xref: /freebsd/sys/vm/vm_page.c (revision a3cf0ef5a295c885c895fabfd56470c0d1db322d)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- a pageq mutex is required when adding or removing a page from a
67  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68  *	  busy state of a page.
69  *
70  *	- a hash chain mutex is required when associating or disassociating
71  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
72  *	  regardless of other mutexes or the busy state of a page.
73  *
74  *	- either a hash chain mutex OR a busied page is required in order
75  *	  to modify the page flags.  A hash chain mutex must be obtained in
76  *	  order to busy a page.  A page's flags cannot be modified by a
77  *	  hash chain mutex if the page is marked busy.
78  *
79  *	- The object memq mutex is held when inserting or removing
80  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
81  *	  is different from the object's main mutex.
82  *
83  *	Generally speaking, you have to be aware of side effects when running
84  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
85  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
86  *	vm_page_cache(), vm_page_activate(), and a number of other routines
87  *	will release the hash chain mutex for you.  Intermediate manipulation
88  *	routines such as vm_page_flag_set() expect the hash chain to be held
89  *	on entry and the hash chain will remain held on return.
90  *
91  *	pageq scanning can only occur with the pageq in question locked.
92  *	We have a known bottleneck with the active queue, but the cache
93  *	and free queues are actually arrays already.
94  */
95 
96 /*
97  *	Resident memory management module.
98  */
99 
100 #include <sys/cdefs.h>
101 __FBSDID("$FreeBSD$");
102 
103 #include "opt_msgbuf.h"
104 #include "opt_vm.h"
105 
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/lock.h>
109 #include <sys/kernel.h>
110 #include <sys/limits.h>
111 #include <sys/malloc.h>
112 #include <sys/msgbuf.h>
113 #include <sys/mutex.h>
114 #include <sys/proc.h>
115 #include <sys/sysctl.h>
116 #include <sys/vmmeter.h>
117 #include <sys/vnode.h>
118 
119 #include <vm/vm.h>
120 #include <vm/pmap.h>
121 #include <vm/vm_param.h>
122 #include <vm/vm_kern.h>
123 #include <vm/vm_object.h>
124 #include <vm/vm_page.h>
125 #include <vm/vm_pageout.h>
126 #include <vm/vm_pager.h>
127 #include <vm/vm_phys.h>
128 #include <vm/vm_reserv.h>
129 #include <vm/vm_extern.h>
130 #include <vm/uma.h>
131 #include <vm/uma_int.h>
132 
133 #include <machine/md_var.h>
134 
135 #if defined(__amd64__) || defined (__i386__)
136 extern struct sysctl_oid_list sysctl__vm_pmap_children;
137 #else
138 SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
139 #endif
140 
141 static uint64_t pmap_tryrelock_calls;
142 SYSCTL_QUAD(_vm_pmap, OID_AUTO, tryrelock_calls, CTLFLAG_RD,
143     &pmap_tryrelock_calls, 0, "Number of tryrelock calls");
144 
145 static int pmap_tryrelock_restart;
146 SYSCTL_INT(_vm_pmap, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
147     &pmap_tryrelock_restart, 0, "Number of tryrelock restarts");
148 
149 static int pmap_tryrelock_race;
150 SYSCTL_INT(_vm_pmap, OID_AUTO, tryrelock_race, CTLFLAG_RD,
151     &pmap_tryrelock_race, 0, "Number of tryrelock pmap race cases");
152 
153 /*
154  *	Associated with page of user-allocatable memory is a
155  *	page structure.
156  */
157 
158 struct vpgqueues vm_page_queues[PQ_COUNT];
159 struct vpglocks vm_page_queue_lock;
160 struct vpglocks vm_page_queue_free_lock;
161 
162 struct vpglocks	pa_lock[PA_LOCK_COUNT] __aligned(CACHE_LINE_SIZE);
163 
164 vm_page_t vm_page_array = 0;
165 int vm_page_array_size = 0;
166 long first_page = 0;
167 int vm_page_zero_count = 0;
168 
169 static int boot_pages = UMA_BOOT_PAGES;
170 TUNABLE_INT("vm.boot_pages", &boot_pages);
171 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
172 	"number of pages allocated for bootstrapping the VM system");
173 
174 static void vm_page_clear_dirty_mask(vm_page_t m, int pagebits);
175 static void vm_page_queue_remove(int queue, vm_page_t m);
176 static void vm_page_enqueue(int queue, vm_page_t m);
177 
178 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
179 #if PAGE_SIZE == 32768
180 #ifdef CTASSERT
181 CTASSERT(sizeof(u_long) >= 8);
182 #endif
183 #endif
184 
185 /*
186  * Try to acquire a physical address lock while a pmap is locked.  If we
187  * fail to trylock we unlock and lock the pmap directly and cache the
188  * locked pa in *locked.  The caller should then restart their loop in case
189  * the virtual to physical mapping has changed.
190  */
191 int
192 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
193 {
194 	vm_paddr_t lockpa;
195 	uint32_t gen_count;
196 
197 	gen_count = pmap->pm_gen_count;
198 	atomic_add_long((volatile long *)&pmap_tryrelock_calls, 1);
199 	lockpa = *locked;
200 	*locked = pa;
201 	if (lockpa) {
202 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
203 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
204 			return (0);
205 		PA_UNLOCK(lockpa);
206 	}
207 	if (PA_TRYLOCK(pa))
208 		return (0);
209 	PMAP_UNLOCK(pmap);
210 	atomic_add_int((volatile int *)&pmap_tryrelock_restart, 1);
211 	PA_LOCK(pa);
212 	PMAP_LOCK(pmap);
213 
214 	if (pmap->pm_gen_count != gen_count + 1) {
215 		pmap->pm_retries++;
216 		atomic_add_int((volatile int *)&pmap_tryrelock_race, 1);
217 		return (EAGAIN);
218 	}
219 	return (0);
220 }
221 
222 /*
223  *	vm_set_page_size:
224  *
225  *	Sets the page size, perhaps based upon the memory
226  *	size.  Must be called before any use of page-size
227  *	dependent functions.
228  */
229 void
230 vm_set_page_size(void)
231 {
232 	if (cnt.v_page_size == 0)
233 		cnt.v_page_size = PAGE_SIZE;
234 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
235 		panic("vm_set_page_size: page size not a power of two");
236 }
237 
238 /*
239  *	vm_page_blacklist_lookup:
240  *
241  *	See if a physical address in this page has been listed
242  *	in the blacklist tunable.  Entries in the tunable are
243  *	separated by spaces or commas.  If an invalid integer is
244  *	encountered then the rest of the string is skipped.
245  */
246 static int
247 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
248 {
249 	vm_paddr_t bad;
250 	char *cp, *pos;
251 
252 	for (pos = list; *pos != '\0'; pos = cp) {
253 		bad = strtoq(pos, &cp, 0);
254 		if (*cp != '\0') {
255 			if (*cp == ' ' || *cp == ',') {
256 				cp++;
257 				if (cp == pos)
258 					continue;
259 			} else
260 				break;
261 		}
262 		if (pa == trunc_page(bad))
263 			return (1);
264 	}
265 	return (0);
266 }
267 
268 /*
269  *	vm_page_startup:
270  *
271  *	Initializes the resident memory module.
272  *
273  *	Allocates memory for the page cells, and
274  *	for the object/offset-to-page hash table headers.
275  *	Each page cell is initialized and placed on the free list.
276  */
277 vm_offset_t
278 vm_page_startup(vm_offset_t vaddr)
279 {
280 	vm_offset_t mapped;
281 	vm_paddr_t page_range;
282 	vm_paddr_t new_end;
283 	int i;
284 	vm_paddr_t pa;
285 	int nblocks;
286 	vm_paddr_t last_pa;
287 	char *list;
288 
289 	/* the biggest memory array is the second group of pages */
290 	vm_paddr_t end;
291 	vm_paddr_t biggestsize;
292 	vm_paddr_t low_water, high_water;
293 	int biggestone;
294 
295 	biggestsize = 0;
296 	biggestone = 0;
297 	nblocks = 0;
298 	vaddr = round_page(vaddr);
299 
300 	for (i = 0; phys_avail[i + 1]; i += 2) {
301 		phys_avail[i] = round_page(phys_avail[i]);
302 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
303 	}
304 
305 	low_water = phys_avail[0];
306 	high_water = phys_avail[1];
307 
308 	for (i = 0; phys_avail[i + 1]; i += 2) {
309 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
310 
311 		if (size > biggestsize) {
312 			biggestone = i;
313 			biggestsize = size;
314 		}
315 		if (phys_avail[i] < low_water)
316 			low_water = phys_avail[i];
317 		if (phys_avail[i + 1] > high_water)
318 			high_water = phys_avail[i + 1];
319 		++nblocks;
320 	}
321 
322 #ifdef XEN
323 	low_water = 0;
324 #endif
325 
326 	end = phys_avail[biggestone+1];
327 
328 	/*
329 	 * Initialize the locks.
330 	 */
331 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
332 	    MTX_RECURSE);
333 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
334 	    MTX_DEF);
335 
336 	/* Setup page locks. */
337 	for (i = 0; i < PA_LOCK_COUNT; i++)
338 		mtx_init(&pa_lock[i].data, "page lock", NULL,
339 		    MTX_DEF | MTX_RECURSE | MTX_DUPOK);
340 
341 	/*
342 	 * Initialize the queue headers for the hold queue, the active queue,
343 	 * and the inactive queue.
344 	 */
345 	for (i = 0; i < PQ_COUNT; i++)
346 		TAILQ_INIT(&vm_page_queues[i].pl);
347 	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
348 	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
349 	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
350 
351 	/*
352 	 * Allocate memory for use when boot strapping the kernel memory
353 	 * allocator.
354 	 */
355 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
356 	new_end = trunc_page(new_end);
357 	mapped = pmap_map(&vaddr, new_end, end,
358 	    VM_PROT_READ | VM_PROT_WRITE);
359 	bzero((void *)mapped, end - new_end);
360 	uma_startup((void *)mapped, boot_pages);
361 
362 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
363     defined(__mips__)
364 	/*
365 	 * Allocate a bitmap to indicate that a random physical page
366 	 * needs to be included in a minidump.
367 	 *
368 	 * The amd64 port needs this to indicate which direct map pages
369 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
370 	 *
371 	 * However, i386 still needs this workspace internally within the
372 	 * minidump code.  In theory, they are not needed on i386, but are
373 	 * included should the sf_buf code decide to use them.
374 	 */
375 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
376 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
377 	new_end -= vm_page_dump_size;
378 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
379 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
380 	bzero((void *)vm_page_dump, vm_page_dump_size);
381 #endif
382 #ifdef __amd64__
383 	/*
384 	 * Request that the physical pages underlying the message buffer be
385 	 * included in a crash dump.  Since the message buffer is accessed
386 	 * through the direct map, they are not automatically included.
387 	 */
388 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
389 	last_pa = pa + round_page(MSGBUF_SIZE);
390 	while (pa < last_pa) {
391 		dump_add_page(pa);
392 		pa += PAGE_SIZE;
393 	}
394 #endif
395 	/*
396 	 * Compute the number of pages of memory that will be available for
397 	 * use (taking into account the overhead of a page structure per
398 	 * page).
399 	 */
400 	first_page = low_water / PAGE_SIZE;
401 #ifdef VM_PHYSSEG_SPARSE
402 	page_range = 0;
403 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
404 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
405 #elif defined(VM_PHYSSEG_DENSE)
406 	page_range = high_water / PAGE_SIZE - first_page;
407 #else
408 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
409 #endif
410 	end = new_end;
411 
412 	/*
413 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
414 	 */
415 	vaddr += PAGE_SIZE;
416 
417 	/*
418 	 * Initialize the mem entry structures now, and put them in the free
419 	 * queue.
420 	 */
421 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
422 	mapped = pmap_map(&vaddr, new_end, end,
423 	    VM_PROT_READ | VM_PROT_WRITE);
424 	vm_page_array = (vm_page_t) mapped;
425 #if VM_NRESERVLEVEL > 0
426 	/*
427 	 * Allocate memory for the reservation management system's data
428 	 * structures.
429 	 */
430 	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
431 #endif
432 #ifdef __amd64__
433 	/*
434 	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
435 	 * so the pages must be tracked for a crashdump to include this data.
436 	 * This includes the vm_page_array and the early UMA bootstrap pages.
437 	 */
438 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
439 		dump_add_page(pa);
440 #endif
441 	phys_avail[biggestone + 1] = new_end;
442 
443 	/*
444 	 * Clear all of the page structures
445 	 */
446 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
447 	for (i = 0; i < page_range; i++)
448 		vm_page_array[i].order = VM_NFREEORDER;
449 	vm_page_array_size = page_range;
450 
451 	/*
452 	 * Initialize the physical memory allocator.
453 	 */
454 	vm_phys_init();
455 
456 	/*
457 	 * Add every available physical page that is not blacklisted to
458 	 * the free lists.
459 	 */
460 	cnt.v_page_count = 0;
461 	cnt.v_free_count = 0;
462 	list = getenv("vm.blacklist");
463 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
464 		pa = phys_avail[i];
465 		last_pa = phys_avail[i + 1];
466 		while (pa < last_pa) {
467 			if (list != NULL &&
468 			    vm_page_blacklist_lookup(list, pa))
469 				printf("Skipping page with pa 0x%jx\n",
470 				    (uintmax_t)pa);
471 			else
472 				vm_phys_add_page(pa);
473 			pa += PAGE_SIZE;
474 		}
475 	}
476 	freeenv(list);
477 #if VM_NRESERVLEVEL > 0
478 	/*
479 	 * Initialize the reservation management system.
480 	 */
481 	vm_reserv_init();
482 #endif
483 	return (vaddr);
484 }
485 
486 void
487 vm_page_flag_set(vm_page_t m, unsigned short bits)
488 {
489 
490 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
491 	/*
492 	 * The PG_WRITEABLE flag can only be set if the page is managed and
493 	 * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
494 	 */
495 	KASSERT((bits & PG_WRITEABLE) == 0 ||
496 	    ((m->flags & (PG_UNMANAGED | PG_FICTITIOUS)) == 0 &&
497 	    (m->oflags & VPO_BUSY) != 0), ("PG_WRITEABLE and !VPO_BUSY"));
498 	m->flags |= bits;
499 }
500 
501 void
502 vm_page_flag_clear(vm_page_t m, unsigned short bits)
503 {
504 
505 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
506 	/*
507 	 * The PG_REFERENCED flag can only be cleared if the object
508 	 * containing the page is locked.
509 	 */
510 	KASSERT((bits & PG_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
511 	    ("PG_REFERENCED and !VM_OBJECT_LOCKED"));
512 	m->flags &= ~bits;
513 }
514 
515 void
516 vm_page_busy(vm_page_t m)
517 {
518 
519 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
520 	KASSERT((m->oflags & VPO_BUSY) == 0,
521 	    ("vm_page_busy: page already busy!!!"));
522 	m->oflags |= VPO_BUSY;
523 }
524 
525 /*
526  *      vm_page_flash:
527  *
528  *      wakeup anyone waiting for the page.
529  */
530 void
531 vm_page_flash(vm_page_t m)
532 {
533 
534 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
535 	if (m->oflags & VPO_WANTED) {
536 		m->oflags &= ~VPO_WANTED;
537 		wakeup(m);
538 	}
539 }
540 
541 /*
542  *      vm_page_wakeup:
543  *
544  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
545  *      page.
546  *
547  */
548 void
549 vm_page_wakeup(vm_page_t m)
550 {
551 
552 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
553 	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
554 	m->oflags &= ~VPO_BUSY;
555 	vm_page_flash(m);
556 }
557 
558 void
559 vm_page_io_start(vm_page_t m)
560 {
561 
562 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
563 	m->busy++;
564 }
565 
566 void
567 vm_page_io_finish(vm_page_t m)
568 {
569 
570 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
571 	m->busy--;
572 	if (m->busy == 0)
573 		vm_page_flash(m);
574 }
575 
576 /*
577  * Keep page from being freed by the page daemon
578  * much of the same effect as wiring, except much lower
579  * overhead and should be used only for *very* temporary
580  * holding ("wiring").
581  */
582 void
583 vm_page_hold(vm_page_t mem)
584 {
585 
586 	vm_page_lock_assert(mem, MA_OWNED);
587         mem->hold_count++;
588 }
589 
590 void
591 vm_page_unhold(vm_page_t mem)
592 {
593 
594 	vm_page_lock_assert(mem, MA_OWNED);
595 	--mem->hold_count;
596 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
597 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
598 		vm_page_free_toq(mem);
599 }
600 
601 /*
602  *	vm_page_free:
603  *
604  *	Free a page.
605  */
606 void
607 vm_page_free(vm_page_t m)
608 {
609 
610 	m->flags &= ~PG_ZERO;
611 	vm_page_free_toq(m);
612 }
613 
614 /*
615  *	vm_page_free_zero:
616  *
617  *	Free a page to the zerod-pages queue
618  */
619 void
620 vm_page_free_zero(vm_page_t m)
621 {
622 
623 	m->flags |= PG_ZERO;
624 	vm_page_free_toq(m);
625 }
626 
627 /*
628  *	vm_page_sleep:
629  *
630  *	Sleep and release the page and page queues locks.
631  *
632  *	The object containing the given page must be locked.
633  */
634 void
635 vm_page_sleep(vm_page_t m, const char *msg)
636 {
637 
638 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
639 	if (mtx_owned(&vm_page_queue_mtx))
640 		vm_page_unlock_queues();
641 	if (mtx_owned(vm_page_lockptr(m)))
642 		vm_page_unlock(m);
643 
644 	/*
645 	 * It's possible that while we sleep, the page will get
646 	 * unbusied and freed.  If we are holding the object
647 	 * lock, we will assume we hold a reference to the object
648 	 * such that even if m->object changes, we can re-lock
649 	 * it.
650 	 */
651 	m->oflags |= VPO_WANTED;
652 	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
653 }
654 
655 /*
656  *	vm_page_dirty:
657  *
658  *	make page all dirty
659  */
660 void
661 vm_page_dirty(vm_page_t m)
662 {
663 
664 	KASSERT((m->flags & PG_CACHED) == 0,
665 	    ("vm_page_dirty: page in cache!"));
666 	KASSERT(!VM_PAGE_IS_FREE(m),
667 	    ("vm_page_dirty: page is free!"));
668 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
669 	    ("vm_page_dirty: page is invalid!"));
670 	m->dirty = VM_PAGE_BITS_ALL;
671 }
672 
673 /*
674  *	vm_page_splay:
675  *
676  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
677  *	the vm_page containing the given pindex.  If, however, that
678  *	pindex is not found in the vm_object, returns a vm_page that is
679  *	adjacent to the pindex, coming before or after it.
680  */
681 vm_page_t
682 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
683 {
684 	struct vm_page dummy;
685 	vm_page_t lefttreemax, righttreemin, y;
686 
687 	if (root == NULL)
688 		return (root);
689 	lefttreemax = righttreemin = &dummy;
690 	for (;; root = y) {
691 		if (pindex < root->pindex) {
692 			if ((y = root->left) == NULL)
693 				break;
694 			if (pindex < y->pindex) {
695 				/* Rotate right. */
696 				root->left = y->right;
697 				y->right = root;
698 				root = y;
699 				if ((y = root->left) == NULL)
700 					break;
701 			}
702 			/* Link into the new root's right tree. */
703 			righttreemin->left = root;
704 			righttreemin = root;
705 		} else if (pindex > root->pindex) {
706 			if ((y = root->right) == NULL)
707 				break;
708 			if (pindex > y->pindex) {
709 				/* Rotate left. */
710 				root->right = y->left;
711 				y->left = root;
712 				root = y;
713 				if ((y = root->right) == NULL)
714 					break;
715 			}
716 			/* Link into the new root's left tree. */
717 			lefttreemax->right = root;
718 			lefttreemax = root;
719 		} else
720 			break;
721 	}
722 	/* Assemble the new root. */
723 	lefttreemax->right = root->left;
724 	righttreemin->left = root->right;
725 	root->left = dummy.right;
726 	root->right = dummy.left;
727 	return (root);
728 }
729 
730 /*
731  *	vm_page_insert:		[ internal use only ]
732  *
733  *	Inserts the given mem entry into the object and object list.
734  *
735  *	The pagetables are not updated but will presumably fault the page
736  *	in if necessary, or if a kernel page the caller will at some point
737  *	enter the page into the kernel's pmap.  We are not allowed to block
738  *	here so we *can't* do this anyway.
739  *
740  *	The object and page must be locked.
741  *	This routine may not block.
742  */
743 void
744 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
745 {
746 	vm_page_t root;
747 
748 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
749 	if (m->object != NULL)
750 		panic("vm_page_insert: page already inserted");
751 
752 	/*
753 	 * Record the object/offset pair in this page
754 	 */
755 	m->object = object;
756 	m->pindex = pindex;
757 
758 	/*
759 	 * Now link into the object's ordered list of backed pages.
760 	 */
761 	root = object->root;
762 	if (root == NULL) {
763 		m->left = NULL;
764 		m->right = NULL;
765 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
766 	} else {
767 		root = vm_page_splay(pindex, root);
768 		if (pindex < root->pindex) {
769 			m->left = root->left;
770 			m->right = root;
771 			root->left = NULL;
772 			TAILQ_INSERT_BEFORE(root, m, listq);
773 		} else if (pindex == root->pindex)
774 			panic("vm_page_insert: offset already allocated");
775 		else {
776 			m->right = root->right;
777 			m->left = root;
778 			root->right = NULL;
779 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
780 		}
781 	}
782 	object->root = m;
783 	object->generation++;
784 
785 	/*
786 	 * show that the object has one more resident page.
787 	 */
788 	object->resident_page_count++;
789 	/*
790 	 * Hold the vnode until the last page is released.
791 	 */
792 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
793 		vhold((struct vnode *)object->handle);
794 
795 	/*
796 	 * Since we are inserting a new and possibly dirty page,
797 	 * update the object's OBJ_MIGHTBEDIRTY flag.
798 	 */
799 	if (m->flags & PG_WRITEABLE)
800 		vm_object_set_writeable_dirty(object);
801 }
802 
803 /*
804  *	vm_page_remove:
805  *				NOTE: used by device pager as well -wfj
806  *
807  *	Removes the given mem entry from the object/offset-page
808  *	table and the object page list, but do not invalidate/terminate
809  *	the backing store.
810  *
811  *	The object and page must be locked.
812  *	The underlying pmap entry (if any) is NOT removed here.
813  *	This routine may not block.
814  */
815 void
816 vm_page_remove(vm_page_t m)
817 {
818 	vm_object_t object;
819 	vm_page_t root;
820 
821 	if ((m->flags & PG_UNMANAGED) == 0)
822 		vm_page_lock_assert(m, MA_OWNED);
823 	if ((object = m->object) == NULL)
824 		return;
825 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
826 	if (m->oflags & VPO_BUSY) {
827 		m->oflags &= ~VPO_BUSY;
828 		vm_page_flash(m);
829 	}
830 
831 	/*
832 	 * Now remove from the object's list of backed pages.
833 	 */
834 	if (m != object->root)
835 		vm_page_splay(m->pindex, object->root);
836 	if (m->left == NULL)
837 		root = m->right;
838 	else {
839 		root = vm_page_splay(m->pindex, m->left);
840 		root->right = m->right;
841 	}
842 	object->root = root;
843 	TAILQ_REMOVE(&object->memq, m, listq);
844 
845 	/*
846 	 * And show that the object has one fewer resident page.
847 	 */
848 	object->resident_page_count--;
849 	object->generation++;
850 	/*
851 	 * The vnode may now be recycled.
852 	 */
853 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
854 		vdrop((struct vnode *)object->handle);
855 
856 	m->object = NULL;
857 }
858 
859 /*
860  *	vm_page_lookup:
861  *
862  *	Returns the page associated with the object/offset
863  *	pair specified; if none is found, NULL is returned.
864  *
865  *	The object must be locked.
866  *	This routine may not block.
867  *	This is a critical path routine
868  */
869 vm_page_t
870 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
871 {
872 	vm_page_t m;
873 
874 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
875 	if ((m = object->root) != NULL && m->pindex != pindex) {
876 		m = vm_page_splay(pindex, m);
877 		if ((object->root = m)->pindex != pindex)
878 			m = NULL;
879 	}
880 	return (m);
881 }
882 
883 /*
884  *	vm_page_find_least:
885  *
886  *	Returns the page associated with the object with least pindex
887  *	greater than or equal to the parameter pindex, or NULL.
888  *
889  *	The object must be locked.
890  *	The routine may not block.
891  */
892 vm_page_t
893 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
894 {
895 	vm_page_t m;
896 
897 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
898 	if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
899 		if (m->pindex < pindex) {
900 			m = vm_page_splay(pindex, object->root);
901 			if ((object->root = m)->pindex < pindex)
902 				m = TAILQ_NEXT(m, listq);
903 		}
904 	}
905 	return (m);
906 }
907 
908 /*
909  * Returns the given page's successor (by pindex) within the object if it is
910  * resident; if none is found, NULL is returned.
911  *
912  * The object must be locked.
913  */
914 vm_page_t
915 vm_page_next(vm_page_t m)
916 {
917 	vm_page_t next;
918 
919 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
920 	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
921 	    next->pindex != m->pindex + 1)
922 		next = NULL;
923 	return (next);
924 }
925 
926 /*
927  * Returns the given page's predecessor (by pindex) within the object if it is
928  * resident; if none is found, NULL is returned.
929  *
930  * The object must be locked.
931  */
932 vm_page_t
933 vm_page_prev(vm_page_t m)
934 {
935 	vm_page_t prev;
936 
937 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
938 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
939 	    prev->pindex != m->pindex - 1)
940 		prev = NULL;
941 	return (prev);
942 }
943 
944 /*
945  *	vm_page_rename:
946  *
947  *	Move the given memory entry from its
948  *	current object to the specified target object/offset.
949  *
950  *	The object must be locked.
951  *	This routine may not block.
952  *
953  *	Note: swap associated with the page must be invalidated by the move.  We
954  *	      have to do this for several reasons:  (1) we aren't freeing the
955  *	      page, (2) we are dirtying the page, (3) the VM system is probably
956  *	      moving the page from object A to B, and will then later move
957  *	      the backing store from A to B and we can't have a conflict.
958  *
959  *	Note: we *always* dirty the page.  It is necessary both for the
960  *	      fact that we moved it, and because we may be invalidating
961  *	      swap.  If the page is on the cache, we have to deactivate it
962  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
963  *	      on the cache.
964  */
965 void
966 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
967 {
968 
969 	vm_page_remove(m);
970 	vm_page_insert(m, new_object, new_pindex);
971 	vm_page_dirty(m);
972 }
973 
974 /*
975  *	Convert all of the given object's cached pages that have a
976  *	pindex within the given range into free pages.  If the value
977  *	zero is given for "end", then the range's upper bound is
978  *	infinity.  If the given object is backed by a vnode and it
979  *	transitions from having one or more cached pages to none, the
980  *	vnode's hold count is reduced.
981  */
982 void
983 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
984 {
985 	vm_page_t m, m_next;
986 	boolean_t empty;
987 
988 	mtx_lock(&vm_page_queue_free_mtx);
989 	if (__predict_false(object->cache == NULL)) {
990 		mtx_unlock(&vm_page_queue_free_mtx);
991 		return;
992 	}
993 	m = object->cache = vm_page_splay(start, object->cache);
994 	if (m->pindex < start) {
995 		if (m->right == NULL)
996 			m = NULL;
997 		else {
998 			m_next = vm_page_splay(start, m->right);
999 			m_next->left = m;
1000 			m->right = NULL;
1001 			m = object->cache = m_next;
1002 		}
1003 	}
1004 
1005 	/*
1006 	 * At this point, "m" is either (1) a reference to the page
1007 	 * with the least pindex that is greater than or equal to
1008 	 * "start" or (2) NULL.
1009 	 */
1010 	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
1011 		/*
1012 		 * Find "m"'s successor and remove "m" from the
1013 		 * object's cache.
1014 		 */
1015 		if (m->right == NULL) {
1016 			object->cache = m->left;
1017 			m_next = NULL;
1018 		} else {
1019 			m_next = vm_page_splay(start, m->right);
1020 			m_next->left = m->left;
1021 			object->cache = m_next;
1022 		}
1023 		/* Convert "m" to a free page. */
1024 		m->object = NULL;
1025 		m->valid = 0;
1026 		/* Clear PG_CACHED and set PG_FREE. */
1027 		m->flags ^= PG_CACHED | PG_FREE;
1028 		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1029 		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1030 		cnt.v_cache_count--;
1031 		cnt.v_free_count++;
1032 	}
1033 	empty = object->cache == NULL;
1034 	mtx_unlock(&vm_page_queue_free_mtx);
1035 	if (object->type == OBJT_VNODE && empty)
1036 		vdrop(object->handle);
1037 }
1038 
1039 /*
1040  *	Returns the cached page that is associated with the given
1041  *	object and offset.  If, however, none exists, returns NULL.
1042  *
1043  *	The free page queue must be locked.
1044  */
1045 static inline vm_page_t
1046 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1047 {
1048 	vm_page_t m;
1049 
1050 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1051 	if ((m = object->cache) != NULL && m->pindex != pindex) {
1052 		m = vm_page_splay(pindex, m);
1053 		if ((object->cache = m)->pindex != pindex)
1054 			m = NULL;
1055 	}
1056 	return (m);
1057 }
1058 
1059 /*
1060  *	Remove the given cached page from its containing object's
1061  *	collection of cached pages.
1062  *
1063  *	The free page queue must be locked.
1064  */
1065 void
1066 vm_page_cache_remove(vm_page_t m)
1067 {
1068 	vm_object_t object;
1069 	vm_page_t root;
1070 
1071 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1072 	KASSERT((m->flags & PG_CACHED) != 0,
1073 	    ("vm_page_cache_remove: page %p is not cached", m));
1074 	object = m->object;
1075 	if (m != object->cache) {
1076 		root = vm_page_splay(m->pindex, object->cache);
1077 		KASSERT(root == m,
1078 		    ("vm_page_cache_remove: page %p is not cached in object %p",
1079 		    m, object));
1080 	}
1081 	if (m->left == NULL)
1082 		root = m->right;
1083 	else if (m->right == NULL)
1084 		root = m->left;
1085 	else {
1086 		root = vm_page_splay(m->pindex, m->left);
1087 		root->right = m->right;
1088 	}
1089 	object->cache = root;
1090 	m->object = NULL;
1091 	cnt.v_cache_count--;
1092 }
1093 
1094 /*
1095  *	Transfer all of the cached pages with offset greater than or
1096  *	equal to 'offidxstart' from the original object's cache to the
1097  *	new object's cache.  However, any cached pages with offset
1098  *	greater than or equal to the new object's size are kept in the
1099  *	original object.  Initially, the new object's cache must be
1100  *	empty.  Offset 'offidxstart' in the original object must
1101  *	correspond to offset zero in the new object.
1102  *
1103  *	The new object must be locked.
1104  */
1105 void
1106 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1107     vm_object_t new_object)
1108 {
1109 	vm_page_t m, m_next;
1110 
1111 	/*
1112 	 * Insertion into an object's collection of cached pages
1113 	 * requires the object to be locked.  In contrast, removal does
1114 	 * not.
1115 	 */
1116 	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1117 	KASSERT(new_object->cache == NULL,
1118 	    ("vm_page_cache_transfer: object %p has cached pages",
1119 	    new_object));
1120 	mtx_lock(&vm_page_queue_free_mtx);
1121 	if ((m = orig_object->cache) != NULL) {
1122 		/*
1123 		 * Transfer all of the pages with offset greater than or
1124 		 * equal to 'offidxstart' from the original object's
1125 		 * cache to the new object's cache.
1126 		 */
1127 		m = vm_page_splay(offidxstart, m);
1128 		if (m->pindex < offidxstart) {
1129 			orig_object->cache = m;
1130 			new_object->cache = m->right;
1131 			m->right = NULL;
1132 		} else {
1133 			orig_object->cache = m->left;
1134 			new_object->cache = m;
1135 			m->left = NULL;
1136 		}
1137 		while ((m = new_object->cache) != NULL) {
1138 			if ((m->pindex - offidxstart) >= new_object->size) {
1139 				/*
1140 				 * Return all of the cached pages with
1141 				 * offset greater than or equal to the
1142 				 * new object's size to the original
1143 				 * object's cache.
1144 				 */
1145 				new_object->cache = m->left;
1146 				m->left = orig_object->cache;
1147 				orig_object->cache = m;
1148 				break;
1149 			}
1150 			m_next = vm_page_splay(m->pindex, m->right);
1151 			/* Update the page's object and offset. */
1152 			m->object = new_object;
1153 			m->pindex -= offidxstart;
1154 			if (m_next == NULL)
1155 				break;
1156 			m->right = NULL;
1157 			m_next->left = m;
1158 			new_object->cache = m_next;
1159 		}
1160 		KASSERT(new_object->cache == NULL ||
1161 		    new_object->type == OBJT_SWAP,
1162 		    ("vm_page_cache_transfer: object %p's type is incompatible"
1163 		    " with cached pages", new_object));
1164 	}
1165 	mtx_unlock(&vm_page_queue_free_mtx);
1166 }
1167 
1168 /*
1169  *	vm_page_alloc:
1170  *
1171  *	Allocate and return a memory cell associated
1172  *	with this VM object/offset pair.
1173  *
1174  *	The caller must always specify an allocation class.
1175  *
1176  *	allocation classes:
1177  *	VM_ALLOC_NORMAL		normal process request
1178  *	VM_ALLOC_SYSTEM		system *really* needs a page
1179  *	VM_ALLOC_INTERRUPT	interrupt time request
1180  *
1181  *	optional allocation flags:
1182  *	VM_ALLOC_ZERO		prefer a zeroed page
1183  *	VM_ALLOC_WIRED		wire the allocated page
1184  *	VM_ALLOC_NOOBJ		page is not associated with a vm object
1185  *	VM_ALLOC_NOBUSY		do not set the page busy
1186  *	VM_ALLOC_IFCACHED	return page only if it is cached
1187  *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1188  *				is cached
1189  *
1190  *	This routine may not sleep.
1191  */
1192 vm_page_t
1193 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1194 {
1195 	struct vnode *vp = NULL;
1196 	vm_object_t m_object;
1197 	vm_page_t m;
1198 	int flags, page_req;
1199 
1200 	page_req = req & VM_ALLOC_CLASS_MASK;
1201 	KASSERT(curthread->td_intr_nesting_level == 0 ||
1202 	    page_req == VM_ALLOC_INTERRUPT,
1203 	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
1204 
1205 	if ((req & VM_ALLOC_NOOBJ) == 0) {
1206 		KASSERT(object != NULL,
1207 		    ("vm_page_alloc: NULL object."));
1208 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1209 	}
1210 
1211 	/*
1212 	 * The pager is allowed to eat deeper into the free page list.
1213 	 */
1214 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
1215 		page_req = VM_ALLOC_SYSTEM;
1216 	};
1217 
1218 	mtx_lock(&vm_page_queue_free_mtx);
1219 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1220 	    (page_req == VM_ALLOC_SYSTEM &&
1221 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1222 	    (page_req == VM_ALLOC_INTERRUPT &&
1223 	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1224 		/*
1225 		 * Allocate from the free queue if the number of free pages
1226 		 * exceeds the minimum for the request class.
1227 		 */
1228 		if (object != NULL &&
1229 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1230 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1231 				mtx_unlock(&vm_page_queue_free_mtx);
1232 				return (NULL);
1233 			}
1234 			if (vm_phys_unfree_page(m))
1235 				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1236 #if VM_NRESERVLEVEL > 0
1237 			else if (!vm_reserv_reactivate_page(m))
1238 #else
1239 			else
1240 #endif
1241 				panic("vm_page_alloc: cache page %p is missing"
1242 				    " from the free queue", m);
1243 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1244 			mtx_unlock(&vm_page_queue_free_mtx);
1245 			return (NULL);
1246 #if VM_NRESERVLEVEL > 0
1247 		} else if (object == NULL || object->type == OBJT_DEVICE ||
1248 		    object->type == OBJT_SG ||
1249 		    (object->flags & OBJ_COLORED) == 0 ||
1250 		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1251 #else
1252 		} else {
1253 #endif
1254 			m = vm_phys_alloc_pages(object != NULL ?
1255 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1256 #if VM_NRESERVLEVEL > 0
1257 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1258 				m = vm_phys_alloc_pages(object != NULL ?
1259 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1260 				    0);
1261 			}
1262 #endif
1263 		}
1264 	} else {
1265 		/*
1266 		 * Not allocatable, give up.
1267 		 */
1268 		mtx_unlock(&vm_page_queue_free_mtx);
1269 		atomic_add_int(&vm_pageout_deficit,
1270 		    MAX((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1271 		pagedaemon_wakeup();
1272 		return (NULL);
1273 	}
1274 
1275 	/*
1276 	 *  At this point we had better have found a good page.
1277 	 */
1278 
1279 	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1280 	KASSERT(m->queue == PQ_NONE,
1281 	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1282 	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1283 	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1284 	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1285 	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1286 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1287 	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1288 	    pmap_page_get_memattr(m)));
1289 	if ((m->flags & PG_CACHED) != 0) {
1290 		KASSERT(m->valid != 0,
1291 		    ("vm_page_alloc: cached page %p is invalid", m));
1292 		if (m->object == object && m->pindex == pindex)
1293 	  		cnt.v_reactivated++;
1294 		else
1295 			m->valid = 0;
1296 		m_object = m->object;
1297 		vm_page_cache_remove(m);
1298 		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1299 			vp = m_object->handle;
1300 	} else {
1301 		KASSERT(VM_PAGE_IS_FREE(m),
1302 		    ("vm_page_alloc: page %p is not free", m));
1303 		KASSERT(m->valid == 0,
1304 		    ("vm_page_alloc: free page %p is valid", m));
1305 		cnt.v_free_count--;
1306 	}
1307 
1308 	/*
1309 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
1310 	 */
1311 	flags = 0;
1312 	if (m->flags & PG_ZERO) {
1313 		vm_page_zero_count--;
1314 		if (req & VM_ALLOC_ZERO)
1315 			flags = PG_ZERO;
1316 	}
1317 	if (object == NULL || object->type == OBJT_PHYS)
1318 		flags |= PG_UNMANAGED;
1319 	m->flags = flags;
1320 	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1321 		m->oflags = 0;
1322 	else
1323 		m->oflags = VPO_BUSY;
1324 	if (req & VM_ALLOC_WIRED) {
1325 		atomic_add_int(&cnt.v_wire_count, 1);
1326 		m->wire_count = 1;
1327 	}
1328 	m->act_count = 0;
1329 	mtx_unlock(&vm_page_queue_free_mtx);
1330 
1331 	if (object != NULL) {
1332 		/* Ignore device objects; the pager sets "memattr" for them. */
1333 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1334 		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1335 			pmap_page_set_memattr(m, object->memattr);
1336 		vm_page_insert(m, object, pindex);
1337 	} else
1338 		m->pindex = pindex;
1339 
1340 	/*
1341 	 * The following call to vdrop() must come after the above call
1342 	 * to vm_page_insert() in case both affect the same object and
1343 	 * vnode.  Otherwise, the affected vnode's hold count could
1344 	 * temporarily become zero.
1345 	 */
1346 	if (vp != NULL)
1347 		vdrop(vp);
1348 
1349 	/*
1350 	 * Don't wakeup too often - wakeup the pageout daemon when
1351 	 * we would be nearly out of memory.
1352 	 */
1353 	if (vm_paging_needed())
1354 		pagedaemon_wakeup();
1355 
1356 	return (m);
1357 }
1358 
1359 /*
1360  * Initialize a page that has been freshly dequeued from a freelist.
1361  * The caller has to drop the vnode returned, if it is not NULL.
1362  *
1363  * To be called with vm_page_queue_free_mtx held.
1364  */
1365 struct vnode *
1366 vm_page_alloc_init(vm_page_t m)
1367 {
1368 	struct vnode *drop;
1369 	vm_object_t m_object;
1370 
1371 	KASSERT(m->queue == PQ_NONE,
1372 	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1373 	    m, m->queue));
1374 	KASSERT(m->wire_count == 0,
1375 	    ("vm_page_alloc_init: page %p is wired", m));
1376 	KASSERT(m->hold_count == 0,
1377 	    ("vm_page_alloc_init: page %p is held", m));
1378 	KASSERT(m->busy == 0,
1379 	    ("vm_page_alloc_init: page %p is busy", m));
1380 	KASSERT(m->dirty == 0,
1381 	    ("vm_page_alloc_init: page %p is dirty", m));
1382 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1383 	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1384 	    m, pmap_page_get_memattr(m)));
1385 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1386 	drop = NULL;
1387 	if ((m->flags & PG_CACHED) != 0) {
1388 		m->valid = 0;
1389 		m_object = m->object;
1390 		vm_page_cache_remove(m);
1391 		if (m_object->type == OBJT_VNODE &&
1392 		    m_object->cache == NULL)
1393 			drop = m_object->handle;
1394 	} else {
1395 		KASSERT(VM_PAGE_IS_FREE(m),
1396 		    ("vm_page_alloc_init: page %p is not free", m));
1397 		KASSERT(m->valid == 0,
1398 		    ("vm_page_alloc_init: free page %p is valid", m));
1399 		cnt.v_free_count--;
1400 	}
1401 	if (m->flags & PG_ZERO)
1402 		vm_page_zero_count--;
1403 	/* Don't clear the PG_ZERO flag; we'll need it later. */
1404 	m->flags = PG_UNMANAGED | (m->flags & PG_ZERO);
1405 	m->oflags = 0;
1406 	/* Unmanaged pages don't use "act_count". */
1407 	return (drop);
1408 }
1409 
1410 /*
1411  * 	vm_page_alloc_freelist:
1412  *
1413  *	Allocate a page from the specified freelist with specified order.
1414  *	Only the ALLOC_CLASS values in req are honored, other request flags
1415  *	are ignored.
1416  */
1417 vm_page_t
1418 vm_page_alloc_freelist(int flind, int order, int req)
1419 {
1420 	struct vnode *drop;
1421 	vm_page_t m;
1422 	int page_req;
1423 
1424 	m = NULL;
1425 	page_req = req & VM_ALLOC_CLASS_MASK;
1426 	mtx_lock(&vm_page_queue_free_mtx);
1427 	/*
1428 	 * Do not allocate reserved pages unless the req has asked for it.
1429 	 */
1430 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1431 	    (page_req == VM_ALLOC_SYSTEM &&
1432 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1433 	    (page_req == VM_ALLOC_INTERRUPT &&
1434 	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1435 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, order);
1436 	}
1437 	if (m == NULL) {
1438 		mtx_unlock(&vm_page_queue_free_mtx);
1439 		return (NULL);
1440 	}
1441 	drop = vm_page_alloc_init(m);
1442 	mtx_unlock(&vm_page_queue_free_mtx);
1443 	if (drop)
1444 		vdrop(drop);
1445 	return (m);
1446 }
1447 
1448 /*
1449  *	vm_wait:	(also see VM_WAIT macro)
1450  *
1451  *	Block until free pages are available for allocation
1452  *	- Called in various places before memory allocations.
1453  */
1454 void
1455 vm_wait(void)
1456 {
1457 
1458 	mtx_lock(&vm_page_queue_free_mtx);
1459 	if (curproc == pageproc) {
1460 		vm_pageout_pages_needed = 1;
1461 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1462 		    PDROP | PSWP, "VMWait", 0);
1463 	} else {
1464 		if (!vm_pages_needed) {
1465 			vm_pages_needed = 1;
1466 			wakeup(&vm_pages_needed);
1467 		}
1468 		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1469 		    "vmwait", 0);
1470 	}
1471 }
1472 
1473 /*
1474  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1475  *
1476  *	Block until free pages are available for allocation
1477  *	- Called only in vm_fault so that processes page faulting
1478  *	  can be easily tracked.
1479  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1480  *	  processes will be able to grab memory first.  Do not change
1481  *	  this balance without careful testing first.
1482  */
1483 void
1484 vm_waitpfault(void)
1485 {
1486 
1487 	mtx_lock(&vm_page_queue_free_mtx);
1488 	if (!vm_pages_needed) {
1489 		vm_pages_needed = 1;
1490 		wakeup(&vm_pages_needed);
1491 	}
1492 	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1493 	    "pfault", 0);
1494 }
1495 
1496 /*
1497  *	vm_page_requeue:
1498  *
1499  *	Move the given page to the tail of its present page queue.
1500  *
1501  *	The page queues must be locked.
1502  */
1503 void
1504 vm_page_requeue(vm_page_t m)
1505 {
1506 	struct vpgqueues *vpq;
1507 	int queue;
1508 
1509 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1510 	queue = m->queue;
1511 	KASSERT(queue != PQ_NONE,
1512 	    ("vm_page_requeue: page %p is not queued", m));
1513 	vpq = &vm_page_queues[queue];
1514 	TAILQ_REMOVE(&vpq->pl, m, pageq);
1515 	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1516 }
1517 
1518 /*
1519  *	vm_page_queue_remove:
1520  *
1521  *	Remove the given page from the specified queue.
1522  *
1523  *	The page and page queues must be locked.
1524  */
1525 static __inline void
1526 vm_page_queue_remove(int queue, vm_page_t m)
1527 {
1528 	struct vpgqueues *pq;
1529 
1530 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1531 	vm_page_lock_assert(m, MA_OWNED);
1532 	pq = &vm_page_queues[queue];
1533 	TAILQ_REMOVE(&pq->pl, m, pageq);
1534 	(*pq->cnt)--;
1535 }
1536 
1537 /*
1538  *	vm_pageq_remove:
1539  *
1540  *	Remove a page from its queue.
1541  *
1542  *	The given page must be locked.
1543  *	This routine may not block.
1544  */
1545 void
1546 vm_pageq_remove(vm_page_t m)
1547 {
1548 	int queue;
1549 
1550 	vm_page_lock_assert(m, MA_OWNED);
1551 	if ((queue = m->queue) != PQ_NONE) {
1552 		vm_page_lock_queues();
1553 		m->queue = PQ_NONE;
1554 		vm_page_queue_remove(queue, m);
1555 		vm_page_unlock_queues();
1556 	}
1557 }
1558 
1559 /*
1560  *	vm_page_enqueue:
1561  *
1562  *	Add the given page to the specified queue.
1563  *
1564  *	The page queues must be locked.
1565  */
1566 static void
1567 vm_page_enqueue(int queue, vm_page_t m)
1568 {
1569 	struct vpgqueues *vpq;
1570 
1571 	vpq = &vm_page_queues[queue];
1572 	m->queue = queue;
1573 	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1574 	++*vpq->cnt;
1575 }
1576 
1577 /*
1578  *	vm_page_activate:
1579  *
1580  *	Put the specified page on the active list (if appropriate).
1581  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1582  *	mess with it.
1583  *
1584  *	The page must be locked.
1585  *	This routine may not block.
1586  */
1587 void
1588 vm_page_activate(vm_page_t m)
1589 {
1590 	int queue;
1591 
1592 	vm_page_lock_assert(m, MA_OWNED);
1593 	if ((queue = m->queue) != PQ_ACTIVE) {
1594 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1595 			if (m->act_count < ACT_INIT)
1596 				m->act_count = ACT_INIT;
1597 			vm_page_lock_queues();
1598 			if (queue != PQ_NONE)
1599 				vm_page_queue_remove(queue, m);
1600 			vm_page_enqueue(PQ_ACTIVE, m);
1601 			vm_page_unlock_queues();
1602 		} else
1603 			KASSERT(queue == PQ_NONE,
1604 			    ("vm_page_activate: wired page %p is queued", m));
1605 	} else {
1606 		if (m->act_count < ACT_INIT)
1607 			m->act_count = ACT_INIT;
1608 	}
1609 }
1610 
1611 /*
1612  *	vm_page_free_wakeup:
1613  *
1614  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1615  *	routine is called when a page has been added to the cache or free
1616  *	queues.
1617  *
1618  *	The page queues must be locked.
1619  *	This routine may not block.
1620  */
1621 static inline void
1622 vm_page_free_wakeup(void)
1623 {
1624 
1625 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1626 	/*
1627 	 * if pageout daemon needs pages, then tell it that there are
1628 	 * some free.
1629 	 */
1630 	if (vm_pageout_pages_needed &&
1631 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1632 		wakeup(&vm_pageout_pages_needed);
1633 		vm_pageout_pages_needed = 0;
1634 	}
1635 	/*
1636 	 * wakeup processes that are waiting on memory if we hit a
1637 	 * high water mark. And wakeup scheduler process if we have
1638 	 * lots of memory. this process will swapin processes.
1639 	 */
1640 	if (vm_pages_needed && !vm_page_count_min()) {
1641 		vm_pages_needed = 0;
1642 		wakeup(&cnt.v_free_count);
1643 	}
1644 }
1645 
1646 /*
1647  *	vm_page_free_toq:
1648  *
1649  *	Returns the given page to the free list,
1650  *	disassociating it with any VM object.
1651  *
1652  *	Object and page must be locked prior to entry.
1653  *	This routine may not block.
1654  */
1655 
1656 void
1657 vm_page_free_toq(vm_page_t m)
1658 {
1659 
1660 	if ((m->flags & PG_UNMANAGED) == 0) {
1661 		vm_page_lock_assert(m, MA_OWNED);
1662 		KASSERT(!pmap_page_is_mapped(m),
1663 		    ("vm_page_free_toq: freeing mapped page %p", m));
1664 	}
1665 	PCPU_INC(cnt.v_tfree);
1666 
1667 	if (m->busy || VM_PAGE_IS_FREE(m)) {
1668 		printf(
1669 		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1670 		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1671 		    m->hold_count);
1672 		if (VM_PAGE_IS_FREE(m))
1673 			panic("vm_page_free: freeing free page");
1674 		else
1675 			panic("vm_page_free: freeing busy page");
1676 	}
1677 
1678 	/*
1679 	 * unqueue, then remove page.  Note that we cannot destroy
1680 	 * the page here because we do not want to call the pager's
1681 	 * callback routine until after we've put the page on the
1682 	 * appropriate free queue.
1683 	 */
1684 	if ((m->flags & PG_UNMANAGED) == 0)
1685 		vm_pageq_remove(m);
1686 	vm_page_remove(m);
1687 
1688 	/*
1689 	 * If fictitious remove object association and
1690 	 * return, otherwise delay object association removal.
1691 	 */
1692 	if ((m->flags & PG_FICTITIOUS) != 0) {
1693 		return;
1694 	}
1695 
1696 	m->valid = 0;
1697 	vm_page_undirty(m);
1698 
1699 	if (m->wire_count != 0) {
1700 		if (m->wire_count > 1) {
1701 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1702 				m->wire_count, (long)m->pindex);
1703 		}
1704 		panic("vm_page_free: freeing wired page");
1705 	}
1706 	if (m->hold_count != 0) {
1707 		m->flags &= ~PG_ZERO;
1708 		vm_page_lock_queues();
1709 		vm_page_enqueue(PQ_HOLD, m);
1710 		vm_page_unlock_queues();
1711 	} else {
1712 		/*
1713 		 * Restore the default memory attribute to the page.
1714 		 */
1715 		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1716 			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1717 
1718 		/*
1719 		 * Insert the page into the physical memory allocator's
1720 		 * cache/free page queues.
1721 		 */
1722 		mtx_lock(&vm_page_queue_free_mtx);
1723 		m->flags |= PG_FREE;
1724 		cnt.v_free_count++;
1725 #if VM_NRESERVLEVEL > 0
1726 		if (!vm_reserv_free_page(m))
1727 #else
1728 		if (TRUE)
1729 #endif
1730 			vm_phys_free_pages(m, 0);
1731 		if ((m->flags & PG_ZERO) != 0)
1732 			++vm_page_zero_count;
1733 		else
1734 			vm_page_zero_idle_wakeup();
1735 		vm_page_free_wakeup();
1736 		mtx_unlock(&vm_page_queue_free_mtx);
1737 	}
1738 }
1739 
1740 /*
1741  *	vm_page_wire:
1742  *
1743  *	Mark this page as wired down by yet
1744  *	another map, removing it from paging queues
1745  *	as necessary.
1746  *
1747  *	If the page is fictitious, then its wire count must remain one.
1748  *
1749  *	The page must be locked.
1750  *	This routine may not block.
1751  */
1752 void
1753 vm_page_wire(vm_page_t m)
1754 {
1755 
1756 	/*
1757 	 * Only bump the wire statistics if the page is not already wired,
1758 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1759 	 * it is already off the queues).
1760 	 */
1761 	vm_page_lock_assert(m, MA_OWNED);
1762 	if ((m->flags & PG_FICTITIOUS) != 0) {
1763 		KASSERT(m->wire_count == 1,
1764 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
1765 		    m));
1766 		return;
1767 	}
1768 	if (m->wire_count == 0) {
1769 		if ((m->flags & PG_UNMANAGED) == 0)
1770 			vm_pageq_remove(m);
1771 		atomic_add_int(&cnt.v_wire_count, 1);
1772 	}
1773 	m->wire_count++;
1774 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1775 }
1776 
1777 /*
1778  * vm_page_unwire:
1779  *
1780  * Release one wiring of the specified page, potentially enabling it to be
1781  * paged again.  If paging is enabled, then the value of the parameter
1782  * "activate" determines to which queue the page is added.  If "activate" is
1783  * non-zero, then the page is added to the active queue.  Otherwise, it is
1784  * added to the inactive queue.
1785  *
1786  * However, unless the page belongs to an object, it is not enqueued because
1787  * it cannot be paged out.
1788  *
1789  * If a page is fictitious, then its wire count must alway be one.
1790  *
1791  * A managed page must be locked.
1792  */
1793 void
1794 vm_page_unwire(vm_page_t m, int activate)
1795 {
1796 
1797 	if ((m->flags & PG_UNMANAGED) == 0)
1798 		vm_page_lock_assert(m, MA_OWNED);
1799 	if ((m->flags & PG_FICTITIOUS) != 0) {
1800 		KASSERT(m->wire_count == 1,
1801 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
1802 		return;
1803 	}
1804 	if (m->wire_count > 0) {
1805 		m->wire_count--;
1806 		if (m->wire_count == 0) {
1807 			atomic_subtract_int(&cnt.v_wire_count, 1);
1808 			if ((m->flags & PG_UNMANAGED) != 0 ||
1809 			    m->object == NULL)
1810 				return;
1811 			vm_page_lock_queues();
1812 			if (activate)
1813 				vm_page_enqueue(PQ_ACTIVE, m);
1814 			else {
1815 				vm_page_flag_clear(m, PG_WINATCFLS);
1816 				vm_page_enqueue(PQ_INACTIVE, m);
1817 			}
1818 			vm_page_unlock_queues();
1819 		}
1820 	} else
1821 		panic("vm_page_unwire: page %p's wire count is zero", m);
1822 }
1823 
1824 /*
1825  * Move the specified page to the inactive queue.
1826  *
1827  * Many pages placed on the inactive queue should actually go
1828  * into the cache, but it is difficult to figure out which.  What
1829  * we do instead, if the inactive target is well met, is to put
1830  * clean pages at the head of the inactive queue instead of the tail.
1831  * This will cause them to be moved to the cache more quickly and
1832  * if not actively re-referenced, reclaimed more quickly.  If we just
1833  * stick these pages at the end of the inactive queue, heavy filesystem
1834  * meta-data accesses can cause an unnecessary paging load on memory bound
1835  * processes.  This optimization causes one-time-use metadata to be
1836  * reused more quickly.
1837  *
1838  * Normally athead is 0 resulting in LRU operation.  athead is set
1839  * to 1 if we want this page to be 'as if it were placed in the cache',
1840  * except without unmapping it from the process address space.
1841  *
1842  * This routine may not block.
1843  */
1844 static inline void
1845 _vm_page_deactivate(vm_page_t m, int athead)
1846 {
1847 	int queue;
1848 
1849 	vm_page_lock_assert(m, MA_OWNED);
1850 
1851 	/*
1852 	 * Ignore if already inactive.
1853 	 */
1854 	if ((queue = m->queue) == PQ_INACTIVE)
1855 		return;
1856 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1857 		vm_page_lock_queues();
1858 		vm_page_flag_clear(m, PG_WINATCFLS);
1859 		if (queue != PQ_NONE)
1860 			vm_page_queue_remove(queue, m);
1861 		if (athead)
1862 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
1863 			    pageq);
1864 		else
1865 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
1866 			    pageq);
1867 		m->queue = PQ_INACTIVE;
1868 		cnt.v_inactive_count++;
1869 		vm_page_unlock_queues();
1870 	}
1871 }
1872 
1873 /*
1874  * Move the specified page to the inactive queue.
1875  *
1876  * The page must be locked.
1877  */
1878 void
1879 vm_page_deactivate(vm_page_t m)
1880 {
1881 
1882 	_vm_page_deactivate(m, 0);
1883 }
1884 
1885 /*
1886  * vm_page_try_to_cache:
1887  *
1888  * Returns 0 on failure, 1 on success
1889  */
1890 int
1891 vm_page_try_to_cache(vm_page_t m)
1892 {
1893 
1894 	vm_page_lock_assert(m, MA_OWNED);
1895 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1896 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1897 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1898 		return (0);
1899 	pmap_remove_all(m);
1900 	if (m->dirty)
1901 		return (0);
1902 	vm_page_cache(m);
1903 	return (1);
1904 }
1905 
1906 /*
1907  * vm_page_try_to_free()
1908  *
1909  *	Attempt to free the page.  If we cannot free it, we do nothing.
1910  *	1 is returned on success, 0 on failure.
1911  */
1912 int
1913 vm_page_try_to_free(vm_page_t m)
1914 {
1915 
1916 	vm_page_lock_assert(m, MA_OWNED);
1917 	if (m->object != NULL)
1918 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1919 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1920 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1921 		return (0);
1922 	pmap_remove_all(m);
1923 	if (m->dirty)
1924 		return (0);
1925 	vm_page_free(m);
1926 	return (1);
1927 }
1928 
1929 /*
1930  * vm_page_cache
1931  *
1932  * Put the specified page onto the page cache queue (if appropriate).
1933  *
1934  * This routine may not block.
1935  */
1936 void
1937 vm_page_cache(vm_page_t m)
1938 {
1939 	vm_object_t object;
1940 	vm_page_t root;
1941 
1942 	vm_page_lock_assert(m, MA_OWNED);
1943 	object = m->object;
1944 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1945 	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1946 	    m->hold_count || m->wire_count)
1947 		panic("vm_page_cache: attempting to cache busy page");
1948 	pmap_remove_all(m);
1949 	if (m->dirty != 0)
1950 		panic("vm_page_cache: page %p is dirty", m);
1951 	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
1952 	    (object->type == OBJT_SWAP &&
1953 	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
1954 		/*
1955 		 * Hypothesis: A cache-elgible page belonging to a
1956 		 * default object or swap object but without a backing
1957 		 * store must be zero filled.
1958 		 */
1959 		vm_page_free(m);
1960 		return;
1961 	}
1962 	KASSERT((m->flags & PG_CACHED) == 0,
1963 	    ("vm_page_cache: page %p is already cached", m));
1964 	PCPU_INC(cnt.v_tcached);
1965 
1966 	/*
1967 	 * Remove the page from the paging queues.
1968 	 */
1969 	vm_pageq_remove(m);
1970 
1971 	/*
1972 	 * Remove the page from the object's collection of resident
1973 	 * pages.
1974 	 */
1975 	if (m != object->root)
1976 		vm_page_splay(m->pindex, object->root);
1977 	if (m->left == NULL)
1978 		root = m->right;
1979 	else {
1980 		root = vm_page_splay(m->pindex, m->left);
1981 		root->right = m->right;
1982 	}
1983 	object->root = root;
1984 	TAILQ_REMOVE(&object->memq, m, listq);
1985 	object->resident_page_count--;
1986 	object->generation++;
1987 
1988 	/*
1989 	 * Restore the default memory attribute to the page.
1990 	 */
1991 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1992 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1993 
1994 	/*
1995 	 * Insert the page into the object's collection of cached pages
1996 	 * and the physical memory allocator's cache/free page queues.
1997 	 */
1998 	m->flags &= ~PG_ZERO;
1999 	mtx_lock(&vm_page_queue_free_mtx);
2000 	m->flags |= PG_CACHED;
2001 	cnt.v_cache_count++;
2002 	root = object->cache;
2003 	if (root == NULL) {
2004 		m->left = NULL;
2005 		m->right = NULL;
2006 	} else {
2007 		root = vm_page_splay(m->pindex, root);
2008 		if (m->pindex < root->pindex) {
2009 			m->left = root->left;
2010 			m->right = root;
2011 			root->left = NULL;
2012 		} else if (__predict_false(m->pindex == root->pindex))
2013 			panic("vm_page_cache: offset already cached");
2014 		else {
2015 			m->right = root->right;
2016 			m->left = root;
2017 			root->right = NULL;
2018 		}
2019 	}
2020 	object->cache = m;
2021 #if VM_NRESERVLEVEL > 0
2022 	if (!vm_reserv_free_page(m)) {
2023 #else
2024 	if (TRUE) {
2025 #endif
2026 		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2027 		vm_phys_free_pages(m, 0);
2028 	}
2029 	vm_page_free_wakeup();
2030 	mtx_unlock(&vm_page_queue_free_mtx);
2031 
2032 	/*
2033 	 * Increment the vnode's hold count if this is the object's only
2034 	 * cached page.  Decrement the vnode's hold count if this was
2035 	 * the object's only resident page.
2036 	 */
2037 	if (object->type == OBJT_VNODE) {
2038 		if (root == NULL && object->resident_page_count != 0)
2039 			vhold(object->handle);
2040 		else if (root != NULL && object->resident_page_count == 0)
2041 			vdrop(object->handle);
2042 	}
2043 }
2044 
2045 /*
2046  * vm_page_dontneed
2047  *
2048  *	Cache, deactivate, or do nothing as appropriate.  This routine
2049  *	is typically used by madvise() MADV_DONTNEED.
2050  *
2051  *	Generally speaking we want to move the page into the cache so
2052  *	it gets reused quickly.  However, this can result in a silly syndrome
2053  *	due to the page recycling too quickly.  Small objects will not be
2054  *	fully cached.  On the otherhand, if we move the page to the inactive
2055  *	queue we wind up with a problem whereby very large objects
2056  *	unnecessarily blow away our inactive and cache queues.
2057  *
2058  *	The solution is to move the pages based on a fixed weighting.  We
2059  *	either leave them alone, deactivate them, or move them to the cache,
2060  *	where moving them to the cache has the highest weighting.
2061  *	By forcing some pages into other queues we eventually force the
2062  *	system to balance the queues, potentially recovering other unrelated
2063  *	space from active.  The idea is to not force this to happen too
2064  *	often.
2065  */
2066 void
2067 vm_page_dontneed(vm_page_t m)
2068 {
2069 	int dnw;
2070 	int head;
2071 
2072 	vm_page_lock_assert(m, MA_OWNED);
2073 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2074 	dnw = PCPU_GET(dnweight);
2075 	PCPU_INC(dnweight);
2076 
2077 	/*
2078 	 * Occasionally leave the page alone.
2079 	 */
2080 	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2081 		if (m->act_count >= ACT_INIT)
2082 			--m->act_count;
2083 		return;
2084 	}
2085 
2086 	/*
2087 	 * Clear any references to the page.  Otherwise, the page daemon will
2088 	 * immediately reactivate the page.
2089 	 *
2090 	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2091 	 * pmap operation, such as pmap_remove(), could clear a reference in
2092 	 * the pmap and set PG_REFERENCED on the page before the
2093 	 * pmap_clear_reference() had completed.  Consequently, the page would
2094 	 * appear referenced based upon an old reference that occurred before
2095 	 * this function ran.
2096 	 */
2097 	pmap_clear_reference(m);
2098 	vm_page_lock_queues();
2099 	vm_page_flag_clear(m, PG_REFERENCED);
2100 	vm_page_unlock_queues();
2101 
2102 	if (m->dirty == 0 && pmap_is_modified(m))
2103 		vm_page_dirty(m);
2104 
2105 	if (m->dirty || (dnw & 0x0070) == 0) {
2106 		/*
2107 		 * Deactivate the page 3 times out of 32.
2108 		 */
2109 		head = 0;
2110 	} else {
2111 		/*
2112 		 * Cache the page 28 times out of every 32.  Note that
2113 		 * the page is deactivated instead of cached, but placed
2114 		 * at the head of the queue instead of the tail.
2115 		 */
2116 		head = 1;
2117 	}
2118 	_vm_page_deactivate(m, head);
2119 }
2120 
2121 /*
2122  * Grab a page, waiting until we are waken up due to the page
2123  * changing state.  We keep on waiting, if the page continues
2124  * to be in the object.  If the page doesn't exist, first allocate it
2125  * and then conditionally zero it.
2126  *
2127  * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2128  * to facilitate its eventual removal.
2129  *
2130  * This routine may block.
2131  */
2132 vm_page_t
2133 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2134 {
2135 	vm_page_t m;
2136 
2137 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2138 	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2139 	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2140 retrylookup:
2141 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2142 		if ((m->oflags & VPO_BUSY) != 0 ||
2143 		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2144 			/*
2145 			 * Reference the page before unlocking and
2146 			 * sleeping so that the page daemon is less
2147 			 * likely to reclaim it.
2148 			 */
2149 			vm_page_lock_queues();
2150 			vm_page_flag_set(m, PG_REFERENCED);
2151 			vm_page_sleep(m, "pgrbwt");
2152 			goto retrylookup;
2153 		} else {
2154 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2155 				vm_page_lock(m);
2156 				vm_page_wire(m);
2157 				vm_page_unlock(m);
2158 			}
2159 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2160 				vm_page_busy(m);
2161 			return (m);
2162 		}
2163 	}
2164 	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2165 	    VM_ALLOC_IGN_SBUSY));
2166 	if (m == NULL) {
2167 		VM_OBJECT_UNLOCK(object);
2168 		VM_WAIT;
2169 		VM_OBJECT_LOCK(object);
2170 		goto retrylookup;
2171 	} else if (m->valid != 0)
2172 		return (m);
2173 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2174 		pmap_zero_page(m);
2175 	return (m);
2176 }
2177 
2178 /*
2179  * Mapping function for valid bits or for dirty bits in
2180  * a page.  May not block.
2181  *
2182  * Inputs are required to range within a page.
2183  */
2184 int
2185 vm_page_bits(int base, int size)
2186 {
2187 	int first_bit;
2188 	int last_bit;
2189 
2190 	KASSERT(
2191 	    base + size <= PAGE_SIZE,
2192 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2193 	);
2194 
2195 	if (size == 0)		/* handle degenerate case */
2196 		return (0);
2197 
2198 	first_bit = base >> DEV_BSHIFT;
2199 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2200 
2201 	return ((2 << last_bit) - (1 << first_bit));
2202 }
2203 
2204 /*
2205  *	vm_page_set_valid:
2206  *
2207  *	Sets portions of a page valid.  The arguments are expected
2208  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2209  *	of any partial chunks touched by the range.  The invalid portion of
2210  *	such chunks will be zeroed.
2211  *
2212  *	(base + size) must be less then or equal to PAGE_SIZE.
2213  */
2214 void
2215 vm_page_set_valid(vm_page_t m, int base, int size)
2216 {
2217 	int endoff, frag;
2218 
2219 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2220 	if (size == 0)	/* handle degenerate case */
2221 		return;
2222 
2223 	/*
2224 	 * If the base is not DEV_BSIZE aligned and the valid
2225 	 * bit is clear, we have to zero out a portion of the
2226 	 * first block.
2227 	 */
2228 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2229 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2230 		pmap_zero_page_area(m, frag, base - frag);
2231 
2232 	/*
2233 	 * If the ending offset is not DEV_BSIZE aligned and the
2234 	 * valid bit is clear, we have to zero out a portion of
2235 	 * the last block.
2236 	 */
2237 	endoff = base + size;
2238 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2239 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2240 		pmap_zero_page_area(m, endoff,
2241 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2242 
2243 	/*
2244 	 * Assert that no previously invalid block that is now being validated
2245 	 * is already dirty.
2246 	 */
2247 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2248 	    ("vm_page_set_valid: page %p is dirty", m));
2249 
2250 	/*
2251 	 * Set valid bits inclusive of any overlap.
2252 	 */
2253 	m->valid |= vm_page_bits(base, size);
2254 }
2255 
2256 /*
2257  * Clear the given bits from the specified page's dirty field.
2258  */
2259 static __inline void
2260 vm_page_clear_dirty_mask(vm_page_t m, int pagebits)
2261 {
2262 
2263 	/*
2264 	 * If the object is locked and the page is neither VPO_BUSY nor
2265 	 * PG_WRITEABLE, then the page's dirty field cannot possibly be
2266 	 * modified by a concurrent pmap operation.
2267 	 */
2268 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2269 	if ((m->oflags & VPO_BUSY) == 0 && (m->flags & PG_WRITEABLE) == 0)
2270 		m->dirty &= ~pagebits;
2271 	else {
2272 		vm_page_lock_queues();
2273 		m->dirty &= ~pagebits;
2274 		vm_page_unlock_queues();
2275 	}
2276 }
2277 
2278 /*
2279  *	vm_page_set_validclean:
2280  *
2281  *	Sets portions of a page valid and clean.  The arguments are expected
2282  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2283  *	of any partial chunks touched by the range.  The invalid portion of
2284  *	such chunks will be zero'd.
2285  *
2286  *	This routine may not block.
2287  *
2288  *	(base + size) must be less then or equal to PAGE_SIZE.
2289  */
2290 void
2291 vm_page_set_validclean(vm_page_t m, int base, int size)
2292 {
2293 	u_long oldvalid;
2294 	int endoff, frag, pagebits;
2295 
2296 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2297 	if (size == 0)	/* handle degenerate case */
2298 		return;
2299 
2300 	/*
2301 	 * If the base is not DEV_BSIZE aligned and the valid
2302 	 * bit is clear, we have to zero out a portion of the
2303 	 * first block.
2304 	 */
2305 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2306 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2307 		pmap_zero_page_area(m, frag, base - frag);
2308 
2309 	/*
2310 	 * If the ending offset is not DEV_BSIZE aligned and the
2311 	 * valid bit is clear, we have to zero out a portion of
2312 	 * the last block.
2313 	 */
2314 	endoff = base + size;
2315 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2316 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2317 		pmap_zero_page_area(m, endoff,
2318 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2319 
2320 	/*
2321 	 * Set valid, clear dirty bits.  If validating the entire
2322 	 * page we can safely clear the pmap modify bit.  We also
2323 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2324 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2325 	 * be set again.
2326 	 *
2327 	 * We set valid bits inclusive of any overlap, but we can only
2328 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2329 	 * the range.
2330 	 */
2331 	oldvalid = m->valid;
2332 	pagebits = vm_page_bits(base, size);
2333 	m->valid |= pagebits;
2334 #if 0	/* NOT YET */
2335 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2336 		frag = DEV_BSIZE - frag;
2337 		base += frag;
2338 		size -= frag;
2339 		if (size < 0)
2340 			size = 0;
2341 	}
2342 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2343 #endif
2344 	if (base == 0 && size == PAGE_SIZE) {
2345 		/*
2346 		 * The page can only be modified within the pmap if it is
2347 		 * mapped, and it can only be mapped if it was previously
2348 		 * fully valid.
2349 		 */
2350 		if (oldvalid == VM_PAGE_BITS_ALL)
2351 			/*
2352 			 * Perform the pmap_clear_modify() first.  Otherwise,
2353 			 * a concurrent pmap operation, such as
2354 			 * pmap_protect(), could clear a modification in the
2355 			 * pmap and set the dirty field on the page before
2356 			 * pmap_clear_modify() had begun and after the dirty
2357 			 * field was cleared here.
2358 			 */
2359 			pmap_clear_modify(m);
2360 		m->dirty = 0;
2361 		m->oflags &= ~VPO_NOSYNC;
2362 	} else if (oldvalid != VM_PAGE_BITS_ALL)
2363 		m->dirty &= ~pagebits;
2364 	else
2365 		vm_page_clear_dirty_mask(m, pagebits);
2366 }
2367 
2368 void
2369 vm_page_clear_dirty(vm_page_t m, int base, int size)
2370 {
2371 
2372 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2373 }
2374 
2375 /*
2376  *	vm_page_set_invalid:
2377  *
2378  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2379  *	valid and dirty bits for the effected areas are cleared.
2380  *
2381  *	May not block.
2382  */
2383 void
2384 vm_page_set_invalid(vm_page_t m, int base, int size)
2385 {
2386 	int bits;
2387 
2388 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2389 	KASSERT((m->oflags & VPO_BUSY) == 0,
2390 	    ("vm_page_set_invalid: page %p is busy", m));
2391 	bits = vm_page_bits(base, size);
2392 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2393 		pmap_remove_all(m);
2394 	KASSERT(!pmap_page_is_mapped(m),
2395 	    ("vm_page_set_invalid: page %p is mapped", m));
2396 	m->valid &= ~bits;
2397 	m->dirty &= ~bits;
2398 	m->object->generation++;
2399 }
2400 
2401 /*
2402  * vm_page_zero_invalid()
2403  *
2404  *	The kernel assumes that the invalid portions of a page contain
2405  *	garbage, but such pages can be mapped into memory by user code.
2406  *	When this occurs, we must zero out the non-valid portions of the
2407  *	page so user code sees what it expects.
2408  *
2409  *	Pages are most often semi-valid when the end of a file is mapped
2410  *	into memory and the file's size is not page aligned.
2411  */
2412 void
2413 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2414 {
2415 	int b;
2416 	int i;
2417 
2418 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2419 	/*
2420 	 * Scan the valid bits looking for invalid sections that
2421 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2422 	 * valid bit may be set ) have already been zerod by
2423 	 * vm_page_set_validclean().
2424 	 */
2425 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2426 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2427 		    (m->valid & (1 << i))
2428 		) {
2429 			if (i > b) {
2430 				pmap_zero_page_area(m,
2431 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2432 			}
2433 			b = i + 1;
2434 		}
2435 	}
2436 
2437 	/*
2438 	 * setvalid is TRUE when we can safely set the zero'd areas
2439 	 * as being valid.  We can do this if there are no cache consistancy
2440 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2441 	 */
2442 	if (setvalid)
2443 		m->valid = VM_PAGE_BITS_ALL;
2444 }
2445 
2446 /*
2447  *	vm_page_is_valid:
2448  *
2449  *	Is (partial) page valid?  Note that the case where size == 0
2450  *	will return FALSE in the degenerate case where the page is
2451  *	entirely invalid, and TRUE otherwise.
2452  *
2453  *	May not block.
2454  */
2455 int
2456 vm_page_is_valid(vm_page_t m, int base, int size)
2457 {
2458 	int bits = vm_page_bits(base, size);
2459 
2460 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2461 	if (m->valid && ((m->valid & bits) == bits))
2462 		return 1;
2463 	else
2464 		return 0;
2465 }
2466 
2467 /*
2468  * update dirty bits from pmap/mmu.  May not block.
2469  */
2470 void
2471 vm_page_test_dirty(vm_page_t m)
2472 {
2473 
2474 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2475 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2476 		vm_page_dirty(m);
2477 }
2478 
2479 int so_zerocp_fullpage = 0;
2480 
2481 /*
2482  *	Replace the given page with a copy.  The copied page assumes
2483  *	the portion of the given page's "wire_count" that is not the
2484  *	responsibility of this copy-on-write mechanism.
2485  *
2486  *	The object containing the given page must have a non-zero
2487  *	paging-in-progress count and be locked.
2488  */
2489 void
2490 vm_page_cowfault(vm_page_t m)
2491 {
2492 	vm_page_t mnew;
2493 	vm_object_t object;
2494 	vm_pindex_t pindex;
2495 
2496 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2497 	vm_page_lock_assert(m, MA_OWNED);
2498 	object = m->object;
2499 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2500 	KASSERT(object->paging_in_progress != 0,
2501 	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2502 	    object));
2503 	pindex = m->pindex;
2504 
2505  retry_alloc:
2506 	pmap_remove_all(m);
2507 	vm_page_remove(m);
2508 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2509 	if (mnew == NULL) {
2510 		vm_page_insert(m, object, pindex);
2511 		vm_page_unlock(m);
2512 		VM_OBJECT_UNLOCK(object);
2513 		VM_WAIT;
2514 		VM_OBJECT_LOCK(object);
2515 		if (m == vm_page_lookup(object, pindex)) {
2516 			vm_page_lock(m);
2517 			goto retry_alloc;
2518 		} else {
2519 			/*
2520 			 * Page disappeared during the wait.
2521 			 */
2522 			return;
2523 		}
2524 	}
2525 
2526 	if (m->cow == 0) {
2527 		/*
2528 		 * check to see if we raced with an xmit complete when
2529 		 * waiting to allocate a page.  If so, put things back
2530 		 * the way they were
2531 		 */
2532 		vm_page_unlock(m);
2533 		vm_page_lock(mnew);
2534 		vm_page_free(mnew);
2535 		vm_page_unlock(mnew);
2536 		vm_page_insert(m, object, pindex);
2537 	} else { /* clear COW & copy page */
2538 		if (!so_zerocp_fullpage)
2539 			pmap_copy_page(m, mnew);
2540 		mnew->valid = VM_PAGE_BITS_ALL;
2541 		vm_page_dirty(mnew);
2542 		mnew->wire_count = m->wire_count - m->cow;
2543 		m->wire_count = m->cow;
2544 		vm_page_unlock(m);
2545 	}
2546 }
2547 
2548 void
2549 vm_page_cowclear(vm_page_t m)
2550 {
2551 
2552 	vm_page_lock_assert(m, MA_OWNED);
2553 	if (m->cow) {
2554 		m->cow--;
2555 		/*
2556 		 * let vm_fault add back write permission  lazily
2557 		 */
2558 	}
2559 	/*
2560 	 *  sf_buf_free() will free the page, so we needn't do it here
2561 	 */
2562 }
2563 
2564 int
2565 vm_page_cowsetup(vm_page_t m)
2566 {
2567 
2568 	vm_page_lock_assert(m, MA_OWNED);
2569 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2570 	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
2571 		return (EBUSY);
2572 	m->cow++;
2573 	pmap_remove_write(m);
2574 	VM_OBJECT_UNLOCK(m->object);
2575 	return (0);
2576 }
2577 
2578 #include "opt_ddb.h"
2579 #ifdef DDB
2580 #include <sys/kernel.h>
2581 
2582 #include <ddb/ddb.h>
2583 
2584 DB_SHOW_COMMAND(page, vm_page_print_page_info)
2585 {
2586 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2587 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2588 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2589 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2590 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2591 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2592 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2593 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2594 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2595 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2596 }
2597 
2598 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2599 {
2600 
2601 	db_printf("PQ_FREE:");
2602 	db_printf(" %d", cnt.v_free_count);
2603 	db_printf("\n");
2604 
2605 	db_printf("PQ_CACHE:");
2606 	db_printf(" %d", cnt.v_cache_count);
2607 	db_printf("\n");
2608 
2609 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2610 		*vm_page_queues[PQ_ACTIVE].cnt,
2611 		*vm_page_queues[PQ_INACTIVE].cnt);
2612 }
2613 #endif /* DDB */
2614