xref: /freebsd/sys/vm/vm_page.c (revision 87569f75a91f298c52a71823c04d41cf53c88889)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33  */
34 
35 /*-
36  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37  * All rights reserved.
38  *
39  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40  *
41  * Permission to use, copy, modify and distribute this software and
42  * its documentation is hereby granted, provided that both the copyright
43  * notice and this permission notice appear in all copies of the
44  * software, derivative works or modified versions, and any portions
45  * thereof, and that both notices appear in supporting documentation.
46  *
47  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50  *
51  * Carnegie Mellon requests users of this software to return to
52  *
53  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54  *  School of Computer Science
55  *  Carnegie Mellon University
56  *  Pittsburgh PA 15213-3890
57  *
58  * any improvements or extensions that they make and grant Carnegie the
59  * rights to redistribute these changes.
60  */
61 
62 /*
63  *			GENERAL RULES ON VM_PAGE MANIPULATION
64  *
65  *	- a pageq mutex is required when adding or removing a page from a
66  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67  *	  busy state of a page.
68  *
69  *	- a hash chain mutex is required when associating or disassociating
70  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71  *	  regardless of other mutexes or the busy state of a page.
72  *
73  *	- either a hash chain mutex OR a busied page is required in order
74  *	  to modify the page flags.  A hash chain mutex must be obtained in
75  *	  order to busy a page.  A page's flags cannot be modified by a
76  *	  hash chain mutex if the page is marked busy.
77  *
78  *	- The object memq mutex is held when inserting or removing
79  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80  *	  is different from the object's main mutex.
81  *
82  *	Generally speaking, you have to be aware of side effects when running
83  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85  *	vm_page_cache(), vm_page_activate(), and a number of other routines
86  *	will release the hash chain mutex for you.  Intermediate manipulation
87  *	routines such as vm_page_flag_set() expect the hash chain to be held
88  *	on entry and the hash chain will remain held on return.
89  *
90  *	pageq scanning can only occur with the pageq in question locked.
91  *	We have a known bottleneck with the active queue, but the cache
92  *	and free queues are actually arrays already.
93  */
94 
95 /*
96  *	Resident memory management module.
97  */
98 
99 #include <sys/cdefs.h>
100 __FBSDID("$FreeBSD$");
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/lock.h>
105 #include <sys/kernel.h>
106 #include <sys/malloc.h>
107 #include <sys/mutex.h>
108 #include <sys/proc.h>
109 #include <sys/sysctl.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 #include <vm/uma_int.h>
123 
124 /*
125  *	Associated with page of user-allocatable memory is a
126  *	page structure.
127  */
128 
129 struct mtx vm_page_queue_mtx;
130 struct mtx vm_page_queue_free_mtx;
131 
132 vm_page_t vm_page_array = 0;
133 int vm_page_array_size = 0;
134 long first_page = 0;
135 int vm_page_zero_count = 0;
136 
137 static int boot_pages = UMA_BOOT_PAGES;
138 TUNABLE_INT("vm.boot_pages", &boot_pages);
139 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
140 	"number of pages allocated for bootstrapping the VM system");
141 
142 /*
143  *	vm_set_page_size:
144  *
145  *	Sets the page size, perhaps based upon the memory
146  *	size.  Must be called before any use of page-size
147  *	dependent functions.
148  */
149 void
150 vm_set_page_size(void)
151 {
152 	if (cnt.v_page_size == 0)
153 		cnt.v_page_size = PAGE_SIZE;
154 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
155 		panic("vm_set_page_size: page size not a power of two");
156 }
157 
158 /*
159  *	vm_page_startup:
160  *
161  *	Initializes the resident memory module.
162  *
163  *	Allocates memory for the page cells, and
164  *	for the object/offset-to-page hash table headers.
165  *	Each page cell is initialized and placed on the free list.
166  */
167 vm_offset_t
168 vm_page_startup(vm_offset_t vaddr)
169 {
170 	vm_offset_t mapped;
171 	vm_size_t npages;
172 	vm_paddr_t page_range;
173 	vm_paddr_t new_end;
174 	int i;
175 	vm_paddr_t pa;
176 	int nblocks;
177 	vm_paddr_t last_pa;
178 
179 	/* the biggest memory array is the second group of pages */
180 	vm_paddr_t end;
181 	vm_paddr_t biggestsize;
182 	int biggestone;
183 
184 	vm_paddr_t total;
185 
186 	total = 0;
187 	biggestsize = 0;
188 	biggestone = 0;
189 	nblocks = 0;
190 	vaddr = round_page(vaddr);
191 
192 	for (i = 0; phys_avail[i + 1]; i += 2) {
193 		phys_avail[i] = round_page(phys_avail[i]);
194 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
195 	}
196 
197 	for (i = 0; phys_avail[i + 1]; i += 2) {
198 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
199 
200 		if (size > biggestsize) {
201 			biggestone = i;
202 			biggestsize = size;
203 		}
204 		++nblocks;
205 		total += size;
206 	}
207 
208 	end = phys_avail[biggestone+1];
209 
210 	/*
211 	 * Initialize the locks.
212 	 */
213 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
214 	    MTX_RECURSE);
215 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
216 	    MTX_SPIN);
217 
218 	/*
219 	 * Initialize the queue headers for the free queue, the active queue
220 	 * and the inactive queue.
221 	 */
222 	vm_pageq_init();
223 
224 	/*
225 	 * Allocate memory for use when boot strapping the kernel memory
226 	 * allocator.
227 	 */
228 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
229 	new_end = trunc_page(new_end);
230 	mapped = pmap_map(&vaddr, new_end, end,
231 	    VM_PROT_READ | VM_PROT_WRITE);
232 	bzero((void *)mapped, end - new_end);
233 	uma_startup((void *)mapped, boot_pages);
234 
235 	/*
236 	 * Compute the number of pages of memory that will be available for
237 	 * use (taking into account the overhead of a page structure per
238 	 * page).
239 	 */
240 	first_page = phys_avail[0] / PAGE_SIZE;
241 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
242 	npages = (total - (page_range * sizeof(struct vm_page)) -
243 	    (end - new_end)) / PAGE_SIZE;
244 	end = new_end;
245 
246 	/*
247 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
248 	 */
249 	vaddr += PAGE_SIZE;
250 
251 	/*
252 	 * Initialize the mem entry structures now, and put them in the free
253 	 * queue.
254 	 */
255 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
256 	mapped = pmap_map(&vaddr, new_end, end,
257 	    VM_PROT_READ | VM_PROT_WRITE);
258 	vm_page_array = (vm_page_t) mapped;
259 	phys_avail[biggestone + 1] = new_end;
260 
261 	/*
262 	 * Clear all of the page structures
263 	 */
264 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
265 	vm_page_array_size = page_range;
266 
267 	/*
268 	 * Construct the free queue(s) in descending order (by physical
269 	 * address) so that the first 16MB of physical memory is allocated
270 	 * last rather than first.  On large-memory machines, this avoids
271 	 * the exhaustion of low physical memory before isa_dma_init has run.
272 	 */
273 	cnt.v_page_count = 0;
274 	cnt.v_free_count = 0;
275 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
276 		pa = phys_avail[i];
277 		last_pa = phys_avail[i + 1];
278 		while (pa < last_pa && npages-- > 0) {
279 			vm_pageq_add_new_page(pa);
280 			pa += PAGE_SIZE;
281 		}
282 	}
283 	return (vaddr);
284 }
285 
286 void
287 vm_page_flag_set(vm_page_t m, unsigned short bits)
288 {
289 
290 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
291 	m->flags |= bits;
292 }
293 
294 void
295 vm_page_flag_clear(vm_page_t m, unsigned short bits)
296 {
297 
298 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
299 	m->flags &= ~bits;
300 }
301 
302 void
303 vm_page_busy(vm_page_t m)
304 {
305 
306 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
307 	KASSERT((m->flags & PG_BUSY) == 0,
308 	    ("vm_page_busy: page already busy!!!"));
309 	vm_page_flag_set(m, PG_BUSY);
310 }
311 
312 /*
313  *      vm_page_flash:
314  *
315  *      wakeup anyone waiting for the page.
316  */
317 void
318 vm_page_flash(vm_page_t m)
319 {
320 
321 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
322 	if (m->flags & PG_WANTED) {
323 		vm_page_flag_clear(m, PG_WANTED);
324 		wakeup(m);
325 	}
326 }
327 
328 /*
329  *      vm_page_wakeup:
330  *
331  *      clear the PG_BUSY flag and wakeup anyone waiting for the
332  *      page.
333  *
334  */
335 void
336 vm_page_wakeup(vm_page_t m)
337 {
338 
339 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
340 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
341 	vm_page_flag_clear(m, PG_BUSY);
342 	vm_page_flash(m);
343 }
344 
345 void
346 vm_page_io_start(vm_page_t m)
347 {
348 
349 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
350 	m->busy++;
351 }
352 
353 void
354 vm_page_io_finish(vm_page_t m)
355 {
356 
357 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
358 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
359 	m->busy--;
360 	if (m->busy == 0)
361 		vm_page_flash(m);
362 }
363 
364 /*
365  * Keep page from being freed by the page daemon
366  * much of the same effect as wiring, except much lower
367  * overhead and should be used only for *very* temporary
368  * holding ("wiring").
369  */
370 void
371 vm_page_hold(vm_page_t mem)
372 {
373 
374 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
375         mem->hold_count++;
376 }
377 
378 void
379 vm_page_unhold(vm_page_t mem)
380 {
381 
382 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
383 	--mem->hold_count;
384 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
385 	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
386 		vm_page_free_toq(mem);
387 }
388 
389 /*
390  *	vm_page_free:
391  *
392  *	Free a page
393  *
394  *	The clearing of PG_ZERO is a temporary safety until the code can be
395  *	reviewed to determine that PG_ZERO is being properly cleared on
396  *	write faults or maps.  PG_ZERO was previously cleared in
397  *	vm_page_alloc().
398  */
399 void
400 vm_page_free(vm_page_t m)
401 {
402 	vm_page_flag_clear(m, PG_ZERO);
403 	vm_page_free_toq(m);
404 	vm_page_zero_idle_wakeup();
405 }
406 
407 /*
408  *	vm_page_free_zero:
409  *
410  *	Free a page to the zerod-pages queue
411  */
412 void
413 vm_page_free_zero(vm_page_t m)
414 {
415 	vm_page_flag_set(m, PG_ZERO);
416 	vm_page_free_toq(m);
417 }
418 
419 /*
420  *	vm_page_sleep_if_busy:
421  *
422  *	Sleep and release the page queues lock if PG_BUSY is set or,
423  *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
424  *	thread slept and the page queues lock was released.
425  *	Otherwise, retains the page queues lock and returns FALSE.
426  */
427 int
428 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
429 {
430 	vm_object_t object;
431 
432 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
433 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
434 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
435 		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
436 		/*
437 		 * It's possible that while we sleep, the page will get
438 		 * unbusied and freed.  If we are holding the object
439 		 * lock, we will assume we hold a reference to the object
440 		 * such that even if m->object changes, we can re-lock
441 		 * it.
442 		 */
443 		object = m->object;
444 		VM_OBJECT_UNLOCK(object);
445 		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
446 		VM_OBJECT_LOCK(object);
447 		return (TRUE);
448 	}
449 	return (FALSE);
450 }
451 
452 /*
453  *	vm_page_dirty:
454  *
455  *	make page all dirty
456  */
457 void
458 vm_page_dirty(vm_page_t m)
459 {
460 	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE,
461 	    ("vm_page_dirty: page in cache!"));
462 	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_FREE,
463 	    ("vm_page_dirty: page is free!"));
464 	m->dirty = VM_PAGE_BITS_ALL;
465 }
466 
467 /*
468  *	vm_page_splay:
469  *
470  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
471  *	the vm_page containing the given pindex.  If, however, that
472  *	pindex is not found in the vm_object, returns a vm_page that is
473  *	adjacent to the pindex, coming before or after it.
474  */
475 vm_page_t
476 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
477 {
478 	struct vm_page dummy;
479 	vm_page_t lefttreemax, righttreemin, y;
480 
481 	if (root == NULL)
482 		return (root);
483 	lefttreemax = righttreemin = &dummy;
484 	for (;; root = y) {
485 		if (pindex < root->pindex) {
486 			if ((y = root->left) == NULL)
487 				break;
488 			if (pindex < y->pindex) {
489 				/* Rotate right. */
490 				root->left = y->right;
491 				y->right = root;
492 				root = y;
493 				if ((y = root->left) == NULL)
494 					break;
495 			}
496 			/* Link into the new root's right tree. */
497 			righttreemin->left = root;
498 			righttreemin = root;
499 		} else if (pindex > root->pindex) {
500 			if ((y = root->right) == NULL)
501 				break;
502 			if (pindex > y->pindex) {
503 				/* Rotate left. */
504 				root->right = y->left;
505 				y->left = root;
506 				root = y;
507 				if ((y = root->right) == NULL)
508 					break;
509 			}
510 			/* Link into the new root's left tree. */
511 			lefttreemax->right = root;
512 			lefttreemax = root;
513 		} else
514 			break;
515 	}
516 	/* Assemble the new root. */
517 	lefttreemax->right = root->left;
518 	righttreemin->left = root->right;
519 	root->left = dummy.right;
520 	root->right = dummy.left;
521 	return (root);
522 }
523 
524 /*
525  *	vm_page_insert:		[ internal use only ]
526  *
527  *	Inserts the given mem entry into the object and object list.
528  *
529  *	The pagetables are not updated but will presumably fault the page
530  *	in if necessary, or if a kernel page the caller will at some point
531  *	enter the page into the kernel's pmap.  We are not allowed to block
532  *	here so we *can't* do this anyway.
533  *
534  *	The object and page must be locked.
535  *	This routine may not block.
536  */
537 void
538 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
539 {
540 	vm_page_t root;
541 
542 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
543 	if (m->object != NULL)
544 		panic("vm_page_insert: page already inserted");
545 
546 	/*
547 	 * Record the object/offset pair in this page
548 	 */
549 	m->object = object;
550 	m->pindex = pindex;
551 
552 	/*
553 	 * Now link into the object's ordered list of backed pages.
554 	 */
555 	root = object->root;
556 	if (root == NULL) {
557 		m->left = NULL;
558 		m->right = NULL;
559 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
560 	} else {
561 		root = vm_page_splay(pindex, root);
562 		if (pindex < root->pindex) {
563 			m->left = root->left;
564 			m->right = root;
565 			root->left = NULL;
566 			TAILQ_INSERT_BEFORE(root, m, listq);
567 		} else if (pindex == root->pindex)
568 			panic("vm_page_insert: offset already allocated");
569 		else {
570 			m->right = root->right;
571 			m->left = root;
572 			root->right = NULL;
573 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
574 		}
575 	}
576 	object->root = m;
577 	object->generation++;
578 
579 	/*
580 	 * show that the object has one more resident page.
581 	 */
582 	object->resident_page_count++;
583 	/*
584 	 * Hold the vnode until the last page is released.
585 	 */
586 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
587 		vhold((struct vnode *)object->handle);
588 
589 	/*
590 	 * Since we are inserting a new and possibly dirty page,
591 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
592 	 */
593 	if (m->flags & PG_WRITEABLE)
594 		vm_object_set_writeable_dirty(object);
595 }
596 
597 /*
598  *	vm_page_remove:
599  *				NOTE: used by device pager as well -wfj
600  *
601  *	Removes the given mem entry from the object/offset-page
602  *	table and the object page list, but do not invalidate/terminate
603  *	the backing store.
604  *
605  *	The object and page must be locked.
606  *	The underlying pmap entry (if any) is NOT removed here.
607  *	This routine may not block.
608  */
609 void
610 vm_page_remove(vm_page_t m)
611 {
612 	vm_object_t object;
613 	vm_page_t root;
614 
615 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
616 	if ((object = m->object) == NULL)
617 		return;
618 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
619 	if (m->flags & PG_BUSY) {
620 		vm_page_flag_clear(m, PG_BUSY);
621 		vm_page_flash(m);
622 	}
623 
624 	/*
625 	 * Now remove from the object's list of backed pages.
626 	 */
627 	if (m != object->root)
628 		vm_page_splay(m->pindex, object->root);
629 	if (m->left == NULL)
630 		root = m->right;
631 	else {
632 		root = vm_page_splay(m->pindex, m->left);
633 		root->right = m->right;
634 	}
635 	object->root = root;
636 	TAILQ_REMOVE(&object->memq, m, listq);
637 
638 	/*
639 	 * And show that the object has one fewer resident page.
640 	 */
641 	object->resident_page_count--;
642 	object->generation++;
643 	/*
644 	 * The vnode may now be recycled.
645 	 */
646 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
647 		vdrop((struct vnode *)object->handle);
648 
649 	m->object = NULL;
650 }
651 
652 /*
653  *	vm_page_lookup:
654  *
655  *	Returns the page associated with the object/offset
656  *	pair specified; if none is found, NULL is returned.
657  *
658  *	The object must be locked.
659  *	This routine may not block.
660  *	This is a critical path routine
661  */
662 vm_page_t
663 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
664 {
665 	vm_page_t m;
666 
667 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
668 	if ((m = object->root) != NULL && m->pindex != pindex) {
669 		m = vm_page_splay(pindex, m);
670 		if ((object->root = m)->pindex != pindex)
671 			m = NULL;
672 	}
673 	return (m);
674 }
675 
676 /*
677  *	vm_page_rename:
678  *
679  *	Move the given memory entry from its
680  *	current object to the specified target object/offset.
681  *
682  *	The object must be locked.
683  *	This routine may not block.
684  *
685  *	Note: swap associated with the page must be invalidated by the move.  We
686  *	      have to do this for several reasons:  (1) we aren't freeing the
687  *	      page, (2) we are dirtying the page, (3) the VM system is probably
688  *	      moving the page from object A to B, and will then later move
689  *	      the backing store from A to B and we can't have a conflict.
690  *
691  *	Note: we *always* dirty the page.  It is necessary both for the
692  *	      fact that we moved it, and because we may be invalidating
693  *	      swap.  If the page is on the cache, we have to deactivate it
694  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
695  *	      on the cache.
696  */
697 void
698 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
699 {
700 
701 	vm_page_remove(m);
702 	vm_page_insert(m, new_object, new_pindex);
703 	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
704 		vm_page_deactivate(m);
705 	vm_page_dirty(m);
706 }
707 
708 /*
709  *	vm_page_select_cache:
710  *
711  *	Move a page of the given color from the cache queue to the free
712  *	queue.  As pages might be found, but are not applicable, they are
713  *	deactivated.
714  *
715  *	This routine may not block.
716  */
717 vm_page_t
718 vm_page_select_cache(int color)
719 {
720 	vm_object_t object;
721 	vm_page_t m;
722 	boolean_t was_trylocked;
723 
724 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
725 	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
726 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
727 		KASSERT(!pmap_page_is_mapped(m),
728 		    ("Found mapped cache page %p", m));
729 		KASSERT((m->flags & PG_UNMANAGED) == 0,
730 		    ("Found unmanaged cache page %p", m));
731 		KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
732 		if (m->hold_count == 0 && (object = m->object,
733 		    (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
734 		    VM_OBJECT_LOCKED(object))) {
735 			KASSERT((m->flags & PG_BUSY) == 0 && m->busy == 0,
736 			    ("Found busy cache page %p", m));
737 			vm_page_free(m);
738 			if (was_trylocked)
739 				VM_OBJECT_UNLOCK(object);
740 			break;
741 		}
742 		vm_page_deactivate(m);
743 	}
744 	return (m);
745 }
746 
747 /*
748  *	vm_page_alloc:
749  *
750  *	Allocate and return a memory cell associated
751  *	with this VM object/offset pair.
752  *
753  *	page_req classes:
754  *	VM_ALLOC_NORMAL		normal process request
755  *	VM_ALLOC_SYSTEM		system *really* needs a page
756  *	VM_ALLOC_INTERRUPT	interrupt time request
757  *	VM_ALLOC_ZERO		zero page
758  *
759  *	This routine may not block.
760  *
761  *	Additional special handling is required when called from an
762  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
763  *	the page cache in this case.
764  */
765 vm_page_t
766 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
767 {
768 	vm_page_t m = NULL;
769 	int color, flags, page_req;
770 
771 	page_req = req & VM_ALLOC_CLASS_MASK;
772 	KASSERT(curthread->td_intr_nesting_level == 0 ||
773 	    page_req == VM_ALLOC_INTERRUPT,
774 	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
775 
776 	if ((req & VM_ALLOC_NOOBJ) == 0) {
777 		KASSERT(object != NULL,
778 		    ("vm_page_alloc: NULL object."));
779 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
780 		color = (pindex + object->pg_color) & PQ_COLORMASK;
781 	} else
782 		color = pindex & PQ_COLORMASK;
783 
784 	/*
785 	 * The pager is allowed to eat deeper into the free page list.
786 	 */
787 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
788 		page_req = VM_ALLOC_SYSTEM;
789 	};
790 
791 loop:
792 	mtx_lock_spin(&vm_page_queue_free_mtx);
793 	if (cnt.v_free_count > cnt.v_free_reserved ||
794 	    (page_req == VM_ALLOC_SYSTEM &&
795 	     cnt.v_cache_count == 0 &&
796 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
797 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
798 		/*
799 		 * Allocate from the free queue if the number of free pages
800 		 * exceeds the minimum for the request class.
801 		 */
802 		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
803 	} else if (page_req != VM_ALLOC_INTERRUPT) {
804 		mtx_unlock_spin(&vm_page_queue_free_mtx);
805 		/*
806 		 * Allocatable from cache (non-interrupt only).  On success,
807 		 * we must free the page and try again, thus ensuring that
808 		 * cnt.v_*_free_min counters are replenished.
809 		 */
810 		vm_page_lock_queues();
811 		if ((m = vm_page_select_cache(color)) == NULL) {
812 			KASSERT(cnt.v_cache_count == 0,
813 			    ("vm_page_alloc: cache queue is missing %d pages",
814 			    cnt.v_cache_count));
815 			vm_page_unlock_queues();
816 			atomic_add_int(&vm_pageout_deficit, 1);
817 			pagedaemon_wakeup();
818 
819 			if (page_req != VM_ALLOC_SYSTEM)
820 				return NULL;
821 
822 			mtx_lock_spin(&vm_page_queue_free_mtx);
823 			if (cnt.v_free_count <=  cnt.v_interrupt_free_min) {
824 				mtx_unlock_spin(&vm_page_queue_free_mtx);
825 				return (NULL);
826 			}
827 			m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
828 		} else {
829 			vm_page_unlock_queues();
830 			goto loop;
831 		}
832 	} else {
833 		/*
834 		 * Not allocatable from cache from interrupt, give up.
835 		 */
836 		mtx_unlock_spin(&vm_page_queue_free_mtx);
837 		atomic_add_int(&vm_pageout_deficit, 1);
838 		pagedaemon_wakeup();
839 		return (NULL);
840 	}
841 
842 	/*
843 	 *  At this point we had better have found a good page.
844 	 */
845 
846 	KASSERT(
847 	    m != NULL,
848 	    ("vm_page_alloc(): missing page on free queue")
849 	);
850 
851 	/*
852 	 * Remove from free queue
853 	 */
854 	vm_pageq_remove_nowakeup(m);
855 
856 	/*
857 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
858 	 */
859 	flags = PG_BUSY;
860 	if (m->flags & PG_ZERO) {
861 		vm_page_zero_count--;
862 		if (req & VM_ALLOC_ZERO)
863 			flags = PG_ZERO | PG_BUSY;
864 	}
865 	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
866 		flags &= ~PG_BUSY;
867 	m->flags = flags;
868 	if (req & VM_ALLOC_WIRED) {
869 		atomic_add_int(&cnt.v_wire_count, 1);
870 		m->wire_count = 1;
871 	} else
872 		m->wire_count = 0;
873 	m->hold_count = 0;
874 	m->act_count = 0;
875 	m->busy = 0;
876 	m->valid = 0;
877 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
878 	mtx_unlock_spin(&vm_page_queue_free_mtx);
879 
880 	if ((req & VM_ALLOC_NOOBJ) == 0)
881 		vm_page_insert(m, object, pindex);
882 	else
883 		m->pindex = pindex;
884 
885 	/*
886 	 * Don't wakeup too often - wakeup the pageout daemon when
887 	 * we would be nearly out of memory.
888 	 */
889 	if (vm_paging_needed())
890 		pagedaemon_wakeup();
891 
892 	return (m);
893 }
894 
895 /*
896  *	vm_wait:	(also see VM_WAIT macro)
897  *
898  *	Block until free pages are available for allocation
899  *	- Called in various places before memory allocations.
900  */
901 void
902 vm_wait(void)
903 {
904 
905 	vm_page_lock_queues();
906 	if (curproc == pageproc) {
907 		vm_pageout_pages_needed = 1;
908 		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
909 		    PDROP | PSWP, "VMWait", 0);
910 	} else {
911 		if (!vm_pages_needed) {
912 			vm_pages_needed = 1;
913 			wakeup(&vm_pages_needed);
914 		}
915 		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
916 		    "vmwait", 0);
917 	}
918 }
919 
920 /*
921  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
922  *
923  *	Block until free pages are available for allocation
924  *	- Called only in vm_fault so that processes page faulting
925  *	  can be easily tracked.
926  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
927  *	  processes will be able to grab memory first.  Do not change
928  *	  this balance without careful testing first.
929  */
930 void
931 vm_waitpfault(void)
932 {
933 
934 	vm_page_lock_queues();
935 	if (!vm_pages_needed) {
936 		vm_pages_needed = 1;
937 		wakeup(&vm_pages_needed);
938 	}
939 	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
940 	    "pfault", 0);
941 }
942 
943 /*
944  *	vm_page_activate:
945  *
946  *	Put the specified page on the active list (if appropriate).
947  *	Ensure that act_count is at least ACT_INIT but do not otherwise
948  *	mess with it.
949  *
950  *	The page queues must be locked.
951  *	This routine may not block.
952  */
953 void
954 vm_page_activate(vm_page_t m)
955 {
956 
957 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
958 	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
959 		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
960 			cnt.v_reactivated++;
961 		vm_pageq_remove(m);
962 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
963 			if (m->act_count < ACT_INIT)
964 				m->act_count = ACT_INIT;
965 			vm_pageq_enqueue(PQ_ACTIVE, m);
966 		}
967 	} else {
968 		if (m->act_count < ACT_INIT)
969 			m->act_count = ACT_INIT;
970 	}
971 }
972 
973 /*
974  *	vm_page_free_wakeup:
975  *
976  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
977  *	routine is called when a page has been added to the cache or free
978  *	queues.
979  *
980  *	The page queues must be locked.
981  *	This routine may not block.
982  */
983 static inline void
984 vm_page_free_wakeup(void)
985 {
986 
987 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
988 	/*
989 	 * if pageout daemon needs pages, then tell it that there are
990 	 * some free.
991 	 */
992 	if (vm_pageout_pages_needed &&
993 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
994 		wakeup(&vm_pageout_pages_needed);
995 		vm_pageout_pages_needed = 0;
996 	}
997 	/*
998 	 * wakeup processes that are waiting on memory if we hit a
999 	 * high water mark. And wakeup scheduler process if we have
1000 	 * lots of memory. this process will swapin processes.
1001 	 */
1002 	if (vm_pages_needed && !vm_page_count_min()) {
1003 		vm_pages_needed = 0;
1004 		wakeup(&cnt.v_free_count);
1005 	}
1006 }
1007 
1008 /*
1009  *	vm_page_free_toq:
1010  *
1011  *	Returns the given page to the PQ_FREE list,
1012  *	disassociating it with any VM object.
1013  *
1014  *	Object and page must be locked prior to entry.
1015  *	This routine may not block.
1016  */
1017 
1018 void
1019 vm_page_free_toq(vm_page_t m)
1020 {
1021 	struct vpgqueues *pq;
1022 
1023 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1024 	KASSERT(!pmap_page_is_mapped(m),
1025 	    ("vm_page_free_toq: freeing mapped page %p", m));
1026 	cnt.v_tfree++;
1027 
1028 	if (m->busy || VM_PAGE_INQUEUE1(m, PQ_FREE)) {
1029 		printf(
1030 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1031 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1032 		    m->hold_count);
1033 		if (VM_PAGE_INQUEUE1(m, PQ_FREE))
1034 			panic("vm_page_free: freeing free page");
1035 		else
1036 			panic("vm_page_free: freeing busy page");
1037 	}
1038 
1039 	/*
1040 	 * unqueue, then remove page.  Note that we cannot destroy
1041 	 * the page here because we do not want to call the pager's
1042 	 * callback routine until after we've put the page on the
1043 	 * appropriate free queue.
1044 	 */
1045 	vm_pageq_remove_nowakeup(m);
1046 	vm_page_remove(m);
1047 
1048 	/*
1049 	 * If fictitious remove object association and
1050 	 * return, otherwise delay object association removal.
1051 	 */
1052 	if ((m->flags & PG_FICTITIOUS) != 0) {
1053 		return;
1054 	}
1055 
1056 	m->valid = 0;
1057 	vm_page_undirty(m);
1058 
1059 	if (m->wire_count != 0) {
1060 		if (m->wire_count > 1) {
1061 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1062 				m->wire_count, (long)m->pindex);
1063 		}
1064 		panic("vm_page_free: freeing wired page");
1065 	}
1066 
1067 	/*
1068 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1069 	 */
1070 	if (m->flags & PG_UNMANAGED) {
1071 		m->flags &= ~PG_UNMANAGED;
1072 	}
1073 
1074 	if (m->hold_count != 0) {
1075 		m->flags &= ~PG_ZERO;
1076 		VM_PAGE_SETQUEUE2(m, PQ_HOLD);
1077 	} else
1078 		VM_PAGE_SETQUEUE1(m, PQ_FREE);
1079 	pq = &vm_page_queues[VM_PAGE_GETQUEUE(m)];
1080 	mtx_lock_spin(&vm_page_queue_free_mtx);
1081 	pq->lcnt++;
1082 	++(*pq->cnt);
1083 
1084 	/*
1085 	 * Put zero'd pages on the end ( where we look for zero'd pages
1086 	 * first ) and non-zerod pages at the head.
1087 	 */
1088 	if (m->flags & PG_ZERO) {
1089 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1090 		++vm_page_zero_count;
1091 	} else {
1092 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1093 	}
1094 	mtx_unlock_spin(&vm_page_queue_free_mtx);
1095 	vm_page_free_wakeup();
1096 }
1097 
1098 /*
1099  *	vm_page_unmanage:
1100  *
1101  * 	Prevent PV management from being done on the page.  The page is
1102  *	removed from the paging queues as if it were wired, and as a
1103  *	consequence of no longer being managed the pageout daemon will not
1104  *	touch it (since there is no way to locate the pte mappings for the
1105  *	page).  madvise() calls that mess with the pmap will also no longer
1106  *	operate on the page.
1107  *
1108  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1109  *	will clear the flag.
1110  *
1111  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1112  *	physical memory as backing store rather then swap-backed memory and
1113  *	will eventually be extended to support 4MB unmanaged physical
1114  *	mappings.
1115  */
1116 void
1117 vm_page_unmanage(vm_page_t m)
1118 {
1119 
1120 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1121 	if ((m->flags & PG_UNMANAGED) == 0) {
1122 		if (m->wire_count == 0)
1123 			vm_pageq_remove(m);
1124 	}
1125 	vm_page_flag_set(m, PG_UNMANAGED);
1126 }
1127 
1128 /*
1129  *	vm_page_wire:
1130  *
1131  *	Mark this page as wired down by yet
1132  *	another map, removing it from paging queues
1133  *	as necessary.
1134  *
1135  *	The page queues must be locked.
1136  *	This routine may not block.
1137  */
1138 void
1139 vm_page_wire(vm_page_t m)
1140 {
1141 
1142 	/*
1143 	 * Only bump the wire statistics if the page is not already wired,
1144 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1145 	 * it is already off the queues).
1146 	 */
1147 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1148 	if (m->flags & PG_FICTITIOUS)
1149 		return;
1150 	if (m->wire_count == 0) {
1151 		if ((m->flags & PG_UNMANAGED) == 0)
1152 			vm_pageq_remove(m);
1153 		atomic_add_int(&cnt.v_wire_count, 1);
1154 	}
1155 	m->wire_count++;
1156 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1157 }
1158 
1159 /*
1160  *	vm_page_unwire:
1161  *
1162  *	Release one wiring of this page, potentially
1163  *	enabling it to be paged again.
1164  *
1165  *	Many pages placed on the inactive queue should actually go
1166  *	into the cache, but it is difficult to figure out which.  What
1167  *	we do instead, if the inactive target is well met, is to put
1168  *	clean pages at the head of the inactive queue instead of the tail.
1169  *	This will cause them to be moved to the cache more quickly and
1170  *	if not actively re-referenced, freed more quickly.  If we just
1171  *	stick these pages at the end of the inactive queue, heavy filesystem
1172  *	meta-data accesses can cause an unnecessary paging load on memory bound
1173  *	processes.  This optimization causes one-time-use metadata to be
1174  *	reused more quickly.
1175  *
1176  *	BUT, if we are in a low-memory situation we have no choice but to
1177  *	put clean pages on the cache queue.
1178  *
1179  *	A number of routines use vm_page_unwire() to guarantee that the page
1180  *	will go into either the inactive or active queues, and will NEVER
1181  *	be placed in the cache - for example, just after dirtying a page.
1182  *	dirty pages in the cache are not allowed.
1183  *
1184  *	The page queues must be locked.
1185  *	This routine may not block.
1186  */
1187 void
1188 vm_page_unwire(vm_page_t m, int activate)
1189 {
1190 
1191 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1192 	if (m->flags & PG_FICTITIOUS)
1193 		return;
1194 	if (m->wire_count > 0) {
1195 		m->wire_count--;
1196 		if (m->wire_count == 0) {
1197 			atomic_subtract_int(&cnt.v_wire_count, 1);
1198 			if (m->flags & PG_UNMANAGED) {
1199 				;
1200 			} else if (activate)
1201 				vm_pageq_enqueue(PQ_ACTIVE, m);
1202 			else {
1203 				vm_page_flag_clear(m, PG_WINATCFLS);
1204 				vm_pageq_enqueue(PQ_INACTIVE, m);
1205 			}
1206 		}
1207 	} else {
1208 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1209 	}
1210 }
1211 
1212 
1213 /*
1214  * Move the specified page to the inactive queue.  If the page has
1215  * any associated swap, the swap is deallocated.
1216  *
1217  * Normally athead is 0 resulting in LRU operation.  athead is set
1218  * to 1 if we want this page to be 'as if it were placed in the cache',
1219  * except without unmapping it from the process address space.
1220  *
1221  * This routine may not block.
1222  */
1223 static inline void
1224 _vm_page_deactivate(vm_page_t m, int athead)
1225 {
1226 
1227 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1228 
1229 	/*
1230 	 * Ignore if already inactive.
1231 	 */
1232 	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1233 		return;
1234 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1235 		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1236 			cnt.v_reactivated++;
1237 		vm_page_flag_clear(m, PG_WINATCFLS);
1238 		vm_pageq_remove(m);
1239 		if (athead)
1240 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1241 		else
1242 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1243 		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1244 		vm_page_queues[PQ_INACTIVE].lcnt++;
1245 		cnt.v_inactive_count++;
1246 	}
1247 }
1248 
1249 void
1250 vm_page_deactivate(vm_page_t m)
1251 {
1252     _vm_page_deactivate(m, 0);
1253 }
1254 
1255 /*
1256  * vm_page_try_to_cache:
1257  *
1258  * Returns 0 on failure, 1 on success
1259  */
1260 int
1261 vm_page_try_to_cache(vm_page_t m)
1262 {
1263 
1264 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1265 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1266 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1267 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1268 		return (0);
1269 	}
1270 	pmap_remove_all(m);
1271 	if (m->dirty)
1272 		return (0);
1273 	vm_page_cache(m);
1274 	return (1);
1275 }
1276 
1277 /*
1278  * vm_page_try_to_free()
1279  *
1280  *	Attempt to free the page.  If we cannot free it, we do nothing.
1281  *	1 is returned on success, 0 on failure.
1282  */
1283 int
1284 vm_page_try_to_free(vm_page_t m)
1285 {
1286 
1287 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1288 	if (m->object != NULL)
1289 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1290 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1291 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1292 		return (0);
1293 	}
1294 	pmap_remove_all(m);
1295 	if (m->dirty)
1296 		return (0);
1297 	vm_page_free(m);
1298 	return (1);
1299 }
1300 
1301 /*
1302  * vm_page_cache
1303  *
1304  * Put the specified page onto the page cache queue (if appropriate).
1305  *
1306  * This routine may not block.
1307  */
1308 void
1309 vm_page_cache(vm_page_t m)
1310 {
1311 
1312 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1313 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1314 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1315 	    m->hold_count || m->wire_count) {
1316 		printf("vm_page_cache: attempting to cache busy page\n");
1317 		return;
1318 	}
1319 	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1320 		return;
1321 
1322 	/*
1323 	 * Remove all pmaps and indicate that the page is not
1324 	 * writeable or mapped.
1325 	 */
1326 	pmap_remove_all(m);
1327 	if (m->dirty != 0) {
1328 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1329 			(long)m->pindex);
1330 	}
1331 	vm_pageq_remove_nowakeup(m);
1332 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1333 	vm_page_free_wakeup();
1334 }
1335 
1336 /*
1337  * vm_page_dontneed
1338  *
1339  *	Cache, deactivate, or do nothing as appropriate.  This routine
1340  *	is typically used by madvise() MADV_DONTNEED.
1341  *
1342  *	Generally speaking we want to move the page into the cache so
1343  *	it gets reused quickly.  However, this can result in a silly syndrome
1344  *	due to the page recycling too quickly.  Small objects will not be
1345  *	fully cached.  On the otherhand, if we move the page to the inactive
1346  *	queue we wind up with a problem whereby very large objects
1347  *	unnecessarily blow away our inactive and cache queues.
1348  *
1349  *	The solution is to move the pages based on a fixed weighting.  We
1350  *	either leave them alone, deactivate them, or move them to the cache,
1351  *	where moving them to the cache has the highest weighting.
1352  *	By forcing some pages into other queues we eventually force the
1353  *	system to balance the queues, potentially recovering other unrelated
1354  *	space from active.  The idea is to not force this to happen too
1355  *	often.
1356  */
1357 void
1358 vm_page_dontneed(vm_page_t m)
1359 {
1360 	static int dnweight;
1361 	int dnw;
1362 	int head;
1363 
1364 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1365 	dnw = ++dnweight;
1366 
1367 	/*
1368 	 * occassionally leave the page alone
1369 	 */
1370 	if ((dnw & 0x01F0) == 0 ||
1371 	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE) ||
1372 	    VM_PAGE_INQUEUE1(m, PQ_CACHE)
1373 	) {
1374 		if (m->act_count >= ACT_INIT)
1375 			--m->act_count;
1376 		return;
1377 	}
1378 
1379 	if (m->dirty == 0 && pmap_is_modified(m))
1380 		vm_page_dirty(m);
1381 
1382 	if (m->dirty || (dnw & 0x0070) == 0) {
1383 		/*
1384 		 * Deactivate the page 3 times out of 32.
1385 		 */
1386 		head = 0;
1387 	} else {
1388 		/*
1389 		 * Cache the page 28 times out of every 32.  Note that
1390 		 * the page is deactivated instead of cached, but placed
1391 		 * at the head of the queue instead of the tail.
1392 		 */
1393 		head = 1;
1394 	}
1395 	_vm_page_deactivate(m, head);
1396 }
1397 
1398 /*
1399  * Grab a page, waiting until we are waken up due to the page
1400  * changing state.  We keep on waiting, if the page continues
1401  * to be in the object.  If the page doesn't exist, first allocate it
1402  * and then conditionally zero it.
1403  *
1404  * This routine may block.
1405  */
1406 vm_page_t
1407 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1408 {
1409 	vm_page_t m;
1410 
1411 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1412 retrylookup:
1413 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1414 		vm_page_lock_queues();
1415 		if (m->busy || (m->flags & PG_BUSY)) {
1416 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1417 			VM_OBJECT_UNLOCK(object);
1418 			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1419 			VM_OBJECT_LOCK(object);
1420 			if ((allocflags & VM_ALLOC_RETRY) == 0)
1421 				return (NULL);
1422 			goto retrylookup;
1423 		} else {
1424 			if (allocflags & VM_ALLOC_WIRED)
1425 				vm_page_wire(m);
1426 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1427 				vm_page_busy(m);
1428 			vm_page_unlock_queues();
1429 			return (m);
1430 		}
1431 	}
1432 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1433 	if (m == NULL) {
1434 		VM_OBJECT_UNLOCK(object);
1435 		VM_WAIT;
1436 		VM_OBJECT_LOCK(object);
1437 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1438 			return (NULL);
1439 		goto retrylookup;
1440 	}
1441 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1442 		pmap_zero_page(m);
1443 	return (m);
1444 }
1445 
1446 /*
1447  * Mapping function for valid bits or for dirty bits in
1448  * a page.  May not block.
1449  *
1450  * Inputs are required to range within a page.
1451  */
1452 inline int
1453 vm_page_bits(int base, int size)
1454 {
1455 	int first_bit;
1456 	int last_bit;
1457 
1458 	KASSERT(
1459 	    base + size <= PAGE_SIZE,
1460 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1461 	);
1462 
1463 	if (size == 0)		/* handle degenerate case */
1464 		return (0);
1465 
1466 	first_bit = base >> DEV_BSHIFT;
1467 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1468 
1469 	return ((2 << last_bit) - (1 << first_bit));
1470 }
1471 
1472 /*
1473  *	vm_page_set_validclean:
1474  *
1475  *	Sets portions of a page valid and clean.  The arguments are expected
1476  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1477  *	of any partial chunks touched by the range.  The invalid portion of
1478  *	such chunks will be zero'd.
1479  *
1480  *	This routine may not block.
1481  *
1482  *	(base + size) must be less then or equal to PAGE_SIZE.
1483  */
1484 void
1485 vm_page_set_validclean(vm_page_t m, int base, int size)
1486 {
1487 	int pagebits;
1488 	int frag;
1489 	int endoff;
1490 
1491 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1492 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1493 	if (size == 0)	/* handle degenerate case */
1494 		return;
1495 
1496 	/*
1497 	 * If the base is not DEV_BSIZE aligned and the valid
1498 	 * bit is clear, we have to zero out a portion of the
1499 	 * first block.
1500 	 */
1501 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1502 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1503 		pmap_zero_page_area(m, frag, base - frag);
1504 
1505 	/*
1506 	 * If the ending offset is not DEV_BSIZE aligned and the
1507 	 * valid bit is clear, we have to zero out a portion of
1508 	 * the last block.
1509 	 */
1510 	endoff = base + size;
1511 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1512 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1513 		pmap_zero_page_area(m, endoff,
1514 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1515 
1516 	/*
1517 	 * Set valid, clear dirty bits.  If validating the entire
1518 	 * page we can safely clear the pmap modify bit.  We also
1519 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1520 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1521 	 * be set again.
1522 	 *
1523 	 * We set valid bits inclusive of any overlap, but we can only
1524 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1525 	 * the range.
1526 	 */
1527 	pagebits = vm_page_bits(base, size);
1528 	m->valid |= pagebits;
1529 #if 0	/* NOT YET */
1530 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1531 		frag = DEV_BSIZE - frag;
1532 		base += frag;
1533 		size -= frag;
1534 		if (size < 0)
1535 			size = 0;
1536 	}
1537 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1538 #endif
1539 	m->dirty &= ~pagebits;
1540 	if (base == 0 && size == PAGE_SIZE) {
1541 		pmap_clear_modify(m);
1542 		vm_page_flag_clear(m, PG_NOSYNC);
1543 	}
1544 }
1545 
1546 void
1547 vm_page_clear_dirty(vm_page_t m, int base, int size)
1548 {
1549 
1550 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1551 	m->dirty &= ~vm_page_bits(base, size);
1552 }
1553 
1554 /*
1555  *	vm_page_set_invalid:
1556  *
1557  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1558  *	valid and dirty bits for the effected areas are cleared.
1559  *
1560  *	May not block.
1561  */
1562 void
1563 vm_page_set_invalid(vm_page_t m, int base, int size)
1564 {
1565 	int bits;
1566 
1567 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1568 	bits = vm_page_bits(base, size);
1569 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1570 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1571 		pmap_remove_all(m);
1572 	m->valid &= ~bits;
1573 	m->dirty &= ~bits;
1574 	m->object->generation++;
1575 }
1576 
1577 /*
1578  * vm_page_zero_invalid()
1579  *
1580  *	The kernel assumes that the invalid portions of a page contain
1581  *	garbage, but such pages can be mapped into memory by user code.
1582  *	When this occurs, we must zero out the non-valid portions of the
1583  *	page so user code sees what it expects.
1584  *
1585  *	Pages are most often semi-valid when the end of a file is mapped
1586  *	into memory and the file's size is not page aligned.
1587  */
1588 void
1589 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1590 {
1591 	int b;
1592 	int i;
1593 
1594 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1595 	/*
1596 	 * Scan the valid bits looking for invalid sections that
1597 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1598 	 * valid bit may be set ) have already been zerod by
1599 	 * vm_page_set_validclean().
1600 	 */
1601 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1602 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1603 		    (m->valid & (1 << i))
1604 		) {
1605 			if (i > b) {
1606 				pmap_zero_page_area(m,
1607 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1608 			}
1609 			b = i + 1;
1610 		}
1611 	}
1612 
1613 	/*
1614 	 * setvalid is TRUE when we can safely set the zero'd areas
1615 	 * as being valid.  We can do this if there are no cache consistancy
1616 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1617 	 */
1618 	if (setvalid)
1619 		m->valid = VM_PAGE_BITS_ALL;
1620 }
1621 
1622 /*
1623  *	vm_page_is_valid:
1624  *
1625  *	Is (partial) page valid?  Note that the case where size == 0
1626  *	will return FALSE in the degenerate case where the page is
1627  *	entirely invalid, and TRUE otherwise.
1628  *
1629  *	May not block.
1630  */
1631 int
1632 vm_page_is_valid(vm_page_t m, int base, int size)
1633 {
1634 	int bits = vm_page_bits(base, size);
1635 
1636 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1637 	if (m->valid && ((m->valid & bits) == bits))
1638 		return 1;
1639 	else
1640 		return 0;
1641 }
1642 
1643 /*
1644  * update dirty bits from pmap/mmu.  May not block.
1645  */
1646 void
1647 vm_page_test_dirty(vm_page_t m)
1648 {
1649 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1650 		vm_page_dirty(m);
1651 	}
1652 }
1653 
1654 int so_zerocp_fullpage = 0;
1655 
1656 void
1657 vm_page_cowfault(vm_page_t m)
1658 {
1659 	vm_page_t mnew;
1660 	vm_object_t object;
1661 	vm_pindex_t pindex;
1662 
1663 	object = m->object;
1664 	pindex = m->pindex;
1665 
1666  retry_alloc:
1667 	pmap_remove_all(m);
1668 	vm_page_remove(m);
1669 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1670 	if (mnew == NULL) {
1671 		vm_page_insert(m, object, pindex);
1672 		vm_page_unlock_queues();
1673 		VM_OBJECT_UNLOCK(object);
1674 		VM_WAIT;
1675 		VM_OBJECT_LOCK(object);
1676 		vm_page_lock_queues();
1677 		goto retry_alloc;
1678 	}
1679 
1680 	if (m->cow == 0) {
1681 		/*
1682 		 * check to see if we raced with an xmit complete when
1683 		 * waiting to allocate a page.  If so, put things back
1684 		 * the way they were
1685 		 */
1686 		vm_page_free(mnew);
1687 		vm_page_insert(m, object, pindex);
1688 	} else { /* clear COW & copy page */
1689 		if (!so_zerocp_fullpage)
1690 			pmap_copy_page(m, mnew);
1691 		mnew->valid = VM_PAGE_BITS_ALL;
1692 		vm_page_dirty(mnew);
1693 		vm_page_flag_clear(mnew, PG_BUSY);
1694 		mnew->wire_count = m->wire_count - m->cow;
1695 		m->wire_count = m->cow;
1696 	}
1697 }
1698 
1699 void
1700 vm_page_cowclear(vm_page_t m)
1701 {
1702 
1703 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1704 	if (m->cow) {
1705 		m->cow--;
1706 		/*
1707 		 * let vm_fault add back write permission  lazily
1708 		 */
1709 	}
1710 	/*
1711 	 *  sf_buf_free() will free the page, so we needn't do it here
1712 	 */
1713 }
1714 
1715 void
1716 vm_page_cowsetup(vm_page_t m)
1717 {
1718 
1719 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1720 	m->cow++;
1721 	pmap_page_protect(m, VM_PROT_READ);
1722 }
1723 
1724 #include "opt_ddb.h"
1725 #ifdef DDB
1726 #include <sys/kernel.h>
1727 
1728 #include <ddb/ddb.h>
1729 
1730 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1731 {
1732 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1733 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1734 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1735 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1736 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1737 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1738 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1739 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1740 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1741 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1742 }
1743 
1744 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1745 {
1746 	int i;
1747 	db_printf("PQ_FREE:");
1748 	for (i = 0; i < PQ_NUMCOLORS; i++) {
1749 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1750 	}
1751 	db_printf("\n");
1752 
1753 	db_printf("PQ_CACHE:");
1754 	for (i = 0; i < PQ_NUMCOLORS; i++) {
1755 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1756 	}
1757 	db_printf("\n");
1758 
1759 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1760 		vm_page_queues[PQ_ACTIVE].lcnt,
1761 		vm_page_queues[PQ_INACTIVE].lcnt);
1762 }
1763 #endif /* DDB */
1764