xref: /freebsd/sys/vm/vm_page.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- a pageq mutex is required when adding or removing a page from a
67  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68  *	  busy state of a page.
69  *
70  *	- a hash chain mutex is required when associating or disassociating
71  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
72  *	  regardless of other mutexes or the busy state of a page.
73  *
74  *	- either a hash chain mutex OR a busied page is required in order
75  *	  to modify the page flags.  A hash chain mutex must be obtained in
76  *	  order to busy a page.  A page's flags cannot be modified by a
77  *	  hash chain mutex if the page is marked busy.
78  *
79  *	- The object memq mutex is held when inserting or removing
80  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
81  *	  is different from the object's main mutex.
82  *
83  *	Generally speaking, you have to be aware of side effects when running
84  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
85  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
86  *	vm_page_cache(), vm_page_activate(), and a number of other routines
87  *	will release the hash chain mutex for you.  Intermediate manipulation
88  *	routines such as vm_page_flag_set() expect the hash chain to be held
89  *	on entry and the hash chain will remain held on return.
90  *
91  *	pageq scanning can only occur with the pageq in question locked.
92  *	We have a known bottleneck with the active queue, but the cache
93  *	and free queues are actually arrays already.
94  */
95 
96 /*
97  *	Resident memory management module.
98  */
99 
100 #include <sys/cdefs.h>
101 __FBSDID("$FreeBSD$");
102 
103 #include "opt_vm.h"
104 
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/lock.h>
108 #include <sys/kernel.h>
109 #include <sys/limits.h>
110 #include <sys/malloc.h>
111 #include <sys/msgbuf.h>
112 #include <sys/mutex.h>
113 #include <sys/proc.h>
114 #include <sys/sysctl.h>
115 #include <sys/vmmeter.h>
116 #include <sys/vnode.h>
117 
118 #include <vm/vm.h>
119 #include <vm/pmap.h>
120 #include <vm/vm_param.h>
121 #include <vm/vm_kern.h>
122 #include <vm/vm_object.h>
123 #include <vm/vm_page.h>
124 #include <vm/vm_pageout.h>
125 #include <vm/vm_pager.h>
126 #include <vm/vm_phys.h>
127 #include <vm/vm_reserv.h>
128 #include <vm/vm_extern.h>
129 #include <vm/uma.h>
130 #include <vm/uma_int.h>
131 
132 #include <machine/md_var.h>
133 
134 /*
135  *	Associated with page of user-allocatable memory is a
136  *	page structure.
137  */
138 
139 struct vpgqueues vm_page_queues[PQ_COUNT];
140 struct vpglocks vm_page_queue_lock;
141 struct vpglocks vm_page_queue_free_lock;
142 
143 struct vpglocks	pa_lock[PA_LOCK_COUNT];
144 
145 vm_page_t vm_page_array = 0;
146 int vm_page_array_size = 0;
147 long first_page = 0;
148 int vm_page_zero_count = 0;
149 
150 static int boot_pages = UMA_BOOT_PAGES;
151 TUNABLE_INT("vm.boot_pages", &boot_pages);
152 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
153 	"number of pages allocated for bootstrapping the VM system");
154 
155 static int pa_tryrelock_restart;
156 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
157     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
158 
159 static uma_zone_t fakepg_zone;
160 
161 static void vm_page_clear_dirty_mask(vm_page_t m, int pagebits);
162 static void vm_page_queue_remove(int queue, vm_page_t m);
163 static void vm_page_enqueue(int queue, vm_page_t m);
164 static void vm_page_init_fakepg(void *dummy);
165 
166 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
167 
168 static void
169 vm_page_init_fakepg(void *dummy)
170 {
171 
172 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
173 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
174 }
175 
176 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
177 #if PAGE_SIZE == 32768
178 #ifdef CTASSERT
179 CTASSERT(sizeof(u_long) >= 8);
180 #endif
181 #endif
182 
183 /*
184  * Try to acquire a physical address lock while a pmap is locked.  If we
185  * fail to trylock we unlock and lock the pmap directly and cache the
186  * locked pa in *locked.  The caller should then restart their loop in case
187  * the virtual to physical mapping has changed.
188  */
189 int
190 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
191 {
192 	vm_paddr_t lockpa;
193 
194 	lockpa = *locked;
195 	*locked = pa;
196 	if (lockpa) {
197 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
198 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
199 			return (0);
200 		PA_UNLOCK(lockpa);
201 	}
202 	if (PA_TRYLOCK(pa))
203 		return (0);
204 	PMAP_UNLOCK(pmap);
205 	atomic_add_int(&pa_tryrelock_restart, 1);
206 	PA_LOCK(pa);
207 	PMAP_LOCK(pmap);
208 	return (EAGAIN);
209 }
210 
211 /*
212  *	vm_set_page_size:
213  *
214  *	Sets the page size, perhaps based upon the memory
215  *	size.  Must be called before any use of page-size
216  *	dependent functions.
217  */
218 void
219 vm_set_page_size(void)
220 {
221 	if (cnt.v_page_size == 0)
222 		cnt.v_page_size = PAGE_SIZE;
223 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
224 		panic("vm_set_page_size: page size not a power of two");
225 }
226 
227 /*
228  *	vm_page_blacklist_lookup:
229  *
230  *	See if a physical address in this page has been listed
231  *	in the blacklist tunable.  Entries in the tunable are
232  *	separated by spaces or commas.  If an invalid integer is
233  *	encountered then the rest of the string is skipped.
234  */
235 static int
236 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
237 {
238 	vm_paddr_t bad;
239 	char *cp, *pos;
240 
241 	for (pos = list; *pos != '\0'; pos = cp) {
242 		bad = strtoq(pos, &cp, 0);
243 		if (*cp != '\0') {
244 			if (*cp == ' ' || *cp == ',') {
245 				cp++;
246 				if (cp == pos)
247 					continue;
248 			} else
249 				break;
250 		}
251 		if (pa == trunc_page(bad))
252 			return (1);
253 	}
254 	return (0);
255 }
256 
257 /*
258  *	vm_page_startup:
259  *
260  *	Initializes the resident memory module.
261  *
262  *	Allocates memory for the page cells, and
263  *	for the object/offset-to-page hash table headers.
264  *	Each page cell is initialized and placed on the free list.
265  */
266 vm_offset_t
267 vm_page_startup(vm_offset_t vaddr)
268 {
269 	vm_offset_t mapped;
270 	vm_paddr_t page_range;
271 	vm_paddr_t new_end;
272 	int i;
273 	vm_paddr_t pa;
274 	vm_paddr_t last_pa;
275 	char *list;
276 
277 	/* the biggest memory array is the second group of pages */
278 	vm_paddr_t end;
279 	vm_paddr_t biggestsize;
280 	vm_paddr_t low_water, high_water;
281 	int biggestone;
282 
283 	biggestsize = 0;
284 	biggestone = 0;
285 	vaddr = round_page(vaddr);
286 
287 	for (i = 0; phys_avail[i + 1]; i += 2) {
288 		phys_avail[i] = round_page(phys_avail[i]);
289 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
290 	}
291 
292 	low_water = phys_avail[0];
293 	high_water = phys_avail[1];
294 
295 	for (i = 0; phys_avail[i + 1]; i += 2) {
296 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
297 
298 		if (size > biggestsize) {
299 			biggestone = i;
300 			biggestsize = size;
301 		}
302 		if (phys_avail[i] < low_water)
303 			low_water = phys_avail[i];
304 		if (phys_avail[i + 1] > high_water)
305 			high_water = phys_avail[i + 1];
306 	}
307 
308 #ifdef XEN
309 	low_water = 0;
310 #endif
311 
312 	end = phys_avail[biggestone+1];
313 
314 	/*
315 	 * Initialize the locks.
316 	 */
317 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
318 	    MTX_RECURSE);
319 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
320 	    MTX_DEF);
321 
322 	/* Setup page locks. */
323 	for (i = 0; i < PA_LOCK_COUNT; i++)
324 		mtx_init(&pa_lock[i].data, "page lock", NULL, MTX_DEF);
325 
326 	/*
327 	 * Initialize the queue headers for the hold queue, the active queue,
328 	 * and the inactive queue.
329 	 */
330 	for (i = 0; i < PQ_COUNT; i++)
331 		TAILQ_INIT(&vm_page_queues[i].pl);
332 	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
333 	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
334 	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
335 
336 	/*
337 	 * Allocate memory for use when boot strapping the kernel memory
338 	 * allocator.
339 	 */
340 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
341 	new_end = trunc_page(new_end);
342 	mapped = pmap_map(&vaddr, new_end, end,
343 	    VM_PROT_READ | VM_PROT_WRITE);
344 	bzero((void *)mapped, end - new_end);
345 	uma_startup((void *)mapped, boot_pages);
346 
347 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
348     defined(__mips__)
349 	/*
350 	 * Allocate a bitmap to indicate that a random physical page
351 	 * needs to be included in a minidump.
352 	 *
353 	 * The amd64 port needs this to indicate which direct map pages
354 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
355 	 *
356 	 * However, i386 still needs this workspace internally within the
357 	 * minidump code.  In theory, they are not needed on i386, but are
358 	 * included should the sf_buf code decide to use them.
359 	 */
360 	last_pa = 0;
361 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
362 		if (dump_avail[i + 1] > last_pa)
363 			last_pa = dump_avail[i + 1];
364 	page_range = last_pa / PAGE_SIZE;
365 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
366 	new_end -= vm_page_dump_size;
367 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
368 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
369 	bzero((void *)vm_page_dump, vm_page_dump_size);
370 #endif
371 #ifdef __amd64__
372 	/*
373 	 * Request that the physical pages underlying the message buffer be
374 	 * included in a crash dump.  Since the message buffer is accessed
375 	 * through the direct map, they are not automatically included.
376 	 */
377 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
378 	last_pa = pa + round_page(msgbufsize);
379 	while (pa < last_pa) {
380 		dump_add_page(pa);
381 		pa += PAGE_SIZE;
382 	}
383 #endif
384 	/*
385 	 * Compute the number of pages of memory that will be available for
386 	 * use (taking into account the overhead of a page structure per
387 	 * page).
388 	 */
389 	first_page = low_water / PAGE_SIZE;
390 #ifdef VM_PHYSSEG_SPARSE
391 	page_range = 0;
392 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
393 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
394 #elif defined(VM_PHYSSEG_DENSE)
395 	page_range = high_water / PAGE_SIZE - first_page;
396 #else
397 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
398 #endif
399 	end = new_end;
400 
401 	/*
402 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
403 	 */
404 	vaddr += PAGE_SIZE;
405 
406 	/*
407 	 * Initialize the mem entry structures now, and put them in the free
408 	 * queue.
409 	 */
410 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
411 	mapped = pmap_map(&vaddr, new_end, end,
412 	    VM_PROT_READ | VM_PROT_WRITE);
413 	vm_page_array = (vm_page_t) mapped;
414 #if VM_NRESERVLEVEL > 0
415 	/*
416 	 * Allocate memory for the reservation management system's data
417 	 * structures.
418 	 */
419 	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
420 #endif
421 #if defined(__amd64__) || defined(__mips__)
422 	/*
423 	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
424 	 * like i386, so the pages must be tracked for a crashdump to include
425 	 * this data.  This includes the vm_page_array and the early UMA
426 	 * bootstrap pages.
427 	 */
428 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
429 		dump_add_page(pa);
430 #endif
431 	phys_avail[biggestone + 1] = new_end;
432 
433 	/*
434 	 * Clear all of the page structures
435 	 */
436 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
437 	for (i = 0; i < page_range; i++)
438 		vm_page_array[i].order = VM_NFREEORDER;
439 	vm_page_array_size = page_range;
440 
441 	/*
442 	 * Initialize the physical memory allocator.
443 	 */
444 	vm_phys_init();
445 
446 	/*
447 	 * Add every available physical page that is not blacklisted to
448 	 * the free lists.
449 	 */
450 	cnt.v_page_count = 0;
451 	cnt.v_free_count = 0;
452 	list = getenv("vm.blacklist");
453 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
454 		pa = phys_avail[i];
455 		last_pa = phys_avail[i + 1];
456 		while (pa < last_pa) {
457 			if (list != NULL &&
458 			    vm_page_blacklist_lookup(list, pa))
459 				printf("Skipping page with pa 0x%jx\n",
460 				    (uintmax_t)pa);
461 			else
462 				vm_phys_add_page(pa);
463 			pa += PAGE_SIZE;
464 		}
465 	}
466 	freeenv(list);
467 #if VM_NRESERVLEVEL > 0
468 	/*
469 	 * Initialize the reservation management system.
470 	 */
471 	vm_reserv_init();
472 #endif
473 	return (vaddr);
474 }
475 
476 void
477 vm_page_flag_set(vm_page_t m, unsigned short bits)
478 {
479 
480 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
481 	/*
482 	 * The PG_WRITEABLE flag can only be set if the page is managed and
483 	 * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
484 	 */
485 	KASSERT((bits & PG_WRITEABLE) == 0 ||
486 	    ((m->flags & (PG_UNMANAGED | PG_FICTITIOUS)) == 0 &&
487 	    (m->oflags & VPO_BUSY) != 0), ("PG_WRITEABLE and !VPO_BUSY"));
488 	m->flags |= bits;
489 }
490 
491 void
492 vm_page_flag_clear(vm_page_t m, unsigned short bits)
493 {
494 
495 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
496 	/*
497 	 * The PG_REFERENCED flag can only be cleared if the object
498 	 * containing the page is locked.
499 	 */
500 	KASSERT((bits & PG_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
501 	    ("PG_REFERENCED and !VM_OBJECT_LOCKED"));
502 	m->flags &= ~bits;
503 }
504 
505 void
506 vm_page_busy(vm_page_t m)
507 {
508 
509 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
510 	KASSERT((m->oflags & VPO_BUSY) == 0,
511 	    ("vm_page_busy: page already busy!!!"));
512 	m->oflags |= VPO_BUSY;
513 }
514 
515 /*
516  *      vm_page_flash:
517  *
518  *      wakeup anyone waiting for the page.
519  */
520 void
521 vm_page_flash(vm_page_t m)
522 {
523 
524 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
525 	if (m->oflags & VPO_WANTED) {
526 		m->oflags &= ~VPO_WANTED;
527 		wakeup(m);
528 	}
529 }
530 
531 /*
532  *      vm_page_wakeup:
533  *
534  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
535  *      page.
536  *
537  */
538 void
539 vm_page_wakeup(vm_page_t m)
540 {
541 
542 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
543 	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
544 	m->oflags &= ~VPO_BUSY;
545 	vm_page_flash(m);
546 }
547 
548 void
549 vm_page_io_start(vm_page_t m)
550 {
551 
552 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
553 	m->busy++;
554 }
555 
556 void
557 vm_page_io_finish(vm_page_t m)
558 {
559 
560 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
561 	KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m));
562 	m->busy--;
563 	if (m->busy == 0)
564 		vm_page_flash(m);
565 }
566 
567 /*
568  * Keep page from being freed by the page daemon
569  * much of the same effect as wiring, except much lower
570  * overhead and should be used only for *very* temporary
571  * holding ("wiring").
572  */
573 void
574 vm_page_hold(vm_page_t mem)
575 {
576 
577 	vm_page_lock_assert(mem, MA_OWNED);
578         mem->hold_count++;
579 }
580 
581 void
582 vm_page_unhold(vm_page_t mem)
583 {
584 
585 	vm_page_lock_assert(mem, MA_OWNED);
586 	--mem->hold_count;
587 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
588 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
589 		vm_page_free_toq(mem);
590 }
591 
592 /*
593  *	vm_page_unhold_pages:
594  *
595  *	Unhold each of the pages that is referenced by the given array.
596  */
597 void
598 vm_page_unhold_pages(vm_page_t *ma, int count)
599 {
600 	struct mtx *mtx, *new_mtx;
601 
602 	mtx = NULL;
603 	for (; count != 0; count--) {
604 		/*
605 		 * Avoid releasing and reacquiring the same page lock.
606 		 */
607 		new_mtx = vm_page_lockptr(*ma);
608 		if (mtx != new_mtx) {
609 			if (mtx != NULL)
610 				mtx_unlock(mtx);
611 			mtx = new_mtx;
612 			mtx_lock(mtx);
613 		}
614 		vm_page_unhold(*ma);
615 		ma++;
616 	}
617 	if (mtx != NULL)
618 		mtx_unlock(mtx);
619 }
620 
621 /*
622  *	vm_page_getfake:
623  *
624  *	Create a fictitious page with the specified physical address and
625  *	memory attribute.  The memory attribute is the only the machine-
626  *	dependent aspect of a fictitious page that must be initialized.
627  */
628 vm_page_t
629 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
630 {
631 	vm_page_t m;
632 
633 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
634 	m->phys_addr = paddr;
635 	m->queue = PQ_NONE;
636 	/* Fictitious pages don't use "segind". */
637 	m->flags = PG_FICTITIOUS;
638 	/* Fictitious pages don't use "order" or "pool". */
639 	m->oflags = VPO_BUSY;
640 	m->wire_count = 1;
641 	pmap_page_set_memattr(m, memattr);
642 	return (m);
643 }
644 
645 /*
646  *	vm_page_putfake:
647  *
648  *	Release a fictitious page.
649  */
650 void
651 vm_page_putfake(vm_page_t m)
652 {
653 
654 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
655 	    ("vm_page_putfake: bad page %p", m));
656 	uma_zfree(fakepg_zone, m);
657 }
658 
659 /*
660  *	vm_page_updatefake:
661  *
662  *	Update the given fictitious page to the specified physical address and
663  *	memory attribute.
664  */
665 void
666 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
667 {
668 
669 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
670 	    ("vm_page_updatefake: bad page %p", m));
671 	m->phys_addr = paddr;
672 	pmap_page_set_memattr(m, memattr);
673 }
674 
675 /*
676  *	vm_page_free:
677  *
678  *	Free a page.
679  */
680 void
681 vm_page_free(vm_page_t m)
682 {
683 
684 	m->flags &= ~PG_ZERO;
685 	vm_page_free_toq(m);
686 }
687 
688 /*
689  *	vm_page_free_zero:
690  *
691  *	Free a page to the zerod-pages queue
692  */
693 void
694 vm_page_free_zero(vm_page_t m)
695 {
696 
697 	m->flags |= PG_ZERO;
698 	vm_page_free_toq(m);
699 }
700 
701 /*
702  *	vm_page_sleep:
703  *
704  *	Sleep and release the page and page queues locks.
705  *
706  *	The object containing the given page must be locked.
707  */
708 void
709 vm_page_sleep(vm_page_t m, const char *msg)
710 {
711 
712 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
713 	if (mtx_owned(&vm_page_queue_mtx))
714 		vm_page_unlock_queues();
715 	if (mtx_owned(vm_page_lockptr(m)))
716 		vm_page_unlock(m);
717 
718 	/*
719 	 * It's possible that while we sleep, the page will get
720 	 * unbusied and freed.  If we are holding the object
721 	 * lock, we will assume we hold a reference to the object
722 	 * such that even if m->object changes, we can re-lock
723 	 * it.
724 	 */
725 	m->oflags |= VPO_WANTED;
726 	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
727 }
728 
729 /*
730  *	vm_page_dirty:
731  *
732  *	make page all dirty
733  */
734 void
735 vm_page_dirty(vm_page_t m)
736 {
737 
738 	KASSERT((m->flags & PG_CACHED) == 0,
739 	    ("vm_page_dirty: page in cache!"));
740 	KASSERT(!VM_PAGE_IS_FREE(m),
741 	    ("vm_page_dirty: page is free!"));
742 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
743 	    ("vm_page_dirty: page is invalid!"));
744 	m->dirty = VM_PAGE_BITS_ALL;
745 }
746 
747 /*
748  *	vm_page_splay:
749  *
750  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
751  *	the vm_page containing the given pindex.  If, however, that
752  *	pindex is not found in the vm_object, returns a vm_page that is
753  *	adjacent to the pindex, coming before or after it.
754  */
755 vm_page_t
756 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
757 {
758 	struct vm_page dummy;
759 	vm_page_t lefttreemax, righttreemin, y;
760 
761 	if (root == NULL)
762 		return (root);
763 	lefttreemax = righttreemin = &dummy;
764 	for (;; root = y) {
765 		if (pindex < root->pindex) {
766 			if ((y = root->left) == NULL)
767 				break;
768 			if (pindex < y->pindex) {
769 				/* Rotate right. */
770 				root->left = y->right;
771 				y->right = root;
772 				root = y;
773 				if ((y = root->left) == NULL)
774 					break;
775 			}
776 			/* Link into the new root's right tree. */
777 			righttreemin->left = root;
778 			righttreemin = root;
779 		} else if (pindex > root->pindex) {
780 			if ((y = root->right) == NULL)
781 				break;
782 			if (pindex > y->pindex) {
783 				/* Rotate left. */
784 				root->right = y->left;
785 				y->left = root;
786 				root = y;
787 				if ((y = root->right) == NULL)
788 					break;
789 			}
790 			/* Link into the new root's left tree. */
791 			lefttreemax->right = root;
792 			lefttreemax = root;
793 		} else
794 			break;
795 	}
796 	/* Assemble the new root. */
797 	lefttreemax->right = root->left;
798 	righttreemin->left = root->right;
799 	root->left = dummy.right;
800 	root->right = dummy.left;
801 	return (root);
802 }
803 
804 /*
805  *	vm_page_insert:		[ internal use only ]
806  *
807  *	Inserts the given mem entry into the object and object list.
808  *
809  *	The pagetables are not updated but will presumably fault the page
810  *	in if necessary, or if a kernel page the caller will at some point
811  *	enter the page into the kernel's pmap.  We are not allowed to block
812  *	here so we *can't* do this anyway.
813  *
814  *	The object and page must be locked.
815  *	This routine may not block.
816  */
817 void
818 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
819 {
820 	vm_page_t root;
821 
822 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
823 	if (m->object != NULL)
824 		panic("vm_page_insert: page already inserted");
825 
826 	/*
827 	 * Record the object/offset pair in this page
828 	 */
829 	m->object = object;
830 	m->pindex = pindex;
831 
832 	/*
833 	 * Now link into the object's ordered list of backed pages.
834 	 */
835 	root = object->root;
836 	if (root == NULL) {
837 		m->left = NULL;
838 		m->right = NULL;
839 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
840 	} else {
841 		root = vm_page_splay(pindex, root);
842 		if (pindex < root->pindex) {
843 			m->left = root->left;
844 			m->right = root;
845 			root->left = NULL;
846 			TAILQ_INSERT_BEFORE(root, m, listq);
847 		} else if (pindex == root->pindex)
848 			panic("vm_page_insert: offset already allocated");
849 		else {
850 			m->right = root->right;
851 			m->left = root;
852 			root->right = NULL;
853 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
854 		}
855 	}
856 	object->root = m;
857 
858 	/*
859 	 * show that the object has one more resident page.
860 	 */
861 	object->resident_page_count++;
862 	/*
863 	 * Hold the vnode until the last page is released.
864 	 */
865 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
866 		vhold((struct vnode *)object->handle);
867 
868 	/*
869 	 * Since we are inserting a new and possibly dirty page,
870 	 * update the object's OBJ_MIGHTBEDIRTY flag.
871 	 */
872 	if (m->flags & PG_WRITEABLE)
873 		vm_object_set_writeable_dirty(object);
874 }
875 
876 /*
877  *	vm_page_remove:
878  *				NOTE: used by device pager as well -wfj
879  *
880  *	Removes the given mem entry from the object/offset-page
881  *	table and the object page list, but do not invalidate/terminate
882  *	the backing store.
883  *
884  *	The object and page must be locked.
885  *	The underlying pmap entry (if any) is NOT removed here.
886  *	This routine may not block.
887  */
888 void
889 vm_page_remove(vm_page_t m)
890 {
891 	vm_object_t object;
892 	vm_page_t root;
893 
894 	if ((m->flags & PG_UNMANAGED) == 0)
895 		vm_page_lock_assert(m, MA_OWNED);
896 	if ((object = m->object) == NULL)
897 		return;
898 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
899 	if (m->oflags & VPO_BUSY) {
900 		m->oflags &= ~VPO_BUSY;
901 		vm_page_flash(m);
902 	}
903 
904 	/*
905 	 * Now remove from the object's list of backed pages.
906 	 */
907 	if (m != object->root)
908 		vm_page_splay(m->pindex, object->root);
909 	if (m->left == NULL)
910 		root = m->right;
911 	else {
912 		root = vm_page_splay(m->pindex, m->left);
913 		root->right = m->right;
914 	}
915 	object->root = root;
916 	TAILQ_REMOVE(&object->memq, m, listq);
917 
918 	/*
919 	 * And show that the object has one fewer resident page.
920 	 */
921 	object->resident_page_count--;
922 	/*
923 	 * The vnode may now be recycled.
924 	 */
925 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
926 		vdrop((struct vnode *)object->handle);
927 
928 	m->object = NULL;
929 }
930 
931 /*
932  *	vm_page_lookup:
933  *
934  *	Returns the page associated with the object/offset
935  *	pair specified; if none is found, NULL is returned.
936  *
937  *	The object must be locked.
938  *	This routine may not block.
939  *	This is a critical path routine
940  */
941 vm_page_t
942 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
943 {
944 	vm_page_t m;
945 
946 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
947 	if ((m = object->root) != NULL && m->pindex != pindex) {
948 		m = vm_page_splay(pindex, m);
949 		if ((object->root = m)->pindex != pindex)
950 			m = NULL;
951 	}
952 	return (m);
953 }
954 
955 /*
956  *	vm_page_find_least:
957  *
958  *	Returns the page associated with the object with least pindex
959  *	greater than or equal to the parameter pindex, or NULL.
960  *
961  *	The object must be locked.
962  *	The routine may not block.
963  */
964 vm_page_t
965 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
966 {
967 	vm_page_t m;
968 
969 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
970 	if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
971 		if (m->pindex < pindex) {
972 			m = vm_page_splay(pindex, object->root);
973 			if ((object->root = m)->pindex < pindex)
974 				m = TAILQ_NEXT(m, listq);
975 		}
976 	}
977 	return (m);
978 }
979 
980 /*
981  * Returns the given page's successor (by pindex) within the object if it is
982  * resident; if none is found, NULL is returned.
983  *
984  * The object must be locked.
985  */
986 vm_page_t
987 vm_page_next(vm_page_t m)
988 {
989 	vm_page_t next;
990 
991 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
992 	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
993 	    next->pindex != m->pindex + 1)
994 		next = NULL;
995 	return (next);
996 }
997 
998 /*
999  * Returns the given page's predecessor (by pindex) within the object if it is
1000  * resident; if none is found, NULL is returned.
1001  *
1002  * The object must be locked.
1003  */
1004 vm_page_t
1005 vm_page_prev(vm_page_t m)
1006 {
1007 	vm_page_t prev;
1008 
1009 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1010 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1011 	    prev->pindex != m->pindex - 1)
1012 		prev = NULL;
1013 	return (prev);
1014 }
1015 
1016 /*
1017  *	vm_page_rename:
1018  *
1019  *	Move the given memory entry from its
1020  *	current object to the specified target object/offset.
1021  *
1022  *	The object must be locked.
1023  *	This routine may not block.
1024  *
1025  *	Note: swap associated with the page must be invalidated by the move.  We
1026  *	      have to do this for several reasons:  (1) we aren't freeing the
1027  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1028  *	      moving the page from object A to B, and will then later move
1029  *	      the backing store from A to B and we can't have a conflict.
1030  *
1031  *	Note: we *always* dirty the page.  It is necessary both for the
1032  *	      fact that we moved it, and because we may be invalidating
1033  *	      swap.  If the page is on the cache, we have to deactivate it
1034  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1035  *	      on the cache.
1036  */
1037 void
1038 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1039 {
1040 
1041 	vm_page_remove(m);
1042 	vm_page_insert(m, new_object, new_pindex);
1043 	vm_page_dirty(m);
1044 }
1045 
1046 /*
1047  *	Convert all of the given object's cached pages that have a
1048  *	pindex within the given range into free pages.  If the value
1049  *	zero is given for "end", then the range's upper bound is
1050  *	infinity.  If the given object is backed by a vnode and it
1051  *	transitions from having one or more cached pages to none, the
1052  *	vnode's hold count is reduced.
1053  */
1054 void
1055 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1056 {
1057 	vm_page_t m, m_next;
1058 	boolean_t empty;
1059 
1060 	mtx_lock(&vm_page_queue_free_mtx);
1061 	if (__predict_false(object->cache == NULL)) {
1062 		mtx_unlock(&vm_page_queue_free_mtx);
1063 		return;
1064 	}
1065 	m = object->cache = vm_page_splay(start, object->cache);
1066 	if (m->pindex < start) {
1067 		if (m->right == NULL)
1068 			m = NULL;
1069 		else {
1070 			m_next = vm_page_splay(start, m->right);
1071 			m_next->left = m;
1072 			m->right = NULL;
1073 			m = object->cache = m_next;
1074 		}
1075 	}
1076 
1077 	/*
1078 	 * At this point, "m" is either (1) a reference to the page
1079 	 * with the least pindex that is greater than or equal to
1080 	 * "start" or (2) NULL.
1081 	 */
1082 	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
1083 		/*
1084 		 * Find "m"'s successor and remove "m" from the
1085 		 * object's cache.
1086 		 */
1087 		if (m->right == NULL) {
1088 			object->cache = m->left;
1089 			m_next = NULL;
1090 		} else {
1091 			m_next = vm_page_splay(start, m->right);
1092 			m_next->left = m->left;
1093 			object->cache = m_next;
1094 		}
1095 		/* Convert "m" to a free page. */
1096 		m->object = NULL;
1097 		m->valid = 0;
1098 		/* Clear PG_CACHED and set PG_FREE. */
1099 		m->flags ^= PG_CACHED | PG_FREE;
1100 		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1101 		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1102 		cnt.v_cache_count--;
1103 		cnt.v_free_count++;
1104 	}
1105 	empty = object->cache == NULL;
1106 	mtx_unlock(&vm_page_queue_free_mtx);
1107 	if (object->type == OBJT_VNODE && empty)
1108 		vdrop(object->handle);
1109 }
1110 
1111 /*
1112  *	Returns the cached page that is associated with the given
1113  *	object and offset.  If, however, none exists, returns NULL.
1114  *
1115  *	The free page queue must be locked.
1116  */
1117 static inline vm_page_t
1118 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1119 {
1120 	vm_page_t m;
1121 
1122 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1123 	if ((m = object->cache) != NULL && m->pindex != pindex) {
1124 		m = vm_page_splay(pindex, m);
1125 		if ((object->cache = m)->pindex != pindex)
1126 			m = NULL;
1127 	}
1128 	return (m);
1129 }
1130 
1131 /*
1132  *	Remove the given cached page from its containing object's
1133  *	collection of cached pages.
1134  *
1135  *	The free page queue must be locked.
1136  */
1137 void
1138 vm_page_cache_remove(vm_page_t m)
1139 {
1140 	vm_object_t object;
1141 	vm_page_t root;
1142 
1143 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1144 	KASSERT((m->flags & PG_CACHED) != 0,
1145 	    ("vm_page_cache_remove: page %p is not cached", m));
1146 	object = m->object;
1147 	if (m != object->cache) {
1148 		root = vm_page_splay(m->pindex, object->cache);
1149 		KASSERT(root == m,
1150 		    ("vm_page_cache_remove: page %p is not cached in object %p",
1151 		    m, object));
1152 	}
1153 	if (m->left == NULL)
1154 		root = m->right;
1155 	else if (m->right == NULL)
1156 		root = m->left;
1157 	else {
1158 		root = vm_page_splay(m->pindex, m->left);
1159 		root->right = m->right;
1160 	}
1161 	object->cache = root;
1162 	m->object = NULL;
1163 	cnt.v_cache_count--;
1164 }
1165 
1166 /*
1167  *	Transfer all of the cached pages with offset greater than or
1168  *	equal to 'offidxstart' from the original object's cache to the
1169  *	new object's cache.  However, any cached pages with offset
1170  *	greater than or equal to the new object's size are kept in the
1171  *	original object.  Initially, the new object's cache must be
1172  *	empty.  Offset 'offidxstart' in the original object must
1173  *	correspond to offset zero in the new object.
1174  *
1175  *	The new object must be locked.
1176  */
1177 void
1178 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1179     vm_object_t new_object)
1180 {
1181 	vm_page_t m, m_next;
1182 
1183 	/*
1184 	 * Insertion into an object's collection of cached pages
1185 	 * requires the object to be locked.  In contrast, removal does
1186 	 * not.
1187 	 */
1188 	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1189 	KASSERT(new_object->cache == NULL,
1190 	    ("vm_page_cache_transfer: object %p has cached pages",
1191 	    new_object));
1192 	mtx_lock(&vm_page_queue_free_mtx);
1193 	if ((m = orig_object->cache) != NULL) {
1194 		/*
1195 		 * Transfer all of the pages with offset greater than or
1196 		 * equal to 'offidxstart' from the original object's
1197 		 * cache to the new object's cache.
1198 		 */
1199 		m = vm_page_splay(offidxstart, m);
1200 		if (m->pindex < offidxstart) {
1201 			orig_object->cache = m;
1202 			new_object->cache = m->right;
1203 			m->right = NULL;
1204 		} else {
1205 			orig_object->cache = m->left;
1206 			new_object->cache = m;
1207 			m->left = NULL;
1208 		}
1209 		while ((m = new_object->cache) != NULL) {
1210 			if ((m->pindex - offidxstart) >= new_object->size) {
1211 				/*
1212 				 * Return all of the cached pages with
1213 				 * offset greater than or equal to the
1214 				 * new object's size to the original
1215 				 * object's cache.
1216 				 */
1217 				new_object->cache = m->left;
1218 				m->left = orig_object->cache;
1219 				orig_object->cache = m;
1220 				break;
1221 			}
1222 			m_next = vm_page_splay(m->pindex, m->right);
1223 			/* Update the page's object and offset. */
1224 			m->object = new_object;
1225 			m->pindex -= offidxstart;
1226 			if (m_next == NULL)
1227 				break;
1228 			m->right = NULL;
1229 			m_next->left = m;
1230 			new_object->cache = m_next;
1231 		}
1232 		KASSERT(new_object->cache == NULL ||
1233 		    new_object->type == OBJT_SWAP,
1234 		    ("vm_page_cache_transfer: object %p's type is incompatible"
1235 		    " with cached pages", new_object));
1236 	}
1237 	mtx_unlock(&vm_page_queue_free_mtx);
1238 }
1239 
1240 /*
1241  *	vm_page_alloc:
1242  *
1243  *	Allocate and return a memory cell associated
1244  *	with this VM object/offset pair.
1245  *
1246  *	The caller must always specify an allocation class.
1247  *
1248  *	allocation classes:
1249  *	VM_ALLOC_NORMAL		normal process request
1250  *	VM_ALLOC_SYSTEM		system *really* needs a page
1251  *	VM_ALLOC_INTERRUPT	interrupt time request
1252  *
1253  *	optional allocation flags:
1254  *	VM_ALLOC_ZERO		prefer a zeroed page
1255  *	VM_ALLOC_WIRED		wire the allocated page
1256  *	VM_ALLOC_NOOBJ		page is not associated with a vm object
1257  *	VM_ALLOC_NOBUSY		do not set the page busy
1258  *	VM_ALLOC_IFCACHED	return page only if it is cached
1259  *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1260  *				is cached
1261  *
1262  *	This routine may not sleep.
1263  */
1264 vm_page_t
1265 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1266 {
1267 	struct vnode *vp = NULL;
1268 	vm_object_t m_object;
1269 	vm_page_t m;
1270 	int flags, page_req;
1271 
1272 	if ((req & VM_ALLOC_NOOBJ) == 0) {
1273 		KASSERT(object != NULL,
1274 		    ("vm_page_alloc: NULL object."));
1275 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1276 	}
1277 
1278 	page_req = req & VM_ALLOC_CLASS_MASK;
1279 
1280 	/*
1281 	 * The pager is allowed to eat deeper into the free page list.
1282 	 */
1283 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT))
1284 		page_req = VM_ALLOC_SYSTEM;
1285 
1286 	mtx_lock(&vm_page_queue_free_mtx);
1287 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1288 	    (page_req == VM_ALLOC_SYSTEM &&
1289 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1290 	    (page_req == VM_ALLOC_INTERRUPT &&
1291 	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1292 		/*
1293 		 * Allocate from the free queue if the number of free pages
1294 		 * exceeds the minimum for the request class.
1295 		 */
1296 		if (object != NULL &&
1297 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1298 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1299 				mtx_unlock(&vm_page_queue_free_mtx);
1300 				return (NULL);
1301 			}
1302 			if (vm_phys_unfree_page(m))
1303 				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1304 #if VM_NRESERVLEVEL > 0
1305 			else if (!vm_reserv_reactivate_page(m))
1306 #else
1307 			else
1308 #endif
1309 				panic("vm_page_alloc: cache page %p is missing"
1310 				    " from the free queue", m);
1311 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1312 			mtx_unlock(&vm_page_queue_free_mtx);
1313 			return (NULL);
1314 #if VM_NRESERVLEVEL > 0
1315 		} else if (object == NULL || object->type == OBJT_DEVICE ||
1316 		    object->type == OBJT_SG ||
1317 		    (object->flags & OBJ_COLORED) == 0 ||
1318 		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1319 #else
1320 		} else {
1321 #endif
1322 			m = vm_phys_alloc_pages(object != NULL ?
1323 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1324 #if VM_NRESERVLEVEL > 0
1325 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1326 				m = vm_phys_alloc_pages(object != NULL ?
1327 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1328 				    0);
1329 			}
1330 #endif
1331 		}
1332 	} else {
1333 		/*
1334 		 * Not allocatable, give up.
1335 		 */
1336 		mtx_unlock(&vm_page_queue_free_mtx);
1337 		atomic_add_int(&vm_pageout_deficit,
1338 		    MAX((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1339 		pagedaemon_wakeup();
1340 		return (NULL);
1341 	}
1342 
1343 	/*
1344 	 *  At this point we had better have found a good page.
1345 	 */
1346 
1347 	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1348 	KASSERT(m->queue == PQ_NONE,
1349 	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1350 	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1351 	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1352 	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1353 	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1354 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1355 	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1356 	    pmap_page_get_memattr(m)));
1357 	if ((m->flags & PG_CACHED) != 0) {
1358 		KASSERT(m->valid != 0,
1359 		    ("vm_page_alloc: cached page %p is invalid", m));
1360 		if (m->object == object && m->pindex == pindex)
1361 	  		cnt.v_reactivated++;
1362 		else
1363 			m->valid = 0;
1364 		m_object = m->object;
1365 		vm_page_cache_remove(m);
1366 		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1367 			vp = m_object->handle;
1368 	} else {
1369 		KASSERT(VM_PAGE_IS_FREE(m),
1370 		    ("vm_page_alloc: page %p is not free", m));
1371 		KASSERT(m->valid == 0,
1372 		    ("vm_page_alloc: free page %p is valid", m));
1373 		cnt.v_free_count--;
1374 	}
1375 
1376 	/*
1377 	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1378 	 * must be cleared before the free page queues lock is released.
1379 	 */
1380 	flags = 0;
1381 	if (m->flags & PG_ZERO) {
1382 		vm_page_zero_count--;
1383 		if (req & VM_ALLOC_ZERO)
1384 			flags = PG_ZERO;
1385 	}
1386 	if (object == NULL || object->type == OBJT_PHYS)
1387 		flags |= PG_UNMANAGED;
1388 	m->flags = flags;
1389 	mtx_unlock(&vm_page_queue_free_mtx);
1390 	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1391 		m->oflags = 0;
1392 	else
1393 		m->oflags = VPO_BUSY;
1394 	if (req & VM_ALLOC_WIRED) {
1395 		/*
1396 		 * The page lock is not required for wiring a page until that
1397 		 * page is inserted into the object.
1398 		 */
1399 		atomic_add_int(&cnt.v_wire_count, 1);
1400 		m->wire_count = 1;
1401 	}
1402 	m->act_count = 0;
1403 
1404 	if (object != NULL) {
1405 		/* Ignore device objects; the pager sets "memattr" for them. */
1406 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1407 		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1408 			pmap_page_set_memattr(m, object->memattr);
1409 		vm_page_insert(m, object, pindex);
1410 	} else
1411 		m->pindex = pindex;
1412 
1413 	/*
1414 	 * The following call to vdrop() must come after the above call
1415 	 * to vm_page_insert() in case both affect the same object and
1416 	 * vnode.  Otherwise, the affected vnode's hold count could
1417 	 * temporarily become zero.
1418 	 */
1419 	if (vp != NULL)
1420 		vdrop(vp);
1421 
1422 	/*
1423 	 * Don't wakeup too often - wakeup the pageout daemon when
1424 	 * we would be nearly out of memory.
1425 	 */
1426 	if (vm_paging_needed())
1427 		pagedaemon_wakeup();
1428 
1429 	return (m);
1430 }
1431 
1432 /*
1433  * Initialize a page that has been freshly dequeued from a freelist.
1434  * The caller has to drop the vnode returned, if it is not NULL.
1435  *
1436  * To be called with vm_page_queue_free_mtx held.
1437  */
1438 struct vnode *
1439 vm_page_alloc_init(vm_page_t m)
1440 {
1441 	struct vnode *drop;
1442 	vm_object_t m_object;
1443 
1444 	KASSERT(m->queue == PQ_NONE,
1445 	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1446 	    m, m->queue));
1447 	KASSERT(m->wire_count == 0,
1448 	    ("vm_page_alloc_init: page %p is wired", m));
1449 	KASSERT(m->hold_count == 0,
1450 	    ("vm_page_alloc_init: page %p is held", m));
1451 	KASSERT(m->busy == 0,
1452 	    ("vm_page_alloc_init: page %p is busy", m));
1453 	KASSERT(m->dirty == 0,
1454 	    ("vm_page_alloc_init: page %p is dirty", m));
1455 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1456 	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1457 	    m, pmap_page_get_memattr(m)));
1458 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1459 	drop = NULL;
1460 	if ((m->flags & PG_CACHED) != 0) {
1461 		m->valid = 0;
1462 		m_object = m->object;
1463 		vm_page_cache_remove(m);
1464 		if (m_object->type == OBJT_VNODE &&
1465 		    m_object->cache == NULL)
1466 			drop = m_object->handle;
1467 	} else {
1468 		KASSERT(VM_PAGE_IS_FREE(m),
1469 		    ("vm_page_alloc_init: page %p is not free", m));
1470 		KASSERT(m->valid == 0,
1471 		    ("vm_page_alloc_init: free page %p is valid", m));
1472 		cnt.v_free_count--;
1473 	}
1474 	if (m->flags & PG_ZERO)
1475 		vm_page_zero_count--;
1476 	/* Don't clear the PG_ZERO flag; we'll need it later. */
1477 	m->flags = PG_UNMANAGED | (m->flags & PG_ZERO);
1478 	m->oflags = 0;
1479 	/* Unmanaged pages don't use "act_count". */
1480 	return (drop);
1481 }
1482 
1483 /*
1484  * 	vm_page_alloc_freelist:
1485  *
1486  *	Allocate a page from the specified freelist.
1487  *	Only the ALLOC_CLASS values in req are honored, other request flags
1488  *	are ignored.
1489  */
1490 vm_page_t
1491 vm_page_alloc_freelist(int flind, int req)
1492 {
1493 	struct vnode *drop;
1494 	vm_page_t m;
1495 	int page_req;
1496 
1497 	m = NULL;
1498 	page_req = req & VM_ALLOC_CLASS_MASK;
1499 	mtx_lock(&vm_page_queue_free_mtx);
1500 	/*
1501 	 * Do not allocate reserved pages unless the req has asked for it.
1502 	 */
1503 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1504 	    (page_req == VM_ALLOC_SYSTEM &&
1505 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1506 	    (page_req == VM_ALLOC_INTERRUPT &&
1507 	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1508 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1509 	}
1510 	if (m == NULL) {
1511 		mtx_unlock(&vm_page_queue_free_mtx);
1512 		return (NULL);
1513 	}
1514 	drop = vm_page_alloc_init(m);
1515 	mtx_unlock(&vm_page_queue_free_mtx);
1516 	if (drop)
1517 		vdrop(drop);
1518 	return (m);
1519 }
1520 
1521 /*
1522  *	vm_wait:	(also see VM_WAIT macro)
1523  *
1524  *	Block until free pages are available for allocation
1525  *	- Called in various places before memory allocations.
1526  */
1527 void
1528 vm_wait(void)
1529 {
1530 
1531 	mtx_lock(&vm_page_queue_free_mtx);
1532 	if (curproc == pageproc) {
1533 		vm_pageout_pages_needed = 1;
1534 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1535 		    PDROP | PSWP, "VMWait", 0);
1536 	} else {
1537 		if (!vm_pages_needed) {
1538 			vm_pages_needed = 1;
1539 			wakeup(&vm_pages_needed);
1540 		}
1541 		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1542 		    "vmwait", 0);
1543 	}
1544 }
1545 
1546 /*
1547  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1548  *
1549  *	Block until free pages are available for allocation
1550  *	- Called only in vm_fault so that processes page faulting
1551  *	  can be easily tracked.
1552  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1553  *	  processes will be able to grab memory first.  Do not change
1554  *	  this balance without careful testing first.
1555  */
1556 void
1557 vm_waitpfault(void)
1558 {
1559 
1560 	mtx_lock(&vm_page_queue_free_mtx);
1561 	if (!vm_pages_needed) {
1562 		vm_pages_needed = 1;
1563 		wakeup(&vm_pages_needed);
1564 	}
1565 	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1566 	    "pfault", 0);
1567 }
1568 
1569 /*
1570  *	vm_page_requeue:
1571  *
1572  *	Move the given page to the tail of its present page queue.
1573  *
1574  *	The page queues must be locked.
1575  */
1576 void
1577 vm_page_requeue(vm_page_t m)
1578 {
1579 	struct vpgqueues *vpq;
1580 	int queue;
1581 
1582 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1583 	queue = m->queue;
1584 	KASSERT(queue != PQ_NONE,
1585 	    ("vm_page_requeue: page %p is not queued", m));
1586 	vpq = &vm_page_queues[queue];
1587 	TAILQ_REMOVE(&vpq->pl, m, pageq);
1588 	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1589 }
1590 
1591 /*
1592  *	vm_page_queue_remove:
1593  *
1594  *	Remove the given page from the specified queue.
1595  *
1596  *	The page and page queues must be locked.
1597  */
1598 static __inline void
1599 vm_page_queue_remove(int queue, vm_page_t m)
1600 {
1601 	struct vpgqueues *pq;
1602 
1603 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1604 	vm_page_lock_assert(m, MA_OWNED);
1605 	pq = &vm_page_queues[queue];
1606 	TAILQ_REMOVE(&pq->pl, m, pageq);
1607 	(*pq->cnt)--;
1608 }
1609 
1610 /*
1611  *	vm_pageq_remove:
1612  *
1613  *	Remove a page from its queue.
1614  *
1615  *	The given page must be locked.
1616  *	This routine may not block.
1617  */
1618 void
1619 vm_pageq_remove(vm_page_t m)
1620 {
1621 	int queue;
1622 
1623 	vm_page_lock_assert(m, MA_OWNED);
1624 	if ((queue = m->queue) != PQ_NONE) {
1625 		vm_page_lock_queues();
1626 		m->queue = PQ_NONE;
1627 		vm_page_queue_remove(queue, m);
1628 		vm_page_unlock_queues();
1629 	}
1630 }
1631 
1632 /*
1633  *	vm_page_enqueue:
1634  *
1635  *	Add the given page to the specified queue.
1636  *
1637  *	The page queues must be locked.
1638  */
1639 static void
1640 vm_page_enqueue(int queue, vm_page_t m)
1641 {
1642 	struct vpgqueues *vpq;
1643 
1644 	vpq = &vm_page_queues[queue];
1645 	m->queue = queue;
1646 	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1647 	++*vpq->cnt;
1648 }
1649 
1650 /*
1651  *	vm_page_activate:
1652  *
1653  *	Put the specified page on the active list (if appropriate).
1654  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1655  *	mess with it.
1656  *
1657  *	The page must be locked.
1658  *	This routine may not block.
1659  */
1660 void
1661 vm_page_activate(vm_page_t m)
1662 {
1663 	int queue;
1664 
1665 	vm_page_lock_assert(m, MA_OWNED);
1666 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1667 	if ((queue = m->queue) != PQ_ACTIVE) {
1668 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1669 			if (m->act_count < ACT_INIT)
1670 				m->act_count = ACT_INIT;
1671 			vm_page_lock_queues();
1672 			if (queue != PQ_NONE)
1673 				vm_page_queue_remove(queue, m);
1674 			vm_page_enqueue(PQ_ACTIVE, m);
1675 			vm_page_unlock_queues();
1676 		} else
1677 			KASSERT(queue == PQ_NONE,
1678 			    ("vm_page_activate: wired page %p is queued", m));
1679 	} else {
1680 		if (m->act_count < ACT_INIT)
1681 			m->act_count = ACT_INIT;
1682 	}
1683 }
1684 
1685 /*
1686  *	vm_page_free_wakeup:
1687  *
1688  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1689  *	routine is called when a page has been added to the cache or free
1690  *	queues.
1691  *
1692  *	The page queues must be locked.
1693  *	This routine may not block.
1694  */
1695 static inline void
1696 vm_page_free_wakeup(void)
1697 {
1698 
1699 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1700 	/*
1701 	 * if pageout daemon needs pages, then tell it that there are
1702 	 * some free.
1703 	 */
1704 	if (vm_pageout_pages_needed &&
1705 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1706 		wakeup(&vm_pageout_pages_needed);
1707 		vm_pageout_pages_needed = 0;
1708 	}
1709 	/*
1710 	 * wakeup processes that are waiting on memory if we hit a
1711 	 * high water mark. And wakeup scheduler process if we have
1712 	 * lots of memory. this process will swapin processes.
1713 	 */
1714 	if (vm_pages_needed && !vm_page_count_min()) {
1715 		vm_pages_needed = 0;
1716 		wakeup(&cnt.v_free_count);
1717 	}
1718 }
1719 
1720 /*
1721  *	vm_page_free_toq:
1722  *
1723  *	Returns the given page to the free list,
1724  *	disassociating it with any VM object.
1725  *
1726  *	Object and page must be locked prior to entry.
1727  *	This routine may not block.
1728  */
1729 
1730 void
1731 vm_page_free_toq(vm_page_t m)
1732 {
1733 
1734 	if ((m->flags & PG_UNMANAGED) == 0) {
1735 		vm_page_lock_assert(m, MA_OWNED);
1736 		KASSERT(!pmap_page_is_mapped(m),
1737 		    ("vm_page_free_toq: freeing mapped page %p", m));
1738 	}
1739 	PCPU_INC(cnt.v_tfree);
1740 
1741 	if (VM_PAGE_IS_FREE(m))
1742 		panic("vm_page_free: freeing free page %p", m);
1743 	else if (m->busy != 0)
1744 		panic("vm_page_free: freeing busy page %p", m);
1745 
1746 	/*
1747 	 * unqueue, then remove page.  Note that we cannot destroy
1748 	 * the page here because we do not want to call the pager's
1749 	 * callback routine until after we've put the page on the
1750 	 * appropriate free queue.
1751 	 */
1752 	if ((m->flags & PG_UNMANAGED) == 0)
1753 		vm_pageq_remove(m);
1754 	vm_page_remove(m);
1755 
1756 	/*
1757 	 * If fictitious remove object association and
1758 	 * return, otherwise delay object association removal.
1759 	 */
1760 	if ((m->flags & PG_FICTITIOUS) != 0) {
1761 		return;
1762 	}
1763 
1764 	m->valid = 0;
1765 	vm_page_undirty(m);
1766 
1767 	if (m->wire_count != 0)
1768 		panic("vm_page_free: freeing wired page %p", m);
1769 	if (m->hold_count != 0) {
1770 		m->flags &= ~PG_ZERO;
1771 		vm_page_lock_queues();
1772 		vm_page_enqueue(PQ_HOLD, m);
1773 		vm_page_unlock_queues();
1774 	} else {
1775 		/*
1776 		 * Restore the default memory attribute to the page.
1777 		 */
1778 		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1779 			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1780 
1781 		/*
1782 		 * Insert the page into the physical memory allocator's
1783 		 * cache/free page queues.
1784 		 */
1785 		mtx_lock(&vm_page_queue_free_mtx);
1786 		m->flags |= PG_FREE;
1787 		cnt.v_free_count++;
1788 #if VM_NRESERVLEVEL > 0
1789 		if (!vm_reserv_free_page(m))
1790 #else
1791 		if (TRUE)
1792 #endif
1793 			vm_phys_free_pages(m, 0);
1794 		if ((m->flags & PG_ZERO) != 0)
1795 			++vm_page_zero_count;
1796 		else
1797 			vm_page_zero_idle_wakeup();
1798 		vm_page_free_wakeup();
1799 		mtx_unlock(&vm_page_queue_free_mtx);
1800 	}
1801 }
1802 
1803 /*
1804  *	vm_page_wire:
1805  *
1806  *	Mark this page as wired down by yet
1807  *	another map, removing it from paging queues
1808  *	as necessary.
1809  *
1810  *	If the page is fictitious, then its wire count must remain one.
1811  *
1812  *	The page must be locked.
1813  *	This routine may not block.
1814  */
1815 void
1816 vm_page_wire(vm_page_t m)
1817 {
1818 
1819 	/*
1820 	 * Only bump the wire statistics if the page is not already wired,
1821 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1822 	 * it is already off the queues).
1823 	 */
1824 	vm_page_lock_assert(m, MA_OWNED);
1825 	if ((m->flags & PG_FICTITIOUS) != 0) {
1826 		KASSERT(m->wire_count == 1,
1827 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
1828 		    m));
1829 		return;
1830 	}
1831 	if (m->wire_count == 0) {
1832 		if ((m->flags & PG_UNMANAGED) == 0)
1833 			vm_pageq_remove(m);
1834 		atomic_add_int(&cnt.v_wire_count, 1);
1835 	}
1836 	m->wire_count++;
1837 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1838 }
1839 
1840 /*
1841  * vm_page_unwire:
1842  *
1843  * Release one wiring of the specified page, potentially enabling it to be
1844  * paged again.  If paging is enabled, then the value of the parameter
1845  * "activate" determines to which queue the page is added.  If "activate" is
1846  * non-zero, then the page is added to the active queue.  Otherwise, it is
1847  * added to the inactive queue.
1848  *
1849  * However, unless the page belongs to an object, it is not enqueued because
1850  * it cannot be paged out.
1851  *
1852  * If a page is fictitious, then its wire count must alway be one.
1853  *
1854  * A managed page must be locked.
1855  */
1856 void
1857 vm_page_unwire(vm_page_t m, int activate)
1858 {
1859 
1860 	if ((m->flags & PG_UNMANAGED) == 0)
1861 		vm_page_lock_assert(m, MA_OWNED);
1862 	if ((m->flags & PG_FICTITIOUS) != 0) {
1863 		KASSERT(m->wire_count == 1,
1864 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
1865 		return;
1866 	}
1867 	if (m->wire_count > 0) {
1868 		m->wire_count--;
1869 		if (m->wire_count == 0) {
1870 			atomic_subtract_int(&cnt.v_wire_count, 1);
1871 			if ((m->flags & PG_UNMANAGED) != 0 ||
1872 			    m->object == NULL)
1873 				return;
1874 			vm_page_lock_queues();
1875 			if (activate)
1876 				vm_page_enqueue(PQ_ACTIVE, m);
1877 			else {
1878 				vm_page_flag_clear(m, PG_WINATCFLS);
1879 				vm_page_enqueue(PQ_INACTIVE, m);
1880 			}
1881 			vm_page_unlock_queues();
1882 		}
1883 	} else
1884 		panic("vm_page_unwire: page %p's wire count is zero", m);
1885 }
1886 
1887 /*
1888  * Move the specified page to the inactive queue.
1889  *
1890  * Many pages placed on the inactive queue should actually go
1891  * into the cache, but it is difficult to figure out which.  What
1892  * we do instead, if the inactive target is well met, is to put
1893  * clean pages at the head of the inactive queue instead of the tail.
1894  * This will cause them to be moved to the cache more quickly and
1895  * if not actively re-referenced, reclaimed more quickly.  If we just
1896  * stick these pages at the end of the inactive queue, heavy filesystem
1897  * meta-data accesses can cause an unnecessary paging load on memory bound
1898  * processes.  This optimization causes one-time-use metadata to be
1899  * reused more quickly.
1900  *
1901  * Normally athead is 0 resulting in LRU operation.  athead is set
1902  * to 1 if we want this page to be 'as if it were placed in the cache',
1903  * except without unmapping it from the process address space.
1904  *
1905  * This routine may not block.
1906  */
1907 static inline void
1908 _vm_page_deactivate(vm_page_t m, int athead)
1909 {
1910 	int queue;
1911 
1912 	vm_page_lock_assert(m, MA_OWNED);
1913 
1914 	/*
1915 	 * Ignore if already inactive.
1916 	 */
1917 	if ((queue = m->queue) == PQ_INACTIVE)
1918 		return;
1919 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1920 		vm_page_lock_queues();
1921 		vm_page_flag_clear(m, PG_WINATCFLS);
1922 		if (queue != PQ_NONE)
1923 			vm_page_queue_remove(queue, m);
1924 		if (athead)
1925 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
1926 			    pageq);
1927 		else
1928 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
1929 			    pageq);
1930 		m->queue = PQ_INACTIVE;
1931 		cnt.v_inactive_count++;
1932 		vm_page_unlock_queues();
1933 	}
1934 }
1935 
1936 /*
1937  * Move the specified page to the inactive queue.
1938  *
1939  * The page must be locked.
1940  */
1941 void
1942 vm_page_deactivate(vm_page_t m)
1943 {
1944 
1945 	_vm_page_deactivate(m, 0);
1946 }
1947 
1948 /*
1949  * vm_page_try_to_cache:
1950  *
1951  * Returns 0 on failure, 1 on success
1952  */
1953 int
1954 vm_page_try_to_cache(vm_page_t m)
1955 {
1956 
1957 	vm_page_lock_assert(m, MA_OWNED);
1958 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1959 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1960 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1961 		return (0);
1962 	pmap_remove_all(m);
1963 	if (m->dirty)
1964 		return (0);
1965 	vm_page_cache(m);
1966 	return (1);
1967 }
1968 
1969 /*
1970  * vm_page_try_to_free()
1971  *
1972  *	Attempt to free the page.  If we cannot free it, we do nothing.
1973  *	1 is returned on success, 0 on failure.
1974  */
1975 int
1976 vm_page_try_to_free(vm_page_t m)
1977 {
1978 
1979 	vm_page_lock_assert(m, MA_OWNED);
1980 	if (m->object != NULL)
1981 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1982 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1983 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1984 		return (0);
1985 	pmap_remove_all(m);
1986 	if (m->dirty)
1987 		return (0);
1988 	vm_page_free(m);
1989 	return (1);
1990 }
1991 
1992 /*
1993  * vm_page_cache
1994  *
1995  * Put the specified page onto the page cache queue (if appropriate).
1996  *
1997  * This routine may not block.
1998  */
1999 void
2000 vm_page_cache(vm_page_t m)
2001 {
2002 	vm_object_t object;
2003 	vm_page_t root;
2004 
2005 	vm_page_lock_assert(m, MA_OWNED);
2006 	object = m->object;
2007 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2008 	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
2009 	    m->hold_count || m->wire_count)
2010 		panic("vm_page_cache: attempting to cache busy page");
2011 	pmap_remove_all(m);
2012 	if (m->dirty != 0)
2013 		panic("vm_page_cache: page %p is dirty", m);
2014 	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2015 	    (object->type == OBJT_SWAP &&
2016 	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2017 		/*
2018 		 * Hypothesis: A cache-elgible page belonging to a
2019 		 * default object or swap object but without a backing
2020 		 * store must be zero filled.
2021 		 */
2022 		vm_page_free(m);
2023 		return;
2024 	}
2025 	KASSERT((m->flags & PG_CACHED) == 0,
2026 	    ("vm_page_cache: page %p is already cached", m));
2027 	PCPU_INC(cnt.v_tcached);
2028 
2029 	/*
2030 	 * Remove the page from the paging queues.
2031 	 */
2032 	vm_pageq_remove(m);
2033 
2034 	/*
2035 	 * Remove the page from the object's collection of resident
2036 	 * pages.
2037 	 */
2038 	if (m != object->root)
2039 		vm_page_splay(m->pindex, object->root);
2040 	if (m->left == NULL)
2041 		root = m->right;
2042 	else {
2043 		root = vm_page_splay(m->pindex, m->left);
2044 		root->right = m->right;
2045 	}
2046 	object->root = root;
2047 	TAILQ_REMOVE(&object->memq, m, listq);
2048 	object->resident_page_count--;
2049 
2050 	/*
2051 	 * Restore the default memory attribute to the page.
2052 	 */
2053 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2054 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2055 
2056 	/*
2057 	 * Insert the page into the object's collection of cached pages
2058 	 * and the physical memory allocator's cache/free page queues.
2059 	 */
2060 	m->flags &= ~PG_ZERO;
2061 	mtx_lock(&vm_page_queue_free_mtx);
2062 	m->flags |= PG_CACHED;
2063 	cnt.v_cache_count++;
2064 	root = object->cache;
2065 	if (root == NULL) {
2066 		m->left = NULL;
2067 		m->right = NULL;
2068 	} else {
2069 		root = vm_page_splay(m->pindex, root);
2070 		if (m->pindex < root->pindex) {
2071 			m->left = root->left;
2072 			m->right = root;
2073 			root->left = NULL;
2074 		} else if (__predict_false(m->pindex == root->pindex))
2075 			panic("vm_page_cache: offset already cached");
2076 		else {
2077 			m->right = root->right;
2078 			m->left = root;
2079 			root->right = NULL;
2080 		}
2081 	}
2082 	object->cache = m;
2083 #if VM_NRESERVLEVEL > 0
2084 	if (!vm_reserv_free_page(m)) {
2085 #else
2086 	if (TRUE) {
2087 #endif
2088 		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2089 		vm_phys_free_pages(m, 0);
2090 	}
2091 	vm_page_free_wakeup();
2092 	mtx_unlock(&vm_page_queue_free_mtx);
2093 
2094 	/*
2095 	 * Increment the vnode's hold count if this is the object's only
2096 	 * cached page.  Decrement the vnode's hold count if this was
2097 	 * the object's only resident page.
2098 	 */
2099 	if (object->type == OBJT_VNODE) {
2100 		if (root == NULL && object->resident_page_count != 0)
2101 			vhold(object->handle);
2102 		else if (root != NULL && object->resident_page_count == 0)
2103 			vdrop(object->handle);
2104 	}
2105 }
2106 
2107 /*
2108  * vm_page_dontneed
2109  *
2110  *	Cache, deactivate, or do nothing as appropriate.  This routine
2111  *	is typically used by madvise() MADV_DONTNEED.
2112  *
2113  *	Generally speaking we want to move the page into the cache so
2114  *	it gets reused quickly.  However, this can result in a silly syndrome
2115  *	due to the page recycling too quickly.  Small objects will not be
2116  *	fully cached.  On the otherhand, if we move the page to the inactive
2117  *	queue we wind up with a problem whereby very large objects
2118  *	unnecessarily blow away our inactive and cache queues.
2119  *
2120  *	The solution is to move the pages based on a fixed weighting.  We
2121  *	either leave them alone, deactivate them, or move them to the cache,
2122  *	where moving them to the cache has the highest weighting.
2123  *	By forcing some pages into other queues we eventually force the
2124  *	system to balance the queues, potentially recovering other unrelated
2125  *	space from active.  The idea is to not force this to happen too
2126  *	often.
2127  */
2128 void
2129 vm_page_dontneed(vm_page_t m)
2130 {
2131 	int dnw;
2132 	int head;
2133 
2134 	vm_page_lock_assert(m, MA_OWNED);
2135 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2136 	dnw = PCPU_GET(dnweight);
2137 	PCPU_INC(dnweight);
2138 
2139 	/*
2140 	 * Occasionally leave the page alone.
2141 	 */
2142 	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2143 		if (m->act_count >= ACT_INIT)
2144 			--m->act_count;
2145 		return;
2146 	}
2147 
2148 	/*
2149 	 * Clear any references to the page.  Otherwise, the page daemon will
2150 	 * immediately reactivate the page.
2151 	 *
2152 	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2153 	 * pmap operation, such as pmap_remove(), could clear a reference in
2154 	 * the pmap and set PG_REFERENCED on the page before the
2155 	 * pmap_clear_reference() had completed.  Consequently, the page would
2156 	 * appear referenced based upon an old reference that occurred before
2157 	 * this function ran.
2158 	 */
2159 	pmap_clear_reference(m);
2160 	vm_page_lock_queues();
2161 	vm_page_flag_clear(m, PG_REFERENCED);
2162 	vm_page_unlock_queues();
2163 
2164 	if (m->dirty == 0 && pmap_is_modified(m))
2165 		vm_page_dirty(m);
2166 
2167 	if (m->dirty || (dnw & 0x0070) == 0) {
2168 		/*
2169 		 * Deactivate the page 3 times out of 32.
2170 		 */
2171 		head = 0;
2172 	} else {
2173 		/*
2174 		 * Cache the page 28 times out of every 32.  Note that
2175 		 * the page is deactivated instead of cached, but placed
2176 		 * at the head of the queue instead of the tail.
2177 		 */
2178 		head = 1;
2179 	}
2180 	_vm_page_deactivate(m, head);
2181 }
2182 
2183 /*
2184  * Grab a page, waiting until we are waken up due to the page
2185  * changing state.  We keep on waiting, if the page continues
2186  * to be in the object.  If the page doesn't exist, first allocate it
2187  * and then conditionally zero it.
2188  *
2189  * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2190  * to facilitate its eventual removal.
2191  *
2192  * This routine may block.
2193  */
2194 vm_page_t
2195 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2196 {
2197 	vm_page_t m;
2198 
2199 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2200 	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2201 	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2202 retrylookup:
2203 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2204 		if ((m->oflags & VPO_BUSY) != 0 ||
2205 		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2206 			/*
2207 			 * Reference the page before unlocking and
2208 			 * sleeping so that the page daemon is less
2209 			 * likely to reclaim it.
2210 			 */
2211 			vm_page_lock_queues();
2212 			vm_page_flag_set(m, PG_REFERENCED);
2213 			vm_page_sleep(m, "pgrbwt");
2214 			goto retrylookup;
2215 		} else {
2216 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2217 				vm_page_lock(m);
2218 				vm_page_wire(m);
2219 				vm_page_unlock(m);
2220 			}
2221 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2222 				vm_page_busy(m);
2223 			return (m);
2224 		}
2225 	}
2226 	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2227 	    VM_ALLOC_IGN_SBUSY));
2228 	if (m == NULL) {
2229 		VM_OBJECT_UNLOCK(object);
2230 		VM_WAIT;
2231 		VM_OBJECT_LOCK(object);
2232 		goto retrylookup;
2233 	} else if (m->valid != 0)
2234 		return (m);
2235 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2236 		pmap_zero_page(m);
2237 	return (m);
2238 }
2239 
2240 /*
2241  * Mapping function for valid bits or for dirty bits in
2242  * a page.  May not block.
2243  *
2244  * Inputs are required to range within a page.
2245  */
2246 int
2247 vm_page_bits(int base, int size)
2248 {
2249 	int first_bit;
2250 	int last_bit;
2251 
2252 	KASSERT(
2253 	    base + size <= PAGE_SIZE,
2254 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2255 	);
2256 
2257 	if (size == 0)		/* handle degenerate case */
2258 		return (0);
2259 
2260 	first_bit = base >> DEV_BSHIFT;
2261 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2262 
2263 	return ((2 << last_bit) - (1 << first_bit));
2264 }
2265 
2266 /*
2267  *	vm_page_set_valid:
2268  *
2269  *	Sets portions of a page valid.  The arguments are expected
2270  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2271  *	of any partial chunks touched by the range.  The invalid portion of
2272  *	such chunks will be zeroed.
2273  *
2274  *	(base + size) must be less then or equal to PAGE_SIZE.
2275  */
2276 void
2277 vm_page_set_valid(vm_page_t m, int base, int size)
2278 {
2279 	int endoff, frag;
2280 
2281 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2282 	if (size == 0)	/* handle degenerate case */
2283 		return;
2284 
2285 	/*
2286 	 * If the base is not DEV_BSIZE aligned and the valid
2287 	 * bit is clear, we have to zero out a portion of the
2288 	 * first block.
2289 	 */
2290 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2291 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2292 		pmap_zero_page_area(m, frag, base - frag);
2293 
2294 	/*
2295 	 * If the ending offset is not DEV_BSIZE aligned and the
2296 	 * valid bit is clear, we have to zero out a portion of
2297 	 * the last block.
2298 	 */
2299 	endoff = base + size;
2300 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2301 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2302 		pmap_zero_page_area(m, endoff,
2303 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2304 
2305 	/*
2306 	 * Assert that no previously invalid block that is now being validated
2307 	 * is already dirty.
2308 	 */
2309 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2310 	    ("vm_page_set_valid: page %p is dirty", m));
2311 
2312 	/*
2313 	 * Set valid bits inclusive of any overlap.
2314 	 */
2315 	m->valid |= vm_page_bits(base, size);
2316 }
2317 
2318 /*
2319  * Clear the given bits from the specified page's dirty field.
2320  */
2321 static __inline void
2322 vm_page_clear_dirty_mask(vm_page_t m, int pagebits)
2323 {
2324 
2325 	/*
2326 	 * If the object is locked and the page is neither VPO_BUSY nor
2327 	 * PG_WRITEABLE, then the page's dirty field cannot possibly be
2328 	 * modified by a concurrent pmap operation.
2329 	 */
2330 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2331 	if ((m->oflags & VPO_BUSY) == 0 && (m->flags & PG_WRITEABLE) == 0)
2332 		m->dirty &= ~pagebits;
2333 	else {
2334 		vm_page_lock_queues();
2335 		m->dirty &= ~pagebits;
2336 		vm_page_unlock_queues();
2337 	}
2338 }
2339 
2340 /*
2341  *	vm_page_set_validclean:
2342  *
2343  *	Sets portions of a page valid and clean.  The arguments are expected
2344  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2345  *	of any partial chunks touched by the range.  The invalid portion of
2346  *	such chunks will be zero'd.
2347  *
2348  *	This routine may not block.
2349  *
2350  *	(base + size) must be less then or equal to PAGE_SIZE.
2351  */
2352 void
2353 vm_page_set_validclean(vm_page_t m, int base, int size)
2354 {
2355 	u_long oldvalid;
2356 	int endoff, frag, pagebits;
2357 
2358 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2359 	if (size == 0)	/* handle degenerate case */
2360 		return;
2361 
2362 	/*
2363 	 * If the base is not DEV_BSIZE aligned and the valid
2364 	 * bit is clear, we have to zero out a portion of the
2365 	 * first block.
2366 	 */
2367 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2368 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2369 		pmap_zero_page_area(m, frag, base - frag);
2370 
2371 	/*
2372 	 * If the ending offset is not DEV_BSIZE aligned and the
2373 	 * valid bit is clear, we have to zero out a portion of
2374 	 * the last block.
2375 	 */
2376 	endoff = base + size;
2377 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2378 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2379 		pmap_zero_page_area(m, endoff,
2380 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2381 
2382 	/*
2383 	 * Set valid, clear dirty bits.  If validating the entire
2384 	 * page we can safely clear the pmap modify bit.  We also
2385 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2386 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2387 	 * be set again.
2388 	 *
2389 	 * We set valid bits inclusive of any overlap, but we can only
2390 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2391 	 * the range.
2392 	 */
2393 	oldvalid = m->valid;
2394 	pagebits = vm_page_bits(base, size);
2395 	m->valid |= pagebits;
2396 #if 0	/* NOT YET */
2397 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2398 		frag = DEV_BSIZE - frag;
2399 		base += frag;
2400 		size -= frag;
2401 		if (size < 0)
2402 			size = 0;
2403 	}
2404 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2405 #endif
2406 	if (base == 0 && size == PAGE_SIZE) {
2407 		/*
2408 		 * The page can only be modified within the pmap if it is
2409 		 * mapped, and it can only be mapped if it was previously
2410 		 * fully valid.
2411 		 */
2412 		if (oldvalid == VM_PAGE_BITS_ALL)
2413 			/*
2414 			 * Perform the pmap_clear_modify() first.  Otherwise,
2415 			 * a concurrent pmap operation, such as
2416 			 * pmap_protect(), could clear a modification in the
2417 			 * pmap and set the dirty field on the page before
2418 			 * pmap_clear_modify() had begun and after the dirty
2419 			 * field was cleared here.
2420 			 */
2421 			pmap_clear_modify(m);
2422 		m->dirty = 0;
2423 		m->oflags &= ~VPO_NOSYNC;
2424 	} else if (oldvalid != VM_PAGE_BITS_ALL)
2425 		m->dirty &= ~pagebits;
2426 	else
2427 		vm_page_clear_dirty_mask(m, pagebits);
2428 }
2429 
2430 void
2431 vm_page_clear_dirty(vm_page_t m, int base, int size)
2432 {
2433 
2434 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2435 }
2436 
2437 /*
2438  *	vm_page_set_invalid:
2439  *
2440  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2441  *	valid and dirty bits for the effected areas are cleared.
2442  *
2443  *	May not block.
2444  */
2445 void
2446 vm_page_set_invalid(vm_page_t m, int base, int size)
2447 {
2448 	int bits;
2449 
2450 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2451 	KASSERT((m->oflags & VPO_BUSY) == 0,
2452 	    ("vm_page_set_invalid: page %p is busy", m));
2453 	bits = vm_page_bits(base, size);
2454 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2455 		pmap_remove_all(m);
2456 	KASSERT(!pmap_page_is_mapped(m),
2457 	    ("vm_page_set_invalid: page %p is mapped", m));
2458 	m->valid &= ~bits;
2459 	m->dirty &= ~bits;
2460 }
2461 
2462 /*
2463  * vm_page_zero_invalid()
2464  *
2465  *	The kernel assumes that the invalid portions of a page contain
2466  *	garbage, but such pages can be mapped into memory by user code.
2467  *	When this occurs, we must zero out the non-valid portions of the
2468  *	page so user code sees what it expects.
2469  *
2470  *	Pages are most often semi-valid when the end of a file is mapped
2471  *	into memory and the file's size is not page aligned.
2472  */
2473 void
2474 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2475 {
2476 	int b;
2477 	int i;
2478 
2479 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2480 	/*
2481 	 * Scan the valid bits looking for invalid sections that
2482 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2483 	 * valid bit may be set ) have already been zerod by
2484 	 * vm_page_set_validclean().
2485 	 */
2486 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2487 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2488 		    (m->valid & (1 << i))
2489 		) {
2490 			if (i > b) {
2491 				pmap_zero_page_area(m,
2492 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2493 			}
2494 			b = i + 1;
2495 		}
2496 	}
2497 
2498 	/*
2499 	 * setvalid is TRUE when we can safely set the zero'd areas
2500 	 * as being valid.  We can do this if there are no cache consistancy
2501 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2502 	 */
2503 	if (setvalid)
2504 		m->valid = VM_PAGE_BITS_ALL;
2505 }
2506 
2507 /*
2508  *	vm_page_is_valid:
2509  *
2510  *	Is (partial) page valid?  Note that the case where size == 0
2511  *	will return FALSE in the degenerate case where the page is
2512  *	entirely invalid, and TRUE otherwise.
2513  *
2514  *	May not block.
2515  */
2516 int
2517 vm_page_is_valid(vm_page_t m, int base, int size)
2518 {
2519 	int bits = vm_page_bits(base, size);
2520 
2521 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2522 	if (m->valid && ((m->valid & bits) == bits))
2523 		return 1;
2524 	else
2525 		return 0;
2526 }
2527 
2528 /*
2529  * update dirty bits from pmap/mmu.  May not block.
2530  */
2531 void
2532 vm_page_test_dirty(vm_page_t m)
2533 {
2534 
2535 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2536 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2537 		vm_page_dirty(m);
2538 }
2539 
2540 int so_zerocp_fullpage = 0;
2541 
2542 /*
2543  *	Replace the given page with a copy.  The copied page assumes
2544  *	the portion of the given page's "wire_count" that is not the
2545  *	responsibility of this copy-on-write mechanism.
2546  *
2547  *	The object containing the given page must have a non-zero
2548  *	paging-in-progress count and be locked.
2549  */
2550 void
2551 vm_page_cowfault(vm_page_t m)
2552 {
2553 	vm_page_t mnew;
2554 	vm_object_t object;
2555 	vm_pindex_t pindex;
2556 
2557 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2558 	vm_page_lock_assert(m, MA_OWNED);
2559 	object = m->object;
2560 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2561 	KASSERT(object->paging_in_progress != 0,
2562 	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2563 	    object));
2564 	pindex = m->pindex;
2565 
2566  retry_alloc:
2567 	pmap_remove_all(m);
2568 	vm_page_remove(m);
2569 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2570 	if (mnew == NULL) {
2571 		vm_page_insert(m, object, pindex);
2572 		vm_page_unlock(m);
2573 		VM_OBJECT_UNLOCK(object);
2574 		VM_WAIT;
2575 		VM_OBJECT_LOCK(object);
2576 		if (m == vm_page_lookup(object, pindex)) {
2577 			vm_page_lock(m);
2578 			goto retry_alloc;
2579 		} else {
2580 			/*
2581 			 * Page disappeared during the wait.
2582 			 */
2583 			return;
2584 		}
2585 	}
2586 
2587 	if (m->cow == 0) {
2588 		/*
2589 		 * check to see if we raced with an xmit complete when
2590 		 * waiting to allocate a page.  If so, put things back
2591 		 * the way they were
2592 		 */
2593 		vm_page_unlock(m);
2594 		vm_page_lock(mnew);
2595 		vm_page_free(mnew);
2596 		vm_page_unlock(mnew);
2597 		vm_page_insert(m, object, pindex);
2598 	} else { /* clear COW & copy page */
2599 		if (!so_zerocp_fullpage)
2600 			pmap_copy_page(m, mnew);
2601 		mnew->valid = VM_PAGE_BITS_ALL;
2602 		vm_page_dirty(mnew);
2603 		mnew->wire_count = m->wire_count - m->cow;
2604 		m->wire_count = m->cow;
2605 		vm_page_unlock(m);
2606 	}
2607 }
2608 
2609 void
2610 vm_page_cowclear(vm_page_t m)
2611 {
2612 
2613 	vm_page_lock_assert(m, MA_OWNED);
2614 	if (m->cow) {
2615 		m->cow--;
2616 		/*
2617 		 * let vm_fault add back write permission  lazily
2618 		 */
2619 	}
2620 	/*
2621 	 *  sf_buf_free() will free the page, so we needn't do it here
2622 	 */
2623 }
2624 
2625 int
2626 vm_page_cowsetup(vm_page_t m)
2627 {
2628 
2629 	vm_page_lock_assert(m, MA_OWNED);
2630 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2631 	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
2632 		return (EBUSY);
2633 	m->cow++;
2634 	pmap_remove_write(m);
2635 	VM_OBJECT_UNLOCK(m->object);
2636 	return (0);
2637 }
2638 
2639 #include "opt_ddb.h"
2640 #ifdef DDB
2641 #include <sys/kernel.h>
2642 
2643 #include <ddb/ddb.h>
2644 
2645 DB_SHOW_COMMAND(page, vm_page_print_page_info)
2646 {
2647 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2648 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2649 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2650 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2651 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2652 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2653 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2654 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2655 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2656 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2657 }
2658 
2659 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2660 {
2661 
2662 	db_printf("PQ_FREE:");
2663 	db_printf(" %d", cnt.v_free_count);
2664 	db_printf("\n");
2665 
2666 	db_printf("PQ_CACHE:");
2667 	db_printf(" %d", cnt.v_cache_count);
2668 	db_printf("\n");
2669 
2670 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2671 		*vm_page_queues[PQ_ACTIVE].cnt,
2672 		*vm_page_queues[PQ_INACTIVE].cnt);
2673 }
2674 #endif /* DDB */
2675