm_page_t m, int flags)
4204 {
4205 
4206 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4207 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4208 	    ("vm_page_release_locked: page %p is unmanaged", m));
4209 
4210 	if (vm_page_unwire_noq(m)) {
4211 		if ((flags & VPR_TRYFREE) != 0 &&
4212 		    (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4213 		    m->dirty == 0 && vm_page_tryxbusy(m)) {
4214 			/*
4215 			 * An unlocked lookup may have wired the page before the
4216 			 * busy lock was acquired, in which case the page must
4217 			 * not be freed.
4218 			 */
4219 			if (__predict_true(!vm_page_wired(m))) {
4220 				vm_page_free(m);
4221 				return;
4222 			}
4223 			vm_page_xunbusy(m);
4224 		} else {
4225 			vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4226 		}
4227 	}
4228 }
4229 
4230 static bool
4231 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4232 {
4233 	u_int old;
4234 
4235 	KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4236 	    ("vm_page_try_blocked_op: page %p has no object", m));
4237 	KASSERT(vm_page_busied(m),
4238 	    ("vm_page_try_blocked_op: page %p is not busy", m));
4239 	VM_OBJECT_ASSERT_LOCKED(m->object);
4240 
4241 	old = m->ref_count;
4242 	do {
4243 		KASSERT(old != 0,
4244 		    ("vm_page_try_blocked_op: page %p has no references", m));
4245 		if (VPRC_WIRE_COUNT(old) != 0)
4246 			return (false);
4247 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4248 
4249 	(op)(m);
4250 
4251 	/*
4252 	 * If the object is read-locked, new wirings may be created via an
4253 	 * object lookup.
4254 	 */
4255 	old = vm_page_drop(m, VPRC_BLOCKED);
4256 	KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4257 	    old == (VPRC_BLOCKED | VPRC_OBJREF),
4258 	    ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4259 	    old, m));
4260 	return (true);
4261 }
4262 
4263 /*
4264  * Atomically check for wirings and remove all mappings of the page.
4265  */
4266 bool
4267 vm_page_try_remove_all(vm_page_t m)
4268 {
4269 
4270 	return (vm_page_try_blocked_op(m, pmap_remove_all));
4271 }
4272 
4273 /*
4274  * Atomically check for wirings and remove all writeable mappings of the page.
4275  */
4276 bool
4277 vm_page_try_remove_write(vm_page_t m)
4278 {
4279 
4280 	return (vm_page_try_blocked_op(m, pmap_remove_write));
4281 }
4282 
4283 /*
4284  * vm_page_advise
4285  *
4286  * 	Apply the specified advice to the given page.
4287  */
4288 void
4289 vm_page_advise(vm_page_t m, int advice)
4290 {
4291 
4292 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4293 	vm_page_assert_xbusied(m);
4294 
4295 	if (advice == MADV_FREE)
4296 		/*
4297 		 * Mark the page clean.  This will allow the page to be freed
4298 		 * without first paging it out.  MADV_FREE pages are often
4299 		 * quickly reused by malloc(3), so we do not do anything that
4300 		 * would result in a page fault on a later access.
4301 		 */
4302 		vm_page_undirty(m);
4303 	else if (advice != MADV_DONTNEED) {
4304 		if (advice == MADV_WILLNEED)
4305 			vm_page_activate(m);
4306 		return;
4307 	}
4308 
4309 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4310 		vm_page_dirty(m);
4311 
4312 	/*
4313 	 * Clear any references to the page.  Otherwise, the page daemon will
4314 	 * immediately reactivate the page.
4315 	 */
4316 	vm_page_aflag_clear(m, PGA_REFERENCED);
4317 
4318 	/*
4319 	 * Place clean pages near the head of the inactive queue rather than
4320 	 * the tail, thus defeating the queue's LRU operation and ensuring that
4321 	 * the page will be reused quickly.  Dirty pages not already in the
4322 	 * laundry are moved there.
4323 	 */
4324 	if (m->dirty == 0)
4325 		vm_page_deactivate_noreuse(m);
4326 	else if (!vm_page_in_laundry(m))
4327 		vm_page_launder(m);
4328 }
4329 
4330 /*
4331  *	vm_page_grab_release
4332  *
4333  *	Helper routine for grab functions to release busy on return.
4334  */
4335 static inline void
4336 vm_page_grab_release(vm_page_t m, int allocflags)
4337 {
4338 
4339 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4340 		if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4341 			vm_page_sunbusy(m);
4342 		else
4343 			vm_page_xunbusy(m);
4344 	}
4345 }
4346 
4347 /*
4348  *	vm_page_grab_sleep
4349  *
4350  *	Sleep for busy according to VM_ALLOC_ parameters.  Returns true
4351  *	if the caller should retry and false otherwise.
4352  *
4353  *	If the object is locked on entry the object will be unlocked with
4354  *	false returns and still locked but possibly having been dropped
4355  *	with true returns.
4356  */
4357 static bool
4358 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4359     const char *wmesg, int allocflags, bool locked)
4360 {
4361 
4362 	if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4363 		return (false);
4364 
4365 	/*
4366 	 * Reference the page before unlocking and sleeping so that
4367 	 * the page daemon is less likely to reclaim it.
4368 	 */
4369 	if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4370 		vm_page_reference(m);
4371 
4372 	if (_vm_page_busy_sleep(object, m, m->pindex, wmesg, allocflags,
4373 	    locked) && locked)
4374 		VM_OBJECT_WLOCK(object);
4375 	if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4376 		return (false);
4377 
4378 	return (true);
4379 }
4380 
4381 /*
4382  * Assert that the grab flags are valid.
4383  */
4384 static inline void
4385 vm_page_grab_check(int allocflags)
4386 {
4387 
4388 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4389 	    (allocflags & VM_ALLOC_WIRED) != 0,
4390 	    ("vm_page_grab*: the pages must be busied or wired"));
4391 
4392 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4393 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4394 	    ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4395 }
4396 
4397 /*
4398  * Calculate the page allocation flags for grab.
4399  */
4400 static inline int
4401 vm_page_grab_pflags(int allocflags)
4402 {
4403 	int pflags;
4404 
4405 	pflags = allocflags &
4406 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4407 	    VM_ALLOC_NOBUSY);
4408 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4409 		pflags |= VM_ALLOC_WAITFAIL;
4410 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4411 		pflags |= VM_ALLOC_SBUSY;
4412 
4413 	return (pflags);
4414 }
4415 
4416 /*
4417  * Grab a page, waiting until we are waken up due to the page
4418  * changing state.  We keep on waiting, if the page continues
4419  * to be in the object.  If the page doesn't exist, first allocate it
4420  * and then conditionally zero it.
4421  *
4422  * This routine may sleep.
4423  *
4424  * The object must be locked on entry.  The lock will, however, be released
4425  * and reacquired if the routine sleeps.
4426  */
4427 vm_page_t
4428 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4429 {
4430 	vm_page_t m;
4431 
4432 	VM_OBJECT_ASSERT_WLOCKED(object);
4433 	vm_page_grab_check(allocflags);
4434 
4435 retrylookup:
4436 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4437 		if (!vm_page_tryacquire(m, allocflags)) {
4438 			if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4439 			    allocflags, true))
4440 				goto retrylookup;
4441 			return (NULL);
4442 		}
4443 		goto out;
4444 	}
4445 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4446 		return (NULL);
4447 	m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
4448 	if (m == NULL) {
4449 		if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4450 			return (NULL);
4451 		goto retrylookup;
4452 	}
4453 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4454 		pmap_zero_page(m);
4455 
4456 out:
4457 	vm_page_grab_release(m, allocflags);
4458 
4459 	return (m);
4460 }
4461 
4462 /*
4463  * Locklessly attempt to acquire a page given a (object, pindex) tuple
4464  * and an optional previous page to avoid the radix lookup.  The resulting
4465  * page will be validated against the identity tuple and busied or wired
4466  * as requested.  A NULL *mp return guarantees that the page was not in
4467  * radix at the time of the call but callers must perform higher level
4468  * synchronization or retry the operation under a lock if they require
4469  * an atomic answer.  This is the only lock free validation routine,
4470  * other routines can depend on the resulting page state.
4471  *
4472  * The return value indicates whether the operation failed due to caller
4473  * flags.  The return is tri-state with mp:
4474  *
4475  * (true, *mp != NULL) - The operation was successful.
4476  * (true, *mp == NULL) - The page was not found in tree.
4477  * (false, *mp == NULL) - WAITFAIL or NOWAIT prevented acquisition.
4478  */
4479 static bool
4480 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex,
4481     vm_page_t prev, vm_page_t *mp, int allocflags)
4482 {
4483 	vm_page_t m;
4484 
4485 	vm_page_grab_check(allocflags);
4486 	MPASS(prev == NULL || vm_page_busied(prev) || vm_page_wired(prev));
4487 
4488 	*mp = NULL;
4489 	for (;;) {
4490 		/*
4491 		 * We may see a false NULL here because the previous page
4492 		 * has been removed or just inserted and the list is loaded
4493 		 * without barriers.  Switch to radix to verify.
4494 		 */
4495 		if (prev == NULL || (m = TAILQ_NEXT(prev, listq)) == NULL ||
4496 		    QMD_IS_TRASHED(m) || m->pindex != pindex ||
4497 		    atomic_load_ptr(&m->object) != object) {
4498 			prev = NULL;
4499 			/*
4500 			 * This guarantees the result is instantaneously
4501 			 * correct.
4502 			 */
4503 			m = vm_radix_lookup_unlocked(&object->rtree, pindex);
4504 		}
4505 		if (m == NULL)
4506 			return (true);
4507 		if (vm_page_trybusy(m, allocflags)) {
4508 			if (m->object == object && m->pindex == pindex)
4509 				break;
4510 			/* relookup. */
4511 			vm_page_busy_release(m);
4512 			cpu_spinwait();
4513 			continue;
4514 		}
4515 		if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4516 		    allocflags, false))
4517 			return (false);
4518 	}
4519 	if ((allocflags & VM_ALLOC_WIRED) != 0)
4520 		vm_page_wire(m);
4521 	vm_page_grab_release(m, allocflags);
4522 	*mp = m;
4523 	return (true);
4524 }
4525 
4526 /*
4527  * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4528  * is not set.
4529  */
4530 vm_page_t
4531 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4532 {
4533 	vm_page_t m;
4534 
4535 	vm_page_grab_check(allocflags);
4536 
4537 	if (!vm_page_acquire_unlocked(object, pindex, NULL, &m, allocflags))
4538 		return (NULL);
4539 	if (m != NULL)
4540 		return (m);
4541 
4542 	/*
4543 	 * The radix lockless lookup should never return a false negative
4544 	 * errors.  If the user specifies NOCREAT they are guaranteed there
4545 	 * was no page present at the instant of the call.  A NOCREAT caller
4546 	 * must handle create races gracefully.
4547 	 */
4548 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4549 		return (NULL);
4550 
4551 	VM_OBJECT_WLOCK(object);
4552 	m = vm_page_grab(object, pindex, allocflags);
4553 	VM_OBJECT_WUNLOCK(object);
4554 
4555 	return (m);
4556 }
4557 
4558 /*
4559  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4560  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4561  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4562  * in simultaneously.  Additional pages will be left on a paging queue but
4563  * will neither be wired nor busy regardless of allocflags.
4564  */
4565 int
4566 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4567 {
4568 	vm_page_t m;
4569 	vm_page_t ma[VM_INITIAL_PAGEIN];
4570 	int after, i, pflags, rv;
4571 
4572 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4573 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4574 	    ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4575 	KASSERT((allocflags &
4576 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4577 	    ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4578 	VM_OBJECT_ASSERT_WLOCKED(object);
4579 	pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4580 	    VM_ALLOC_WIRED);
4581 	pflags |= VM_ALLOC_WAITFAIL;
4582 
4583 retrylookup:
4584 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4585 		/*
4586 		 * If the page is fully valid it can only become invalid
4587 		 * with the object lock held.  If it is not valid it can
4588 		 * become valid with the busy lock held.  Therefore, we
4589 		 * may unnecessarily lock the exclusive busy here if we
4590 		 * race with I/O completion not using the object lock.
4591 		 * However, we will not end up with an invalid page and a
4592 		 * shared lock.
4593 		 */
4594 		if (!vm_page_trybusy(m,
4595 		    vm_page_all_valid(m) ? allocflags : 0)) {
4596 			(void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4597 			    allocflags, true);
4598 			goto retrylookup;
4599 		}
4600 		if (vm_page_all_valid(m))
4601 			goto out;
4602 		if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4603 			vm_page_busy_release(m);
4604 			*mp = NULL;
4605 			return (VM_PAGER_FAIL);
4606 		}
4607 	} else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4608 		*mp = NULL;
4609 		return (VM_PAGER_FAIL);
4610 	} else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
4611 		goto retrylookup;
4612 	}
4613 
4614 	vm_page_assert_xbusied(m);
4615 	if (vm_pager_has_page(object, pindex, NULL, &after)) {
4616 		after = MIN(after, VM_INITIAL_PAGEIN);
4617 		after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4618 		after = MAX(after, 1);
4619 		ma[0] = m;
4620 		for (i = 1; i < after; i++) {
4621 			if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4622 				if (ma[i]->valid || !vm_page_tryxbusy(ma[i]))
4623 					break;
4624 			} else {
4625 				ma[i] = vm_page_alloc(object, m->pindex + i,
4626 				    VM_ALLOC_NORMAL);
4627 				if (ma[i] == NULL)
4628 					break;
4629 			}
4630 		}
4631 		after = i;
4632 		vm_object_pip_add(object, after);
4633 		VM_OBJECT_WUNLOCK(object);
4634 		rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4635 		VM_OBJECT_WLOCK(object);
4636 		vm_object_pip_wakeupn(object, after);
4637 		/* Pager may have replaced a page. */
4638 		m = ma[0];
4639 		if (rv != VM_PAGER_OK) {
4640 			for (i = 0; i < after; i++) {
4641 				if (!vm_page_wired(ma[i]))
4642 					vm_page_free(ma[i]);
4643 				else
4644 					vm_page_xunbusy(ma[i]);
4645 			}
4646 			*mp = NULL;
4647 			return (rv);
4648 		}
4649 		for (i = 1; i < after; i++)
4650 			vm_page_readahead_finish(ma[i]);
4651 		MPASS(vm_page_all_valid(m));
4652 	} else {
4653 		vm_page_zero_invalid(m, TRUE);
4654 	}
4655 out:
4656 	if ((allocflags & VM_ALLOC_WIRED) != 0)
4657 		vm_page_wire(m);
4658 	if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
4659 		vm_page_busy_downgrade(m);
4660 	else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
4661 		vm_page_busy_release(m);
4662 	*mp = m;
4663 	return (VM_PAGER_OK);
4664 }
4665 
4666 /*
4667  * Locklessly grab a valid page.  If the page is not valid or not yet
4668  * allocated this will fall back to the object lock method.
4669  */
4670 int
4671 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
4672     vm_pindex_t pindex, int allocflags)
4673 {
4674 	vm_page_t m;
4675 	int flags;
4676 	int error;
4677 
4678 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4679 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4680 	    ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4681 	    "mismatch"));
4682 	KASSERT((allocflags &
4683 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4684 	    ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
4685 
4686 	/*
4687 	 * Attempt a lockless lookup and busy.  We need at least an sbusy
4688 	 * before we can inspect the valid field and return a wired page.
4689 	 */
4690 	flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
4691 	if (!vm_page_acquire_unlocked(object, pindex, NULL, mp, flags))
4692 		return (VM_PAGER_FAIL);
4693 	if ((m = *mp) != NULL) {
4694 		if (vm_page_all_valid(m)) {
4695 			if ((allocflags & VM_ALLOC_WIRED) != 0)
4696 				vm_page_wire(m);
4697 			vm_page_grab_release(m, allocflags);
4698 			return (VM_PAGER_OK);
4699 		}
4700 		vm_page_busy_release(m);
4701 	}
4702 	if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4703 		*mp = NULL;
4704 		return (VM_PAGER_FAIL);
4705 	}
4706 	VM_OBJECT_WLOCK(object);
4707 	error = vm_page_grab_valid(mp, object, pindex, allocflags);
4708 	VM_OBJECT_WUNLOCK(object);
4709 
4710 	return (error);
4711 }
4712 
4713 /*
4714  * Return the specified range of pages from the given object.  For each
4715  * page offset within the range, if a page already exists within the object
4716  * at that offset and it is busy, then wait for it to change state.  If,
4717  * instead, the page doesn't exist, then allocate it.
4718  *
4719  * The caller must always specify an allocation class.
4720  *
4721  * allocation classes:
4722  *	VM_ALLOC_NORMAL		normal process request
4723  *	VM_ALLOC_SYSTEM		system *really* needs the pages
4724  *
4725  * The caller must always specify that the pages are to be busied and/or
4726  * wired.
4727  *
4728  * optional allocation flags:
4729  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
4730  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
4731  *	VM_ALLOC_NOWAIT		do not sleep
4732  *	VM_ALLOC_SBUSY		set page to sbusy state
4733  *	VM_ALLOC_WIRED		wire the pages
4734  *	VM_ALLOC_ZERO		zero and validate any invalid pages
4735  *
4736  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4737  * may return a partial prefix of the requested range.
4738  */
4739 int
4740 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4741     vm_page_t *ma, int count)
4742 {
4743 	vm_page_t m, mpred;
4744 	int pflags;
4745 	int i;
4746 
4747 	VM_OBJECT_ASSERT_WLOCKED(object);
4748 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4749 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4750 	KASSERT(count > 0,
4751 	    ("vm_page_grab_pages: invalid page count %d", count));
4752 	vm_page_grab_check(allocflags);
4753 
4754 	pflags = vm_page_grab_pflags(allocflags);
4755 	i = 0;
4756 retrylookup:
4757 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
4758 	if (m == NULL || m->pindex != pindex + i) {
4759 		mpred = m;
4760 		m = NULL;
4761 	} else
4762 		mpred = TAILQ_PREV(m, pglist, listq);
4763 	for (; i < count; i++) {
4764 		if (m != NULL) {
4765 			if (!vm_page_tryacquire(m, allocflags)) {
4766 				if (vm_page_grab_sleep(object, m, pindex,
4767 				    "grbmaw", allocflags, true))
4768 					goto retrylookup;
4769 				break;
4770 			}
4771 		} else {
4772 			if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4773 				break;
4774 			m = vm_page_alloc_after(object, pindex + i,
4775 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
4776 			if (m == NULL) {
4777 				if ((allocflags & (VM_ALLOC_NOWAIT |
4778 				    VM_ALLOC_WAITFAIL)) != 0)
4779 					break;
4780 				goto retrylookup;
4781 			}
4782 		}
4783 		if (vm_page_none_valid(m) &&
4784 		    (allocflags & VM_ALLOC_ZERO) != 0) {
4785 			if ((m->flags & PG_ZERO) == 0)
4786 				pmap_zero_page(m);
4787 			vm_page_valid(m);
4788 		}
4789 		vm_page_grab_release(m, allocflags);
4790 		ma[i] = mpred = m;
4791 		m = vm_page_next(m);
4792 	}
4793 	return (i);
4794 }
4795 
4796 /*
4797  * Unlocked variant of vm_page_grab_pages().  This accepts the same flags
4798  * and will fall back to the locked variant to handle allocation.
4799  */
4800 int
4801 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
4802     int allocflags, vm_page_t *ma, int count)
4803 {
4804 	vm_page_t m, pred;
4805 	int flags;
4806 	int i;
4807 
4808 	KASSERT(count > 0,
4809 	    ("vm_page_grab_pages_unlocked: invalid page count %d", count));
4810 	vm_page_grab_check(allocflags);
4811 
4812 	/*
4813 	 * Modify flags for lockless acquire to hold the page until we
4814 	 * set it valid if necessary.
4815 	 */
4816 	flags = allocflags & ~VM_ALLOC_NOBUSY;
4817 	pred = NULL;
4818 	for (i = 0; i < count; i++, pindex++) {
4819 		if (!vm_page_acquire_unlocked(object, pindex, pred, &m, flags))
4820 			return (i);
4821 		if (m == NULL)
4822 			break;
4823 		if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
4824 			if ((m->flags & PG_ZERO) == 0)
4825 				pmap_zero_page(m);
4826 			vm_page_valid(m);
4827 		}
4828 		/* m will still be wired or busy according to flags. */
4829 		vm_page_grab_release(m, allocflags);
4830 		pred = ma[i] = m;
4831 	}
4832 	if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
4833 		return (i);
4834 	count -= i;
4835 	VM_OBJECT_WLOCK(object);
4836 	i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
4837 	VM_OBJECT_WUNLOCK(object);
4838 
4839 	return (i);
4840 }
4841 
4842 /*
4843  * Mapping function for valid or dirty bits in a page.
4844  *
4845  * Inputs are required to range within a page.
4846  */
4847 vm_page_bits_t
4848 vm_page_bits(int base, int size)
4849 {
4850 	int first_bit;
4851 	int last_bit;
4852 
4853 	KASSERT(
4854 	    base + size <= PAGE_SIZE,
4855 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
4856 	);
4857 
4858 	if (size == 0)		/* handle degenerate case */
4859 		return (0);
4860 
4861 	first_bit = base >> DEV_BSHIFT;
4862 	last_bit = (base + size - 1) >> DEV_BSHIFT;
4863 
4864 	return (((vm_page_bits_t)2 << last_bit) -
4865 	    ((vm_page_bits_t)1 << first_bit));
4866 }
4867 
4868 void
4869 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4870 {
4871 
4872 #if PAGE_SIZE == 32768
4873 	atomic_set_64((uint64_t *)bits, set);
4874 #elif PAGE_SIZE == 16384
4875 	atomic_set_32((uint32_t *)bits, set);
4876 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4877 	atomic_set_16((uint16_t *)bits, set);
4878 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4879 	atomic_set_8((uint8_t *)bits, set);
4880 #else		/* PAGE_SIZE <= 8192 */
4881 	uintptr_t addr;
4882 	int shift;
4883 
4884 	addr = (uintptr_t)bits;
4885 	/*
4886 	 * Use a trick to perform a 32-bit atomic on the
4887 	 * containing aligned word, to not depend on the existence
4888 	 * of atomic_{set, clear}_{8, 16}.
4889 	 */
4890 	shift = addr & (sizeof(uint32_t) - 1);
4891 #if BYTE_ORDER == BIG_ENDIAN
4892 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4893 #else
4894 	shift *= NBBY;
4895 #endif
4896 	addr &= ~(sizeof(uint32_t) - 1);
4897 	atomic_set_32((uint32_t *)addr, set << shift);
4898 #endif		/* PAGE_SIZE */
4899 }
4900 
4901 static inline void
4902 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4903 {
4904 
4905 #if PAGE_SIZE == 32768
4906 	atomic_clear_64((uint64_t *)bits, clear);
4907 #elif PAGE_SIZE == 16384
4908 	atomic_clear_32((uint32_t *)bits, clear);
4909 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4910 	atomic_clear_16((uint16_t *)bits, clear);
4911 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4912 	atomic_clear_8((uint8_t *)bits, clear);
4913 #else		/* PAGE_SIZE <= 8192 */
4914 	uintptr_t addr;
4915 	int shift;
4916 
4917 	addr = (uintptr_t)bits;
4918 	/*
4919 	 * Use a trick to perform a 32-bit atomic on the
4920 	 * containing aligned word, to not depend on the existence
4921 	 * of atomic_{set, clear}_{8, 16}.
4922 	 */
4923 	shift = addr & (sizeof(uint32_t) - 1);
4924 #if BYTE_ORDER == BIG_ENDIAN
4925 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4926 #else
4927 	shift *= NBBY;
4928 #endif
4929 	addr &= ~(sizeof(uint32_t) - 1);
4930 	atomic_clear_32((uint32_t *)addr, clear << shift);
4931 #endif		/* PAGE_SIZE */
4932 }
4933 
4934 static inline vm_page_bits_t
4935 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
4936 {
4937 #if PAGE_SIZE == 32768
4938 	uint64_t old;
4939 
4940 	old = *bits;
4941 	while (atomic_fcmpset_64(bits, &old, newbits) == 0);
4942 	return (old);
4943 #elif PAGE_SIZE == 16384
4944 	uint32_t old;
4945 
4946 	old = *bits;
4947 	while (atomic_fcmpset_32(bits, &old, newbits) == 0);
4948 	return (old);
4949 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
4950 	uint16_t old;
4951 
4952 	old = *bits;
4953 	while (atomic_fcmpset_16(bits, &old, newbits) == 0);
4954 	return (old);
4955 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
4956 	uint8_t old;
4957 
4958 	old = *bits;
4959 	while (atomic_fcmpset_8(bits, &old, newbits) == 0);
4960 	return (old);
4961 #else		/* PAGE_SIZE <= 4096*/
4962 	uintptr_t addr;
4963 	uint32_t old, new, mask;
4964 	int shift;
4965 
4966 	addr = (uintptr_t)bits;
4967 	/*
4968 	 * Use a trick to perform a 32-bit atomic on the
4969 	 * containing aligned word, to not depend on the existence
4970 	 * of atomic_{set, swap, clear}_{8, 16}.
4971 	 */
4972 	shift = addr & (sizeof(uint32_t) - 1);
4973 #if BYTE_ORDER == BIG_ENDIAN
4974 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4975 #else
4976 	shift *= NBBY;
4977 #endif
4978 	addr &= ~(sizeof(uint32_t) - 1);
4979 	mask = VM_PAGE_BITS_ALL << shift;
4980 
4981 	old = *bits;
4982 	do {
4983 		new = old & ~mask;
4984 		new |= newbits << shift;
4985 	} while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
4986 	return (old >> shift);
4987 #endif		/* PAGE_SIZE */
4988 }
4989 
4990 /*
4991  *	vm_page_set_valid_range:
4992  *
4993  *	Sets portions of a page valid.  The arguments are expected
4994  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4995  *	of any partial chunks touched by the range.  The invalid portion of
4996  *	such chunks will be zeroed.
4997  *
4998  *	(base + size) must be less then or equal to PAGE_SIZE.
4999  */
5000 void
5001 vm_page_set_valid_range(vm_page_t m, int base, int size)
5002 {
5003 	int endoff, frag;
5004 	vm_page_bits_t pagebits;
5005 
5006 	vm_page_assert_busied(m);
5007 	if (size == 0)	/* handle degenerate case */
5008 		return;
5009 
5010 	/*
5011 	 * If the base is not DEV_BSIZE aligned and the valid
5012 	 * bit is clear, we have to zero out a portion of the
5013 	 * first block.
5014 	 */
5015 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5016 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5017 		pmap_zero_page_area(m, frag, base - frag);
5018 
5019 	/*
5020 	 * If the ending offset is not DEV_BSIZE aligned and the
5021 	 * valid bit is clear, we have to zero out a portion of
5022 	 * the last block.
5023 	 */
5024 	endoff = base + size;
5025 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5026 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5027 		pmap_zero_page_area(m, endoff,
5028 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5029 
5030 	/*
5031 	 * Assert that no previously invalid block that is now being validated
5032 	 * is already dirty.
5033 	 */
5034 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5035 	    ("vm_page_set_valid_range: page %p is dirty", m));
5036 
5037 	/*
5038 	 * Set valid bits inclusive of any overlap.
5039 	 */
5040 	pagebits = vm_page_bits(base, size);
5041 	if (vm_page_xbusied(m))
5042 		m->valid |= pagebits;
5043 	else
5044 		vm_page_bits_set(m, &m->valid, pagebits);
5045 }
5046 
5047 /*
5048  * Set the page dirty bits and free the invalid swap space if
5049  * present.  Returns the previous dirty bits.
5050  */
5051 vm_page_bits_t
5052 vm_page_set_dirty(vm_page_t m)
5053 {
5054 	vm_page_bits_t old;
5055 
5056 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
5057 
5058 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5059 		old = m->dirty;
5060 		m->dirty = VM_PAGE_BITS_ALL;
5061 	} else
5062 		old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5063 	if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5064 		vm_pager_page_unswapped(m);
5065 
5066 	return (old);
5067 }
5068 
5069 /*
5070  * Clear the given bits from the specified page's dirty field.
5071  */
5072 static __inline void
5073 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5074 {
5075 
5076 	vm_page_assert_busied(m);
5077 
5078 	/*
5079 	 * If the page is xbusied and not write mapped we are the
5080 	 * only thread that can modify dirty bits.  Otherwise, The pmap
5081 	 * layer can call vm_page_dirty() without holding a distinguished
5082 	 * lock.  The combination of page busy and atomic operations
5083 	 * suffice to guarantee consistency of the page dirty field.
5084 	 */
5085 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5086 		m->dirty &= ~pagebits;
5087 	else
5088 		vm_page_bits_clear(m, &m->dirty, pagebits);
5089 }
5090 
5091 /*
5092  *	vm_page_set_validclean:
5093  *
5094  *	Sets portions of a page valid and clean.  The arguments are expected
5095  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5096  *	of any partial chunks touched by the range.  The invalid portion of
5097  *	such chunks will be zero'd.
5098  *
5099  *	(base + size) must be less then or equal to PAGE_SIZE.
5100  */
5101 void
5102 vm_page_set_validclean(vm_page_t m, int base, int size)
5103 {
5104 	vm_page_bits_t oldvalid, pagebits;
5105 	int endoff, frag;
5106 
5107 	vm_page_assert_busied(m);
5108 	if (size == 0)	/* handle degenerate case */
5109 		return;
5110 
5111 	/*
5112 	 * If the base is not DEV_BSIZE aligned and the valid
5113 	 * bit is clear, we have to zero out a portion of the
5114 	 * first block.
5115 	 */
5116 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5117 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5118 		pmap_zero_page_area(m, frag, base - frag);
5119 
5120 	/*
5121 	 * If the ending offset is not DEV_BSIZE aligned and the
5122 	 * valid bit is clear, we have to zero out a portion of
5123 	 * the last block.
5124 	 */
5125 	endoff = base + size;
5126 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5127 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5128 		pmap_zero_page_area(m, endoff,
5129 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5130 
5131 	/*
5132 	 * Set valid, clear dirty bits.  If validating the entire
5133 	 * page we can safely clear the pmap modify bit.  We also
5134 	 * use this opportunity to clear the PGA_NOSYNC flag.  If a process
5135 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
5136 	 * be set again.
5137 	 *
5138 	 * We set valid bits inclusive of any overlap, but we can only
5139 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
5140 	 * the range.
5141 	 */
5142 	oldvalid = m->valid;
5143 	pagebits = vm_page_bits(base, size);
5144 	if (vm_page_xbusied(m))
5145 		m->valid |= pagebits;
5146 	else
5147 		vm_page_bits_set(m, &m->valid, pagebits);
5148 #if 0	/* NOT YET */
5149 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5150 		frag = DEV_BSIZE - frag;
5151 		base += frag;
5152 		size -= frag;
5153 		if (size < 0)
5154 			size = 0;
5155 	}
5156 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5157 #endif
5158 	if (base == 0 && size == PAGE_SIZE) {
5159 		/*
5160 		 * The page can only be modified within the pmap if it is
5161 		 * mapped, and it can only be mapped if it was previously
5162 		 * fully valid.
5163 		 */
5164 		if (oldvalid == VM_PAGE_BITS_ALL)
5165 			/*
5166 			 * Perform the pmap_clear_modify() first.  Otherwise,
5167 			 * a concurrent pmap operation, such as
5168 			 * pmap_protect(), could clear a modification in the
5169 			 * pmap and set the dirty field on the page before
5170 			 * pmap_clear_modify() had begun and after the dirty
5171 			 * field was cleared here.
5172 			 */
5173 			pmap_clear_modify(m);
5174 		m->dirty = 0;
5175 		vm_page_aflag_clear(m, PGA_NOSYNC);
5176 	} else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5177 		m->dirty &= ~pagebits;
5178 	else
5179 		vm_page_clear_dirty_mask(m, pagebits);
5180 }
5181 
5182 void
5183 vm_page_clear_dirty(vm_page_t m, int base, int size)
5184 {
5185 
5186 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5187 }
5188 
5189 /*
5190  *	vm_page_set_invalid:
5191  *
5192  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
5193  *	valid and dirty bits for the effected areas are cleared.
5194  */
5195 void
5196 vm_page_set_invalid(vm_page_t m, int base, int size)
5197 {
5198 	vm_page_bits_t bits;
5199 	vm_object_t object;
5200 
5201 	/*
5202 	 * The object lock is required so that pages can't be mapped
5203 	 * read-only while we're in the process of invalidating them.
5204 	 */
5205 	object = m->object;
5206 	VM_OBJECT_ASSERT_WLOCKED(object);
5207 	vm_page_assert_busied(m);
5208 
5209 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5210 	    size >= object->un_pager.vnp.vnp_size)
5211 		bits = VM_PAGE_BITS_ALL;
5212 	else
5213 		bits = vm_page_bits(base, size);
5214 	if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5215 		pmap_remove_all(m);
5216 	KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5217 	    !pmap_page_is_mapped(m),
5218 	    ("vm_page_set_invalid: page %p is mapped", m));
5219 	if (vm_page_xbusied(m)) {
5220 		m->valid &= ~bits;
5221 		m->dirty &= ~bits;
5222 	} else {
5223 		vm_page_bits_clear(m, &m->valid, bits);
5224 		vm_page_bits_clear(m, &m->dirty, bits);
5225 	}
5226 }
5227 
5228 /*
5229  *	vm_page_invalid:
5230  *
5231  *	Invalidates the entire page.  The page must be busy, unmapped, and
5232  *	the enclosing object must be locked.  The object locks protects
5233  *	against concurrent read-only pmap enter which is done without
5234  *	busy.
5235  */
5236 void
5237 vm_page_invalid(vm_page_t m)
5238 {
5239 
5240 	vm_page_assert_busied(m);
5241 	VM_OBJECT_ASSERT_LOCKED(m->object);
5242 	MPASS(!pmap_page_is_mapped(m));
5243 
5244 	if (vm_page_xbusied(m))
5245 		m->valid = 0;
5246 	else
5247 		vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5248 }
5249 
5250 /*
5251  * vm_page_zero_invalid()
5252  *
5253  *	The kernel assumes that the invalid portions of a page contain
5254  *	garbage, but such pages can be mapped into memory by user code.
5255  *	When this occurs, we must zero out the non-valid portions of the
5256  *	page so user code sees what it expects.
5257  *
5258  *	Pages are most often semi-valid when the end of a file is mapped
5259  *	into memory and the file's size is not page aligned.
5260  */
5261 void
5262 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5263 {
5264 	int b;
5265 	int i;
5266 
5267 	/*
5268 	 * Scan the valid bits looking for invalid sections that
5269 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
5270 	 * valid bit may be set ) have already been zeroed by
5271 	 * vm_page_set_validclean().
5272 	 */
5273 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5274 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
5275 		    (m->valid & ((vm_page_bits_t)1 << i))) {
5276 			if (i > b) {
5277 				pmap_zero_page_area(m,
5278 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5279 			}
5280 			b = i + 1;
5281 		}
5282 	}
5283 
5284 	/*
5285 	 * setvalid is TRUE when we can safely set the zero'd areas
5286 	 * as being valid.  We can do this if there are no cache consistancy
5287 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
5288 	 */
5289 	if (setvalid)
5290 		vm_page_valid(m);
5291 }
5292 
5293 /*
5294  *	vm_page_is_valid:
5295  *
5296  *	Is (partial) page valid?  Note that the case where size == 0
5297  *	will return FALSE in the degenerate case where the page is
5298  *	entirely invalid, and TRUE otherwise.
5299  *
5300  *	Some callers envoke this routine without the busy lock held and
5301  *	handle races via higher level locks.  Typical callers should
5302  *	hold a busy lock to prevent invalidation.
5303  */
5304 int
5305 vm_page_is_valid(vm_page_t m, int base, int size)
5306 {
5307 	vm_page_bits_t bits;
5308 
5309 	bits = vm_page_bits(base, size);
5310 	return (m->valid != 0 && (m->valid & bits) == bits);
5311 }
5312 
5313 /*
5314  * Returns true if all of the specified predicates are true for the entire
5315  * (super)page and false otherwise.
5316  */
5317 bool
5318 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
5319 {
5320 	vm_object_t object;
5321 	int i, npages;
5322 
5323 	object = m->object;
5324 	if (skip_m != NULL && skip_m->object != object)
5325 		return (false);
5326 	VM_OBJECT_ASSERT_LOCKED(object);
5327 	npages = atop(pagesizes[m->psind]);
5328 
5329 	/*
5330 	 * The physically contiguous pages that make up a superpage, i.e., a
5331 	 * page with a page size index ("psind") greater than zero, will
5332 	 * occupy adjacent entries in vm_page_array[].
5333 	 */
5334 	for (i = 0; i < npages; i++) {
5335 		/* Always test object consistency, including "skip_m". */
5336 		if (m[i].object != object)
5337 			return (false);
5338 		if (&m[i] == skip_m)
5339 			continue;
5340 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5341 			return (false);
5342 		if ((flags & PS_ALL_DIRTY) != 0) {
5343 			/*
5344 			 * Calling vm_page_test_dirty() or pmap_is_modified()
5345 			 * might stop this case from spuriously returning
5346 			 * "false".  However, that would require a write lock
5347 			 * on the object containing "m[i]".
5348 			 */
5349 			if (m[i].dirty != VM_PAGE_BITS_ALL)
5350 				return (false);
5351 		}
5352 		if ((flags & PS_ALL_VALID) != 0 &&
5353 		    m[i].valid != VM_PAGE_BITS_ALL)
5354 			return (false);
5355 	}
5356 	return (true);
5357 }
5358 
5359 /*
5360  * Set the page's dirty bits if the page is modified.
5361  */
5362 void
5363 vm_page_test_dirty(vm_page_t m)
5364 {
5365 
5366 	vm_page_assert_busied(m);
5367 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5368 		vm_page_dirty(m);
5369 }
5370 
5371 void
5372 vm_page_valid(vm_page_t m)
5373 {
5374 
5375 	vm_page_assert_busied(m);
5376 	if (vm_page_xbusied(m))
5377 		m->valid = VM_PAGE_BITS_ALL;
5378 	else
5379 		vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5380 }
5381 
5382 void
5383 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5384 {
5385 
5386 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5387 }
5388 
5389 void
5390 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5391 {
5392 
5393 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5394 }
5395 
5396 int
5397 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5398 {
5399 
5400 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5401 }
5402 
5403 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5404 void
5405 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5406 {
5407 
5408 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5409 }
5410 
5411 void
5412 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5413 {
5414 
5415 	mtx_assert_(vm_page_lockptr(m), a, file, line);
5416 }
5417 #endif
5418 
5419 #ifdef INVARIANTS
5420 void
5421 vm_page_object_busy_assert(vm_page_t m)
5422 {
5423 
5424 	/*
5425 	 * Certain of the page's fields may only be modified by the
5426 	 * holder of a page or object busy.
5427 	 */
5428 	if (m->object != NULL && !vm_page_busied(m))
5429 		VM_OBJECT_ASSERT_BUSY(m->object);
5430 }
5431 
5432 void
5433 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5434 {
5435 
5436 	if ((bits & PGA_WRITEABLE) == 0)
5437 		return;
5438 
5439 	/*
5440 	 * The PGA_WRITEABLE flag can only be set if the page is
5441 	 * managed, is exclusively busied or the object is locked.
5442 	 * Currently, this flag is only set by pmap_enter().
5443 	 */
5444 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5445 	    ("PGA_WRITEABLE on unmanaged page"));
5446 	if (!vm_page_xbusied(m))
5447 		VM_OBJECT_ASSERT_BUSY(m->object);
5448 }
5449 #endif
5450 
5451 #include "opt_ddb.h"
5452 #ifdef DDB
5453 #include <sys/kernel.h>
5454 
5455 #include <ddb/ddb.h>
5456 
5457 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5458 {
5459 
5460 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5461 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5462 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5463 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5464 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5465 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5466 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5467 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5468 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5469 }
5470 
5471 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5472 {
5473 	int dom;
5474 
5475 	db_printf("pq_free %d\n", vm_free_count());
5476 	for (dom = 0; dom < vm_ndomains; dom++) {
5477 		db_printf(
5478     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5479 		    dom,
5480 		    vm_dom[dom].vmd_page_count,
5481 		    vm_dom[dom].vmd_free_count,
5482 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5483 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5484 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5485 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5486 	}
5487 }
5488 
5489 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5490 {
5491 	vm_page_t m;
5492 	boolean_t phys, virt;
5493 
5494 	if (!have_addr) {
5495 		db_printf("show pginfo addr\n");
5496 		return;
5497 	}
5498 
5499 	phys = strchr(modif, 'p') != NULL;
5500 	virt = strchr(modif, 'v') != NULL;
5501 	if (virt)
5502 		m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5503 	else if (phys)
5504 		m = PHYS_TO_VM_PAGE(addr);
5505 	else
5506 		m = (vm_page_t)addr;
5507 	db_printf(
5508     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5509     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5510 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5511 	    m->a.queue, m->ref_count, m->a.flags, m->oflags,
5512 	    m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5513 }
5514 #endif /* DDB */
5515