xref: /freebsd/sys/vm/vm_page.c (revision a14f9888d9c83fcd70df6dfd41ce41e4f5b2e7d8)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- A page queue lock is required when adding or removing a page from a
67  *	  page queue regardless of other locks or the busy state of a page.
68  *
69  *		* In general, no thread besides the page daemon can acquire or
70  *		  hold more than one page queue lock at a time.
71  *
72  *		* The page daemon can acquire and hold any pair of page queue
73  *		  locks in any order.
74  *
75  *	- The object lock is required when inserting or removing
76  *	  pages from an object (vm_page_insert() or vm_page_remove()).
77  *
78  */
79 
80 /*
81  *	Resident memory management module.
82  */
83 
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD$");
86 
87 #include "opt_vm.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/lock.h>
92 #include <sys/kernel.h>
93 #include <sys/limits.h>
94 #include <sys/linker.h>
95 #include <sys/malloc.h>
96 #include <sys/mman.h>
97 #include <sys/msgbuf.h>
98 #include <sys/mutex.h>
99 #include <sys/proc.h>
100 #include <sys/rwlock.h>
101 #include <sys/sbuf.h>
102 #include <sys/smp.h>
103 #include <sys/sysctl.h>
104 #include <sys/vmmeter.h>
105 #include <sys/vnode.h>
106 
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_param.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pageout.h>
114 #include <vm/vm_pager.h>
115 #include <vm/vm_phys.h>
116 #include <vm/vm_radix.h>
117 #include <vm/vm_reserv.h>
118 #include <vm/vm_extern.h>
119 #include <vm/uma.h>
120 #include <vm/uma_int.h>
121 
122 #include <machine/md_var.h>
123 
124 /*
125  *	Associated with page of user-allocatable memory is a
126  *	page structure.
127  */
128 
129 struct vm_domain vm_dom[MAXMEMDOM];
130 struct mtx_padalign vm_page_queue_free_mtx;
131 
132 struct mtx_padalign pa_lock[PA_LOCK_COUNT];
133 
134 vm_page_t vm_page_array;
135 long vm_page_array_size;
136 long first_page;
137 
138 static int boot_pages = UMA_BOOT_PAGES;
139 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
140     &boot_pages, 0,
141     "number of pages allocated for bootstrapping the VM system");
142 
143 static int pa_tryrelock_restart;
144 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
145     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
146 
147 static TAILQ_HEAD(, vm_page) blacklist_head;
148 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
149 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
150     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
151 
152 /* Is the page daemon waiting for free pages? */
153 static int vm_pageout_pages_needed;
154 
155 static uma_zone_t fakepg_zone;
156 
157 static struct vnode *vm_page_alloc_init(vm_page_t m);
158 static void vm_page_cache_turn_free(vm_page_t m);
159 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
160 static void vm_page_enqueue(uint8_t queue, vm_page_t m);
161 static void vm_page_free_wakeup(void);
162 static void vm_page_init_fakepg(void *dummy);
163 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
164     vm_pindex_t pindex, vm_page_t mpred);
165 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
166     vm_page_t mpred);
167 static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
168     vm_paddr_t high);
169 
170 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
171 
172 static void
173 vm_page_init_fakepg(void *dummy)
174 {
175 
176 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
177 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
178 }
179 
180 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
181 #if PAGE_SIZE == 32768
182 #ifdef CTASSERT
183 CTASSERT(sizeof(u_long) >= 8);
184 #endif
185 #endif
186 
187 /*
188  * Try to acquire a physical address lock while a pmap is locked.  If we
189  * fail to trylock we unlock and lock the pmap directly and cache the
190  * locked pa in *locked.  The caller should then restart their loop in case
191  * the virtual to physical mapping has changed.
192  */
193 int
194 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
195 {
196 	vm_paddr_t lockpa;
197 
198 	lockpa = *locked;
199 	*locked = pa;
200 	if (lockpa) {
201 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
202 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
203 			return (0);
204 		PA_UNLOCK(lockpa);
205 	}
206 	if (PA_TRYLOCK(pa))
207 		return (0);
208 	PMAP_UNLOCK(pmap);
209 	atomic_add_int(&pa_tryrelock_restart, 1);
210 	PA_LOCK(pa);
211 	PMAP_LOCK(pmap);
212 	return (EAGAIN);
213 }
214 
215 /*
216  *	vm_set_page_size:
217  *
218  *	Sets the page size, perhaps based upon the memory
219  *	size.  Must be called before any use of page-size
220  *	dependent functions.
221  */
222 void
223 vm_set_page_size(void)
224 {
225 	if (vm_cnt.v_page_size == 0)
226 		vm_cnt.v_page_size = PAGE_SIZE;
227 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
228 		panic("vm_set_page_size: page size not a power of two");
229 }
230 
231 /*
232  *	vm_page_blacklist_next:
233  *
234  *	Find the next entry in the provided string of blacklist
235  *	addresses.  Entries are separated by space, comma, or newline.
236  *	If an invalid integer is encountered then the rest of the
237  *	string is skipped.  Updates the list pointer to the next
238  *	character, or NULL if the string is exhausted or invalid.
239  */
240 static vm_paddr_t
241 vm_page_blacklist_next(char **list, char *end)
242 {
243 	vm_paddr_t bad;
244 	char *cp, *pos;
245 
246 	if (list == NULL || *list == NULL)
247 		return (0);
248 	if (**list =='\0') {
249 		*list = NULL;
250 		return (0);
251 	}
252 
253 	/*
254 	 * If there's no end pointer then the buffer is coming from
255 	 * the kenv and we know it's null-terminated.
256 	 */
257 	if (end == NULL)
258 		end = *list + strlen(*list);
259 
260 	/* Ensure that strtoq() won't walk off the end */
261 	if (*end != '\0') {
262 		if (*end == '\n' || *end == ' ' || *end  == ',')
263 			*end = '\0';
264 		else {
265 			printf("Blacklist not terminated, skipping\n");
266 			*list = NULL;
267 			return (0);
268 		}
269 	}
270 
271 	for (pos = *list; *pos != '\0'; pos = cp) {
272 		bad = strtoq(pos, &cp, 0);
273 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
274 			if (bad == 0) {
275 				if (++cp < end)
276 					continue;
277 				else
278 					break;
279 			}
280 		} else
281 			break;
282 		if (*cp == '\0' || ++cp >= end)
283 			*list = NULL;
284 		else
285 			*list = cp;
286 		return (trunc_page(bad));
287 	}
288 	printf("Garbage in RAM blacklist, skipping\n");
289 	*list = NULL;
290 	return (0);
291 }
292 
293 /*
294  *	vm_page_blacklist_check:
295  *
296  *	Iterate through the provided string of blacklist addresses, pulling
297  *	each entry out of the physical allocator free list and putting it
298  *	onto a list for reporting via the vm.page_blacklist sysctl.
299  */
300 static void
301 vm_page_blacklist_check(char *list, char *end)
302 {
303 	vm_paddr_t pa;
304 	vm_page_t m;
305 	char *next;
306 	int ret;
307 
308 	next = list;
309 	while (next != NULL) {
310 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
311 			continue;
312 		m = vm_phys_paddr_to_vm_page(pa);
313 		if (m == NULL)
314 			continue;
315 		mtx_lock(&vm_page_queue_free_mtx);
316 		ret = vm_phys_unfree_page(m);
317 		mtx_unlock(&vm_page_queue_free_mtx);
318 		if (ret == TRUE) {
319 			TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
320 			if (bootverbose)
321 				printf("Skipping page with pa 0x%jx\n",
322 				    (uintmax_t)pa);
323 		}
324 	}
325 }
326 
327 /*
328  *	vm_page_blacklist_load:
329  *
330  *	Search for a special module named "ram_blacklist".  It'll be a
331  *	plain text file provided by the user via the loader directive
332  *	of the same name.
333  */
334 static void
335 vm_page_blacklist_load(char **list, char **end)
336 {
337 	void *mod;
338 	u_char *ptr;
339 	u_int len;
340 
341 	mod = NULL;
342 	ptr = NULL;
343 
344 	mod = preload_search_by_type("ram_blacklist");
345 	if (mod != NULL) {
346 		ptr = preload_fetch_addr(mod);
347 		len = preload_fetch_size(mod);
348         }
349 	*list = ptr;
350 	if (ptr != NULL)
351 		*end = ptr + len;
352 	else
353 		*end = NULL;
354 	return;
355 }
356 
357 static int
358 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
359 {
360 	vm_page_t m;
361 	struct sbuf sbuf;
362 	int error, first;
363 
364 	first = 1;
365 	error = sysctl_wire_old_buffer(req, 0);
366 	if (error != 0)
367 		return (error);
368 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
369 	TAILQ_FOREACH(m, &blacklist_head, listq) {
370 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
371 		    (uintmax_t)m->phys_addr);
372 		first = 0;
373 	}
374 	error = sbuf_finish(&sbuf);
375 	sbuf_delete(&sbuf);
376 	return (error);
377 }
378 
379 static void
380 vm_page_domain_init(struct vm_domain *vmd)
381 {
382 	struct vm_pagequeue *pq;
383 	int i;
384 
385 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
386 	    "vm inactive pagequeue";
387 	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
388 	    &vm_cnt.v_inactive_count;
389 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
390 	    "vm active pagequeue";
391 	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
392 	    &vm_cnt.v_active_count;
393 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
394 	    "vm laundry pagequeue";
395 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_vcnt) =
396 	    &vm_cnt.v_laundry_count;
397 	vmd->vmd_page_count = 0;
398 	vmd->vmd_free_count = 0;
399 	vmd->vmd_segs = 0;
400 	vmd->vmd_oom = FALSE;
401 	for (i = 0; i < PQ_COUNT; i++) {
402 		pq = &vmd->vmd_pagequeues[i];
403 		TAILQ_INIT(&pq->pq_pl);
404 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
405 		    MTX_DEF | MTX_DUPOK);
406 	}
407 }
408 
409 /*
410  *	vm_page_startup:
411  *
412  *	Initializes the resident memory module.
413  *
414  *	Allocates memory for the page cells, and
415  *	for the object/offset-to-page hash table headers.
416  *	Each page cell is initialized and placed on the free list.
417  */
418 vm_offset_t
419 vm_page_startup(vm_offset_t vaddr)
420 {
421 	vm_offset_t mapped;
422 	vm_paddr_t page_range;
423 	vm_paddr_t new_end;
424 	int i;
425 	vm_paddr_t pa;
426 	vm_paddr_t last_pa;
427 	char *list, *listend;
428 	vm_paddr_t end;
429 	vm_paddr_t biggestsize;
430 	vm_paddr_t low_water, high_water;
431 	int biggestone;
432 	int pages_per_zone;
433 
434 	biggestsize = 0;
435 	biggestone = 0;
436 	vaddr = round_page(vaddr);
437 
438 	for (i = 0; phys_avail[i + 1]; i += 2) {
439 		phys_avail[i] = round_page(phys_avail[i]);
440 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
441 	}
442 
443 	low_water = phys_avail[0];
444 	high_water = phys_avail[1];
445 
446 	for (i = 0; i < vm_phys_nsegs; i++) {
447 		if (vm_phys_segs[i].start < low_water)
448 			low_water = vm_phys_segs[i].start;
449 		if (vm_phys_segs[i].end > high_water)
450 			high_water = vm_phys_segs[i].end;
451 	}
452 	for (i = 0; phys_avail[i + 1]; i += 2) {
453 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
454 
455 		if (size > biggestsize) {
456 			biggestone = i;
457 			biggestsize = size;
458 		}
459 		if (phys_avail[i] < low_water)
460 			low_water = phys_avail[i];
461 		if (phys_avail[i + 1] > high_water)
462 			high_water = phys_avail[i + 1];
463 	}
464 
465 	end = phys_avail[biggestone+1];
466 
467 	/*
468 	 * Initialize the page and queue locks.
469 	 */
470 	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
471 	for (i = 0; i < PA_LOCK_COUNT; i++)
472 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
473 	for (i = 0; i < vm_ndomains; i++)
474 		vm_page_domain_init(&vm_dom[i]);
475 
476 	/*
477 	 * Almost all of the pages needed for boot strapping UMA are used
478 	 * for zone structures, so if the number of CPUs results in those
479 	 * structures taking more than one page each, we set aside more pages
480 	 * in proportion to the zone structure size.
481 	 */
482 	pages_per_zone = howmany(sizeof(struct uma_zone) +
483 	    sizeof(struct uma_cache) * (mp_maxid + 1), UMA_SLAB_SIZE);
484 	if (pages_per_zone > 1) {
485 		/* Reserve more pages so that we don't run out. */
486 		boot_pages = UMA_BOOT_PAGES_ZONES * pages_per_zone;
487 	}
488 
489 	/*
490 	 * Allocate memory for use when boot strapping the kernel memory
491 	 * allocator.
492 	 *
493 	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
494 	 * manually fetch the value.
495 	 */
496 	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
497 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
498 	new_end = trunc_page(new_end);
499 	mapped = pmap_map(&vaddr, new_end, end,
500 	    VM_PROT_READ | VM_PROT_WRITE);
501 	bzero((void *)mapped, end - new_end);
502 	uma_startup((void *)mapped, boot_pages);
503 
504 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
505     defined(__i386__) || defined(__mips__)
506 	/*
507 	 * Allocate a bitmap to indicate that a random physical page
508 	 * needs to be included in a minidump.
509 	 *
510 	 * The amd64 port needs this to indicate which direct map pages
511 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
512 	 *
513 	 * However, i386 still needs this workspace internally within the
514 	 * minidump code.  In theory, they are not needed on i386, but are
515 	 * included should the sf_buf code decide to use them.
516 	 */
517 	last_pa = 0;
518 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
519 		if (dump_avail[i + 1] > last_pa)
520 			last_pa = dump_avail[i + 1];
521 	page_range = last_pa / PAGE_SIZE;
522 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
523 	new_end -= vm_page_dump_size;
524 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
525 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
526 	bzero((void *)vm_page_dump, vm_page_dump_size);
527 #endif
528 #ifdef __amd64__
529 	/*
530 	 * Request that the physical pages underlying the message buffer be
531 	 * included in a crash dump.  Since the message buffer is accessed
532 	 * through the direct map, they are not automatically included.
533 	 */
534 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
535 	last_pa = pa + round_page(msgbufsize);
536 	while (pa < last_pa) {
537 		dump_add_page(pa);
538 		pa += PAGE_SIZE;
539 	}
540 #endif
541 	/*
542 	 * Compute the number of pages of memory that will be available for
543 	 * use (taking into account the overhead of a page structure per
544 	 * page).
545 	 */
546 	first_page = low_water / PAGE_SIZE;
547 #ifdef VM_PHYSSEG_SPARSE
548 	page_range = 0;
549 	for (i = 0; i < vm_phys_nsegs; i++) {
550 		page_range += atop(vm_phys_segs[i].end -
551 		    vm_phys_segs[i].start);
552 	}
553 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
554 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
555 #elif defined(VM_PHYSSEG_DENSE)
556 	page_range = high_water / PAGE_SIZE - first_page;
557 #else
558 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
559 #endif
560 	end = new_end;
561 
562 	/*
563 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
564 	 */
565 	vaddr += PAGE_SIZE;
566 
567 	/*
568 	 * Initialize the mem entry structures now, and put them in the free
569 	 * queue.
570 	 */
571 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
572 	mapped = pmap_map(&vaddr, new_end, end,
573 	    VM_PROT_READ | VM_PROT_WRITE);
574 	vm_page_array = (vm_page_t) mapped;
575 #if VM_NRESERVLEVEL > 0
576 	/*
577 	 * Allocate memory for the reservation management system's data
578 	 * structures.
579 	 */
580 	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
581 #endif
582 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
583 	/*
584 	 * pmap_map on arm64, amd64, and mips can come out of the direct-map,
585 	 * not kvm like i386, so the pages must be tracked for a crashdump to
586 	 * include this data.  This includes the vm_page_array and the early
587 	 * UMA bootstrap pages.
588 	 */
589 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
590 		dump_add_page(pa);
591 #endif
592 	phys_avail[biggestone + 1] = new_end;
593 
594 	/*
595 	 * Add physical memory segments corresponding to the available
596 	 * physical pages.
597 	 */
598 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
599 		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
600 
601 	/*
602 	 * Clear all of the page structures
603 	 */
604 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
605 	for (i = 0; i < page_range; i++)
606 		vm_page_array[i].order = VM_NFREEORDER;
607 	vm_page_array_size = page_range;
608 
609 	/*
610 	 * Initialize the physical memory allocator.
611 	 */
612 	vm_phys_init();
613 
614 	/*
615 	 * Add every available physical page that is not blacklisted to
616 	 * the free lists.
617 	 */
618 	vm_cnt.v_page_count = 0;
619 	vm_cnt.v_free_count = 0;
620 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
621 		pa = phys_avail[i];
622 		last_pa = phys_avail[i + 1];
623 		while (pa < last_pa) {
624 			vm_phys_add_page(pa);
625 			pa += PAGE_SIZE;
626 		}
627 	}
628 
629 	TAILQ_INIT(&blacklist_head);
630 	vm_page_blacklist_load(&list, &listend);
631 	vm_page_blacklist_check(list, listend);
632 
633 	list = kern_getenv("vm.blacklist");
634 	vm_page_blacklist_check(list, NULL);
635 
636 	freeenv(list);
637 #if VM_NRESERVLEVEL > 0
638 	/*
639 	 * Initialize the reservation management system.
640 	 */
641 	vm_reserv_init();
642 #endif
643 	return (vaddr);
644 }
645 
646 void
647 vm_page_reference(vm_page_t m)
648 {
649 
650 	vm_page_aflag_set(m, PGA_REFERENCED);
651 }
652 
653 /*
654  *	vm_page_busy_downgrade:
655  *
656  *	Downgrade an exclusive busy page into a single shared busy page.
657  */
658 void
659 vm_page_busy_downgrade(vm_page_t m)
660 {
661 	u_int x;
662 	bool locked;
663 
664 	vm_page_assert_xbusied(m);
665 	locked = mtx_owned(vm_page_lockptr(m));
666 
667 	for (;;) {
668 		x = m->busy_lock;
669 		x &= VPB_BIT_WAITERS;
670 		if (x != 0 && !locked)
671 			vm_page_lock(m);
672 		if (atomic_cmpset_rel_int(&m->busy_lock,
673 		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1)))
674 			break;
675 		if (x != 0 && !locked)
676 			vm_page_unlock(m);
677 	}
678 	if (x != 0) {
679 		wakeup(m);
680 		if (!locked)
681 			vm_page_unlock(m);
682 	}
683 }
684 
685 /*
686  *	vm_page_sbusied:
687  *
688  *	Return a positive value if the page is shared busied, 0 otherwise.
689  */
690 int
691 vm_page_sbusied(vm_page_t m)
692 {
693 	u_int x;
694 
695 	x = m->busy_lock;
696 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
697 }
698 
699 /*
700  *	vm_page_sunbusy:
701  *
702  *	Shared unbusy a page.
703  */
704 void
705 vm_page_sunbusy(vm_page_t m)
706 {
707 	u_int x;
708 
709 	vm_page_assert_sbusied(m);
710 
711 	for (;;) {
712 		x = m->busy_lock;
713 		if (VPB_SHARERS(x) > 1) {
714 			if (atomic_cmpset_int(&m->busy_lock, x,
715 			    x - VPB_ONE_SHARER))
716 				break;
717 			continue;
718 		}
719 		if ((x & VPB_BIT_WAITERS) == 0) {
720 			KASSERT(x == VPB_SHARERS_WORD(1),
721 			    ("vm_page_sunbusy: invalid lock state"));
722 			if (atomic_cmpset_int(&m->busy_lock,
723 			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
724 				break;
725 			continue;
726 		}
727 		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
728 		    ("vm_page_sunbusy: invalid lock state for waiters"));
729 
730 		vm_page_lock(m);
731 		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
732 			vm_page_unlock(m);
733 			continue;
734 		}
735 		wakeup(m);
736 		vm_page_unlock(m);
737 		break;
738 	}
739 }
740 
741 /*
742  *	vm_page_busy_sleep:
743  *
744  *	Sleep and release the page lock, using the page pointer as wchan.
745  *	This is used to implement the hard-path of busying mechanism.
746  *
747  *	The given page must be locked.
748  *
749  *	If nonshared is true, sleep only if the page is xbusy.
750  */
751 void
752 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
753 {
754 	u_int x;
755 
756 	vm_page_assert_locked(m);
757 
758 	x = m->busy_lock;
759 	if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
760 	    ((x & VPB_BIT_WAITERS) == 0 &&
761 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
762 		vm_page_unlock(m);
763 		return;
764 	}
765 	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
766 }
767 
768 /*
769  *	vm_page_trysbusy:
770  *
771  *	Try to shared busy a page.
772  *	If the operation succeeds 1 is returned otherwise 0.
773  *	The operation never sleeps.
774  */
775 int
776 vm_page_trysbusy(vm_page_t m)
777 {
778 	u_int x;
779 
780 	for (;;) {
781 		x = m->busy_lock;
782 		if ((x & VPB_BIT_SHARED) == 0)
783 			return (0);
784 		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
785 			return (1);
786 	}
787 }
788 
789 static void
790 vm_page_xunbusy_locked(vm_page_t m)
791 {
792 
793 	vm_page_assert_xbusied(m);
794 	vm_page_assert_locked(m);
795 
796 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
797 	/* There is a waiter, do wakeup() instead of vm_page_flash(). */
798 	wakeup(m);
799 }
800 
801 void
802 vm_page_xunbusy_maybelocked(vm_page_t m)
803 {
804 	bool lockacq;
805 
806 	vm_page_assert_xbusied(m);
807 
808 	/*
809 	 * Fast path for unbusy.  If it succeeds, we know that there
810 	 * are no waiters, so we do not need a wakeup.
811 	 */
812 	if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER,
813 	    VPB_UNBUSIED))
814 		return;
815 
816 	lockacq = !mtx_owned(vm_page_lockptr(m));
817 	if (lockacq)
818 		vm_page_lock(m);
819 	vm_page_xunbusy_locked(m);
820 	if (lockacq)
821 		vm_page_unlock(m);
822 }
823 
824 /*
825  *	vm_page_xunbusy_hard:
826  *
827  *	Called after the first try the exclusive unbusy of a page failed.
828  *	It is assumed that the waiters bit is on.
829  */
830 void
831 vm_page_xunbusy_hard(vm_page_t m)
832 {
833 
834 	vm_page_assert_xbusied(m);
835 
836 	vm_page_lock(m);
837 	vm_page_xunbusy_locked(m);
838 	vm_page_unlock(m);
839 }
840 
841 /*
842  *	vm_page_flash:
843  *
844  *	Wakeup anyone waiting for the page.
845  *	The ownership bits do not change.
846  *
847  *	The given page must be locked.
848  */
849 void
850 vm_page_flash(vm_page_t m)
851 {
852 	u_int x;
853 
854 	vm_page_lock_assert(m, MA_OWNED);
855 
856 	for (;;) {
857 		x = m->busy_lock;
858 		if ((x & VPB_BIT_WAITERS) == 0)
859 			return;
860 		if (atomic_cmpset_int(&m->busy_lock, x,
861 		    x & (~VPB_BIT_WAITERS)))
862 			break;
863 	}
864 	wakeup(m);
865 }
866 
867 /*
868  * Keep page from being freed by the page daemon
869  * much of the same effect as wiring, except much lower
870  * overhead and should be used only for *very* temporary
871  * holding ("wiring").
872  */
873 void
874 vm_page_hold(vm_page_t mem)
875 {
876 
877 	vm_page_lock_assert(mem, MA_OWNED);
878         mem->hold_count++;
879 }
880 
881 void
882 vm_page_unhold(vm_page_t mem)
883 {
884 
885 	vm_page_lock_assert(mem, MA_OWNED);
886 	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
887 	--mem->hold_count;
888 	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
889 		vm_page_free_toq(mem);
890 }
891 
892 /*
893  *	vm_page_unhold_pages:
894  *
895  *	Unhold each of the pages that is referenced by the given array.
896  */
897 void
898 vm_page_unhold_pages(vm_page_t *ma, int count)
899 {
900 	struct mtx *mtx, *new_mtx;
901 
902 	mtx = NULL;
903 	for (; count != 0; count--) {
904 		/*
905 		 * Avoid releasing and reacquiring the same page lock.
906 		 */
907 		new_mtx = vm_page_lockptr(*ma);
908 		if (mtx != new_mtx) {
909 			if (mtx != NULL)
910 				mtx_unlock(mtx);
911 			mtx = new_mtx;
912 			mtx_lock(mtx);
913 		}
914 		vm_page_unhold(*ma);
915 		ma++;
916 	}
917 	if (mtx != NULL)
918 		mtx_unlock(mtx);
919 }
920 
921 vm_page_t
922 PHYS_TO_VM_PAGE(vm_paddr_t pa)
923 {
924 	vm_page_t m;
925 
926 #ifdef VM_PHYSSEG_SPARSE
927 	m = vm_phys_paddr_to_vm_page(pa);
928 	if (m == NULL)
929 		m = vm_phys_fictitious_to_vm_page(pa);
930 	return (m);
931 #elif defined(VM_PHYSSEG_DENSE)
932 	long pi;
933 
934 	pi = atop(pa);
935 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
936 		m = &vm_page_array[pi - first_page];
937 		return (m);
938 	}
939 	return (vm_phys_fictitious_to_vm_page(pa));
940 #else
941 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
942 #endif
943 }
944 
945 /*
946  *	vm_page_getfake:
947  *
948  *	Create a fictitious page with the specified physical address and
949  *	memory attribute.  The memory attribute is the only the machine-
950  *	dependent aspect of a fictitious page that must be initialized.
951  */
952 vm_page_t
953 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
954 {
955 	vm_page_t m;
956 
957 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
958 	vm_page_initfake(m, paddr, memattr);
959 	return (m);
960 }
961 
962 void
963 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
964 {
965 
966 	if ((m->flags & PG_FICTITIOUS) != 0) {
967 		/*
968 		 * The page's memattr might have changed since the
969 		 * previous initialization.  Update the pmap to the
970 		 * new memattr.
971 		 */
972 		goto memattr;
973 	}
974 	m->phys_addr = paddr;
975 	m->queue = PQ_NONE;
976 	/* Fictitious pages don't use "segind". */
977 	m->flags = PG_FICTITIOUS;
978 	/* Fictitious pages don't use "order" or "pool". */
979 	m->oflags = VPO_UNMANAGED;
980 	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
981 	m->wire_count = 1;
982 	pmap_page_init(m);
983 memattr:
984 	pmap_page_set_memattr(m, memattr);
985 }
986 
987 /*
988  *	vm_page_putfake:
989  *
990  *	Release a fictitious page.
991  */
992 void
993 vm_page_putfake(vm_page_t m)
994 {
995 
996 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
997 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
998 	    ("vm_page_putfake: bad page %p", m));
999 	uma_zfree(fakepg_zone, m);
1000 }
1001 
1002 /*
1003  *	vm_page_updatefake:
1004  *
1005  *	Update the given fictitious page to the specified physical address and
1006  *	memory attribute.
1007  */
1008 void
1009 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1010 {
1011 
1012 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1013 	    ("vm_page_updatefake: bad page %p", m));
1014 	m->phys_addr = paddr;
1015 	pmap_page_set_memattr(m, memattr);
1016 }
1017 
1018 /*
1019  *	vm_page_free:
1020  *
1021  *	Free a page.
1022  */
1023 void
1024 vm_page_free(vm_page_t m)
1025 {
1026 
1027 	m->flags &= ~PG_ZERO;
1028 	vm_page_free_toq(m);
1029 }
1030 
1031 /*
1032  *	vm_page_free_zero:
1033  *
1034  *	Free a page to the zerod-pages queue
1035  */
1036 void
1037 vm_page_free_zero(vm_page_t m)
1038 {
1039 
1040 	m->flags |= PG_ZERO;
1041 	vm_page_free_toq(m);
1042 }
1043 
1044 /*
1045  * Unbusy and handle the page queueing for a page from a getpages request that
1046  * was optionally read ahead or behind.
1047  */
1048 void
1049 vm_page_readahead_finish(vm_page_t m)
1050 {
1051 
1052 	/* We shouldn't put invalid pages on queues. */
1053 	KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
1054 
1055 	/*
1056 	 * Since the page is not the actually needed one, whether it should
1057 	 * be activated or deactivated is not obvious.  Empirical results
1058 	 * have shown that deactivating the page is usually the best choice,
1059 	 * unless the page is wanted by another thread.
1060 	 */
1061 	vm_page_lock(m);
1062 	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1063 		vm_page_activate(m);
1064 	else
1065 		vm_page_deactivate(m);
1066 	vm_page_unlock(m);
1067 	vm_page_xunbusy(m);
1068 }
1069 
1070 /*
1071  *	vm_page_sleep_if_busy:
1072  *
1073  *	Sleep and release the page queues lock if the page is busied.
1074  *	Returns TRUE if the thread slept.
1075  *
1076  *	The given page must be unlocked and object containing it must
1077  *	be locked.
1078  */
1079 int
1080 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1081 {
1082 	vm_object_t obj;
1083 
1084 	vm_page_lock_assert(m, MA_NOTOWNED);
1085 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1086 
1087 	if (vm_page_busied(m)) {
1088 		/*
1089 		 * The page-specific object must be cached because page
1090 		 * identity can change during the sleep, causing the
1091 		 * re-lock of a different object.
1092 		 * It is assumed that a reference to the object is already
1093 		 * held by the callers.
1094 		 */
1095 		obj = m->object;
1096 		vm_page_lock(m);
1097 		VM_OBJECT_WUNLOCK(obj);
1098 		vm_page_busy_sleep(m, msg, false);
1099 		VM_OBJECT_WLOCK(obj);
1100 		return (TRUE);
1101 	}
1102 	return (FALSE);
1103 }
1104 
1105 /*
1106  *	vm_page_dirty_KBI:		[ internal use only ]
1107  *
1108  *	Set all bits in the page's dirty field.
1109  *
1110  *	The object containing the specified page must be locked if the
1111  *	call is made from the machine-independent layer.
1112  *
1113  *	See vm_page_clear_dirty_mask().
1114  *
1115  *	This function should only be called by vm_page_dirty().
1116  */
1117 void
1118 vm_page_dirty_KBI(vm_page_t m)
1119 {
1120 
1121 	/* These assertions refer to this operation by its public name. */
1122 	KASSERT((m->flags & PG_CACHED) == 0,
1123 	    ("vm_page_dirty: page in cache!"));
1124 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1125 	    ("vm_page_dirty: page is invalid!"));
1126 	m->dirty = VM_PAGE_BITS_ALL;
1127 }
1128 
1129 /*
1130  *	vm_page_insert:		[ internal use only ]
1131  *
1132  *	Inserts the given mem entry into the object and object list.
1133  *
1134  *	The object must be locked.
1135  */
1136 int
1137 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1138 {
1139 	vm_page_t mpred;
1140 
1141 	VM_OBJECT_ASSERT_WLOCKED(object);
1142 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1143 	return (vm_page_insert_after(m, object, pindex, mpred));
1144 }
1145 
1146 /*
1147  *	vm_page_insert_after:
1148  *
1149  *	Inserts the page "m" into the specified object at offset "pindex".
1150  *
1151  *	The page "mpred" must immediately precede the offset "pindex" within
1152  *	the specified object.
1153  *
1154  *	The object must be locked.
1155  */
1156 static int
1157 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1158     vm_page_t mpred)
1159 {
1160 	vm_page_t msucc;
1161 
1162 	VM_OBJECT_ASSERT_WLOCKED(object);
1163 	KASSERT(m->object == NULL,
1164 	    ("vm_page_insert_after: page already inserted"));
1165 	if (mpred != NULL) {
1166 		KASSERT(mpred->object == object,
1167 		    ("vm_page_insert_after: object doesn't contain mpred"));
1168 		KASSERT(mpred->pindex < pindex,
1169 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1170 		msucc = TAILQ_NEXT(mpred, listq);
1171 	} else
1172 		msucc = TAILQ_FIRST(&object->memq);
1173 	if (msucc != NULL)
1174 		KASSERT(msucc->pindex > pindex,
1175 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1176 
1177 	/*
1178 	 * Record the object/offset pair in this page
1179 	 */
1180 	m->object = object;
1181 	m->pindex = pindex;
1182 
1183 	/*
1184 	 * Now link into the object's ordered list of backed pages.
1185 	 */
1186 	if (vm_radix_insert(&object->rtree, m)) {
1187 		m->object = NULL;
1188 		m->pindex = 0;
1189 		return (1);
1190 	}
1191 	vm_page_insert_radixdone(m, object, mpred);
1192 	return (0);
1193 }
1194 
1195 /*
1196  *	vm_page_insert_radixdone:
1197  *
1198  *	Complete page "m" insertion into the specified object after the
1199  *	radix trie hooking.
1200  *
1201  *	The page "mpred" must precede the offset "m->pindex" within the
1202  *	specified object.
1203  *
1204  *	The object must be locked.
1205  */
1206 static void
1207 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1208 {
1209 
1210 	VM_OBJECT_ASSERT_WLOCKED(object);
1211 	KASSERT(object != NULL && m->object == object,
1212 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1213 	if (mpred != NULL) {
1214 		KASSERT(mpred->object == object,
1215 		    ("vm_page_insert_after: object doesn't contain mpred"));
1216 		KASSERT(mpred->pindex < m->pindex,
1217 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1218 	}
1219 
1220 	if (mpred != NULL)
1221 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1222 	else
1223 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1224 
1225 	/*
1226 	 * Show that the object has one more resident page.
1227 	 */
1228 	object->resident_page_count++;
1229 
1230 	/*
1231 	 * Hold the vnode until the last page is released.
1232 	 */
1233 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1234 		vhold(object->handle);
1235 
1236 	/*
1237 	 * Since we are inserting a new and possibly dirty page,
1238 	 * update the object's OBJ_MIGHTBEDIRTY flag.
1239 	 */
1240 	if (pmap_page_is_write_mapped(m))
1241 		vm_object_set_writeable_dirty(object);
1242 }
1243 
1244 /*
1245  *	vm_page_remove:
1246  *
1247  *	Removes the given mem entry from the object/offset-page
1248  *	table and the object page list, but do not invalidate/terminate
1249  *	the backing store.
1250  *
1251  *	The object must be locked.  The page must be locked if it is managed.
1252  */
1253 void
1254 vm_page_remove(vm_page_t m)
1255 {
1256 	vm_object_t object;
1257 
1258 	if ((m->oflags & VPO_UNMANAGED) == 0)
1259 		vm_page_assert_locked(m);
1260 	if ((object = m->object) == NULL)
1261 		return;
1262 	VM_OBJECT_ASSERT_WLOCKED(object);
1263 	if (vm_page_xbusied(m))
1264 		vm_page_xunbusy_maybelocked(m);
1265 
1266 	/*
1267 	 * Now remove from the object's list of backed pages.
1268 	 */
1269 	vm_radix_remove(&object->rtree, m->pindex);
1270 	TAILQ_REMOVE(&object->memq, m, listq);
1271 
1272 	/*
1273 	 * And show that the object has one fewer resident page.
1274 	 */
1275 	object->resident_page_count--;
1276 
1277 	/*
1278 	 * The vnode may now be recycled.
1279 	 */
1280 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1281 		vdrop(object->handle);
1282 
1283 	m->object = NULL;
1284 }
1285 
1286 /*
1287  *	vm_page_lookup:
1288  *
1289  *	Returns the page associated with the object/offset
1290  *	pair specified; if none is found, NULL is returned.
1291  *
1292  *	The object must be locked.
1293  */
1294 vm_page_t
1295 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1296 {
1297 
1298 	VM_OBJECT_ASSERT_LOCKED(object);
1299 	return (vm_radix_lookup(&object->rtree, pindex));
1300 }
1301 
1302 /*
1303  *	vm_page_find_least:
1304  *
1305  *	Returns the page associated with the object with least pindex
1306  *	greater than or equal to the parameter pindex, or NULL.
1307  *
1308  *	The object must be locked.
1309  */
1310 vm_page_t
1311 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1312 {
1313 	vm_page_t m;
1314 
1315 	VM_OBJECT_ASSERT_LOCKED(object);
1316 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1317 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1318 	return (m);
1319 }
1320 
1321 /*
1322  * Returns the given page's successor (by pindex) within the object if it is
1323  * resident; if none is found, NULL is returned.
1324  *
1325  * The object must be locked.
1326  */
1327 vm_page_t
1328 vm_page_next(vm_page_t m)
1329 {
1330 	vm_page_t next;
1331 
1332 	VM_OBJECT_ASSERT_LOCKED(m->object);
1333 	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1334 	    next->pindex != m->pindex + 1)
1335 		next = NULL;
1336 	return (next);
1337 }
1338 
1339 /*
1340  * Returns the given page's predecessor (by pindex) within the object if it is
1341  * resident; if none is found, NULL is returned.
1342  *
1343  * The object must be locked.
1344  */
1345 vm_page_t
1346 vm_page_prev(vm_page_t m)
1347 {
1348 	vm_page_t prev;
1349 
1350 	VM_OBJECT_ASSERT_LOCKED(m->object);
1351 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1352 	    prev->pindex != m->pindex - 1)
1353 		prev = NULL;
1354 	return (prev);
1355 }
1356 
1357 /*
1358  * Uses the page mnew as a replacement for an existing page at index
1359  * pindex which must be already present in the object.
1360  *
1361  * The existing page must not be on a paging queue.
1362  */
1363 vm_page_t
1364 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1365 {
1366 	vm_page_t mold;
1367 
1368 	VM_OBJECT_ASSERT_WLOCKED(object);
1369 	KASSERT(mnew->object == NULL,
1370 	    ("vm_page_replace: page already in object"));
1371 
1372 	/*
1373 	 * This function mostly follows vm_page_insert() and
1374 	 * vm_page_remove() without the radix, object count and vnode
1375 	 * dance.  Double check such functions for more comments.
1376 	 */
1377 
1378 	mnew->object = object;
1379 	mnew->pindex = pindex;
1380 	mold = vm_radix_replace(&object->rtree, mnew);
1381 	KASSERT(mold->queue == PQ_NONE,
1382 	    ("vm_page_replace: mold is on a paging queue"));
1383 
1384 	/* Keep the resident page list in sorted order. */
1385 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1386 	TAILQ_REMOVE(&object->memq, mold, listq);
1387 
1388 	mold->object = NULL;
1389 	vm_page_xunbusy_maybelocked(mold);
1390 
1391 	/*
1392 	 * The object's resident_page_count does not change because we have
1393 	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1394 	 */
1395 	if (pmap_page_is_write_mapped(mnew))
1396 		vm_object_set_writeable_dirty(object);
1397 	return (mold);
1398 }
1399 
1400 /*
1401  *	vm_page_rename:
1402  *
1403  *	Move the given memory entry from its
1404  *	current object to the specified target object/offset.
1405  *
1406  *	Note: swap associated with the page must be invalidated by the move.  We
1407  *	      have to do this for several reasons:  (1) we aren't freeing the
1408  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1409  *	      moving the page from object A to B, and will then later move
1410  *	      the backing store from A to B and we can't have a conflict.
1411  *
1412  *	Note: we *always* dirty the page.  It is necessary both for the
1413  *	      fact that we moved it, and because we may be invalidating
1414  *	      swap.  If the page is on the cache, we have to deactivate it
1415  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1416  *	      on the cache.
1417  *
1418  *	The objects must be locked.
1419  */
1420 int
1421 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1422 {
1423 	vm_page_t mpred;
1424 	vm_pindex_t opidx;
1425 
1426 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1427 
1428 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1429 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1430 	    ("vm_page_rename: pindex already renamed"));
1431 
1432 	/*
1433 	 * Create a custom version of vm_page_insert() which does not depend
1434 	 * by m_prev and can cheat on the implementation aspects of the
1435 	 * function.
1436 	 */
1437 	opidx = m->pindex;
1438 	m->pindex = new_pindex;
1439 	if (vm_radix_insert(&new_object->rtree, m)) {
1440 		m->pindex = opidx;
1441 		return (1);
1442 	}
1443 
1444 	/*
1445 	 * The operation cannot fail anymore.  The removal must happen before
1446 	 * the listq iterator is tainted.
1447 	 */
1448 	m->pindex = opidx;
1449 	vm_page_lock(m);
1450 	vm_page_remove(m);
1451 
1452 	/* Return back to the new pindex to complete vm_page_insert(). */
1453 	m->pindex = new_pindex;
1454 	m->object = new_object;
1455 	vm_page_unlock(m);
1456 	vm_page_insert_radixdone(m, new_object, mpred);
1457 	vm_page_dirty(m);
1458 	return (0);
1459 }
1460 
1461 /*
1462  *	Convert all of the given object's cached pages that have a
1463  *	pindex within the given range into free pages.  If the value
1464  *	zero is given for "end", then the range's upper bound is
1465  *	infinity.  If the given object is backed by a vnode and it
1466  *	transitions from having one or more cached pages to none, the
1467  *	vnode's hold count is reduced.
1468  */
1469 void
1470 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1471 {
1472 	vm_page_t m;
1473 	boolean_t empty;
1474 
1475 	mtx_lock(&vm_page_queue_free_mtx);
1476 	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1477 		mtx_unlock(&vm_page_queue_free_mtx);
1478 		return;
1479 	}
1480 	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1481 		if (end != 0 && m->pindex >= end)
1482 			break;
1483 		vm_radix_remove(&object->cache, m->pindex);
1484 		vm_page_cache_turn_free(m);
1485 	}
1486 	empty = vm_radix_is_empty(&object->cache);
1487 	mtx_unlock(&vm_page_queue_free_mtx);
1488 	if (object->type == OBJT_VNODE && empty)
1489 		vdrop(object->handle);
1490 }
1491 
1492 /*
1493  *	Returns the cached page that is associated with the given
1494  *	object and offset.  If, however, none exists, returns NULL.
1495  *
1496  *	The free page queue must be locked.
1497  */
1498 static inline vm_page_t
1499 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1500 {
1501 
1502 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1503 	return (vm_radix_lookup(&object->cache, pindex));
1504 }
1505 
1506 /*
1507  *	Remove the given cached page from its containing object's
1508  *	collection of cached pages.
1509  *
1510  *	The free page queue must be locked.
1511  */
1512 static void
1513 vm_page_cache_remove(vm_page_t m)
1514 {
1515 
1516 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1517 	KASSERT((m->flags & PG_CACHED) != 0,
1518 	    ("vm_page_cache_remove: page %p is not cached", m));
1519 	vm_radix_remove(&m->object->cache, m->pindex);
1520 	m->object = NULL;
1521 	vm_cnt.v_cache_count--;
1522 }
1523 
1524 /*
1525  *	Transfer all of the cached pages with offset greater than or
1526  *	equal to 'offidxstart' from the original object's cache to the
1527  *	new object's cache.  However, any cached pages with offset
1528  *	greater than or equal to the new object's size are kept in the
1529  *	original object.  Initially, the new object's cache must be
1530  *	empty.  Offset 'offidxstart' in the original object must
1531  *	correspond to offset zero in the new object.
1532  *
1533  *	The new object must be locked.
1534  */
1535 void
1536 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1537     vm_object_t new_object)
1538 {
1539 	vm_page_t m;
1540 
1541 	/*
1542 	 * Insertion into an object's collection of cached pages
1543 	 * requires the object to be locked.  In contrast, removal does
1544 	 * not.
1545 	 */
1546 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1547 	KASSERT(vm_radix_is_empty(&new_object->cache),
1548 	    ("vm_page_cache_transfer: object %p has cached pages",
1549 	    new_object));
1550 	mtx_lock(&vm_page_queue_free_mtx);
1551 	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1552 	    offidxstart)) != NULL) {
1553 		/*
1554 		 * Transfer all of the pages with offset greater than or
1555 		 * equal to 'offidxstart' from the original object's
1556 		 * cache to the new object's cache.
1557 		 */
1558 		if ((m->pindex - offidxstart) >= new_object->size)
1559 			break;
1560 		vm_radix_remove(&orig_object->cache, m->pindex);
1561 		/* Update the page's object and offset. */
1562 		m->object = new_object;
1563 		m->pindex -= offidxstart;
1564 		if (vm_radix_insert(&new_object->cache, m))
1565 			vm_page_cache_turn_free(m);
1566 	}
1567 	mtx_unlock(&vm_page_queue_free_mtx);
1568 }
1569 
1570 /*
1571  *	Returns TRUE if a cached page is associated with the given object and
1572  *	offset, and FALSE otherwise.
1573  *
1574  *	The object must be locked.
1575  */
1576 boolean_t
1577 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1578 {
1579 	vm_page_t m;
1580 
1581 	/*
1582 	 * Insertion into an object's collection of cached pages requires the
1583 	 * object to be locked.  Therefore, if the object is locked and the
1584 	 * object's collection is empty, there is no need to acquire the free
1585 	 * page queues lock in order to prove that the specified page doesn't
1586 	 * exist.
1587 	 */
1588 	VM_OBJECT_ASSERT_WLOCKED(object);
1589 	if (__predict_true(vm_object_cache_is_empty(object)))
1590 		return (FALSE);
1591 	mtx_lock(&vm_page_queue_free_mtx);
1592 	m = vm_page_cache_lookup(object, pindex);
1593 	mtx_unlock(&vm_page_queue_free_mtx);
1594 	return (m != NULL);
1595 }
1596 
1597 /*
1598  *	vm_page_alloc:
1599  *
1600  *	Allocate and return a page that is associated with the specified
1601  *	object and offset pair.  By default, this page is exclusive busied.
1602  *
1603  *	The caller must always specify an allocation class.
1604  *
1605  *	allocation classes:
1606  *	VM_ALLOC_NORMAL		normal process request
1607  *	VM_ALLOC_SYSTEM		system *really* needs a page
1608  *	VM_ALLOC_INTERRUPT	interrupt time request
1609  *
1610  *	optional allocation flags:
1611  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1612  *				intends to allocate
1613  *	VM_ALLOC_IFCACHED	return page only if it is cached
1614  *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1615  *				is cached
1616  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1617  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1618  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1619  *				should not be exclusive busy
1620  *	VM_ALLOC_SBUSY		shared busy the allocated page
1621  *	VM_ALLOC_WIRED		wire the allocated page
1622  *	VM_ALLOC_ZERO		prefer a zeroed page
1623  *
1624  *	This routine may not sleep.
1625  */
1626 vm_page_t
1627 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1628 {
1629 	struct vnode *vp = NULL;
1630 	vm_object_t m_object;
1631 	vm_page_t m, mpred;
1632 	int flags, req_class;
1633 
1634 	mpred = 0;	/* XXX: pacify gcc */
1635 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1636 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1637 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1638 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1639 	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1640 	    req));
1641 	if (object != NULL)
1642 		VM_OBJECT_ASSERT_WLOCKED(object);
1643 
1644 	req_class = req & VM_ALLOC_CLASS_MASK;
1645 
1646 	/*
1647 	 * The page daemon is allowed to dig deeper into the free page list.
1648 	 */
1649 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1650 		req_class = VM_ALLOC_SYSTEM;
1651 
1652 	if (object != NULL) {
1653 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1654 		KASSERT(mpred == NULL || mpred->pindex != pindex,
1655 		   ("vm_page_alloc: pindex already allocated"));
1656 	}
1657 
1658 	/*
1659 	 * The page allocation request can came from consumers which already
1660 	 * hold the free page queue mutex, like vm_page_insert() in
1661 	 * vm_page_cache().
1662 	 */
1663 	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1664 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1665 	    (req_class == VM_ALLOC_SYSTEM &&
1666 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1667 	    (req_class == VM_ALLOC_INTERRUPT &&
1668 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) {
1669 		/*
1670 		 * Allocate from the free queue if the number of free pages
1671 		 * exceeds the minimum for the request class.
1672 		 */
1673 		if (object != NULL &&
1674 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1675 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1676 				mtx_unlock(&vm_page_queue_free_mtx);
1677 				return (NULL);
1678 			}
1679 			if (vm_phys_unfree_page(m))
1680 				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1681 #if VM_NRESERVLEVEL > 0
1682 			else if (!vm_reserv_reactivate_page(m))
1683 #else
1684 			else
1685 #endif
1686 				panic("vm_page_alloc: cache page %p is missing"
1687 				    " from the free queue", m);
1688 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1689 			mtx_unlock(&vm_page_queue_free_mtx);
1690 			return (NULL);
1691 #if VM_NRESERVLEVEL > 0
1692 		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1693 		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1694 		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1695 #else
1696 		} else {
1697 #endif
1698 			m = vm_phys_alloc_pages(object != NULL ?
1699 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1700 #if VM_NRESERVLEVEL > 0
1701 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1702 				m = vm_phys_alloc_pages(object != NULL ?
1703 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1704 				    0);
1705 			}
1706 #endif
1707 		}
1708 	} else {
1709 		/*
1710 		 * Not allocatable, give up.
1711 		 */
1712 		mtx_unlock(&vm_page_queue_free_mtx);
1713 		atomic_add_int(&vm_pageout_deficit,
1714 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1715 		pagedaemon_wakeup();
1716 		return (NULL);
1717 	}
1718 
1719 	/*
1720 	 *  At this point we had better have found a good page.
1721 	 */
1722 	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1723 	KASSERT(m->queue == PQ_NONE,
1724 	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1725 	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1726 	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1727 	KASSERT(!vm_page_busied(m), ("vm_page_alloc: page %p is busy", m));
1728 	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1729 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1730 	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1731 	    pmap_page_get_memattr(m)));
1732 	if ((m->flags & PG_CACHED) != 0) {
1733 		KASSERT((m->flags & PG_ZERO) == 0,
1734 		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1735 		KASSERT(m->valid != 0,
1736 		    ("vm_page_alloc: cached page %p is invalid", m));
1737 		if (m->object != object || m->pindex != pindex)
1738 			m->valid = 0;
1739 		m_object = m->object;
1740 		vm_page_cache_remove(m);
1741 		if (m_object->type == OBJT_VNODE &&
1742 		    vm_object_cache_is_empty(m_object))
1743 			vp = m_object->handle;
1744 	} else {
1745 		KASSERT(m->valid == 0,
1746 		    ("vm_page_alloc: free page %p is valid", m));
1747 		vm_phys_freecnt_adj(m, -1);
1748 	}
1749 	mtx_unlock(&vm_page_queue_free_mtx);
1750 
1751 	/*
1752 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1753 	 */
1754 	flags = 0;
1755 	if ((req & VM_ALLOC_ZERO) != 0)
1756 		flags = PG_ZERO;
1757 	flags &= m->flags;
1758 	if ((req & VM_ALLOC_NODUMP) != 0)
1759 		flags |= PG_NODUMP;
1760 	m->flags = flags;
1761 	m->aflags = 0;
1762 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1763 	    VPO_UNMANAGED : 0;
1764 	m->busy_lock = VPB_UNBUSIED;
1765 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1766 		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1767 	if ((req & VM_ALLOC_SBUSY) != 0)
1768 		m->busy_lock = VPB_SHARERS_WORD(1);
1769 	if (req & VM_ALLOC_WIRED) {
1770 		/*
1771 		 * The page lock is not required for wiring a page until that
1772 		 * page is inserted into the object.
1773 		 */
1774 		atomic_add_int(&vm_cnt.v_wire_count, 1);
1775 		m->wire_count = 1;
1776 	}
1777 	m->act_count = 0;
1778 
1779 	if (object != NULL) {
1780 		if (vm_page_insert_after(m, object, pindex, mpred)) {
1781 			/* See the comment below about hold count. */
1782 			if (vp != NULL)
1783 				vdrop(vp);
1784 			pagedaemon_wakeup();
1785 			if (req & VM_ALLOC_WIRED) {
1786 				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1787 				m->wire_count = 0;
1788 			}
1789 			m->object = NULL;
1790 			m->oflags = VPO_UNMANAGED;
1791 			m->busy_lock = VPB_UNBUSIED;
1792 			vm_page_free(m);
1793 			return (NULL);
1794 		}
1795 
1796 		/* Ignore device objects; the pager sets "memattr" for them. */
1797 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1798 		    (object->flags & OBJ_FICTITIOUS) == 0)
1799 			pmap_page_set_memattr(m, object->memattr);
1800 	} else
1801 		m->pindex = pindex;
1802 
1803 	/*
1804 	 * The following call to vdrop() must come after the above call
1805 	 * to vm_page_insert() in case both affect the same object and
1806 	 * vnode.  Otherwise, the affected vnode's hold count could
1807 	 * temporarily become zero.
1808 	 */
1809 	if (vp != NULL)
1810 		vdrop(vp);
1811 
1812 	/*
1813 	 * Don't wakeup too often - wakeup the pageout daemon when
1814 	 * we would be nearly out of memory.
1815 	 */
1816 	if (vm_paging_needed())
1817 		pagedaemon_wakeup();
1818 
1819 	return (m);
1820 }
1821 
1822 static void
1823 vm_page_alloc_contig_vdrop(struct spglist *lst)
1824 {
1825 
1826 	while (!SLIST_EMPTY(lst)) {
1827 		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1828 		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1829 	}
1830 }
1831 
1832 /*
1833  *	vm_page_alloc_contig:
1834  *
1835  *	Allocate a contiguous set of physical pages of the given size "npages"
1836  *	from the free lists.  All of the physical pages must be at or above
1837  *	the given physical address "low" and below the given physical address
1838  *	"high".  The given value "alignment" determines the alignment of the
1839  *	first physical page in the set.  If the given value "boundary" is
1840  *	non-zero, then the set of physical pages cannot cross any physical
1841  *	address boundary that is a multiple of that value.  Both "alignment"
1842  *	and "boundary" must be a power of two.
1843  *
1844  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1845  *	then the memory attribute setting for the physical pages is configured
1846  *	to the object's memory attribute setting.  Otherwise, the memory
1847  *	attribute setting for the physical pages is configured to "memattr",
1848  *	overriding the object's memory attribute setting.  However, if the
1849  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1850  *	memory attribute setting for the physical pages cannot be configured
1851  *	to VM_MEMATTR_DEFAULT.
1852  *
1853  *	The caller must always specify an allocation class.
1854  *
1855  *	allocation classes:
1856  *	VM_ALLOC_NORMAL		normal process request
1857  *	VM_ALLOC_SYSTEM		system *really* needs a page
1858  *	VM_ALLOC_INTERRUPT	interrupt time request
1859  *
1860  *	optional allocation flags:
1861  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1862  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1863  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1864  *				should not be exclusive busy
1865  *	VM_ALLOC_SBUSY		shared busy the allocated page
1866  *	VM_ALLOC_WIRED		wire the allocated page
1867  *	VM_ALLOC_ZERO		prefer a zeroed page
1868  *
1869  *	This routine may not sleep.
1870  */
1871 vm_page_t
1872 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1873     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1874     vm_paddr_t boundary, vm_memattr_t memattr)
1875 {
1876 	struct vnode *drop;
1877 	struct spglist deferred_vdrop_list;
1878 	vm_page_t m, m_tmp, m_ret;
1879 	u_int flags;
1880 	int req_class;
1881 
1882 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1883 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1884 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1885 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1886 	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1887 	    req));
1888 	if (object != NULL) {
1889 		VM_OBJECT_ASSERT_WLOCKED(object);
1890 		KASSERT(object->type == OBJT_PHYS,
1891 		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1892 		    object));
1893 	}
1894 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1895 	req_class = req & VM_ALLOC_CLASS_MASK;
1896 
1897 	/*
1898 	 * The page daemon is allowed to dig deeper into the free page list.
1899 	 */
1900 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1901 		req_class = VM_ALLOC_SYSTEM;
1902 
1903 	SLIST_INIT(&deferred_vdrop_list);
1904 	mtx_lock(&vm_page_queue_free_mtx);
1905 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1906 	    vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1907 	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1908 	    vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1909 	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) {
1910 #if VM_NRESERVLEVEL > 0
1911 retry:
1912 		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1913 		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1914 		    low, high, alignment, boundary)) == NULL)
1915 #endif
1916 			m_ret = vm_phys_alloc_contig(npages, low, high,
1917 			    alignment, boundary);
1918 	} else {
1919 		mtx_unlock(&vm_page_queue_free_mtx);
1920 		atomic_add_int(&vm_pageout_deficit, npages);
1921 		pagedaemon_wakeup();
1922 		return (NULL);
1923 	}
1924 	if (m_ret != NULL)
1925 		for (m = m_ret; m < &m_ret[npages]; m++) {
1926 			drop = vm_page_alloc_init(m);
1927 			if (drop != NULL) {
1928 				/*
1929 				 * Enqueue the vnode for deferred vdrop().
1930 				 */
1931 				m->plinks.s.pv = drop;
1932 				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1933 				    plinks.s.ss);
1934 			}
1935 		}
1936 	else {
1937 #if VM_NRESERVLEVEL > 0
1938 		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1939 		    boundary))
1940 			goto retry;
1941 #endif
1942 	}
1943 	mtx_unlock(&vm_page_queue_free_mtx);
1944 	if (m_ret == NULL)
1945 		return (NULL);
1946 
1947 	/*
1948 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1949 	 */
1950 	flags = 0;
1951 	if ((req & VM_ALLOC_ZERO) != 0)
1952 		flags = PG_ZERO;
1953 	if ((req & VM_ALLOC_NODUMP) != 0)
1954 		flags |= PG_NODUMP;
1955 	if ((req & VM_ALLOC_WIRED) != 0)
1956 		atomic_add_int(&vm_cnt.v_wire_count, npages);
1957 	if (object != NULL) {
1958 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1959 		    memattr == VM_MEMATTR_DEFAULT)
1960 			memattr = object->memattr;
1961 	}
1962 	for (m = m_ret; m < &m_ret[npages]; m++) {
1963 		m->aflags = 0;
1964 		m->flags = (m->flags | PG_NODUMP) & flags;
1965 		m->busy_lock = VPB_UNBUSIED;
1966 		if (object != NULL) {
1967 			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1968 				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1969 			if ((req & VM_ALLOC_SBUSY) != 0)
1970 				m->busy_lock = VPB_SHARERS_WORD(1);
1971 		}
1972 		if ((req & VM_ALLOC_WIRED) != 0)
1973 			m->wire_count = 1;
1974 		/* Unmanaged pages don't use "act_count". */
1975 		m->oflags = VPO_UNMANAGED;
1976 		if (object != NULL) {
1977 			if (vm_page_insert(m, object, pindex)) {
1978 				vm_page_alloc_contig_vdrop(
1979 				    &deferred_vdrop_list);
1980 				if (vm_paging_needed())
1981 					pagedaemon_wakeup();
1982 				if ((req & VM_ALLOC_WIRED) != 0)
1983 					atomic_subtract_int(&vm_cnt.v_wire_count,
1984 					    npages);
1985 				for (m_tmp = m, m = m_ret;
1986 				    m < &m_ret[npages]; m++) {
1987 					if ((req & VM_ALLOC_WIRED) != 0)
1988 						m->wire_count = 0;
1989 					if (m >= m_tmp) {
1990 						m->object = NULL;
1991 						m->oflags |= VPO_UNMANAGED;
1992 					}
1993 					m->busy_lock = VPB_UNBUSIED;
1994 					vm_page_free(m);
1995 				}
1996 				return (NULL);
1997 			}
1998 		} else
1999 			m->pindex = pindex;
2000 		if (memattr != VM_MEMATTR_DEFAULT)
2001 			pmap_page_set_memattr(m, memattr);
2002 		pindex++;
2003 	}
2004 	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
2005 	if (vm_paging_needed())
2006 		pagedaemon_wakeup();
2007 	return (m_ret);
2008 }
2009 
2010 /*
2011  * Initialize a page that has been freshly dequeued from a freelist.
2012  * The caller has to drop the vnode returned, if it is not NULL.
2013  *
2014  * This function may only be used to initialize unmanaged pages.
2015  *
2016  * To be called with vm_page_queue_free_mtx held.
2017  */
2018 static struct vnode *
2019 vm_page_alloc_init(vm_page_t m)
2020 {
2021 	struct vnode *drop;
2022 	vm_object_t m_object;
2023 
2024 	KASSERT(m->queue == PQ_NONE,
2025 	    ("vm_page_alloc_init: page %p has unexpected queue %d",
2026 	    m, m->queue));
2027 	KASSERT(m->wire_count == 0,
2028 	    ("vm_page_alloc_init: page %p is wired", m));
2029 	KASSERT(m->hold_count == 0,
2030 	    ("vm_page_alloc_init: page %p is held", m));
2031 	KASSERT(!vm_page_busied(m),
2032 	    ("vm_page_alloc_init: page %p is busy", m));
2033 	KASSERT(m->dirty == 0,
2034 	    ("vm_page_alloc_init: page %p is dirty", m));
2035 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2036 	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
2037 	    m, pmap_page_get_memattr(m)));
2038 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2039 	drop = NULL;
2040 	if ((m->flags & PG_CACHED) != 0) {
2041 		KASSERT((m->flags & PG_ZERO) == 0,
2042 		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
2043 		m->valid = 0;
2044 		m_object = m->object;
2045 		vm_page_cache_remove(m);
2046 		if (m_object->type == OBJT_VNODE &&
2047 		    vm_object_cache_is_empty(m_object))
2048 			drop = m_object->handle;
2049 	} else {
2050 		KASSERT(m->valid == 0,
2051 		    ("vm_page_alloc_init: free page %p is valid", m));
2052 		vm_phys_freecnt_adj(m, -1);
2053 	}
2054 	return (drop);
2055 }
2056 
2057 /*
2058  * 	vm_page_alloc_freelist:
2059  *
2060  *	Allocate a physical page from the specified free page list.
2061  *
2062  *	The caller must always specify an allocation class.
2063  *
2064  *	allocation classes:
2065  *	VM_ALLOC_NORMAL		normal process request
2066  *	VM_ALLOC_SYSTEM		system *really* needs a page
2067  *	VM_ALLOC_INTERRUPT	interrupt time request
2068  *
2069  *	optional allocation flags:
2070  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2071  *				intends to allocate
2072  *	VM_ALLOC_WIRED		wire the allocated page
2073  *	VM_ALLOC_ZERO		prefer a zeroed page
2074  *
2075  *	This routine may not sleep.
2076  */
2077 vm_page_t
2078 vm_page_alloc_freelist(int flind, int req)
2079 {
2080 	struct vnode *drop;
2081 	vm_page_t m;
2082 	u_int flags;
2083 	int req_class;
2084 
2085 	req_class = req & VM_ALLOC_CLASS_MASK;
2086 
2087 	/*
2088 	 * The page daemon is allowed to dig deeper into the free page list.
2089 	 */
2090 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2091 		req_class = VM_ALLOC_SYSTEM;
2092 
2093 	/*
2094 	 * Do not allocate reserved pages unless the req has asked for it.
2095 	 */
2096 	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
2097 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
2098 	    (req_class == VM_ALLOC_SYSTEM &&
2099 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
2100 	    (req_class == VM_ALLOC_INTERRUPT &&
2101 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0))
2102 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
2103 	else {
2104 		mtx_unlock(&vm_page_queue_free_mtx);
2105 		atomic_add_int(&vm_pageout_deficit,
2106 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
2107 		pagedaemon_wakeup();
2108 		return (NULL);
2109 	}
2110 	if (m == NULL) {
2111 		mtx_unlock(&vm_page_queue_free_mtx);
2112 		return (NULL);
2113 	}
2114 	drop = vm_page_alloc_init(m);
2115 	mtx_unlock(&vm_page_queue_free_mtx);
2116 
2117 	/*
2118 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2119 	 */
2120 	m->aflags = 0;
2121 	flags = 0;
2122 	if ((req & VM_ALLOC_ZERO) != 0)
2123 		flags = PG_ZERO;
2124 	m->flags &= flags;
2125 	if ((req & VM_ALLOC_WIRED) != 0) {
2126 		/*
2127 		 * The page lock is not required for wiring a page that does
2128 		 * not belong to an object.
2129 		 */
2130 		atomic_add_int(&vm_cnt.v_wire_count, 1);
2131 		m->wire_count = 1;
2132 	}
2133 	/* Unmanaged pages don't use "act_count". */
2134 	m->oflags = VPO_UNMANAGED;
2135 	if (drop != NULL)
2136 		vdrop(drop);
2137 	if (vm_paging_needed())
2138 		pagedaemon_wakeup();
2139 	return (m);
2140 }
2141 
2142 #define	VPSC_ANY	0	/* No restrictions. */
2143 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2144 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2145 
2146 /*
2147  *	vm_page_scan_contig:
2148  *
2149  *	Scan vm_page_array[] between the specified entries "m_start" and
2150  *	"m_end" for a run of contiguous physical pages that satisfy the
2151  *	specified conditions, and return the lowest page in the run.  The
2152  *	specified "alignment" determines the alignment of the lowest physical
2153  *	page in the run.  If the specified "boundary" is non-zero, then the
2154  *	run of physical pages cannot span a physical address that is a
2155  *	multiple of "boundary".
2156  *
2157  *	"m_end" is never dereferenced, so it need not point to a vm_page
2158  *	structure within vm_page_array[].
2159  *
2160  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2161  *	span a hole (or discontiguity) in the physical address space.  Both
2162  *	"alignment" and "boundary" must be a power of two.
2163  */
2164 vm_page_t
2165 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2166     u_long alignment, vm_paddr_t boundary, int options)
2167 {
2168 	struct mtx *m_mtx, *new_mtx;
2169 	vm_object_t object;
2170 	vm_paddr_t pa;
2171 	vm_page_t m, m_run;
2172 #if VM_NRESERVLEVEL > 0
2173 	int level;
2174 #endif
2175 	int m_inc, order, run_ext, run_len;
2176 
2177 	KASSERT(npages > 0, ("npages is 0"));
2178 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2179 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2180 	m_run = NULL;
2181 	run_len = 0;
2182 	m_mtx = NULL;
2183 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2184 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2185 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2186 
2187 		/*
2188 		 * If the current page would be the start of a run, check its
2189 		 * physical address against the end, alignment, and boundary
2190 		 * conditions.  If it doesn't satisfy these conditions, either
2191 		 * terminate the scan or advance to the next page that
2192 		 * satisfies the failed condition.
2193 		 */
2194 		if (run_len == 0) {
2195 			KASSERT(m_run == NULL, ("m_run != NULL"));
2196 			if (m + npages > m_end)
2197 				break;
2198 			pa = VM_PAGE_TO_PHYS(m);
2199 			if ((pa & (alignment - 1)) != 0) {
2200 				m_inc = atop(roundup2(pa, alignment) - pa);
2201 				continue;
2202 			}
2203 			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2204 			    boundary) != 0) {
2205 				m_inc = atop(roundup2(pa, boundary) - pa);
2206 				continue;
2207 			}
2208 		} else
2209 			KASSERT(m_run != NULL, ("m_run == NULL"));
2210 
2211 		/*
2212 		 * Avoid releasing and reacquiring the same page lock.
2213 		 */
2214 		new_mtx = vm_page_lockptr(m);
2215 		if (m_mtx != new_mtx) {
2216 			if (m_mtx != NULL)
2217 				mtx_unlock(m_mtx);
2218 			m_mtx = new_mtx;
2219 			mtx_lock(m_mtx);
2220 		}
2221 		m_inc = 1;
2222 retry:
2223 		if (m->wire_count != 0 || m->hold_count != 0)
2224 			run_ext = 0;
2225 #if VM_NRESERVLEVEL > 0
2226 		else if ((level = vm_reserv_level(m)) >= 0 &&
2227 		    (options & VPSC_NORESERV) != 0) {
2228 			run_ext = 0;
2229 			/* Advance to the end of the reservation. */
2230 			pa = VM_PAGE_TO_PHYS(m);
2231 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2232 			    pa);
2233 		}
2234 #endif
2235 		else if ((object = m->object) != NULL) {
2236 			/*
2237 			 * The page is considered eligible for relocation if
2238 			 * and only if it could be laundered or reclaimed by
2239 			 * the page daemon.
2240 			 */
2241 			if (!VM_OBJECT_TRYRLOCK(object)) {
2242 				mtx_unlock(m_mtx);
2243 				VM_OBJECT_RLOCK(object);
2244 				mtx_lock(m_mtx);
2245 				if (m->object != object) {
2246 					/*
2247 					 * The page may have been freed.
2248 					 */
2249 					VM_OBJECT_RUNLOCK(object);
2250 					goto retry;
2251 				} else if (m->wire_count != 0 ||
2252 				    m->hold_count != 0) {
2253 					run_ext = 0;
2254 					goto unlock;
2255 				}
2256 			}
2257 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2258 			    ("page %p is PG_UNHOLDFREE", m));
2259 			/* Don't care: PG_NODUMP, PG_ZERO. */
2260 			if (object->type != OBJT_DEFAULT &&
2261 			    object->type != OBJT_SWAP &&
2262 			    object->type != OBJT_VNODE)
2263 				run_ext = 0;
2264 			else if ((m->flags & PG_CACHED) != 0 ||
2265 			    m != vm_page_lookup(object, m->pindex)) {
2266 				/*
2267 				 * The page is cached or recently converted
2268 				 * from cached to free.
2269 				 */
2270 #if VM_NRESERVLEVEL > 0
2271 				if (level >= 0) {
2272 					/*
2273 					 * The page is reserved.  Extend the
2274 					 * current run by one page.
2275 					 */
2276 					run_ext = 1;
2277 				} else
2278 #endif
2279 				if ((order = m->order) < VM_NFREEORDER) {
2280 					/*
2281 					 * The page is enqueued in the
2282 					 * physical memory allocator's cache/
2283 					 * free page queues.  Moreover, it is
2284 					 * the first page in a power-of-two-
2285 					 * sized run of contiguous cache/free
2286 					 * pages.  Add these pages to the end
2287 					 * of the current run, and jump
2288 					 * ahead.
2289 					 */
2290 					run_ext = 1 << order;
2291 					m_inc = 1 << order;
2292 				} else
2293 					run_ext = 0;
2294 #if VM_NRESERVLEVEL > 0
2295 			} else if ((options & VPSC_NOSUPER) != 0 &&
2296 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2297 				run_ext = 0;
2298 				/* Advance to the end of the superpage. */
2299 				pa = VM_PAGE_TO_PHYS(m);
2300 				m_inc = atop(roundup2(pa + 1,
2301 				    vm_reserv_size(level)) - pa);
2302 #endif
2303 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2304 			    m->queue != PQ_NONE && !vm_page_busied(m)) {
2305 				/*
2306 				 * The page is allocated but eligible for
2307 				 * relocation.  Extend the current run by one
2308 				 * page.
2309 				 */
2310 				KASSERT(pmap_page_get_memattr(m) ==
2311 				    VM_MEMATTR_DEFAULT,
2312 				    ("page %p has an unexpected memattr", m));
2313 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2314 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2315 				    ("page %p has unexpected oflags", m));
2316 				/* Don't care: VPO_NOSYNC. */
2317 				run_ext = 1;
2318 			} else
2319 				run_ext = 0;
2320 unlock:
2321 			VM_OBJECT_RUNLOCK(object);
2322 #if VM_NRESERVLEVEL > 0
2323 		} else if (level >= 0) {
2324 			/*
2325 			 * The page is reserved but not yet allocated.  In
2326 			 * other words, it is still cached or free.  Extend
2327 			 * the current run by one page.
2328 			 */
2329 			run_ext = 1;
2330 #endif
2331 		} else if ((order = m->order) < VM_NFREEORDER) {
2332 			/*
2333 			 * The page is enqueued in the physical memory
2334 			 * allocator's cache/free page queues.  Moreover, it
2335 			 * is the first page in a power-of-two-sized run of
2336 			 * contiguous cache/free pages.  Add these pages to
2337 			 * the end of the current run, and jump ahead.
2338 			 */
2339 			run_ext = 1 << order;
2340 			m_inc = 1 << order;
2341 		} else {
2342 			/*
2343 			 * Skip the page for one of the following reasons: (1)
2344 			 * It is enqueued in the physical memory allocator's
2345 			 * cache/free page queues.  However, it is not the
2346 			 * first page in a run of contiguous cache/free pages.
2347 			 * (This case rarely occurs because the scan is
2348 			 * performed in ascending order.) (2) It is not
2349 			 * reserved, and it is transitioning from free to
2350 			 * allocated.  (Conversely, the transition from
2351 			 * allocated to free for managed pages is blocked by
2352 			 * the page lock.) (3) It is allocated but not
2353 			 * contained by an object and not wired, e.g.,
2354 			 * allocated by Xen's balloon driver.
2355 			 */
2356 			run_ext = 0;
2357 		}
2358 
2359 		/*
2360 		 * Extend or reset the current run of pages.
2361 		 */
2362 		if (run_ext > 0) {
2363 			if (run_len == 0)
2364 				m_run = m;
2365 			run_len += run_ext;
2366 		} else {
2367 			if (run_len > 0) {
2368 				m_run = NULL;
2369 				run_len = 0;
2370 			}
2371 		}
2372 	}
2373 	if (m_mtx != NULL)
2374 		mtx_unlock(m_mtx);
2375 	if (run_len >= npages)
2376 		return (m_run);
2377 	return (NULL);
2378 }
2379 
2380 /*
2381  *	vm_page_reclaim_run:
2382  *
2383  *	Try to relocate each of the allocated virtual pages within the
2384  *	specified run of physical pages to a new physical address.  Free the
2385  *	physical pages underlying the relocated virtual pages.  A virtual page
2386  *	is relocatable if and only if it could be laundered or reclaimed by
2387  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2388  *	physical address above "high".
2389  *
2390  *	Returns 0 if every physical page within the run was already free or
2391  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2392  *	value indicating why the last attempt to relocate a virtual page was
2393  *	unsuccessful.
2394  *
2395  *	"req_class" must be an allocation class.
2396  */
2397 static int
2398 vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
2399     vm_paddr_t high)
2400 {
2401 	struct mtx *m_mtx, *new_mtx;
2402 	struct spglist free;
2403 	vm_object_t object;
2404 	vm_paddr_t pa;
2405 	vm_page_t m, m_end, m_new;
2406 	int error, order, req;
2407 
2408 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2409 	    ("req_class is not an allocation class"));
2410 	SLIST_INIT(&free);
2411 	error = 0;
2412 	m = m_run;
2413 	m_end = m_run + npages;
2414 	m_mtx = NULL;
2415 	for (; error == 0 && m < m_end; m++) {
2416 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2417 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2418 
2419 		/*
2420 		 * Avoid releasing and reacquiring the same page lock.
2421 		 */
2422 		new_mtx = vm_page_lockptr(m);
2423 		if (m_mtx != new_mtx) {
2424 			if (m_mtx != NULL)
2425 				mtx_unlock(m_mtx);
2426 			m_mtx = new_mtx;
2427 			mtx_lock(m_mtx);
2428 		}
2429 retry:
2430 		if (m->wire_count != 0 || m->hold_count != 0)
2431 			error = EBUSY;
2432 		else if ((object = m->object) != NULL) {
2433 			/*
2434 			 * The page is relocated if and only if it could be
2435 			 * laundered or reclaimed by the page daemon.
2436 			 */
2437 			if (!VM_OBJECT_TRYWLOCK(object)) {
2438 				mtx_unlock(m_mtx);
2439 				VM_OBJECT_WLOCK(object);
2440 				mtx_lock(m_mtx);
2441 				if (m->object != object) {
2442 					/*
2443 					 * The page may have been freed.
2444 					 */
2445 					VM_OBJECT_WUNLOCK(object);
2446 					goto retry;
2447 				} else if (m->wire_count != 0 ||
2448 				    m->hold_count != 0) {
2449 					error = EBUSY;
2450 					goto unlock;
2451 				}
2452 			}
2453 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2454 			    ("page %p is PG_UNHOLDFREE", m));
2455 			/* Don't care: PG_NODUMP, PG_ZERO. */
2456 			if (object->type != OBJT_DEFAULT &&
2457 			    object->type != OBJT_SWAP &&
2458 			    object->type != OBJT_VNODE)
2459 				error = EINVAL;
2460 			else if ((m->flags & PG_CACHED) != 0 ||
2461 			    m != vm_page_lookup(object, m->pindex)) {
2462 				/*
2463 				 * The page is cached or recently converted
2464 				 * from cached to free.
2465 				 */
2466 				VM_OBJECT_WUNLOCK(object);
2467 				goto cached;
2468 			} else if (object->memattr != VM_MEMATTR_DEFAULT)
2469 				error = EINVAL;
2470 			else if (m->queue != PQ_NONE && !vm_page_busied(m)) {
2471 				KASSERT(pmap_page_get_memattr(m) ==
2472 				    VM_MEMATTR_DEFAULT,
2473 				    ("page %p has an unexpected memattr", m));
2474 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2475 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2476 				    ("page %p has unexpected oflags", m));
2477 				/* Don't care: VPO_NOSYNC. */
2478 				if (m->valid != 0) {
2479 					/*
2480 					 * First, try to allocate a new page
2481 					 * that is above "high".  Failing
2482 					 * that, try to allocate a new page
2483 					 * that is below "m_run".  Allocate
2484 					 * the new page between the end of
2485 					 * "m_run" and "high" only as a last
2486 					 * resort.
2487 					 */
2488 					req = req_class | VM_ALLOC_NOOBJ;
2489 					if ((m->flags & PG_NODUMP) != 0)
2490 						req |= VM_ALLOC_NODUMP;
2491 					if (trunc_page(high) !=
2492 					    ~(vm_paddr_t)PAGE_MASK) {
2493 						m_new = vm_page_alloc_contig(
2494 						    NULL, 0, req, 1,
2495 						    round_page(high),
2496 						    ~(vm_paddr_t)0,
2497 						    PAGE_SIZE, 0,
2498 						    VM_MEMATTR_DEFAULT);
2499 					} else
2500 						m_new = NULL;
2501 					if (m_new == NULL) {
2502 						pa = VM_PAGE_TO_PHYS(m_run);
2503 						m_new = vm_page_alloc_contig(
2504 						    NULL, 0, req, 1,
2505 						    0, pa - 1, PAGE_SIZE, 0,
2506 						    VM_MEMATTR_DEFAULT);
2507 					}
2508 					if (m_new == NULL) {
2509 						pa += ptoa(npages);
2510 						m_new = vm_page_alloc_contig(
2511 						    NULL, 0, req, 1,
2512 						    pa, high, PAGE_SIZE, 0,
2513 						    VM_MEMATTR_DEFAULT);
2514 					}
2515 					if (m_new == NULL) {
2516 						error = ENOMEM;
2517 						goto unlock;
2518 					}
2519 					KASSERT(m_new->wire_count == 0,
2520 					    ("page %p is wired", m));
2521 
2522 					/*
2523 					 * Replace "m" with the new page.  For
2524 					 * vm_page_replace(), "m" must be busy
2525 					 * and dequeued.  Finally, change "m"
2526 					 * as if vm_page_free() was called.
2527 					 */
2528 					if (object->ref_count != 0)
2529 						pmap_remove_all(m);
2530 					m_new->aflags = m->aflags;
2531 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2532 					    ("page %p is managed", m));
2533 					m_new->oflags = m->oflags & VPO_NOSYNC;
2534 					pmap_copy_page(m, m_new);
2535 					m_new->valid = m->valid;
2536 					m_new->dirty = m->dirty;
2537 					m->flags &= ~PG_ZERO;
2538 					vm_page_xbusy(m);
2539 					vm_page_remque(m);
2540 					vm_page_replace_checked(m_new, object,
2541 					    m->pindex, m);
2542 					m->valid = 0;
2543 					vm_page_undirty(m);
2544 
2545 					/*
2546 					 * The new page must be deactivated
2547 					 * before the object is unlocked.
2548 					 */
2549 					new_mtx = vm_page_lockptr(m_new);
2550 					if (m_mtx != new_mtx) {
2551 						mtx_unlock(m_mtx);
2552 						m_mtx = new_mtx;
2553 						mtx_lock(m_mtx);
2554 					}
2555 					vm_page_deactivate(m_new);
2556 				} else {
2557 					m->flags &= ~PG_ZERO;
2558 					vm_page_remque(m);
2559 					vm_page_remove(m);
2560 					KASSERT(m->dirty == 0,
2561 					    ("page %p is dirty", m));
2562 				}
2563 				SLIST_INSERT_HEAD(&free, m, plinks.s.ss);
2564 			} else
2565 				error = EBUSY;
2566 unlock:
2567 			VM_OBJECT_WUNLOCK(object);
2568 		} else {
2569 cached:
2570 			mtx_lock(&vm_page_queue_free_mtx);
2571 			order = m->order;
2572 			if (order < VM_NFREEORDER) {
2573 				/*
2574 				 * The page is enqueued in the physical memory
2575 				 * allocator's cache/free page queues.
2576 				 * Moreover, it is the first page in a power-
2577 				 * of-two-sized run of contiguous cache/free
2578 				 * pages.  Jump ahead to the last page within
2579 				 * that run, and continue from there.
2580 				 */
2581 				m += (1 << order) - 1;
2582 			}
2583 #if VM_NRESERVLEVEL > 0
2584 			else if (vm_reserv_is_page_free(m))
2585 				order = 0;
2586 #endif
2587 			mtx_unlock(&vm_page_queue_free_mtx);
2588 			if (order == VM_NFREEORDER)
2589 				error = EINVAL;
2590 		}
2591 	}
2592 	if (m_mtx != NULL)
2593 		mtx_unlock(m_mtx);
2594 	if ((m = SLIST_FIRST(&free)) != NULL) {
2595 		mtx_lock(&vm_page_queue_free_mtx);
2596 		do {
2597 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2598 			vm_phys_freecnt_adj(m, 1);
2599 #if VM_NRESERVLEVEL > 0
2600 			if (!vm_reserv_free_page(m))
2601 #else
2602 			if (true)
2603 #endif
2604 				vm_phys_free_pages(m, 0);
2605 		} while ((m = SLIST_FIRST(&free)) != NULL);
2606 		vm_page_free_wakeup();
2607 		mtx_unlock(&vm_page_queue_free_mtx);
2608 	}
2609 	return (error);
2610 }
2611 
2612 #define	NRUNS	16
2613 
2614 CTASSERT(powerof2(NRUNS));
2615 
2616 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2617 
2618 #define	MIN_RECLAIM	8
2619 
2620 /*
2621  *	vm_page_reclaim_contig:
2622  *
2623  *	Reclaim allocated, contiguous physical memory satisfying the specified
2624  *	conditions by relocating the virtual pages using that physical memory.
2625  *	Returns true if reclamation is successful and false otherwise.  Since
2626  *	relocation requires the allocation of physical pages, reclamation may
2627  *	fail due to a shortage of cache/free pages.  When reclamation fails,
2628  *	callers are expected to perform VM_WAIT before retrying a failed
2629  *	allocation operation, e.g., vm_page_alloc_contig().
2630  *
2631  *	The caller must always specify an allocation class through "req".
2632  *
2633  *	allocation classes:
2634  *	VM_ALLOC_NORMAL		normal process request
2635  *	VM_ALLOC_SYSTEM		system *really* needs a page
2636  *	VM_ALLOC_INTERRUPT	interrupt time request
2637  *
2638  *	The optional allocation flags are ignored.
2639  *
2640  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2641  *	must be a power of two.
2642  */
2643 bool
2644 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2645     u_long alignment, vm_paddr_t boundary)
2646 {
2647 	vm_paddr_t curr_low;
2648 	vm_page_t m_run, m_runs[NRUNS];
2649 	u_long count, reclaimed;
2650 	int error, i, options, req_class;
2651 
2652 	KASSERT(npages > 0, ("npages is 0"));
2653 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2654 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2655 	req_class = req & VM_ALLOC_CLASS_MASK;
2656 
2657 	/*
2658 	 * The page daemon is allowed to dig deeper into the free page list.
2659 	 */
2660 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2661 		req_class = VM_ALLOC_SYSTEM;
2662 
2663 	/*
2664 	 * Return if the number of cached and free pages cannot satisfy the
2665 	 * requested allocation.
2666 	 */
2667 	count = vm_cnt.v_free_count + vm_cnt.v_cache_count;
2668 	if (count < npages + vm_cnt.v_free_reserved || (count < npages +
2669 	    vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2670 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2671 		return (false);
2672 
2673 	/*
2674 	 * Scan up to three times, relaxing the restrictions ("options") on
2675 	 * the reclamation of reservations and superpages each time.
2676 	 */
2677 	for (options = VPSC_NORESERV;;) {
2678 		/*
2679 		 * Find the highest runs that satisfy the given constraints
2680 		 * and restrictions, and record them in "m_runs".
2681 		 */
2682 		curr_low = low;
2683 		count = 0;
2684 		for (;;) {
2685 			m_run = vm_phys_scan_contig(npages, curr_low, high,
2686 			    alignment, boundary, options);
2687 			if (m_run == NULL)
2688 				break;
2689 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2690 			m_runs[RUN_INDEX(count)] = m_run;
2691 			count++;
2692 		}
2693 
2694 		/*
2695 		 * Reclaim the highest runs in LIFO (descending) order until
2696 		 * the number of reclaimed pages, "reclaimed", is at least
2697 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2698 		 * reclamation is idempotent, and runs will (likely) recur
2699 		 * from one scan to the next as restrictions are relaxed.
2700 		 */
2701 		reclaimed = 0;
2702 		for (i = 0; count > 0 && i < NRUNS; i++) {
2703 			count--;
2704 			m_run = m_runs[RUN_INDEX(count)];
2705 			error = vm_page_reclaim_run(req_class, npages, m_run,
2706 			    high);
2707 			if (error == 0) {
2708 				reclaimed += npages;
2709 				if (reclaimed >= MIN_RECLAIM)
2710 					return (true);
2711 			}
2712 		}
2713 
2714 		/*
2715 		 * Either relax the restrictions on the next scan or return if
2716 		 * the last scan had no restrictions.
2717 		 */
2718 		if (options == VPSC_NORESERV)
2719 			options = VPSC_NOSUPER;
2720 		else if (options == VPSC_NOSUPER)
2721 			options = VPSC_ANY;
2722 		else if (options == VPSC_ANY)
2723 			return (reclaimed != 0);
2724 	}
2725 }
2726 
2727 /*
2728  *	vm_wait:	(also see VM_WAIT macro)
2729  *
2730  *	Sleep until free pages are available for allocation.
2731  *	- Called in various places before memory allocations.
2732  */
2733 void
2734 vm_wait(void)
2735 {
2736 
2737 	mtx_lock(&vm_page_queue_free_mtx);
2738 	if (curproc == pageproc) {
2739 		vm_pageout_pages_needed = 1;
2740 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2741 		    PDROP | PSWP, "VMWait", 0);
2742 	} else {
2743 		if (__predict_false(pageproc == NULL))
2744 			panic("vm_wait in early boot");
2745 		if (!vm_pageout_wanted) {
2746 			vm_pageout_wanted = true;
2747 			wakeup(&vm_pageout_wanted);
2748 		}
2749 		vm_pages_needed = true;
2750 		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2751 		    "vmwait", 0);
2752 	}
2753 }
2754 
2755 /*
2756  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2757  *
2758  *	Sleep until free pages are available for allocation.
2759  *	- Called only in vm_fault so that processes page faulting
2760  *	  can be easily tracked.
2761  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2762  *	  processes will be able to grab memory first.  Do not change
2763  *	  this balance without careful testing first.
2764  */
2765 void
2766 vm_waitpfault(void)
2767 {
2768 
2769 	mtx_lock(&vm_page_queue_free_mtx);
2770 	if (!vm_pageout_wanted) {
2771 		vm_pageout_wanted = true;
2772 		wakeup(&vm_pageout_wanted);
2773 	}
2774 	vm_pages_needed = true;
2775 	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2776 	    "pfault", 0);
2777 }
2778 
2779 struct vm_pagequeue *
2780 vm_page_pagequeue(vm_page_t m)
2781 {
2782 
2783 	if (vm_page_in_laundry(m))
2784 		return (&vm_dom[0].vmd_pagequeues[m->queue]);
2785 	else
2786 		return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2787 }
2788 
2789 /*
2790  *	vm_page_dequeue:
2791  *
2792  *	Remove the given page from its current page queue.
2793  *
2794  *	The page must be locked.
2795  */
2796 void
2797 vm_page_dequeue(vm_page_t m)
2798 {
2799 	struct vm_pagequeue *pq;
2800 
2801 	vm_page_assert_locked(m);
2802 	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2803 	    m));
2804 	pq = vm_page_pagequeue(m);
2805 	vm_pagequeue_lock(pq);
2806 	m->queue = PQ_NONE;
2807 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2808 	vm_pagequeue_cnt_dec(pq);
2809 	vm_pagequeue_unlock(pq);
2810 }
2811 
2812 /*
2813  *	vm_page_dequeue_locked:
2814  *
2815  *	Remove the given page from its current page queue.
2816  *
2817  *	The page and page queue must be locked.
2818  */
2819 void
2820 vm_page_dequeue_locked(vm_page_t m)
2821 {
2822 	struct vm_pagequeue *pq;
2823 
2824 	vm_page_lock_assert(m, MA_OWNED);
2825 	pq = vm_page_pagequeue(m);
2826 	vm_pagequeue_assert_locked(pq);
2827 	m->queue = PQ_NONE;
2828 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2829 	vm_pagequeue_cnt_dec(pq);
2830 }
2831 
2832 /*
2833  *	vm_page_enqueue:
2834  *
2835  *	Add the given page to the specified page queue.
2836  *
2837  *	The page must be locked.
2838  */
2839 static void
2840 vm_page_enqueue(uint8_t queue, vm_page_t m)
2841 {
2842 	struct vm_pagequeue *pq;
2843 
2844 	vm_page_lock_assert(m, MA_OWNED);
2845 	KASSERT(queue < PQ_COUNT,
2846 	    ("vm_page_enqueue: invalid queue %u request for page %p",
2847 	    queue, m));
2848 	if (queue == PQ_LAUNDRY)
2849 		pq = &vm_dom[0].vmd_pagequeues[queue];
2850 	else
2851 		pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2852 	vm_pagequeue_lock(pq);
2853 	m->queue = queue;
2854 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2855 	vm_pagequeue_cnt_inc(pq);
2856 	vm_pagequeue_unlock(pq);
2857 }
2858 
2859 /*
2860  *	vm_page_requeue:
2861  *
2862  *	Move the given page to the tail of its current page queue.
2863  *
2864  *	The page must be locked.
2865  */
2866 void
2867 vm_page_requeue(vm_page_t m)
2868 {
2869 	struct vm_pagequeue *pq;
2870 
2871 	vm_page_lock_assert(m, MA_OWNED);
2872 	KASSERT(m->queue != PQ_NONE,
2873 	    ("vm_page_requeue: page %p is not queued", m));
2874 	pq = vm_page_pagequeue(m);
2875 	vm_pagequeue_lock(pq);
2876 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2877 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2878 	vm_pagequeue_unlock(pq);
2879 }
2880 
2881 /*
2882  *	vm_page_requeue_locked:
2883  *
2884  *	Move the given page to the tail of its current page queue.
2885  *
2886  *	The page queue must be locked.
2887  */
2888 void
2889 vm_page_requeue_locked(vm_page_t m)
2890 {
2891 	struct vm_pagequeue *pq;
2892 
2893 	KASSERT(m->queue != PQ_NONE,
2894 	    ("vm_page_requeue_locked: page %p is not queued", m));
2895 	pq = vm_page_pagequeue(m);
2896 	vm_pagequeue_assert_locked(pq);
2897 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2898 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2899 }
2900 
2901 /*
2902  *	vm_page_activate:
2903  *
2904  *	Put the specified page on the active list (if appropriate).
2905  *	Ensure that act_count is at least ACT_INIT but do not otherwise
2906  *	mess with it.
2907  *
2908  *	The page must be locked.
2909  */
2910 void
2911 vm_page_activate(vm_page_t m)
2912 {
2913 	int queue;
2914 
2915 	vm_page_lock_assert(m, MA_OWNED);
2916 	if ((queue = m->queue) != PQ_ACTIVE) {
2917 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2918 			if (m->act_count < ACT_INIT)
2919 				m->act_count = ACT_INIT;
2920 			if (queue != PQ_NONE)
2921 				vm_page_dequeue(m);
2922 			vm_page_enqueue(PQ_ACTIVE, m);
2923 		} else
2924 			KASSERT(queue == PQ_NONE,
2925 			    ("vm_page_activate: wired page %p is queued", m));
2926 	} else {
2927 		if (m->act_count < ACT_INIT)
2928 			m->act_count = ACT_INIT;
2929 	}
2930 }
2931 
2932 /*
2933  *	vm_page_free_wakeup:
2934  *
2935  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2936  *	routine is called when a page has been added to the cache or free
2937  *	queues.
2938  *
2939  *	The page queues must be locked.
2940  */
2941 static inline void
2942 vm_page_free_wakeup(void)
2943 {
2944 
2945 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2946 	/*
2947 	 * if pageout daemon needs pages, then tell it that there are
2948 	 * some free.
2949 	 */
2950 	if (vm_pageout_pages_needed &&
2951 	    vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2952 		wakeup(&vm_pageout_pages_needed);
2953 		vm_pageout_pages_needed = 0;
2954 	}
2955 	/*
2956 	 * wakeup processes that are waiting on memory if we hit a
2957 	 * high water mark. And wakeup scheduler process if we have
2958 	 * lots of memory. this process will swapin processes.
2959 	 */
2960 	if (vm_pages_needed && !vm_page_count_min()) {
2961 		vm_pages_needed = false;
2962 		wakeup(&vm_cnt.v_free_count);
2963 	}
2964 }
2965 
2966 /*
2967  *	Turn a cached page into a free page, by changing its attributes.
2968  *	Keep the statistics up-to-date.
2969  *
2970  *	The free page queue must be locked.
2971  */
2972 static void
2973 vm_page_cache_turn_free(vm_page_t m)
2974 {
2975 
2976 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2977 
2978 	m->object = NULL;
2979 	m->valid = 0;
2980 	KASSERT((m->flags & PG_CACHED) != 0,
2981 	    ("vm_page_cache_turn_free: page %p is not cached", m));
2982 	m->flags &= ~PG_CACHED;
2983 	vm_cnt.v_cache_count--;
2984 	vm_phys_freecnt_adj(m, 1);
2985 }
2986 
2987 /*
2988  *	vm_page_free_toq:
2989  *
2990  *	Returns the given page to the free list,
2991  *	disassociating it with any VM object.
2992  *
2993  *	The object must be locked.  The page must be locked if it is managed.
2994  */
2995 void
2996 vm_page_free_toq(vm_page_t m)
2997 {
2998 
2999 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3000 		vm_page_lock_assert(m, MA_OWNED);
3001 		KASSERT(!pmap_page_is_mapped(m),
3002 		    ("vm_page_free_toq: freeing mapped page %p", m));
3003 	} else
3004 		KASSERT(m->queue == PQ_NONE,
3005 		    ("vm_page_free_toq: unmanaged page %p is queued", m));
3006 	PCPU_INC(cnt.v_tfree);
3007 
3008 	if (vm_page_sbusied(m))
3009 		panic("vm_page_free: freeing busy page %p", m);
3010 
3011 	/*
3012 	 * Unqueue, then remove page.  Note that we cannot destroy
3013 	 * the page here because we do not want to call the pager's
3014 	 * callback routine until after we've put the page on the
3015 	 * appropriate free queue.
3016 	 */
3017 	vm_page_remque(m);
3018 	vm_page_remove(m);
3019 
3020 	/*
3021 	 * If fictitious remove object association and
3022 	 * return, otherwise delay object association removal.
3023 	 */
3024 	if ((m->flags & PG_FICTITIOUS) != 0) {
3025 		return;
3026 	}
3027 
3028 	m->valid = 0;
3029 	vm_page_undirty(m);
3030 
3031 	if (m->wire_count != 0)
3032 		panic("vm_page_free: freeing wired page %p", m);
3033 	if (m->hold_count != 0) {
3034 		m->flags &= ~PG_ZERO;
3035 		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
3036 		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
3037 		m->flags |= PG_UNHOLDFREE;
3038 	} else {
3039 		/*
3040 		 * Restore the default memory attribute to the page.
3041 		 */
3042 		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3043 			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3044 
3045 		/*
3046 		 * Insert the page into the physical memory allocator's
3047 		 * cache/free page queues.
3048 		 */
3049 		mtx_lock(&vm_page_queue_free_mtx);
3050 		vm_phys_freecnt_adj(m, 1);
3051 #if VM_NRESERVLEVEL > 0
3052 		if (!vm_reserv_free_page(m))
3053 #else
3054 		if (TRUE)
3055 #endif
3056 			vm_phys_free_pages(m, 0);
3057 		vm_page_free_wakeup();
3058 		mtx_unlock(&vm_page_queue_free_mtx);
3059 	}
3060 }
3061 
3062 /*
3063  *	vm_page_wire:
3064  *
3065  *	Mark this page as wired down by yet
3066  *	another map, removing it from paging queues
3067  *	as necessary.
3068  *
3069  *	If the page is fictitious, then its wire count must remain one.
3070  *
3071  *	The page must be locked.
3072  */
3073 void
3074 vm_page_wire(vm_page_t m)
3075 {
3076 
3077 	/*
3078 	 * Only bump the wire statistics if the page is not already wired,
3079 	 * and only unqueue the page if it is on some queue (if it is unmanaged
3080 	 * it is already off the queues).
3081 	 */
3082 	vm_page_lock_assert(m, MA_OWNED);
3083 	if ((m->flags & PG_FICTITIOUS) != 0) {
3084 		KASSERT(m->wire_count == 1,
3085 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
3086 		    m));
3087 		return;
3088 	}
3089 	if (m->wire_count == 0) {
3090 		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
3091 		    m->queue == PQ_NONE,
3092 		    ("vm_page_wire: unmanaged page %p is queued", m));
3093 		vm_page_remque(m);
3094 		atomic_add_int(&vm_cnt.v_wire_count, 1);
3095 	}
3096 	m->wire_count++;
3097 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
3098 }
3099 
3100 /*
3101  * vm_page_unwire:
3102  *
3103  * Release one wiring of the specified page, potentially allowing it to be
3104  * paged out.  Returns TRUE if the number of wirings transitions to zero and
3105  * FALSE otherwise.
3106  *
3107  * Only managed pages belonging to an object can be paged out.  If the number
3108  * of wirings transitions to zero and the page is eligible for page out, then
3109  * the page is added to the specified paging queue (unless PQ_NONE is
3110  * specified).
3111  *
3112  * If a page is fictitious, then its wire count must always be one.
3113  *
3114  * A managed page must be locked.
3115  */
3116 boolean_t
3117 vm_page_unwire(vm_page_t m, uint8_t queue)
3118 {
3119 
3120 	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
3121 	    ("vm_page_unwire: invalid queue %u request for page %p",
3122 	    queue, m));
3123 	if ((m->oflags & VPO_UNMANAGED) == 0)
3124 		vm_page_assert_locked(m);
3125 	if ((m->flags & PG_FICTITIOUS) != 0) {
3126 		KASSERT(m->wire_count == 1,
3127 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
3128 		return (FALSE);
3129 	}
3130 	if (m->wire_count > 0) {
3131 		m->wire_count--;
3132 		if (m->wire_count == 0) {
3133 			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
3134 			if ((m->oflags & VPO_UNMANAGED) == 0 &&
3135 			    m->object != NULL && queue != PQ_NONE)
3136 				vm_page_enqueue(queue, m);
3137 			return (TRUE);
3138 		} else
3139 			return (FALSE);
3140 	} else
3141 		panic("vm_page_unwire: page %p's wire count is zero", m);
3142 }
3143 
3144 /*
3145  * Move the specified page to the inactive queue.
3146  *
3147  * Many pages placed on the inactive queue should actually go
3148  * into the cache, but it is difficult to figure out which.  What
3149  * we do instead, if the inactive target is well met, is to put
3150  * clean pages at the head of the inactive queue instead of the tail.
3151  * This will cause them to be moved to the cache more quickly and
3152  * if not actively re-referenced, reclaimed more quickly.  If we just
3153  * stick these pages at the end of the inactive queue, heavy filesystem
3154  * meta-data accesses can cause an unnecessary paging load on memory bound
3155  * processes.  This optimization causes one-time-use metadata to be
3156  * reused more quickly.
3157  *
3158  * Normally noreuse is FALSE, resulting in LRU operation.  noreuse is set
3159  * to TRUE if we want this page to be 'as if it were placed in the cache',
3160  * except without unmapping it from the process address space.  In
3161  * practice this is implemented by inserting the page at the head of the
3162  * queue, using a marker page to guide FIFO insertion ordering.
3163  *
3164  * The page must be locked.
3165  */
3166 static inline void
3167 _vm_page_deactivate(vm_page_t m, boolean_t noreuse)
3168 {
3169 	struct vm_pagequeue *pq;
3170 	int queue;
3171 
3172 	vm_page_assert_locked(m);
3173 
3174 	/*
3175 	 * Ignore if the page is already inactive, unless it is unlikely to be
3176 	 * reactivated.
3177 	 */
3178 	if ((queue = m->queue) == PQ_INACTIVE && !noreuse)
3179 		return;
3180 	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3181 		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
3182 		/* Avoid multiple acquisitions of the inactive queue lock. */
3183 		if (queue == PQ_INACTIVE) {
3184 			vm_pagequeue_lock(pq);
3185 			vm_page_dequeue_locked(m);
3186 		} else {
3187 			if (queue != PQ_NONE)
3188 				vm_page_dequeue(m);
3189 			vm_pagequeue_lock(pq);
3190 		}
3191 		m->queue = PQ_INACTIVE;
3192 		if (noreuse)
3193 			TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead,
3194 			    m, plinks.q);
3195 		else
3196 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3197 		vm_pagequeue_cnt_inc(pq);
3198 		vm_pagequeue_unlock(pq);
3199 	}
3200 }
3201 
3202 /*
3203  * Move the specified page to the inactive queue.
3204  *
3205  * The page must be locked.
3206  */
3207 void
3208 vm_page_deactivate(vm_page_t m)
3209 {
3210 
3211 	_vm_page_deactivate(m, FALSE);
3212 }
3213 
3214 /*
3215  * Move the specified page to the inactive queue with the expectation
3216  * that it is unlikely to be reused.
3217  *
3218  * The page must be locked.
3219  */
3220 void
3221 vm_page_deactivate_noreuse(vm_page_t m)
3222 {
3223 
3224 	_vm_page_deactivate(m, TRUE);
3225 }
3226 
3227 /*
3228  * vm_page_launder
3229  *
3230  * 	Put a page in the laundry.
3231  */
3232 void
3233 vm_page_launder(vm_page_t m)
3234 {
3235 	int queue;
3236 
3237 	vm_page_assert_locked(m);
3238 	if ((queue = m->queue) != PQ_LAUNDRY) {
3239 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3240 			if (queue != PQ_NONE)
3241 				vm_page_dequeue(m);
3242 			vm_page_enqueue(PQ_LAUNDRY, m);
3243 		} else
3244 			KASSERT(queue == PQ_NONE,
3245 			    ("wired page %p is queued", m));
3246 	}
3247 }
3248 
3249 /*
3250  * vm_page_try_to_free()
3251  *
3252  *	Attempt to free the page.  If we cannot free it, we do nothing.
3253  *	1 is returned on success, 0 on failure.
3254  */
3255 int
3256 vm_page_try_to_free(vm_page_t m)
3257 {
3258 
3259 	vm_page_lock_assert(m, MA_OWNED);
3260 	if (m->object != NULL)
3261 		VM_OBJECT_ASSERT_WLOCKED(m->object);
3262 	if (m->dirty || m->hold_count || m->wire_count ||
3263 	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
3264 		return (0);
3265 	pmap_remove_all(m);
3266 	if (m->dirty)
3267 		return (0);
3268 	vm_page_free(m);
3269 	return (1);
3270 }
3271 
3272 /*
3273  * vm_page_advise
3274  *
3275  * 	Deactivate or do nothing, as appropriate.
3276  *
3277  *	The object and page must be locked.
3278  */
3279 void
3280 vm_page_advise(vm_page_t m, int advice)
3281 {
3282 
3283 	vm_page_assert_locked(m);
3284 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3285 	if (advice == MADV_FREE)
3286 		/*
3287 		 * Mark the page clean.  This will allow the page to be freed
3288 		 * up by the system.  However, such pages are often reused
3289 		 * quickly by malloc() so we do not do anything that would
3290 		 * cause a page fault if we can help it.
3291 		 *
3292 		 * Specifically, we do not try to actually free the page now
3293 		 * nor do we try to put it in the cache (which would cause a
3294 		 * page fault on reuse).
3295 		 *
3296 		 * But we do make the page as freeable as we can without
3297 		 * actually taking the step of unmapping it.
3298 		 */
3299 		vm_page_undirty(m);
3300 	else if (advice != MADV_DONTNEED)
3301 		return;
3302 
3303 	/*
3304 	 * Clear any references to the page.  Otherwise, the page daemon will
3305 	 * immediately reactivate the page.
3306 	 */
3307 	vm_page_aflag_clear(m, PGA_REFERENCED);
3308 
3309 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
3310 		vm_page_dirty(m);
3311 
3312 	/*
3313 	 * Place clean pages near the head of the inactive queue rather than
3314 	 * the tail, thus defeating the queue's LRU operation and ensuring that
3315 	 * the page will be reused quickly.  Dirty pages not already in the
3316 	 * laundry are moved there.
3317 	 */
3318 	if (m->dirty == 0)
3319 		vm_page_deactivate_noreuse(m);
3320 	else
3321 		vm_page_launder(m);
3322 }
3323 
3324 /*
3325  * Grab a page, waiting until we are waken up due to the page
3326  * changing state.  We keep on waiting, if the page continues
3327  * to be in the object.  If the page doesn't exist, first allocate it
3328  * and then conditionally zero it.
3329  *
3330  * This routine may sleep.
3331  *
3332  * The object must be locked on entry.  The lock will, however, be released
3333  * and reacquired if the routine sleeps.
3334  */
3335 vm_page_t
3336 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3337 {
3338 	vm_page_t m;
3339 	int sleep;
3340 
3341 	VM_OBJECT_ASSERT_WLOCKED(object);
3342 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3343 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3344 	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
3345 retrylookup:
3346 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
3347 		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3348 		    vm_page_xbusied(m) : vm_page_busied(m);
3349 		if (sleep) {
3350 			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3351 				return (NULL);
3352 			/*
3353 			 * Reference the page before unlocking and
3354 			 * sleeping so that the page daemon is less
3355 			 * likely to reclaim it.
3356 			 */
3357 			vm_page_aflag_set(m, PGA_REFERENCED);
3358 			vm_page_lock(m);
3359 			VM_OBJECT_WUNLOCK(object);
3360 			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
3361 			    VM_ALLOC_IGN_SBUSY) != 0);
3362 			VM_OBJECT_WLOCK(object);
3363 			goto retrylookup;
3364 		} else {
3365 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3366 				vm_page_lock(m);
3367 				vm_page_wire(m);
3368 				vm_page_unlock(m);
3369 			}
3370 			if ((allocflags &
3371 			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
3372 				vm_page_xbusy(m);
3373 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3374 				vm_page_sbusy(m);
3375 			return (m);
3376 		}
3377 	}
3378 	m = vm_page_alloc(object, pindex, allocflags);
3379 	if (m == NULL) {
3380 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3381 			return (NULL);
3382 		VM_OBJECT_WUNLOCK(object);
3383 		VM_WAIT;
3384 		VM_OBJECT_WLOCK(object);
3385 		goto retrylookup;
3386 	} else if (m->valid != 0)
3387 		return (m);
3388 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
3389 		pmap_zero_page(m);
3390 	return (m);
3391 }
3392 
3393 /*
3394  * Mapping function for valid or dirty bits in a page.
3395  *
3396  * Inputs are required to range within a page.
3397  */
3398 vm_page_bits_t
3399 vm_page_bits(int base, int size)
3400 {
3401 	int first_bit;
3402 	int last_bit;
3403 
3404 	KASSERT(
3405 	    base + size <= PAGE_SIZE,
3406 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3407 	);
3408 
3409 	if (size == 0)		/* handle degenerate case */
3410 		return (0);
3411 
3412 	first_bit = base >> DEV_BSHIFT;
3413 	last_bit = (base + size - 1) >> DEV_BSHIFT;
3414 
3415 	return (((vm_page_bits_t)2 << last_bit) -
3416 	    ((vm_page_bits_t)1 << first_bit));
3417 }
3418 
3419 /*
3420  *	vm_page_set_valid_range:
3421  *
3422  *	Sets portions of a page valid.  The arguments are expected
3423  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3424  *	of any partial chunks touched by the range.  The invalid portion of
3425  *	such chunks will be zeroed.
3426  *
3427  *	(base + size) must be less then or equal to PAGE_SIZE.
3428  */
3429 void
3430 vm_page_set_valid_range(vm_page_t m, int base, int size)
3431 {
3432 	int endoff, frag;
3433 
3434 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3435 	if (size == 0)	/* handle degenerate case */
3436 		return;
3437 
3438 	/*
3439 	 * If the base is not DEV_BSIZE aligned and the valid
3440 	 * bit is clear, we have to zero out a portion of the
3441 	 * first block.
3442 	 */
3443 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3444 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
3445 		pmap_zero_page_area(m, frag, base - frag);
3446 
3447 	/*
3448 	 * If the ending offset is not DEV_BSIZE aligned and the
3449 	 * valid bit is clear, we have to zero out a portion of
3450 	 * the last block.
3451 	 */
3452 	endoff = base + size;
3453 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3454 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
3455 		pmap_zero_page_area(m, endoff,
3456 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3457 
3458 	/*
3459 	 * Assert that no previously invalid block that is now being validated
3460 	 * is already dirty.
3461 	 */
3462 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
3463 	    ("vm_page_set_valid_range: page %p is dirty", m));
3464 
3465 	/*
3466 	 * Set valid bits inclusive of any overlap.
3467 	 */
3468 	m->valid |= vm_page_bits(base, size);
3469 }
3470 
3471 /*
3472  * Clear the given bits from the specified page's dirty field.
3473  */
3474 static __inline void
3475 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
3476 {
3477 	uintptr_t addr;
3478 #if PAGE_SIZE < 16384
3479 	int shift;
3480 #endif
3481 
3482 	/*
3483 	 * If the object is locked and the page is neither exclusive busy nor
3484 	 * write mapped, then the page's dirty field cannot possibly be
3485 	 * set by a concurrent pmap operation.
3486 	 */
3487 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3488 	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
3489 		m->dirty &= ~pagebits;
3490 	else {
3491 		/*
3492 		 * The pmap layer can call vm_page_dirty() without
3493 		 * holding a distinguished lock.  The combination of
3494 		 * the object's lock and an atomic operation suffice
3495 		 * to guarantee consistency of the page dirty field.
3496 		 *
3497 		 * For PAGE_SIZE == 32768 case, compiler already
3498 		 * properly aligns the dirty field, so no forcible
3499 		 * alignment is needed. Only require existence of
3500 		 * atomic_clear_64 when page size is 32768.
3501 		 */
3502 		addr = (uintptr_t)&m->dirty;
3503 #if PAGE_SIZE == 32768
3504 		atomic_clear_64((uint64_t *)addr, pagebits);
3505 #elif PAGE_SIZE == 16384
3506 		atomic_clear_32((uint32_t *)addr, pagebits);
3507 #else		/* PAGE_SIZE <= 8192 */
3508 		/*
3509 		 * Use a trick to perform a 32-bit atomic on the
3510 		 * containing aligned word, to not depend on the existence
3511 		 * of atomic_clear_{8, 16}.
3512 		 */
3513 		shift = addr & (sizeof(uint32_t) - 1);
3514 #if BYTE_ORDER == BIG_ENDIAN
3515 		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
3516 #else
3517 		shift *= NBBY;
3518 #endif
3519 		addr &= ~(sizeof(uint32_t) - 1);
3520 		atomic_clear_32((uint32_t *)addr, pagebits << shift);
3521 #endif		/* PAGE_SIZE */
3522 	}
3523 }
3524 
3525 /*
3526  *	vm_page_set_validclean:
3527  *
3528  *	Sets portions of a page valid and clean.  The arguments are expected
3529  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3530  *	of any partial chunks touched by the range.  The invalid portion of
3531  *	such chunks will be zero'd.
3532  *
3533  *	(base + size) must be less then or equal to PAGE_SIZE.
3534  */
3535 void
3536 vm_page_set_validclean(vm_page_t m, int base, int size)
3537 {
3538 	vm_page_bits_t oldvalid, pagebits;
3539 	int endoff, frag;
3540 
3541 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3542 	if (size == 0)	/* handle degenerate case */
3543 		return;
3544 
3545 	/*
3546 	 * If the base is not DEV_BSIZE aligned and the valid
3547 	 * bit is clear, we have to zero out a portion of the
3548 	 * first block.
3549 	 */
3550 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3551 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
3552 		pmap_zero_page_area(m, frag, base - frag);
3553 
3554 	/*
3555 	 * If the ending offset is not DEV_BSIZE aligned and the
3556 	 * valid bit is clear, we have to zero out a portion of
3557 	 * the last block.
3558 	 */
3559 	endoff = base + size;
3560 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3561 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
3562 		pmap_zero_page_area(m, endoff,
3563 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3564 
3565 	/*
3566 	 * Set valid, clear dirty bits.  If validating the entire
3567 	 * page we can safely clear the pmap modify bit.  We also
3568 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
3569 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
3570 	 * be set again.
3571 	 *
3572 	 * We set valid bits inclusive of any overlap, but we can only
3573 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
3574 	 * the range.
3575 	 */
3576 	oldvalid = m->valid;
3577 	pagebits = vm_page_bits(base, size);
3578 	m->valid |= pagebits;
3579 #if 0	/* NOT YET */
3580 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
3581 		frag = DEV_BSIZE - frag;
3582 		base += frag;
3583 		size -= frag;
3584 		if (size < 0)
3585 			size = 0;
3586 	}
3587 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
3588 #endif
3589 	if (base == 0 && size == PAGE_SIZE) {
3590 		/*
3591 		 * The page can only be modified within the pmap if it is
3592 		 * mapped, and it can only be mapped if it was previously
3593 		 * fully valid.
3594 		 */
3595 		if (oldvalid == VM_PAGE_BITS_ALL)
3596 			/*
3597 			 * Perform the pmap_clear_modify() first.  Otherwise,
3598 			 * a concurrent pmap operation, such as
3599 			 * pmap_protect(), could clear a modification in the
3600 			 * pmap and set the dirty field on the page before
3601 			 * pmap_clear_modify() had begun and after the dirty
3602 			 * field was cleared here.
3603 			 */
3604 			pmap_clear_modify(m);
3605 		m->dirty = 0;
3606 		m->oflags &= ~VPO_NOSYNC;
3607 	} else if (oldvalid != VM_PAGE_BITS_ALL)
3608 		m->dirty &= ~pagebits;
3609 	else
3610 		vm_page_clear_dirty_mask(m, pagebits);
3611 }
3612 
3613 void
3614 vm_page_clear_dirty(vm_page_t m, int base, int size)
3615 {
3616 
3617 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3618 }
3619 
3620 /*
3621  *	vm_page_set_invalid:
3622  *
3623  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
3624  *	valid and dirty bits for the effected areas are cleared.
3625  */
3626 void
3627 vm_page_set_invalid(vm_page_t m, int base, int size)
3628 {
3629 	vm_page_bits_t bits;
3630 	vm_object_t object;
3631 
3632 	object = m->object;
3633 	VM_OBJECT_ASSERT_WLOCKED(object);
3634 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3635 	    size >= object->un_pager.vnp.vnp_size)
3636 		bits = VM_PAGE_BITS_ALL;
3637 	else
3638 		bits = vm_page_bits(base, size);
3639 	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3640 	    bits != 0)
3641 		pmap_remove_all(m);
3642 	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3643 	    !pmap_page_is_mapped(m),
3644 	    ("vm_page_set_invalid: page %p is mapped", m));
3645 	m->valid &= ~bits;
3646 	m->dirty &= ~bits;
3647 }
3648 
3649 /*
3650  * vm_page_zero_invalid()
3651  *
3652  *	The kernel assumes that the invalid portions of a page contain
3653  *	garbage, but such pages can be mapped into memory by user code.
3654  *	When this occurs, we must zero out the non-valid portions of the
3655  *	page so user code sees what it expects.
3656  *
3657  *	Pages are most often semi-valid when the end of a file is mapped
3658  *	into memory and the file's size is not page aligned.
3659  */
3660 void
3661 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3662 {
3663 	int b;
3664 	int i;
3665 
3666 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3667 	/*
3668 	 * Scan the valid bits looking for invalid sections that
3669 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3670 	 * valid bit may be set ) have already been zeroed by
3671 	 * vm_page_set_validclean().
3672 	 */
3673 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3674 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3675 		    (m->valid & ((vm_page_bits_t)1 << i))) {
3676 			if (i > b) {
3677 				pmap_zero_page_area(m,
3678 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3679 			}
3680 			b = i + 1;
3681 		}
3682 	}
3683 
3684 	/*
3685 	 * setvalid is TRUE when we can safely set the zero'd areas
3686 	 * as being valid.  We can do this if there are no cache consistancy
3687 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3688 	 */
3689 	if (setvalid)
3690 		m->valid = VM_PAGE_BITS_ALL;
3691 }
3692 
3693 /*
3694  *	vm_page_is_valid:
3695  *
3696  *	Is (partial) page valid?  Note that the case where size == 0
3697  *	will return FALSE in the degenerate case where the page is
3698  *	entirely invalid, and TRUE otherwise.
3699  */
3700 int
3701 vm_page_is_valid(vm_page_t m, int base, int size)
3702 {
3703 	vm_page_bits_t bits;
3704 
3705 	VM_OBJECT_ASSERT_LOCKED(m->object);
3706 	bits = vm_page_bits(base, size);
3707 	return (m->valid != 0 && (m->valid & bits) == bits);
3708 }
3709 
3710 /*
3711  *	vm_page_ps_is_valid:
3712  *
3713  *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3714  */
3715 boolean_t
3716 vm_page_ps_is_valid(vm_page_t m)
3717 {
3718 	int i, npages;
3719 
3720 	VM_OBJECT_ASSERT_LOCKED(m->object);
3721 	npages = atop(pagesizes[m->psind]);
3722 
3723 	/*
3724 	 * The physically contiguous pages that make up a superpage, i.e., a
3725 	 * page with a page size index ("psind") greater than zero, will
3726 	 * occupy adjacent entries in vm_page_array[].
3727 	 */
3728 	for (i = 0; i < npages; i++) {
3729 		if (m[i].valid != VM_PAGE_BITS_ALL)
3730 			return (FALSE);
3731 	}
3732 	return (TRUE);
3733 }
3734 
3735 /*
3736  * Set the page's dirty bits if the page is modified.
3737  */
3738 void
3739 vm_page_test_dirty(vm_page_t m)
3740 {
3741 
3742 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3743 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3744 		vm_page_dirty(m);
3745 }
3746 
3747 void
3748 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3749 {
3750 
3751 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3752 }
3753 
3754 void
3755 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3756 {
3757 
3758 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3759 }
3760 
3761 int
3762 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3763 {
3764 
3765 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3766 }
3767 
3768 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3769 void
3770 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3771 {
3772 
3773 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3774 }
3775 
3776 void
3777 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3778 {
3779 
3780 	mtx_assert_(vm_page_lockptr(m), a, file, line);
3781 }
3782 #endif
3783 
3784 #ifdef INVARIANTS
3785 void
3786 vm_page_object_lock_assert(vm_page_t m)
3787 {
3788 
3789 	/*
3790 	 * Certain of the page's fields may only be modified by the
3791 	 * holder of the containing object's lock or the exclusive busy.
3792 	 * holder.  Unfortunately, the holder of the write busy is
3793 	 * not recorded, and thus cannot be checked here.
3794 	 */
3795 	if (m->object != NULL && !vm_page_xbusied(m))
3796 		VM_OBJECT_ASSERT_WLOCKED(m->object);
3797 }
3798 
3799 void
3800 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3801 {
3802 
3803 	if ((bits & PGA_WRITEABLE) == 0)
3804 		return;
3805 
3806 	/*
3807 	 * The PGA_WRITEABLE flag can only be set if the page is
3808 	 * managed, is exclusively busied or the object is locked.
3809 	 * Currently, this flag is only set by pmap_enter().
3810 	 */
3811 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3812 	    ("PGA_WRITEABLE on unmanaged page"));
3813 	if (!vm_page_xbusied(m))
3814 		VM_OBJECT_ASSERT_LOCKED(m->object);
3815 }
3816 #endif
3817 
3818 #include "opt_ddb.h"
3819 #ifdef DDB
3820 #include <sys/kernel.h>
3821 
3822 #include <ddb/ddb.h>
3823 
3824 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3825 {
3826 	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3827 	db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count);
3828 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3829 	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3830 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_cnt.v_laundry_count);
3831 	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3832 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3833 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3834 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3835 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3836 }
3837 
3838 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3839 {
3840 	int dom;
3841 
3842 	db_printf("pq_free %d pq_cache %d\n",
3843 	    vm_cnt.v_free_count, vm_cnt.v_cache_count);
3844 	for (dom = 0; dom < vm_ndomains; dom++) {
3845 		db_printf(
3846 	    "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d\n",
3847 		    dom,
3848 		    vm_dom[dom].vmd_page_count,
3849 		    vm_dom[dom].vmd_free_count,
3850 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3851 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3852 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt);
3853 	}
3854 }
3855 
3856 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3857 {
3858 	vm_page_t m;
3859 	boolean_t phys;
3860 
3861 	if (!have_addr) {
3862 		db_printf("show pginfo addr\n");
3863 		return;
3864 	}
3865 
3866 	phys = strchr(modif, 'p') != NULL;
3867 	if (phys)
3868 		m = PHYS_TO_VM_PAGE(addr);
3869 	else
3870 		m = (vm_page_t)addr;
3871 	db_printf(
3872     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3873     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3874 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3875 	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3876 	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3877 }
3878 #endif /* DDB */
3879