1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * The Mach Operating System project at Carnegie-Mellon University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 36 */ 37 38 /*- 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 65 /* 66 * GENERAL RULES ON VM_PAGE MANIPULATION 67 * 68 * - A page queue lock is required when adding or removing a page from a 69 * page queue regardless of other locks or the busy state of a page. 70 * 71 * * In general, no thread besides the page daemon can acquire or 72 * hold more than one page queue lock at a time. 73 * 74 * * The page daemon can acquire and hold any pair of page queue 75 * locks in any order. 76 * 77 * - The object lock is required when inserting or removing 78 * pages from an object (vm_page_insert() or vm_page_remove()). 79 * 80 */ 81 82 /* 83 * Resident memory management module. 84 */ 85 86 #include <sys/cdefs.h> 87 __FBSDID("$FreeBSD$"); 88 89 #include "opt_vm.h" 90 91 #include <sys/param.h> 92 #include <sys/systm.h> 93 #include <sys/lock.h> 94 #include <sys/domainset.h> 95 #include <sys/kernel.h> 96 #include <sys/limits.h> 97 #include <sys/linker.h> 98 #include <sys/malloc.h> 99 #include <sys/mman.h> 100 #include <sys/msgbuf.h> 101 #include <sys/mutex.h> 102 #include <sys/proc.h> 103 #include <sys/rwlock.h> 104 #include <sys/sbuf.h> 105 #include <sys/smp.h> 106 #include <sys/sysctl.h> 107 #include <sys/vmmeter.h> 108 #include <sys/vnode.h> 109 110 #include <vm/vm.h> 111 #include <vm/pmap.h> 112 #include <vm/vm_param.h> 113 #include <vm/vm_domainset.h> 114 #include <vm/vm_kern.h> 115 #include <vm/vm_object.h> 116 #include <vm/vm_page.h> 117 #include <vm/vm_pageout.h> 118 #include <vm/vm_pager.h> 119 #include <vm/vm_phys.h> 120 #include <vm/vm_radix.h> 121 #include <vm/vm_reserv.h> 122 #include <vm/vm_extern.h> 123 #include <vm/uma.h> 124 #include <vm/uma_int.h> 125 126 #include <machine/md_var.h> 127 128 extern int uma_startup_count(int); 129 extern void uma_startup(void *, int); 130 extern void uma_startup1(void); 131 132 /* 133 * Associated with page of user-allocatable memory is a 134 * page structure. 135 */ 136 137 struct vm_domain vm_dom[MAXMEMDOM]; 138 struct mtx_padalign __exclusive_cache_line vm_page_queue_free_mtx; 139 140 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT]; 141 142 /* 143 * bogus page -- for I/O to/from partially complete buffers, 144 * or for paging into sparsely invalid regions. 145 */ 146 vm_page_t bogus_page; 147 148 vm_page_t vm_page_array; 149 long vm_page_array_size; 150 long first_page; 151 152 static int boot_pages; 153 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 154 &boot_pages, 0, 155 "number of pages allocated for bootstrapping the VM system"); 156 157 static int pa_tryrelock_restart; 158 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD, 159 &pa_tryrelock_restart, 0, "Number of tryrelock restarts"); 160 161 static TAILQ_HEAD(, vm_page) blacklist_head; 162 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); 163 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | 164 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); 165 166 /* Is the page daemon waiting for free pages? */ 167 static int vm_pageout_pages_needed; 168 169 static uma_zone_t fakepg_zone; 170 171 static void vm_page_alloc_check(vm_page_t m); 172 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 173 static void vm_page_enqueue(uint8_t queue, vm_page_t m); 174 static void vm_page_free_phys(vm_page_t m); 175 static void vm_page_free_wakeup(void); 176 static void vm_page_init(void *dummy); 177 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 178 vm_pindex_t pindex, vm_page_t mpred); 179 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 180 vm_page_t mpred); 181 static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run, 182 vm_paddr_t high); 183 static int vm_page_alloc_fail(vm_object_t object, int req); 184 185 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL); 186 187 static void 188 vm_page_init(void *dummy) 189 { 190 191 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 192 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 193 bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | 194 VM_ALLOC_NORMAL | VM_ALLOC_WIRED); 195 } 196 197 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 198 #if PAGE_SIZE == 32768 199 #ifdef CTASSERT 200 CTASSERT(sizeof(u_long) >= 8); 201 #endif 202 #endif 203 204 /* 205 * Try to acquire a physical address lock while a pmap is locked. If we 206 * fail to trylock we unlock and lock the pmap directly and cache the 207 * locked pa in *locked. The caller should then restart their loop in case 208 * the virtual to physical mapping has changed. 209 */ 210 int 211 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked) 212 { 213 vm_paddr_t lockpa; 214 215 lockpa = *locked; 216 *locked = pa; 217 if (lockpa) { 218 PA_LOCK_ASSERT(lockpa, MA_OWNED); 219 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa)) 220 return (0); 221 PA_UNLOCK(lockpa); 222 } 223 if (PA_TRYLOCK(pa)) 224 return (0); 225 PMAP_UNLOCK(pmap); 226 atomic_add_int(&pa_tryrelock_restart, 1); 227 PA_LOCK(pa); 228 PMAP_LOCK(pmap); 229 return (EAGAIN); 230 } 231 232 /* 233 * vm_set_page_size: 234 * 235 * Sets the page size, perhaps based upon the memory 236 * size. Must be called before any use of page-size 237 * dependent functions. 238 */ 239 void 240 vm_set_page_size(void) 241 { 242 if (vm_cnt.v_page_size == 0) 243 vm_cnt.v_page_size = PAGE_SIZE; 244 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 245 panic("vm_set_page_size: page size not a power of two"); 246 } 247 248 /* 249 * vm_page_blacklist_next: 250 * 251 * Find the next entry in the provided string of blacklist 252 * addresses. Entries are separated by space, comma, or newline. 253 * If an invalid integer is encountered then the rest of the 254 * string is skipped. Updates the list pointer to the next 255 * character, or NULL if the string is exhausted or invalid. 256 */ 257 static vm_paddr_t 258 vm_page_blacklist_next(char **list, char *end) 259 { 260 vm_paddr_t bad; 261 char *cp, *pos; 262 263 if (list == NULL || *list == NULL) 264 return (0); 265 if (**list =='\0') { 266 *list = NULL; 267 return (0); 268 } 269 270 /* 271 * If there's no end pointer then the buffer is coming from 272 * the kenv and we know it's null-terminated. 273 */ 274 if (end == NULL) 275 end = *list + strlen(*list); 276 277 /* Ensure that strtoq() won't walk off the end */ 278 if (*end != '\0') { 279 if (*end == '\n' || *end == ' ' || *end == ',') 280 *end = '\0'; 281 else { 282 printf("Blacklist not terminated, skipping\n"); 283 *list = NULL; 284 return (0); 285 } 286 } 287 288 for (pos = *list; *pos != '\0'; pos = cp) { 289 bad = strtoq(pos, &cp, 0); 290 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { 291 if (bad == 0) { 292 if (++cp < end) 293 continue; 294 else 295 break; 296 } 297 } else 298 break; 299 if (*cp == '\0' || ++cp >= end) 300 *list = NULL; 301 else 302 *list = cp; 303 return (trunc_page(bad)); 304 } 305 printf("Garbage in RAM blacklist, skipping\n"); 306 *list = NULL; 307 return (0); 308 } 309 310 /* 311 * vm_page_blacklist_check: 312 * 313 * Iterate through the provided string of blacklist addresses, pulling 314 * each entry out of the physical allocator free list and putting it 315 * onto a list for reporting via the vm.page_blacklist sysctl. 316 */ 317 static void 318 vm_page_blacklist_check(char *list, char *end) 319 { 320 vm_paddr_t pa; 321 vm_page_t m; 322 char *next; 323 int ret; 324 325 next = list; 326 while (next != NULL) { 327 if ((pa = vm_page_blacklist_next(&next, end)) == 0) 328 continue; 329 m = vm_phys_paddr_to_vm_page(pa); 330 if (m == NULL) 331 continue; 332 mtx_lock(&vm_page_queue_free_mtx); 333 ret = vm_phys_unfree_page(m); 334 mtx_unlock(&vm_page_queue_free_mtx); 335 if (ret == TRUE) { 336 TAILQ_INSERT_TAIL(&blacklist_head, m, listq); 337 if (bootverbose) 338 printf("Skipping page with pa 0x%jx\n", 339 (uintmax_t)pa); 340 } 341 } 342 } 343 344 /* 345 * vm_page_blacklist_load: 346 * 347 * Search for a special module named "ram_blacklist". It'll be a 348 * plain text file provided by the user via the loader directive 349 * of the same name. 350 */ 351 static void 352 vm_page_blacklist_load(char **list, char **end) 353 { 354 void *mod; 355 u_char *ptr; 356 u_int len; 357 358 mod = NULL; 359 ptr = NULL; 360 361 mod = preload_search_by_type("ram_blacklist"); 362 if (mod != NULL) { 363 ptr = preload_fetch_addr(mod); 364 len = preload_fetch_size(mod); 365 } 366 *list = ptr; 367 if (ptr != NULL) 368 *end = ptr + len; 369 else 370 *end = NULL; 371 return; 372 } 373 374 static int 375 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) 376 { 377 vm_page_t m; 378 struct sbuf sbuf; 379 int error, first; 380 381 first = 1; 382 error = sysctl_wire_old_buffer(req, 0); 383 if (error != 0) 384 return (error); 385 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 386 TAILQ_FOREACH(m, &blacklist_head, listq) { 387 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", 388 (uintmax_t)m->phys_addr); 389 first = 0; 390 } 391 error = sbuf_finish(&sbuf); 392 sbuf_delete(&sbuf); 393 return (error); 394 } 395 396 static void 397 vm_page_domain_init(struct vm_domain *vmd) 398 { 399 struct vm_pagequeue *pq; 400 int i; 401 402 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 403 "vm inactive pagequeue"; 404 *__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) = 405 &vm_cnt.v_inactive_count; 406 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 407 "vm active pagequeue"; 408 *__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) = 409 &vm_cnt.v_active_count; 410 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) = 411 "vm laundry pagequeue"; 412 *__DECONST(int **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_vcnt) = 413 &vm_cnt.v_laundry_count; 414 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) = 415 "vm unswappable pagequeue"; 416 /* Unswappable dirty pages are counted as being in the laundry. */ 417 *__DECONST(int **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_vcnt) = 418 &vm_cnt.v_laundry_count; 419 vmd->vmd_page_count = 0; 420 vmd->vmd_free_count = 0; 421 vmd->vmd_segs = 0; 422 vmd->vmd_oom = FALSE; 423 for (i = 0; i < PQ_COUNT; i++) { 424 pq = &vmd->vmd_pagequeues[i]; 425 TAILQ_INIT(&pq->pq_pl); 426 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 427 MTX_DEF | MTX_DUPOK); 428 } 429 } 430 431 /* 432 * Initialize a physical page in preparation for adding it to the free 433 * lists. 434 */ 435 static void 436 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind) 437 { 438 439 m->object = NULL; 440 m->wire_count = 0; 441 m->busy_lock = VPB_UNBUSIED; 442 m->hold_count = 0; 443 m->flags = 0; 444 m->phys_addr = pa; 445 m->queue = PQ_NONE; 446 m->psind = 0; 447 m->segind = segind; 448 m->order = VM_NFREEORDER; 449 m->pool = VM_FREEPOOL_DEFAULT; 450 m->valid = m->dirty = 0; 451 pmap_page_init(m); 452 } 453 454 /* 455 * vm_page_startup: 456 * 457 * Initializes the resident memory module. Allocates physical memory for 458 * bootstrapping UMA and some data structures that are used to manage 459 * physical pages. Initializes these structures, and populates the free 460 * page queues. 461 */ 462 vm_offset_t 463 vm_page_startup(vm_offset_t vaddr) 464 { 465 struct vm_domain *vmd; 466 struct vm_phys_seg *seg; 467 vm_page_t m; 468 char *list, *listend; 469 vm_offset_t mapped; 470 vm_paddr_t end, high_avail, low_avail, new_end, page_range, size; 471 vm_paddr_t biggestsize, last_pa, pa; 472 u_long pagecount; 473 int biggestone, i, segind; 474 475 biggestsize = 0; 476 biggestone = 0; 477 vaddr = round_page(vaddr); 478 479 for (i = 0; phys_avail[i + 1]; i += 2) { 480 phys_avail[i] = round_page(phys_avail[i]); 481 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 482 } 483 for (i = 0; phys_avail[i + 1]; i += 2) { 484 size = phys_avail[i + 1] - phys_avail[i]; 485 if (size > biggestsize) { 486 biggestone = i; 487 biggestsize = size; 488 } 489 } 490 491 end = phys_avail[biggestone+1]; 492 493 /* 494 * Initialize the page and queue locks. 495 */ 496 mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF); 497 for (i = 0; i < PA_LOCK_COUNT; i++) 498 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 499 for (i = 0; i < vm_ndomains; i++) 500 vm_page_domain_init(&vm_dom[i]); 501 502 /* 503 * Allocate memory for use when boot strapping the kernel memory 504 * allocator. 505 * 506 * CTFLAG_RDTUN doesn't work during the early boot process, so we must 507 * manually fetch the value. 508 */ 509 boot_pages = uma_startup_count(0); 510 TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages); 511 new_end = end - (boot_pages * UMA_SLAB_SIZE); 512 new_end = trunc_page(new_end); 513 mapped = pmap_map(&vaddr, new_end, end, 514 VM_PROT_READ | VM_PROT_WRITE); 515 bzero((void *)mapped, end - new_end); 516 uma_startup((void *)mapped, boot_pages); 517 518 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 519 defined(__i386__) || defined(__mips__) 520 /* 521 * Allocate a bitmap to indicate that a random physical page 522 * needs to be included in a minidump. 523 * 524 * The amd64 port needs this to indicate which direct map pages 525 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 526 * 527 * However, i386 still needs this workspace internally within the 528 * minidump code. In theory, they are not needed on i386, but are 529 * included should the sf_buf code decide to use them. 530 */ 531 last_pa = 0; 532 for (i = 0; dump_avail[i + 1] != 0; i += 2) 533 if (dump_avail[i + 1] > last_pa) 534 last_pa = dump_avail[i + 1]; 535 page_range = last_pa / PAGE_SIZE; 536 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 537 new_end -= vm_page_dump_size; 538 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 539 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 540 bzero((void *)vm_page_dump, vm_page_dump_size); 541 #else 542 (void)last_pa; 543 #endif 544 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) 545 /* 546 * Include the UMA bootstrap pages and vm_page_dump in a crash dump. 547 * When pmap_map() uses the direct map, they are not automatically 548 * included. 549 */ 550 for (pa = new_end; pa < end; pa += PAGE_SIZE) 551 dump_add_page(pa); 552 #endif 553 phys_avail[biggestone + 1] = new_end; 554 #ifdef __amd64__ 555 /* 556 * Request that the physical pages underlying the message buffer be 557 * included in a crash dump. Since the message buffer is accessed 558 * through the direct map, they are not automatically included. 559 */ 560 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 561 last_pa = pa + round_page(msgbufsize); 562 while (pa < last_pa) { 563 dump_add_page(pa); 564 pa += PAGE_SIZE; 565 } 566 #endif 567 /* 568 * Compute the number of pages of memory that will be available for 569 * use, taking into account the overhead of a page structure per page. 570 * In other words, solve 571 * "available physical memory" - round_page(page_range * 572 * sizeof(struct vm_page)) = page_range * PAGE_SIZE 573 * for page_range. 574 */ 575 low_avail = phys_avail[0]; 576 high_avail = phys_avail[1]; 577 for (i = 0; i < vm_phys_nsegs; i++) { 578 if (vm_phys_segs[i].start < low_avail) 579 low_avail = vm_phys_segs[i].start; 580 if (vm_phys_segs[i].end > high_avail) 581 high_avail = vm_phys_segs[i].end; 582 } 583 /* Skip the first chunk. It is already accounted for. */ 584 for (i = 2; phys_avail[i + 1] != 0; i += 2) { 585 if (phys_avail[i] < low_avail) 586 low_avail = phys_avail[i]; 587 if (phys_avail[i + 1] > high_avail) 588 high_avail = phys_avail[i + 1]; 589 } 590 first_page = low_avail / PAGE_SIZE; 591 #ifdef VM_PHYSSEG_SPARSE 592 size = 0; 593 for (i = 0; i < vm_phys_nsegs; i++) 594 size += vm_phys_segs[i].end - vm_phys_segs[i].start; 595 for (i = 0; phys_avail[i + 1] != 0; i += 2) 596 size += phys_avail[i + 1] - phys_avail[i]; 597 #elif defined(VM_PHYSSEG_DENSE) 598 size = high_avail - low_avail; 599 #else 600 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 601 #endif 602 603 #ifdef VM_PHYSSEG_DENSE 604 /* 605 * In the VM_PHYSSEG_DENSE case, the number of pages can account for 606 * the overhead of a page structure per page only if vm_page_array is 607 * allocated from the last physical memory chunk. Otherwise, we must 608 * allocate page structures representing the physical memory 609 * underlying vm_page_array, even though they will not be used. 610 */ 611 if (new_end != high_avail) 612 page_range = size / PAGE_SIZE; 613 else 614 #endif 615 { 616 page_range = size / (PAGE_SIZE + sizeof(struct vm_page)); 617 618 /* 619 * If the partial bytes remaining are large enough for 620 * a page (PAGE_SIZE) without a corresponding 621 * 'struct vm_page', then new_end will contain an 622 * extra page after subtracting the length of the VM 623 * page array. Compensate by subtracting an extra 624 * page from new_end. 625 */ 626 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) { 627 if (new_end == high_avail) 628 high_avail -= PAGE_SIZE; 629 new_end -= PAGE_SIZE; 630 } 631 } 632 end = new_end; 633 634 /* 635 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 636 * However, because this page is allocated from KVM, out-of-bounds 637 * accesses using the direct map will not be trapped. 638 */ 639 vaddr += PAGE_SIZE; 640 641 /* 642 * Allocate physical memory for the page structures, and map it. 643 */ 644 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 645 mapped = pmap_map(&vaddr, new_end, end, 646 VM_PROT_READ | VM_PROT_WRITE); 647 vm_page_array = (vm_page_t)mapped; 648 vm_page_array_size = page_range; 649 650 #if VM_NRESERVLEVEL > 0 651 /* 652 * Allocate physical memory for the reservation management system's 653 * data structures, and map it. 654 */ 655 if (high_avail == end) 656 high_avail = new_end; 657 new_end = vm_reserv_startup(&vaddr, new_end, high_avail); 658 #endif 659 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) 660 /* 661 * Include vm_page_array and vm_reserv_array in a crash dump. 662 */ 663 for (pa = new_end; pa < end; pa += PAGE_SIZE) 664 dump_add_page(pa); 665 #endif 666 phys_avail[biggestone + 1] = new_end; 667 668 /* 669 * Add physical memory segments corresponding to the available 670 * physical pages. 671 */ 672 for (i = 0; phys_avail[i + 1] != 0; i += 2) 673 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 674 675 /* 676 * Initialize the physical memory allocator. 677 */ 678 vm_phys_init(); 679 680 /* 681 * Initialize the page structures and add every available page to the 682 * physical memory allocator's free lists. 683 */ 684 vm_cnt.v_page_count = 0; 685 vm_cnt.v_free_count = 0; 686 for (segind = 0; segind < vm_phys_nsegs; segind++) { 687 seg = &vm_phys_segs[segind]; 688 for (m = seg->first_page, pa = seg->start; pa < seg->end; 689 m++, pa += PAGE_SIZE) 690 vm_page_init_page(m, pa, segind); 691 692 /* 693 * Add the segment to the free lists only if it is covered by 694 * one of the ranges in phys_avail. Because we've added the 695 * ranges to the vm_phys_segs array, we can assume that each 696 * segment is either entirely contained in one of the ranges, 697 * or doesn't overlap any of them. 698 */ 699 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 700 if (seg->start < phys_avail[i] || 701 seg->end > phys_avail[i + 1]) 702 continue; 703 704 m = seg->first_page; 705 pagecount = (u_long)atop(seg->end - seg->start); 706 707 mtx_lock(&vm_page_queue_free_mtx); 708 vm_phys_free_contig(m, pagecount); 709 vm_phys_freecnt_adj(m, (int)pagecount); 710 mtx_unlock(&vm_page_queue_free_mtx); 711 vm_cnt.v_page_count += (u_int)pagecount; 712 713 vmd = &vm_dom[seg->domain]; 714 vmd->vmd_page_count += (u_int)pagecount; 715 vmd->vmd_segs |= 1UL << m->segind; 716 break; 717 } 718 } 719 720 /* 721 * Remove blacklisted pages from the physical memory allocator. 722 */ 723 TAILQ_INIT(&blacklist_head); 724 vm_page_blacklist_load(&list, &listend); 725 vm_page_blacklist_check(list, listend); 726 727 list = kern_getenv("vm.blacklist"); 728 vm_page_blacklist_check(list, NULL); 729 730 freeenv(list); 731 #if VM_NRESERVLEVEL > 0 732 /* 733 * Initialize the reservation management system. 734 */ 735 vm_reserv_init(); 736 #endif 737 /* 738 * Set an initial domain policy for thread0 so that allocations 739 * can work. 740 */ 741 domainset_zero(); 742 743 /* Announce page availability to UMA. */ 744 uma_startup1(); 745 746 return (vaddr); 747 } 748 749 void 750 vm_page_reference(vm_page_t m) 751 { 752 753 vm_page_aflag_set(m, PGA_REFERENCED); 754 } 755 756 /* 757 * vm_page_busy_downgrade: 758 * 759 * Downgrade an exclusive busy page into a single shared busy page. 760 */ 761 void 762 vm_page_busy_downgrade(vm_page_t m) 763 { 764 u_int x; 765 bool locked; 766 767 vm_page_assert_xbusied(m); 768 locked = mtx_owned(vm_page_lockptr(m)); 769 770 for (;;) { 771 x = m->busy_lock; 772 x &= VPB_BIT_WAITERS; 773 if (x != 0 && !locked) 774 vm_page_lock(m); 775 if (atomic_cmpset_rel_int(&m->busy_lock, 776 VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1))) 777 break; 778 if (x != 0 && !locked) 779 vm_page_unlock(m); 780 } 781 if (x != 0) { 782 wakeup(m); 783 if (!locked) 784 vm_page_unlock(m); 785 } 786 } 787 788 /* 789 * vm_page_sbusied: 790 * 791 * Return a positive value if the page is shared busied, 0 otherwise. 792 */ 793 int 794 vm_page_sbusied(vm_page_t m) 795 { 796 u_int x; 797 798 x = m->busy_lock; 799 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 800 } 801 802 /* 803 * vm_page_sunbusy: 804 * 805 * Shared unbusy a page. 806 */ 807 void 808 vm_page_sunbusy(vm_page_t m) 809 { 810 u_int x; 811 812 vm_page_lock_assert(m, MA_NOTOWNED); 813 vm_page_assert_sbusied(m); 814 815 for (;;) { 816 x = m->busy_lock; 817 if (VPB_SHARERS(x) > 1) { 818 if (atomic_cmpset_int(&m->busy_lock, x, 819 x - VPB_ONE_SHARER)) 820 break; 821 continue; 822 } 823 if ((x & VPB_BIT_WAITERS) == 0) { 824 KASSERT(x == VPB_SHARERS_WORD(1), 825 ("vm_page_sunbusy: invalid lock state")); 826 if (atomic_cmpset_int(&m->busy_lock, 827 VPB_SHARERS_WORD(1), VPB_UNBUSIED)) 828 break; 829 continue; 830 } 831 KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS), 832 ("vm_page_sunbusy: invalid lock state for waiters")); 833 834 vm_page_lock(m); 835 if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) { 836 vm_page_unlock(m); 837 continue; 838 } 839 wakeup(m); 840 vm_page_unlock(m); 841 break; 842 } 843 } 844 845 /* 846 * vm_page_busy_sleep: 847 * 848 * Sleep and release the page lock, using the page pointer as wchan. 849 * This is used to implement the hard-path of busying mechanism. 850 * 851 * The given page must be locked. 852 * 853 * If nonshared is true, sleep only if the page is xbusy. 854 */ 855 void 856 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared) 857 { 858 u_int x; 859 860 vm_page_assert_locked(m); 861 862 x = m->busy_lock; 863 if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) || 864 ((x & VPB_BIT_WAITERS) == 0 && 865 !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) { 866 vm_page_unlock(m); 867 return; 868 } 869 msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0); 870 } 871 872 /* 873 * vm_page_trysbusy: 874 * 875 * Try to shared busy a page. 876 * If the operation succeeds 1 is returned otherwise 0. 877 * The operation never sleeps. 878 */ 879 int 880 vm_page_trysbusy(vm_page_t m) 881 { 882 u_int x; 883 884 for (;;) { 885 x = m->busy_lock; 886 if ((x & VPB_BIT_SHARED) == 0) 887 return (0); 888 if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER)) 889 return (1); 890 } 891 } 892 893 static void 894 vm_page_xunbusy_locked(vm_page_t m) 895 { 896 897 vm_page_assert_xbusied(m); 898 vm_page_assert_locked(m); 899 900 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 901 /* There is a waiter, do wakeup() instead of vm_page_flash(). */ 902 wakeup(m); 903 } 904 905 void 906 vm_page_xunbusy_maybelocked(vm_page_t m) 907 { 908 bool lockacq; 909 910 vm_page_assert_xbusied(m); 911 912 /* 913 * Fast path for unbusy. If it succeeds, we know that there 914 * are no waiters, so we do not need a wakeup. 915 */ 916 if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER, 917 VPB_UNBUSIED)) 918 return; 919 920 lockacq = !mtx_owned(vm_page_lockptr(m)); 921 if (lockacq) 922 vm_page_lock(m); 923 vm_page_xunbusy_locked(m); 924 if (lockacq) 925 vm_page_unlock(m); 926 } 927 928 /* 929 * vm_page_xunbusy_hard: 930 * 931 * Called after the first try the exclusive unbusy of a page failed. 932 * It is assumed that the waiters bit is on. 933 */ 934 void 935 vm_page_xunbusy_hard(vm_page_t m) 936 { 937 938 vm_page_assert_xbusied(m); 939 940 vm_page_lock(m); 941 vm_page_xunbusy_locked(m); 942 vm_page_unlock(m); 943 } 944 945 /* 946 * vm_page_flash: 947 * 948 * Wakeup anyone waiting for the page. 949 * The ownership bits do not change. 950 * 951 * The given page must be locked. 952 */ 953 void 954 vm_page_flash(vm_page_t m) 955 { 956 u_int x; 957 958 vm_page_lock_assert(m, MA_OWNED); 959 960 for (;;) { 961 x = m->busy_lock; 962 if ((x & VPB_BIT_WAITERS) == 0) 963 return; 964 if (atomic_cmpset_int(&m->busy_lock, x, 965 x & (~VPB_BIT_WAITERS))) 966 break; 967 } 968 wakeup(m); 969 } 970 971 /* 972 * Avoid releasing and reacquiring the same page lock. 973 */ 974 void 975 vm_page_change_lock(vm_page_t m, struct mtx **mtx) 976 { 977 struct mtx *mtx1; 978 979 mtx1 = vm_page_lockptr(m); 980 if (*mtx == mtx1) 981 return; 982 if (*mtx != NULL) 983 mtx_unlock(*mtx); 984 *mtx = mtx1; 985 mtx_lock(mtx1); 986 } 987 988 /* 989 * Keep page from being freed by the page daemon 990 * much of the same effect as wiring, except much lower 991 * overhead and should be used only for *very* temporary 992 * holding ("wiring"). 993 */ 994 void 995 vm_page_hold(vm_page_t mem) 996 { 997 998 vm_page_lock_assert(mem, MA_OWNED); 999 mem->hold_count++; 1000 } 1001 1002 void 1003 vm_page_unhold(vm_page_t mem) 1004 { 1005 1006 vm_page_lock_assert(mem, MA_OWNED); 1007 KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!")); 1008 --mem->hold_count; 1009 if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0) 1010 vm_page_free_toq(mem); 1011 } 1012 1013 /* 1014 * vm_page_unhold_pages: 1015 * 1016 * Unhold each of the pages that is referenced by the given array. 1017 */ 1018 void 1019 vm_page_unhold_pages(vm_page_t *ma, int count) 1020 { 1021 struct mtx *mtx; 1022 1023 mtx = NULL; 1024 for (; count != 0; count--) { 1025 vm_page_change_lock(*ma, &mtx); 1026 vm_page_unhold(*ma); 1027 ma++; 1028 } 1029 if (mtx != NULL) 1030 mtx_unlock(mtx); 1031 } 1032 1033 vm_page_t 1034 PHYS_TO_VM_PAGE(vm_paddr_t pa) 1035 { 1036 vm_page_t m; 1037 1038 #ifdef VM_PHYSSEG_SPARSE 1039 m = vm_phys_paddr_to_vm_page(pa); 1040 if (m == NULL) 1041 m = vm_phys_fictitious_to_vm_page(pa); 1042 return (m); 1043 #elif defined(VM_PHYSSEG_DENSE) 1044 long pi; 1045 1046 pi = atop(pa); 1047 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 1048 m = &vm_page_array[pi - first_page]; 1049 return (m); 1050 } 1051 return (vm_phys_fictitious_to_vm_page(pa)); 1052 #else 1053 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 1054 #endif 1055 } 1056 1057 /* 1058 * vm_page_getfake: 1059 * 1060 * Create a fictitious page with the specified physical address and 1061 * memory attribute. The memory attribute is the only the machine- 1062 * dependent aspect of a fictitious page that must be initialized. 1063 */ 1064 vm_page_t 1065 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 1066 { 1067 vm_page_t m; 1068 1069 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 1070 vm_page_initfake(m, paddr, memattr); 1071 return (m); 1072 } 1073 1074 void 1075 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1076 { 1077 1078 if ((m->flags & PG_FICTITIOUS) != 0) { 1079 /* 1080 * The page's memattr might have changed since the 1081 * previous initialization. Update the pmap to the 1082 * new memattr. 1083 */ 1084 goto memattr; 1085 } 1086 m->phys_addr = paddr; 1087 m->queue = PQ_NONE; 1088 /* Fictitious pages don't use "segind". */ 1089 m->flags = PG_FICTITIOUS; 1090 /* Fictitious pages don't use "order" or "pool". */ 1091 m->oflags = VPO_UNMANAGED; 1092 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1093 m->wire_count = 1; 1094 pmap_page_init(m); 1095 memattr: 1096 pmap_page_set_memattr(m, memattr); 1097 } 1098 1099 /* 1100 * vm_page_putfake: 1101 * 1102 * Release a fictitious page. 1103 */ 1104 void 1105 vm_page_putfake(vm_page_t m) 1106 { 1107 1108 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 1109 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1110 ("vm_page_putfake: bad page %p", m)); 1111 uma_zfree(fakepg_zone, m); 1112 } 1113 1114 /* 1115 * vm_page_updatefake: 1116 * 1117 * Update the given fictitious page to the specified physical address and 1118 * memory attribute. 1119 */ 1120 void 1121 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1122 { 1123 1124 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1125 ("vm_page_updatefake: bad page %p", m)); 1126 m->phys_addr = paddr; 1127 pmap_page_set_memattr(m, memattr); 1128 } 1129 1130 /* 1131 * vm_page_free: 1132 * 1133 * Free a page. 1134 */ 1135 void 1136 vm_page_free(vm_page_t m) 1137 { 1138 1139 m->flags &= ~PG_ZERO; 1140 vm_page_free_toq(m); 1141 } 1142 1143 /* 1144 * vm_page_free_zero: 1145 * 1146 * Free a page to the zerod-pages queue 1147 */ 1148 void 1149 vm_page_free_zero(vm_page_t m) 1150 { 1151 1152 m->flags |= PG_ZERO; 1153 vm_page_free_toq(m); 1154 } 1155 1156 /* 1157 * Unbusy and handle the page queueing for a page from a getpages request that 1158 * was optionally read ahead or behind. 1159 */ 1160 void 1161 vm_page_readahead_finish(vm_page_t m) 1162 { 1163 1164 /* We shouldn't put invalid pages on queues. */ 1165 KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m)); 1166 1167 /* 1168 * Since the page is not the actually needed one, whether it should 1169 * be activated or deactivated is not obvious. Empirical results 1170 * have shown that deactivating the page is usually the best choice, 1171 * unless the page is wanted by another thread. 1172 */ 1173 vm_page_lock(m); 1174 if ((m->busy_lock & VPB_BIT_WAITERS) != 0) 1175 vm_page_activate(m); 1176 else 1177 vm_page_deactivate(m); 1178 vm_page_unlock(m); 1179 vm_page_xunbusy(m); 1180 } 1181 1182 /* 1183 * vm_page_sleep_if_busy: 1184 * 1185 * Sleep and release the page queues lock if the page is busied. 1186 * Returns TRUE if the thread slept. 1187 * 1188 * The given page must be unlocked and object containing it must 1189 * be locked. 1190 */ 1191 int 1192 vm_page_sleep_if_busy(vm_page_t m, const char *msg) 1193 { 1194 vm_object_t obj; 1195 1196 vm_page_lock_assert(m, MA_NOTOWNED); 1197 VM_OBJECT_ASSERT_WLOCKED(m->object); 1198 1199 if (vm_page_busied(m)) { 1200 /* 1201 * The page-specific object must be cached because page 1202 * identity can change during the sleep, causing the 1203 * re-lock of a different object. 1204 * It is assumed that a reference to the object is already 1205 * held by the callers. 1206 */ 1207 obj = m->object; 1208 vm_page_lock(m); 1209 VM_OBJECT_WUNLOCK(obj); 1210 vm_page_busy_sleep(m, msg, false); 1211 VM_OBJECT_WLOCK(obj); 1212 return (TRUE); 1213 } 1214 return (FALSE); 1215 } 1216 1217 /* 1218 * vm_page_dirty_KBI: [ internal use only ] 1219 * 1220 * Set all bits in the page's dirty field. 1221 * 1222 * The object containing the specified page must be locked if the 1223 * call is made from the machine-independent layer. 1224 * 1225 * See vm_page_clear_dirty_mask(). 1226 * 1227 * This function should only be called by vm_page_dirty(). 1228 */ 1229 void 1230 vm_page_dirty_KBI(vm_page_t m) 1231 { 1232 1233 /* Refer to this operation by its public name. */ 1234 KASSERT(m->valid == VM_PAGE_BITS_ALL, 1235 ("vm_page_dirty: page is invalid!")); 1236 m->dirty = VM_PAGE_BITS_ALL; 1237 } 1238 1239 /* 1240 * vm_page_insert: [ internal use only ] 1241 * 1242 * Inserts the given mem entry into the object and object list. 1243 * 1244 * The object must be locked. 1245 */ 1246 int 1247 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1248 { 1249 vm_page_t mpred; 1250 1251 VM_OBJECT_ASSERT_WLOCKED(object); 1252 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1253 return (vm_page_insert_after(m, object, pindex, mpred)); 1254 } 1255 1256 /* 1257 * vm_page_insert_after: 1258 * 1259 * Inserts the page "m" into the specified object at offset "pindex". 1260 * 1261 * The page "mpred" must immediately precede the offset "pindex" within 1262 * the specified object. 1263 * 1264 * The object must be locked. 1265 */ 1266 static int 1267 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1268 vm_page_t mpred) 1269 { 1270 vm_page_t msucc; 1271 1272 VM_OBJECT_ASSERT_WLOCKED(object); 1273 KASSERT(m->object == NULL, 1274 ("vm_page_insert_after: page already inserted")); 1275 if (mpred != NULL) { 1276 KASSERT(mpred->object == object, 1277 ("vm_page_insert_after: object doesn't contain mpred")); 1278 KASSERT(mpred->pindex < pindex, 1279 ("vm_page_insert_after: mpred doesn't precede pindex")); 1280 msucc = TAILQ_NEXT(mpred, listq); 1281 } else 1282 msucc = TAILQ_FIRST(&object->memq); 1283 if (msucc != NULL) 1284 KASSERT(msucc->pindex > pindex, 1285 ("vm_page_insert_after: msucc doesn't succeed pindex")); 1286 1287 /* 1288 * Record the object/offset pair in this page 1289 */ 1290 m->object = object; 1291 m->pindex = pindex; 1292 1293 /* 1294 * Now link into the object's ordered list of backed pages. 1295 */ 1296 if (vm_radix_insert(&object->rtree, m)) { 1297 m->object = NULL; 1298 m->pindex = 0; 1299 return (1); 1300 } 1301 vm_page_insert_radixdone(m, object, mpred); 1302 return (0); 1303 } 1304 1305 /* 1306 * vm_page_insert_radixdone: 1307 * 1308 * Complete page "m" insertion into the specified object after the 1309 * radix trie hooking. 1310 * 1311 * The page "mpred" must precede the offset "m->pindex" within the 1312 * specified object. 1313 * 1314 * The object must be locked. 1315 */ 1316 static void 1317 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1318 { 1319 1320 VM_OBJECT_ASSERT_WLOCKED(object); 1321 KASSERT(object != NULL && m->object == object, 1322 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1323 if (mpred != NULL) { 1324 KASSERT(mpred->object == object, 1325 ("vm_page_insert_after: object doesn't contain mpred")); 1326 KASSERT(mpred->pindex < m->pindex, 1327 ("vm_page_insert_after: mpred doesn't precede pindex")); 1328 } 1329 1330 if (mpred != NULL) 1331 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1332 else 1333 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1334 1335 /* 1336 * Show that the object has one more resident page. 1337 */ 1338 object->resident_page_count++; 1339 1340 /* 1341 * Hold the vnode until the last page is released. 1342 */ 1343 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1344 vhold(object->handle); 1345 1346 /* 1347 * Since we are inserting a new and possibly dirty page, 1348 * update the object's OBJ_MIGHTBEDIRTY flag. 1349 */ 1350 if (pmap_page_is_write_mapped(m)) 1351 vm_object_set_writeable_dirty(object); 1352 } 1353 1354 /* 1355 * vm_page_remove: 1356 * 1357 * Removes the specified page from its containing object, but does not 1358 * invalidate any backing storage. 1359 * 1360 * The object must be locked. The page must be locked if it is managed. 1361 */ 1362 void 1363 vm_page_remove(vm_page_t m) 1364 { 1365 vm_object_t object; 1366 vm_page_t mrem; 1367 1368 if ((m->oflags & VPO_UNMANAGED) == 0) 1369 vm_page_assert_locked(m); 1370 if ((object = m->object) == NULL) 1371 return; 1372 VM_OBJECT_ASSERT_WLOCKED(object); 1373 if (vm_page_xbusied(m)) 1374 vm_page_xunbusy_maybelocked(m); 1375 mrem = vm_radix_remove(&object->rtree, m->pindex); 1376 KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m)); 1377 1378 /* 1379 * Now remove from the object's list of backed pages. 1380 */ 1381 TAILQ_REMOVE(&object->memq, m, listq); 1382 1383 /* 1384 * And show that the object has one fewer resident page. 1385 */ 1386 object->resident_page_count--; 1387 1388 /* 1389 * The vnode may now be recycled. 1390 */ 1391 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1392 vdrop(object->handle); 1393 1394 m->object = NULL; 1395 } 1396 1397 /* 1398 * vm_page_lookup: 1399 * 1400 * Returns the page associated with the object/offset 1401 * pair specified; if none is found, NULL is returned. 1402 * 1403 * The object must be locked. 1404 */ 1405 vm_page_t 1406 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1407 { 1408 1409 VM_OBJECT_ASSERT_LOCKED(object); 1410 return (vm_radix_lookup(&object->rtree, pindex)); 1411 } 1412 1413 /* 1414 * vm_page_find_least: 1415 * 1416 * Returns the page associated with the object with least pindex 1417 * greater than or equal to the parameter pindex, or NULL. 1418 * 1419 * The object must be locked. 1420 */ 1421 vm_page_t 1422 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1423 { 1424 vm_page_t m; 1425 1426 VM_OBJECT_ASSERT_LOCKED(object); 1427 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1428 m = vm_radix_lookup_ge(&object->rtree, pindex); 1429 return (m); 1430 } 1431 1432 /* 1433 * Returns the given page's successor (by pindex) within the object if it is 1434 * resident; if none is found, NULL is returned. 1435 * 1436 * The object must be locked. 1437 */ 1438 vm_page_t 1439 vm_page_next(vm_page_t m) 1440 { 1441 vm_page_t next; 1442 1443 VM_OBJECT_ASSERT_LOCKED(m->object); 1444 if ((next = TAILQ_NEXT(m, listq)) != NULL) { 1445 MPASS(next->object == m->object); 1446 if (next->pindex != m->pindex + 1) 1447 next = NULL; 1448 } 1449 return (next); 1450 } 1451 1452 /* 1453 * Returns the given page's predecessor (by pindex) within the object if it is 1454 * resident; if none is found, NULL is returned. 1455 * 1456 * The object must be locked. 1457 */ 1458 vm_page_t 1459 vm_page_prev(vm_page_t m) 1460 { 1461 vm_page_t prev; 1462 1463 VM_OBJECT_ASSERT_LOCKED(m->object); 1464 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) { 1465 MPASS(prev->object == m->object); 1466 if (prev->pindex != m->pindex - 1) 1467 prev = NULL; 1468 } 1469 return (prev); 1470 } 1471 1472 /* 1473 * Uses the page mnew as a replacement for an existing page at index 1474 * pindex which must be already present in the object. 1475 * 1476 * The existing page must not be on a paging queue. 1477 */ 1478 vm_page_t 1479 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex) 1480 { 1481 vm_page_t mold; 1482 1483 VM_OBJECT_ASSERT_WLOCKED(object); 1484 KASSERT(mnew->object == NULL, 1485 ("vm_page_replace: page already in object")); 1486 1487 /* 1488 * This function mostly follows vm_page_insert() and 1489 * vm_page_remove() without the radix, object count and vnode 1490 * dance. Double check such functions for more comments. 1491 */ 1492 1493 mnew->object = object; 1494 mnew->pindex = pindex; 1495 mold = vm_radix_replace(&object->rtree, mnew); 1496 KASSERT(mold->queue == PQ_NONE, 1497 ("vm_page_replace: mold is on a paging queue")); 1498 1499 /* Keep the resident page list in sorted order. */ 1500 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); 1501 TAILQ_REMOVE(&object->memq, mold, listq); 1502 1503 mold->object = NULL; 1504 vm_page_xunbusy_maybelocked(mold); 1505 1506 /* 1507 * The object's resident_page_count does not change because we have 1508 * swapped one page for another, but OBJ_MIGHTBEDIRTY. 1509 */ 1510 if (pmap_page_is_write_mapped(mnew)) 1511 vm_object_set_writeable_dirty(object); 1512 return (mold); 1513 } 1514 1515 /* 1516 * vm_page_rename: 1517 * 1518 * Move the given memory entry from its 1519 * current object to the specified target object/offset. 1520 * 1521 * Note: swap associated with the page must be invalidated by the move. We 1522 * have to do this for several reasons: (1) we aren't freeing the 1523 * page, (2) we are dirtying the page, (3) the VM system is probably 1524 * moving the page from object A to B, and will then later move 1525 * the backing store from A to B and we can't have a conflict. 1526 * 1527 * Note: we *always* dirty the page. It is necessary both for the 1528 * fact that we moved it, and because we may be invalidating 1529 * swap. 1530 * 1531 * The objects must be locked. 1532 */ 1533 int 1534 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1535 { 1536 vm_page_t mpred; 1537 vm_pindex_t opidx; 1538 1539 VM_OBJECT_ASSERT_WLOCKED(new_object); 1540 1541 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); 1542 KASSERT(mpred == NULL || mpred->pindex != new_pindex, 1543 ("vm_page_rename: pindex already renamed")); 1544 1545 /* 1546 * Create a custom version of vm_page_insert() which does not depend 1547 * by m_prev and can cheat on the implementation aspects of the 1548 * function. 1549 */ 1550 opidx = m->pindex; 1551 m->pindex = new_pindex; 1552 if (vm_radix_insert(&new_object->rtree, m)) { 1553 m->pindex = opidx; 1554 return (1); 1555 } 1556 1557 /* 1558 * The operation cannot fail anymore. The removal must happen before 1559 * the listq iterator is tainted. 1560 */ 1561 m->pindex = opidx; 1562 vm_page_lock(m); 1563 vm_page_remove(m); 1564 1565 /* Return back to the new pindex to complete vm_page_insert(). */ 1566 m->pindex = new_pindex; 1567 m->object = new_object; 1568 vm_page_unlock(m); 1569 vm_page_insert_radixdone(m, new_object, mpred); 1570 vm_page_dirty(m); 1571 return (0); 1572 } 1573 1574 /* 1575 * vm_page_alloc: 1576 * 1577 * Allocate and return a page that is associated with the specified 1578 * object and offset pair. By default, this page is exclusive busied. 1579 * 1580 * The caller must always specify an allocation class. 1581 * 1582 * allocation classes: 1583 * VM_ALLOC_NORMAL normal process request 1584 * VM_ALLOC_SYSTEM system *really* needs a page 1585 * VM_ALLOC_INTERRUPT interrupt time request 1586 * 1587 * optional allocation flags: 1588 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1589 * intends to allocate 1590 * VM_ALLOC_NOBUSY do not exclusive busy the page 1591 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1592 * VM_ALLOC_NOOBJ page is not associated with an object and 1593 * should not be exclusive busy 1594 * VM_ALLOC_SBUSY shared busy the allocated page 1595 * VM_ALLOC_WIRED wire the allocated page 1596 * VM_ALLOC_ZERO prefer a zeroed page 1597 */ 1598 vm_page_t 1599 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1600 { 1601 1602 return (vm_page_alloc_after(object, pindex, req, object != NULL ? 1603 vm_radix_lookup_le(&object->rtree, pindex) : NULL)); 1604 } 1605 1606 vm_page_t 1607 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain, 1608 int req) 1609 { 1610 1611 return (vm_page_alloc_domain_after(object, pindex, domain, req, 1612 object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) : 1613 NULL)); 1614 } 1615 1616 /* 1617 * Allocate a page in the specified object with the given page index. To 1618 * optimize insertion of the page into the object, the caller must also specifiy 1619 * the resident page in the object with largest index smaller than the given 1620 * page index, or NULL if no such page exists. 1621 */ 1622 vm_page_t 1623 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, 1624 int req, vm_page_t mpred) 1625 { 1626 struct vm_domainset_iter di; 1627 vm_page_t m; 1628 int domain; 1629 1630 vm_domainset_iter_page_init(&di, object, &domain, &req); 1631 do { 1632 m = vm_page_alloc_domain_after(object, pindex, domain, req, 1633 mpred); 1634 if (m != NULL) 1635 break; 1636 } while (vm_domainset_iter_page(&di, &domain, &req) == 0); 1637 1638 return (m); 1639 } 1640 1641 vm_page_t 1642 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain, 1643 int req, vm_page_t mpred) 1644 { 1645 vm_page_t m; 1646 int flags, req_class; 1647 u_int free_count; 1648 1649 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1650 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1651 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1652 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1653 ("inconsistent object(%p)/req(%x)", object, req)); 1654 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, 1655 ("Can't sleep and retry object insertion.")); 1656 KASSERT(mpred == NULL || mpred->pindex < pindex, 1657 ("mpred %p doesn't precede pindex 0x%jx", mpred, 1658 (uintmax_t)pindex)); 1659 if (object != NULL) 1660 VM_OBJECT_ASSERT_WLOCKED(object); 1661 1662 req_class = req & VM_ALLOC_CLASS_MASK; 1663 1664 /* 1665 * The page daemon is allowed to dig deeper into the free page list. 1666 */ 1667 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1668 req_class = VM_ALLOC_SYSTEM; 1669 1670 /* 1671 * Allocate a page if the number of free pages exceeds the minimum 1672 * for the request class. 1673 */ 1674 again: 1675 m = NULL; 1676 mtx_lock(&vm_page_queue_free_mtx); 1677 if (vm_cnt.v_free_count > vm_cnt.v_free_reserved || 1678 (req_class == VM_ALLOC_SYSTEM && 1679 vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) || 1680 (req_class == VM_ALLOC_INTERRUPT && 1681 vm_cnt.v_free_count > 0)) { 1682 /* 1683 * Can we allocate the page from a reservation? 1684 */ 1685 #if VM_NRESERVLEVEL > 0 1686 if (object == NULL || (object->flags & (OBJ_COLORED | 1687 OBJ_FICTITIOUS)) != OBJ_COLORED || (m = 1688 vm_reserv_alloc_page(object, pindex, domain, 1689 mpred)) == NULL) 1690 #endif 1691 { 1692 /* 1693 * If not, allocate it from the free page queues. 1694 */ 1695 m = vm_phys_alloc_pages(domain, object != NULL ? 1696 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 1697 #if VM_NRESERVLEVEL > 0 1698 if (m == NULL && vm_reserv_reclaim_inactive(domain)) { 1699 m = vm_phys_alloc_pages(domain, 1700 object != NULL ? 1701 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 1702 0); 1703 } 1704 #endif 1705 } 1706 } 1707 if (m == NULL) { 1708 /* 1709 * Not allocatable, give up. 1710 */ 1711 if (vm_page_alloc_fail(object, req)) 1712 goto again; 1713 return (NULL); 1714 } 1715 1716 /* 1717 * At this point we had better have found a good page. 1718 */ 1719 KASSERT(m != NULL, ("missing page")); 1720 free_count = vm_phys_freecnt_adj(m, -1); 1721 mtx_unlock(&vm_page_queue_free_mtx); 1722 vm_page_alloc_check(m); 1723 1724 /* 1725 * Initialize the page. Only the PG_ZERO flag is inherited. 1726 */ 1727 flags = 0; 1728 if ((req & VM_ALLOC_ZERO) != 0) 1729 flags = PG_ZERO; 1730 flags &= m->flags; 1731 if ((req & VM_ALLOC_NODUMP) != 0) 1732 flags |= PG_NODUMP; 1733 m->flags = flags; 1734 m->aflags = 0; 1735 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 1736 VPO_UNMANAGED : 0; 1737 m->busy_lock = VPB_UNBUSIED; 1738 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 1739 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1740 if ((req & VM_ALLOC_SBUSY) != 0) 1741 m->busy_lock = VPB_SHARERS_WORD(1); 1742 if (req & VM_ALLOC_WIRED) { 1743 /* 1744 * The page lock is not required for wiring a page until that 1745 * page is inserted into the object. 1746 */ 1747 atomic_add_int(&vm_cnt.v_wire_count, 1); 1748 m->wire_count = 1; 1749 } 1750 m->act_count = 0; 1751 1752 if (object != NULL) { 1753 if (vm_page_insert_after(m, object, pindex, mpred)) { 1754 pagedaemon_wakeup(); 1755 if (req & VM_ALLOC_WIRED) { 1756 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 1757 m->wire_count = 0; 1758 } 1759 KASSERT(m->object == NULL, ("page %p has object", m)); 1760 m->oflags = VPO_UNMANAGED; 1761 m->busy_lock = VPB_UNBUSIED; 1762 /* Don't change PG_ZERO. */ 1763 vm_page_free_toq(m); 1764 if (req & VM_ALLOC_WAITFAIL) { 1765 VM_OBJECT_WUNLOCK(object); 1766 vm_radix_wait(); 1767 VM_OBJECT_WLOCK(object); 1768 } 1769 return (NULL); 1770 } 1771 1772 /* Ignore device objects; the pager sets "memattr" for them. */ 1773 if (object->memattr != VM_MEMATTR_DEFAULT && 1774 (object->flags & OBJ_FICTITIOUS) == 0) 1775 pmap_page_set_memattr(m, object->memattr); 1776 } else 1777 m->pindex = pindex; 1778 1779 /* 1780 * Don't wakeup too often - wakeup the pageout daemon when 1781 * we would be nearly out of memory. 1782 */ 1783 if (vm_paging_needed(free_count)) 1784 pagedaemon_wakeup(); 1785 1786 return (m); 1787 } 1788 1789 /* 1790 * vm_page_alloc_contig: 1791 * 1792 * Allocate a contiguous set of physical pages of the given size "npages" 1793 * from the free lists. All of the physical pages must be at or above 1794 * the given physical address "low" and below the given physical address 1795 * "high". The given value "alignment" determines the alignment of the 1796 * first physical page in the set. If the given value "boundary" is 1797 * non-zero, then the set of physical pages cannot cross any physical 1798 * address boundary that is a multiple of that value. Both "alignment" 1799 * and "boundary" must be a power of two. 1800 * 1801 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 1802 * then the memory attribute setting for the physical pages is configured 1803 * to the object's memory attribute setting. Otherwise, the memory 1804 * attribute setting for the physical pages is configured to "memattr", 1805 * overriding the object's memory attribute setting. However, if the 1806 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 1807 * memory attribute setting for the physical pages cannot be configured 1808 * to VM_MEMATTR_DEFAULT. 1809 * 1810 * The specified object may not contain fictitious pages. 1811 * 1812 * The caller must always specify an allocation class. 1813 * 1814 * allocation classes: 1815 * VM_ALLOC_NORMAL normal process request 1816 * VM_ALLOC_SYSTEM system *really* needs a page 1817 * VM_ALLOC_INTERRUPT interrupt time request 1818 * 1819 * optional allocation flags: 1820 * VM_ALLOC_NOBUSY do not exclusive busy the page 1821 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1822 * VM_ALLOC_NOOBJ page is not associated with an object and 1823 * should not be exclusive busy 1824 * VM_ALLOC_SBUSY shared busy the allocated page 1825 * VM_ALLOC_WIRED wire the allocated page 1826 * VM_ALLOC_ZERO prefer a zeroed page 1827 */ 1828 vm_page_t 1829 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 1830 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1831 vm_paddr_t boundary, vm_memattr_t memattr) 1832 { 1833 struct vm_domainset_iter di; 1834 vm_page_t m; 1835 int domain; 1836 1837 vm_domainset_iter_page_init(&di, object, &domain, &req); 1838 do { 1839 m = vm_page_alloc_contig_domain(object, pindex, domain, req, 1840 npages, low, high, alignment, boundary, memattr); 1841 if (m != NULL) 1842 break; 1843 } while (vm_domainset_iter_page(&di, &domain, &req) == 0); 1844 1845 return (m); 1846 } 1847 1848 vm_page_t 1849 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, 1850 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1851 vm_paddr_t boundary, vm_memattr_t memattr) 1852 { 1853 vm_page_t m, m_ret, mpred; 1854 u_int busy_lock, flags, oflags; 1855 int req_class; 1856 1857 mpred = NULL; /* XXX: pacify gcc */ 1858 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1859 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1860 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1861 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1862 ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object, 1863 req)); 1864 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, 1865 ("Can't sleep and retry object insertion.")); 1866 if (object != NULL) { 1867 VM_OBJECT_ASSERT_WLOCKED(object); 1868 KASSERT((object->flags & OBJ_FICTITIOUS) == 0, 1869 ("vm_page_alloc_contig: object %p has fictitious pages", 1870 object)); 1871 } 1872 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 1873 req_class = req & VM_ALLOC_CLASS_MASK; 1874 1875 /* 1876 * The page daemon is allowed to dig deeper into the free page list. 1877 */ 1878 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1879 req_class = VM_ALLOC_SYSTEM; 1880 1881 if (object != NULL) { 1882 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1883 KASSERT(mpred == NULL || mpred->pindex != pindex, 1884 ("vm_page_alloc_contig: pindex already allocated")); 1885 } 1886 1887 /* 1888 * Can we allocate the pages without the number of free pages falling 1889 * below the lower bound for the allocation class? 1890 */ 1891 again: 1892 m_ret = NULL; 1893 mtx_lock(&vm_page_queue_free_mtx); 1894 if (vm_cnt.v_free_count >= npages + vm_cnt.v_free_reserved || 1895 (req_class == VM_ALLOC_SYSTEM && 1896 vm_cnt.v_free_count >= npages + vm_cnt.v_interrupt_free_min) || 1897 (req_class == VM_ALLOC_INTERRUPT && 1898 vm_cnt.v_free_count >= npages)) { 1899 /* 1900 * Can we allocate the pages from a reservation? 1901 */ 1902 #if VM_NRESERVLEVEL > 0 1903 retry: 1904 if (object == NULL || (object->flags & OBJ_COLORED) == 0 || 1905 (m_ret = vm_reserv_alloc_contig(object, pindex, domain, 1906 npages, low, high, alignment, boundary, mpred)) == NULL) 1907 #endif 1908 /* 1909 * If not, allocate them from the free page queues. 1910 */ 1911 m_ret = vm_phys_alloc_contig(domain, npages, low, high, 1912 alignment, boundary); 1913 #if VM_NRESERVLEVEL > 0 1914 if (m_ret == NULL && vm_reserv_reclaim_contig( 1915 domain, npages, low, high, alignment, boundary)) 1916 goto retry; 1917 #endif 1918 } 1919 if (m_ret == NULL) { 1920 if (vm_page_alloc_fail(object, req)) 1921 goto again; 1922 return (NULL); 1923 } 1924 vm_phys_freecnt_adj(m_ret, -npages); 1925 mtx_unlock(&vm_page_queue_free_mtx); 1926 for (m = m_ret; m < &m_ret[npages]; m++) 1927 vm_page_alloc_check(m); 1928 1929 /* 1930 * Initialize the pages. Only the PG_ZERO flag is inherited. 1931 */ 1932 flags = 0; 1933 if ((req & VM_ALLOC_ZERO) != 0) 1934 flags = PG_ZERO; 1935 if ((req & VM_ALLOC_NODUMP) != 0) 1936 flags |= PG_NODUMP; 1937 oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 1938 VPO_UNMANAGED : 0; 1939 busy_lock = VPB_UNBUSIED; 1940 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 1941 busy_lock = VPB_SINGLE_EXCLUSIVER; 1942 if ((req & VM_ALLOC_SBUSY) != 0) 1943 busy_lock = VPB_SHARERS_WORD(1); 1944 if ((req & VM_ALLOC_WIRED) != 0) 1945 atomic_add_int(&vm_cnt.v_wire_count, npages); 1946 if (object != NULL) { 1947 if (object->memattr != VM_MEMATTR_DEFAULT && 1948 memattr == VM_MEMATTR_DEFAULT) 1949 memattr = object->memattr; 1950 } 1951 for (m = m_ret; m < &m_ret[npages]; m++) { 1952 m->aflags = 0; 1953 m->flags = (m->flags | PG_NODUMP) & flags; 1954 m->busy_lock = busy_lock; 1955 if ((req & VM_ALLOC_WIRED) != 0) 1956 m->wire_count = 1; 1957 m->act_count = 0; 1958 m->oflags = oflags; 1959 if (object != NULL) { 1960 if (vm_page_insert_after(m, object, pindex, mpred)) { 1961 pagedaemon_wakeup(); 1962 if ((req & VM_ALLOC_WIRED) != 0) 1963 atomic_subtract_int( 1964 &vm_cnt.v_wire_count, npages); 1965 KASSERT(m->object == NULL, 1966 ("page %p has object", m)); 1967 mpred = m; 1968 for (m = m_ret; m < &m_ret[npages]; m++) { 1969 if (m <= mpred && 1970 (req & VM_ALLOC_WIRED) != 0) 1971 m->wire_count = 0; 1972 m->oflags = VPO_UNMANAGED; 1973 m->busy_lock = VPB_UNBUSIED; 1974 /* Don't change PG_ZERO. */ 1975 vm_page_free_toq(m); 1976 } 1977 if (req & VM_ALLOC_WAITFAIL) { 1978 VM_OBJECT_WUNLOCK(object); 1979 vm_radix_wait(); 1980 VM_OBJECT_WLOCK(object); 1981 } 1982 return (NULL); 1983 } 1984 mpred = m; 1985 } else 1986 m->pindex = pindex; 1987 if (memattr != VM_MEMATTR_DEFAULT) 1988 pmap_page_set_memattr(m, memattr); 1989 pindex++; 1990 } 1991 if (vm_paging_needed(vm_cnt.v_free_count)) 1992 pagedaemon_wakeup(); 1993 return (m_ret); 1994 } 1995 1996 /* 1997 * Check a page that has been freshly dequeued from a freelist. 1998 */ 1999 static void 2000 vm_page_alloc_check(vm_page_t m) 2001 { 2002 2003 KASSERT(m->object == NULL, ("page %p has object", m)); 2004 KASSERT(m->queue == PQ_NONE, 2005 ("page %p has unexpected queue %d", m, m->queue)); 2006 KASSERT(m->wire_count == 0, ("page %p is wired", m)); 2007 KASSERT(m->hold_count == 0, ("page %p is held", m)); 2008 KASSERT(!vm_page_busied(m), ("page %p is busy", m)); 2009 KASSERT(m->dirty == 0, ("page %p is dirty", m)); 2010 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 2011 ("page %p has unexpected memattr %d", 2012 m, pmap_page_get_memattr(m))); 2013 KASSERT(m->valid == 0, ("free page %p is valid", m)); 2014 } 2015 2016 /* 2017 * vm_page_alloc_freelist: 2018 * 2019 * Allocate a physical page from the specified free page list. 2020 * 2021 * The caller must always specify an allocation class. 2022 * 2023 * allocation classes: 2024 * VM_ALLOC_NORMAL normal process request 2025 * VM_ALLOC_SYSTEM system *really* needs a page 2026 * VM_ALLOC_INTERRUPT interrupt time request 2027 * 2028 * optional allocation flags: 2029 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 2030 * intends to allocate 2031 * VM_ALLOC_WIRED wire the allocated page 2032 * VM_ALLOC_ZERO prefer a zeroed page 2033 */ 2034 vm_page_t 2035 vm_page_alloc_freelist(int freelist, int req) 2036 { 2037 struct vm_domainset_iter di; 2038 vm_page_t m; 2039 int domain; 2040 2041 vm_domainset_iter_page_init(&di, kernel_object, &domain, &req); 2042 do { 2043 m = vm_page_alloc_freelist_domain(domain, freelist, req); 2044 if (m != NULL) 2045 break; 2046 } while (vm_domainset_iter_page(&di, &domain, &req) == 0); 2047 2048 return (m); 2049 } 2050 2051 vm_page_t 2052 vm_page_alloc_freelist_domain(int domain, int freelist, int req) 2053 { 2054 vm_page_t m; 2055 u_int flags, free_count; 2056 int req_class; 2057 2058 req_class = req & VM_ALLOC_CLASS_MASK; 2059 2060 /* 2061 * The page daemon is allowed to dig deeper into the free page list. 2062 */ 2063 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2064 req_class = VM_ALLOC_SYSTEM; 2065 2066 /* 2067 * Do not allocate reserved pages unless the req has asked for it. 2068 */ 2069 again: 2070 mtx_lock(&vm_page_queue_free_mtx); 2071 if (vm_cnt.v_free_count > vm_cnt.v_free_reserved || 2072 (req_class == VM_ALLOC_SYSTEM && 2073 vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) || 2074 (req_class == VM_ALLOC_INTERRUPT && 2075 vm_cnt.v_free_count > 0)) 2076 m = vm_phys_alloc_freelist_pages(domain, freelist, 2077 VM_FREEPOOL_DIRECT, 0); 2078 if (m == NULL) { 2079 if (vm_page_alloc_fail(NULL, req)) 2080 goto again; 2081 return (NULL); 2082 } 2083 free_count = vm_phys_freecnt_adj(m, -1); 2084 mtx_unlock(&vm_page_queue_free_mtx); 2085 vm_page_alloc_check(m); 2086 2087 /* 2088 * Initialize the page. Only the PG_ZERO flag is inherited. 2089 */ 2090 m->aflags = 0; 2091 flags = 0; 2092 if ((req & VM_ALLOC_ZERO) != 0) 2093 flags = PG_ZERO; 2094 m->flags &= flags; 2095 if ((req & VM_ALLOC_WIRED) != 0) { 2096 /* 2097 * The page lock is not required for wiring a page that does 2098 * not belong to an object. 2099 */ 2100 atomic_add_int(&vm_cnt.v_wire_count, 1); 2101 m->wire_count = 1; 2102 } 2103 /* Unmanaged pages don't use "act_count". */ 2104 m->oflags = VPO_UNMANAGED; 2105 if (vm_paging_needed(free_count)) 2106 pagedaemon_wakeup(); 2107 return (m); 2108 } 2109 2110 #define VPSC_ANY 0 /* No restrictions. */ 2111 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ 2112 #define VPSC_NOSUPER 2 /* Skip superpages. */ 2113 2114 /* 2115 * vm_page_scan_contig: 2116 * 2117 * Scan vm_page_array[] between the specified entries "m_start" and 2118 * "m_end" for a run of contiguous physical pages that satisfy the 2119 * specified conditions, and return the lowest page in the run. The 2120 * specified "alignment" determines the alignment of the lowest physical 2121 * page in the run. If the specified "boundary" is non-zero, then the 2122 * run of physical pages cannot span a physical address that is a 2123 * multiple of "boundary". 2124 * 2125 * "m_end" is never dereferenced, so it need not point to a vm_page 2126 * structure within vm_page_array[]. 2127 * 2128 * "npages" must be greater than zero. "m_start" and "m_end" must not 2129 * span a hole (or discontiguity) in the physical address space. Both 2130 * "alignment" and "boundary" must be a power of two. 2131 */ 2132 vm_page_t 2133 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, 2134 u_long alignment, vm_paddr_t boundary, int options) 2135 { 2136 struct mtx *m_mtx; 2137 vm_object_t object; 2138 vm_paddr_t pa; 2139 vm_page_t m, m_run; 2140 #if VM_NRESERVLEVEL > 0 2141 int level; 2142 #endif 2143 int m_inc, order, run_ext, run_len; 2144 2145 KASSERT(npages > 0, ("npages is 0")); 2146 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2147 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2148 m_run = NULL; 2149 run_len = 0; 2150 m_mtx = NULL; 2151 for (m = m_start; m < m_end && run_len < npages; m += m_inc) { 2152 KASSERT((m->flags & PG_MARKER) == 0, 2153 ("page %p is PG_MARKER", m)); 2154 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->wire_count == 1, 2155 ("fictitious page %p has invalid wire count", m)); 2156 2157 /* 2158 * If the current page would be the start of a run, check its 2159 * physical address against the end, alignment, and boundary 2160 * conditions. If it doesn't satisfy these conditions, either 2161 * terminate the scan or advance to the next page that 2162 * satisfies the failed condition. 2163 */ 2164 if (run_len == 0) { 2165 KASSERT(m_run == NULL, ("m_run != NULL")); 2166 if (m + npages > m_end) 2167 break; 2168 pa = VM_PAGE_TO_PHYS(m); 2169 if ((pa & (alignment - 1)) != 0) { 2170 m_inc = atop(roundup2(pa, alignment) - pa); 2171 continue; 2172 } 2173 if (rounddown2(pa ^ (pa + ptoa(npages) - 1), 2174 boundary) != 0) { 2175 m_inc = atop(roundup2(pa, boundary) - pa); 2176 continue; 2177 } 2178 } else 2179 KASSERT(m_run != NULL, ("m_run == NULL")); 2180 2181 vm_page_change_lock(m, &m_mtx); 2182 m_inc = 1; 2183 retry: 2184 if (m->wire_count != 0 || m->hold_count != 0) 2185 run_ext = 0; 2186 #if VM_NRESERVLEVEL > 0 2187 else if ((level = vm_reserv_level(m)) >= 0 && 2188 (options & VPSC_NORESERV) != 0) { 2189 run_ext = 0; 2190 /* Advance to the end of the reservation. */ 2191 pa = VM_PAGE_TO_PHYS(m); 2192 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - 2193 pa); 2194 } 2195 #endif 2196 else if ((object = m->object) != NULL) { 2197 /* 2198 * The page is considered eligible for relocation if 2199 * and only if it could be laundered or reclaimed by 2200 * the page daemon. 2201 */ 2202 if (!VM_OBJECT_TRYRLOCK(object)) { 2203 mtx_unlock(m_mtx); 2204 VM_OBJECT_RLOCK(object); 2205 mtx_lock(m_mtx); 2206 if (m->object != object) { 2207 /* 2208 * The page may have been freed. 2209 */ 2210 VM_OBJECT_RUNLOCK(object); 2211 goto retry; 2212 } else if (m->wire_count != 0 || 2213 m->hold_count != 0) { 2214 run_ext = 0; 2215 goto unlock; 2216 } 2217 } 2218 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 2219 ("page %p is PG_UNHOLDFREE", m)); 2220 /* Don't care: PG_NODUMP, PG_ZERO. */ 2221 if (object->type != OBJT_DEFAULT && 2222 object->type != OBJT_SWAP && 2223 object->type != OBJT_VNODE) { 2224 run_ext = 0; 2225 #if VM_NRESERVLEVEL > 0 2226 } else if ((options & VPSC_NOSUPER) != 0 && 2227 (level = vm_reserv_level_iffullpop(m)) >= 0) { 2228 run_ext = 0; 2229 /* Advance to the end of the superpage. */ 2230 pa = VM_PAGE_TO_PHYS(m); 2231 m_inc = atop(roundup2(pa + 1, 2232 vm_reserv_size(level)) - pa); 2233 #endif 2234 } else if (object->memattr == VM_MEMATTR_DEFAULT && 2235 m->queue != PQ_NONE && !vm_page_busied(m)) { 2236 /* 2237 * The page is allocated but eligible for 2238 * relocation. Extend the current run by one 2239 * page. 2240 */ 2241 KASSERT(pmap_page_get_memattr(m) == 2242 VM_MEMATTR_DEFAULT, 2243 ("page %p has an unexpected memattr", m)); 2244 KASSERT((m->oflags & (VPO_SWAPINPROG | 2245 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2246 ("page %p has unexpected oflags", m)); 2247 /* Don't care: VPO_NOSYNC. */ 2248 run_ext = 1; 2249 } else 2250 run_ext = 0; 2251 unlock: 2252 VM_OBJECT_RUNLOCK(object); 2253 #if VM_NRESERVLEVEL > 0 2254 } else if (level >= 0) { 2255 /* 2256 * The page is reserved but not yet allocated. In 2257 * other words, it is still free. Extend the current 2258 * run by one page. 2259 */ 2260 run_ext = 1; 2261 #endif 2262 } else if ((order = m->order) < VM_NFREEORDER) { 2263 /* 2264 * The page is enqueued in the physical memory 2265 * allocator's free page queues. Moreover, it is the 2266 * first page in a power-of-two-sized run of 2267 * contiguous free pages. Add these pages to the end 2268 * of the current run, and jump ahead. 2269 */ 2270 run_ext = 1 << order; 2271 m_inc = 1 << order; 2272 } else { 2273 /* 2274 * Skip the page for one of the following reasons: (1) 2275 * It is enqueued in the physical memory allocator's 2276 * free page queues. However, it is not the first 2277 * page in a run of contiguous free pages. (This case 2278 * rarely occurs because the scan is performed in 2279 * ascending order.) (2) It is not reserved, and it is 2280 * transitioning from free to allocated. (Conversely, 2281 * the transition from allocated to free for managed 2282 * pages is blocked by the page lock.) (3) It is 2283 * allocated but not contained by an object and not 2284 * wired, e.g., allocated by Xen's balloon driver. 2285 */ 2286 run_ext = 0; 2287 } 2288 2289 /* 2290 * Extend or reset the current run of pages. 2291 */ 2292 if (run_ext > 0) { 2293 if (run_len == 0) 2294 m_run = m; 2295 run_len += run_ext; 2296 } else { 2297 if (run_len > 0) { 2298 m_run = NULL; 2299 run_len = 0; 2300 } 2301 } 2302 } 2303 if (m_mtx != NULL) 2304 mtx_unlock(m_mtx); 2305 if (run_len >= npages) 2306 return (m_run); 2307 return (NULL); 2308 } 2309 2310 /* 2311 * vm_page_reclaim_run: 2312 * 2313 * Try to relocate each of the allocated virtual pages within the 2314 * specified run of physical pages to a new physical address. Free the 2315 * physical pages underlying the relocated virtual pages. A virtual page 2316 * is relocatable if and only if it could be laundered or reclaimed by 2317 * the page daemon. Whenever possible, a virtual page is relocated to a 2318 * physical address above "high". 2319 * 2320 * Returns 0 if every physical page within the run was already free or 2321 * just freed by a successful relocation. Otherwise, returns a non-zero 2322 * value indicating why the last attempt to relocate a virtual page was 2323 * unsuccessful. 2324 * 2325 * "req_class" must be an allocation class. 2326 */ 2327 static int 2328 vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run, 2329 vm_paddr_t high) 2330 { 2331 struct mtx *m_mtx; 2332 struct spglist free; 2333 vm_object_t object; 2334 vm_paddr_t pa; 2335 vm_page_t m, m_end, m_new; 2336 int error, order, req; 2337 2338 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, 2339 ("req_class is not an allocation class")); 2340 SLIST_INIT(&free); 2341 error = 0; 2342 m = m_run; 2343 m_end = m_run + npages; 2344 m_mtx = NULL; 2345 for (; error == 0 && m < m_end; m++) { 2346 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, 2347 ("page %p is PG_FICTITIOUS or PG_MARKER", m)); 2348 2349 /* 2350 * Avoid releasing and reacquiring the same page lock. 2351 */ 2352 vm_page_change_lock(m, &m_mtx); 2353 retry: 2354 if (m->wire_count != 0 || m->hold_count != 0) 2355 error = EBUSY; 2356 else if ((object = m->object) != NULL) { 2357 /* 2358 * The page is relocated if and only if it could be 2359 * laundered or reclaimed by the page daemon. 2360 */ 2361 if (!VM_OBJECT_TRYWLOCK(object)) { 2362 mtx_unlock(m_mtx); 2363 VM_OBJECT_WLOCK(object); 2364 mtx_lock(m_mtx); 2365 if (m->object != object) { 2366 /* 2367 * The page may have been freed. 2368 */ 2369 VM_OBJECT_WUNLOCK(object); 2370 goto retry; 2371 } else if (m->wire_count != 0 || 2372 m->hold_count != 0) { 2373 error = EBUSY; 2374 goto unlock; 2375 } 2376 } 2377 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 2378 ("page %p is PG_UNHOLDFREE", m)); 2379 /* Don't care: PG_NODUMP, PG_ZERO. */ 2380 if (object->type != OBJT_DEFAULT && 2381 object->type != OBJT_SWAP && 2382 object->type != OBJT_VNODE) 2383 error = EINVAL; 2384 else if (object->memattr != VM_MEMATTR_DEFAULT) 2385 error = EINVAL; 2386 else if (m->queue != PQ_NONE && !vm_page_busied(m)) { 2387 KASSERT(pmap_page_get_memattr(m) == 2388 VM_MEMATTR_DEFAULT, 2389 ("page %p has an unexpected memattr", m)); 2390 KASSERT((m->oflags & (VPO_SWAPINPROG | 2391 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2392 ("page %p has unexpected oflags", m)); 2393 /* Don't care: VPO_NOSYNC. */ 2394 if (m->valid != 0) { 2395 /* 2396 * First, try to allocate a new page 2397 * that is above "high". Failing 2398 * that, try to allocate a new page 2399 * that is below "m_run". Allocate 2400 * the new page between the end of 2401 * "m_run" and "high" only as a last 2402 * resort. 2403 */ 2404 req = req_class | VM_ALLOC_NOOBJ; 2405 if ((m->flags & PG_NODUMP) != 0) 2406 req |= VM_ALLOC_NODUMP; 2407 if (trunc_page(high) != 2408 ~(vm_paddr_t)PAGE_MASK) { 2409 m_new = vm_page_alloc_contig( 2410 NULL, 0, req, 1, 2411 round_page(high), 2412 ~(vm_paddr_t)0, 2413 PAGE_SIZE, 0, 2414 VM_MEMATTR_DEFAULT); 2415 } else 2416 m_new = NULL; 2417 if (m_new == NULL) { 2418 pa = VM_PAGE_TO_PHYS(m_run); 2419 m_new = vm_page_alloc_contig( 2420 NULL, 0, req, 1, 2421 0, pa - 1, PAGE_SIZE, 0, 2422 VM_MEMATTR_DEFAULT); 2423 } 2424 if (m_new == NULL) { 2425 pa += ptoa(npages); 2426 m_new = vm_page_alloc_contig( 2427 NULL, 0, req, 1, 2428 pa, high, PAGE_SIZE, 0, 2429 VM_MEMATTR_DEFAULT); 2430 } 2431 if (m_new == NULL) { 2432 error = ENOMEM; 2433 goto unlock; 2434 } 2435 KASSERT(m_new->wire_count == 0, 2436 ("page %p is wired", m)); 2437 2438 /* 2439 * Replace "m" with the new page. For 2440 * vm_page_replace(), "m" must be busy 2441 * and dequeued. Finally, change "m" 2442 * as if vm_page_free() was called. 2443 */ 2444 if (object->ref_count != 0) 2445 pmap_remove_all(m); 2446 m_new->aflags = m->aflags; 2447 KASSERT(m_new->oflags == VPO_UNMANAGED, 2448 ("page %p is managed", m)); 2449 m_new->oflags = m->oflags & VPO_NOSYNC; 2450 pmap_copy_page(m, m_new); 2451 m_new->valid = m->valid; 2452 m_new->dirty = m->dirty; 2453 m->flags &= ~PG_ZERO; 2454 vm_page_xbusy(m); 2455 vm_page_remque(m); 2456 vm_page_replace_checked(m_new, object, 2457 m->pindex, m); 2458 m->valid = 0; 2459 vm_page_undirty(m); 2460 2461 /* 2462 * The new page must be deactivated 2463 * before the object is unlocked. 2464 */ 2465 vm_page_change_lock(m_new, &m_mtx); 2466 vm_page_deactivate(m_new); 2467 } else { 2468 m->flags &= ~PG_ZERO; 2469 vm_page_remque(m); 2470 vm_page_remove(m); 2471 KASSERT(m->dirty == 0, 2472 ("page %p is dirty", m)); 2473 } 2474 SLIST_INSERT_HEAD(&free, m, plinks.s.ss); 2475 } else 2476 error = EBUSY; 2477 unlock: 2478 VM_OBJECT_WUNLOCK(object); 2479 } else { 2480 mtx_lock(&vm_page_queue_free_mtx); 2481 order = m->order; 2482 if (order < VM_NFREEORDER) { 2483 /* 2484 * The page is enqueued in the physical memory 2485 * allocator's free page queues. Moreover, it 2486 * is the first page in a power-of-two-sized 2487 * run of contiguous free pages. Jump ahead 2488 * to the last page within that run, and 2489 * continue from there. 2490 */ 2491 m += (1 << order) - 1; 2492 } 2493 #if VM_NRESERVLEVEL > 0 2494 else if (vm_reserv_is_page_free(m)) 2495 order = 0; 2496 #endif 2497 mtx_unlock(&vm_page_queue_free_mtx); 2498 if (order == VM_NFREEORDER) 2499 error = EINVAL; 2500 } 2501 } 2502 if (m_mtx != NULL) 2503 mtx_unlock(m_mtx); 2504 if ((m = SLIST_FIRST(&free)) != NULL) { 2505 mtx_lock(&vm_page_queue_free_mtx); 2506 do { 2507 SLIST_REMOVE_HEAD(&free, plinks.s.ss); 2508 vm_page_free_phys(m); 2509 } while ((m = SLIST_FIRST(&free)) != NULL); 2510 vm_page_free_wakeup(); 2511 mtx_unlock(&vm_page_queue_free_mtx); 2512 } 2513 return (error); 2514 } 2515 2516 #define NRUNS 16 2517 2518 CTASSERT(powerof2(NRUNS)); 2519 2520 #define RUN_INDEX(count) ((count) & (NRUNS - 1)) 2521 2522 #define MIN_RECLAIM 8 2523 2524 /* 2525 * vm_page_reclaim_contig: 2526 * 2527 * Reclaim allocated, contiguous physical memory satisfying the specified 2528 * conditions by relocating the virtual pages using that physical memory. 2529 * Returns true if reclamation is successful and false otherwise. Since 2530 * relocation requires the allocation of physical pages, reclamation may 2531 * fail due to a shortage of free pages. When reclamation fails, callers 2532 * are expected to perform VM_WAIT before retrying a failed allocation 2533 * operation, e.g., vm_page_alloc_contig(). 2534 * 2535 * The caller must always specify an allocation class through "req". 2536 * 2537 * allocation classes: 2538 * VM_ALLOC_NORMAL normal process request 2539 * VM_ALLOC_SYSTEM system *really* needs a page 2540 * VM_ALLOC_INTERRUPT interrupt time request 2541 * 2542 * The optional allocation flags are ignored. 2543 * 2544 * "npages" must be greater than zero. Both "alignment" and "boundary" 2545 * must be a power of two. 2546 */ 2547 bool 2548 vm_page_reclaim_contig_domain(int domain, int req, u_long npages, 2549 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 2550 { 2551 vm_paddr_t curr_low; 2552 vm_page_t m_run, m_runs[NRUNS]; 2553 u_long count, reclaimed; 2554 int error, i, options, req_class; 2555 2556 KASSERT(npages > 0, ("npages is 0")); 2557 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2558 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2559 req_class = req & VM_ALLOC_CLASS_MASK; 2560 2561 /* 2562 * The page daemon is allowed to dig deeper into the free page list. 2563 */ 2564 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2565 req_class = VM_ALLOC_SYSTEM; 2566 2567 /* 2568 * Return if the number of free pages cannot satisfy the requested 2569 * allocation. 2570 */ 2571 count = vm_cnt.v_free_count; 2572 if (count < npages + vm_cnt.v_free_reserved || (count < npages + 2573 vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || 2574 (count < npages && req_class == VM_ALLOC_INTERRUPT)) 2575 return (false); 2576 2577 /* 2578 * Scan up to three times, relaxing the restrictions ("options") on 2579 * the reclamation of reservations and superpages each time. 2580 */ 2581 for (options = VPSC_NORESERV;;) { 2582 /* 2583 * Find the highest runs that satisfy the given constraints 2584 * and restrictions, and record them in "m_runs". 2585 */ 2586 curr_low = low; 2587 count = 0; 2588 for (;;) { 2589 m_run = vm_phys_scan_contig(domain, npages, curr_low, 2590 high, alignment, boundary, options); 2591 if (m_run == NULL) 2592 break; 2593 curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages); 2594 m_runs[RUN_INDEX(count)] = m_run; 2595 count++; 2596 } 2597 2598 /* 2599 * Reclaim the highest runs in LIFO (descending) order until 2600 * the number of reclaimed pages, "reclaimed", is at least 2601 * MIN_RECLAIM. Reset "reclaimed" each time because each 2602 * reclamation is idempotent, and runs will (likely) recur 2603 * from one scan to the next as restrictions are relaxed. 2604 */ 2605 reclaimed = 0; 2606 for (i = 0; count > 0 && i < NRUNS; i++) { 2607 count--; 2608 m_run = m_runs[RUN_INDEX(count)]; 2609 error = vm_page_reclaim_run(req_class, npages, m_run, 2610 high); 2611 if (error == 0) { 2612 reclaimed += npages; 2613 if (reclaimed >= MIN_RECLAIM) 2614 return (true); 2615 } 2616 } 2617 2618 /* 2619 * Either relax the restrictions on the next scan or return if 2620 * the last scan had no restrictions. 2621 */ 2622 if (options == VPSC_NORESERV) 2623 options = VPSC_NOSUPER; 2624 else if (options == VPSC_NOSUPER) 2625 options = VPSC_ANY; 2626 else if (options == VPSC_ANY) 2627 return (reclaimed != 0); 2628 } 2629 } 2630 2631 bool 2632 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, 2633 u_long alignment, vm_paddr_t boundary) 2634 { 2635 struct vm_domainset_iter di; 2636 int domain; 2637 bool ret; 2638 2639 vm_domainset_iter_page_init(&di, kernel_object, &domain, &req); 2640 do { 2641 ret = vm_page_reclaim_contig_domain(domain, req, npages, low, 2642 high, alignment, boundary); 2643 if (ret) 2644 break; 2645 } while (vm_domainset_iter_page(&di, &domain, &req) == 0); 2646 2647 return (ret); 2648 } 2649 2650 2651 /* 2652 * vm_wait: (also see VM_WAIT macro) 2653 * 2654 * Sleep until free pages are available for allocation. 2655 * - Called in various places before memory allocations. 2656 */ 2657 static void 2658 _vm_wait(void) 2659 { 2660 2661 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 2662 if (curproc == pageproc) { 2663 vm_pageout_pages_needed = 1; 2664 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, 2665 PDROP | PSWP, "VMWait", 0); 2666 } else { 2667 if (pageproc == NULL) 2668 panic("vm_wait in early boot"); 2669 pagedaemon_wait(PVM, "vmwait"); 2670 } 2671 } 2672 2673 void 2674 vm_wait(void) 2675 { 2676 2677 mtx_lock(&vm_page_queue_free_mtx); 2678 _vm_wait(); 2679 } 2680 2681 /* 2682 * vm_page_alloc_fail: 2683 * 2684 * Called when a page allocation function fails. Informs the 2685 * pagedaemon and performs the requested wait. Requires the 2686 * page_queue_free and object lock on entry. Returns with the 2687 * object lock held and free lock released. Returns an error when 2688 * retry is necessary. 2689 * 2690 */ 2691 static int 2692 vm_page_alloc_fail(vm_object_t object, int req) 2693 { 2694 2695 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 2696 2697 atomic_add_int(&vm_pageout_deficit, 2698 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 2699 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) { 2700 if (object != NULL) 2701 VM_OBJECT_WUNLOCK(object); 2702 _vm_wait(); 2703 if (object != NULL) 2704 VM_OBJECT_WLOCK(object); 2705 if (req & VM_ALLOC_WAITOK) 2706 return (EAGAIN); 2707 } else { 2708 mtx_unlock(&vm_page_queue_free_mtx); 2709 pagedaemon_wakeup(); 2710 } 2711 return (0); 2712 } 2713 2714 /* 2715 * vm_waitpfault: (also see VM_WAITPFAULT macro) 2716 * 2717 * Sleep until free pages are available for allocation. 2718 * - Called only in vm_fault so that processes page faulting 2719 * can be easily tracked. 2720 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 2721 * processes will be able to grab memory first. Do not change 2722 * this balance without careful testing first. 2723 */ 2724 void 2725 vm_waitpfault(void) 2726 { 2727 2728 mtx_lock(&vm_page_queue_free_mtx); 2729 pagedaemon_wait(PUSER, "pfault"); 2730 } 2731 2732 struct vm_pagequeue * 2733 vm_page_pagequeue(vm_page_t m) 2734 { 2735 2736 if (vm_page_in_laundry(m)) 2737 return (&vm_dom[0].vmd_pagequeues[m->queue]); 2738 else 2739 return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]); 2740 } 2741 2742 /* 2743 * vm_page_dequeue: 2744 * 2745 * Remove the given page from its current page queue. 2746 * 2747 * The page must be locked. 2748 */ 2749 void 2750 vm_page_dequeue(vm_page_t m) 2751 { 2752 struct vm_pagequeue *pq; 2753 2754 vm_page_assert_locked(m); 2755 KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued", 2756 m)); 2757 pq = vm_page_pagequeue(m); 2758 vm_pagequeue_lock(pq); 2759 m->queue = PQ_NONE; 2760 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2761 vm_pagequeue_cnt_dec(pq); 2762 vm_pagequeue_unlock(pq); 2763 } 2764 2765 /* 2766 * vm_page_dequeue_locked: 2767 * 2768 * Remove the given page from its current page queue. 2769 * 2770 * The page and page queue must be locked. 2771 */ 2772 void 2773 vm_page_dequeue_locked(vm_page_t m) 2774 { 2775 struct vm_pagequeue *pq; 2776 2777 vm_page_lock_assert(m, MA_OWNED); 2778 pq = vm_page_pagequeue(m); 2779 vm_pagequeue_assert_locked(pq); 2780 m->queue = PQ_NONE; 2781 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2782 vm_pagequeue_cnt_dec(pq); 2783 } 2784 2785 /* 2786 * vm_page_enqueue: 2787 * 2788 * Add the given page to the specified page queue. 2789 * 2790 * The page must be locked. 2791 */ 2792 static void 2793 vm_page_enqueue(uint8_t queue, vm_page_t m) 2794 { 2795 struct vm_pagequeue *pq; 2796 2797 vm_page_lock_assert(m, MA_OWNED); 2798 KASSERT(queue < PQ_COUNT, 2799 ("vm_page_enqueue: invalid queue %u request for page %p", 2800 queue, m)); 2801 if (queue == PQ_LAUNDRY || queue == PQ_UNSWAPPABLE) 2802 pq = &vm_dom[0].vmd_pagequeues[queue]; 2803 else 2804 pq = &vm_phys_domain(m)->vmd_pagequeues[queue]; 2805 vm_pagequeue_lock(pq); 2806 m->queue = queue; 2807 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2808 vm_pagequeue_cnt_inc(pq); 2809 vm_pagequeue_unlock(pq); 2810 } 2811 2812 /* 2813 * vm_page_requeue: 2814 * 2815 * Move the given page to the tail of its current page queue. 2816 * 2817 * The page must be locked. 2818 */ 2819 void 2820 vm_page_requeue(vm_page_t m) 2821 { 2822 struct vm_pagequeue *pq; 2823 2824 vm_page_lock_assert(m, MA_OWNED); 2825 KASSERT(m->queue != PQ_NONE, 2826 ("vm_page_requeue: page %p is not queued", m)); 2827 pq = vm_page_pagequeue(m); 2828 vm_pagequeue_lock(pq); 2829 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2830 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2831 vm_pagequeue_unlock(pq); 2832 } 2833 2834 /* 2835 * vm_page_requeue_locked: 2836 * 2837 * Move the given page to the tail of its current page queue. 2838 * 2839 * The page queue must be locked. 2840 */ 2841 void 2842 vm_page_requeue_locked(vm_page_t m) 2843 { 2844 struct vm_pagequeue *pq; 2845 2846 KASSERT(m->queue != PQ_NONE, 2847 ("vm_page_requeue_locked: page %p is not queued", m)); 2848 pq = vm_page_pagequeue(m); 2849 vm_pagequeue_assert_locked(pq); 2850 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2851 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2852 } 2853 2854 /* 2855 * vm_page_activate: 2856 * 2857 * Put the specified page on the active list (if appropriate). 2858 * Ensure that act_count is at least ACT_INIT but do not otherwise 2859 * mess with it. 2860 * 2861 * The page must be locked. 2862 */ 2863 void 2864 vm_page_activate(vm_page_t m) 2865 { 2866 int queue; 2867 2868 vm_page_lock_assert(m, MA_OWNED); 2869 if ((queue = m->queue) != PQ_ACTIVE) { 2870 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 2871 if (m->act_count < ACT_INIT) 2872 m->act_count = ACT_INIT; 2873 if (queue != PQ_NONE) 2874 vm_page_dequeue(m); 2875 vm_page_enqueue(PQ_ACTIVE, m); 2876 } else 2877 KASSERT(queue == PQ_NONE, 2878 ("vm_page_activate: wired page %p is queued", m)); 2879 } else { 2880 if (m->act_count < ACT_INIT) 2881 m->act_count = ACT_INIT; 2882 } 2883 } 2884 2885 /* 2886 * vm_page_free_wakeup: 2887 * 2888 * Helper routine for vm_page_free_toq(). This routine is called 2889 * when a page is added to the free queues. 2890 * 2891 * The page queues must be locked. 2892 */ 2893 static void 2894 vm_page_free_wakeup(void) 2895 { 2896 2897 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 2898 /* 2899 * if pageout daemon needs pages, then tell it that there are 2900 * some free. 2901 */ 2902 if (vm_pageout_pages_needed && 2903 vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) { 2904 wakeup(&vm_pageout_pages_needed); 2905 vm_pageout_pages_needed = 0; 2906 } 2907 /* 2908 * wakeup processes that are waiting on memory if we hit a 2909 * high water mark. And wakeup scheduler process if we have 2910 * lots of memory. this process will swapin processes. 2911 */ 2912 if (vm_pages_needed && !vm_page_count_min()) { 2913 vm_pages_needed = false; 2914 wakeup(&vm_cnt.v_free_count); 2915 } 2916 } 2917 2918 /* 2919 * vm_page_free_prep: 2920 * 2921 * Prepares the given page to be put on the free list, 2922 * disassociating it from any VM object. The caller may return 2923 * the page to the free list only if this function returns true. 2924 * 2925 * The object must be locked. The page must be locked if it is 2926 * managed. For a queued managed page, the pagequeue_locked 2927 * argument specifies whether the page queue is already locked. 2928 */ 2929 bool 2930 vm_page_free_prep(vm_page_t m, bool pagequeue_locked) 2931 { 2932 2933 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP) 2934 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) { 2935 uint64_t *p; 2936 int i; 2937 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 2938 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++) 2939 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx", 2940 m, i, (uintmax_t)*p)); 2941 } 2942 #endif 2943 if ((m->oflags & VPO_UNMANAGED) == 0) { 2944 vm_page_lock_assert(m, MA_OWNED); 2945 KASSERT(!pmap_page_is_mapped(m), 2946 ("vm_page_free_toq: freeing mapped page %p", m)); 2947 } else 2948 KASSERT(m->queue == PQ_NONE, 2949 ("vm_page_free_toq: unmanaged page %p is queued", m)); 2950 VM_CNT_INC(v_tfree); 2951 2952 if (vm_page_sbusied(m)) 2953 panic("vm_page_free: freeing busy page %p", m); 2954 2955 vm_page_remove(m); 2956 2957 /* 2958 * If fictitious remove object association and 2959 * return. 2960 */ 2961 if ((m->flags & PG_FICTITIOUS) != 0) { 2962 KASSERT(m->wire_count == 1, 2963 ("fictitious page %p is not wired", m)); 2964 KASSERT(m->queue == PQ_NONE, 2965 ("fictitious page %p is queued", m)); 2966 return (false); 2967 } 2968 2969 if (m->queue != PQ_NONE) { 2970 if (pagequeue_locked) 2971 vm_page_dequeue_locked(m); 2972 else 2973 vm_page_dequeue(m); 2974 } 2975 m->valid = 0; 2976 vm_page_undirty(m); 2977 2978 if (m->wire_count != 0) 2979 panic("vm_page_free: freeing wired page %p", m); 2980 if (m->hold_count != 0) { 2981 m->flags &= ~PG_ZERO; 2982 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 2983 ("vm_page_free: freeing PG_UNHOLDFREE page %p", m)); 2984 m->flags |= PG_UNHOLDFREE; 2985 return (false); 2986 } 2987 2988 /* 2989 * Restore the default memory attribute to the page. 2990 */ 2991 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 2992 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 2993 2994 return (true); 2995 } 2996 2997 /* 2998 * Insert the page into the physical memory allocator's free page 2999 * queues. This is the last step to free a page. 3000 */ 3001 static void 3002 vm_page_free_phys(vm_page_t m) 3003 { 3004 3005 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 3006 3007 vm_phys_freecnt_adj(m, 1); 3008 #if VM_NRESERVLEVEL > 0 3009 if (!vm_reserv_free_page(m)) 3010 #endif 3011 vm_phys_free_pages(m, 0); 3012 } 3013 3014 void 3015 vm_page_free_phys_pglist(struct pglist *tq) 3016 { 3017 vm_page_t m; 3018 3019 if (TAILQ_EMPTY(tq)) 3020 return; 3021 mtx_lock(&vm_page_queue_free_mtx); 3022 TAILQ_FOREACH(m, tq, listq) 3023 vm_page_free_phys(m); 3024 vm_page_free_wakeup(); 3025 mtx_unlock(&vm_page_queue_free_mtx); 3026 } 3027 3028 /* 3029 * vm_page_free_toq: 3030 * 3031 * Returns the given page to the free list, disassociating it 3032 * from any VM object. 3033 * 3034 * The object must be locked. The page must be locked if it is 3035 * managed. 3036 */ 3037 void 3038 vm_page_free_toq(vm_page_t m) 3039 { 3040 3041 if (!vm_page_free_prep(m, false)) 3042 return; 3043 mtx_lock(&vm_page_queue_free_mtx); 3044 vm_page_free_phys(m); 3045 vm_page_free_wakeup(); 3046 mtx_unlock(&vm_page_queue_free_mtx); 3047 } 3048 3049 /* 3050 * vm_page_wire: 3051 * 3052 * Mark this page as wired down by yet 3053 * another map, removing it from paging queues 3054 * as necessary. 3055 * 3056 * If the page is fictitious, then its wire count must remain one. 3057 * 3058 * The page must be locked. 3059 */ 3060 void 3061 vm_page_wire(vm_page_t m) 3062 { 3063 3064 /* 3065 * Only bump the wire statistics if the page is not already wired, 3066 * and only unqueue the page if it is on some queue (if it is unmanaged 3067 * it is already off the queues). 3068 */ 3069 vm_page_lock_assert(m, MA_OWNED); 3070 if ((m->flags & PG_FICTITIOUS) != 0) { 3071 KASSERT(m->wire_count == 1, 3072 ("vm_page_wire: fictitious page %p's wire count isn't one", 3073 m)); 3074 return; 3075 } 3076 if (m->wire_count == 0) { 3077 KASSERT((m->oflags & VPO_UNMANAGED) == 0 || 3078 m->queue == PQ_NONE, 3079 ("vm_page_wire: unmanaged page %p is queued", m)); 3080 vm_page_remque(m); 3081 atomic_add_int(&vm_cnt.v_wire_count, 1); 3082 } 3083 m->wire_count++; 3084 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 3085 } 3086 3087 /* 3088 * vm_page_unwire: 3089 * 3090 * Release one wiring of the specified page, potentially allowing it to be 3091 * paged out. Returns TRUE if the number of wirings transitions to zero and 3092 * FALSE otherwise. 3093 * 3094 * Only managed pages belonging to an object can be paged out. If the number 3095 * of wirings transitions to zero and the page is eligible for page out, then 3096 * the page is added to the specified paging queue (unless PQ_NONE is 3097 * specified). 3098 * 3099 * If a page is fictitious, then its wire count must always be one. 3100 * 3101 * A managed page must be locked. 3102 */ 3103 boolean_t 3104 vm_page_unwire(vm_page_t m, uint8_t queue) 3105 { 3106 3107 KASSERT(queue < PQ_COUNT || queue == PQ_NONE, 3108 ("vm_page_unwire: invalid queue %u request for page %p", 3109 queue, m)); 3110 if ((m->oflags & VPO_UNMANAGED) == 0) 3111 vm_page_assert_locked(m); 3112 if ((m->flags & PG_FICTITIOUS) != 0) { 3113 KASSERT(m->wire_count == 1, 3114 ("vm_page_unwire: fictitious page %p's wire count isn't one", m)); 3115 return (FALSE); 3116 } 3117 if (m->wire_count > 0) { 3118 m->wire_count--; 3119 if (m->wire_count == 0) { 3120 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 3121 if ((m->oflags & VPO_UNMANAGED) == 0 && 3122 m->object != NULL && queue != PQ_NONE) 3123 vm_page_enqueue(queue, m); 3124 return (TRUE); 3125 } else 3126 return (FALSE); 3127 } else 3128 panic("vm_page_unwire: page %p's wire count is zero", m); 3129 } 3130 3131 /* 3132 * Move the specified page to the inactive queue. 3133 * 3134 * Normally, "noreuse" is FALSE, resulting in LRU ordering of the inactive 3135 * queue. However, setting "noreuse" to TRUE will accelerate the specified 3136 * page's reclamation, but it will not unmap the page from any address space. 3137 * This is implemented by inserting the page near the head of the inactive 3138 * queue, using a marker page to guide FIFO insertion ordering. 3139 * 3140 * The page must be locked. 3141 */ 3142 static inline void 3143 _vm_page_deactivate(vm_page_t m, boolean_t noreuse) 3144 { 3145 struct vm_pagequeue *pq; 3146 int queue; 3147 3148 vm_page_assert_locked(m); 3149 3150 /* 3151 * Ignore if the page is already inactive, unless it is unlikely to be 3152 * reactivated. 3153 */ 3154 if ((queue = m->queue) == PQ_INACTIVE && !noreuse) 3155 return; 3156 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 3157 pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE]; 3158 /* Avoid multiple acquisitions of the inactive queue lock. */ 3159 if (queue == PQ_INACTIVE) { 3160 vm_pagequeue_lock(pq); 3161 vm_page_dequeue_locked(m); 3162 } else { 3163 if (queue != PQ_NONE) 3164 vm_page_dequeue(m); 3165 vm_pagequeue_lock(pq); 3166 } 3167 m->queue = PQ_INACTIVE; 3168 if (noreuse) 3169 TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead, 3170 m, plinks.q); 3171 else 3172 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3173 vm_pagequeue_cnt_inc(pq); 3174 vm_pagequeue_unlock(pq); 3175 } 3176 } 3177 3178 /* 3179 * Move the specified page to the inactive queue. 3180 * 3181 * The page must be locked. 3182 */ 3183 void 3184 vm_page_deactivate(vm_page_t m) 3185 { 3186 3187 _vm_page_deactivate(m, FALSE); 3188 } 3189 3190 /* 3191 * Move the specified page to the inactive queue with the expectation 3192 * that it is unlikely to be reused. 3193 * 3194 * The page must be locked. 3195 */ 3196 void 3197 vm_page_deactivate_noreuse(vm_page_t m) 3198 { 3199 3200 _vm_page_deactivate(m, TRUE); 3201 } 3202 3203 /* 3204 * vm_page_launder 3205 * 3206 * Put a page in the laundry. 3207 */ 3208 void 3209 vm_page_launder(vm_page_t m) 3210 { 3211 int queue; 3212 3213 vm_page_assert_locked(m); 3214 if ((queue = m->queue) != PQ_LAUNDRY) { 3215 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 3216 if (queue != PQ_NONE) 3217 vm_page_dequeue(m); 3218 vm_page_enqueue(PQ_LAUNDRY, m); 3219 } else 3220 KASSERT(queue == PQ_NONE, 3221 ("wired page %p is queued", m)); 3222 } 3223 } 3224 3225 /* 3226 * vm_page_unswappable 3227 * 3228 * Put a page in the PQ_UNSWAPPABLE holding queue. 3229 */ 3230 void 3231 vm_page_unswappable(vm_page_t m) 3232 { 3233 3234 vm_page_assert_locked(m); 3235 KASSERT(m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0, 3236 ("page %p already unswappable", m)); 3237 if (m->queue != PQ_NONE) 3238 vm_page_dequeue(m); 3239 vm_page_enqueue(PQ_UNSWAPPABLE, m); 3240 } 3241 3242 /* 3243 * Attempt to free the page. If it cannot be freed, do nothing. Returns true 3244 * if the page is freed and false otherwise. 3245 * 3246 * The page must be managed. The page and its containing object must be 3247 * locked. 3248 */ 3249 bool 3250 vm_page_try_to_free(vm_page_t m) 3251 { 3252 3253 vm_page_assert_locked(m); 3254 VM_OBJECT_ASSERT_WLOCKED(m->object); 3255 KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("page %p is unmanaged", m)); 3256 if (m->dirty != 0 || m->hold_count != 0 || m->wire_count != 0 || 3257 vm_page_busied(m)) 3258 return (false); 3259 if (m->object->ref_count != 0) { 3260 pmap_remove_all(m); 3261 if (m->dirty != 0) 3262 return (false); 3263 } 3264 vm_page_free(m); 3265 return (true); 3266 } 3267 3268 /* 3269 * vm_page_advise 3270 * 3271 * Apply the specified advice to the given page. 3272 * 3273 * The object and page must be locked. 3274 */ 3275 void 3276 vm_page_advise(vm_page_t m, int advice) 3277 { 3278 3279 vm_page_assert_locked(m); 3280 VM_OBJECT_ASSERT_WLOCKED(m->object); 3281 if (advice == MADV_FREE) 3282 /* 3283 * Mark the page clean. This will allow the page to be freed 3284 * without first paging it out. MADV_FREE pages are often 3285 * quickly reused by malloc(3), so we do not do anything that 3286 * would result in a page fault on a later access. 3287 */ 3288 vm_page_undirty(m); 3289 else if (advice != MADV_DONTNEED) { 3290 if (advice == MADV_WILLNEED) 3291 vm_page_activate(m); 3292 return; 3293 } 3294 3295 /* 3296 * Clear any references to the page. Otherwise, the page daemon will 3297 * immediately reactivate the page. 3298 */ 3299 vm_page_aflag_clear(m, PGA_REFERENCED); 3300 3301 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 3302 vm_page_dirty(m); 3303 3304 /* 3305 * Place clean pages near the head of the inactive queue rather than 3306 * the tail, thus defeating the queue's LRU operation and ensuring that 3307 * the page will be reused quickly. Dirty pages not already in the 3308 * laundry are moved there. 3309 */ 3310 if (m->dirty == 0) 3311 vm_page_deactivate_noreuse(m); 3312 else 3313 vm_page_launder(m); 3314 } 3315 3316 /* 3317 * Grab a page, waiting until we are waken up due to the page 3318 * changing state. We keep on waiting, if the page continues 3319 * to be in the object. If the page doesn't exist, first allocate it 3320 * and then conditionally zero it. 3321 * 3322 * This routine may sleep. 3323 * 3324 * The object must be locked on entry. The lock will, however, be released 3325 * and reacquired if the routine sleeps. 3326 */ 3327 vm_page_t 3328 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 3329 { 3330 vm_page_t m; 3331 int sleep; 3332 int pflags; 3333 3334 VM_OBJECT_ASSERT_WLOCKED(object); 3335 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 3336 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 3337 ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 3338 pflags = allocflags & 3339 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL); 3340 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 3341 pflags |= VM_ALLOC_WAITFAIL; 3342 retrylookup: 3343 if ((m = vm_page_lookup(object, pindex)) != NULL) { 3344 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? 3345 vm_page_xbusied(m) : vm_page_busied(m); 3346 if (sleep) { 3347 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3348 return (NULL); 3349 /* 3350 * Reference the page before unlocking and 3351 * sleeping so that the page daemon is less 3352 * likely to reclaim it. 3353 */ 3354 vm_page_aflag_set(m, PGA_REFERENCED); 3355 vm_page_lock(m); 3356 VM_OBJECT_WUNLOCK(object); 3357 vm_page_busy_sleep(m, "pgrbwt", (allocflags & 3358 VM_ALLOC_IGN_SBUSY) != 0); 3359 VM_OBJECT_WLOCK(object); 3360 goto retrylookup; 3361 } else { 3362 if ((allocflags & VM_ALLOC_WIRED) != 0) { 3363 vm_page_lock(m); 3364 vm_page_wire(m); 3365 vm_page_unlock(m); 3366 } 3367 if ((allocflags & 3368 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 3369 vm_page_xbusy(m); 3370 if ((allocflags & VM_ALLOC_SBUSY) != 0) 3371 vm_page_sbusy(m); 3372 return (m); 3373 } 3374 } 3375 m = vm_page_alloc(object, pindex, pflags); 3376 if (m == NULL) { 3377 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3378 return (NULL); 3379 goto retrylookup; 3380 } 3381 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 3382 pmap_zero_page(m); 3383 return (m); 3384 } 3385 3386 /* 3387 * Return the specified range of pages from the given object. For each 3388 * page offset within the range, if a page already exists within the object 3389 * at that offset and it is busy, then wait for it to change state. If, 3390 * instead, the page doesn't exist, then allocate it. 3391 * 3392 * The caller must always specify an allocation class. 3393 * 3394 * allocation classes: 3395 * VM_ALLOC_NORMAL normal process request 3396 * VM_ALLOC_SYSTEM system *really* needs the pages 3397 * 3398 * The caller must always specify that the pages are to be busied and/or 3399 * wired. 3400 * 3401 * optional allocation flags: 3402 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages 3403 * VM_ALLOC_NOBUSY do not exclusive busy the page 3404 * VM_ALLOC_NOWAIT do not sleep 3405 * VM_ALLOC_SBUSY set page to sbusy state 3406 * VM_ALLOC_WIRED wire the pages 3407 * VM_ALLOC_ZERO zero and validate any invalid pages 3408 * 3409 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it 3410 * may return a partial prefix of the requested range. 3411 */ 3412 int 3413 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, 3414 vm_page_t *ma, int count) 3415 { 3416 vm_page_t m, mpred; 3417 int pflags; 3418 int i; 3419 bool sleep; 3420 3421 VM_OBJECT_ASSERT_WLOCKED(object); 3422 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0, 3423 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed")); 3424 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 || 3425 (allocflags & VM_ALLOC_WIRED) != 0, 3426 ("vm_page_grab_pages: the pages must be busied or wired")); 3427 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 3428 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 3429 ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch")); 3430 if (count == 0) 3431 return (0); 3432 pflags = allocflags & ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | 3433 VM_ALLOC_WAITFAIL | VM_ALLOC_IGN_SBUSY); 3434 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 3435 pflags |= VM_ALLOC_WAITFAIL; 3436 i = 0; 3437 retrylookup: 3438 m = vm_radix_lookup_le(&object->rtree, pindex + i); 3439 if (m == NULL || m->pindex != pindex + i) { 3440 mpred = m; 3441 m = NULL; 3442 } else 3443 mpred = TAILQ_PREV(m, pglist, listq); 3444 for (; i < count; i++) { 3445 if (m != NULL) { 3446 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? 3447 vm_page_xbusied(m) : vm_page_busied(m); 3448 if (sleep) { 3449 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3450 break; 3451 /* 3452 * Reference the page before unlocking and 3453 * sleeping so that the page daemon is less 3454 * likely to reclaim it. 3455 */ 3456 vm_page_aflag_set(m, PGA_REFERENCED); 3457 vm_page_lock(m); 3458 VM_OBJECT_WUNLOCK(object); 3459 vm_page_busy_sleep(m, "grbmaw", (allocflags & 3460 VM_ALLOC_IGN_SBUSY) != 0); 3461 VM_OBJECT_WLOCK(object); 3462 goto retrylookup; 3463 } 3464 if ((allocflags & VM_ALLOC_WIRED) != 0) { 3465 vm_page_lock(m); 3466 vm_page_wire(m); 3467 vm_page_unlock(m); 3468 } 3469 if ((allocflags & (VM_ALLOC_NOBUSY | 3470 VM_ALLOC_SBUSY)) == 0) 3471 vm_page_xbusy(m); 3472 if ((allocflags & VM_ALLOC_SBUSY) != 0) 3473 vm_page_sbusy(m); 3474 } else { 3475 m = vm_page_alloc_after(object, pindex + i, 3476 pflags | VM_ALLOC_COUNT(count - i), mpred); 3477 if (m == NULL) { 3478 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3479 break; 3480 goto retrylookup; 3481 } 3482 } 3483 if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) { 3484 if ((m->flags & PG_ZERO) == 0) 3485 pmap_zero_page(m); 3486 m->valid = VM_PAGE_BITS_ALL; 3487 } 3488 ma[i] = mpred = m; 3489 m = vm_page_next(m); 3490 } 3491 return (i); 3492 } 3493 3494 /* 3495 * Mapping function for valid or dirty bits in a page. 3496 * 3497 * Inputs are required to range within a page. 3498 */ 3499 vm_page_bits_t 3500 vm_page_bits(int base, int size) 3501 { 3502 int first_bit; 3503 int last_bit; 3504 3505 KASSERT( 3506 base + size <= PAGE_SIZE, 3507 ("vm_page_bits: illegal base/size %d/%d", base, size) 3508 ); 3509 3510 if (size == 0) /* handle degenerate case */ 3511 return (0); 3512 3513 first_bit = base >> DEV_BSHIFT; 3514 last_bit = (base + size - 1) >> DEV_BSHIFT; 3515 3516 return (((vm_page_bits_t)2 << last_bit) - 3517 ((vm_page_bits_t)1 << first_bit)); 3518 } 3519 3520 /* 3521 * vm_page_set_valid_range: 3522 * 3523 * Sets portions of a page valid. The arguments are expected 3524 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 3525 * of any partial chunks touched by the range. The invalid portion of 3526 * such chunks will be zeroed. 3527 * 3528 * (base + size) must be less then or equal to PAGE_SIZE. 3529 */ 3530 void 3531 vm_page_set_valid_range(vm_page_t m, int base, int size) 3532 { 3533 int endoff, frag; 3534 3535 VM_OBJECT_ASSERT_WLOCKED(m->object); 3536 if (size == 0) /* handle degenerate case */ 3537 return; 3538 3539 /* 3540 * If the base is not DEV_BSIZE aligned and the valid 3541 * bit is clear, we have to zero out a portion of the 3542 * first block. 3543 */ 3544 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 3545 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 3546 pmap_zero_page_area(m, frag, base - frag); 3547 3548 /* 3549 * If the ending offset is not DEV_BSIZE aligned and the 3550 * valid bit is clear, we have to zero out a portion of 3551 * the last block. 3552 */ 3553 endoff = base + size; 3554 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 3555 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 3556 pmap_zero_page_area(m, endoff, 3557 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 3558 3559 /* 3560 * Assert that no previously invalid block that is now being validated 3561 * is already dirty. 3562 */ 3563 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 3564 ("vm_page_set_valid_range: page %p is dirty", m)); 3565 3566 /* 3567 * Set valid bits inclusive of any overlap. 3568 */ 3569 m->valid |= vm_page_bits(base, size); 3570 } 3571 3572 /* 3573 * Clear the given bits from the specified page's dirty field. 3574 */ 3575 static __inline void 3576 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 3577 { 3578 uintptr_t addr; 3579 #if PAGE_SIZE < 16384 3580 int shift; 3581 #endif 3582 3583 /* 3584 * If the object is locked and the page is neither exclusive busy nor 3585 * write mapped, then the page's dirty field cannot possibly be 3586 * set by a concurrent pmap operation. 3587 */ 3588 VM_OBJECT_ASSERT_WLOCKED(m->object); 3589 if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 3590 m->dirty &= ~pagebits; 3591 else { 3592 /* 3593 * The pmap layer can call vm_page_dirty() without 3594 * holding a distinguished lock. The combination of 3595 * the object's lock and an atomic operation suffice 3596 * to guarantee consistency of the page dirty field. 3597 * 3598 * For PAGE_SIZE == 32768 case, compiler already 3599 * properly aligns the dirty field, so no forcible 3600 * alignment is needed. Only require existence of 3601 * atomic_clear_64 when page size is 32768. 3602 */ 3603 addr = (uintptr_t)&m->dirty; 3604 #if PAGE_SIZE == 32768 3605 atomic_clear_64((uint64_t *)addr, pagebits); 3606 #elif PAGE_SIZE == 16384 3607 atomic_clear_32((uint32_t *)addr, pagebits); 3608 #else /* PAGE_SIZE <= 8192 */ 3609 /* 3610 * Use a trick to perform a 32-bit atomic on the 3611 * containing aligned word, to not depend on the existence 3612 * of atomic_clear_{8, 16}. 3613 */ 3614 shift = addr & (sizeof(uint32_t) - 1); 3615 #if BYTE_ORDER == BIG_ENDIAN 3616 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY; 3617 #else 3618 shift *= NBBY; 3619 #endif 3620 addr &= ~(sizeof(uint32_t) - 1); 3621 atomic_clear_32((uint32_t *)addr, pagebits << shift); 3622 #endif /* PAGE_SIZE */ 3623 } 3624 } 3625 3626 /* 3627 * vm_page_set_validclean: 3628 * 3629 * Sets portions of a page valid and clean. The arguments are expected 3630 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 3631 * of any partial chunks touched by the range. The invalid portion of 3632 * such chunks will be zero'd. 3633 * 3634 * (base + size) must be less then or equal to PAGE_SIZE. 3635 */ 3636 void 3637 vm_page_set_validclean(vm_page_t m, int base, int size) 3638 { 3639 vm_page_bits_t oldvalid, pagebits; 3640 int endoff, frag; 3641 3642 VM_OBJECT_ASSERT_WLOCKED(m->object); 3643 if (size == 0) /* handle degenerate case */ 3644 return; 3645 3646 /* 3647 * If the base is not DEV_BSIZE aligned and the valid 3648 * bit is clear, we have to zero out a portion of the 3649 * first block. 3650 */ 3651 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 3652 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 3653 pmap_zero_page_area(m, frag, base - frag); 3654 3655 /* 3656 * If the ending offset is not DEV_BSIZE aligned and the 3657 * valid bit is clear, we have to zero out a portion of 3658 * the last block. 3659 */ 3660 endoff = base + size; 3661 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 3662 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 3663 pmap_zero_page_area(m, endoff, 3664 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 3665 3666 /* 3667 * Set valid, clear dirty bits. If validating the entire 3668 * page we can safely clear the pmap modify bit. We also 3669 * use this opportunity to clear the VPO_NOSYNC flag. If a process 3670 * takes a write fault on a MAP_NOSYNC memory area the flag will 3671 * be set again. 3672 * 3673 * We set valid bits inclusive of any overlap, but we can only 3674 * clear dirty bits for DEV_BSIZE chunks that are fully within 3675 * the range. 3676 */ 3677 oldvalid = m->valid; 3678 pagebits = vm_page_bits(base, size); 3679 m->valid |= pagebits; 3680 #if 0 /* NOT YET */ 3681 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 3682 frag = DEV_BSIZE - frag; 3683 base += frag; 3684 size -= frag; 3685 if (size < 0) 3686 size = 0; 3687 } 3688 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 3689 #endif 3690 if (base == 0 && size == PAGE_SIZE) { 3691 /* 3692 * The page can only be modified within the pmap if it is 3693 * mapped, and it can only be mapped if it was previously 3694 * fully valid. 3695 */ 3696 if (oldvalid == VM_PAGE_BITS_ALL) 3697 /* 3698 * Perform the pmap_clear_modify() first. Otherwise, 3699 * a concurrent pmap operation, such as 3700 * pmap_protect(), could clear a modification in the 3701 * pmap and set the dirty field on the page before 3702 * pmap_clear_modify() had begun and after the dirty 3703 * field was cleared here. 3704 */ 3705 pmap_clear_modify(m); 3706 m->dirty = 0; 3707 m->oflags &= ~VPO_NOSYNC; 3708 } else if (oldvalid != VM_PAGE_BITS_ALL) 3709 m->dirty &= ~pagebits; 3710 else 3711 vm_page_clear_dirty_mask(m, pagebits); 3712 } 3713 3714 void 3715 vm_page_clear_dirty(vm_page_t m, int base, int size) 3716 { 3717 3718 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 3719 } 3720 3721 /* 3722 * vm_page_set_invalid: 3723 * 3724 * Invalidates DEV_BSIZE'd chunks within a page. Both the 3725 * valid and dirty bits for the effected areas are cleared. 3726 */ 3727 void 3728 vm_page_set_invalid(vm_page_t m, int base, int size) 3729 { 3730 vm_page_bits_t bits; 3731 vm_object_t object; 3732 3733 object = m->object; 3734 VM_OBJECT_ASSERT_WLOCKED(object); 3735 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 3736 size >= object->un_pager.vnp.vnp_size) 3737 bits = VM_PAGE_BITS_ALL; 3738 else 3739 bits = vm_page_bits(base, size); 3740 if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL && 3741 bits != 0) 3742 pmap_remove_all(m); 3743 KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) || 3744 !pmap_page_is_mapped(m), 3745 ("vm_page_set_invalid: page %p is mapped", m)); 3746 m->valid &= ~bits; 3747 m->dirty &= ~bits; 3748 } 3749 3750 /* 3751 * vm_page_zero_invalid() 3752 * 3753 * The kernel assumes that the invalid portions of a page contain 3754 * garbage, but such pages can be mapped into memory by user code. 3755 * When this occurs, we must zero out the non-valid portions of the 3756 * page so user code sees what it expects. 3757 * 3758 * Pages are most often semi-valid when the end of a file is mapped 3759 * into memory and the file's size is not page aligned. 3760 */ 3761 void 3762 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 3763 { 3764 int b; 3765 int i; 3766 3767 VM_OBJECT_ASSERT_WLOCKED(m->object); 3768 /* 3769 * Scan the valid bits looking for invalid sections that 3770 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the 3771 * valid bit may be set ) have already been zeroed by 3772 * vm_page_set_validclean(). 3773 */ 3774 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 3775 if (i == (PAGE_SIZE / DEV_BSIZE) || 3776 (m->valid & ((vm_page_bits_t)1 << i))) { 3777 if (i > b) { 3778 pmap_zero_page_area(m, 3779 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 3780 } 3781 b = i + 1; 3782 } 3783 } 3784 3785 /* 3786 * setvalid is TRUE when we can safely set the zero'd areas 3787 * as being valid. We can do this if there are no cache consistancy 3788 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 3789 */ 3790 if (setvalid) 3791 m->valid = VM_PAGE_BITS_ALL; 3792 } 3793 3794 /* 3795 * vm_page_is_valid: 3796 * 3797 * Is (partial) page valid? Note that the case where size == 0 3798 * will return FALSE in the degenerate case where the page is 3799 * entirely invalid, and TRUE otherwise. 3800 */ 3801 int 3802 vm_page_is_valid(vm_page_t m, int base, int size) 3803 { 3804 vm_page_bits_t bits; 3805 3806 VM_OBJECT_ASSERT_LOCKED(m->object); 3807 bits = vm_page_bits(base, size); 3808 return (m->valid != 0 && (m->valid & bits) == bits); 3809 } 3810 3811 /* 3812 * Returns true if all of the specified predicates are true for the entire 3813 * (super)page and false otherwise. 3814 */ 3815 bool 3816 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m) 3817 { 3818 vm_object_t object; 3819 int i, npages; 3820 3821 object = m->object; 3822 VM_OBJECT_ASSERT_LOCKED(object); 3823 npages = atop(pagesizes[m->psind]); 3824 3825 /* 3826 * The physically contiguous pages that make up a superpage, i.e., a 3827 * page with a page size index ("psind") greater than zero, will 3828 * occupy adjacent entries in vm_page_array[]. 3829 */ 3830 for (i = 0; i < npages; i++) { 3831 /* Always test object consistency, including "skip_m". */ 3832 if (m[i].object != object) 3833 return (false); 3834 if (&m[i] == skip_m) 3835 continue; 3836 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i])) 3837 return (false); 3838 if ((flags & PS_ALL_DIRTY) != 0) { 3839 /* 3840 * Calling vm_page_test_dirty() or pmap_is_modified() 3841 * might stop this case from spuriously returning 3842 * "false". However, that would require a write lock 3843 * on the object containing "m[i]". 3844 */ 3845 if (m[i].dirty != VM_PAGE_BITS_ALL) 3846 return (false); 3847 } 3848 if ((flags & PS_ALL_VALID) != 0 && 3849 m[i].valid != VM_PAGE_BITS_ALL) 3850 return (false); 3851 } 3852 return (true); 3853 } 3854 3855 /* 3856 * Set the page's dirty bits if the page is modified. 3857 */ 3858 void 3859 vm_page_test_dirty(vm_page_t m) 3860 { 3861 3862 VM_OBJECT_ASSERT_WLOCKED(m->object); 3863 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 3864 vm_page_dirty(m); 3865 } 3866 3867 void 3868 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 3869 { 3870 3871 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 3872 } 3873 3874 void 3875 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 3876 { 3877 3878 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 3879 } 3880 3881 int 3882 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 3883 { 3884 3885 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 3886 } 3887 3888 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 3889 void 3890 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 3891 { 3892 3893 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 3894 } 3895 3896 void 3897 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 3898 { 3899 3900 mtx_assert_(vm_page_lockptr(m), a, file, line); 3901 } 3902 #endif 3903 3904 #ifdef INVARIANTS 3905 void 3906 vm_page_object_lock_assert(vm_page_t m) 3907 { 3908 3909 /* 3910 * Certain of the page's fields may only be modified by the 3911 * holder of the containing object's lock or the exclusive busy. 3912 * holder. Unfortunately, the holder of the write busy is 3913 * not recorded, and thus cannot be checked here. 3914 */ 3915 if (m->object != NULL && !vm_page_xbusied(m)) 3916 VM_OBJECT_ASSERT_WLOCKED(m->object); 3917 } 3918 3919 void 3920 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits) 3921 { 3922 3923 if ((bits & PGA_WRITEABLE) == 0) 3924 return; 3925 3926 /* 3927 * The PGA_WRITEABLE flag can only be set if the page is 3928 * managed, is exclusively busied or the object is locked. 3929 * Currently, this flag is only set by pmap_enter(). 3930 */ 3931 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3932 ("PGA_WRITEABLE on unmanaged page")); 3933 if (!vm_page_xbusied(m)) 3934 VM_OBJECT_ASSERT_LOCKED(m->object); 3935 } 3936 #endif 3937 3938 #include "opt_ddb.h" 3939 #ifdef DDB 3940 #include <sys/kernel.h> 3941 3942 #include <ddb/ddb.h> 3943 3944 DB_SHOW_COMMAND(page, vm_page_print_page_info) 3945 { 3946 3947 db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count); 3948 db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count); 3949 db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count); 3950 db_printf("vm_cnt.v_laundry_count: %d\n", vm_cnt.v_laundry_count); 3951 db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count); 3952 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 3953 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 3954 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 3955 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 3956 } 3957 3958 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 3959 { 3960 int dom; 3961 3962 db_printf("pq_free %d\n", vm_cnt.v_free_count); 3963 for (dom = 0; dom < vm_ndomains; dom++) { 3964 db_printf( 3965 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n", 3966 dom, 3967 vm_dom[dom].vmd_page_count, 3968 vm_dom[dom].vmd_free_count, 3969 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 3970 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 3971 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt, 3972 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt); 3973 } 3974 } 3975 3976 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 3977 { 3978 vm_page_t m; 3979 boolean_t phys; 3980 3981 if (!have_addr) { 3982 db_printf("show pginfo addr\n"); 3983 return; 3984 } 3985 3986 phys = strchr(modif, 'p') != NULL; 3987 if (phys) 3988 m = PHYS_TO_VM_PAGE(addr); 3989 else 3990 m = (vm_page_t)addr; 3991 db_printf( 3992 "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n" 3993 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 3994 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 3995 m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags, 3996 m->flags, m->act_count, m->busy_lock, m->valid, m->dirty); 3997 } 3998 #endif /* DDB */ 3999