xref: /freebsd/sys/vm/vm_page.c (revision 97ca2ada80b870edbbb4f66b26e274cf8e55e0bc)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Resident memory management module.
65  */
66 
67 #include <sys/cdefs.h>
68 #include "opt_vm.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/counter.h>
73 #include <sys/domainset.h>
74 #include <sys/kernel.h>
75 #include <sys/limits.h>
76 #include <sys/linker.h>
77 #include <sys/lock.h>
78 #include <sys/malloc.h>
79 #include <sys/mman.h>
80 #include <sys/msgbuf.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/rwlock.h>
84 #include <sys/sleepqueue.h>
85 #include <sys/sbuf.h>
86 #include <sys/sched.h>
87 #include <sys/smp.h>
88 #include <sys/sysctl.h>
89 #include <sys/vmmeter.h>
90 #include <sys/vnode.h>
91 
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_param.h>
95 #include <vm/vm_domainset.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_dumpset.h>
108 #include <vm/uma.h>
109 #include <vm/uma_int.h>
110 
111 #include <machine/md_var.h>
112 
113 struct vm_domain vm_dom[MAXMEMDOM];
114 
115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
116 
117 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
118 
119 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
120 /* The following fields are protected by the domainset lock. */
121 domainset_t __exclusive_cache_line vm_min_domains;
122 domainset_t __exclusive_cache_line vm_severe_domains;
123 static int vm_min_waiters;
124 static int vm_severe_waiters;
125 static int vm_pageproc_waiters;
126 
127 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
128     "VM page statistics");
129 
130 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
131 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
132     CTLFLAG_RD, &pqstate_commit_retries,
133     "Number of failed per-page atomic queue state updates");
134 
135 static COUNTER_U64_DEFINE_EARLY(queue_ops);
136 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
137     CTLFLAG_RD, &queue_ops,
138     "Number of batched queue operations");
139 
140 static COUNTER_U64_DEFINE_EARLY(queue_nops);
141 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
142     CTLFLAG_RD, &queue_nops,
143     "Number of batched queue operations with no effects");
144 
145 /*
146  * bogus page -- for I/O to/from partially complete buffers,
147  * or for paging into sparsely invalid regions.
148  */
149 vm_page_t bogus_page;
150 
151 vm_page_t vm_page_array;
152 long vm_page_array_size;
153 long first_page;
154 
155 struct bitset *vm_page_dump;
156 long vm_page_dump_pages;
157 
158 static TAILQ_HEAD(, vm_page) blacklist_head;
159 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
160 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
161     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
162 
163 static uma_zone_t fakepg_zone;
164 
165 static vm_page_t vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
166     int req, vm_page_t mpred);
167 static void vm_page_alloc_check(vm_page_t m);
168 static vm_page_t vm_page_alloc_nofree_domain(int domain, int req);
169 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
170     vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
171 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
172 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
173 static bool vm_page_free_prep(vm_page_t m);
174 static void vm_page_free_toq(vm_page_t m);
175 static void vm_page_init(void *dummy);
176 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
177     vm_pindex_t pindex, vm_page_t mpred);
178 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
179     vm_page_t mpred);
180 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
181     const uint16_t nflag);
182 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
183     vm_page_t m_run, vm_paddr_t high);
184 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
185 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
186     int req);
187 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
188     int flags);
189 static void vm_page_zone_release(void *arg, void **store, int cnt);
190 
191 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
192 
193 static void
194 vm_page_init(void *dummy)
195 {
196 
197 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
198 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
199 	bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_NOFREE);
200 }
201 
202 static int pgcache_zone_max_pcpu;
203 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu,
204     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0,
205     "Per-CPU page cache size");
206 
207 /*
208  * The cache page zone is initialized later since we need to be able to allocate
209  * pages before UMA is fully initialized.
210  */
211 static void
212 vm_page_init_cache_zones(void *dummy __unused)
213 {
214 	struct vm_domain *vmd;
215 	struct vm_pgcache *pgcache;
216 	int cache, domain, maxcache, pool;
217 
218 	TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu);
219 	maxcache = pgcache_zone_max_pcpu * mp_ncpus;
220 	for (domain = 0; domain < vm_ndomains; domain++) {
221 		vmd = VM_DOMAIN(domain);
222 		for (pool = 0; pool < VM_NFREEPOOL; pool++) {
223 			pgcache = &vmd->vmd_pgcache[pool];
224 			pgcache->domain = domain;
225 			pgcache->pool = pool;
226 			pgcache->zone = uma_zcache_create("vm pgcache",
227 			    PAGE_SIZE, NULL, NULL, NULL, NULL,
228 			    vm_page_zone_import, vm_page_zone_release, pgcache,
229 			    UMA_ZONE_VM);
230 
231 			/*
232 			 * Limit each pool's zone to 0.1% of the pages in the
233 			 * domain.
234 			 */
235 			cache = maxcache != 0 ? maxcache :
236 			    vmd->vmd_page_count / 1000;
237 			uma_zone_set_maxcache(pgcache->zone, cache);
238 		}
239 	}
240 }
241 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
242 
243 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
244 #if PAGE_SIZE == 32768
245 #ifdef CTASSERT
246 CTASSERT(sizeof(u_long) >= 8);
247 #endif
248 #endif
249 
250 /*
251  *	vm_set_page_size:
252  *
253  *	Sets the page size, perhaps based upon the memory
254  *	size.  Must be called before any use of page-size
255  *	dependent functions.
256  */
257 void
258 vm_set_page_size(void)
259 {
260 	if (vm_cnt.v_page_size == 0)
261 		vm_cnt.v_page_size = PAGE_SIZE;
262 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
263 		panic("vm_set_page_size: page size not a power of two");
264 }
265 
266 /*
267  *	vm_page_blacklist_next:
268  *
269  *	Find the next entry in the provided string of blacklist
270  *	addresses.  Entries are separated by space, comma, or newline.
271  *	If an invalid integer is encountered then the rest of the
272  *	string is skipped.  Updates the list pointer to the next
273  *	character, or NULL if the string is exhausted or invalid.
274  */
275 static vm_paddr_t
276 vm_page_blacklist_next(char **list, char *end)
277 {
278 	vm_paddr_t bad;
279 	char *cp, *pos;
280 
281 	if (list == NULL || *list == NULL)
282 		return (0);
283 	if (**list =='\0') {
284 		*list = NULL;
285 		return (0);
286 	}
287 
288 	/*
289 	 * If there's no end pointer then the buffer is coming from
290 	 * the kenv and we know it's null-terminated.
291 	 */
292 	if (end == NULL)
293 		end = *list + strlen(*list);
294 
295 	/* Ensure that strtoq() won't walk off the end */
296 	if (*end != '\0') {
297 		if (*end == '\n' || *end == ' ' || *end  == ',')
298 			*end = '\0';
299 		else {
300 			printf("Blacklist not terminated, skipping\n");
301 			*list = NULL;
302 			return (0);
303 		}
304 	}
305 
306 	for (pos = *list; *pos != '\0'; pos = cp) {
307 		bad = strtoq(pos, &cp, 0);
308 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
309 			if (bad == 0) {
310 				if (++cp < end)
311 					continue;
312 				else
313 					break;
314 			}
315 		} else
316 			break;
317 		if (*cp == '\0' || ++cp >= end)
318 			*list = NULL;
319 		else
320 			*list = cp;
321 		return (trunc_page(bad));
322 	}
323 	printf("Garbage in RAM blacklist, skipping\n");
324 	*list = NULL;
325 	return (0);
326 }
327 
328 bool
329 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
330 {
331 	struct vm_domain *vmd;
332 	vm_page_t m;
333 	bool found;
334 
335 	m = vm_phys_paddr_to_vm_page(pa);
336 	if (m == NULL)
337 		return (true); /* page does not exist, no failure */
338 
339 	vmd = VM_DOMAIN(vm_phys_domain(pa));
340 	vm_domain_free_lock(vmd);
341 	found = vm_phys_unfree_page(pa);
342 	vm_domain_free_unlock(vmd);
343 	if (found) {
344 		vm_domain_freecnt_inc(vmd, -1);
345 		TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
346 		if (verbose)
347 			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
348 	}
349 	return (found);
350 }
351 
352 /*
353  *	vm_page_blacklist_check:
354  *
355  *	Iterate through the provided string of blacklist addresses, pulling
356  *	each entry out of the physical allocator free list and putting it
357  *	onto a list for reporting via the vm.page_blacklist sysctl.
358  */
359 static void
360 vm_page_blacklist_check(char *list, char *end)
361 {
362 	vm_paddr_t pa;
363 	char *next;
364 
365 	next = list;
366 	while (next != NULL) {
367 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
368 			continue;
369 		vm_page_blacklist_add(pa, bootverbose);
370 	}
371 }
372 
373 /*
374  *	vm_page_blacklist_load:
375  *
376  *	Search for a special module named "ram_blacklist".  It'll be a
377  *	plain text file provided by the user via the loader directive
378  *	of the same name.
379  */
380 static void
381 vm_page_blacklist_load(char **list, char **end)
382 {
383 	void *mod;
384 	u_char *ptr;
385 	u_int len;
386 
387 	mod = NULL;
388 	ptr = NULL;
389 
390 	mod = preload_search_by_type("ram_blacklist");
391 	if (mod != NULL) {
392 		ptr = preload_fetch_addr(mod);
393 		len = preload_fetch_size(mod);
394         }
395 	*list = ptr;
396 	if (ptr != NULL)
397 		*end = ptr + len;
398 	else
399 		*end = NULL;
400 	return;
401 }
402 
403 static int
404 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
405 {
406 	vm_page_t m;
407 	struct sbuf sbuf;
408 	int error, first;
409 
410 	first = 1;
411 	error = sysctl_wire_old_buffer(req, 0);
412 	if (error != 0)
413 		return (error);
414 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
415 	TAILQ_FOREACH(m, &blacklist_head, listq) {
416 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
417 		    (uintmax_t)m->phys_addr);
418 		first = 0;
419 	}
420 	error = sbuf_finish(&sbuf);
421 	sbuf_delete(&sbuf);
422 	return (error);
423 }
424 
425 /*
426  * Initialize a dummy page for use in scans of the specified paging queue.
427  * In principle, this function only needs to set the flag PG_MARKER.
428  * Nonetheless, it write busies the page as a safety precaution.
429  */
430 void
431 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
432 {
433 
434 	bzero(marker, sizeof(*marker));
435 	marker->flags = PG_MARKER;
436 	marker->a.flags = aflags;
437 	marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
438 	marker->a.queue = queue;
439 }
440 
441 static void
442 vm_page_domain_init(int domain)
443 {
444 	struct vm_domain *vmd;
445 	struct vm_pagequeue *pq;
446 	int i;
447 
448 	vmd = VM_DOMAIN(domain);
449 	bzero(vmd, sizeof(*vmd));
450 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
451 	    "vm inactive pagequeue";
452 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
453 	    "vm active pagequeue";
454 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
455 	    "vm laundry pagequeue";
456 	*__DECONST(const char **,
457 	    &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
458 	    "vm unswappable pagequeue";
459 	vmd->vmd_domain = domain;
460 	vmd->vmd_page_count = 0;
461 	vmd->vmd_free_count = 0;
462 	vmd->vmd_segs = 0;
463 	vmd->vmd_oom = false;
464 	vmd->vmd_helper_threads_enabled = true;
465 	for (i = 0; i < PQ_COUNT; i++) {
466 		pq = &vmd->vmd_pagequeues[i];
467 		TAILQ_INIT(&pq->pq_pl);
468 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
469 		    MTX_DEF | MTX_DUPOK);
470 		pq->pq_pdpages = 0;
471 		vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
472 	}
473 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
474 	mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
475 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
476 
477 	/*
478 	 * inacthead is used to provide FIFO ordering for LRU-bypassing
479 	 * insertions.
480 	 */
481 	vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
482 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
483 	    &vmd->vmd_inacthead, plinks.q);
484 
485 	/*
486 	 * The clock pages are used to implement active queue scanning without
487 	 * requeues.  Scans start at clock[0], which is advanced after the scan
488 	 * ends.  When the two clock hands meet, they are reset and scanning
489 	 * resumes from the head of the queue.
490 	 */
491 	vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
492 	vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
493 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
494 	    &vmd->vmd_clock[0], plinks.q);
495 	TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
496 	    &vmd->vmd_clock[1], plinks.q);
497 }
498 
499 /*
500  * Initialize a physical page in preparation for adding it to the free
501  * lists.
502  */
503 void
504 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool)
505 {
506 	m->object = NULL;
507 	m->ref_count = 0;
508 	m->busy_lock = VPB_FREED;
509 	m->flags = m->a.flags = 0;
510 	m->phys_addr = pa;
511 	m->a.queue = PQ_NONE;
512 	m->psind = 0;
513 	m->segind = segind;
514 	m->order = VM_NFREEORDER;
515 	m->pool = pool;
516 	m->valid = m->dirty = 0;
517 	pmap_page_init(m);
518 }
519 
520 #ifndef PMAP_HAS_PAGE_ARRAY
521 static vm_paddr_t
522 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
523 {
524 	vm_paddr_t new_end;
525 
526 	/*
527 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
528 	 * However, because this page is allocated from KVM, out-of-bounds
529 	 * accesses using the direct map will not be trapped.
530 	 */
531 	*vaddr += PAGE_SIZE;
532 
533 	/*
534 	 * Allocate physical memory for the page structures, and map it.
535 	 */
536 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
537 	vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
538 	    VM_PROT_READ | VM_PROT_WRITE);
539 	vm_page_array_size = page_range;
540 
541 	return (new_end);
542 }
543 #endif
544 
545 /*
546  *	vm_page_startup:
547  *
548  *	Initializes the resident memory module.  Allocates physical memory for
549  *	bootstrapping UMA and some data structures that are used to manage
550  *	physical pages.  Initializes these structures, and populates the free
551  *	page queues.
552  */
553 vm_offset_t
554 vm_page_startup(vm_offset_t vaddr)
555 {
556 	struct vm_phys_seg *seg;
557 	struct vm_domain *vmd;
558 	vm_page_t m;
559 	char *list, *listend;
560 	vm_paddr_t end, high_avail, low_avail, new_end, size;
561 	vm_paddr_t page_range __unused;
562 	vm_paddr_t last_pa, pa, startp, endp;
563 	u_long pagecount;
564 #if MINIDUMP_PAGE_TRACKING
565 	u_long vm_page_dump_size;
566 #endif
567 	int biggestone, i, segind;
568 #ifdef WITNESS
569 	vm_offset_t mapped;
570 	int witness_size;
571 #endif
572 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
573 	long ii;
574 #endif
575 	int pool;
576 #ifdef VM_FREEPOOL_LAZYINIT
577 	int lazyinit;
578 #endif
579 
580 	vaddr = round_page(vaddr);
581 
582 	vm_phys_early_startup();
583 	biggestone = vm_phys_avail_largest();
584 	end = phys_avail[biggestone+1];
585 
586 	/*
587 	 * Initialize the page and queue locks.
588 	 */
589 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
590 	for (i = 0; i < PA_LOCK_COUNT; i++)
591 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
592 	for (i = 0; i < vm_ndomains; i++)
593 		vm_page_domain_init(i);
594 
595 	new_end = end;
596 #ifdef WITNESS
597 	witness_size = round_page(witness_startup_count());
598 	new_end -= witness_size;
599 	mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
600 	    VM_PROT_READ | VM_PROT_WRITE);
601 	bzero((void *)mapped, witness_size);
602 	witness_startup((void *)mapped);
603 #endif
604 
605 #if MINIDUMP_PAGE_TRACKING
606 	/*
607 	 * Allocate a bitmap to indicate that a random physical page
608 	 * needs to be included in a minidump.
609 	 *
610 	 * The amd64 port needs this to indicate which direct map pages
611 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
612 	 *
613 	 * However, i386 still needs this workspace internally within the
614 	 * minidump code.  In theory, they are not needed on i386, but are
615 	 * included should the sf_buf code decide to use them.
616 	 */
617 	last_pa = 0;
618 	vm_page_dump_pages = 0;
619 	for (i = 0; dump_avail[i + 1] != 0; i += 2) {
620 		vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
621 		    dump_avail[i] / PAGE_SIZE;
622 		if (dump_avail[i + 1] > last_pa)
623 			last_pa = dump_avail[i + 1];
624 	}
625 	vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
626 	new_end -= vm_page_dump_size;
627 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
628 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
629 	bzero((void *)vm_page_dump, vm_page_dump_size);
630 #if MINIDUMP_STARTUP_PAGE_TRACKING
631 	/*
632 	 * Include the UMA bootstrap pages, witness pages and vm_page_dump
633 	 * in a crash dump.  When pmap_map() uses the direct map, they are
634 	 * not automatically included.
635 	 */
636 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
637 		dump_add_page(pa);
638 #endif
639 #else
640 	(void)last_pa;
641 #endif
642 	phys_avail[biggestone + 1] = new_end;
643 #ifdef __amd64__
644 	/*
645 	 * Request that the physical pages underlying the message buffer be
646 	 * included in a crash dump.  Since the message buffer is accessed
647 	 * through the direct map, they are not automatically included.
648 	 */
649 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
650 	last_pa = pa + round_page(msgbufsize);
651 	while (pa < last_pa) {
652 		dump_add_page(pa);
653 		pa += PAGE_SIZE;
654 	}
655 #else
656 	(void)pa;
657 #endif
658 
659 	/*
660 	 * Determine the lowest and highest physical addresses and, in the case
661 	 * of VM_PHYSSEG_SPARSE, the exact size of the available physical
662 	 * memory.  vm_phys_early_startup() already checked that phys_avail[]
663 	 * has at least one element.
664 	 */
665 #ifdef VM_PHYSSEG_SPARSE
666 	size = phys_avail[1] - phys_avail[0];
667 #endif
668 	low_avail = phys_avail[0];
669 	high_avail = phys_avail[1];
670 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
671 #ifdef VM_PHYSSEG_SPARSE
672 		size += phys_avail[i + 1] - phys_avail[i];
673 #endif
674 		if (phys_avail[i] < low_avail)
675 			low_avail = phys_avail[i];
676 		if (phys_avail[i + 1] > high_avail)
677 			high_avail = phys_avail[i + 1];
678 	}
679 	for (i = 0; i < vm_phys_nsegs; i++) {
680 #ifdef VM_PHYSSEG_SPARSE
681 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
682 #endif
683 		if (vm_phys_segs[i].start < low_avail)
684 			low_avail = vm_phys_segs[i].start;
685 		if (vm_phys_segs[i].end > high_avail)
686 			high_avail = vm_phys_segs[i].end;
687 	}
688 	first_page = low_avail / PAGE_SIZE;
689 #ifdef VM_PHYSSEG_DENSE
690 	size = high_avail - low_avail;
691 #endif
692 
693 #ifdef PMAP_HAS_PAGE_ARRAY
694 	pmap_page_array_startup(size / PAGE_SIZE);
695 	biggestone = vm_phys_avail_largest();
696 	end = new_end = phys_avail[biggestone + 1];
697 #else
698 #ifdef VM_PHYSSEG_DENSE
699 	/*
700 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
701 	 * the overhead of a page structure per page only if vm_page_array is
702 	 * allocated from the last physical memory chunk.  Otherwise, we must
703 	 * allocate page structures representing the physical memory
704 	 * underlying vm_page_array, even though they will not be used.
705 	 */
706 	if (new_end != high_avail)
707 		page_range = size / PAGE_SIZE;
708 	else
709 #endif
710 	{
711 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
712 
713 		/*
714 		 * If the partial bytes remaining are large enough for
715 		 * a page (PAGE_SIZE) without a corresponding
716 		 * 'struct vm_page', then new_end will contain an
717 		 * extra page after subtracting the length of the VM
718 		 * page array.  Compensate by subtracting an extra
719 		 * page from new_end.
720 		 */
721 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
722 			if (new_end == high_avail)
723 				high_avail -= PAGE_SIZE;
724 			new_end -= PAGE_SIZE;
725 		}
726 	}
727 	end = new_end;
728 	new_end = vm_page_array_alloc(&vaddr, end, page_range);
729 #endif
730 
731 #if VM_NRESERVLEVEL > 0
732 	/*
733 	 * Allocate physical memory for the reservation management system's
734 	 * data structures, and map it.
735 	 */
736 	new_end = vm_reserv_startup(&vaddr, new_end);
737 #endif
738 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
739 	/*
740 	 * Include vm_page_array and vm_reserv_array in a crash dump.
741 	 */
742 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
743 		dump_add_page(pa);
744 #endif
745 	phys_avail[biggestone + 1] = new_end;
746 
747 	/*
748 	 * Add physical memory segments corresponding to the available
749 	 * physical pages.
750 	 */
751 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
752 		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
753 
754 	/*
755 	 * Initialize the physical memory allocator.
756 	 */
757 	vm_phys_init();
758 
759 	pool = VM_FREEPOOL_DEFAULT;
760 #ifdef VM_FREEPOOL_LAZYINIT
761 	lazyinit = 1;
762 	TUNABLE_INT_FETCH("debug.vm.lazy_page_init", &lazyinit);
763 	if (lazyinit)
764 		pool = VM_FREEPOOL_LAZYINIT;
765 #endif
766 
767 	/*
768 	 * Initialize the page structures and add every available page to the
769 	 * physical memory allocator's free lists.
770 	 */
771 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
772 	for (ii = 0; ii < vm_page_array_size; ii++) {
773 		m = &vm_page_array[ii];
774 		vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0,
775 		    VM_FREEPOOL_DEFAULT);
776 		m->flags = PG_FICTITIOUS;
777 	}
778 #endif
779 	vm_cnt.v_page_count = 0;
780 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
781 		seg = &vm_phys_segs[segind];
782 
783 		/*
784 		 * Initialize pages not covered by phys_avail[], since they
785 		 * might be freed to the allocator at some future point, e.g.,
786 		 * by kmem_bootstrap_free().
787 		 */
788 		startp = seg->start;
789 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
790 			if (startp >= seg->end)
791 				break;
792 			if (phys_avail[i + 1] < startp)
793 				continue;
794 			if (phys_avail[i] <= startp) {
795 				startp = phys_avail[i + 1];
796 				continue;
797 			}
798 			m = vm_phys_seg_paddr_to_vm_page(seg, startp);
799 			for (endp = MIN(phys_avail[i], seg->end);
800 			    startp < endp; startp += PAGE_SIZE, m++) {
801 				vm_page_init_page(m, startp, segind,
802 				    VM_FREEPOOL_DEFAULT);
803 			}
804 		}
805 
806 		/*
807 		 * Add the segment's pages that are covered by one of
808 		 * phys_avail's ranges to the free lists.
809 		 */
810 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
811 			if (seg->end <= phys_avail[i] ||
812 			    seg->start >= phys_avail[i + 1])
813 				continue;
814 
815 			startp = MAX(seg->start, phys_avail[i]);
816 			endp = MIN(seg->end, phys_avail[i + 1]);
817 			pagecount = (u_long)atop(endp - startp);
818 			if (pagecount == 0)
819 				continue;
820 
821 			/*
822 			 * If lazy vm_page initialization is not enabled, simply
823 			 * initialize all of the pages in the segment covered by
824 			 * phys_avail.  Otherwise, initialize only the first
825 			 * page of each run of free pages handed to the vm_phys
826 			 * allocator, which in turn defers initialization of
827 			 * pages until they are needed.
828 			 *
829 			 * This avoids blocking the boot process for long
830 			 * periods, which may be relevant for VMs (which ought
831 			 * to boot as quickly as possible) and/or systems with
832 			 * large amounts of physical memory.
833 			 */
834 			m = vm_phys_seg_paddr_to_vm_page(seg, startp);
835 			vm_page_init_page(m, startp, segind, pool);
836 			if (pool == VM_FREEPOOL_DEFAULT) {
837 				for (u_long j = 1; j < pagecount; j++) {
838 					vm_page_init_page(&m[j],
839 					    startp + ptoa((vm_paddr_t)j),
840 					    segind, pool);
841 				}
842 			}
843 			vmd = VM_DOMAIN(seg->domain);
844 			vm_domain_free_lock(vmd);
845 			vm_phys_enqueue_contig(m, pool, pagecount);
846 			vm_domain_free_unlock(vmd);
847 			vm_domain_freecnt_inc(vmd, pagecount);
848 			vm_cnt.v_page_count += (u_int)pagecount;
849 			vmd->vmd_page_count += (u_int)pagecount;
850 			vmd->vmd_segs |= 1UL << segind;
851 		}
852 	}
853 
854 	/*
855 	 * Remove blacklisted pages from the physical memory allocator.
856 	 */
857 	TAILQ_INIT(&blacklist_head);
858 	vm_page_blacklist_load(&list, &listend);
859 	vm_page_blacklist_check(list, listend);
860 
861 	list = kern_getenv("vm.blacklist");
862 	vm_page_blacklist_check(list, NULL);
863 
864 	freeenv(list);
865 #if VM_NRESERVLEVEL > 0
866 	/*
867 	 * Initialize the reservation management system.
868 	 */
869 	vm_reserv_init();
870 #endif
871 
872 	return (vaddr);
873 }
874 
875 void
876 vm_page_reference(vm_page_t m)
877 {
878 
879 	vm_page_aflag_set(m, PGA_REFERENCED);
880 }
881 
882 /*
883  *	vm_page_trybusy
884  *
885  *	Helper routine for grab functions to trylock busy.
886  *
887  *	Returns true on success and false on failure.
888  */
889 static bool
890 vm_page_trybusy(vm_page_t m, int allocflags)
891 {
892 
893 	if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
894 		return (vm_page_trysbusy(m));
895 	else
896 		return (vm_page_tryxbusy(m));
897 }
898 
899 /*
900  *	vm_page_tryacquire
901  *
902  *	Helper routine for grab functions to trylock busy and wire.
903  *
904  *	Returns true on success and false on failure.
905  */
906 static inline bool
907 vm_page_tryacquire(vm_page_t m, int allocflags)
908 {
909 	bool locked;
910 
911 	locked = vm_page_trybusy(m, allocflags);
912 	if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
913 		vm_page_wire(m);
914 	return (locked);
915 }
916 
917 /*
918  *	vm_page_busy_acquire:
919  *
920  *	Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
921  *	and drop the object lock if necessary.
922  */
923 bool
924 vm_page_busy_acquire(vm_page_t m, int allocflags)
925 {
926 	vm_object_t obj;
927 	bool locked;
928 
929 	/*
930 	 * The page-specific object must be cached because page
931 	 * identity can change during the sleep, causing the
932 	 * re-lock of a different object.
933 	 * It is assumed that a reference to the object is already
934 	 * held by the callers.
935 	 */
936 	obj = atomic_load_ptr(&m->object);
937 	for (;;) {
938 		if (vm_page_tryacquire(m, allocflags))
939 			return (true);
940 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
941 			return (false);
942 		if (obj != NULL)
943 			locked = VM_OBJECT_WOWNED(obj);
944 		else
945 			locked = false;
946 		MPASS(locked || vm_page_wired(m));
947 		if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
948 		    locked) && locked)
949 			VM_OBJECT_WLOCK(obj);
950 		if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
951 			return (false);
952 		KASSERT(m->object == obj || m->object == NULL,
953 		    ("vm_page_busy_acquire: page %p does not belong to %p",
954 		    m, obj));
955 	}
956 }
957 
958 /*
959  *	vm_page_busy_downgrade:
960  *
961  *	Downgrade an exclusive busy page into a single shared busy page.
962  */
963 void
964 vm_page_busy_downgrade(vm_page_t m)
965 {
966 	u_int x;
967 
968 	vm_page_assert_xbusied(m);
969 
970 	x = vm_page_busy_fetch(m);
971 	for (;;) {
972 		if (atomic_fcmpset_rel_int(&m->busy_lock,
973 		    &x, VPB_SHARERS_WORD(1)))
974 			break;
975 	}
976 	if ((x & VPB_BIT_WAITERS) != 0)
977 		wakeup(m);
978 }
979 
980 /*
981  *
982  *	vm_page_busy_tryupgrade:
983  *
984  *	Attempt to upgrade a single shared busy into an exclusive busy.
985  */
986 int
987 vm_page_busy_tryupgrade(vm_page_t m)
988 {
989 	u_int ce, x;
990 
991 	vm_page_assert_sbusied(m);
992 
993 	x = vm_page_busy_fetch(m);
994 	ce = VPB_CURTHREAD_EXCLUSIVE;
995 	for (;;) {
996 		if (VPB_SHARERS(x) > 1)
997 			return (0);
998 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
999 		    ("vm_page_busy_tryupgrade: invalid lock state"));
1000 		if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
1001 		    ce | (x & VPB_BIT_WAITERS)))
1002 			continue;
1003 		return (1);
1004 	}
1005 }
1006 
1007 /*
1008  *	vm_page_sbusied:
1009  *
1010  *	Return a positive value if the page is shared busied, 0 otherwise.
1011  */
1012 int
1013 vm_page_sbusied(vm_page_t m)
1014 {
1015 	u_int x;
1016 
1017 	x = vm_page_busy_fetch(m);
1018 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
1019 }
1020 
1021 /*
1022  *	vm_page_sunbusy:
1023  *
1024  *	Shared unbusy a page.
1025  */
1026 void
1027 vm_page_sunbusy(vm_page_t m)
1028 {
1029 	u_int x;
1030 
1031 	vm_page_assert_sbusied(m);
1032 
1033 	x = vm_page_busy_fetch(m);
1034 	for (;;) {
1035 		KASSERT(x != VPB_FREED,
1036 		    ("vm_page_sunbusy: Unlocking freed page."));
1037 		if (VPB_SHARERS(x) > 1) {
1038 			if (atomic_fcmpset_int(&m->busy_lock, &x,
1039 			    x - VPB_ONE_SHARER))
1040 				break;
1041 			continue;
1042 		}
1043 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1044 		    ("vm_page_sunbusy: invalid lock state"));
1045 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1046 			continue;
1047 		if ((x & VPB_BIT_WAITERS) == 0)
1048 			break;
1049 		wakeup(m);
1050 		break;
1051 	}
1052 }
1053 
1054 /*
1055  *	vm_page_busy_sleep:
1056  *
1057  *	Sleep if the page is busy, using the page pointer as wchan.
1058  *	This is used to implement the hard-path of the busying mechanism.
1059  *
1060  *	If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1061  *	will not sleep if the page is shared-busy.
1062  *
1063  *	The object lock must be held on entry.
1064  *
1065  *	Returns true if it slept and dropped the object lock, or false
1066  *	if there was no sleep and the lock is still held.
1067  */
1068 bool
1069 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
1070 {
1071 	vm_object_t obj;
1072 
1073 	obj = m->object;
1074 	VM_OBJECT_ASSERT_LOCKED(obj);
1075 
1076 	return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
1077 	    true));
1078 }
1079 
1080 /*
1081  *	vm_page_busy_sleep_unlocked:
1082  *
1083  *	Sleep if the page is busy, using the page pointer as wchan.
1084  *	This is used to implement the hard-path of busying mechanism.
1085  *
1086  *	If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1087  *	will not sleep if the page is shared-busy.
1088  *
1089  *	The object lock must not be held on entry.  The operation will
1090  *	return if the page changes identity.
1091  */
1092 void
1093 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1094     const char *wmesg, int allocflags)
1095 {
1096 	VM_OBJECT_ASSERT_UNLOCKED(obj);
1097 
1098 	(void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
1099 }
1100 
1101 /*
1102  *	_vm_page_busy_sleep:
1103  *
1104  *	Internal busy sleep function.  Verifies the page identity and
1105  *	lockstate against parameters.  Returns true if it sleeps and
1106  *	false otherwise.
1107  *
1108  *	allocflags uses VM_ALLOC_* flags to specify the lock required.
1109  *
1110  *	If locked is true the lock will be dropped for any true returns
1111  *	and held for any false returns.
1112  */
1113 static bool
1114 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1115     const char *wmesg, int allocflags, bool locked)
1116 {
1117 	bool xsleep;
1118 	u_int x;
1119 
1120 	/*
1121 	 * If the object is busy we must wait for that to drain to zero
1122 	 * before trying the page again.
1123 	 */
1124 	if (obj != NULL && vm_object_busied(obj)) {
1125 		if (locked)
1126 			VM_OBJECT_DROP(obj);
1127 		vm_object_busy_wait(obj, wmesg);
1128 		return (true);
1129 	}
1130 
1131 	if (!vm_page_busied(m))
1132 		return (false);
1133 
1134 	xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1135 	sleepq_lock(m);
1136 	x = vm_page_busy_fetch(m);
1137 	do {
1138 		/*
1139 		 * If the page changes objects or becomes unlocked we can
1140 		 * simply return.
1141 		 */
1142 		if (x == VPB_UNBUSIED ||
1143 		    (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1144 		    m->object != obj || m->pindex != pindex) {
1145 			sleepq_release(m);
1146 			return (false);
1147 		}
1148 		if ((x & VPB_BIT_WAITERS) != 0)
1149 			break;
1150 	} while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1151 	if (locked)
1152 		VM_OBJECT_DROP(obj);
1153 	DROP_GIANT();
1154 	sleepq_add(m, NULL, wmesg, 0, 0);
1155 	sleepq_wait(m, PVM);
1156 	PICKUP_GIANT();
1157 	return (true);
1158 }
1159 
1160 /*
1161  *	vm_page_trysbusy:
1162  *
1163  *	Try to shared busy a page.
1164  *	If the operation succeeds 1 is returned otherwise 0.
1165  *	The operation never sleeps.
1166  */
1167 int
1168 vm_page_trysbusy(vm_page_t m)
1169 {
1170 	vm_object_t obj;
1171 	u_int x;
1172 
1173 	obj = m->object;
1174 	x = vm_page_busy_fetch(m);
1175 	for (;;) {
1176 		if ((x & VPB_BIT_SHARED) == 0)
1177 			return (0);
1178 		/*
1179 		 * Reduce the window for transient busies that will trigger
1180 		 * false negatives in vm_page_ps_test().
1181 		 */
1182 		if (obj != NULL && vm_object_busied(obj))
1183 			return (0);
1184 		if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1185 		    x + VPB_ONE_SHARER))
1186 			break;
1187 	}
1188 
1189 	/* Refetch the object now that we're guaranteed that it is stable. */
1190 	obj = m->object;
1191 	if (obj != NULL && vm_object_busied(obj)) {
1192 		vm_page_sunbusy(m);
1193 		return (0);
1194 	}
1195 	return (1);
1196 }
1197 
1198 /*
1199  *	vm_page_tryxbusy:
1200  *
1201  *	Try to exclusive busy a page.
1202  *	If the operation succeeds 1 is returned otherwise 0.
1203  *	The operation never sleeps.
1204  */
1205 int
1206 vm_page_tryxbusy(vm_page_t m)
1207 {
1208 	vm_object_t obj;
1209 
1210         if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1211             VPB_CURTHREAD_EXCLUSIVE) == 0)
1212 		return (0);
1213 
1214 	obj = m->object;
1215 	if (obj != NULL && vm_object_busied(obj)) {
1216 		vm_page_xunbusy(m);
1217 		return (0);
1218 	}
1219 	return (1);
1220 }
1221 
1222 static void
1223 vm_page_xunbusy_hard_tail(vm_page_t m)
1224 {
1225 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1226 	/* Wake the waiter. */
1227 	wakeup(m);
1228 }
1229 
1230 /*
1231  *	vm_page_xunbusy_hard:
1232  *
1233  *	Called when unbusy has failed because there is a waiter.
1234  */
1235 void
1236 vm_page_xunbusy_hard(vm_page_t m)
1237 {
1238 	vm_page_assert_xbusied(m);
1239 	vm_page_xunbusy_hard_tail(m);
1240 }
1241 
1242 void
1243 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1244 {
1245 	vm_page_assert_xbusied_unchecked(m);
1246 	vm_page_xunbusy_hard_tail(m);
1247 }
1248 
1249 static void
1250 vm_page_busy_free(vm_page_t m)
1251 {
1252 	u_int x;
1253 
1254 	atomic_thread_fence_rel();
1255 	x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1256 	if ((x & VPB_BIT_WAITERS) != 0)
1257 		wakeup(m);
1258 }
1259 
1260 /*
1261  *	vm_page_unhold_pages:
1262  *
1263  *	Unhold each of the pages that is referenced by the given array.
1264  */
1265 void
1266 vm_page_unhold_pages(vm_page_t *ma, int count)
1267 {
1268 
1269 	for (; count != 0; count--) {
1270 		vm_page_unwire(*ma, PQ_ACTIVE);
1271 		ma++;
1272 	}
1273 }
1274 
1275 vm_page_t
1276 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1277 {
1278 	vm_page_t m;
1279 
1280 #ifdef VM_PHYSSEG_SPARSE
1281 	m = vm_phys_paddr_to_vm_page(pa);
1282 	if (m == NULL)
1283 		m = vm_phys_fictitious_to_vm_page(pa);
1284 	return (m);
1285 #elif defined(VM_PHYSSEG_DENSE)
1286 	long pi;
1287 
1288 	pi = atop(pa);
1289 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1290 		m = &vm_page_array[pi - first_page];
1291 		return (m);
1292 	}
1293 	return (vm_phys_fictitious_to_vm_page(pa));
1294 #else
1295 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1296 #endif
1297 }
1298 
1299 /*
1300  *	vm_page_getfake:
1301  *
1302  *	Create a fictitious page with the specified physical address and
1303  *	memory attribute.  The memory attribute is the only the machine-
1304  *	dependent aspect of a fictitious page that must be initialized.
1305  */
1306 vm_page_t
1307 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1308 {
1309 	vm_page_t m;
1310 
1311 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1312 	vm_page_initfake(m, paddr, memattr);
1313 	return (m);
1314 }
1315 
1316 void
1317 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1318 {
1319 
1320 	if ((m->flags & PG_FICTITIOUS) != 0) {
1321 		/*
1322 		 * The page's memattr might have changed since the
1323 		 * previous initialization.  Update the pmap to the
1324 		 * new memattr.
1325 		 */
1326 		goto memattr;
1327 	}
1328 	m->phys_addr = paddr;
1329 	m->a.queue = PQ_NONE;
1330 	/* Fictitious pages don't use "segind". */
1331 	m->flags = PG_FICTITIOUS;
1332 	/* Fictitious pages don't use "order" or "pool". */
1333 	m->oflags = VPO_UNMANAGED;
1334 	m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1335 	/* Fictitious pages are unevictable. */
1336 	m->ref_count = 1;
1337 	pmap_page_init(m);
1338 memattr:
1339 	pmap_page_set_memattr(m, memattr);
1340 }
1341 
1342 /*
1343  *	vm_page_putfake:
1344  *
1345  *	Release a fictitious page.
1346  */
1347 void
1348 vm_page_putfake(vm_page_t m)
1349 {
1350 
1351 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1352 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1353 	    ("vm_page_putfake: bad page %p", m));
1354 	vm_page_assert_xbusied(m);
1355 	vm_page_busy_free(m);
1356 	uma_zfree(fakepg_zone, m);
1357 }
1358 
1359 /*
1360  *	vm_page_updatefake:
1361  *
1362  *	Update the given fictitious page to the specified physical address and
1363  *	memory attribute.
1364  */
1365 void
1366 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1367 {
1368 
1369 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1370 	    ("vm_page_updatefake: bad page %p", m));
1371 	m->phys_addr = paddr;
1372 	pmap_page_set_memattr(m, memattr);
1373 }
1374 
1375 /*
1376  *	vm_page_free:
1377  *
1378  *	Free a page.
1379  */
1380 void
1381 vm_page_free(vm_page_t m)
1382 {
1383 
1384 	m->flags &= ~PG_ZERO;
1385 	vm_page_free_toq(m);
1386 }
1387 
1388 /*
1389  *	vm_page_free_zero:
1390  *
1391  *	Free a page to the zerod-pages queue
1392  */
1393 void
1394 vm_page_free_zero(vm_page_t m)
1395 {
1396 
1397 	m->flags |= PG_ZERO;
1398 	vm_page_free_toq(m);
1399 }
1400 
1401 /*
1402  * Unbusy and handle the page queueing for a page from a getpages request that
1403  * was optionally read ahead or behind.
1404  */
1405 void
1406 vm_page_readahead_finish(vm_page_t m)
1407 {
1408 
1409 	/* We shouldn't put invalid pages on queues. */
1410 	KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1411 
1412 	/*
1413 	 * Since the page is not the actually needed one, whether it should
1414 	 * be activated or deactivated is not obvious.  Empirical results
1415 	 * have shown that deactivating the page is usually the best choice,
1416 	 * unless the page is wanted by another thread.
1417 	 */
1418 	if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1419 		vm_page_activate(m);
1420 	else
1421 		vm_page_deactivate(m);
1422 	vm_page_xunbusy_unchecked(m);
1423 }
1424 
1425 /*
1426  * Destroy the identity of an invalid page and free it if possible.
1427  * This is intended to be used when reading a page from backing store fails.
1428  */
1429 void
1430 vm_page_free_invalid(vm_page_t m)
1431 {
1432 
1433 	KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1434 	KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1435 	KASSERT(m->object != NULL, ("page %p has no object", m));
1436 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1437 
1438 	/*
1439 	 * We may be attempting to free the page as part of the handling for an
1440 	 * I/O error, in which case the page was xbusied by a different thread.
1441 	 */
1442 	vm_page_xbusy_claim(m);
1443 
1444 	/*
1445 	 * If someone has wired this page while the object lock
1446 	 * was not held, then the thread that unwires is responsible
1447 	 * for freeing the page.  Otherwise just free the page now.
1448 	 * The wire count of this unmapped page cannot change while
1449 	 * we have the page xbusy and the page's object wlocked.
1450 	 */
1451 	if (vm_page_remove(m))
1452 		vm_page_free(m);
1453 }
1454 
1455 /*
1456  *	vm_page_dirty_KBI:		[ internal use only ]
1457  *
1458  *	Set all bits in the page's dirty field.
1459  *
1460  *	The object containing the specified page must be locked if the
1461  *	call is made from the machine-independent layer.
1462  *
1463  *	See vm_page_clear_dirty_mask().
1464  *
1465  *	This function should only be called by vm_page_dirty().
1466  */
1467 void
1468 vm_page_dirty_KBI(vm_page_t m)
1469 {
1470 
1471 	/* Refer to this operation by its public name. */
1472 	KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1473 	m->dirty = VM_PAGE_BITS_ALL;
1474 }
1475 
1476 /*
1477  * Insert the given page into the given object at the given pindex.  mpred is
1478  * used for memq linkage.  From vm_page_insert, lookup is true, mpred is
1479  * initially NULL, and this procedure looks it up.  From vm_page_insert_after
1480  * and vm_page_iter_insert, lookup is false and mpred is known to the caller
1481  * to be valid, and may be NULL if this will be the page with the lowest
1482  * pindex.
1483  *
1484  * The procedure is marked __always_inline to suggest to the compiler to
1485  * eliminate the lookup parameter and the associated alternate branch.
1486  */
1487 static __always_inline int
1488 vm_page_insert_lookup(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1489     struct pctrie_iter *pages, bool iter, vm_page_t mpred, bool lookup)
1490 {
1491 	int error;
1492 
1493 	VM_OBJECT_ASSERT_WLOCKED(object);
1494 	KASSERT(m->object == NULL,
1495 	    ("vm_page_insert: page %p already inserted", m));
1496 
1497 	/*
1498 	 * Record the object/offset pair in this page.
1499 	 */
1500 	m->object = object;
1501 	m->pindex = pindex;
1502 	m->ref_count |= VPRC_OBJREF;
1503 
1504 	/*
1505 	 * Add this page to the object's radix tree, and look up mpred if
1506 	 * needed.
1507 	 */
1508 	if (iter) {
1509 		KASSERT(!lookup, ("%s: cannot lookup mpred", __func__));
1510 		error = vm_radix_iter_insert(pages, m);
1511 	} else if (lookup)
1512 		error = vm_radix_insert_lookup_lt(&object->rtree, m, &mpred);
1513 	else
1514 		error = vm_radix_insert(&object->rtree, m);
1515 	if (__predict_false(error != 0)) {
1516 		m->object = NULL;
1517 		m->pindex = 0;
1518 		m->ref_count &= ~VPRC_OBJREF;
1519 		return (1);
1520 	}
1521 
1522 	/*
1523 	 * Now link into the object's ordered list of backed pages.
1524 	 */
1525 	vm_page_insert_radixdone(m, object, mpred);
1526 	vm_pager_page_inserted(object, m);
1527 	return (0);
1528 }
1529 
1530 /*
1531  *	vm_page_insert:		[ internal use only ]
1532  *
1533  *	Inserts the given mem entry into the object and object list.
1534  *
1535  *	The object must be locked.
1536  */
1537 int
1538 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1539 {
1540 	return (vm_page_insert_lookup(m, object, pindex, NULL, false, NULL,
1541 	    true));
1542 }
1543 
1544 /*
1545  *	vm_page_insert_after:
1546  *
1547  *	Inserts the page "m" into the specified object at offset "pindex".
1548  *
1549  *	The page "mpred" must immediately precede the offset "pindex" within
1550  *	the specified object.
1551  *
1552  *	The object must be locked.
1553  */
1554 static int
1555 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1556     vm_page_t mpred)
1557 {
1558 	return (vm_page_insert_lookup(m, object, pindex, NULL, false, mpred,
1559 	    false));
1560 }
1561 
1562 /*
1563  *	vm_page_iter_insert:
1564  *
1565  *	Tries to insert the page "m" into the specified object at offset
1566  *	"pindex" using the iterator "pages".  Returns 0 if the insertion was
1567  *	successful.
1568  *
1569  *	The page "mpred" must immediately precede the offset "pindex" within
1570  *	the specified object.
1571  *
1572  *	The object must be locked.
1573  */
1574 static int
1575 vm_page_iter_insert(struct pctrie_iter *pages, vm_page_t m, vm_object_t object,
1576     vm_pindex_t pindex, vm_page_t mpred)
1577 {
1578 	return (vm_page_insert_lookup(m, object, pindex, pages, true, mpred,
1579 	    false));
1580 }
1581 
1582 /*
1583  *	vm_page_insert_radixdone:
1584  *
1585  *	Complete page "m" insertion into the specified object after the
1586  *	radix trie hooking.
1587  *
1588  *	The page "mpred" must precede the offset "m->pindex" within the
1589  *	specified object.
1590  *
1591  *	The object must be locked.
1592  */
1593 static void
1594 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1595 {
1596 
1597 	VM_OBJECT_ASSERT_WLOCKED(object);
1598 	KASSERT(object != NULL && m->object == object,
1599 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1600 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1601 	    ("vm_page_insert_radixdone: page %p is missing object ref", m));
1602 	if (mpred != NULL) {
1603 		KASSERT(mpred->object == object,
1604 		    ("vm_page_insert_radixdone: object doesn't contain mpred"));
1605 		KASSERT(mpred->pindex < m->pindex,
1606 		    ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1607 		KASSERT(TAILQ_NEXT(mpred, listq) == NULL ||
1608 		    m->pindex < TAILQ_NEXT(mpred, listq)->pindex,
1609 		    ("vm_page_insert_radixdone: pindex doesn't precede msucc"));
1610 	} else {
1611 		KASSERT(TAILQ_EMPTY(&object->memq) ||
1612 		    m->pindex < TAILQ_FIRST(&object->memq)->pindex,
1613 		    ("vm_page_insert_radixdone: no mpred but not first page"));
1614 	}
1615 
1616 	if (mpred != NULL)
1617 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1618 	else
1619 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1620 
1621 	/*
1622 	 * Show that the object has one more resident page.
1623 	 */
1624 	object->resident_page_count++;
1625 
1626 	/*
1627 	 * Hold the vnode until the last page is released.
1628 	 */
1629 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1630 		vhold(object->handle);
1631 
1632 	/*
1633 	 * Since we are inserting a new and possibly dirty page,
1634 	 * update the object's generation count.
1635 	 */
1636 	if (pmap_page_is_write_mapped(m))
1637 		vm_object_set_writeable_dirty(object);
1638 }
1639 
1640 /*
1641  *	vm_page_remove_radixdone
1642  *
1643  *	Complete page "m" removal from the specified object after the radix trie
1644  *	unhooking.
1645  *
1646  *	The caller is responsible for updating the page's fields to reflect this
1647  *	removal.
1648  */
1649 static void
1650 vm_page_remove_radixdone(vm_page_t m)
1651 {
1652 	vm_object_t object;
1653 
1654 	vm_page_assert_xbusied(m);
1655 	object = m->object;
1656 	VM_OBJECT_ASSERT_WLOCKED(object);
1657 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1658 	    ("page %p is missing its object ref", m));
1659 
1660 	/* Deferred free of swap space. */
1661 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1662 		vm_pager_page_unswapped(m);
1663 
1664 	vm_pager_page_removed(object, m);
1665 	m->object = NULL;
1666 
1667 	/*
1668 	 * Now remove from the object's list of backed pages.
1669 	 */
1670 	TAILQ_REMOVE(&object->memq, m, listq);
1671 
1672 	/*
1673 	 * And show that the object has one fewer resident page.
1674 	 */
1675 	object->resident_page_count--;
1676 
1677 	/*
1678 	 * The vnode may now be recycled.
1679 	 */
1680 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1681 		vdrop(object->handle);
1682 }
1683 
1684 /*
1685  *	vm_page_free_object_prep:
1686  *
1687  *	Disassociates the given page from its VM object.
1688  *
1689  *	The object must be locked, and the page must be xbusy.
1690  */
1691 static void
1692 vm_page_free_object_prep(vm_page_t m)
1693 {
1694 	KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
1695 	    ((m->object->flags & OBJ_UNMANAGED) != 0),
1696 	    ("%s: managed flag mismatch for page %p",
1697 	     __func__, m));
1698 	vm_page_assert_xbusied(m);
1699 
1700 	/*
1701 	 * The object reference can be released without an atomic
1702 	 * operation.
1703 	 */
1704 	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
1705 	    m->ref_count == VPRC_OBJREF,
1706 	    ("%s: page %p has unexpected ref_count %u",
1707 	    __func__, m, m->ref_count));
1708 	vm_page_remove_radixdone(m);
1709 	m->ref_count -= VPRC_OBJREF;
1710 }
1711 
1712 /*
1713  *	vm_page_iter_free:
1714  *
1715  *	Free the given page, and use the iterator to remove it from the radix
1716  *	tree.
1717  */
1718 void
1719 vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m)
1720 {
1721 	vm_radix_iter_remove(pages);
1722 	vm_page_free_object_prep(m);
1723 	vm_page_xunbusy(m);
1724 	m->flags &= ~PG_ZERO;
1725 	vm_page_free_toq(m);
1726 }
1727 
1728 /*
1729  *	vm_page_remove:
1730  *
1731  *	Removes the specified page from its containing object, but does not
1732  *	invalidate any backing storage.  Returns true if the object's reference
1733  *	was the last reference to the page, and false otherwise.
1734  *
1735  *	The object must be locked and the page must be exclusively busied.
1736  *	The exclusive busy will be released on return.  If this is not the
1737  *	final ref and the caller does not hold a wire reference it may not
1738  *	continue to access the page.
1739  */
1740 bool
1741 vm_page_remove(vm_page_t m)
1742 {
1743 	bool dropped;
1744 
1745 	dropped = vm_page_remove_xbusy(m);
1746 	vm_page_xunbusy(m);
1747 
1748 	return (dropped);
1749 }
1750 
1751 /*
1752  *	vm_page_iter_remove:
1753  *
1754  *	Remove the current page, and use the iterator to remove it from the
1755  *	radix tree.
1756  */
1757 bool
1758 vm_page_iter_remove(struct pctrie_iter *pages, vm_page_t m)
1759 {
1760 	bool dropped;
1761 
1762 	vm_radix_iter_remove(pages);
1763 	vm_page_remove_radixdone(m);
1764 	dropped = (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1765 	vm_page_xunbusy(m);
1766 
1767 	return (dropped);
1768 }
1769 
1770 /*
1771  *	vm_page_radix_remove
1772  *
1773  *	Removes the specified page from the radix tree.
1774  */
1775 static void
1776 vm_page_radix_remove(vm_page_t m)
1777 {
1778 	vm_page_t mrem __diagused;
1779 
1780 	mrem = vm_radix_remove(&m->object->rtree, m->pindex);
1781 	KASSERT(mrem == m,
1782 	    ("removed page %p, expected page %p", mrem, m));
1783 }
1784 
1785 /*
1786  *	vm_page_remove_xbusy
1787  *
1788  *	Removes the page but leaves the xbusy held.  Returns true if this
1789  *	removed the final ref and false otherwise.
1790  */
1791 bool
1792 vm_page_remove_xbusy(vm_page_t m)
1793 {
1794 
1795 	vm_page_radix_remove(m);
1796 	vm_page_remove_radixdone(m);
1797 	return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1798 }
1799 
1800 /*
1801  *	vm_page_lookup:
1802  *
1803  *	Returns the page associated with the object/offset
1804  *	pair specified; if none is found, NULL is returned.
1805  *
1806  *	The object must be locked.
1807  */
1808 vm_page_t
1809 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1810 {
1811 
1812 	VM_OBJECT_ASSERT_LOCKED(object);
1813 	return (vm_radix_lookup(&object->rtree, pindex));
1814 }
1815 
1816 /*
1817  *	vm_page_iter_init:
1818  *
1819  *	Initialize iterator for vm pages.
1820  */
1821 void
1822 vm_page_iter_init(struct pctrie_iter *pages, vm_object_t object)
1823 {
1824 
1825 	vm_radix_iter_init(pages, &object->rtree);
1826 }
1827 
1828 /*
1829  *	vm_page_iter_init:
1830  *
1831  *	Initialize iterator for vm pages.
1832  */
1833 void
1834 vm_page_iter_limit_init(struct pctrie_iter *pages, vm_object_t object,
1835     vm_pindex_t limit)
1836 {
1837 
1838 	vm_radix_iter_limit_init(pages, &object->rtree, limit);
1839 }
1840 
1841 /*
1842  *	vm_page_iter_lookup:
1843  *
1844  *	Returns the page associated with the object/offset pair specified, and
1845  *	stores the path to its position; if none is found, NULL is returned.
1846  *
1847  *	The iter pctrie must be locked.
1848  */
1849 vm_page_t
1850 vm_page_iter_lookup(struct pctrie_iter *pages, vm_pindex_t pindex)
1851 {
1852 
1853 	return (vm_radix_iter_lookup(pages, pindex));
1854 }
1855 
1856 /*
1857  *	vm_page_lookup_unlocked:
1858  *
1859  *	Returns the page associated with the object/offset pair specified;
1860  *	if none is found, NULL is returned.  The page may be no longer be
1861  *	present in the object at the time that this function returns.  Only
1862  *	useful for opportunistic checks such as inmem().
1863  */
1864 vm_page_t
1865 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1866 {
1867 
1868 	return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1869 }
1870 
1871 /*
1872  *	vm_page_relookup:
1873  *
1874  *	Returns a page that must already have been busied by
1875  *	the caller.  Used for bogus page replacement.
1876  */
1877 vm_page_t
1878 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1879 {
1880 	vm_page_t m;
1881 
1882 	m = vm_page_lookup_unlocked(object, pindex);
1883 	KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1884 	    m->object == object && m->pindex == pindex,
1885 	    ("vm_page_relookup: Invalid page %p", m));
1886 	return (m);
1887 }
1888 
1889 /*
1890  * This should only be used by lockless functions for releasing transient
1891  * incorrect acquires.  The page may have been freed after we acquired a
1892  * busy lock.  In this case busy_lock == VPB_FREED and we have nothing
1893  * further to do.
1894  */
1895 static void
1896 vm_page_busy_release(vm_page_t m)
1897 {
1898 	u_int x;
1899 
1900 	x = vm_page_busy_fetch(m);
1901 	for (;;) {
1902 		if (x == VPB_FREED)
1903 			break;
1904 		if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1905 			if (atomic_fcmpset_int(&m->busy_lock, &x,
1906 			    x - VPB_ONE_SHARER))
1907 				break;
1908 			continue;
1909 		}
1910 		KASSERT((x & VPB_BIT_SHARED) != 0 ||
1911 		    (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1912 		    ("vm_page_busy_release: %p xbusy not owned.", m));
1913 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1914 			continue;
1915 		if ((x & VPB_BIT_WAITERS) != 0)
1916 			wakeup(m);
1917 		break;
1918 	}
1919 }
1920 
1921 /*
1922  *	vm_page_find_least:
1923  *
1924  *	Returns the page associated with the object with least pindex
1925  *	greater than or equal to the parameter pindex, or NULL.
1926  *
1927  *	The object must be locked.
1928  */
1929 vm_page_t
1930 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1931 {
1932 	vm_page_t m;
1933 
1934 	VM_OBJECT_ASSERT_LOCKED(object);
1935 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1936 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1937 	return (m);
1938 }
1939 
1940 /*
1941  *	vm_page_iter_lookup_ge:
1942  *
1943  *	Returns the page associated with the object with least pindex
1944  *	greater than or equal to the parameter pindex, or NULL.  Initializes the
1945  *	iterator to point to that page.
1946  *
1947  *	The iter pctrie must be locked.
1948  */
1949 vm_page_t
1950 vm_page_iter_lookup_ge(struct pctrie_iter *pages, vm_pindex_t pindex)
1951 {
1952 
1953 	return (vm_radix_iter_lookup_ge(pages, pindex));
1954 }
1955 
1956 /*
1957  * Returns the given page's successor (by pindex) within the object if it is
1958  * resident; if none is found, NULL is returned.
1959  *
1960  * The object must be locked.
1961  */
1962 vm_page_t
1963 vm_page_next(vm_page_t m)
1964 {
1965 	vm_page_t next;
1966 
1967 	VM_OBJECT_ASSERT_LOCKED(m->object);
1968 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1969 		MPASS(next->object == m->object);
1970 		if (next->pindex != m->pindex + 1)
1971 			next = NULL;
1972 	}
1973 	return (next);
1974 }
1975 
1976 /*
1977  * Returns the given page's predecessor (by pindex) within the object if it is
1978  * resident; if none is found, NULL is returned.
1979  *
1980  * The object must be locked.
1981  */
1982 vm_page_t
1983 vm_page_prev(vm_page_t m)
1984 {
1985 	vm_page_t prev;
1986 
1987 	VM_OBJECT_ASSERT_LOCKED(m->object);
1988 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1989 		MPASS(prev->object == m->object);
1990 		if (prev->pindex != m->pindex - 1)
1991 			prev = NULL;
1992 	}
1993 	return (prev);
1994 }
1995 
1996 /*
1997  * Uses the page mnew as a replacement for an existing page at index
1998  * pindex which must be already present in the object.
1999  *
2000  * Both pages must be exclusively busied on enter.  The old page is
2001  * unbusied on exit.
2002  *
2003  * A return value of true means mold is now free.  If this is not the
2004  * final ref and the caller does not hold a wire reference it may not
2005  * continue to access the page.
2006  */
2007 static bool
2008 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
2009     vm_page_t mold)
2010 {
2011 	vm_page_t mret __diagused;
2012 	bool dropped;
2013 
2014 	VM_OBJECT_ASSERT_WLOCKED(object);
2015 	vm_page_assert_xbusied(mold);
2016 	KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
2017 	    ("vm_page_replace: page %p already in object", mnew));
2018 
2019 	/*
2020 	 * This function mostly follows vm_page_insert() and
2021 	 * vm_page_remove() without the radix, object count and vnode
2022 	 * dance.  Double check such functions for more comments.
2023 	 */
2024 
2025 	mnew->object = object;
2026 	mnew->pindex = pindex;
2027 	atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
2028 	mret = vm_radix_replace(&object->rtree, mnew);
2029 	KASSERT(mret == mold,
2030 	    ("invalid page replacement, mold=%p, mret=%p", mold, mret));
2031 	KASSERT((mold->oflags & VPO_UNMANAGED) ==
2032 	    (mnew->oflags & VPO_UNMANAGED),
2033 	    ("vm_page_replace: mismatched VPO_UNMANAGED"));
2034 
2035 	/* Keep the resident page list in sorted order. */
2036 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
2037 	TAILQ_REMOVE(&object->memq, mold, listq);
2038 	mold->object = NULL;
2039 
2040 	/*
2041 	 * The object's resident_page_count does not change because we have
2042 	 * swapped one page for another, but the generation count should
2043 	 * change if the page is dirty.
2044 	 */
2045 	if (pmap_page_is_write_mapped(mnew))
2046 		vm_object_set_writeable_dirty(object);
2047 	dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
2048 	vm_page_xunbusy(mold);
2049 
2050 	return (dropped);
2051 }
2052 
2053 void
2054 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
2055     vm_page_t mold)
2056 {
2057 
2058 	vm_page_assert_xbusied(mnew);
2059 
2060 	if (vm_page_replace_hold(mnew, object, pindex, mold))
2061 		vm_page_free(mold);
2062 }
2063 
2064 /*
2065  *	vm_page_iter_rename:
2066  *
2067  *	Tries to move the specified page from its current object to a new object
2068  *	and pindex, using the given iterator to remove the page from its current
2069  *	object.  Returns true if the move was successful, and false if the move
2070  *	was aborted due to a failed memory allocation.
2071  *
2072  *	Panics if a page already resides in the new object at the new pindex.
2073  *
2074  *	Note: swap associated with the page must be invalidated by the move.  We
2075  *	      have to do this for several reasons:  (1) we aren't freeing the
2076  *	      page, (2) we are dirtying the page, (3) the VM system is probably
2077  *	      moving the page from object A to B, and will then later move
2078  *	      the backing store from A to B and we can't have a conflict.
2079  *
2080  *	Note: we *always* dirty the page.  It is necessary both for the
2081  *	      fact that we moved it, and because we may be invalidating
2082  *	      swap.
2083  *
2084  *	The objects must be locked.
2085  */
2086 bool
2087 vm_page_iter_rename(struct pctrie_iter *old_pages, vm_page_t m,
2088     vm_object_t new_object, vm_pindex_t new_pindex)
2089 {
2090 	vm_page_t mpred;
2091 	vm_pindex_t opidx;
2092 
2093 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
2094 	    ("%s: page %p is missing object ref", __func__, m));
2095 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2096 	VM_OBJECT_ASSERT_WLOCKED(new_object);
2097 
2098 	/*
2099 	 * Create a custom version of vm_page_insert() which does not depend
2100 	 * by m_prev and can cheat on the implementation aspects of the
2101 	 * function.
2102 	 */
2103 	opidx = m->pindex;
2104 	m->pindex = new_pindex;
2105 	if (vm_radix_insert_lookup_lt(&new_object->rtree, m, &mpred) != 0) {
2106 		m->pindex = opidx;
2107 		return (false);
2108 	}
2109 
2110 	/*
2111 	 * The operation cannot fail anymore.  The removal must happen before
2112 	 * the listq iterator is tainted.
2113 	 */
2114 	m->pindex = opidx;
2115 	vm_radix_iter_remove(old_pages);
2116 	vm_page_remove_radixdone(m);
2117 
2118 	/* Return back to the new pindex to complete vm_page_insert(). */
2119 	m->pindex = new_pindex;
2120 	m->object = new_object;
2121 
2122 	vm_page_insert_radixdone(m, new_object, mpred);
2123 	vm_page_dirty(m);
2124 	vm_pager_page_inserted(new_object, m);
2125 	return (true);
2126 }
2127 
2128 /*
2129  *	vm_page_mpred:
2130  *
2131  *	Return the greatest page of the object with index <= pindex,
2132  *	or NULL, if there is none.  Assumes object lock is held.
2133  */
2134 vm_page_t
2135 vm_page_mpred(vm_object_t object, vm_pindex_t pindex)
2136 {
2137 	return (vm_radix_lookup_le(&object->rtree, pindex));
2138 }
2139 
2140 /*
2141  *	vm_page_alloc:
2142  *
2143  *	Allocate and return a page that is associated with the specified
2144  *	object and offset pair.  By default, this page is exclusive busied.
2145  *
2146  *	The caller must always specify an allocation class.
2147  *
2148  *	allocation classes:
2149  *	VM_ALLOC_NORMAL		normal process request
2150  *	VM_ALLOC_SYSTEM		system *really* needs a page
2151  *	VM_ALLOC_INTERRUPT	interrupt time request
2152  *
2153  *	optional allocation flags:
2154  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2155  *				intends to allocate
2156  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
2157  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
2158  *	VM_ALLOC_SBUSY		shared busy the allocated page
2159  *	VM_ALLOC_WIRED		wire the allocated page
2160  *	VM_ALLOC_ZERO		prefer a zeroed page
2161  */
2162 vm_page_t
2163 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
2164 {
2165 
2166 	return (vm_page_alloc_after(object, pindex, req,
2167 	    vm_page_mpred(object, pindex)));
2168 }
2169 
2170 /*
2171  * Allocate a page in the specified object with the given page index.  To
2172  * optimize insertion of the page into the object, the caller must also specify
2173  * the resident page in the object with largest index smaller than the given
2174  * page index, or NULL if no such page exists.
2175  */
2176 static vm_page_t
2177 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
2178     int req, vm_page_t mpred)
2179 {
2180 	struct vm_domainset_iter di;
2181 	vm_page_t m;
2182 	int domain;
2183 
2184 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2185 	do {
2186 		m = vm_page_alloc_domain_after(object, pindex, domain, req,
2187 		    mpred);
2188 		if (m != NULL)
2189 			break;
2190 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
2191 
2192 	return (m);
2193 }
2194 
2195 /*
2196  * Returns true if the number of free pages exceeds the minimum
2197  * for the request class and false otherwise.
2198  */
2199 static int
2200 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
2201 {
2202 	u_int limit, old, new;
2203 
2204 	if (req_class == VM_ALLOC_INTERRUPT)
2205 		limit = 0;
2206 	else if (req_class == VM_ALLOC_SYSTEM)
2207 		limit = vmd->vmd_interrupt_free_min;
2208 	else
2209 		limit = vmd->vmd_free_reserved;
2210 
2211 	/*
2212 	 * Attempt to reserve the pages.  Fail if we're below the limit.
2213 	 */
2214 	limit += npages;
2215 	old = atomic_load_int(&vmd->vmd_free_count);
2216 	do {
2217 		if (old < limit)
2218 			return (0);
2219 		new = old - npages;
2220 	} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
2221 
2222 	/* Wake the page daemon if we've crossed the threshold. */
2223 	if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
2224 		pagedaemon_wakeup(vmd->vmd_domain);
2225 
2226 	/* Only update bitsets on transitions. */
2227 	if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
2228 	    (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2229 		vm_domain_set(vmd);
2230 
2231 	return (1);
2232 }
2233 
2234 int
2235 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2236 {
2237 	int req_class;
2238 
2239 	/*
2240 	 * The page daemon is allowed to dig deeper into the free page list.
2241 	 */
2242 	req_class = req & VM_ALLOC_CLASS_MASK;
2243 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2244 		req_class = VM_ALLOC_SYSTEM;
2245 	return (_vm_domain_allocate(vmd, req_class, npages));
2246 }
2247 
2248 vm_page_t
2249 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
2250     int req, vm_page_t mpred)
2251 {
2252 	struct vm_domain *vmd;
2253 	vm_page_t m;
2254 	int flags;
2255 
2256 #define	VPA_FLAGS	(VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL |	\
2257 			 VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY |		\
2258 			 VM_ALLOC_SBUSY | VM_ALLOC_WIRED |		\
2259 			 VM_ALLOC_NODUMP | VM_ALLOC_ZERO |		\
2260 			 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK)
2261 	KASSERT((req & ~VPA_FLAGS) == 0,
2262 	    ("invalid request %#x", req));
2263 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2264 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2265 	    ("invalid request %#x", req));
2266 	KASSERT(mpred == NULL || mpred->pindex < pindex,
2267 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
2268 	    (uintmax_t)pindex));
2269 	VM_OBJECT_ASSERT_WLOCKED(object);
2270 
2271 	flags = 0;
2272 	m = NULL;
2273 	if (!vm_pager_can_alloc_page(object, pindex))
2274 		return (NULL);
2275 again:
2276 	if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2277 		m = vm_page_alloc_nofree_domain(domain, req);
2278 		if (m != NULL)
2279 			goto found;
2280 	}
2281 #if VM_NRESERVLEVEL > 0
2282 	/*
2283 	 * Can we allocate the page from a reservation?
2284 	 */
2285 	if (vm_object_reserv(object) &&
2286 	    (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2287 	    NULL) {
2288 		goto found;
2289 	}
2290 #endif
2291 	vmd = VM_DOMAIN(domain);
2292 	if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
2293 		m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
2294 		    M_NOWAIT | M_NOVM);
2295 		if (m != NULL) {
2296 			flags |= PG_PCPU_CACHE;
2297 			goto found;
2298 		}
2299 	}
2300 	if (vm_domain_allocate(vmd, req, 1)) {
2301 		/*
2302 		 * If not, allocate it from the free page queues.
2303 		 */
2304 		vm_domain_free_lock(vmd);
2305 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
2306 		vm_domain_free_unlock(vmd);
2307 		if (m == NULL) {
2308 			vm_domain_freecnt_inc(vmd, 1);
2309 #if VM_NRESERVLEVEL > 0
2310 			if (vm_reserv_reclaim_inactive(domain))
2311 				goto again;
2312 #endif
2313 		}
2314 	}
2315 	if (m == NULL) {
2316 		/*
2317 		 * Not allocatable, give up.
2318 		 */
2319 		if (vm_domain_alloc_fail(vmd, object, req))
2320 			goto again;
2321 		return (NULL);
2322 	}
2323 
2324 	/*
2325 	 * At this point we had better have found a good page.
2326 	 */
2327 found:
2328 	vm_page_dequeue(m);
2329 	vm_page_alloc_check(m);
2330 
2331 	/*
2332 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2333 	 */
2334 	flags |= m->flags & PG_ZERO;
2335 	if ((req & VM_ALLOC_NODUMP) != 0)
2336 		flags |= PG_NODUMP;
2337 	if ((req & VM_ALLOC_NOFREE) != 0)
2338 		flags |= PG_NOFREE;
2339 	m->flags = flags;
2340 	m->a.flags = 0;
2341 	m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2342 	m->pool = VM_FREEPOOL_DEFAULT;
2343 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2344 		m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2345 	else if ((req & VM_ALLOC_SBUSY) != 0)
2346 		m->busy_lock = VPB_SHARERS_WORD(1);
2347 	else
2348 		m->busy_lock = VPB_UNBUSIED;
2349 	if (req & VM_ALLOC_WIRED) {
2350 		vm_wire_add(1);
2351 		m->ref_count = 1;
2352 	}
2353 	m->a.act_count = 0;
2354 
2355 	if (vm_page_insert_after(m, object, pindex, mpred)) {
2356 		if (req & VM_ALLOC_WIRED) {
2357 			vm_wire_sub(1);
2358 			m->ref_count = 0;
2359 		}
2360 		KASSERT(m->object == NULL, ("page %p has object", m));
2361 		m->oflags = VPO_UNMANAGED;
2362 		m->busy_lock = VPB_UNBUSIED;
2363 		/* Don't change PG_ZERO. */
2364 		vm_page_free_toq(m);
2365 		if (req & VM_ALLOC_WAITFAIL) {
2366 			VM_OBJECT_WUNLOCK(object);
2367 			vm_radix_wait();
2368 			VM_OBJECT_WLOCK(object);
2369 		}
2370 		return (NULL);
2371 	}
2372 
2373 	/* Ignore device objects; the pager sets "memattr" for them. */
2374 	if (object->memattr != VM_MEMATTR_DEFAULT &&
2375 	    (object->flags & OBJ_FICTITIOUS) == 0)
2376 		pmap_page_set_memattr(m, object->memattr);
2377 
2378 	return (m);
2379 }
2380 
2381 /*
2382  *	vm_page_alloc_contig:
2383  *
2384  *	Allocate a contiguous set of physical pages of the given size "npages"
2385  *	from the free lists.  All of the physical pages must be at or above
2386  *	the given physical address "low" and below the given physical address
2387  *	"high".  The given value "alignment" determines the alignment of the
2388  *	first physical page in the set.  If the given value "boundary" is
2389  *	non-zero, then the set of physical pages cannot cross any physical
2390  *	address boundary that is a multiple of that value.  Both "alignment"
2391  *	and "boundary" must be a power of two.
2392  *
2393  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2394  *	then the memory attribute setting for the physical pages is configured
2395  *	to the object's memory attribute setting.  Otherwise, the memory
2396  *	attribute setting for the physical pages is configured to "memattr",
2397  *	overriding the object's memory attribute setting.  However, if the
2398  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2399  *	memory attribute setting for the physical pages cannot be configured
2400  *	to VM_MEMATTR_DEFAULT.
2401  *
2402  *	The specified object may not contain fictitious pages.
2403  *
2404  *	The caller must always specify an allocation class.
2405  *
2406  *	allocation classes:
2407  *	VM_ALLOC_NORMAL		normal process request
2408  *	VM_ALLOC_SYSTEM		system *really* needs a page
2409  *	VM_ALLOC_INTERRUPT	interrupt time request
2410  *
2411  *	optional allocation flags:
2412  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
2413  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
2414  *	VM_ALLOC_SBUSY		shared busy the allocated page
2415  *	VM_ALLOC_WIRED		wire the allocated page
2416  *	VM_ALLOC_ZERO		prefer a zeroed page
2417  */
2418 vm_page_t
2419 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2420     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2421     vm_paddr_t boundary, vm_memattr_t memattr)
2422 {
2423 	struct vm_domainset_iter di;
2424 	vm_page_t bounds[2];
2425 	vm_page_t m;
2426 	int domain;
2427 	int start_segind;
2428 
2429 	start_segind = -1;
2430 
2431 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2432 	do {
2433 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2434 		    npages, low, high, alignment, boundary, memattr);
2435 		if (m != NULL)
2436 			break;
2437 		if (start_segind == -1)
2438 			start_segind = vm_phys_lookup_segind(low);
2439 		if (vm_phys_find_range(bounds, start_segind, domain,
2440 		    npages, low, high) == -1) {
2441 			vm_domainset_iter_ignore(&di, domain);
2442 		}
2443 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
2444 
2445 	return (m);
2446 }
2447 
2448 static vm_page_t
2449 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
2450     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2451 {
2452 	struct vm_domain *vmd;
2453 	vm_page_t m_ret;
2454 
2455 	/*
2456 	 * Can we allocate the pages without the number of free pages falling
2457 	 * below the lower bound for the allocation class?
2458 	 */
2459 	vmd = VM_DOMAIN(domain);
2460 	if (!vm_domain_allocate(vmd, req, npages))
2461 		return (NULL);
2462 	/*
2463 	 * Try to allocate the pages from the free page queues.
2464 	 */
2465 	vm_domain_free_lock(vmd);
2466 	m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2467 	    alignment, boundary);
2468 	vm_domain_free_unlock(vmd);
2469 	if (m_ret != NULL)
2470 		return (m_ret);
2471 #if VM_NRESERVLEVEL > 0
2472 	/*
2473 	 * Try to break a reservation to allocate the pages.
2474 	 */
2475 	if ((req & VM_ALLOC_NORECLAIM) == 0) {
2476 		m_ret = vm_reserv_reclaim_contig(domain, npages, low,
2477 	            high, alignment, boundary);
2478 		if (m_ret != NULL)
2479 			return (m_ret);
2480 	}
2481 #endif
2482 	vm_domain_freecnt_inc(vmd, npages);
2483 	return (NULL);
2484 }
2485 
2486 vm_page_t
2487 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2488     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2489     vm_paddr_t boundary, vm_memattr_t memattr)
2490 {
2491 	struct pctrie_iter pages;
2492 	vm_page_t m, m_ret, mpred;
2493 	u_int busy_lock, flags, oflags;
2494 
2495 #define	VPAC_FLAGS	(VPA_FLAGS | VM_ALLOC_NORECLAIM)
2496 	KASSERT((req & ~VPAC_FLAGS) == 0,
2497 	    ("invalid request %#x", req));
2498 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2499 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2500 	    ("invalid request %#x", req));
2501 	KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2502 	    (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2503 	    ("invalid request %#x", req));
2504 	VM_OBJECT_ASSERT_WLOCKED(object);
2505 	KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2506 	    ("vm_page_alloc_contig: object %p has fictitious pages",
2507 	    object));
2508 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2509 
2510 	vm_page_iter_init(&pages, object);
2511 	mpred = vm_radix_iter_lookup_le(&pages, pindex);
2512 	KASSERT(mpred == NULL || mpred->pindex != pindex,
2513 	    ("vm_page_alloc_contig: pindex already allocated"));
2514 	for (;;) {
2515 #if VM_NRESERVLEVEL > 0
2516 		/*
2517 		 * Can we allocate the pages from a reservation?
2518 		 */
2519 		if (vm_object_reserv(object) &&
2520 		    (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2521 		    mpred, npages, low, high, alignment, boundary)) != NULL) {
2522 			break;
2523 		}
2524 #endif
2525 		if ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2526 		    low, high, alignment, boundary)) != NULL)
2527 			break;
2528 		if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req))
2529 			return (NULL);
2530 	}
2531 
2532 	/*
2533 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2534 	 */
2535 	flags = PG_ZERO;
2536 	if ((req & VM_ALLOC_NODUMP) != 0)
2537 		flags |= PG_NODUMP;
2538 	oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2539 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2540 		busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2541 	else if ((req & VM_ALLOC_SBUSY) != 0)
2542 		busy_lock = VPB_SHARERS_WORD(1);
2543 	else
2544 		busy_lock = VPB_UNBUSIED;
2545 	if ((req & VM_ALLOC_WIRED) != 0)
2546 		vm_wire_add(npages);
2547 	if (object->memattr != VM_MEMATTR_DEFAULT &&
2548 	    memattr == VM_MEMATTR_DEFAULT)
2549 		memattr = object->memattr;
2550 	for (m = m_ret; m < &m_ret[npages]; m++) {
2551 		vm_page_dequeue(m);
2552 		vm_page_alloc_check(m);
2553 		m->a.flags = 0;
2554 		m->flags = (m->flags | PG_NODUMP) & flags;
2555 		m->busy_lock = busy_lock;
2556 		if ((req & VM_ALLOC_WIRED) != 0)
2557 			m->ref_count = 1;
2558 		m->a.act_count = 0;
2559 		m->oflags = oflags;
2560 		m->pool = VM_FREEPOOL_DEFAULT;
2561 		if (vm_page_iter_insert(&pages, m, object, pindex, mpred)) {
2562 			if ((req & VM_ALLOC_WIRED) != 0)
2563 				vm_wire_sub(npages);
2564 			KASSERT(m->object == NULL,
2565 			    ("page %p has object", m));
2566 			mpred = m;
2567 			for (m = m_ret; m < &m_ret[npages]; m++) {
2568 				if (m <= mpred &&
2569 				    (req & VM_ALLOC_WIRED) != 0)
2570 					m->ref_count = 0;
2571 				m->oflags = VPO_UNMANAGED;
2572 				m->busy_lock = VPB_UNBUSIED;
2573 				/* Don't change PG_ZERO. */
2574 				vm_page_free_toq(m);
2575 			}
2576 			if (req & VM_ALLOC_WAITFAIL) {
2577 				VM_OBJECT_WUNLOCK(object);
2578 				vm_radix_wait();
2579 				VM_OBJECT_WLOCK(object);
2580 			}
2581 			return (NULL);
2582 		}
2583 		mpred = m;
2584 		if (memattr != VM_MEMATTR_DEFAULT)
2585 			pmap_page_set_memattr(m, memattr);
2586 		pindex++;
2587 	}
2588 	return (m_ret);
2589 }
2590 
2591 /*
2592  * Allocate a physical page that is not intended to be inserted into a VM
2593  * object.
2594  */
2595 vm_page_t
2596 vm_page_alloc_noobj_domain(int domain, int req)
2597 {
2598 	struct vm_domain *vmd;
2599 	vm_page_t m;
2600 	int flags;
2601 
2602 #define	VPAN_FLAGS	(VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL |      \
2603 			 VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK |		\
2604 			 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED |		\
2605 			 VM_ALLOC_NODUMP | VM_ALLOC_ZERO |		\
2606 			 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK)
2607 	KASSERT((req & ~VPAN_FLAGS) == 0,
2608 	    ("invalid request %#x", req));
2609 
2610 	flags = ((req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0) |
2611 	    ((req & VM_ALLOC_NOFREE) != 0 ? PG_NOFREE : 0);
2612 	vmd = VM_DOMAIN(domain);
2613 again:
2614 	if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2615 		m = vm_page_alloc_nofree_domain(domain, req);
2616 		if (m != NULL)
2617 			goto found;
2618 	}
2619 
2620 	if (vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
2621 		m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
2622 		    M_NOWAIT | M_NOVM);
2623 		if (m != NULL) {
2624 			flags |= PG_PCPU_CACHE;
2625 			goto found;
2626 		}
2627 	}
2628 
2629 	if (vm_domain_allocate(vmd, req, 1)) {
2630 		vm_domain_free_lock(vmd);
2631 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
2632 		vm_domain_free_unlock(vmd);
2633 		if (m == NULL) {
2634 			vm_domain_freecnt_inc(vmd, 1);
2635 #if VM_NRESERVLEVEL > 0
2636 			if (vm_reserv_reclaim_inactive(domain))
2637 				goto again;
2638 #endif
2639 		}
2640 	}
2641 	if (m == NULL) {
2642 		if (vm_domain_alloc_fail(vmd, NULL, req))
2643 			goto again;
2644 		return (NULL);
2645 	}
2646 
2647 found:
2648 	vm_page_dequeue(m);
2649 	vm_page_alloc_check(m);
2650 
2651 	/*
2652 	 * Consumers should not rely on a useful default pindex value.
2653 	 */
2654 	m->pindex = 0xdeadc0dedeadc0de;
2655 	m->flags = (m->flags & PG_ZERO) | flags;
2656 	m->a.flags = 0;
2657 	m->oflags = VPO_UNMANAGED;
2658 	m->pool = VM_FREEPOOL_DIRECT;
2659 	m->busy_lock = VPB_UNBUSIED;
2660 	if ((req & VM_ALLOC_WIRED) != 0) {
2661 		vm_wire_add(1);
2662 		m->ref_count = 1;
2663 	}
2664 
2665 	if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2666 		pmap_zero_page(m);
2667 
2668 	return (m);
2669 }
2670 
2671 #if VM_NRESERVLEVEL > 1
2672 #define	VM_NOFREE_IMPORT_ORDER	(VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER)
2673 #elif VM_NRESERVLEVEL > 0
2674 #define	VM_NOFREE_IMPORT_ORDER	VM_LEVEL_0_ORDER
2675 #else
2676 #define	VM_NOFREE_IMPORT_ORDER	8
2677 #endif
2678 
2679 /*
2680  * Allocate a single NOFREE page.
2681  *
2682  * This routine hands out NOFREE pages from higher-order
2683  * physical memory blocks in order to reduce memory fragmentation.
2684  * When a NOFREE for a given domain chunk is used up,
2685  * the routine will try to fetch a new one from the freelists
2686  * and discard the old one.
2687  */
2688 static vm_page_t
2689 vm_page_alloc_nofree_domain(int domain, int req)
2690 {
2691 	vm_page_t m;
2692 	struct vm_domain *vmd;
2693 	struct vm_nofreeq *nqp;
2694 
2695 	KASSERT((req & VM_ALLOC_NOFREE) != 0, ("invalid request %#x", req));
2696 
2697 	vmd = VM_DOMAIN(domain);
2698 	nqp = &vmd->vmd_nofreeq;
2699 	vm_domain_free_lock(vmd);
2700 	if (nqp->offs >= (1 << VM_NOFREE_IMPORT_ORDER) || nqp->ma == NULL) {
2701 		if (!vm_domain_allocate(vmd, req,
2702 		    1 << VM_NOFREE_IMPORT_ORDER)) {
2703 			vm_domain_free_unlock(vmd);
2704 			return (NULL);
2705 		}
2706 		nqp->ma = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
2707 		    VM_NOFREE_IMPORT_ORDER);
2708 		if (nqp->ma == NULL) {
2709 			vm_domain_freecnt_inc(vmd, 1 << VM_NOFREE_IMPORT_ORDER);
2710 			vm_domain_free_unlock(vmd);
2711 			return (NULL);
2712 		}
2713 		nqp->offs = 0;
2714 	}
2715 	m = &nqp->ma[nqp->offs++];
2716 	vm_domain_free_unlock(vmd);
2717 	VM_CNT_ADD(v_nofree_count, 1);
2718 
2719 	return (m);
2720 }
2721 
2722 vm_page_t
2723 vm_page_alloc_noobj(int req)
2724 {
2725 	struct vm_domainset_iter di;
2726 	vm_page_t m;
2727 	int domain;
2728 
2729 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2730 	do {
2731 		m = vm_page_alloc_noobj_domain(domain, req);
2732 		if (m != NULL)
2733 			break;
2734 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2735 
2736 	return (m);
2737 }
2738 
2739 vm_page_t
2740 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
2741     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2742     vm_memattr_t memattr)
2743 {
2744 	struct vm_domainset_iter di;
2745 	vm_page_t m;
2746 	int domain;
2747 
2748 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2749 	do {
2750 		m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
2751 		    high, alignment, boundary, memattr);
2752 		if (m != NULL)
2753 			break;
2754 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2755 
2756 	return (m);
2757 }
2758 
2759 vm_page_t
2760 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
2761     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2762     vm_memattr_t memattr)
2763 {
2764 	vm_page_t m, m_ret;
2765 	u_int flags;
2766 
2767 #define	VPANC_FLAGS	(VPAN_FLAGS | VM_ALLOC_NORECLAIM)
2768 	KASSERT((req & ~VPANC_FLAGS) == 0,
2769 	    ("invalid request %#x", req));
2770 	KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2771 	    (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2772 	    ("invalid request %#x", req));
2773 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2774 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2775 	    ("invalid request %#x", req));
2776 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2777 
2778 	while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2779 	    low, high, alignment, boundary)) == NULL) {
2780 		if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
2781 			return (NULL);
2782 	}
2783 
2784 	/*
2785 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2786 	 */
2787 	flags = PG_ZERO;
2788 	if ((req & VM_ALLOC_NODUMP) != 0)
2789 		flags |= PG_NODUMP;
2790 	if ((req & VM_ALLOC_WIRED) != 0)
2791 		vm_wire_add(npages);
2792 	for (m = m_ret; m < &m_ret[npages]; m++) {
2793 		vm_page_dequeue(m);
2794 		vm_page_alloc_check(m);
2795 
2796 		/*
2797 		 * Consumers should not rely on a useful default pindex value.
2798 		 */
2799 		m->pindex = 0xdeadc0dedeadc0de;
2800 		m->a.flags = 0;
2801 		m->flags = (m->flags | PG_NODUMP) & flags;
2802 		m->busy_lock = VPB_UNBUSIED;
2803 		if ((req & VM_ALLOC_WIRED) != 0)
2804 			m->ref_count = 1;
2805 		m->a.act_count = 0;
2806 		m->oflags = VPO_UNMANAGED;
2807 		m->pool = VM_FREEPOOL_DIRECT;
2808 
2809 		/*
2810 		 * Zero the page before updating any mappings since the page is
2811 		 * not yet shared with any devices which might require the
2812 		 * non-default memory attribute.  pmap_page_set_memattr()
2813 		 * flushes data caches before returning.
2814 		 */
2815 		if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2816 			pmap_zero_page(m);
2817 		if (memattr != VM_MEMATTR_DEFAULT)
2818 			pmap_page_set_memattr(m, memattr);
2819 	}
2820 	return (m_ret);
2821 }
2822 
2823 /*
2824  * Check a page that has been freshly dequeued from a freelist.
2825  */
2826 static void
2827 vm_page_alloc_check(vm_page_t m)
2828 {
2829 
2830 	KASSERT(m->object == NULL, ("page %p has object", m));
2831 	KASSERT(m->a.queue == PQ_NONE &&
2832 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2833 	    ("page %p has unexpected queue %d, flags %#x",
2834 	    m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2835 	KASSERT(m->ref_count == 0, ("page %p has references", m));
2836 	KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2837 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2838 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2839 	    ("page %p has unexpected memattr %d",
2840 	    m, pmap_page_get_memattr(m)));
2841 	KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
2842 	pmap_vm_page_alloc_check(m);
2843 }
2844 
2845 static int
2846 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2847 {
2848 	struct vm_domain *vmd;
2849 	struct vm_pgcache *pgcache;
2850 	int i;
2851 
2852 	pgcache = arg;
2853 	vmd = VM_DOMAIN(pgcache->domain);
2854 
2855 	/*
2856 	 * The page daemon should avoid creating extra memory pressure since its
2857 	 * main purpose is to replenish the store of free pages.
2858 	 */
2859 	if (vmd->vmd_severeset || curproc == pageproc ||
2860 	    !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2861 		return (0);
2862 	domain = vmd->vmd_domain;
2863 	vm_domain_free_lock(vmd);
2864 	i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2865 	    (vm_page_t *)store);
2866 	vm_domain_free_unlock(vmd);
2867 	if (cnt != i)
2868 		vm_domain_freecnt_inc(vmd, cnt - i);
2869 
2870 	return (i);
2871 }
2872 
2873 static void
2874 vm_page_zone_release(void *arg, void **store, int cnt)
2875 {
2876 	struct vm_domain *vmd;
2877 	struct vm_pgcache *pgcache;
2878 	vm_page_t m;
2879 	int i;
2880 
2881 	pgcache = arg;
2882 	vmd = VM_DOMAIN(pgcache->domain);
2883 	vm_domain_free_lock(vmd);
2884 	for (i = 0; i < cnt; i++) {
2885 		m = (vm_page_t)store[i];
2886 		vm_phys_free_pages(m, pgcache->pool, 0);
2887 	}
2888 	vm_domain_free_unlock(vmd);
2889 	vm_domain_freecnt_inc(vmd, cnt);
2890 }
2891 
2892 #define	VPSC_ANY	0	/* No restrictions. */
2893 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2894 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2895 
2896 /*
2897  *	vm_page_scan_contig:
2898  *
2899  *	Scan vm_page_array[] between the specified entries "m_start" and
2900  *	"m_end" for a run of contiguous physical pages that satisfy the
2901  *	specified conditions, and return the lowest page in the run.  The
2902  *	specified "alignment" determines the alignment of the lowest physical
2903  *	page in the run.  If the specified "boundary" is non-zero, then the
2904  *	run of physical pages cannot span a physical address that is a
2905  *	multiple of "boundary".
2906  *
2907  *	"m_end" is never dereferenced, so it need not point to a vm_page
2908  *	structure within vm_page_array[].
2909  *
2910  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2911  *	span a hole (or discontiguity) in the physical address space.  Both
2912  *	"alignment" and "boundary" must be a power of two.
2913  */
2914 static vm_page_t
2915 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2916     u_long alignment, vm_paddr_t boundary, int options)
2917 {
2918 	vm_object_t object;
2919 	vm_paddr_t pa;
2920 	vm_page_t m, m_run;
2921 #if VM_NRESERVLEVEL > 0
2922 	int level;
2923 #endif
2924 	int m_inc, order, run_ext, run_len;
2925 
2926 	KASSERT(npages > 0, ("npages is 0"));
2927 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2928 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2929 	m_run = NULL;
2930 	run_len = 0;
2931 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2932 		KASSERT((m->flags & PG_MARKER) == 0,
2933 		    ("page %p is PG_MARKER", m));
2934 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2935 		    ("fictitious page %p has invalid ref count", m));
2936 
2937 		/*
2938 		 * If the current page would be the start of a run, check its
2939 		 * physical address against the end, alignment, and boundary
2940 		 * conditions.  If it doesn't satisfy these conditions, either
2941 		 * terminate the scan or advance to the next page that
2942 		 * satisfies the failed condition.
2943 		 */
2944 		if (run_len == 0) {
2945 			KASSERT(m_run == NULL, ("m_run != NULL"));
2946 			if (m + npages > m_end)
2947 				break;
2948 			pa = VM_PAGE_TO_PHYS(m);
2949 			if (!vm_addr_align_ok(pa, alignment)) {
2950 				m_inc = atop(roundup2(pa, alignment) - pa);
2951 				continue;
2952 			}
2953 			if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
2954 				m_inc = atop(roundup2(pa, boundary) - pa);
2955 				continue;
2956 			}
2957 		} else
2958 			KASSERT(m_run != NULL, ("m_run == NULL"));
2959 
2960 retry:
2961 		m_inc = 1;
2962 		if (vm_page_wired(m))
2963 			run_ext = 0;
2964 #if VM_NRESERVLEVEL > 0
2965 		else if ((level = vm_reserv_level(m)) >= 0 &&
2966 		    (options & VPSC_NORESERV) != 0) {
2967 			run_ext = 0;
2968 			/* Advance to the end of the reservation. */
2969 			pa = VM_PAGE_TO_PHYS(m);
2970 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2971 			    pa);
2972 		}
2973 #endif
2974 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2975 			/*
2976 			 * The page is considered eligible for relocation if
2977 			 * and only if it could be laundered or reclaimed by
2978 			 * the page daemon.
2979 			 */
2980 			VM_OBJECT_RLOCK(object);
2981 			if (object != m->object) {
2982 				VM_OBJECT_RUNLOCK(object);
2983 				goto retry;
2984 			}
2985 			/* Don't care: PG_NODUMP, PG_ZERO. */
2986 			if ((object->flags & OBJ_SWAP) == 0 &&
2987 			    object->type != OBJT_VNODE) {
2988 				run_ext = 0;
2989 #if VM_NRESERVLEVEL > 0
2990 			} else if ((options & VPSC_NOSUPER) != 0 &&
2991 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2992 				run_ext = 0;
2993 				/* Advance to the end of the superpage. */
2994 				pa = VM_PAGE_TO_PHYS(m);
2995 				m_inc = atop(roundup2(pa + 1,
2996 				    vm_reserv_size(level)) - pa);
2997 #endif
2998 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2999 			    vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
3000 				/*
3001 				 * The page is allocated but eligible for
3002 				 * relocation.  Extend the current run by one
3003 				 * page.
3004 				 */
3005 				KASSERT(pmap_page_get_memattr(m) ==
3006 				    VM_MEMATTR_DEFAULT,
3007 				    ("page %p has an unexpected memattr", m));
3008 				KASSERT((m->oflags & (VPO_SWAPINPROG |
3009 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
3010 				    ("page %p has unexpected oflags", m));
3011 				/* Don't care: PGA_NOSYNC. */
3012 				run_ext = 1;
3013 			} else
3014 				run_ext = 0;
3015 			VM_OBJECT_RUNLOCK(object);
3016 #if VM_NRESERVLEVEL > 0
3017 		} else if (level >= 0) {
3018 			/*
3019 			 * The page is reserved but not yet allocated.  In
3020 			 * other words, it is still free.  Extend the current
3021 			 * run by one page.
3022 			 */
3023 			run_ext = 1;
3024 #endif
3025 		} else if ((order = m->order) < VM_NFREEORDER) {
3026 			/*
3027 			 * The page is enqueued in the physical memory
3028 			 * allocator's free page queues.  Moreover, it is the
3029 			 * first page in a power-of-two-sized run of
3030 			 * contiguous free pages.  Add these pages to the end
3031 			 * of the current run, and jump ahead.
3032 			 */
3033 			run_ext = 1 << order;
3034 			m_inc = 1 << order;
3035 		} else {
3036 			/*
3037 			 * Skip the page for one of the following reasons: (1)
3038 			 * It is enqueued in the physical memory allocator's
3039 			 * free page queues.  However, it is not the first
3040 			 * page in a run of contiguous free pages.  (This case
3041 			 * rarely occurs because the scan is performed in
3042 			 * ascending order.) (2) It is not reserved, and it is
3043 			 * transitioning from free to allocated.  (Conversely,
3044 			 * the transition from allocated to free for managed
3045 			 * pages is blocked by the page busy lock.) (3) It is
3046 			 * allocated but not contained by an object and not
3047 			 * wired, e.g., allocated by Xen's balloon driver.
3048 			 */
3049 			run_ext = 0;
3050 		}
3051 
3052 		/*
3053 		 * Extend or reset the current run of pages.
3054 		 */
3055 		if (run_ext > 0) {
3056 			if (run_len == 0)
3057 				m_run = m;
3058 			run_len += run_ext;
3059 		} else {
3060 			if (run_len > 0) {
3061 				m_run = NULL;
3062 				run_len = 0;
3063 			}
3064 		}
3065 	}
3066 	if (run_len >= npages)
3067 		return (m_run);
3068 	return (NULL);
3069 }
3070 
3071 /*
3072  *	vm_page_reclaim_run:
3073  *
3074  *	Try to relocate each of the allocated virtual pages within the
3075  *	specified run of physical pages to a new physical address.  Free the
3076  *	physical pages underlying the relocated virtual pages.  A virtual page
3077  *	is relocatable if and only if it could be laundered or reclaimed by
3078  *	the page daemon.  Whenever possible, a virtual page is relocated to a
3079  *	physical address above "high".
3080  *
3081  *	Returns 0 if every physical page within the run was already free or
3082  *	just freed by a successful relocation.  Otherwise, returns a non-zero
3083  *	value indicating why the last attempt to relocate a virtual page was
3084  *	unsuccessful.
3085  *
3086  *	"req_class" must be an allocation class.
3087  */
3088 static int
3089 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
3090     vm_paddr_t high)
3091 {
3092 	struct vm_domain *vmd;
3093 	struct spglist free;
3094 	vm_object_t object;
3095 	vm_paddr_t pa;
3096 	vm_page_t m, m_end, m_new;
3097 	int error, order, req;
3098 
3099 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
3100 	    ("req_class is not an allocation class"));
3101 	SLIST_INIT(&free);
3102 	error = 0;
3103 	m = m_run;
3104 	m_end = m_run + npages;
3105 	for (; error == 0 && m < m_end; m++) {
3106 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
3107 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
3108 
3109 		/*
3110 		 * Racily check for wirings.  Races are handled once the object
3111 		 * lock is held and the page is unmapped.
3112 		 */
3113 		if (vm_page_wired(m))
3114 			error = EBUSY;
3115 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
3116 			/*
3117 			 * The page is relocated if and only if it could be
3118 			 * laundered or reclaimed by the page daemon.
3119 			 */
3120 			VM_OBJECT_WLOCK(object);
3121 			/* Don't care: PG_NODUMP, PG_ZERO. */
3122 			if (m->object != object ||
3123 			    ((object->flags & OBJ_SWAP) == 0 &&
3124 			    object->type != OBJT_VNODE))
3125 				error = EINVAL;
3126 			else if (object->memattr != VM_MEMATTR_DEFAULT)
3127 				error = EINVAL;
3128 			else if (vm_page_queue(m) != PQ_NONE &&
3129 			    vm_page_tryxbusy(m) != 0) {
3130 				if (vm_page_wired(m)) {
3131 					vm_page_xunbusy(m);
3132 					error = EBUSY;
3133 					goto unlock;
3134 				}
3135 				KASSERT(pmap_page_get_memattr(m) ==
3136 				    VM_MEMATTR_DEFAULT,
3137 				    ("page %p has an unexpected memattr", m));
3138 				KASSERT(m->oflags == 0,
3139 				    ("page %p has unexpected oflags", m));
3140 				/* Don't care: PGA_NOSYNC. */
3141 				if (!vm_page_none_valid(m)) {
3142 					/*
3143 					 * First, try to allocate a new page
3144 					 * that is above "high".  Failing
3145 					 * that, try to allocate a new page
3146 					 * that is below "m_run".  Allocate
3147 					 * the new page between the end of
3148 					 * "m_run" and "high" only as a last
3149 					 * resort.
3150 					 */
3151 					req = req_class;
3152 					if ((m->flags & PG_NODUMP) != 0)
3153 						req |= VM_ALLOC_NODUMP;
3154 					if (trunc_page(high) !=
3155 					    ~(vm_paddr_t)PAGE_MASK) {
3156 						m_new =
3157 						    vm_page_alloc_noobj_contig(
3158 						    req, 1, round_page(high),
3159 						    ~(vm_paddr_t)0, PAGE_SIZE,
3160 						    0, VM_MEMATTR_DEFAULT);
3161 					} else
3162 						m_new = NULL;
3163 					if (m_new == NULL) {
3164 						pa = VM_PAGE_TO_PHYS(m_run);
3165 						m_new =
3166 						    vm_page_alloc_noobj_contig(
3167 						    req, 1, 0, pa - 1,
3168 						    PAGE_SIZE, 0,
3169 						    VM_MEMATTR_DEFAULT);
3170 					}
3171 					if (m_new == NULL) {
3172 						pa += ptoa(npages);
3173 						m_new =
3174 						    vm_page_alloc_noobj_contig(
3175 						    req, 1, pa, high, PAGE_SIZE,
3176 						    0, VM_MEMATTR_DEFAULT);
3177 					}
3178 					if (m_new == NULL) {
3179 						vm_page_xunbusy(m);
3180 						error = ENOMEM;
3181 						goto unlock;
3182 					}
3183 
3184 					/*
3185 					 * Unmap the page and check for new
3186 					 * wirings that may have been acquired
3187 					 * through a pmap lookup.
3188 					 */
3189 					if (object->ref_count != 0 &&
3190 					    !vm_page_try_remove_all(m)) {
3191 						vm_page_xunbusy(m);
3192 						vm_page_free(m_new);
3193 						error = EBUSY;
3194 						goto unlock;
3195 					}
3196 
3197 					/*
3198 					 * Replace "m" with the new page.  For
3199 					 * vm_page_replace(), "m" must be busy
3200 					 * and dequeued.  Finally, change "m"
3201 					 * as if vm_page_free() was called.
3202 					 */
3203 					m_new->a.flags = m->a.flags &
3204 					    ~PGA_QUEUE_STATE_MASK;
3205 					KASSERT(m_new->oflags == VPO_UNMANAGED,
3206 					    ("page %p is managed", m_new));
3207 					m_new->oflags = 0;
3208 					pmap_copy_page(m, m_new);
3209 					m_new->valid = m->valid;
3210 					m_new->dirty = m->dirty;
3211 					m->flags &= ~PG_ZERO;
3212 					vm_page_dequeue(m);
3213 					if (vm_page_replace_hold(m_new, object,
3214 					    m->pindex, m) &&
3215 					    vm_page_free_prep(m))
3216 						SLIST_INSERT_HEAD(&free, m,
3217 						    plinks.s.ss);
3218 
3219 					/*
3220 					 * The new page must be deactivated
3221 					 * before the object is unlocked.
3222 					 */
3223 					vm_page_deactivate(m_new);
3224 				} else {
3225 					m->flags &= ~PG_ZERO;
3226 					vm_page_dequeue(m);
3227 					if (vm_page_free_prep(m))
3228 						SLIST_INSERT_HEAD(&free, m,
3229 						    plinks.s.ss);
3230 					KASSERT(m->dirty == 0,
3231 					    ("page %p is dirty", m));
3232 				}
3233 			} else
3234 				error = EBUSY;
3235 unlock:
3236 			VM_OBJECT_WUNLOCK(object);
3237 		} else {
3238 			MPASS(vm_page_domain(m) == domain);
3239 			vmd = VM_DOMAIN(domain);
3240 			vm_domain_free_lock(vmd);
3241 			order = m->order;
3242 			if (order < VM_NFREEORDER) {
3243 				/*
3244 				 * The page is enqueued in the physical memory
3245 				 * allocator's free page queues.  Moreover, it
3246 				 * is the first page in a power-of-two-sized
3247 				 * run of contiguous free pages.  Jump ahead
3248 				 * to the last page within that run, and
3249 				 * continue from there.
3250 				 */
3251 				m += (1 << order) - 1;
3252 			}
3253 #if VM_NRESERVLEVEL > 0
3254 			else if (vm_reserv_is_page_free(m))
3255 				order = 0;
3256 #endif
3257 			vm_domain_free_unlock(vmd);
3258 			if (order == VM_NFREEORDER)
3259 				error = EINVAL;
3260 		}
3261 	}
3262 	if ((m = SLIST_FIRST(&free)) != NULL) {
3263 		int cnt;
3264 
3265 		vmd = VM_DOMAIN(domain);
3266 		cnt = 0;
3267 		vm_domain_free_lock(vmd);
3268 		do {
3269 			MPASS(vm_page_domain(m) == domain);
3270 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
3271 			vm_phys_free_pages(m, m->pool, 0);
3272 			cnt++;
3273 		} while ((m = SLIST_FIRST(&free)) != NULL);
3274 		vm_domain_free_unlock(vmd);
3275 		vm_domain_freecnt_inc(vmd, cnt);
3276 	}
3277 	return (error);
3278 }
3279 
3280 #define	NRUNS	16
3281 
3282 #define	RUN_INDEX(count, nruns)	((count) % (nruns))
3283 
3284 #define	MIN_RECLAIM	8
3285 
3286 /*
3287  *	vm_page_reclaim_contig:
3288  *
3289  *	Reclaim allocated, contiguous physical memory satisfying the specified
3290  *	conditions by relocating the virtual pages using that physical memory.
3291  *	Returns 0 if reclamation is successful, ERANGE if the specified domain
3292  *	can't possibly satisfy the reclamation request, or ENOMEM if not
3293  *	currently able to reclaim the requested number of pages.  Since
3294  *	relocation requires the allocation of physical pages, reclamation may
3295  *	fail with ENOMEM due to a shortage of free pages.  When reclamation
3296  *	fails in this manner, callers are expected to perform vm_wait() before
3297  *	retrying a failed allocation operation, e.g., vm_page_alloc_contig().
3298  *
3299  *	The caller must always specify an allocation class through "req".
3300  *
3301  *	allocation classes:
3302  *	VM_ALLOC_NORMAL		normal process request
3303  *	VM_ALLOC_SYSTEM		system *really* needs a page
3304  *	VM_ALLOC_INTERRUPT	interrupt time request
3305  *
3306  *	The optional allocation flags are ignored.
3307  *
3308  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
3309  *	must be a power of two.
3310  */
3311 int
3312 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
3313     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
3314     int desired_runs)
3315 {
3316 	struct vm_domain *vmd;
3317 	vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs;
3318 	u_long count, minalign, reclaimed;
3319 	int error, i, min_reclaim, nruns, options, req_class;
3320 	int segind, start_segind;
3321 	int ret;
3322 
3323 	KASSERT(npages > 0, ("npages is 0"));
3324 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
3325 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
3326 
3327 	ret = ENOMEM;
3328 
3329 	/*
3330 	 * If the caller wants to reclaim multiple runs, try to allocate
3331 	 * space to store the runs.  If that fails, fall back to the old
3332 	 * behavior of just reclaiming MIN_RECLAIM pages.
3333 	 */
3334 	if (desired_runs > 1)
3335 		m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs),
3336 		    M_TEMP, M_NOWAIT);
3337 	else
3338 		m_runs = NULL;
3339 
3340 	if (m_runs == NULL) {
3341 		m_runs = _m_runs;
3342 		nruns = NRUNS;
3343 	} else {
3344 		nruns = NRUNS + desired_runs - 1;
3345 	}
3346 	min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM);
3347 
3348 	/*
3349 	 * The caller will attempt an allocation after some runs have been
3350 	 * reclaimed and added to the vm_phys buddy lists.  Due to limitations
3351 	 * of vm_phys_alloc_contig(), round up the requested length to the next
3352 	 * power of two or maximum chunk size, and ensure that each run is
3353 	 * suitably aligned.
3354 	 */
3355 	minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
3356 	npages = roundup2(npages, minalign);
3357 	if (alignment < ptoa(minalign))
3358 		alignment = ptoa(minalign);
3359 
3360 	/*
3361 	 * The page daemon is allowed to dig deeper into the free page list.
3362 	 */
3363 	req_class = req & VM_ALLOC_CLASS_MASK;
3364 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3365 		req_class = VM_ALLOC_SYSTEM;
3366 
3367 	start_segind = vm_phys_lookup_segind(low);
3368 
3369 	/*
3370 	 * Return if the number of free pages cannot satisfy the requested
3371 	 * allocation.
3372 	 */
3373 	vmd = VM_DOMAIN(domain);
3374 	count = vmd->vmd_free_count;
3375 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
3376 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3377 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
3378 		goto done;
3379 
3380 	/*
3381 	 * Scan up to three times, relaxing the restrictions ("options") on
3382 	 * the reclamation of reservations and superpages each time.
3383 	 */
3384 	for (options = VPSC_NORESERV;;) {
3385 		bool phys_range_exists = false;
3386 
3387 		/*
3388 		 * Find the highest runs that satisfy the given constraints
3389 		 * and restrictions, and record them in "m_runs".
3390 		 */
3391 		count = 0;
3392 		segind = start_segind;
3393 		while ((segind = vm_phys_find_range(bounds, segind, domain,
3394 		    npages, low, high)) != -1) {
3395 			phys_range_exists = true;
3396 			while ((m_run = vm_page_scan_contig(npages, bounds[0],
3397 			    bounds[1], alignment, boundary, options))) {
3398 				bounds[0] = m_run + npages;
3399 				m_runs[RUN_INDEX(count, nruns)] = m_run;
3400 				count++;
3401 			}
3402 			segind++;
3403 		}
3404 
3405 		if (!phys_range_exists) {
3406 			ret = ERANGE;
3407 			goto done;
3408 		}
3409 
3410 		/*
3411 		 * Reclaim the highest runs in LIFO (descending) order until
3412 		 * the number of reclaimed pages, "reclaimed", is at least
3413 		 * "min_reclaim".  Reset "reclaimed" each time because each
3414 		 * reclamation is idempotent, and runs will (likely) recur
3415 		 * from one scan to the next as restrictions are relaxed.
3416 		 */
3417 		reclaimed = 0;
3418 		for (i = 0; count > 0 && i < nruns; i++) {
3419 			count--;
3420 			m_run = m_runs[RUN_INDEX(count, nruns)];
3421 			error = vm_page_reclaim_run(req_class, domain, npages,
3422 			    m_run, high);
3423 			if (error == 0) {
3424 				reclaimed += npages;
3425 				if (reclaimed >= min_reclaim) {
3426 					ret = 0;
3427 					goto done;
3428 				}
3429 			}
3430 		}
3431 
3432 		/*
3433 		 * Either relax the restrictions on the next scan or return if
3434 		 * the last scan had no restrictions.
3435 		 */
3436 		if (options == VPSC_NORESERV)
3437 			options = VPSC_NOSUPER;
3438 		else if (options == VPSC_NOSUPER)
3439 			options = VPSC_ANY;
3440 		else if (options == VPSC_ANY) {
3441 			if (reclaimed != 0)
3442 				ret = 0;
3443 			goto done;
3444 		}
3445 	}
3446 done:
3447 	if (m_runs != _m_runs)
3448 		free(m_runs, M_TEMP);
3449 	return (ret);
3450 }
3451 
3452 int
3453 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
3454     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
3455 {
3456 	return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low, high,
3457 	    alignment, boundary, 1));
3458 }
3459 
3460 int
3461 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3462     u_long alignment, vm_paddr_t boundary)
3463 {
3464 	struct vm_domainset_iter di;
3465 	int domain, ret, status;
3466 
3467 	ret = ERANGE;
3468 
3469 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3470 	do {
3471 		status = vm_page_reclaim_contig_domain(domain, req, npages, low,
3472 		    high, alignment, boundary);
3473 		if (status == 0)
3474 			return (0);
3475 		else if (status == ERANGE)
3476 			vm_domainset_iter_ignore(&di, domain);
3477 		else {
3478 			KASSERT(status == ENOMEM, ("Unrecognized error %d "
3479 			    "from vm_page_reclaim_contig_domain()", status));
3480 			ret = ENOMEM;
3481 		}
3482 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3483 
3484 	return (ret);
3485 }
3486 
3487 /*
3488  * Set the domain in the appropriate page level domainset.
3489  */
3490 void
3491 vm_domain_set(struct vm_domain *vmd)
3492 {
3493 
3494 	mtx_lock(&vm_domainset_lock);
3495 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3496 		vmd->vmd_minset = 1;
3497 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3498 	}
3499 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3500 		vmd->vmd_severeset = 1;
3501 		DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3502 	}
3503 	mtx_unlock(&vm_domainset_lock);
3504 }
3505 
3506 /*
3507  * Clear the domain from the appropriate page level domainset.
3508  */
3509 void
3510 vm_domain_clear(struct vm_domain *vmd)
3511 {
3512 
3513 	mtx_lock(&vm_domainset_lock);
3514 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3515 		vmd->vmd_minset = 0;
3516 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3517 		if (vm_min_waiters != 0) {
3518 			vm_min_waiters = 0;
3519 			wakeup(&vm_min_domains);
3520 		}
3521 	}
3522 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3523 		vmd->vmd_severeset = 0;
3524 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3525 		if (vm_severe_waiters != 0) {
3526 			vm_severe_waiters = 0;
3527 			wakeup(&vm_severe_domains);
3528 		}
3529 	}
3530 
3531 	/*
3532 	 * If pageout daemon needs pages, then tell it that there are
3533 	 * some free.
3534 	 */
3535 	if (vmd->vmd_pageout_pages_needed &&
3536 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3537 		wakeup(&vmd->vmd_pageout_pages_needed);
3538 		vmd->vmd_pageout_pages_needed = 0;
3539 	}
3540 
3541 	/* See comments in vm_wait_doms(). */
3542 	if (vm_pageproc_waiters) {
3543 		vm_pageproc_waiters = 0;
3544 		wakeup(&vm_pageproc_waiters);
3545 	}
3546 	mtx_unlock(&vm_domainset_lock);
3547 }
3548 
3549 /*
3550  * Wait for free pages to exceed the min threshold globally.
3551  */
3552 void
3553 vm_wait_min(void)
3554 {
3555 
3556 	mtx_lock(&vm_domainset_lock);
3557 	while (vm_page_count_min()) {
3558 		vm_min_waiters++;
3559 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3560 	}
3561 	mtx_unlock(&vm_domainset_lock);
3562 }
3563 
3564 /*
3565  * Wait for free pages to exceed the severe threshold globally.
3566  */
3567 void
3568 vm_wait_severe(void)
3569 {
3570 
3571 	mtx_lock(&vm_domainset_lock);
3572 	while (vm_page_count_severe()) {
3573 		vm_severe_waiters++;
3574 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3575 		    "vmwait", 0);
3576 	}
3577 	mtx_unlock(&vm_domainset_lock);
3578 }
3579 
3580 u_int
3581 vm_wait_count(void)
3582 {
3583 
3584 	return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3585 }
3586 
3587 int
3588 vm_wait_doms(const domainset_t *wdoms, int mflags)
3589 {
3590 	int error;
3591 
3592 	error = 0;
3593 
3594 	/*
3595 	 * We use racey wakeup synchronization to avoid expensive global
3596 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
3597 	 * To handle this, we only sleep for one tick in this instance.  It
3598 	 * is expected that most allocations for the pageproc will come from
3599 	 * kmem or vm_page_grab* which will use the more specific and
3600 	 * race-free vm_wait_domain().
3601 	 */
3602 	if (curproc == pageproc) {
3603 		mtx_lock(&vm_domainset_lock);
3604 		vm_pageproc_waiters++;
3605 		error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3606 		    PVM | PDROP | mflags, "pageprocwait", 1);
3607 	} else {
3608 		/*
3609 		 * XXX Ideally we would wait only until the allocation could
3610 		 * be satisfied.  This condition can cause new allocators to
3611 		 * consume all freed pages while old allocators wait.
3612 		 */
3613 		mtx_lock(&vm_domainset_lock);
3614 		if (vm_page_count_min_set(wdoms)) {
3615 			if (pageproc == NULL)
3616 				panic("vm_wait in early boot");
3617 			vm_min_waiters++;
3618 			error = msleep(&vm_min_domains, &vm_domainset_lock,
3619 			    PVM | PDROP | mflags, "vmwait", 0);
3620 		} else
3621 			mtx_unlock(&vm_domainset_lock);
3622 	}
3623 	return (error);
3624 }
3625 
3626 /*
3627  *	vm_wait_domain:
3628  *
3629  *	Sleep until free pages are available for allocation.
3630  *	- Called in various places after failed memory allocations.
3631  */
3632 void
3633 vm_wait_domain(int domain)
3634 {
3635 	struct vm_domain *vmd;
3636 	domainset_t wdom;
3637 
3638 	vmd = VM_DOMAIN(domain);
3639 	vm_domain_free_assert_unlocked(vmd);
3640 
3641 	if (curproc == pageproc) {
3642 		mtx_lock(&vm_domainset_lock);
3643 		if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3644 			vmd->vmd_pageout_pages_needed = 1;
3645 			msleep(&vmd->vmd_pageout_pages_needed,
3646 			    &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3647 		} else
3648 			mtx_unlock(&vm_domainset_lock);
3649 	} else {
3650 		DOMAINSET_ZERO(&wdom);
3651 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
3652 		vm_wait_doms(&wdom, 0);
3653 	}
3654 }
3655 
3656 static int
3657 vm_wait_flags(vm_object_t obj, int mflags)
3658 {
3659 	struct domainset *d;
3660 
3661 	d = NULL;
3662 
3663 	/*
3664 	 * Carefully fetch pointers only once: the struct domainset
3665 	 * itself is ummutable but the pointer might change.
3666 	 */
3667 	if (obj != NULL)
3668 		d = obj->domain.dr_policy;
3669 	if (d == NULL)
3670 		d = curthread->td_domain.dr_policy;
3671 
3672 	return (vm_wait_doms(&d->ds_mask, mflags));
3673 }
3674 
3675 /*
3676  *	vm_wait:
3677  *
3678  *	Sleep until free pages are available for allocation in the
3679  *	affinity domains of the obj.  If obj is NULL, the domain set
3680  *	for the calling thread is used.
3681  *	Called in various places after failed memory allocations.
3682  */
3683 void
3684 vm_wait(vm_object_t obj)
3685 {
3686 	(void)vm_wait_flags(obj, 0);
3687 }
3688 
3689 int
3690 vm_wait_intr(vm_object_t obj)
3691 {
3692 	return (vm_wait_flags(obj, PCATCH));
3693 }
3694 
3695 /*
3696  *	vm_domain_alloc_fail:
3697  *
3698  *	Called when a page allocation function fails.  Informs the
3699  *	pagedaemon and performs the requested wait.  Requires the
3700  *	domain_free and object lock on entry.  Returns with the
3701  *	object lock held and free lock released.  Returns an error when
3702  *	retry is necessary.
3703  *
3704  */
3705 static int
3706 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3707 {
3708 
3709 	vm_domain_free_assert_unlocked(vmd);
3710 
3711 	atomic_add_int(&vmd->vmd_pageout_deficit,
3712 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3713 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3714 		if (object != NULL)
3715 			VM_OBJECT_WUNLOCK(object);
3716 		vm_wait_domain(vmd->vmd_domain);
3717 		if (object != NULL)
3718 			VM_OBJECT_WLOCK(object);
3719 		if (req & VM_ALLOC_WAITOK)
3720 			return (EAGAIN);
3721 	}
3722 
3723 	return (0);
3724 }
3725 
3726 /*
3727  *	vm_waitpfault:
3728  *
3729  *	Sleep until free pages are available for allocation.
3730  *	- Called only in vm_fault so that processes page faulting
3731  *	  can be easily tracked.
3732  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3733  *	  processes will be able to grab memory first.  Do not change
3734  *	  this balance without careful testing first.
3735  */
3736 void
3737 vm_waitpfault(struct domainset *dset, int timo)
3738 {
3739 
3740 	/*
3741 	 * XXX Ideally we would wait only until the allocation could
3742 	 * be satisfied.  This condition can cause new allocators to
3743 	 * consume all freed pages while old allocators wait.
3744 	 */
3745 	mtx_lock(&vm_domainset_lock);
3746 	if (vm_page_count_min_set(&dset->ds_mask)) {
3747 		vm_min_waiters++;
3748 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3749 		    "pfault", timo);
3750 	} else
3751 		mtx_unlock(&vm_domainset_lock);
3752 }
3753 
3754 static struct vm_pagequeue *
3755 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3756 {
3757 
3758 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3759 }
3760 
3761 #ifdef INVARIANTS
3762 static struct vm_pagequeue *
3763 vm_page_pagequeue(vm_page_t m)
3764 {
3765 
3766 	return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3767 }
3768 #endif
3769 
3770 static __always_inline bool
3771 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3772 {
3773 	vm_page_astate_t tmp;
3774 
3775 	tmp = *old;
3776 	do {
3777 		if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3778 			return (true);
3779 		counter_u64_add(pqstate_commit_retries, 1);
3780 	} while (old->_bits == tmp._bits);
3781 
3782 	return (false);
3783 }
3784 
3785 /*
3786  * Do the work of committing a queue state update that moves the page out of
3787  * its current queue.
3788  */
3789 static bool
3790 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3791     vm_page_astate_t *old, vm_page_astate_t new)
3792 {
3793 	vm_page_t next;
3794 
3795 	vm_pagequeue_assert_locked(pq);
3796 	KASSERT(vm_page_pagequeue(m) == pq,
3797 	    ("%s: queue %p does not match page %p", __func__, pq, m));
3798 	KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3799 	    ("%s: invalid queue indices %d %d",
3800 	    __func__, old->queue, new.queue));
3801 
3802 	/*
3803 	 * Once the queue index of the page changes there is nothing
3804 	 * synchronizing with further updates to the page's physical
3805 	 * queue state.  Therefore we must speculatively remove the page
3806 	 * from the queue now and be prepared to roll back if the queue
3807 	 * state update fails.  If the page is not physically enqueued then
3808 	 * we just update its queue index.
3809 	 */
3810 	if ((old->flags & PGA_ENQUEUED) != 0) {
3811 		new.flags &= ~PGA_ENQUEUED;
3812 		next = TAILQ_NEXT(m, plinks.q);
3813 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3814 		vm_pagequeue_cnt_dec(pq);
3815 		if (!vm_page_pqstate_fcmpset(m, old, new)) {
3816 			if (next == NULL)
3817 				TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3818 			else
3819 				TAILQ_INSERT_BEFORE(next, m, plinks.q);
3820 			vm_pagequeue_cnt_inc(pq);
3821 			return (false);
3822 		} else {
3823 			return (true);
3824 		}
3825 	} else {
3826 		return (vm_page_pqstate_fcmpset(m, old, new));
3827 	}
3828 }
3829 
3830 static bool
3831 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3832     vm_page_astate_t new)
3833 {
3834 	struct vm_pagequeue *pq;
3835 	vm_page_astate_t as;
3836 	bool ret;
3837 
3838 	pq = _vm_page_pagequeue(m, old->queue);
3839 
3840 	/*
3841 	 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3842 	 * corresponding page queue lock is held.
3843 	 */
3844 	vm_pagequeue_lock(pq);
3845 	as = vm_page_astate_load(m);
3846 	if (__predict_false(as._bits != old->_bits)) {
3847 		*old = as;
3848 		ret = false;
3849 	} else {
3850 		ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3851 	}
3852 	vm_pagequeue_unlock(pq);
3853 	return (ret);
3854 }
3855 
3856 /*
3857  * Commit a queue state update that enqueues or requeues a page.
3858  */
3859 static bool
3860 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3861     vm_page_astate_t *old, vm_page_astate_t new)
3862 {
3863 	struct vm_domain *vmd;
3864 
3865 	vm_pagequeue_assert_locked(pq);
3866 	KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3867 	    ("%s: invalid queue indices %d %d",
3868 	    __func__, old->queue, new.queue));
3869 
3870 	new.flags |= PGA_ENQUEUED;
3871 	if (!vm_page_pqstate_fcmpset(m, old, new))
3872 		return (false);
3873 
3874 	if ((old->flags & PGA_ENQUEUED) != 0)
3875 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3876 	else
3877 		vm_pagequeue_cnt_inc(pq);
3878 
3879 	/*
3880 	 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3881 	 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3882 	 * applied, even if it was set first.
3883 	 */
3884 	if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3885 		vmd = vm_pagequeue_domain(m);
3886 		KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3887 		    ("%s: invalid page queue for page %p", __func__, m));
3888 		TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3889 	} else {
3890 		TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3891 	}
3892 	return (true);
3893 }
3894 
3895 /*
3896  * Commit a queue state update that encodes a request for a deferred queue
3897  * operation.
3898  */
3899 static bool
3900 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3901     vm_page_astate_t new)
3902 {
3903 
3904 	KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3905 	    ("%s: invalid state, queue %d flags %x",
3906 	    __func__, new.queue, new.flags));
3907 
3908 	if (old->_bits != new._bits &&
3909 	    !vm_page_pqstate_fcmpset(m, old, new))
3910 		return (false);
3911 	vm_page_pqbatch_submit(m, new.queue);
3912 	return (true);
3913 }
3914 
3915 /*
3916  * A generic queue state update function.  This handles more cases than the
3917  * specialized functions above.
3918  */
3919 bool
3920 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3921 {
3922 
3923 	if (old->_bits == new._bits)
3924 		return (true);
3925 
3926 	if (old->queue != PQ_NONE && new.queue != old->queue) {
3927 		if (!vm_page_pqstate_commit_dequeue(m, old, new))
3928 			return (false);
3929 		if (new.queue != PQ_NONE)
3930 			vm_page_pqbatch_submit(m, new.queue);
3931 	} else {
3932 		if (!vm_page_pqstate_fcmpset(m, old, new))
3933 			return (false);
3934 		if (new.queue != PQ_NONE &&
3935 		    ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3936 			vm_page_pqbatch_submit(m, new.queue);
3937 	}
3938 	return (true);
3939 }
3940 
3941 /*
3942  * Apply deferred queue state updates to a page.
3943  */
3944 static inline void
3945 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3946 {
3947 	vm_page_astate_t new, old;
3948 
3949 	CRITICAL_ASSERT(curthread);
3950 	vm_pagequeue_assert_locked(pq);
3951 	KASSERT(queue < PQ_COUNT,
3952 	    ("%s: invalid queue index %d", __func__, queue));
3953 	KASSERT(pq == _vm_page_pagequeue(m, queue),
3954 	    ("%s: page %p does not belong to queue %p", __func__, m, pq));
3955 
3956 	for (old = vm_page_astate_load(m);;) {
3957 		if (__predict_false(old.queue != queue ||
3958 		    (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3959 			counter_u64_add(queue_nops, 1);
3960 			break;
3961 		}
3962 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3963 		    ("%s: page %p is unmanaged", __func__, m));
3964 
3965 		new = old;
3966 		if ((old.flags & PGA_DEQUEUE) != 0) {
3967 			new.flags &= ~PGA_QUEUE_OP_MASK;
3968 			new.queue = PQ_NONE;
3969 			if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3970 			    m, &old, new))) {
3971 				counter_u64_add(queue_ops, 1);
3972 				break;
3973 			}
3974 		} else {
3975 			new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3976 			if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3977 			    m, &old, new))) {
3978 				counter_u64_add(queue_ops, 1);
3979 				break;
3980 			}
3981 		}
3982 	}
3983 }
3984 
3985 static void
3986 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3987     uint8_t queue)
3988 {
3989 	int i;
3990 
3991 	for (i = 0; i < bq->bq_cnt; i++)
3992 		vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3993 	vm_batchqueue_init(bq);
3994 }
3995 
3996 /*
3997  *	vm_page_pqbatch_submit:		[ internal use only ]
3998  *
3999  *	Enqueue a page in the specified page queue's batched work queue.
4000  *	The caller must have encoded the requested operation in the page
4001  *	structure's a.flags field.
4002  */
4003 void
4004 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
4005 {
4006 	struct vm_batchqueue *bq;
4007 	struct vm_pagequeue *pq;
4008 	int domain, slots_remaining;
4009 
4010 	KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
4011 
4012 	domain = vm_page_domain(m);
4013 	critical_enter();
4014 	bq = DPCPU_PTR(pqbatch[domain][queue]);
4015 	slots_remaining = vm_batchqueue_insert(bq, m);
4016 	if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
4017 		/* keep building the bq */
4018 		critical_exit();
4019 		return;
4020 	} else if (slots_remaining > 0 ) {
4021 		/* Try to process the bq if we can get the lock */
4022 		pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
4023 		if (vm_pagequeue_trylock(pq)) {
4024 			vm_pqbatch_process(pq, bq, queue);
4025 			vm_pagequeue_unlock(pq);
4026 		}
4027 		critical_exit();
4028 		return;
4029 	}
4030 	critical_exit();
4031 
4032 	/* if we make it here, the bq is full so wait for the lock */
4033 
4034 	pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
4035 	vm_pagequeue_lock(pq);
4036 	critical_enter();
4037 	bq = DPCPU_PTR(pqbatch[domain][queue]);
4038 	vm_pqbatch_process(pq, bq, queue);
4039 	vm_pqbatch_process_page(pq, m, queue);
4040 	vm_pagequeue_unlock(pq);
4041 	critical_exit();
4042 }
4043 
4044 /*
4045  *	vm_page_pqbatch_drain:		[ internal use only ]
4046  *
4047  *	Force all per-CPU page queue batch queues to be drained.  This is
4048  *	intended for use in severe memory shortages, to ensure that pages
4049  *	do not remain stuck in the batch queues.
4050  */
4051 void
4052 vm_page_pqbatch_drain(void)
4053 {
4054 	struct thread *td;
4055 	struct vm_domain *vmd;
4056 	struct vm_pagequeue *pq;
4057 	int cpu, domain, queue;
4058 
4059 	td = curthread;
4060 	CPU_FOREACH(cpu) {
4061 		thread_lock(td);
4062 		sched_bind(td, cpu);
4063 		thread_unlock(td);
4064 
4065 		for (domain = 0; domain < vm_ndomains; domain++) {
4066 			vmd = VM_DOMAIN(domain);
4067 			for (queue = 0; queue < PQ_COUNT; queue++) {
4068 				pq = &vmd->vmd_pagequeues[queue];
4069 				vm_pagequeue_lock(pq);
4070 				critical_enter();
4071 				vm_pqbatch_process(pq,
4072 				    DPCPU_PTR(pqbatch[domain][queue]), queue);
4073 				critical_exit();
4074 				vm_pagequeue_unlock(pq);
4075 			}
4076 		}
4077 	}
4078 	thread_lock(td);
4079 	sched_unbind(td);
4080 	thread_unlock(td);
4081 }
4082 
4083 /*
4084  *	vm_page_dequeue_deferred:	[ internal use only ]
4085  *
4086  *	Request removal of the given page from its current page
4087  *	queue.  Physical removal from the queue may be deferred
4088  *	indefinitely.
4089  */
4090 void
4091 vm_page_dequeue_deferred(vm_page_t m)
4092 {
4093 	vm_page_astate_t new, old;
4094 
4095 	old = vm_page_astate_load(m);
4096 	do {
4097 		if (old.queue == PQ_NONE) {
4098 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
4099 			    ("%s: page %p has unexpected queue state",
4100 			    __func__, m));
4101 			break;
4102 		}
4103 		new = old;
4104 		new.flags |= PGA_DEQUEUE;
4105 	} while (!vm_page_pqstate_commit_request(m, &old, new));
4106 }
4107 
4108 /*
4109  *	vm_page_dequeue:
4110  *
4111  *	Remove the page from whichever page queue it's in, if any, before
4112  *	returning.
4113  */
4114 void
4115 vm_page_dequeue(vm_page_t m)
4116 {
4117 	vm_page_astate_t new, old;
4118 
4119 	old = vm_page_astate_load(m);
4120 	do {
4121 		if (old.queue == PQ_NONE) {
4122 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
4123 			    ("%s: page %p has unexpected queue state",
4124 			    __func__, m));
4125 			break;
4126 		}
4127 		new = old;
4128 		new.flags &= ~PGA_QUEUE_OP_MASK;
4129 		new.queue = PQ_NONE;
4130 	} while (!vm_page_pqstate_commit_dequeue(m, &old, new));
4131 
4132 }
4133 
4134 /*
4135  * Schedule the given page for insertion into the specified page queue.
4136  * Physical insertion of the page may be deferred indefinitely.
4137  */
4138 static void
4139 vm_page_enqueue(vm_page_t m, uint8_t queue)
4140 {
4141 
4142 	KASSERT(m->a.queue == PQ_NONE &&
4143 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
4144 	    ("%s: page %p is already enqueued", __func__, m));
4145 	KASSERT(m->ref_count > 0,
4146 	    ("%s: page %p does not carry any references", __func__, m));
4147 
4148 	m->a.queue = queue;
4149 	if ((m->a.flags & PGA_REQUEUE) == 0)
4150 		vm_page_aflag_set(m, PGA_REQUEUE);
4151 	vm_page_pqbatch_submit(m, queue);
4152 }
4153 
4154 /*
4155  *	vm_page_free_prep:
4156  *
4157  *	Prepares the given page to be put on the free list,
4158  *	disassociating it from any VM object. The caller may return
4159  *	the page to the free list only if this function returns true.
4160  *
4161  *	The object, if it exists, must be locked, and then the page must
4162  *	be xbusy.  Otherwise the page must be not busied.  A managed
4163  *	page must be unmapped.
4164  */
4165 static bool
4166 vm_page_free_prep(vm_page_t m)
4167 {
4168 
4169 	/*
4170 	 * Synchronize with threads that have dropped a reference to this
4171 	 * page.
4172 	 */
4173 	atomic_thread_fence_acq();
4174 
4175 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
4176 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
4177 		uint64_t *p;
4178 		int i;
4179 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4180 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
4181 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
4182 			    m, i, (uintmax_t)*p));
4183 	}
4184 #endif
4185 	KASSERT((m->flags & PG_NOFREE) == 0,
4186 	    ("%s: attempting to free a PG_NOFREE page", __func__));
4187 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4188 		KASSERT(!pmap_page_is_mapped(m),
4189 		    ("vm_page_free_prep: freeing mapped page %p", m));
4190 		KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
4191 		    ("vm_page_free_prep: mapping flags set in page %p", m));
4192 	} else {
4193 		KASSERT(m->a.queue == PQ_NONE,
4194 		    ("vm_page_free_prep: unmanaged page %p is queued", m));
4195 	}
4196 	VM_CNT_INC(v_tfree);
4197 
4198 	if (m->object != NULL) {
4199 		vm_page_radix_remove(m);
4200 		vm_page_free_object_prep(m);
4201 	} else
4202 		vm_page_assert_unbusied(m);
4203 
4204 	vm_page_busy_free(m);
4205 
4206 	/*
4207 	 * If fictitious remove object association and
4208 	 * return.
4209 	 */
4210 	if ((m->flags & PG_FICTITIOUS) != 0) {
4211 		KASSERT(m->ref_count == 1,
4212 		    ("fictitious page %p is referenced", m));
4213 		KASSERT(m->a.queue == PQ_NONE,
4214 		    ("fictitious page %p is queued", m));
4215 		return (false);
4216 	}
4217 
4218 	/*
4219 	 * Pages need not be dequeued before they are returned to the physical
4220 	 * memory allocator, but they must at least be marked for a deferred
4221 	 * dequeue.
4222 	 */
4223 	if ((m->oflags & VPO_UNMANAGED) == 0)
4224 		vm_page_dequeue_deferred(m);
4225 
4226 	m->valid = 0;
4227 	vm_page_undirty(m);
4228 
4229 	if (m->ref_count != 0)
4230 		panic("vm_page_free_prep: page %p has references", m);
4231 
4232 	/*
4233 	 * Restore the default memory attribute to the page.
4234 	 */
4235 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
4236 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
4237 
4238 #if VM_NRESERVLEVEL > 0
4239 	/*
4240 	 * Determine whether the page belongs to a reservation.  If the page was
4241 	 * allocated from a per-CPU cache, it cannot belong to a reservation, so
4242 	 * as an optimization, we avoid the check in that case.
4243 	 */
4244 	if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
4245 		return (false);
4246 #endif
4247 
4248 	return (true);
4249 }
4250 
4251 /*
4252  *	vm_page_free_toq:
4253  *
4254  *	Returns the given page to the free list, disassociating it
4255  *	from any VM object.
4256  *
4257  *	The object must be locked.  The page must be exclusively busied if it
4258  *	belongs to an object.
4259  */
4260 static void
4261 vm_page_free_toq(vm_page_t m)
4262 {
4263 	struct vm_domain *vmd;
4264 	uma_zone_t zone;
4265 
4266 	if (!vm_page_free_prep(m))
4267 		return;
4268 
4269 	vmd = vm_pagequeue_domain(m);
4270 	zone = vmd->vmd_pgcache[m->pool].zone;
4271 	if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
4272 		uma_zfree(zone, m);
4273 		return;
4274 	}
4275 	vm_domain_free_lock(vmd);
4276 	vm_phys_free_pages(m, m->pool, 0);
4277 	vm_domain_free_unlock(vmd);
4278 	vm_domain_freecnt_inc(vmd, 1);
4279 }
4280 
4281 /*
4282  *	vm_page_free_pages_toq:
4283  *
4284  *	Returns a list of pages to the free list, disassociating it
4285  *	from any VM object.  In other words, this is equivalent to
4286  *	calling vm_page_free_toq() for each page of a list of VM objects.
4287  */
4288 int
4289 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
4290 {
4291 	vm_page_t m;
4292 	int count;
4293 
4294 	if (SLIST_EMPTY(free))
4295 		return (0);
4296 
4297 	count = 0;
4298 	while ((m = SLIST_FIRST(free)) != NULL) {
4299 		count++;
4300 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
4301 		vm_page_free_toq(m);
4302 	}
4303 
4304 	if (update_wire_count)
4305 		vm_wire_sub(count);
4306 	return (count);
4307 }
4308 
4309 /*
4310  * Mark this page as wired down.  For managed pages, this prevents reclamation
4311  * by the page daemon, or when the containing object, if any, is destroyed.
4312  */
4313 void
4314 vm_page_wire(vm_page_t m)
4315 {
4316 	u_int old;
4317 
4318 #ifdef INVARIANTS
4319 	if (m->object != NULL && !vm_page_busied(m) &&
4320 	    !vm_object_busied(m->object))
4321 		VM_OBJECT_ASSERT_LOCKED(m->object);
4322 #endif
4323 	KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
4324 	    VPRC_WIRE_COUNT(m->ref_count) >= 1,
4325 	    ("vm_page_wire: fictitious page %p has zero wirings", m));
4326 
4327 	old = atomic_fetchadd_int(&m->ref_count, 1);
4328 	KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
4329 	    ("vm_page_wire: counter overflow for page %p", m));
4330 	if (VPRC_WIRE_COUNT(old) == 0) {
4331 		if ((m->oflags & VPO_UNMANAGED) == 0)
4332 			vm_page_aflag_set(m, PGA_DEQUEUE);
4333 		vm_wire_add(1);
4334 	}
4335 }
4336 
4337 /*
4338  * Attempt to wire a mapped page following a pmap lookup of that page.
4339  * This may fail if a thread is concurrently tearing down mappings of the page.
4340  * The transient failure is acceptable because it translates to the
4341  * failure of the caller pmap_extract_and_hold(), which should be then
4342  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
4343  */
4344 bool
4345 vm_page_wire_mapped(vm_page_t m)
4346 {
4347 	u_int old;
4348 
4349 	old = atomic_load_int(&m->ref_count);
4350 	do {
4351 		KASSERT(old > 0,
4352 		    ("vm_page_wire_mapped: wiring unreferenced page %p", m));
4353 		if ((old & VPRC_BLOCKED) != 0)
4354 			return (false);
4355 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
4356 
4357 	if (VPRC_WIRE_COUNT(old) == 0) {
4358 		if ((m->oflags & VPO_UNMANAGED) == 0)
4359 			vm_page_aflag_set(m, PGA_DEQUEUE);
4360 		vm_wire_add(1);
4361 	}
4362 	return (true);
4363 }
4364 
4365 /*
4366  * Release a wiring reference to a managed page.  If the page still belongs to
4367  * an object, update its position in the page queues to reflect the reference.
4368  * If the wiring was the last reference to the page, free the page.
4369  */
4370 static void
4371 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
4372 {
4373 	u_int old;
4374 
4375 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4376 	    ("%s: page %p is unmanaged", __func__, m));
4377 
4378 	/*
4379 	 * Update LRU state before releasing the wiring reference.
4380 	 * Use a release store when updating the reference count to
4381 	 * synchronize with vm_page_free_prep().
4382 	 */
4383 	old = atomic_load_int(&m->ref_count);
4384 	do {
4385 		u_int count;
4386 
4387 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
4388 		    ("vm_page_unwire: wire count underflow for page %p", m));
4389 
4390 		count = old & ~VPRC_BLOCKED;
4391 		if (count > VPRC_OBJREF + 1) {
4392 			/*
4393 			 * The page has at least one other wiring reference.  An
4394 			 * earlier iteration of this loop may have called
4395 			 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
4396 			 * re-set it if necessary.
4397 			 */
4398 			if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
4399 				vm_page_aflag_set(m, PGA_DEQUEUE);
4400 		} else if (count == VPRC_OBJREF + 1) {
4401 			/*
4402 			 * This is the last wiring.  Clear PGA_DEQUEUE and
4403 			 * update the page's queue state to reflect the
4404 			 * reference.  If the page does not belong to an object
4405 			 * (i.e., the VPRC_OBJREF bit is clear), we only need to
4406 			 * clear leftover queue state.
4407 			 */
4408 			vm_page_release_toq(m, nqueue, noreuse);
4409 		} else if (count == 1) {
4410 			vm_page_aflag_clear(m, PGA_DEQUEUE);
4411 		}
4412 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4413 
4414 	if (VPRC_WIRE_COUNT(old) == 1) {
4415 		vm_wire_sub(1);
4416 		if (old == 1)
4417 			vm_page_free(m);
4418 	}
4419 }
4420 
4421 /*
4422  * Release one wiring of the specified page, potentially allowing it to be
4423  * paged out.
4424  *
4425  * Only managed pages belonging to an object can be paged out.  If the number
4426  * of wirings transitions to zero and the page is eligible for page out, then
4427  * the page is added to the specified paging queue.  If the released wiring
4428  * represented the last reference to the page, the page is freed.
4429  */
4430 void
4431 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4432 {
4433 
4434 	KASSERT(nqueue < PQ_COUNT,
4435 	    ("vm_page_unwire: invalid queue %u request for page %p",
4436 	    nqueue, m));
4437 
4438 	if ((m->oflags & VPO_UNMANAGED) != 0) {
4439 		if (vm_page_unwire_noq(m) && m->ref_count == 0)
4440 			vm_page_free(m);
4441 		return;
4442 	}
4443 	vm_page_unwire_managed(m, nqueue, false);
4444 }
4445 
4446 /*
4447  * Unwire a page without (re-)inserting it into a page queue.  It is up
4448  * to the caller to enqueue, requeue, or free the page as appropriate.
4449  * In most cases involving managed pages, vm_page_unwire() should be used
4450  * instead.
4451  */
4452 bool
4453 vm_page_unwire_noq(vm_page_t m)
4454 {
4455 	u_int old;
4456 
4457 	old = vm_page_drop(m, 1);
4458 	KASSERT(VPRC_WIRE_COUNT(old) != 0,
4459 	    ("%s: counter underflow for page %p", __func__,  m));
4460 	KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4461 	    ("%s: missing ref on fictitious page %p", __func__, m));
4462 
4463 	if (VPRC_WIRE_COUNT(old) > 1)
4464 		return (false);
4465 	if ((m->oflags & VPO_UNMANAGED) == 0)
4466 		vm_page_aflag_clear(m, PGA_DEQUEUE);
4467 	vm_wire_sub(1);
4468 	return (true);
4469 }
4470 
4471 /*
4472  * Ensure that the page ends up in the specified page queue.  If the page is
4473  * active or being moved to the active queue, ensure that its act_count is
4474  * at least ACT_INIT but do not otherwise mess with it.
4475  */
4476 static __always_inline void
4477 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4478 {
4479 	vm_page_astate_t old, new;
4480 
4481 	KASSERT(m->ref_count > 0,
4482 	    ("%s: page %p does not carry any references", __func__, m));
4483 	KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4484 	    ("%s: invalid flags %x", __func__, nflag));
4485 
4486 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4487 		return;
4488 
4489 	old = vm_page_astate_load(m);
4490 	do {
4491 		if ((old.flags & PGA_DEQUEUE) != 0)
4492 			break;
4493 		new = old;
4494 		new.flags &= ~PGA_QUEUE_OP_MASK;
4495 		if (nqueue == PQ_ACTIVE)
4496 			new.act_count = max(old.act_count, ACT_INIT);
4497 		if (old.queue == nqueue) {
4498 			/*
4499 			 * There is no need to requeue pages already in the
4500 			 * active queue.
4501 			 */
4502 			if (nqueue != PQ_ACTIVE ||
4503 			    (old.flags & PGA_ENQUEUED) == 0)
4504 				new.flags |= nflag;
4505 		} else {
4506 			new.flags |= nflag;
4507 			new.queue = nqueue;
4508 		}
4509 	} while (!vm_page_pqstate_commit(m, &old, new));
4510 }
4511 
4512 /*
4513  * Put the specified page on the active list (if appropriate).
4514  */
4515 void
4516 vm_page_activate(vm_page_t m)
4517 {
4518 
4519 	vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4520 }
4521 
4522 /*
4523  * Move the specified page to the tail of the inactive queue, or requeue
4524  * the page if it is already in the inactive queue.
4525  */
4526 void
4527 vm_page_deactivate(vm_page_t m)
4528 {
4529 
4530 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4531 }
4532 
4533 void
4534 vm_page_deactivate_noreuse(vm_page_t m)
4535 {
4536 
4537 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4538 }
4539 
4540 /*
4541  * Put a page in the laundry, or requeue it if it is already there.
4542  */
4543 void
4544 vm_page_launder(vm_page_t m)
4545 {
4546 
4547 	vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4548 }
4549 
4550 /*
4551  * Put a page in the PQ_UNSWAPPABLE holding queue.
4552  */
4553 void
4554 vm_page_unswappable(vm_page_t m)
4555 {
4556 
4557 	VM_OBJECT_ASSERT_LOCKED(m->object);
4558 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4559 	    ("page %p already unswappable", m));
4560 
4561 	vm_page_dequeue(m);
4562 	vm_page_enqueue(m, PQ_UNSWAPPABLE);
4563 }
4564 
4565 /*
4566  * Release a page back to the page queues in preparation for unwiring.
4567  */
4568 static void
4569 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4570 {
4571 	vm_page_astate_t old, new;
4572 	uint16_t nflag;
4573 
4574 	/*
4575 	 * Use a check of the valid bits to determine whether we should
4576 	 * accelerate reclamation of the page.  The object lock might not be
4577 	 * held here, in which case the check is racy.  At worst we will either
4578 	 * accelerate reclamation of a valid page and violate LRU, or
4579 	 * unnecessarily defer reclamation of an invalid page.
4580 	 *
4581 	 * If we were asked to not cache the page, place it near the head of the
4582 	 * inactive queue so that is reclaimed sooner.
4583 	 */
4584 	if (noreuse || vm_page_none_valid(m)) {
4585 		nqueue = PQ_INACTIVE;
4586 		nflag = PGA_REQUEUE_HEAD;
4587 	} else {
4588 		nflag = PGA_REQUEUE;
4589 	}
4590 
4591 	old = vm_page_astate_load(m);
4592 	do {
4593 		new = old;
4594 
4595 		/*
4596 		 * If the page is already in the active queue and we are not
4597 		 * trying to accelerate reclamation, simply mark it as
4598 		 * referenced and avoid any queue operations.
4599 		 */
4600 		new.flags &= ~PGA_QUEUE_OP_MASK;
4601 		if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
4602 		    (old.flags & PGA_ENQUEUED) != 0)
4603 			new.flags |= PGA_REFERENCED;
4604 		else {
4605 			new.flags |= nflag;
4606 			new.queue = nqueue;
4607 		}
4608 	} while (!vm_page_pqstate_commit(m, &old, new));
4609 }
4610 
4611 /*
4612  * Unwire a page and either attempt to free it or re-add it to the page queues.
4613  */
4614 void
4615 vm_page_release(vm_page_t m, int flags)
4616 {
4617 	vm_object_t object;
4618 
4619 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4620 	    ("vm_page_release: page %p is unmanaged", m));
4621 
4622 	if ((flags & VPR_TRYFREE) != 0) {
4623 		for (;;) {
4624 			object = atomic_load_ptr(&m->object);
4625 			if (object == NULL)
4626 				break;
4627 			/* Depends on type-stability. */
4628 			if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4629 				break;
4630 			if (object == m->object) {
4631 				vm_page_release_locked(m, flags);
4632 				VM_OBJECT_WUNLOCK(object);
4633 				return;
4634 			}
4635 			VM_OBJECT_WUNLOCK(object);
4636 		}
4637 	}
4638 	vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4639 }
4640 
4641 /* See vm_page_release(). */
4642 void
4643 vm_page_release_locked(vm_page_t m, int flags)
4644 {
4645 
4646 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4647 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4648 	    ("vm_page_release_locked: page %p is unmanaged", m));
4649 
4650 	if (vm_page_unwire_noq(m)) {
4651 		if ((flags & VPR_TRYFREE) != 0 &&
4652 		    (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4653 		    m->dirty == 0 && vm_page_tryxbusy(m)) {
4654 			/*
4655 			 * An unlocked lookup may have wired the page before the
4656 			 * busy lock was acquired, in which case the page must
4657 			 * not be freed.
4658 			 */
4659 			if (__predict_true(!vm_page_wired(m))) {
4660 				vm_page_free(m);
4661 				return;
4662 			}
4663 			vm_page_xunbusy(m);
4664 		} else {
4665 			vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4666 		}
4667 	}
4668 }
4669 
4670 static bool
4671 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4672 {
4673 	u_int old;
4674 
4675 	KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4676 	    ("vm_page_try_blocked_op: page %p has no object", m));
4677 	KASSERT(vm_page_busied(m),
4678 	    ("vm_page_try_blocked_op: page %p is not busy", m));
4679 	VM_OBJECT_ASSERT_LOCKED(m->object);
4680 
4681 	old = atomic_load_int(&m->ref_count);
4682 	do {
4683 		KASSERT(old != 0,
4684 		    ("vm_page_try_blocked_op: page %p has no references", m));
4685 		KASSERT((old & VPRC_BLOCKED) == 0,
4686 		    ("vm_page_try_blocked_op: page %p blocks wirings", m));
4687 		if (VPRC_WIRE_COUNT(old) != 0)
4688 			return (false);
4689 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4690 
4691 	(op)(m);
4692 
4693 	/*
4694 	 * If the object is read-locked, new wirings may be created via an
4695 	 * object lookup.
4696 	 */
4697 	old = vm_page_drop(m, VPRC_BLOCKED);
4698 	KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4699 	    old == (VPRC_BLOCKED | VPRC_OBJREF),
4700 	    ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4701 	    old, m));
4702 	return (true);
4703 }
4704 
4705 /*
4706  * Atomically check for wirings and remove all mappings of the page.
4707  */
4708 bool
4709 vm_page_try_remove_all(vm_page_t m)
4710 {
4711 
4712 	return (vm_page_try_blocked_op(m, pmap_remove_all));
4713 }
4714 
4715 /*
4716  * Atomically check for wirings and remove all writeable mappings of the page.
4717  */
4718 bool
4719 vm_page_try_remove_write(vm_page_t m)
4720 {
4721 
4722 	return (vm_page_try_blocked_op(m, pmap_remove_write));
4723 }
4724 
4725 /*
4726  * vm_page_advise
4727  *
4728  * 	Apply the specified advice to the given page.
4729  */
4730 void
4731 vm_page_advise(vm_page_t m, int advice)
4732 {
4733 
4734 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4735 	vm_page_assert_xbusied(m);
4736 
4737 	if (advice == MADV_FREE)
4738 		/*
4739 		 * Mark the page clean.  This will allow the page to be freed
4740 		 * without first paging it out.  MADV_FREE pages are often
4741 		 * quickly reused by malloc(3), so we do not do anything that
4742 		 * would result in a page fault on a later access.
4743 		 */
4744 		vm_page_undirty(m);
4745 	else if (advice != MADV_DONTNEED) {
4746 		if (advice == MADV_WILLNEED)
4747 			vm_page_activate(m);
4748 		return;
4749 	}
4750 
4751 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4752 		vm_page_dirty(m);
4753 
4754 	/*
4755 	 * Clear any references to the page.  Otherwise, the page daemon will
4756 	 * immediately reactivate the page.
4757 	 */
4758 	vm_page_aflag_clear(m, PGA_REFERENCED);
4759 
4760 	/*
4761 	 * Place clean pages near the head of the inactive queue rather than
4762 	 * the tail, thus defeating the queue's LRU operation and ensuring that
4763 	 * the page will be reused quickly.  Dirty pages not already in the
4764 	 * laundry are moved there.
4765 	 */
4766 	if (m->dirty == 0)
4767 		vm_page_deactivate_noreuse(m);
4768 	else if (!vm_page_in_laundry(m))
4769 		vm_page_launder(m);
4770 }
4771 
4772 /*
4773  *	vm_page_grab_release
4774  *
4775  *	Helper routine for grab functions to release busy on return.
4776  */
4777 static inline void
4778 vm_page_grab_release(vm_page_t m, int allocflags)
4779 {
4780 
4781 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4782 		if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4783 			vm_page_sunbusy(m);
4784 		else
4785 			vm_page_xunbusy(m);
4786 	}
4787 }
4788 
4789 /*
4790  *	vm_page_grab_sleep
4791  *
4792  *	Sleep for busy according to VM_ALLOC_ parameters.  Returns true
4793  *	if the caller should retry and false otherwise.
4794  *
4795  *	If the object is locked on entry the object will be unlocked with
4796  *	false returns and still locked but possibly having been dropped
4797  *	with true returns.
4798  */
4799 static bool
4800 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4801     const char *wmesg, int allocflags, bool locked)
4802 {
4803 
4804 	if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4805 		return (false);
4806 
4807 	/*
4808 	 * Reference the page before unlocking and sleeping so that
4809 	 * the page daemon is less likely to reclaim it.
4810 	 */
4811 	if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4812 		vm_page_reference(m);
4813 
4814 	if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4815 	    locked)
4816 		VM_OBJECT_WLOCK(object);
4817 	if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4818 		return (false);
4819 
4820 	return (true);
4821 }
4822 
4823 /*
4824  * Assert that the grab flags are valid.
4825  */
4826 static inline void
4827 vm_page_grab_check(int allocflags)
4828 {
4829 
4830 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4831 	    (allocflags & VM_ALLOC_WIRED) != 0,
4832 	    ("vm_page_grab*: the pages must be busied or wired"));
4833 
4834 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4835 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4836 	    ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4837 }
4838 
4839 /*
4840  * Calculate the page allocation flags for grab.
4841  */
4842 static inline int
4843 vm_page_grab_pflags(int allocflags)
4844 {
4845 	int pflags;
4846 
4847 	pflags = allocflags &
4848 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4849 	    VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY);
4850 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4851 		pflags |= VM_ALLOC_WAITFAIL;
4852 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4853 		pflags |= VM_ALLOC_SBUSY;
4854 
4855 	return (pflags);
4856 }
4857 
4858 /*
4859  * Grab a page, waiting until we are waken up due to the page
4860  * changing state.  We keep on waiting, if the page continues
4861  * to be in the object.  If the page doesn't exist, first allocate it
4862  * and then conditionally zero it.
4863  *
4864  * This routine may sleep.
4865  *
4866  * The object must be locked on entry.  The lock will, however, be released
4867  * and reacquired if the routine sleeps.
4868  */
4869 vm_page_t
4870 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4871 {
4872 	vm_page_t m;
4873 
4874 	VM_OBJECT_ASSERT_WLOCKED(object);
4875 	vm_page_grab_check(allocflags);
4876 
4877 retrylookup:
4878 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4879 		if (!vm_page_tryacquire(m, allocflags)) {
4880 			if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4881 			    allocflags, true))
4882 				goto retrylookup;
4883 			return (NULL);
4884 		}
4885 		goto out;
4886 	}
4887 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4888 		return (NULL);
4889 	m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
4890 	if (m == NULL) {
4891 		if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4892 			return (NULL);
4893 		goto retrylookup;
4894 	}
4895 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4896 		pmap_zero_page(m);
4897 
4898 out:
4899 	vm_page_grab_release(m, allocflags);
4900 
4901 	return (m);
4902 }
4903 
4904 /*
4905  * Attempt to validate a page, locklessly acquiring it if necessary, given a
4906  * (object, pindex) tuple and either an invalided page or NULL.  The resulting
4907  * page will be validated against the identity tuple, and busied or wired as
4908  * requested.  A NULL page returned guarantees that the page was not in radix at
4909  * the time of the call but callers must perform higher level synchronization or
4910  * retry the operation under a lock if they require an atomic answer.  This is
4911  * the only lock free validation routine, other routines can depend on the
4912  * resulting page state.
4913  *
4914  * The return value PAGE_NOT_ACQUIRED indicates that the operation failed due to
4915  * caller flags.
4916  */
4917 #define PAGE_NOT_ACQUIRED ((vm_page_t)1)
4918 static vm_page_t
4919 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, vm_page_t m,
4920     int allocflags)
4921 {
4922 	if (m == NULL)
4923 		m = vm_page_lookup_unlocked(object, pindex);
4924 	for (; m != NULL; m = vm_page_lookup_unlocked(object, pindex)) {
4925 		if (vm_page_trybusy(m, allocflags)) {
4926 			if (m->object == object && m->pindex == pindex) {
4927 				if ((allocflags & VM_ALLOC_WIRED) != 0)
4928 					vm_page_wire(m);
4929 				vm_page_grab_release(m, allocflags);
4930 				break;
4931 			}
4932 			/* relookup. */
4933 			vm_page_busy_release(m);
4934 			cpu_spinwait();
4935 			continue;
4936 		}
4937 		if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4938 		    allocflags, false))
4939 			return (PAGE_NOT_ACQUIRED);
4940 	}
4941 	return (m);
4942 }
4943 
4944 /*
4945  * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4946  * is not set.
4947  */
4948 vm_page_t
4949 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4950 {
4951 	vm_page_t m;
4952 
4953 	vm_page_grab_check(allocflags);
4954 	m = vm_page_acquire_unlocked(object, pindex, NULL, allocflags);
4955 	if (m == PAGE_NOT_ACQUIRED)
4956 		return (NULL);
4957 	if (m != NULL)
4958 		return (m);
4959 
4960 	/*
4961 	 * The radix lockless lookup should never return a false negative
4962 	 * errors.  If the user specifies NOCREAT they are guaranteed there
4963 	 * was no page present at the instant of the call.  A NOCREAT caller
4964 	 * must handle create races gracefully.
4965 	 */
4966 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4967 		return (NULL);
4968 
4969 	VM_OBJECT_WLOCK(object);
4970 	m = vm_page_grab(object, pindex, allocflags);
4971 	VM_OBJECT_WUNLOCK(object);
4972 
4973 	return (m);
4974 }
4975 
4976 /*
4977  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4978  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4979  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4980  * in simultaneously.  Additional pages will be left on a paging queue but
4981  * will neither be wired nor busy regardless of allocflags.
4982  */
4983 int
4984 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4985 {
4986 	vm_page_t m;
4987 	vm_page_t ma[VM_INITIAL_PAGEIN];
4988 	int after, i, pflags, rv;
4989 
4990 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4991 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4992 	    ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4993 	KASSERT((allocflags &
4994 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4995 	    ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4996 	VM_OBJECT_ASSERT_WLOCKED(object);
4997 	pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4998 	    VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
4999 	pflags |= VM_ALLOC_WAITFAIL;
5000 
5001 retrylookup:
5002 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
5003 		/*
5004 		 * If the page is fully valid it can only become invalid
5005 		 * with the object lock held.  If it is not valid it can
5006 		 * become valid with the busy lock held.  Therefore, we
5007 		 * may unnecessarily lock the exclusive busy here if we
5008 		 * race with I/O completion not using the object lock.
5009 		 * However, we will not end up with an invalid page and a
5010 		 * shared lock.
5011 		 */
5012 		if (!vm_page_trybusy(m,
5013 		    vm_page_all_valid(m) ? allocflags : 0)) {
5014 			(void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
5015 			    allocflags, true);
5016 			goto retrylookup;
5017 		}
5018 		if (vm_page_all_valid(m))
5019 			goto out;
5020 		if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5021 			vm_page_busy_release(m);
5022 			*mp = NULL;
5023 			return (VM_PAGER_FAIL);
5024 		}
5025 	} else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5026 		*mp = NULL;
5027 		return (VM_PAGER_FAIL);
5028 	} else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
5029 		if (!vm_pager_can_alloc_page(object, pindex)) {
5030 			*mp = NULL;
5031 			return (VM_PAGER_AGAIN);
5032 		}
5033 		goto retrylookup;
5034 	}
5035 
5036 	vm_page_assert_xbusied(m);
5037 	if (vm_pager_has_page(object, pindex, NULL, &after)) {
5038 		after = MIN(after, VM_INITIAL_PAGEIN);
5039 		after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
5040 		after = MAX(after, 1);
5041 		ma[0] = m;
5042 		for (i = 1; i < after; i++) {
5043 			if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
5044 				if (vm_page_any_valid(ma[i]) ||
5045 				    !vm_page_tryxbusy(ma[i]))
5046 					break;
5047 			} else {
5048 				ma[i] = vm_page_alloc(object, m->pindex + i,
5049 				    VM_ALLOC_NORMAL);
5050 				if (ma[i] == NULL)
5051 					break;
5052 			}
5053 		}
5054 		after = i;
5055 		vm_object_pip_add(object, after);
5056 		VM_OBJECT_WUNLOCK(object);
5057 		rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
5058 		VM_OBJECT_WLOCK(object);
5059 		vm_object_pip_wakeupn(object, after);
5060 		/* Pager may have replaced a page. */
5061 		m = ma[0];
5062 		if (rv != VM_PAGER_OK) {
5063 			for (i = 0; i < after; i++) {
5064 				if (!vm_page_wired(ma[i]))
5065 					vm_page_free(ma[i]);
5066 				else
5067 					vm_page_xunbusy(ma[i]);
5068 			}
5069 			*mp = NULL;
5070 			return (rv);
5071 		}
5072 		for (i = 1; i < after; i++)
5073 			vm_page_readahead_finish(ma[i]);
5074 		MPASS(vm_page_all_valid(m));
5075 	} else {
5076 		vm_page_zero_invalid(m, TRUE);
5077 	}
5078 out:
5079 	if ((allocflags & VM_ALLOC_WIRED) != 0)
5080 		vm_page_wire(m);
5081 	if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
5082 		vm_page_busy_downgrade(m);
5083 	else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
5084 		vm_page_busy_release(m);
5085 	*mp = m;
5086 	return (VM_PAGER_OK);
5087 }
5088 
5089 /*
5090  * Locklessly grab a valid page.  If the page is not valid or not yet
5091  * allocated this will fall back to the object lock method.
5092  */
5093 int
5094 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
5095     vm_pindex_t pindex, int allocflags)
5096 {
5097 	vm_page_t m;
5098 	int flags;
5099 	int error;
5100 
5101 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
5102 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
5103 	    ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
5104 	    "mismatch"));
5105 	KASSERT((allocflags &
5106 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
5107 	    ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
5108 
5109 	/*
5110 	 * Attempt a lockless lookup and busy.  We need at least an sbusy
5111 	 * before we can inspect the valid field and return a wired page.
5112 	 */
5113 	flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
5114 	vm_page_grab_check(flags);
5115 	m = vm_page_acquire_unlocked(object, pindex, NULL, flags);
5116 	if (m == PAGE_NOT_ACQUIRED)
5117 		return (VM_PAGER_FAIL);
5118 	if (m != NULL) {
5119 		if (vm_page_all_valid(m)) {
5120 			if ((allocflags & VM_ALLOC_WIRED) != 0)
5121 				vm_page_wire(m);
5122 			vm_page_grab_release(m, allocflags);
5123 			*mp = m;
5124 			return (VM_PAGER_OK);
5125 		}
5126 		vm_page_busy_release(m);
5127 	}
5128 	if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5129 		*mp = NULL;
5130 		return (VM_PAGER_FAIL);
5131 	}
5132 	VM_OBJECT_WLOCK(object);
5133 	error = vm_page_grab_valid(mp, object, pindex, allocflags);
5134 	VM_OBJECT_WUNLOCK(object);
5135 
5136 	return (error);
5137 }
5138 
5139 /*
5140  * Return the specified range of pages from the given object.  For each
5141  * page offset within the range, if a page already exists within the object
5142  * at that offset and it is busy, then wait for it to change state.  If,
5143  * instead, the page doesn't exist, then allocate it.
5144  *
5145  * The caller must always specify an allocation class.
5146  *
5147  * allocation classes:
5148  *	VM_ALLOC_NORMAL		normal process request
5149  *	VM_ALLOC_SYSTEM		system *really* needs the pages
5150  *
5151  * The caller must always specify that the pages are to be busied and/or
5152  * wired.
5153  *
5154  * optional allocation flags:
5155  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
5156  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
5157  *	VM_ALLOC_NOWAIT		do not sleep
5158  *	VM_ALLOC_SBUSY		set page to sbusy state
5159  *	VM_ALLOC_WIRED		wire the pages
5160  *	VM_ALLOC_ZERO		zero and validate any invalid pages
5161  *
5162  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
5163  * may return a partial prefix of the requested range.
5164  */
5165 int
5166 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
5167     vm_page_t *ma, int count)
5168 {
5169 	vm_page_t m, mpred;
5170 	int pflags;
5171 	int i;
5172 
5173 	VM_OBJECT_ASSERT_WLOCKED(object);
5174 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
5175 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
5176 	KASSERT(count > 0,
5177 	    ("vm_page_grab_pages: invalid page count %d", count));
5178 	vm_page_grab_check(allocflags);
5179 
5180 	pflags = vm_page_grab_pflags(allocflags);
5181 	i = 0;
5182 retrylookup:
5183 	m = vm_page_mpred(object, pindex + i);
5184 	if (m == NULL || m->pindex != pindex + i) {
5185 		mpred = m;
5186 		m = NULL;
5187 	} else
5188 		mpred = TAILQ_PREV(m, pglist, listq);
5189 	for (; i < count; i++) {
5190 		if (m != NULL) {
5191 			if (!vm_page_tryacquire(m, allocflags)) {
5192 				if (vm_page_grab_sleep(object, m, pindex + i,
5193 				    "grbmaw", allocflags, true))
5194 					goto retrylookup;
5195 				break;
5196 			}
5197 		} else {
5198 			if ((allocflags & VM_ALLOC_NOCREAT) != 0)
5199 				break;
5200 			m = vm_page_alloc_after(object, pindex + i,
5201 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
5202 			if (m == NULL) {
5203 				if ((allocflags & (VM_ALLOC_NOWAIT |
5204 				    VM_ALLOC_WAITFAIL)) != 0)
5205 					break;
5206 				goto retrylookup;
5207 			}
5208 		}
5209 		if (vm_page_none_valid(m) &&
5210 		    (allocflags & VM_ALLOC_ZERO) != 0) {
5211 			if ((m->flags & PG_ZERO) == 0)
5212 				pmap_zero_page(m);
5213 			vm_page_valid(m);
5214 		}
5215 		vm_page_grab_release(m, allocflags);
5216 		ma[i] = mpred = m;
5217 		m = vm_page_next(m);
5218 	}
5219 	return (i);
5220 }
5221 
5222 /*
5223  * Unlocked variant of vm_page_grab_pages().  This accepts the same flags
5224  * and will fall back to the locked variant to handle allocation.
5225  */
5226 int
5227 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
5228     int allocflags, vm_page_t *ma, int count)
5229 {
5230 	vm_page_t m;
5231 	int flags;
5232 	int i;
5233 
5234 	KASSERT(count > 0,
5235 	    ("vm_page_grab_pages_unlocked: invalid page count %d", count));
5236 	vm_page_grab_check(allocflags);
5237 
5238 	/*
5239 	 * Modify flags for lockless acquire to hold the page until we
5240 	 * set it valid if necessary.
5241 	 */
5242 	flags = allocflags & ~VM_ALLOC_NOBUSY;
5243 	vm_page_grab_check(flags);
5244 	m = NULL;
5245 	for (i = 0; i < count; i++, pindex++) {
5246 		/*
5247 		 * We may see a false NULL here because the previous page has
5248 		 * been removed or just inserted and the list is loaded without
5249 		 * barriers.  Switch to radix to verify.
5250 		 */
5251 		if (m == NULL || QMD_IS_TRASHED(m) || m->pindex != pindex ||
5252 		    atomic_load_ptr(&m->object) != object) {
5253 			/*
5254 			 * This guarantees the result is instantaneously
5255 			 * correct.
5256 			 */
5257 			m = NULL;
5258 		}
5259 		m = vm_page_acquire_unlocked(object, pindex, m, flags);
5260 		if (m == PAGE_NOT_ACQUIRED)
5261 			return (i);
5262 		if (m == NULL)
5263 			break;
5264 		if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
5265 			if ((m->flags & PG_ZERO) == 0)
5266 				pmap_zero_page(m);
5267 			vm_page_valid(m);
5268 		}
5269 		/* m will still be wired or busy according to flags. */
5270 		vm_page_grab_release(m, allocflags);
5271 		ma[i] = m;
5272 		m = TAILQ_NEXT(m, listq);
5273 	}
5274 	if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
5275 		return (i);
5276 	count -= i;
5277 	VM_OBJECT_WLOCK(object);
5278 	i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
5279 	VM_OBJECT_WUNLOCK(object);
5280 
5281 	return (i);
5282 }
5283 
5284 /*
5285  * Mapping function for valid or dirty bits in a page.
5286  *
5287  * Inputs are required to range within a page.
5288  */
5289 vm_page_bits_t
5290 vm_page_bits(int base, int size)
5291 {
5292 	int first_bit;
5293 	int last_bit;
5294 
5295 	KASSERT(
5296 	    base + size <= PAGE_SIZE,
5297 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
5298 	);
5299 
5300 	if (size == 0)		/* handle degenerate case */
5301 		return (0);
5302 
5303 	first_bit = base >> DEV_BSHIFT;
5304 	last_bit = (base + size - 1) >> DEV_BSHIFT;
5305 
5306 	return (((vm_page_bits_t)2 << last_bit) -
5307 	    ((vm_page_bits_t)1 << first_bit));
5308 }
5309 
5310 void
5311 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
5312 {
5313 
5314 #if PAGE_SIZE == 32768
5315 	atomic_set_64((uint64_t *)bits, set);
5316 #elif PAGE_SIZE == 16384
5317 	atomic_set_32((uint32_t *)bits, set);
5318 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
5319 	atomic_set_16((uint16_t *)bits, set);
5320 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
5321 	atomic_set_8((uint8_t *)bits, set);
5322 #else		/* PAGE_SIZE <= 8192 */
5323 	uintptr_t addr;
5324 	int shift;
5325 
5326 	addr = (uintptr_t)bits;
5327 	/*
5328 	 * Use a trick to perform a 32-bit atomic on the
5329 	 * containing aligned word, to not depend on the existence
5330 	 * of atomic_{set, clear}_{8, 16}.
5331 	 */
5332 	shift = addr & (sizeof(uint32_t) - 1);
5333 #if BYTE_ORDER == BIG_ENDIAN
5334 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5335 #else
5336 	shift *= NBBY;
5337 #endif
5338 	addr &= ~(sizeof(uint32_t) - 1);
5339 	atomic_set_32((uint32_t *)addr, set << shift);
5340 #endif		/* PAGE_SIZE */
5341 }
5342 
5343 static inline void
5344 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
5345 {
5346 
5347 #if PAGE_SIZE == 32768
5348 	atomic_clear_64((uint64_t *)bits, clear);
5349 #elif PAGE_SIZE == 16384
5350 	atomic_clear_32((uint32_t *)bits, clear);
5351 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
5352 	atomic_clear_16((uint16_t *)bits, clear);
5353 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
5354 	atomic_clear_8((uint8_t *)bits, clear);
5355 #else		/* PAGE_SIZE <= 8192 */
5356 	uintptr_t addr;
5357 	int shift;
5358 
5359 	addr = (uintptr_t)bits;
5360 	/*
5361 	 * Use a trick to perform a 32-bit atomic on the
5362 	 * containing aligned word, to not depend on the existence
5363 	 * of atomic_{set, clear}_{8, 16}.
5364 	 */
5365 	shift = addr & (sizeof(uint32_t) - 1);
5366 #if BYTE_ORDER == BIG_ENDIAN
5367 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5368 #else
5369 	shift *= NBBY;
5370 #endif
5371 	addr &= ~(sizeof(uint32_t) - 1);
5372 	atomic_clear_32((uint32_t *)addr, clear << shift);
5373 #endif		/* PAGE_SIZE */
5374 }
5375 
5376 static inline vm_page_bits_t
5377 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
5378 {
5379 #if PAGE_SIZE == 32768
5380 	uint64_t old;
5381 
5382 	old = *bits;
5383 	while (atomic_fcmpset_64(bits, &old, newbits) == 0);
5384 	return (old);
5385 #elif PAGE_SIZE == 16384
5386 	uint32_t old;
5387 
5388 	old = *bits;
5389 	while (atomic_fcmpset_32(bits, &old, newbits) == 0);
5390 	return (old);
5391 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
5392 	uint16_t old;
5393 
5394 	old = *bits;
5395 	while (atomic_fcmpset_16(bits, &old, newbits) == 0);
5396 	return (old);
5397 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
5398 	uint8_t old;
5399 
5400 	old = *bits;
5401 	while (atomic_fcmpset_8(bits, &old, newbits) == 0);
5402 	return (old);
5403 #else		/* PAGE_SIZE <= 4096*/
5404 	uintptr_t addr;
5405 	uint32_t old, new, mask;
5406 	int shift;
5407 
5408 	addr = (uintptr_t)bits;
5409 	/*
5410 	 * Use a trick to perform a 32-bit atomic on the
5411 	 * containing aligned word, to not depend on the existence
5412 	 * of atomic_{set, swap, clear}_{8, 16}.
5413 	 */
5414 	shift = addr & (sizeof(uint32_t) - 1);
5415 #if BYTE_ORDER == BIG_ENDIAN
5416 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5417 #else
5418 	shift *= NBBY;
5419 #endif
5420 	addr &= ~(sizeof(uint32_t) - 1);
5421 	mask = VM_PAGE_BITS_ALL << shift;
5422 
5423 	old = *bits;
5424 	do {
5425 		new = old & ~mask;
5426 		new |= newbits << shift;
5427 	} while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5428 	return (old >> shift);
5429 #endif		/* PAGE_SIZE */
5430 }
5431 
5432 /*
5433  *	vm_page_set_valid_range:
5434  *
5435  *	Sets portions of a page valid.  The arguments are expected
5436  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5437  *	of any partial chunks touched by the range.  The invalid portion of
5438  *	such chunks will be zeroed.
5439  *
5440  *	(base + size) must be less then or equal to PAGE_SIZE.
5441  */
5442 void
5443 vm_page_set_valid_range(vm_page_t m, int base, int size)
5444 {
5445 	int endoff, frag;
5446 	vm_page_bits_t pagebits;
5447 
5448 	vm_page_assert_busied(m);
5449 	if (size == 0)	/* handle degenerate case */
5450 		return;
5451 
5452 	/*
5453 	 * If the base is not DEV_BSIZE aligned and the valid
5454 	 * bit is clear, we have to zero out a portion of the
5455 	 * first block.
5456 	 */
5457 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5458 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5459 		pmap_zero_page_area(m, frag, base - frag);
5460 
5461 	/*
5462 	 * If the ending offset is not DEV_BSIZE aligned and the
5463 	 * valid bit is clear, we have to zero out a portion of
5464 	 * the last block.
5465 	 */
5466 	endoff = base + size;
5467 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5468 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5469 		pmap_zero_page_area(m, endoff,
5470 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5471 
5472 	/*
5473 	 * Assert that no previously invalid block that is now being validated
5474 	 * is already dirty.
5475 	 */
5476 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5477 	    ("vm_page_set_valid_range: page %p is dirty", m));
5478 
5479 	/*
5480 	 * Set valid bits inclusive of any overlap.
5481 	 */
5482 	pagebits = vm_page_bits(base, size);
5483 	if (vm_page_xbusied(m))
5484 		m->valid |= pagebits;
5485 	else
5486 		vm_page_bits_set(m, &m->valid, pagebits);
5487 }
5488 
5489 /*
5490  * Set the page dirty bits and free the invalid swap space if
5491  * present.  Returns the previous dirty bits.
5492  */
5493 vm_page_bits_t
5494 vm_page_set_dirty(vm_page_t m)
5495 {
5496 	vm_page_bits_t old;
5497 
5498 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
5499 
5500 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5501 		old = m->dirty;
5502 		m->dirty = VM_PAGE_BITS_ALL;
5503 	} else
5504 		old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5505 	if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5506 		vm_pager_page_unswapped(m);
5507 
5508 	return (old);
5509 }
5510 
5511 /*
5512  * Clear the given bits from the specified page's dirty field.
5513  */
5514 static __inline void
5515 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5516 {
5517 
5518 	vm_page_assert_busied(m);
5519 
5520 	/*
5521 	 * If the page is xbusied and not write mapped we are the
5522 	 * only thread that can modify dirty bits.  Otherwise, The pmap
5523 	 * layer can call vm_page_dirty() without holding a distinguished
5524 	 * lock.  The combination of page busy and atomic operations
5525 	 * suffice to guarantee consistency of the page dirty field.
5526 	 */
5527 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5528 		m->dirty &= ~pagebits;
5529 	else
5530 		vm_page_bits_clear(m, &m->dirty, pagebits);
5531 }
5532 
5533 /*
5534  *	vm_page_set_validclean:
5535  *
5536  *	Sets portions of a page valid and clean.  The arguments are expected
5537  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5538  *	of any partial chunks touched by the range.  The invalid portion of
5539  *	such chunks will be zero'd.
5540  *
5541  *	(base + size) must be less then or equal to PAGE_SIZE.
5542  */
5543 void
5544 vm_page_set_validclean(vm_page_t m, int base, int size)
5545 {
5546 	vm_page_bits_t oldvalid, pagebits;
5547 	int endoff, frag;
5548 
5549 	vm_page_assert_busied(m);
5550 	if (size == 0)	/* handle degenerate case */
5551 		return;
5552 
5553 	/*
5554 	 * If the base is not DEV_BSIZE aligned and the valid
5555 	 * bit is clear, we have to zero out a portion of the
5556 	 * first block.
5557 	 */
5558 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5559 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5560 		pmap_zero_page_area(m, frag, base - frag);
5561 
5562 	/*
5563 	 * If the ending offset is not DEV_BSIZE aligned and the
5564 	 * valid bit is clear, we have to zero out a portion of
5565 	 * the last block.
5566 	 */
5567 	endoff = base + size;
5568 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5569 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5570 		pmap_zero_page_area(m, endoff,
5571 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5572 
5573 	/*
5574 	 * Set valid, clear dirty bits.  If validating the entire
5575 	 * page we can safely clear the pmap modify bit.  We also
5576 	 * use this opportunity to clear the PGA_NOSYNC flag.  If a process
5577 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
5578 	 * be set again.
5579 	 *
5580 	 * We set valid bits inclusive of any overlap, but we can only
5581 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
5582 	 * the range.
5583 	 */
5584 	oldvalid = m->valid;
5585 	pagebits = vm_page_bits(base, size);
5586 	if (vm_page_xbusied(m))
5587 		m->valid |= pagebits;
5588 	else
5589 		vm_page_bits_set(m, &m->valid, pagebits);
5590 #if 0	/* NOT YET */
5591 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5592 		frag = DEV_BSIZE - frag;
5593 		base += frag;
5594 		size -= frag;
5595 		if (size < 0)
5596 			size = 0;
5597 	}
5598 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5599 #endif
5600 	if (base == 0 && size == PAGE_SIZE) {
5601 		/*
5602 		 * The page can only be modified within the pmap if it is
5603 		 * mapped, and it can only be mapped if it was previously
5604 		 * fully valid.
5605 		 */
5606 		if (oldvalid == VM_PAGE_BITS_ALL)
5607 			/*
5608 			 * Perform the pmap_clear_modify() first.  Otherwise,
5609 			 * a concurrent pmap operation, such as
5610 			 * pmap_protect(), could clear a modification in the
5611 			 * pmap and set the dirty field on the page before
5612 			 * pmap_clear_modify() had begun and after the dirty
5613 			 * field was cleared here.
5614 			 */
5615 			pmap_clear_modify(m);
5616 		m->dirty = 0;
5617 		vm_page_aflag_clear(m, PGA_NOSYNC);
5618 	} else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5619 		m->dirty &= ~pagebits;
5620 	else
5621 		vm_page_clear_dirty_mask(m, pagebits);
5622 }
5623 
5624 void
5625 vm_page_clear_dirty(vm_page_t m, int base, int size)
5626 {
5627 
5628 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5629 }
5630 
5631 /*
5632  *	vm_page_set_invalid:
5633  *
5634  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
5635  *	valid and dirty bits for the effected areas are cleared.
5636  */
5637 void
5638 vm_page_set_invalid(vm_page_t m, int base, int size)
5639 {
5640 	vm_page_bits_t bits;
5641 	vm_object_t object;
5642 
5643 	/*
5644 	 * The object lock is required so that pages can't be mapped
5645 	 * read-only while we're in the process of invalidating them.
5646 	 */
5647 	object = m->object;
5648 	VM_OBJECT_ASSERT_WLOCKED(object);
5649 	vm_page_assert_busied(m);
5650 
5651 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5652 	    size >= object->un_pager.vnp.vnp_size)
5653 		bits = VM_PAGE_BITS_ALL;
5654 	else
5655 		bits = vm_page_bits(base, size);
5656 	if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5657 		pmap_remove_all(m);
5658 	KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5659 	    !pmap_page_is_mapped(m),
5660 	    ("vm_page_set_invalid: page %p is mapped", m));
5661 	if (vm_page_xbusied(m)) {
5662 		m->valid &= ~bits;
5663 		m->dirty &= ~bits;
5664 	} else {
5665 		vm_page_bits_clear(m, &m->valid, bits);
5666 		vm_page_bits_clear(m, &m->dirty, bits);
5667 	}
5668 }
5669 
5670 /*
5671  *	vm_page_invalid:
5672  *
5673  *	Invalidates the entire page.  The page must be busy, unmapped, and
5674  *	the enclosing object must be locked.  The object locks protects
5675  *	against concurrent read-only pmap enter which is done without
5676  *	busy.
5677  */
5678 void
5679 vm_page_invalid(vm_page_t m)
5680 {
5681 
5682 	vm_page_assert_busied(m);
5683 	VM_OBJECT_ASSERT_WLOCKED(m->object);
5684 	MPASS(!pmap_page_is_mapped(m));
5685 
5686 	if (vm_page_xbusied(m))
5687 		m->valid = 0;
5688 	else
5689 		vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5690 }
5691 
5692 /*
5693  * vm_page_zero_invalid()
5694  *
5695  *	The kernel assumes that the invalid portions of a page contain
5696  *	garbage, but such pages can be mapped into memory by user code.
5697  *	When this occurs, we must zero out the non-valid portions of the
5698  *	page so user code sees what it expects.
5699  *
5700  *	Pages are most often semi-valid when the end of a file is mapped
5701  *	into memory and the file's size is not page aligned.
5702  */
5703 void
5704 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5705 {
5706 	int b;
5707 	int i;
5708 
5709 	/*
5710 	 * Scan the valid bits looking for invalid sections that
5711 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
5712 	 * valid bit may be set ) have already been zeroed by
5713 	 * vm_page_set_validclean().
5714 	 */
5715 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5716 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
5717 		    (m->valid & ((vm_page_bits_t)1 << i))) {
5718 			if (i > b) {
5719 				pmap_zero_page_area(m,
5720 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5721 			}
5722 			b = i + 1;
5723 		}
5724 	}
5725 
5726 	/*
5727 	 * setvalid is TRUE when we can safely set the zero'd areas
5728 	 * as being valid.  We can do this if there are no cache consistency
5729 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
5730 	 */
5731 	if (setvalid)
5732 		vm_page_valid(m);
5733 }
5734 
5735 /*
5736  *	vm_page_is_valid:
5737  *
5738  *	Is (partial) page valid?  Note that the case where size == 0
5739  *	will return FALSE in the degenerate case where the page is
5740  *	entirely invalid, and TRUE otherwise.
5741  *
5742  *	Some callers envoke this routine without the busy lock held and
5743  *	handle races via higher level locks.  Typical callers should
5744  *	hold a busy lock to prevent invalidation.
5745  */
5746 int
5747 vm_page_is_valid(vm_page_t m, int base, int size)
5748 {
5749 	vm_page_bits_t bits;
5750 
5751 	bits = vm_page_bits(base, size);
5752 	return (vm_page_any_valid(m) && (m->valid & bits) == bits);
5753 }
5754 
5755 /*
5756  * Returns true if all of the specified predicates are true for the entire
5757  * (super)page and false otherwise.
5758  */
5759 bool
5760 vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m)
5761 {
5762 	vm_object_t object;
5763 	int i, npages;
5764 
5765 	object = m->object;
5766 	if (skip_m != NULL && skip_m->object != object)
5767 		return (false);
5768 	VM_OBJECT_ASSERT_LOCKED(object);
5769 	KASSERT(psind <= m->psind,
5770 	    ("psind %d > psind %d of m %p", psind, m->psind, m));
5771 	npages = atop(pagesizes[psind]);
5772 
5773 	/*
5774 	 * The physically contiguous pages that make up a superpage, i.e., a
5775 	 * page with a page size index ("psind") greater than zero, will
5776 	 * occupy adjacent entries in vm_page_array[].
5777 	 */
5778 	for (i = 0; i < npages; i++) {
5779 		/* Always test object consistency, including "skip_m". */
5780 		if (m[i].object != object)
5781 			return (false);
5782 		if (&m[i] == skip_m)
5783 			continue;
5784 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5785 			return (false);
5786 		if ((flags & PS_ALL_DIRTY) != 0) {
5787 			/*
5788 			 * Calling vm_page_test_dirty() or pmap_is_modified()
5789 			 * might stop this case from spuriously returning
5790 			 * "false".  However, that would require a write lock
5791 			 * on the object containing "m[i]".
5792 			 */
5793 			if (m[i].dirty != VM_PAGE_BITS_ALL)
5794 				return (false);
5795 		}
5796 		if ((flags & PS_ALL_VALID) != 0 &&
5797 		    m[i].valid != VM_PAGE_BITS_ALL)
5798 			return (false);
5799 	}
5800 	return (true);
5801 }
5802 
5803 /*
5804  * Set the page's dirty bits if the page is modified.
5805  */
5806 void
5807 vm_page_test_dirty(vm_page_t m)
5808 {
5809 
5810 	vm_page_assert_busied(m);
5811 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5812 		vm_page_dirty(m);
5813 }
5814 
5815 void
5816 vm_page_valid(vm_page_t m)
5817 {
5818 
5819 	vm_page_assert_busied(m);
5820 	if (vm_page_xbusied(m))
5821 		m->valid = VM_PAGE_BITS_ALL;
5822 	else
5823 		vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5824 }
5825 
5826 void
5827 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5828 {
5829 
5830 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5831 }
5832 
5833 void
5834 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5835 {
5836 
5837 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5838 }
5839 
5840 int
5841 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5842 {
5843 
5844 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5845 }
5846 
5847 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5848 void
5849 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5850 {
5851 
5852 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5853 }
5854 
5855 void
5856 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5857 {
5858 
5859 	mtx_assert_(vm_page_lockptr(m), a, file, line);
5860 }
5861 #endif
5862 
5863 #ifdef INVARIANTS
5864 void
5865 vm_page_object_busy_assert(vm_page_t m)
5866 {
5867 
5868 	/*
5869 	 * Certain of the page's fields may only be modified by the
5870 	 * holder of a page or object busy.
5871 	 */
5872 	if (m->object != NULL && !vm_page_busied(m))
5873 		VM_OBJECT_ASSERT_BUSY(m->object);
5874 }
5875 
5876 void
5877 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5878 {
5879 
5880 	if ((bits & PGA_WRITEABLE) == 0)
5881 		return;
5882 
5883 	/*
5884 	 * The PGA_WRITEABLE flag can only be set if the page is
5885 	 * managed, is exclusively busied or the object is locked.
5886 	 * Currently, this flag is only set by pmap_enter().
5887 	 */
5888 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5889 	    ("PGA_WRITEABLE on unmanaged page"));
5890 	if (!vm_page_xbusied(m))
5891 		VM_OBJECT_ASSERT_BUSY(m->object);
5892 }
5893 #endif
5894 
5895 #include "opt_ddb.h"
5896 #ifdef DDB
5897 #include <sys/kernel.h>
5898 
5899 #include <ddb/ddb.h>
5900 
5901 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
5902 {
5903 
5904 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5905 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5906 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5907 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5908 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5909 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5910 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5911 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5912 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5913 }
5914 
5915 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
5916 {
5917 	int dom;
5918 
5919 	db_printf("pq_free %d\n", vm_free_count());
5920 	for (dom = 0; dom < vm_ndomains; dom++) {
5921 		db_printf(
5922     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5923 		    dom,
5924 		    vm_dom[dom].vmd_page_count,
5925 		    vm_dom[dom].vmd_free_count,
5926 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5927 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5928 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5929 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5930 	}
5931 }
5932 
5933 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5934 {
5935 	vm_page_t m;
5936 	boolean_t phys, virt;
5937 
5938 	if (!have_addr) {
5939 		db_printf("show pginfo addr\n");
5940 		return;
5941 	}
5942 
5943 	phys = strchr(modif, 'p') != NULL;
5944 	virt = strchr(modif, 'v') != NULL;
5945 	if (virt)
5946 		m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5947 	else if (phys)
5948 		m = PHYS_TO_VM_PAGE(addr);
5949 	else
5950 		m = (vm_page_t)addr;
5951 	db_printf(
5952     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5953     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5954 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5955 	    m->a.queue, m->ref_count, m->a.flags, m->oflags,
5956 	    m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5957 }
5958 #endif /* DDB */
5959