xref: /freebsd/sys/vm/vm_page.c (revision 8657387683946d0c03e09fe77029edfe309eeb20)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- A page queue lock is required when adding or removing a page from a
67  *	  page queue regardless of other locks or the busy state of a page.
68  *
69  *		* In general, no thread besides the page daemon can acquire or
70  *		  hold more than one page queue lock at a time.
71  *
72  *		* The page daemon can acquire and hold any pair of page queue
73  *		  locks in any order.
74  *
75  *	- The object lock is required when inserting or removing
76  *	  pages from an object (vm_page_insert() or vm_page_remove()).
77  *
78  */
79 
80 /*
81  *	Resident memory management module.
82  */
83 
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD$");
86 
87 #include "opt_vm.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/lock.h>
92 #include <sys/kernel.h>
93 #include <sys/limits.h>
94 #include <sys/linker.h>
95 #include <sys/malloc.h>
96 #include <sys/mman.h>
97 #include <sys/msgbuf.h>
98 #include <sys/mutex.h>
99 #include <sys/proc.h>
100 #include <sys/rwlock.h>
101 #include <sys/sbuf.h>
102 #include <sys/smp.h>
103 #include <sys/sysctl.h>
104 #include <sys/vmmeter.h>
105 #include <sys/vnode.h>
106 
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_param.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pageout.h>
114 #include <vm/vm_pager.h>
115 #include <vm/vm_phys.h>
116 #include <vm/vm_radix.h>
117 #include <vm/vm_reserv.h>
118 #include <vm/vm_extern.h>
119 #include <vm/uma.h>
120 #include <vm/uma_int.h>
121 
122 #include <machine/md_var.h>
123 
124 /*
125  *	Associated with page of user-allocatable memory is a
126  *	page structure.
127  */
128 
129 struct vm_domain vm_dom[MAXMEMDOM];
130 struct mtx_padalign vm_page_queue_free_mtx;
131 
132 struct mtx_padalign pa_lock[PA_LOCK_COUNT];
133 
134 /*
135  * bogus page -- for I/O to/from partially complete buffers,
136  * or for paging into sparsely invalid regions.
137  */
138 vm_page_t bogus_page;
139 
140 vm_page_t vm_page_array;
141 long vm_page_array_size;
142 long first_page;
143 
144 static int boot_pages = UMA_BOOT_PAGES;
145 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
146     &boot_pages, 0,
147     "number of pages allocated for bootstrapping the VM system");
148 
149 static int pa_tryrelock_restart;
150 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
151     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
152 
153 static TAILQ_HEAD(, vm_page) blacklist_head;
154 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
155 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
156     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
157 
158 /* Is the page daemon waiting for free pages? */
159 static int vm_pageout_pages_needed;
160 
161 static uma_zone_t fakepg_zone;
162 
163 static void vm_page_alloc_check(vm_page_t m);
164 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
165 static void vm_page_enqueue(uint8_t queue, vm_page_t m);
166 static void vm_page_free_wakeup(void);
167 static void vm_page_init(void *dummy);
168 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
169     vm_pindex_t pindex, vm_page_t mpred);
170 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
171     vm_page_t mpred);
172 static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
173     vm_paddr_t high);
174 
175 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
176 
177 static void
178 vm_page_init(void *dummy)
179 {
180 
181 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
182 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
183 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
184 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
185 }
186 
187 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
188 #if PAGE_SIZE == 32768
189 #ifdef CTASSERT
190 CTASSERT(sizeof(u_long) >= 8);
191 #endif
192 #endif
193 
194 /*
195  * Try to acquire a physical address lock while a pmap is locked.  If we
196  * fail to trylock we unlock and lock the pmap directly and cache the
197  * locked pa in *locked.  The caller should then restart their loop in case
198  * the virtual to physical mapping has changed.
199  */
200 int
201 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
202 {
203 	vm_paddr_t lockpa;
204 
205 	lockpa = *locked;
206 	*locked = pa;
207 	if (lockpa) {
208 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
209 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
210 			return (0);
211 		PA_UNLOCK(lockpa);
212 	}
213 	if (PA_TRYLOCK(pa))
214 		return (0);
215 	PMAP_UNLOCK(pmap);
216 	atomic_add_int(&pa_tryrelock_restart, 1);
217 	PA_LOCK(pa);
218 	PMAP_LOCK(pmap);
219 	return (EAGAIN);
220 }
221 
222 /*
223  *	vm_set_page_size:
224  *
225  *	Sets the page size, perhaps based upon the memory
226  *	size.  Must be called before any use of page-size
227  *	dependent functions.
228  */
229 void
230 vm_set_page_size(void)
231 {
232 	if (vm_cnt.v_page_size == 0)
233 		vm_cnt.v_page_size = PAGE_SIZE;
234 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
235 		panic("vm_set_page_size: page size not a power of two");
236 }
237 
238 /*
239  *	vm_page_blacklist_next:
240  *
241  *	Find the next entry in the provided string of blacklist
242  *	addresses.  Entries are separated by space, comma, or newline.
243  *	If an invalid integer is encountered then the rest of the
244  *	string is skipped.  Updates the list pointer to the next
245  *	character, or NULL if the string is exhausted or invalid.
246  */
247 static vm_paddr_t
248 vm_page_blacklist_next(char **list, char *end)
249 {
250 	vm_paddr_t bad;
251 	char *cp, *pos;
252 
253 	if (list == NULL || *list == NULL)
254 		return (0);
255 	if (**list =='\0') {
256 		*list = NULL;
257 		return (0);
258 	}
259 
260 	/*
261 	 * If there's no end pointer then the buffer is coming from
262 	 * the kenv and we know it's null-terminated.
263 	 */
264 	if (end == NULL)
265 		end = *list + strlen(*list);
266 
267 	/* Ensure that strtoq() won't walk off the end */
268 	if (*end != '\0') {
269 		if (*end == '\n' || *end == ' ' || *end  == ',')
270 			*end = '\0';
271 		else {
272 			printf("Blacklist not terminated, skipping\n");
273 			*list = NULL;
274 			return (0);
275 		}
276 	}
277 
278 	for (pos = *list; *pos != '\0'; pos = cp) {
279 		bad = strtoq(pos, &cp, 0);
280 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
281 			if (bad == 0) {
282 				if (++cp < end)
283 					continue;
284 				else
285 					break;
286 			}
287 		} else
288 			break;
289 		if (*cp == '\0' || ++cp >= end)
290 			*list = NULL;
291 		else
292 			*list = cp;
293 		return (trunc_page(bad));
294 	}
295 	printf("Garbage in RAM blacklist, skipping\n");
296 	*list = NULL;
297 	return (0);
298 }
299 
300 /*
301  *	vm_page_blacklist_check:
302  *
303  *	Iterate through the provided string of blacklist addresses, pulling
304  *	each entry out of the physical allocator free list and putting it
305  *	onto a list for reporting via the vm.page_blacklist sysctl.
306  */
307 static void
308 vm_page_blacklist_check(char *list, char *end)
309 {
310 	vm_paddr_t pa;
311 	vm_page_t m;
312 	char *next;
313 	int ret;
314 
315 	next = list;
316 	while (next != NULL) {
317 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
318 			continue;
319 		m = vm_phys_paddr_to_vm_page(pa);
320 		if (m == NULL)
321 			continue;
322 		mtx_lock(&vm_page_queue_free_mtx);
323 		ret = vm_phys_unfree_page(m);
324 		mtx_unlock(&vm_page_queue_free_mtx);
325 		if (ret == TRUE) {
326 			TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
327 			if (bootverbose)
328 				printf("Skipping page with pa 0x%jx\n",
329 				    (uintmax_t)pa);
330 		}
331 	}
332 }
333 
334 /*
335  *	vm_page_blacklist_load:
336  *
337  *	Search for a special module named "ram_blacklist".  It'll be a
338  *	plain text file provided by the user via the loader directive
339  *	of the same name.
340  */
341 static void
342 vm_page_blacklist_load(char **list, char **end)
343 {
344 	void *mod;
345 	u_char *ptr;
346 	u_int len;
347 
348 	mod = NULL;
349 	ptr = NULL;
350 
351 	mod = preload_search_by_type("ram_blacklist");
352 	if (mod != NULL) {
353 		ptr = preload_fetch_addr(mod);
354 		len = preload_fetch_size(mod);
355         }
356 	*list = ptr;
357 	if (ptr != NULL)
358 		*end = ptr + len;
359 	else
360 		*end = NULL;
361 	return;
362 }
363 
364 static int
365 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
366 {
367 	vm_page_t m;
368 	struct sbuf sbuf;
369 	int error, first;
370 
371 	first = 1;
372 	error = sysctl_wire_old_buffer(req, 0);
373 	if (error != 0)
374 		return (error);
375 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
376 	TAILQ_FOREACH(m, &blacklist_head, listq) {
377 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
378 		    (uintmax_t)m->phys_addr);
379 		first = 0;
380 	}
381 	error = sbuf_finish(&sbuf);
382 	sbuf_delete(&sbuf);
383 	return (error);
384 }
385 
386 static void
387 vm_page_domain_init(struct vm_domain *vmd)
388 {
389 	struct vm_pagequeue *pq;
390 	int i;
391 
392 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
393 	    "vm inactive pagequeue";
394 	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
395 	    &vm_cnt.v_inactive_count;
396 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
397 	    "vm active pagequeue";
398 	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
399 	    &vm_cnt.v_active_count;
400 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
401 	    "vm laundry pagequeue";
402 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_vcnt) =
403 	    &vm_cnt.v_laundry_count;
404 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
405 	    "vm unswappable pagequeue";
406 	/* Unswappable dirty pages are counted as being in the laundry. */
407 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_vcnt) =
408 	    &vm_cnt.v_laundry_count;
409 	vmd->vmd_page_count = 0;
410 	vmd->vmd_free_count = 0;
411 	vmd->vmd_segs = 0;
412 	vmd->vmd_oom = FALSE;
413 	for (i = 0; i < PQ_COUNT; i++) {
414 		pq = &vmd->vmd_pagequeues[i];
415 		TAILQ_INIT(&pq->pq_pl);
416 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
417 		    MTX_DEF | MTX_DUPOK);
418 	}
419 }
420 
421 /*
422  *	vm_page_startup:
423  *
424  *	Initializes the resident memory module.  Allocates physical memory for
425  *	bootstrapping UMA and some data structures that are used to manage
426  *	physical pages.  Initializes these structures, and populates the free
427  *	page queues.
428  */
429 vm_offset_t
430 vm_page_startup(vm_offset_t vaddr)
431 {
432 	vm_offset_t mapped;
433 	vm_paddr_t high_avail, low_avail, page_range, size;
434 	vm_paddr_t new_end;
435 	int i;
436 	vm_paddr_t pa;
437 	vm_paddr_t last_pa;
438 	char *list, *listend;
439 	vm_paddr_t end;
440 	vm_paddr_t biggestsize;
441 	int biggestone;
442 	int pages_per_zone;
443 
444 	biggestsize = 0;
445 	biggestone = 0;
446 	vaddr = round_page(vaddr);
447 
448 	for (i = 0; phys_avail[i + 1]; i += 2) {
449 		phys_avail[i] = round_page(phys_avail[i]);
450 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
451 	}
452 	for (i = 0; phys_avail[i + 1]; i += 2) {
453 		size = phys_avail[i + 1] - phys_avail[i];
454 		if (size > biggestsize) {
455 			biggestone = i;
456 			biggestsize = size;
457 		}
458 	}
459 
460 	end = phys_avail[biggestone+1];
461 
462 	/*
463 	 * Initialize the page and queue locks.
464 	 */
465 	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
466 	for (i = 0; i < PA_LOCK_COUNT; i++)
467 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
468 	for (i = 0; i < vm_ndomains; i++)
469 		vm_page_domain_init(&vm_dom[i]);
470 
471 	/*
472 	 * Almost all of the pages needed for bootstrapping UMA are used
473 	 * for zone structures, so if the number of CPUs results in those
474 	 * structures taking more than one page each, we set aside more pages
475 	 * in proportion to the zone structure size.
476 	 */
477 	pages_per_zone = howmany(sizeof(struct uma_zone) +
478 	    sizeof(struct uma_cache) * (mp_maxid + 1), UMA_SLAB_SIZE);
479 	if (pages_per_zone > 1) {
480 		/* Reserve more pages so that we don't run out. */
481 		boot_pages = UMA_BOOT_PAGES_ZONES * pages_per_zone;
482 	}
483 
484 	/*
485 	 * Allocate memory for use when boot strapping the kernel memory
486 	 * allocator.
487 	 *
488 	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
489 	 * manually fetch the value.
490 	 */
491 	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
492 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
493 	new_end = trunc_page(new_end);
494 	mapped = pmap_map(&vaddr, new_end, end,
495 	    VM_PROT_READ | VM_PROT_WRITE);
496 	bzero((void *)mapped, end - new_end);
497 	uma_startup((void *)mapped, boot_pages);
498 
499 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
500     defined(__i386__) || defined(__mips__)
501 	/*
502 	 * Allocate a bitmap to indicate that a random physical page
503 	 * needs to be included in a minidump.
504 	 *
505 	 * The amd64 port needs this to indicate which direct map pages
506 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
507 	 *
508 	 * However, i386 still needs this workspace internally within the
509 	 * minidump code.  In theory, they are not needed on i386, but are
510 	 * included should the sf_buf code decide to use them.
511 	 */
512 	last_pa = 0;
513 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
514 		if (dump_avail[i + 1] > last_pa)
515 			last_pa = dump_avail[i + 1];
516 	page_range = last_pa / PAGE_SIZE;
517 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
518 	new_end -= vm_page_dump_size;
519 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
520 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
521 	bzero((void *)vm_page_dump, vm_page_dump_size);
522 #endif
523 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
524 	/*
525 	 * Include the UMA bootstrap pages and vm_page_dump in a crash dump.
526 	 * When pmap_map() uses the direct map, they are not automatically
527 	 * included.
528 	 */
529 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
530 		dump_add_page(pa);
531 #endif
532 	phys_avail[biggestone + 1] = new_end;
533 #ifdef __amd64__
534 	/*
535 	 * Request that the physical pages underlying the message buffer be
536 	 * included in a crash dump.  Since the message buffer is accessed
537 	 * through the direct map, they are not automatically included.
538 	 */
539 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
540 	last_pa = pa + round_page(msgbufsize);
541 	while (pa < last_pa) {
542 		dump_add_page(pa);
543 		pa += PAGE_SIZE;
544 	}
545 #endif
546 	/*
547 	 * Compute the number of pages of memory that will be available for
548 	 * use, taking into account the overhead of a page structure per page.
549 	 * In other words, solve
550 	 *	"available physical memory" - round_page(page_range *
551 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
552 	 * for page_range.
553 	 */
554 	low_avail = phys_avail[0];
555 	high_avail = phys_avail[1];
556 	for (i = 0; i < vm_phys_nsegs; i++) {
557 		if (vm_phys_segs[i].start < low_avail)
558 			low_avail = vm_phys_segs[i].start;
559 		if (vm_phys_segs[i].end > high_avail)
560 			high_avail = vm_phys_segs[i].end;
561 	}
562 	/* Skip the first chunk.  It is already accounted for. */
563 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
564 		if (phys_avail[i] < low_avail)
565 			low_avail = phys_avail[i];
566 		if (phys_avail[i + 1] > high_avail)
567 			high_avail = phys_avail[i + 1];
568 	}
569 	first_page = low_avail / PAGE_SIZE;
570 #ifdef VM_PHYSSEG_SPARSE
571 	size = 0;
572 	for (i = 0; i < vm_phys_nsegs; i++)
573 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
574 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
575 		size += phys_avail[i + 1] - phys_avail[i];
576 #elif defined(VM_PHYSSEG_DENSE)
577 	size = high_avail - low_avail;
578 #else
579 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
580 #endif
581 
582 #ifdef VM_PHYSSEG_DENSE
583 	/*
584 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
585 	 * the overhead of a page structure per page only if vm_page_array is
586 	 * allocated from the last physical memory chunk.  Otherwise, we must
587 	 * allocate page structures representing the physical memory
588 	 * underlying vm_page_array, even though they will not be used.
589 	 */
590 	if (new_end != high_avail)
591 		page_range = size / PAGE_SIZE;
592 	else
593 #endif
594 	{
595 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
596 
597 		/*
598 		 * If the partial bytes remaining are large enough for
599 		 * a page (PAGE_SIZE) without a corresponding
600 		 * 'struct vm_page', then new_end will contain an
601 		 * extra page after subtracting the length of the VM
602 		 * page array.  Compensate by subtracting an extra
603 		 * page from new_end.
604 		 */
605 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
606 			if (new_end == high_avail)
607 				high_avail -= PAGE_SIZE;
608 			new_end -= PAGE_SIZE;
609 		}
610 	}
611 	end = new_end;
612 
613 	/*
614 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
615 	 * However, because this page is allocated from KVM, out-of-bounds
616 	 * accesses using the direct map will not be trapped.
617 	 */
618 	vaddr += PAGE_SIZE;
619 
620 	/*
621 	 * Allocate physical memory for the page structures, and map it.
622 	 */
623 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
624 	mapped = pmap_map(&vaddr, new_end, end,
625 	    VM_PROT_READ | VM_PROT_WRITE);
626 	vm_page_array = (vm_page_t) mapped;
627 #if VM_NRESERVLEVEL > 0
628 	/*
629 	 * Allocate physical memory for the reservation management system's
630 	 * data structures, and map it.
631 	 */
632 	if (high_avail == end)
633 		high_avail = new_end;
634 	new_end = vm_reserv_startup(&vaddr, new_end, high_avail);
635 #endif
636 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
637 	/*
638 	 * Include vm_page_array and vm_reserv_array in a crash dump.
639 	 */
640 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
641 		dump_add_page(pa);
642 #endif
643 	phys_avail[biggestone + 1] = new_end;
644 
645 	/*
646 	 * Add physical memory segments corresponding to the available
647 	 * physical pages.
648 	 */
649 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
650 		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
651 
652 	/*
653 	 * Clear all of the page structures
654 	 */
655 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
656 	for (i = 0; i < page_range; i++)
657 		vm_page_array[i].order = VM_NFREEORDER;
658 	vm_page_array_size = page_range;
659 
660 	/*
661 	 * Initialize the physical memory allocator.
662 	 */
663 	vm_phys_init();
664 
665 	/*
666 	 * Add every available physical page that is not blacklisted to
667 	 * the free lists.
668 	 */
669 	vm_cnt.v_page_count = 0;
670 	vm_cnt.v_free_count = 0;
671 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
672 		pa = phys_avail[i];
673 		last_pa = phys_avail[i + 1];
674 		while (pa < last_pa) {
675 			vm_phys_add_page(pa);
676 			pa += PAGE_SIZE;
677 		}
678 	}
679 
680 	TAILQ_INIT(&blacklist_head);
681 	vm_page_blacklist_load(&list, &listend);
682 	vm_page_blacklist_check(list, listend);
683 
684 	list = kern_getenv("vm.blacklist");
685 	vm_page_blacklist_check(list, NULL);
686 
687 	freeenv(list);
688 #if VM_NRESERVLEVEL > 0
689 	/*
690 	 * Initialize the reservation management system.
691 	 */
692 	vm_reserv_init();
693 #endif
694 	return (vaddr);
695 }
696 
697 void
698 vm_page_reference(vm_page_t m)
699 {
700 
701 	vm_page_aflag_set(m, PGA_REFERENCED);
702 }
703 
704 /*
705  *	vm_page_busy_downgrade:
706  *
707  *	Downgrade an exclusive busy page into a single shared busy page.
708  */
709 void
710 vm_page_busy_downgrade(vm_page_t m)
711 {
712 	u_int x;
713 	bool locked;
714 
715 	vm_page_assert_xbusied(m);
716 	locked = mtx_owned(vm_page_lockptr(m));
717 
718 	for (;;) {
719 		x = m->busy_lock;
720 		x &= VPB_BIT_WAITERS;
721 		if (x != 0 && !locked)
722 			vm_page_lock(m);
723 		if (atomic_cmpset_rel_int(&m->busy_lock,
724 		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1)))
725 			break;
726 		if (x != 0 && !locked)
727 			vm_page_unlock(m);
728 	}
729 	if (x != 0) {
730 		wakeup(m);
731 		if (!locked)
732 			vm_page_unlock(m);
733 	}
734 }
735 
736 /*
737  *	vm_page_sbusied:
738  *
739  *	Return a positive value if the page is shared busied, 0 otherwise.
740  */
741 int
742 vm_page_sbusied(vm_page_t m)
743 {
744 	u_int x;
745 
746 	x = m->busy_lock;
747 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
748 }
749 
750 /*
751  *	vm_page_sunbusy:
752  *
753  *	Shared unbusy a page.
754  */
755 void
756 vm_page_sunbusy(vm_page_t m)
757 {
758 	u_int x;
759 
760 	vm_page_lock_assert(m, MA_NOTOWNED);
761 	vm_page_assert_sbusied(m);
762 
763 	for (;;) {
764 		x = m->busy_lock;
765 		if (VPB_SHARERS(x) > 1) {
766 			if (atomic_cmpset_int(&m->busy_lock, x,
767 			    x - VPB_ONE_SHARER))
768 				break;
769 			continue;
770 		}
771 		if ((x & VPB_BIT_WAITERS) == 0) {
772 			KASSERT(x == VPB_SHARERS_WORD(1),
773 			    ("vm_page_sunbusy: invalid lock state"));
774 			if (atomic_cmpset_int(&m->busy_lock,
775 			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
776 				break;
777 			continue;
778 		}
779 		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
780 		    ("vm_page_sunbusy: invalid lock state for waiters"));
781 
782 		vm_page_lock(m);
783 		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
784 			vm_page_unlock(m);
785 			continue;
786 		}
787 		wakeup(m);
788 		vm_page_unlock(m);
789 		break;
790 	}
791 }
792 
793 /*
794  *	vm_page_busy_sleep:
795  *
796  *	Sleep and release the page lock, using the page pointer as wchan.
797  *	This is used to implement the hard-path of busying mechanism.
798  *
799  *	The given page must be locked.
800  *
801  *	If nonshared is true, sleep only if the page is xbusy.
802  */
803 void
804 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
805 {
806 	u_int x;
807 
808 	vm_page_assert_locked(m);
809 
810 	x = m->busy_lock;
811 	if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
812 	    ((x & VPB_BIT_WAITERS) == 0 &&
813 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
814 		vm_page_unlock(m);
815 		return;
816 	}
817 	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
818 }
819 
820 /*
821  *	vm_page_trysbusy:
822  *
823  *	Try to shared busy a page.
824  *	If the operation succeeds 1 is returned otherwise 0.
825  *	The operation never sleeps.
826  */
827 int
828 vm_page_trysbusy(vm_page_t m)
829 {
830 	u_int x;
831 
832 	for (;;) {
833 		x = m->busy_lock;
834 		if ((x & VPB_BIT_SHARED) == 0)
835 			return (0);
836 		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
837 			return (1);
838 	}
839 }
840 
841 static void
842 vm_page_xunbusy_locked(vm_page_t m)
843 {
844 
845 	vm_page_assert_xbusied(m);
846 	vm_page_assert_locked(m);
847 
848 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
849 	/* There is a waiter, do wakeup() instead of vm_page_flash(). */
850 	wakeup(m);
851 }
852 
853 void
854 vm_page_xunbusy_maybelocked(vm_page_t m)
855 {
856 	bool lockacq;
857 
858 	vm_page_assert_xbusied(m);
859 
860 	/*
861 	 * Fast path for unbusy.  If it succeeds, we know that there
862 	 * are no waiters, so we do not need a wakeup.
863 	 */
864 	if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER,
865 	    VPB_UNBUSIED))
866 		return;
867 
868 	lockacq = !mtx_owned(vm_page_lockptr(m));
869 	if (lockacq)
870 		vm_page_lock(m);
871 	vm_page_xunbusy_locked(m);
872 	if (lockacq)
873 		vm_page_unlock(m);
874 }
875 
876 /*
877  *	vm_page_xunbusy_hard:
878  *
879  *	Called after the first try the exclusive unbusy of a page failed.
880  *	It is assumed that the waiters bit is on.
881  */
882 void
883 vm_page_xunbusy_hard(vm_page_t m)
884 {
885 
886 	vm_page_assert_xbusied(m);
887 
888 	vm_page_lock(m);
889 	vm_page_xunbusy_locked(m);
890 	vm_page_unlock(m);
891 }
892 
893 /*
894  *	vm_page_flash:
895  *
896  *	Wakeup anyone waiting for the page.
897  *	The ownership bits do not change.
898  *
899  *	The given page must be locked.
900  */
901 void
902 vm_page_flash(vm_page_t m)
903 {
904 	u_int x;
905 
906 	vm_page_lock_assert(m, MA_OWNED);
907 
908 	for (;;) {
909 		x = m->busy_lock;
910 		if ((x & VPB_BIT_WAITERS) == 0)
911 			return;
912 		if (atomic_cmpset_int(&m->busy_lock, x,
913 		    x & (~VPB_BIT_WAITERS)))
914 			break;
915 	}
916 	wakeup(m);
917 }
918 
919 /*
920  * Keep page from being freed by the page daemon
921  * much of the same effect as wiring, except much lower
922  * overhead and should be used only for *very* temporary
923  * holding ("wiring").
924  */
925 void
926 vm_page_hold(vm_page_t mem)
927 {
928 
929 	vm_page_lock_assert(mem, MA_OWNED);
930         mem->hold_count++;
931 }
932 
933 void
934 vm_page_unhold(vm_page_t mem)
935 {
936 
937 	vm_page_lock_assert(mem, MA_OWNED);
938 	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
939 	--mem->hold_count;
940 	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
941 		vm_page_free_toq(mem);
942 }
943 
944 /*
945  *	vm_page_unhold_pages:
946  *
947  *	Unhold each of the pages that is referenced by the given array.
948  */
949 void
950 vm_page_unhold_pages(vm_page_t *ma, int count)
951 {
952 	struct mtx *mtx, *new_mtx;
953 
954 	mtx = NULL;
955 	for (; count != 0; count--) {
956 		/*
957 		 * Avoid releasing and reacquiring the same page lock.
958 		 */
959 		new_mtx = vm_page_lockptr(*ma);
960 		if (mtx != new_mtx) {
961 			if (mtx != NULL)
962 				mtx_unlock(mtx);
963 			mtx = new_mtx;
964 			mtx_lock(mtx);
965 		}
966 		vm_page_unhold(*ma);
967 		ma++;
968 	}
969 	if (mtx != NULL)
970 		mtx_unlock(mtx);
971 }
972 
973 vm_page_t
974 PHYS_TO_VM_PAGE(vm_paddr_t pa)
975 {
976 	vm_page_t m;
977 
978 #ifdef VM_PHYSSEG_SPARSE
979 	m = vm_phys_paddr_to_vm_page(pa);
980 	if (m == NULL)
981 		m = vm_phys_fictitious_to_vm_page(pa);
982 	return (m);
983 #elif defined(VM_PHYSSEG_DENSE)
984 	long pi;
985 
986 	pi = atop(pa);
987 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
988 		m = &vm_page_array[pi - first_page];
989 		return (m);
990 	}
991 	return (vm_phys_fictitious_to_vm_page(pa));
992 #else
993 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
994 #endif
995 }
996 
997 /*
998  *	vm_page_getfake:
999  *
1000  *	Create a fictitious page with the specified physical address and
1001  *	memory attribute.  The memory attribute is the only the machine-
1002  *	dependent aspect of a fictitious page that must be initialized.
1003  */
1004 vm_page_t
1005 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1006 {
1007 	vm_page_t m;
1008 
1009 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1010 	vm_page_initfake(m, paddr, memattr);
1011 	return (m);
1012 }
1013 
1014 void
1015 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1016 {
1017 
1018 	if ((m->flags & PG_FICTITIOUS) != 0) {
1019 		/*
1020 		 * The page's memattr might have changed since the
1021 		 * previous initialization.  Update the pmap to the
1022 		 * new memattr.
1023 		 */
1024 		goto memattr;
1025 	}
1026 	m->phys_addr = paddr;
1027 	m->queue = PQ_NONE;
1028 	/* Fictitious pages don't use "segind". */
1029 	m->flags = PG_FICTITIOUS;
1030 	/* Fictitious pages don't use "order" or "pool". */
1031 	m->oflags = VPO_UNMANAGED;
1032 	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1033 	m->wire_count = 1;
1034 	pmap_page_init(m);
1035 memattr:
1036 	pmap_page_set_memattr(m, memattr);
1037 }
1038 
1039 /*
1040  *	vm_page_putfake:
1041  *
1042  *	Release a fictitious page.
1043  */
1044 void
1045 vm_page_putfake(vm_page_t m)
1046 {
1047 
1048 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1049 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1050 	    ("vm_page_putfake: bad page %p", m));
1051 	uma_zfree(fakepg_zone, m);
1052 }
1053 
1054 /*
1055  *	vm_page_updatefake:
1056  *
1057  *	Update the given fictitious page to the specified physical address and
1058  *	memory attribute.
1059  */
1060 void
1061 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1062 {
1063 
1064 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1065 	    ("vm_page_updatefake: bad page %p", m));
1066 	m->phys_addr = paddr;
1067 	pmap_page_set_memattr(m, memattr);
1068 }
1069 
1070 /*
1071  *	vm_page_free:
1072  *
1073  *	Free a page.
1074  */
1075 void
1076 vm_page_free(vm_page_t m)
1077 {
1078 
1079 	m->flags &= ~PG_ZERO;
1080 	vm_page_free_toq(m);
1081 }
1082 
1083 /*
1084  *	vm_page_free_zero:
1085  *
1086  *	Free a page to the zerod-pages queue
1087  */
1088 void
1089 vm_page_free_zero(vm_page_t m)
1090 {
1091 
1092 	m->flags |= PG_ZERO;
1093 	vm_page_free_toq(m);
1094 }
1095 
1096 /*
1097  * Unbusy and handle the page queueing for a page from a getpages request that
1098  * was optionally read ahead or behind.
1099  */
1100 void
1101 vm_page_readahead_finish(vm_page_t m)
1102 {
1103 
1104 	/* We shouldn't put invalid pages on queues. */
1105 	KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
1106 
1107 	/*
1108 	 * Since the page is not the actually needed one, whether it should
1109 	 * be activated or deactivated is not obvious.  Empirical results
1110 	 * have shown that deactivating the page is usually the best choice,
1111 	 * unless the page is wanted by another thread.
1112 	 */
1113 	vm_page_lock(m);
1114 	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1115 		vm_page_activate(m);
1116 	else
1117 		vm_page_deactivate(m);
1118 	vm_page_unlock(m);
1119 	vm_page_xunbusy(m);
1120 }
1121 
1122 /*
1123  *	vm_page_sleep_if_busy:
1124  *
1125  *	Sleep and release the page queues lock if the page is busied.
1126  *	Returns TRUE if the thread slept.
1127  *
1128  *	The given page must be unlocked and object containing it must
1129  *	be locked.
1130  */
1131 int
1132 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1133 {
1134 	vm_object_t obj;
1135 
1136 	vm_page_lock_assert(m, MA_NOTOWNED);
1137 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1138 
1139 	if (vm_page_busied(m)) {
1140 		/*
1141 		 * The page-specific object must be cached because page
1142 		 * identity can change during the sleep, causing the
1143 		 * re-lock of a different object.
1144 		 * It is assumed that a reference to the object is already
1145 		 * held by the callers.
1146 		 */
1147 		obj = m->object;
1148 		vm_page_lock(m);
1149 		VM_OBJECT_WUNLOCK(obj);
1150 		vm_page_busy_sleep(m, msg, false);
1151 		VM_OBJECT_WLOCK(obj);
1152 		return (TRUE);
1153 	}
1154 	return (FALSE);
1155 }
1156 
1157 /*
1158  *	vm_page_dirty_KBI:		[ internal use only ]
1159  *
1160  *	Set all bits in the page's dirty field.
1161  *
1162  *	The object containing the specified page must be locked if the
1163  *	call is made from the machine-independent layer.
1164  *
1165  *	See vm_page_clear_dirty_mask().
1166  *
1167  *	This function should only be called by vm_page_dirty().
1168  */
1169 void
1170 vm_page_dirty_KBI(vm_page_t m)
1171 {
1172 
1173 	/* Refer to this operation by its public name. */
1174 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1175 	    ("vm_page_dirty: page is invalid!"));
1176 	m->dirty = VM_PAGE_BITS_ALL;
1177 }
1178 
1179 /*
1180  *	vm_page_insert:		[ internal use only ]
1181  *
1182  *	Inserts the given mem entry into the object and object list.
1183  *
1184  *	The object must be locked.
1185  */
1186 int
1187 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1188 {
1189 	vm_page_t mpred;
1190 
1191 	VM_OBJECT_ASSERT_WLOCKED(object);
1192 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1193 	return (vm_page_insert_after(m, object, pindex, mpred));
1194 }
1195 
1196 /*
1197  *	vm_page_insert_after:
1198  *
1199  *	Inserts the page "m" into the specified object at offset "pindex".
1200  *
1201  *	The page "mpred" must immediately precede the offset "pindex" within
1202  *	the specified object.
1203  *
1204  *	The object must be locked.
1205  */
1206 static int
1207 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1208     vm_page_t mpred)
1209 {
1210 	vm_page_t msucc;
1211 
1212 	VM_OBJECT_ASSERT_WLOCKED(object);
1213 	KASSERT(m->object == NULL,
1214 	    ("vm_page_insert_after: page already inserted"));
1215 	if (mpred != NULL) {
1216 		KASSERT(mpred->object == object,
1217 		    ("vm_page_insert_after: object doesn't contain mpred"));
1218 		KASSERT(mpred->pindex < pindex,
1219 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1220 		msucc = TAILQ_NEXT(mpred, listq);
1221 	} else
1222 		msucc = TAILQ_FIRST(&object->memq);
1223 	if (msucc != NULL)
1224 		KASSERT(msucc->pindex > pindex,
1225 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1226 
1227 	/*
1228 	 * Record the object/offset pair in this page
1229 	 */
1230 	m->object = object;
1231 	m->pindex = pindex;
1232 
1233 	/*
1234 	 * Now link into the object's ordered list of backed pages.
1235 	 */
1236 	if (vm_radix_insert(&object->rtree, m)) {
1237 		m->object = NULL;
1238 		m->pindex = 0;
1239 		return (1);
1240 	}
1241 	vm_page_insert_radixdone(m, object, mpred);
1242 	return (0);
1243 }
1244 
1245 /*
1246  *	vm_page_insert_radixdone:
1247  *
1248  *	Complete page "m" insertion into the specified object after the
1249  *	radix trie hooking.
1250  *
1251  *	The page "mpred" must precede the offset "m->pindex" within the
1252  *	specified object.
1253  *
1254  *	The object must be locked.
1255  */
1256 static void
1257 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1258 {
1259 
1260 	VM_OBJECT_ASSERT_WLOCKED(object);
1261 	KASSERT(object != NULL && m->object == object,
1262 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1263 	if (mpred != NULL) {
1264 		KASSERT(mpred->object == object,
1265 		    ("vm_page_insert_after: object doesn't contain mpred"));
1266 		KASSERT(mpred->pindex < m->pindex,
1267 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1268 	}
1269 
1270 	if (mpred != NULL)
1271 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1272 	else
1273 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1274 
1275 	/*
1276 	 * Show that the object has one more resident page.
1277 	 */
1278 	object->resident_page_count++;
1279 
1280 	/*
1281 	 * Hold the vnode until the last page is released.
1282 	 */
1283 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1284 		vhold(object->handle);
1285 
1286 	/*
1287 	 * Since we are inserting a new and possibly dirty page,
1288 	 * update the object's OBJ_MIGHTBEDIRTY flag.
1289 	 */
1290 	if (pmap_page_is_write_mapped(m))
1291 		vm_object_set_writeable_dirty(object);
1292 }
1293 
1294 /*
1295  *	vm_page_remove:
1296  *
1297  *	Removes the specified page from its containing object, but does not
1298  *	invalidate any backing storage.
1299  *
1300  *	The object must be locked.  The page must be locked if it is managed.
1301  */
1302 void
1303 vm_page_remove(vm_page_t m)
1304 {
1305 	vm_object_t object;
1306 	vm_page_t mrem;
1307 
1308 	if ((m->oflags & VPO_UNMANAGED) == 0)
1309 		vm_page_assert_locked(m);
1310 	if ((object = m->object) == NULL)
1311 		return;
1312 	VM_OBJECT_ASSERT_WLOCKED(object);
1313 	if (vm_page_xbusied(m))
1314 		vm_page_xunbusy_maybelocked(m);
1315 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1316 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1317 
1318 	/*
1319 	 * Now remove from the object's list of backed pages.
1320 	 */
1321 	TAILQ_REMOVE(&object->memq, m, listq);
1322 
1323 	/*
1324 	 * And show that the object has one fewer resident page.
1325 	 */
1326 	object->resident_page_count--;
1327 
1328 	/*
1329 	 * The vnode may now be recycled.
1330 	 */
1331 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1332 		vdrop(object->handle);
1333 
1334 	m->object = NULL;
1335 }
1336 
1337 /*
1338  *	vm_page_lookup:
1339  *
1340  *	Returns the page associated with the object/offset
1341  *	pair specified; if none is found, NULL is returned.
1342  *
1343  *	The object must be locked.
1344  */
1345 vm_page_t
1346 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1347 {
1348 
1349 	VM_OBJECT_ASSERT_LOCKED(object);
1350 	return (vm_radix_lookup(&object->rtree, pindex));
1351 }
1352 
1353 /*
1354  *	vm_page_find_least:
1355  *
1356  *	Returns the page associated with the object with least pindex
1357  *	greater than or equal to the parameter pindex, or NULL.
1358  *
1359  *	The object must be locked.
1360  */
1361 vm_page_t
1362 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1363 {
1364 	vm_page_t m;
1365 
1366 	VM_OBJECT_ASSERT_LOCKED(object);
1367 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1368 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1369 	return (m);
1370 }
1371 
1372 /*
1373  * Returns the given page's successor (by pindex) within the object if it is
1374  * resident; if none is found, NULL is returned.
1375  *
1376  * The object must be locked.
1377  */
1378 vm_page_t
1379 vm_page_next(vm_page_t m)
1380 {
1381 	vm_page_t next;
1382 
1383 	VM_OBJECT_ASSERT_LOCKED(m->object);
1384 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1385 		MPASS(next->object == m->object);
1386 		if (next->pindex != m->pindex + 1)
1387 			next = NULL;
1388 	}
1389 	return (next);
1390 }
1391 
1392 /*
1393  * Returns the given page's predecessor (by pindex) within the object if it is
1394  * resident; if none is found, NULL is returned.
1395  *
1396  * The object must be locked.
1397  */
1398 vm_page_t
1399 vm_page_prev(vm_page_t m)
1400 {
1401 	vm_page_t prev;
1402 
1403 	VM_OBJECT_ASSERT_LOCKED(m->object);
1404 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1405 		MPASS(prev->object == m->object);
1406 		if (prev->pindex != m->pindex - 1)
1407 			prev = NULL;
1408 	}
1409 	return (prev);
1410 }
1411 
1412 /*
1413  * Uses the page mnew as a replacement for an existing page at index
1414  * pindex which must be already present in the object.
1415  *
1416  * The existing page must not be on a paging queue.
1417  */
1418 vm_page_t
1419 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1420 {
1421 	vm_page_t mold;
1422 
1423 	VM_OBJECT_ASSERT_WLOCKED(object);
1424 	KASSERT(mnew->object == NULL,
1425 	    ("vm_page_replace: page already in object"));
1426 
1427 	/*
1428 	 * This function mostly follows vm_page_insert() and
1429 	 * vm_page_remove() without the radix, object count and vnode
1430 	 * dance.  Double check such functions for more comments.
1431 	 */
1432 
1433 	mnew->object = object;
1434 	mnew->pindex = pindex;
1435 	mold = vm_radix_replace(&object->rtree, mnew);
1436 	KASSERT(mold->queue == PQ_NONE,
1437 	    ("vm_page_replace: mold is on a paging queue"));
1438 
1439 	/* Keep the resident page list in sorted order. */
1440 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1441 	TAILQ_REMOVE(&object->memq, mold, listq);
1442 
1443 	mold->object = NULL;
1444 	vm_page_xunbusy_maybelocked(mold);
1445 
1446 	/*
1447 	 * The object's resident_page_count does not change because we have
1448 	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1449 	 */
1450 	if (pmap_page_is_write_mapped(mnew))
1451 		vm_object_set_writeable_dirty(object);
1452 	return (mold);
1453 }
1454 
1455 /*
1456  *	vm_page_rename:
1457  *
1458  *	Move the given memory entry from its
1459  *	current object to the specified target object/offset.
1460  *
1461  *	Note: swap associated with the page must be invalidated by the move.  We
1462  *	      have to do this for several reasons:  (1) we aren't freeing the
1463  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1464  *	      moving the page from object A to B, and will then later move
1465  *	      the backing store from A to B and we can't have a conflict.
1466  *
1467  *	Note: we *always* dirty the page.  It is necessary both for the
1468  *	      fact that we moved it, and because we may be invalidating
1469  *	      swap.
1470  *
1471  *	The objects must be locked.
1472  */
1473 int
1474 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1475 {
1476 	vm_page_t mpred;
1477 	vm_pindex_t opidx;
1478 
1479 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1480 
1481 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1482 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1483 	    ("vm_page_rename: pindex already renamed"));
1484 
1485 	/*
1486 	 * Create a custom version of vm_page_insert() which does not depend
1487 	 * by m_prev and can cheat on the implementation aspects of the
1488 	 * function.
1489 	 */
1490 	opidx = m->pindex;
1491 	m->pindex = new_pindex;
1492 	if (vm_radix_insert(&new_object->rtree, m)) {
1493 		m->pindex = opidx;
1494 		return (1);
1495 	}
1496 
1497 	/*
1498 	 * The operation cannot fail anymore.  The removal must happen before
1499 	 * the listq iterator is tainted.
1500 	 */
1501 	m->pindex = opidx;
1502 	vm_page_lock(m);
1503 	vm_page_remove(m);
1504 
1505 	/* Return back to the new pindex to complete vm_page_insert(). */
1506 	m->pindex = new_pindex;
1507 	m->object = new_object;
1508 	vm_page_unlock(m);
1509 	vm_page_insert_radixdone(m, new_object, mpred);
1510 	vm_page_dirty(m);
1511 	return (0);
1512 }
1513 
1514 /*
1515  *	vm_page_alloc:
1516  *
1517  *	Allocate and return a page that is associated with the specified
1518  *	object and offset pair.  By default, this page is exclusive busied.
1519  *
1520  *	The caller must always specify an allocation class.
1521  *
1522  *	allocation classes:
1523  *	VM_ALLOC_NORMAL		normal process request
1524  *	VM_ALLOC_SYSTEM		system *really* needs a page
1525  *	VM_ALLOC_INTERRUPT	interrupt time request
1526  *
1527  *	optional allocation flags:
1528  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1529  *				intends to allocate
1530  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1531  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1532  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1533  *				should not be exclusive busy
1534  *	VM_ALLOC_SBUSY		shared busy the allocated page
1535  *	VM_ALLOC_WIRED		wire the allocated page
1536  *	VM_ALLOC_ZERO		prefer a zeroed page
1537  *
1538  *	This routine may not sleep.
1539  */
1540 vm_page_t
1541 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1542 {
1543 
1544 	return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1545 	    vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1546 }
1547 
1548 /*
1549  * Allocate a page in the specified object with the given page index.  To
1550  * optimize insertion of the page into the object, the caller must also specifiy
1551  * the resident page in the object with largest index smaller than the given
1552  * page index, or NULL if no such page exists.
1553  */
1554 vm_page_t
1555 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, int req,
1556     vm_page_t mpred)
1557 {
1558 	vm_page_t m;
1559 	int flags, req_class;
1560 
1561 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1562 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1563 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1564 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1565 	    ("inconsistent object(%p)/req(%x)", object, req));
1566 	KASSERT(mpred == NULL || mpred->pindex < pindex,
1567 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
1568 	    (uintmax_t)pindex));
1569 	if (object != NULL)
1570 		VM_OBJECT_ASSERT_WLOCKED(object);
1571 
1572 	req_class = req & VM_ALLOC_CLASS_MASK;
1573 
1574 	/*
1575 	 * The page daemon is allowed to dig deeper into the free page list.
1576 	 */
1577 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1578 		req_class = VM_ALLOC_SYSTEM;
1579 
1580 	/*
1581 	 * Allocate a page if the number of free pages exceeds the minimum
1582 	 * for the request class.
1583 	 */
1584 	mtx_lock(&vm_page_queue_free_mtx);
1585 	if (vm_cnt.v_free_count > vm_cnt.v_free_reserved ||
1586 	    (req_class == VM_ALLOC_SYSTEM &&
1587 	    vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) ||
1588 	    (req_class == VM_ALLOC_INTERRUPT &&
1589 	    vm_cnt.v_free_count > 0)) {
1590 		/*
1591 		 * Can we allocate the page from a reservation?
1592 		 */
1593 #if VM_NRESERVLEVEL > 0
1594 		if (object == NULL || (object->flags & (OBJ_COLORED |
1595 		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1596 		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL)
1597 #endif
1598 		{
1599 			/*
1600 			 * If not, allocate it from the free page queues.
1601 			 */
1602 			m = vm_phys_alloc_pages(object != NULL ?
1603 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1604 #if VM_NRESERVLEVEL > 0
1605 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1606 				m = vm_phys_alloc_pages(object != NULL ?
1607 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1608 				    0);
1609 			}
1610 #endif
1611 		}
1612 	} else {
1613 		/*
1614 		 * Not allocatable, give up.
1615 		 */
1616 		mtx_unlock(&vm_page_queue_free_mtx);
1617 		atomic_add_int(&vm_pageout_deficit,
1618 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1619 		pagedaemon_wakeup();
1620 		return (NULL);
1621 	}
1622 
1623 	/*
1624 	 *  At this point we had better have found a good page.
1625 	 */
1626 	KASSERT(m != NULL, ("missing page"));
1627 	vm_phys_freecnt_adj(m, -1);
1628 	mtx_unlock(&vm_page_queue_free_mtx);
1629 	vm_page_alloc_check(m);
1630 
1631 	/*
1632 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1633 	 */
1634 	flags = 0;
1635 	if ((req & VM_ALLOC_ZERO) != 0)
1636 		flags = PG_ZERO;
1637 	flags &= m->flags;
1638 	if ((req & VM_ALLOC_NODUMP) != 0)
1639 		flags |= PG_NODUMP;
1640 	m->flags = flags;
1641 	m->aflags = 0;
1642 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1643 	    VPO_UNMANAGED : 0;
1644 	m->busy_lock = VPB_UNBUSIED;
1645 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1646 		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1647 	if ((req & VM_ALLOC_SBUSY) != 0)
1648 		m->busy_lock = VPB_SHARERS_WORD(1);
1649 	if (req & VM_ALLOC_WIRED) {
1650 		/*
1651 		 * The page lock is not required for wiring a page until that
1652 		 * page is inserted into the object.
1653 		 */
1654 		atomic_add_int(&vm_cnt.v_wire_count, 1);
1655 		m->wire_count = 1;
1656 	}
1657 	m->act_count = 0;
1658 
1659 	if (object != NULL) {
1660 		if (vm_page_insert_after(m, object, pindex, mpred)) {
1661 			pagedaemon_wakeup();
1662 			if (req & VM_ALLOC_WIRED) {
1663 				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1664 				m->wire_count = 0;
1665 			}
1666 			KASSERT(m->object == NULL, ("page %p has object", m));
1667 			m->oflags = VPO_UNMANAGED;
1668 			m->busy_lock = VPB_UNBUSIED;
1669 			/* Don't change PG_ZERO. */
1670 			vm_page_free_toq(m);
1671 			return (NULL);
1672 		}
1673 
1674 		/* Ignore device objects; the pager sets "memattr" for them. */
1675 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1676 		    (object->flags & OBJ_FICTITIOUS) == 0)
1677 			pmap_page_set_memattr(m, object->memattr);
1678 	} else
1679 		m->pindex = pindex;
1680 
1681 	/*
1682 	 * Don't wakeup too often - wakeup the pageout daemon when
1683 	 * we would be nearly out of memory.
1684 	 */
1685 	if (vm_paging_needed())
1686 		pagedaemon_wakeup();
1687 
1688 	return (m);
1689 }
1690 
1691 /*
1692  *	vm_page_alloc_contig:
1693  *
1694  *	Allocate a contiguous set of physical pages of the given size "npages"
1695  *	from the free lists.  All of the physical pages must be at or above
1696  *	the given physical address "low" and below the given physical address
1697  *	"high".  The given value "alignment" determines the alignment of the
1698  *	first physical page in the set.  If the given value "boundary" is
1699  *	non-zero, then the set of physical pages cannot cross any physical
1700  *	address boundary that is a multiple of that value.  Both "alignment"
1701  *	and "boundary" must be a power of two.
1702  *
1703  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1704  *	then the memory attribute setting for the physical pages is configured
1705  *	to the object's memory attribute setting.  Otherwise, the memory
1706  *	attribute setting for the physical pages is configured to "memattr",
1707  *	overriding the object's memory attribute setting.  However, if the
1708  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1709  *	memory attribute setting for the physical pages cannot be configured
1710  *	to VM_MEMATTR_DEFAULT.
1711  *
1712  *	The specified object may not contain fictitious pages.
1713  *
1714  *	The caller must always specify an allocation class.
1715  *
1716  *	allocation classes:
1717  *	VM_ALLOC_NORMAL		normal process request
1718  *	VM_ALLOC_SYSTEM		system *really* needs a page
1719  *	VM_ALLOC_INTERRUPT	interrupt time request
1720  *
1721  *	optional allocation flags:
1722  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1723  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1724  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1725  *				should not be exclusive busy
1726  *	VM_ALLOC_SBUSY		shared busy the allocated page
1727  *	VM_ALLOC_WIRED		wire the allocated page
1728  *	VM_ALLOC_ZERO		prefer a zeroed page
1729  *
1730  *	This routine may not sleep.
1731  */
1732 vm_page_t
1733 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1734     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1735     vm_paddr_t boundary, vm_memattr_t memattr)
1736 {
1737 	vm_page_t m, m_ret, mpred;
1738 	u_int busy_lock, flags, oflags;
1739 	int req_class;
1740 
1741 	mpred = NULL;	/* XXX: pacify gcc */
1742 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1743 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1744 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1745 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1746 	    ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
1747 	    req));
1748 	if (object != NULL) {
1749 		VM_OBJECT_ASSERT_WLOCKED(object);
1750 		KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
1751 		    ("vm_page_alloc_contig: object %p has fictitious pages",
1752 		    object));
1753 	}
1754 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1755 	req_class = req & VM_ALLOC_CLASS_MASK;
1756 
1757 	/*
1758 	 * The page daemon is allowed to dig deeper into the free page list.
1759 	 */
1760 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1761 		req_class = VM_ALLOC_SYSTEM;
1762 
1763 	if (object != NULL) {
1764 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1765 		KASSERT(mpred == NULL || mpred->pindex != pindex,
1766 		    ("vm_page_alloc_contig: pindex already allocated"));
1767 	}
1768 
1769 	/*
1770 	 * Can we allocate the pages without the number of free pages falling
1771 	 * below the lower bound for the allocation class?
1772 	 */
1773 	mtx_lock(&vm_page_queue_free_mtx);
1774 	if (vm_cnt.v_free_count >= npages + vm_cnt.v_free_reserved ||
1775 	    (req_class == VM_ALLOC_SYSTEM &&
1776 	    vm_cnt.v_free_count >= npages + vm_cnt.v_interrupt_free_min) ||
1777 	    (req_class == VM_ALLOC_INTERRUPT &&
1778 	    vm_cnt.v_free_count >= npages)) {
1779 		/*
1780 		 * Can we allocate the pages from a reservation?
1781 		 */
1782 #if VM_NRESERVLEVEL > 0
1783 retry:
1784 		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1785 		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1786 		    low, high, alignment, boundary, mpred)) == NULL)
1787 #endif
1788 			/*
1789 			 * If not, allocate them from the free page queues.
1790 			 */
1791 			m_ret = vm_phys_alloc_contig(npages, low, high,
1792 			    alignment, boundary);
1793 	} else {
1794 		mtx_unlock(&vm_page_queue_free_mtx);
1795 		atomic_add_int(&vm_pageout_deficit, npages);
1796 		pagedaemon_wakeup();
1797 		return (NULL);
1798 	}
1799 	if (m_ret != NULL)
1800 		vm_phys_freecnt_adj(m_ret, -npages);
1801 	else {
1802 #if VM_NRESERVLEVEL > 0
1803 		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1804 		    boundary))
1805 			goto retry;
1806 #endif
1807 	}
1808 	mtx_unlock(&vm_page_queue_free_mtx);
1809 	if (m_ret == NULL)
1810 		return (NULL);
1811 	for (m = m_ret; m < &m_ret[npages]; m++)
1812 		vm_page_alloc_check(m);
1813 
1814 	/*
1815 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1816 	 */
1817 	flags = 0;
1818 	if ((req & VM_ALLOC_ZERO) != 0)
1819 		flags = PG_ZERO;
1820 	if ((req & VM_ALLOC_NODUMP) != 0)
1821 		flags |= PG_NODUMP;
1822 	oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1823 	    VPO_UNMANAGED : 0;
1824 	busy_lock = VPB_UNBUSIED;
1825 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1826 		busy_lock = VPB_SINGLE_EXCLUSIVER;
1827 	if ((req & VM_ALLOC_SBUSY) != 0)
1828 		busy_lock = VPB_SHARERS_WORD(1);
1829 	if ((req & VM_ALLOC_WIRED) != 0)
1830 		atomic_add_int(&vm_cnt.v_wire_count, npages);
1831 	if (object != NULL) {
1832 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1833 		    memattr == VM_MEMATTR_DEFAULT)
1834 			memattr = object->memattr;
1835 	}
1836 	for (m = m_ret; m < &m_ret[npages]; m++) {
1837 		m->aflags = 0;
1838 		m->flags = (m->flags | PG_NODUMP) & flags;
1839 		m->busy_lock = busy_lock;
1840 		if ((req & VM_ALLOC_WIRED) != 0)
1841 			m->wire_count = 1;
1842 		m->act_count = 0;
1843 		m->oflags = oflags;
1844 		if (object != NULL) {
1845 			if (vm_page_insert_after(m, object, pindex, mpred)) {
1846 				pagedaemon_wakeup();
1847 				if ((req & VM_ALLOC_WIRED) != 0)
1848 					atomic_subtract_int(
1849 					    &vm_cnt.v_wire_count, npages);
1850 				KASSERT(m->object == NULL,
1851 				    ("page %p has object", m));
1852 				mpred = m;
1853 				for (m = m_ret; m < &m_ret[npages]; m++) {
1854 					if (m <= mpred &&
1855 					    (req & VM_ALLOC_WIRED) != 0)
1856 						m->wire_count = 0;
1857 					m->oflags = VPO_UNMANAGED;
1858 					m->busy_lock = VPB_UNBUSIED;
1859 					/* Don't change PG_ZERO. */
1860 					vm_page_free_toq(m);
1861 				}
1862 				return (NULL);
1863 			}
1864 			mpred = m;
1865 		} else
1866 			m->pindex = pindex;
1867 		if (memattr != VM_MEMATTR_DEFAULT)
1868 			pmap_page_set_memattr(m, memattr);
1869 		pindex++;
1870 	}
1871 	if (vm_paging_needed())
1872 		pagedaemon_wakeup();
1873 	return (m_ret);
1874 }
1875 
1876 /*
1877  * Check a page that has been freshly dequeued from a freelist.
1878  */
1879 static void
1880 vm_page_alloc_check(vm_page_t m)
1881 {
1882 
1883 	KASSERT(m->object == NULL, ("page %p has object", m));
1884 	KASSERT(m->queue == PQ_NONE,
1885 	    ("page %p has unexpected queue %d", m, m->queue));
1886 	KASSERT(m->wire_count == 0, ("page %p is wired", m));
1887 	KASSERT(m->hold_count == 0, ("page %p is held", m));
1888 	KASSERT(!vm_page_busied(m), ("page %p is busy", m));
1889 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
1890 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1891 	    ("page %p has unexpected memattr %d",
1892 	    m, pmap_page_get_memattr(m)));
1893 	KASSERT(m->valid == 0, ("free page %p is valid", m));
1894 }
1895 
1896 /*
1897  * 	vm_page_alloc_freelist:
1898  *
1899  *	Allocate a physical page from the specified free page list.
1900  *
1901  *	The caller must always specify an allocation class.
1902  *
1903  *	allocation classes:
1904  *	VM_ALLOC_NORMAL		normal process request
1905  *	VM_ALLOC_SYSTEM		system *really* needs a page
1906  *	VM_ALLOC_INTERRUPT	interrupt time request
1907  *
1908  *	optional allocation flags:
1909  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1910  *				intends to allocate
1911  *	VM_ALLOC_WIRED		wire the allocated page
1912  *	VM_ALLOC_ZERO		prefer a zeroed page
1913  *
1914  *	This routine may not sleep.
1915  */
1916 vm_page_t
1917 vm_page_alloc_freelist(int flind, int req)
1918 {
1919 	vm_page_t m;
1920 	u_int flags;
1921 	int req_class;
1922 
1923 	req_class = req & VM_ALLOC_CLASS_MASK;
1924 
1925 	/*
1926 	 * The page daemon is allowed to dig deeper into the free page list.
1927 	 */
1928 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1929 		req_class = VM_ALLOC_SYSTEM;
1930 
1931 	/*
1932 	 * Do not allocate reserved pages unless the req has asked for it.
1933 	 */
1934 	mtx_lock(&vm_page_queue_free_mtx);
1935 	if (vm_cnt.v_free_count > vm_cnt.v_free_reserved ||
1936 	    (req_class == VM_ALLOC_SYSTEM &&
1937 	    vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) ||
1938 	    (req_class == VM_ALLOC_INTERRUPT &&
1939 	    vm_cnt.v_free_count > 0))
1940 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1941 	else {
1942 		mtx_unlock(&vm_page_queue_free_mtx);
1943 		atomic_add_int(&vm_pageout_deficit,
1944 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1945 		pagedaemon_wakeup();
1946 		return (NULL);
1947 	}
1948 	if (m == NULL) {
1949 		mtx_unlock(&vm_page_queue_free_mtx);
1950 		return (NULL);
1951 	}
1952 	vm_phys_freecnt_adj(m, -1);
1953 	mtx_unlock(&vm_page_queue_free_mtx);
1954 	vm_page_alloc_check(m);
1955 
1956 	/*
1957 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1958 	 */
1959 	m->aflags = 0;
1960 	flags = 0;
1961 	if ((req & VM_ALLOC_ZERO) != 0)
1962 		flags = PG_ZERO;
1963 	m->flags &= flags;
1964 	if ((req & VM_ALLOC_WIRED) != 0) {
1965 		/*
1966 		 * The page lock is not required for wiring a page that does
1967 		 * not belong to an object.
1968 		 */
1969 		atomic_add_int(&vm_cnt.v_wire_count, 1);
1970 		m->wire_count = 1;
1971 	}
1972 	/* Unmanaged pages don't use "act_count". */
1973 	m->oflags = VPO_UNMANAGED;
1974 	if (vm_paging_needed())
1975 		pagedaemon_wakeup();
1976 	return (m);
1977 }
1978 
1979 #define	VPSC_ANY	0	/* No restrictions. */
1980 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
1981 #define	VPSC_NOSUPER	2	/* Skip superpages. */
1982 
1983 /*
1984  *	vm_page_scan_contig:
1985  *
1986  *	Scan vm_page_array[] between the specified entries "m_start" and
1987  *	"m_end" for a run of contiguous physical pages that satisfy the
1988  *	specified conditions, and return the lowest page in the run.  The
1989  *	specified "alignment" determines the alignment of the lowest physical
1990  *	page in the run.  If the specified "boundary" is non-zero, then the
1991  *	run of physical pages cannot span a physical address that is a
1992  *	multiple of "boundary".
1993  *
1994  *	"m_end" is never dereferenced, so it need not point to a vm_page
1995  *	structure within vm_page_array[].
1996  *
1997  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
1998  *	span a hole (or discontiguity) in the physical address space.  Both
1999  *	"alignment" and "boundary" must be a power of two.
2000  */
2001 vm_page_t
2002 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2003     u_long alignment, vm_paddr_t boundary, int options)
2004 {
2005 	struct mtx *m_mtx, *new_mtx;
2006 	vm_object_t object;
2007 	vm_paddr_t pa;
2008 	vm_page_t m, m_run;
2009 #if VM_NRESERVLEVEL > 0
2010 	int level;
2011 #endif
2012 	int m_inc, order, run_ext, run_len;
2013 
2014 	KASSERT(npages > 0, ("npages is 0"));
2015 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2016 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2017 	m_run = NULL;
2018 	run_len = 0;
2019 	m_mtx = NULL;
2020 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2021 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2022 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2023 
2024 		/*
2025 		 * If the current page would be the start of a run, check its
2026 		 * physical address against the end, alignment, and boundary
2027 		 * conditions.  If it doesn't satisfy these conditions, either
2028 		 * terminate the scan or advance to the next page that
2029 		 * satisfies the failed condition.
2030 		 */
2031 		if (run_len == 0) {
2032 			KASSERT(m_run == NULL, ("m_run != NULL"));
2033 			if (m + npages > m_end)
2034 				break;
2035 			pa = VM_PAGE_TO_PHYS(m);
2036 			if ((pa & (alignment - 1)) != 0) {
2037 				m_inc = atop(roundup2(pa, alignment) - pa);
2038 				continue;
2039 			}
2040 			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2041 			    boundary) != 0) {
2042 				m_inc = atop(roundup2(pa, boundary) - pa);
2043 				continue;
2044 			}
2045 		} else
2046 			KASSERT(m_run != NULL, ("m_run == NULL"));
2047 
2048 		/*
2049 		 * Avoid releasing and reacquiring the same page lock.
2050 		 */
2051 		new_mtx = vm_page_lockptr(m);
2052 		if (m_mtx != new_mtx) {
2053 			if (m_mtx != NULL)
2054 				mtx_unlock(m_mtx);
2055 			m_mtx = new_mtx;
2056 			mtx_lock(m_mtx);
2057 		}
2058 		m_inc = 1;
2059 retry:
2060 		if (m->wire_count != 0 || m->hold_count != 0)
2061 			run_ext = 0;
2062 #if VM_NRESERVLEVEL > 0
2063 		else if ((level = vm_reserv_level(m)) >= 0 &&
2064 		    (options & VPSC_NORESERV) != 0) {
2065 			run_ext = 0;
2066 			/* Advance to the end of the reservation. */
2067 			pa = VM_PAGE_TO_PHYS(m);
2068 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2069 			    pa);
2070 		}
2071 #endif
2072 		else if ((object = m->object) != NULL) {
2073 			/*
2074 			 * The page is considered eligible for relocation if
2075 			 * and only if it could be laundered or reclaimed by
2076 			 * the page daemon.
2077 			 */
2078 			if (!VM_OBJECT_TRYRLOCK(object)) {
2079 				mtx_unlock(m_mtx);
2080 				VM_OBJECT_RLOCK(object);
2081 				mtx_lock(m_mtx);
2082 				if (m->object != object) {
2083 					/*
2084 					 * The page may have been freed.
2085 					 */
2086 					VM_OBJECT_RUNLOCK(object);
2087 					goto retry;
2088 				} else if (m->wire_count != 0 ||
2089 				    m->hold_count != 0) {
2090 					run_ext = 0;
2091 					goto unlock;
2092 				}
2093 			}
2094 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2095 			    ("page %p is PG_UNHOLDFREE", m));
2096 			/* Don't care: PG_NODUMP, PG_ZERO. */
2097 			if (object->type != OBJT_DEFAULT &&
2098 			    object->type != OBJT_SWAP &&
2099 			    object->type != OBJT_VNODE) {
2100 				run_ext = 0;
2101 #if VM_NRESERVLEVEL > 0
2102 			} else if ((options & VPSC_NOSUPER) != 0 &&
2103 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2104 				run_ext = 0;
2105 				/* Advance to the end of the superpage. */
2106 				pa = VM_PAGE_TO_PHYS(m);
2107 				m_inc = atop(roundup2(pa + 1,
2108 				    vm_reserv_size(level)) - pa);
2109 #endif
2110 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2111 			    m->queue != PQ_NONE && !vm_page_busied(m)) {
2112 				/*
2113 				 * The page is allocated but eligible for
2114 				 * relocation.  Extend the current run by one
2115 				 * page.
2116 				 */
2117 				KASSERT(pmap_page_get_memattr(m) ==
2118 				    VM_MEMATTR_DEFAULT,
2119 				    ("page %p has an unexpected memattr", m));
2120 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2121 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2122 				    ("page %p has unexpected oflags", m));
2123 				/* Don't care: VPO_NOSYNC. */
2124 				run_ext = 1;
2125 			} else
2126 				run_ext = 0;
2127 unlock:
2128 			VM_OBJECT_RUNLOCK(object);
2129 #if VM_NRESERVLEVEL > 0
2130 		} else if (level >= 0) {
2131 			/*
2132 			 * The page is reserved but not yet allocated.  In
2133 			 * other words, it is still free.  Extend the current
2134 			 * run by one page.
2135 			 */
2136 			run_ext = 1;
2137 #endif
2138 		} else if ((order = m->order) < VM_NFREEORDER) {
2139 			/*
2140 			 * The page is enqueued in the physical memory
2141 			 * allocator's free page queues.  Moreover, it is the
2142 			 * first page in a power-of-two-sized run of
2143 			 * contiguous free pages.  Add these pages to the end
2144 			 * of the current run, and jump ahead.
2145 			 */
2146 			run_ext = 1 << order;
2147 			m_inc = 1 << order;
2148 		} else {
2149 			/*
2150 			 * Skip the page for one of the following reasons: (1)
2151 			 * It is enqueued in the physical memory allocator's
2152 			 * free page queues.  However, it is not the first
2153 			 * page in a run of contiguous free pages.  (This case
2154 			 * rarely occurs because the scan is performed in
2155 			 * ascending order.) (2) It is not reserved, and it is
2156 			 * transitioning from free to allocated.  (Conversely,
2157 			 * the transition from allocated to free for managed
2158 			 * pages is blocked by the page lock.) (3) It is
2159 			 * allocated but not contained by an object and not
2160 			 * wired, e.g., allocated by Xen's balloon driver.
2161 			 */
2162 			run_ext = 0;
2163 		}
2164 
2165 		/*
2166 		 * Extend or reset the current run of pages.
2167 		 */
2168 		if (run_ext > 0) {
2169 			if (run_len == 0)
2170 				m_run = m;
2171 			run_len += run_ext;
2172 		} else {
2173 			if (run_len > 0) {
2174 				m_run = NULL;
2175 				run_len = 0;
2176 			}
2177 		}
2178 	}
2179 	if (m_mtx != NULL)
2180 		mtx_unlock(m_mtx);
2181 	if (run_len >= npages)
2182 		return (m_run);
2183 	return (NULL);
2184 }
2185 
2186 /*
2187  *	vm_page_reclaim_run:
2188  *
2189  *	Try to relocate each of the allocated virtual pages within the
2190  *	specified run of physical pages to a new physical address.  Free the
2191  *	physical pages underlying the relocated virtual pages.  A virtual page
2192  *	is relocatable if and only if it could be laundered or reclaimed by
2193  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2194  *	physical address above "high".
2195  *
2196  *	Returns 0 if every physical page within the run was already free or
2197  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2198  *	value indicating why the last attempt to relocate a virtual page was
2199  *	unsuccessful.
2200  *
2201  *	"req_class" must be an allocation class.
2202  */
2203 static int
2204 vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
2205     vm_paddr_t high)
2206 {
2207 	struct mtx *m_mtx, *new_mtx;
2208 	struct spglist free;
2209 	vm_object_t object;
2210 	vm_paddr_t pa;
2211 	vm_page_t m, m_end, m_new;
2212 	int error, order, req;
2213 
2214 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2215 	    ("req_class is not an allocation class"));
2216 	SLIST_INIT(&free);
2217 	error = 0;
2218 	m = m_run;
2219 	m_end = m_run + npages;
2220 	m_mtx = NULL;
2221 	for (; error == 0 && m < m_end; m++) {
2222 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2223 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2224 
2225 		/*
2226 		 * Avoid releasing and reacquiring the same page lock.
2227 		 */
2228 		new_mtx = vm_page_lockptr(m);
2229 		if (m_mtx != new_mtx) {
2230 			if (m_mtx != NULL)
2231 				mtx_unlock(m_mtx);
2232 			m_mtx = new_mtx;
2233 			mtx_lock(m_mtx);
2234 		}
2235 retry:
2236 		if (m->wire_count != 0 || m->hold_count != 0)
2237 			error = EBUSY;
2238 		else if ((object = m->object) != NULL) {
2239 			/*
2240 			 * The page is relocated if and only if it could be
2241 			 * laundered or reclaimed by the page daemon.
2242 			 */
2243 			if (!VM_OBJECT_TRYWLOCK(object)) {
2244 				mtx_unlock(m_mtx);
2245 				VM_OBJECT_WLOCK(object);
2246 				mtx_lock(m_mtx);
2247 				if (m->object != object) {
2248 					/*
2249 					 * The page may have been freed.
2250 					 */
2251 					VM_OBJECT_WUNLOCK(object);
2252 					goto retry;
2253 				} else if (m->wire_count != 0 ||
2254 				    m->hold_count != 0) {
2255 					error = EBUSY;
2256 					goto unlock;
2257 				}
2258 			}
2259 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2260 			    ("page %p is PG_UNHOLDFREE", m));
2261 			/* Don't care: PG_NODUMP, PG_ZERO. */
2262 			if (object->type != OBJT_DEFAULT &&
2263 			    object->type != OBJT_SWAP &&
2264 			    object->type != OBJT_VNODE)
2265 				error = EINVAL;
2266 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2267 				error = EINVAL;
2268 			else if (m->queue != PQ_NONE && !vm_page_busied(m)) {
2269 				KASSERT(pmap_page_get_memattr(m) ==
2270 				    VM_MEMATTR_DEFAULT,
2271 				    ("page %p has an unexpected memattr", m));
2272 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2273 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2274 				    ("page %p has unexpected oflags", m));
2275 				/* Don't care: VPO_NOSYNC. */
2276 				if (m->valid != 0) {
2277 					/*
2278 					 * First, try to allocate a new page
2279 					 * that is above "high".  Failing
2280 					 * that, try to allocate a new page
2281 					 * that is below "m_run".  Allocate
2282 					 * the new page between the end of
2283 					 * "m_run" and "high" only as a last
2284 					 * resort.
2285 					 */
2286 					req = req_class | VM_ALLOC_NOOBJ;
2287 					if ((m->flags & PG_NODUMP) != 0)
2288 						req |= VM_ALLOC_NODUMP;
2289 					if (trunc_page(high) !=
2290 					    ~(vm_paddr_t)PAGE_MASK) {
2291 						m_new = vm_page_alloc_contig(
2292 						    NULL, 0, req, 1,
2293 						    round_page(high),
2294 						    ~(vm_paddr_t)0,
2295 						    PAGE_SIZE, 0,
2296 						    VM_MEMATTR_DEFAULT);
2297 					} else
2298 						m_new = NULL;
2299 					if (m_new == NULL) {
2300 						pa = VM_PAGE_TO_PHYS(m_run);
2301 						m_new = vm_page_alloc_contig(
2302 						    NULL, 0, req, 1,
2303 						    0, pa - 1, PAGE_SIZE, 0,
2304 						    VM_MEMATTR_DEFAULT);
2305 					}
2306 					if (m_new == NULL) {
2307 						pa += ptoa(npages);
2308 						m_new = vm_page_alloc_contig(
2309 						    NULL, 0, req, 1,
2310 						    pa, high, PAGE_SIZE, 0,
2311 						    VM_MEMATTR_DEFAULT);
2312 					}
2313 					if (m_new == NULL) {
2314 						error = ENOMEM;
2315 						goto unlock;
2316 					}
2317 					KASSERT(m_new->wire_count == 0,
2318 					    ("page %p is wired", m));
2319 
2320 					/*
2321 					 * Replace "m" with the new page.  For
2322 					 * vm_page_replace(), "m" must be busy
2323 					 * and dequeued.  Finally, change "m"
2324 					 * as if vm_page_free() was called.
2325 					 */
2326 					if (object->ref_count != 0)
2327 						pmap_remove_all(m);
2328 					m_new->aflags = m->aflags;
2329 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2330 					    ("page %p is managed", m));
2331 					m_new->oflags = m->oflags & VPO_NOSYNC;
2332 					pmap_copy_page(m, m_new);
2333 					m_new->valid = m->valid;
2334 					m_new->dirty = m->dirty;
2335 					m->flags &= ~PG_ZERO;
2336 					vm_page_xbusy(m);
2337 					vm_page_remque(m);
2338 					vm_page_replace_checked(m_new, object,
2339 					    m->pindex, m);
2340 					m->valid = 0;
2341 					vm_page_undirty(m);
2342 
2343 					/*
2344 					 * The new page must be deactivated
2345 					 * before the object is unlocked.
2346 					 */
2347 					new_mtx = vm_page_lockptr(m_new);
2348 					if (m_mtx != new_mtx) {
2349 						mtx_unlock(m_mtx);
2350 						m_mtx = new_mtx;
2351 						mtx_lock(m_mtx);
2352 					}
2353 					vm_page_deactivate(m_new);
2354 				} else {
2355 					m->flags &= ~PG_ZERO;
2356 					vm_page_remque(m);
2357 					vm_page_remove(m);
2358 					KASSERT(m->dirty == 0,
2359 					    ("page %p is dirty", m));
2360 				}
2361 				SLIST_INSERT_HEAD(&free, m, plinks.s.ss);
2362 			} else
2363 				error = EBUSY;
2364 unlock:
2365 			VM_OBJECT_WUNLOCK(object);
2366 		} else {
2367 			mtx_lock(&vm_page_queue_free_mtx);
2368 			order = m->order;
2369 			if (order < VM_NFREEORDER) {
2370 				/*
2371 				 * The page is enqueued in the physical memory
2372 				 * allocator's free page queues.  Moreover, it
2373 				 * is the first page in a power-of-two-sized
2374 				 * run of contiguous free pages.  Jump ahead
2375 				 * to the last page within that run, and
2376 				 * continue from there.
2377 				 */
2378 				m += (1 << order) - 1;
2379 			}
2380 #if VM_NRESERVLEVEL > 0
2381 			else if (vm_reserv_is_page_free(m))
2382 				order = 0;
2383 #endif
2384 			mtx_unlock(&vm_page_queue_free_mtx);
2385 			if (order == VM_NFREEORDER)
2386 				error = EINVAL;
2387 		}
2388 	}
2389 	if (m_mtx != NULL)
2390 		mtx_unlock(m_mtx);
2391 	if ((m = SLIST_FIRST(&free)) != NULL) {
2392 		mtx_lock(&vm_page_queue_free_mtx);
2393 		do {
2394 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2395 			vm_phys_freecnt_adj(m, 1);
2396 #if VM_NRESERVLEVEL > 0
2397 			if (!vm_reserv_free_page(m))
2398 #else
2399 			if (true)
2400 #endif
2401 				vm_phys_free_pages(m, 0);
2402 		} while ((m = SLIST_FIRST(&free)) != NULL);
2403 		vm_page_free_wakeup();
2404 		mtx_unlock(&vm_page_queue_free_mtx);
2405 	}
2406 	return (error);
2407 }
2408 
2409 #define	NRUNS	16
2410 
2411 CTASSERT(powerof2(NRUNS));
2412 
2413 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2414 
2415 #define	MIN_RECLAIM	8
2416 
2417 /*
2418  *	vm_page_reclaim_contig:
2419  *
2420  *	Reclaim allocated, contiguous physical memory satisfying the specified
2421  *	conditions by relocating the virtual pages using that physical memory.
2422  *	Returns true if reclamation is successful and false otherwise.  Since
2423  *	relocation requires the allocation of physical pages, reclamation may
2424  *	fail due to a shortage of free pages.  When reclamation fails, callers
2425  *	are expected to perform VM_WAIT before retrying a failed allocation
2426  *	operation, e.g., vm_page_alloc_contig().
2427  *
2428  *	The caller must always specify an allocation class through "req".
2429  *
2430  *	allocation classes:
2431  *	VM_ALLOC_NORMAL		normal process request
2432  *	VM_ALLOC_SYSTEM		system *really* needs a page
2433  *	VM_ALLOC_INTERRUPT	interrupt time request
2434  *
2435  *	The optional allocation flags are ignored.
2436  *
2437  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2438  *	must be a power of two.
2439  */
2440 bool
2441 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2442     u_long alignment, vm_paddr_t boundary)
2443 {
2444 	vm_paddr_t curr_low;
2445 	vm_page_t m_run, m_runs[NRUNS];
2446 	u_long count, reclaimed;
2447 	int error, i, options, req_class;
2448 
2449 	KASSERT(npages > 0, ("npages is 0"));
2450 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2451 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2452 	req_class = req & VM_ALLOC_CLASS_MASK;
2453 
2454 	/*
2455 	 * The page daemon is allowed to dig deeper into the free page list.
2456 	 */
2457 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2458 		req_class = VM_ALLOC_SYSTEM;
2459 
2460 	/*
2461 	 * Return if the number of free pages cannot satisfy the requested
2462 	 * allocation.
2463 	 */
2464 	count = vm_cnt.v_free_count;
2465 	if (count < npages + vm_cnt.v_free_reserved || (count < npages +
2466 	    vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2467 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2468 		return (false);
2469 
2470 	/*
2471 	 * Scan up to three times, relaxing the restrictions ("options") on
2472 	 * the reclamation of reservations and superpages each time.
2473 	 */
2474 	for (options = VPSC_NORESERV;;) {
2475 		/*
2476 		 * Find the highest runs that satisfy the given constraints
2477 		 * and restrictions, and record them in "m_runs".
2478 		 */
2479 		curr_low = low;
2480 		count = 0;
2481 		for (;;) {
2482 			m_run = vm_phys_scan_contig(npages, curr_low, high,
2483 			    alignment, boundary, options);
2484 			if (m_run == NULL)
2485 				break;
2486 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2487 			m_runs[RUN_INDEX(count)] = m_run;
2488 			count++;
2489 		}
2490 
2491 		/*
2492 		 * Reclaim the highest runs in LIFO (descending) order until
2493 		 * the number of reclaimed pages, "reclaimed", is at least
2494 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2495 		 * reclamation is idempotent, and runs will (likely) recur
2496 		 * from one scan to the next as restrictions are relaxed.
2497 		 */
2498 		reclaimed = 0;
2499 		for (i = 0; count > 0 && i < NRUNS; i++) {
2500 			count--;
2501 			m_run = m_runs[RUN_INDEX(count)];
2502 			error = vm_page_reclaim_run(req_class, npages, m_run,
2503 			    high);
2504 			if (error == 0) {
2505 				reclaimed += npages;
2506 				if (reclaimed >= MIN_RECLAIM)
2507 					return (true);
2508 			}
2509 		}
2510 
2511 		/*
2512 		 * Either relax the restrictions on the next scan or return if
2513 		 * the last scan had no restrictions.
2514 		 */
2515 		if (options == VPSC_NORESERV)
2516 			options = VPSC_NOSUPER;
2517 		else if (options == VPSC_NOSUPER)
2518 			options = VPSC_ANY;
2519 		else if (options == VPSC_ANY)
2520 			return (reclaimed != 0);
2521 	}
2522 }
2523 
2524 /*
2525  *	vm_wait:	(also see VM_WAIT macro)
2526  *
2527  *	Sleep until free pages are available for allocation.
2528  *	- Called in various places before memory allocations.
2529  */
2530 void
2531 vm_wait(void)
2532 {
2533 
2534 	mtx_lock(&vm_page_queue_free_mtx);
2535 	if (curproc == pageproc) {
2536 		vm_pageout_pages_needed = 1;
2537 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2538 		    PDROP | PSWP, "VMWait", 0);
2539 	} else {
2540 		if (__predict_false(pageproc == NULL))
2541 			panic("vm_wait in early boot");
2542 		if (!vm_pageout_wanted) {
2543 			vm_pageout_wanted = true;
2544 			wakeup(&vm_pageout_wanted);
2545 		}
2546 		vm_pages_needed = true;
2547 		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2548 		    "vmwait", 0);
2549 	}
2550 }
2551 
2552 /*
2553  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2554  *
2555  *	Sleep until free pages are available for allocation.
2556  *	- Called only in vm_fault so that processes page faulting
2557  *	  can be easily tracked.
2558  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2559  *	  processes will be able to grab memory first.  Do not change
2560  *	  this balance without careful testing first.
2561  */
2562 void
2563 vm_waitpfault(void)
2564 {
2565 
2566 	mtx_lock(&vm_page_queue_free_mtx);
2567 	if (!vm_pageout_wanted) {
2568 		vm_pageout_wanted = true;
2569 		wakeup(&vm_pageout_wanted);
2570 	}
2571 	vm_pages_needed = true;
2572 	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2573 	    "pfault", 0);
2574 }
2575 
2576 struct vm_pagequeue *
2577 vm_page_pagequeue(vm_page_t m)
2578 {
2579 
2580 	if (vm_page_in_laundry(m))
2581 		return (&vm_dom[0].vmd_pagequeues[m->queue]);
2582 	else
2583 		return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2584 }
2585 
2586 /*
2587  *	vm_page_dequeue:
2588  *
2589  *	Remove the given page from its current page queue.
2590  *
2591  *	The page must be locked.
2592  */
2593 void
2594 vm_page_dequeue(vm_page_t m)
2595 {
2596 	struct vm_pagequeue *pq;
2597 
2598 	vm_page_assert_locked(m);
2599 	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2600 	    m));
2601 	pq = vm_page_pagequeue(m);
2602 	vm_pagequeue_lock(pq);
2603 	m->queue = PQ_NONE;
2604 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2605 	vm_pagequeue_cnt_dec(pq);
2606 	vm_pagequeue_unlock(pq);
2607 }
2608 
2609 /*
2610  *	vm_page_dequeue_locked:
2611  *
2612  *	Remove the given page from its current page queue.
2613  *
2614  *	The page and page queue must be locked.
2615  */
2616 void
2617 vm_page_dequeue_locked(vm_page_t m)
2618 {
2619 	struct vm_pagequeue *pq;
2620 
2621 	vm_page_lock_assert(m, MA_OWNED);
2622 	pq = vm_page_pagequeue(m);
2623 	vm_pagequeue_assert_locked(pq);
2624 	m->queue = PQ_NONE;
2625 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2626 	vm_pagequeue_cnt_dec(pq);
2627 }
2628 
2629 /*
2630  *	vm_page_enqueue:
2631  *
2632  *	Add the given page to the specified page queue.
2633  *
2634  *	The page must be locked.
2635  */
2636 static void
2637 vm_page_enqueue(uint8_t queue, vm_page_t m)
2638 {
2639 	struct vm_pagequeue *pq;
2640 
2641 	vm_page_lock_assert(m, MA_OWNED);
2642 	KASSERT(queue < PQ_COUNT,
2643 	    ("vm_page_enqueue: invalid queue %u request for page %p",
2644 	    queue, m));
2645 	if (queue == PQ_LAUNDRY || queue == PQ_UNSWAPPABLE)
2646 		pq = &vm_dom[0].vmd_pagequeues[queue];
2647 	else
2648 		pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2649 	vm_pagequeue_lock(pq);
2650 	m->queue = queue;
2651 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2652 	vm_pagequeue_cnt_inc(pq);
2653 	vm_pagequeue_unlock(pq);
2654 }
2655 
2656 /*
2657  *	vm_page_requeue:
2658  *
2659  *	Move the given page to the tail of its current page queue.
2660  *
2661  *	The page must be locked.
2662  */
2663 void
2664 vm_page_requeue(vm_page_t m)
2665 {
2666 	struct vm_pagequeue *pq;
2667 
2668 	vm_page_lock_assert(m, MA_OWNED);
2669 	KASSERT(m->queue != PQ_NONE,
2670 	    ("vm_page_requeue: page %p is not queued", m));
2671 	pq = vm_page_pagequeue(m);
2672 	vm_pagequeue_lock(pq);
2673 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2674 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2675 	vm_pagequeue_unlock(pq);
2676 }
2677 
2678 /*
2679  *	vm_page_requeue_locked:
2680  *
2681  *	Move the given page to the tail of its current page queue.
2682  *
2683  *	The page queue must be locked.
2684  */
2685 void
2686 vm_page_requeue_locked(vm_page_t m)
2687 {
2688 	struct vm_pagequeue *pq;
2689 
2690 	KASSERT(m->queue != PQ_NONE,
2691 	    ("vm_page_requeue_locked: page %p is not queued", m));
2692 	pq = vm_page_pagequeue(m);
2693 	vm_pagequeue_assert_locked(pq);
2694 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2695 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2696 }
2697 
2698 /*
2699  *	vm_page_activate:
2700  *
2701  *	Put the specified page on the active list (if appropriate).
2702  *	Ensure that act_count is at least ACT_INIT but do not otherwise
2703  *	mess with it.
2704  *
2705  *	The page must be locked.
2706  */
2707 void
2708 vm_page_activate(vm_page_t m)
2709 {
2710 	int queue;
2711 
2712 	vm_page_lock_assert(m, MA_OWNED);
2713 	if ((queue = m->queue) != PQ_ACTIVE) {
2714 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2715 			if (m->act_count < ACT_INIT)
2716 				m->act_count = ACT_INIT;
2717 			if (queue != PQ_NONE)
2718 				vm_page_dequeue(m);
2719 			vm_page_enqueue(PQ_ACTIVE, m);
2720 		} else
2721 			KASSERT(queue == PQ_NONE,
2722 			    ("vm_page_activate: wired page %p is queued", m));
2723 	} else {
2724 		if (m->act_count < ACT_INIT)
2725 			m->act_count = ACT_INIT;
2726 	}
2727 }
2728 
2729 /*
2730  *	vm_page_free_wakeup:
2731  *
2732  *	Helper routine for vm_page_free_toq().  This routine is called
2733  *	when a page is added to the free queues.
2734  *
2735  *	The page queues must be locked.
2736  */
2737 static inline void
2738 vm_page_free_wakeup(void)
2739 {
2740 
2741 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2742 	/*
2743 	 * if pageout daemon needs pages, then tell it that there are
2744 	 * some free.
2745 	 */
2746 	if (vm_pageout_pages_needed &&
2747 	    vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2748 		wakeup(&vm_pageout_pages_needed);
2749 		vm_pageout_pages_needed = 0;
2750 	}
2751 	/*
2752 	 * wakeup processes that are waiting on memory if we hit a
2753 	 * high water mark. And wakeup scheduler process if we have
2754 	 * lots of memory. this process will swapin processes.
2755 	 */
2756 	if (vm_pages_needed && !vm_page_count_min()) {
2757 		vm_pages_needed = false;
2758 		wakeup(&vm_cnt.v_free_count);
2759 	}
2760 }
2761 
2762 /*
2763  *	vm_page_free_toq:
2764  *
2765  *	Returns the given page to the free list,
2766  *	disassociating it with any VM object.
2767  *
2768  *	The object must be locked.  The page must be locked if it is managed.
2769  */
2770 void
2771 vm_page_free_toq(vm_page_t m)
2772 {
2773 
2774 	if ((m->oflags & VPO_UNMANAGED) == 0) {
2775 		vm_page_lock_assert(m, MA_OWNED);
2776 		KASSERT(!pmap_page_is_mapped(m),
2777 		    ("vm_page_free_toq: freeing mapped page %p", m));
2778 	} else
2779 		KASSERT(m->queue == PQ_NONE,
2780 		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2781 	VM_CNT_INC(v_tfree);
2782 
2783 	if (vm_page_sbusied(m))
2784 		panic("vm_page_free: freeing busy page %p", m);
2785 
2786 	/*
2787 	 * Unqueue, then remove page.  Note that we cannot destroy
2788 	 * the page here because we do not want to call the pager's
2789 	 * callback routine until after we've put the page on the
2790 	 * appropriate free queue.
2791 	 */
2792 	vm_page_remque(m);
2793 	vm_page_remove(m);
2794 
2795 	/*
2796 	 * If fictitious remove object association and
2797 	 * return, otherwise delay object association removal.
2798 	 */
2799 	if ((m->flags & PG_FICTITIOUS) != 0) {
2800 		return;
2801 	}
2802 
2803 	m->valid = 0;
2804 	vm_page_undirty(m);
2805 
2806 	if (m->wire_count != 0)
2807 		panic("vm_page_free: freeing wired page %p", m);
2808 	if (m->hold_count != 0) {
2809 		m->flags &= ~PG_ZERO;
2810 		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2811 		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2812 		m->flags |= PG_UNHOLDFREE;
2813 	} else {
2814 		/*
2815 		 * Restore the default memory attribute to the page.
2816 		 */
2817 		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2818 			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2819 
2820 		/*
2821 		 * Insert the page into the physical memory allocator's free
2822 		 * page queues.
2823 		 */
2824 		mtx_lock(&vm_page_queue_free_mtx);
2825 		vm_phys_freecnt_adj(m, 1);
2826 #if VM_NRESERVLEVEL > 0
2827 		if (!vm_reserv_free_page(m))
2828 #else
2829 		if (TRUE)
2830 #endif
2831 			vm_phys_free_pages(m, 0);
2832 		vm_page_free_wakeup();
2833 		mtx_unlock(&vm_page_queue_free_mtx);
2834 	}
2835 }
2836 
2837 /*
2838  *	vm_page_wire:
2839  *
2840  *	Mark this page as wired down by yet
2841  *	another map, removing it from paging queues
2842  *	as necessary.
2843  *
2844  *	If the page is fictitious, then its wire count must remain one.
2845  *
2846  *	The page must be locked.
2847  */
2848 void
2849 vm_page_wire(vm_page_t m)
2850 {
2851 
2852 	/*
2853 	 * Only bump the wire statistics if the page is not already wired,
2854 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2855 	 * it is already off the queues).
2856 	 */
2857 	vm_page_lock_assert(m, MA_OWNED);
2858 	if ((m->flags & PG_FICTITIOUS) != 0) {
2859 		KASSERT(m->wire_count == 1,
2860 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2861 		    m));
2862 		return;
2863 	}
2864 	if (m->wire_count == 0) {
2865 		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2866 		    m->queue == PQ_NONE,
2867 		    ("vm_page_wire: unmanaged page %p is queued", m));
2868 		vm_page_remque(m);
2869 		atomic_add_int(&vm_cnt.v_wire_count, 1);
2870 	}
2871 	m->wire_count++;
2872 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2873 }
2874 
2875 /*
2876  * vm_page_unwire:
2877  *
2878  * Release one wiring of the specified page, potentially allowing it to be
2879  * paged out.  Returns TRUE if the number of wirings transitions to zero and
2880  * FALSE otherwise.
2881  *
2882  * Only managed pages belonging to an object can be paged out.  If the number
2883  * of wirings transitions to zero and the page is eligible for page out, then
2884  * the page is added to the specified paging queue (unless PQ_NONE is
2885  * specified).
2886  *
2887  * If a page is fictitious, then its wire count must always be one.
2888  *
2889  * A managed page must be locked.
2890  */
2891 boolean_t
2892 vm_page_unwire(vm_page_t m, uint8_t queue)
2893 {
2894 
2895 	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
2896 	    ("vm_page_unwire: invalid queue %u request for page %p",
2897 	    queue, m));
2898 	if ((m->oflags & VPO_UNMANAGED) == 0)
2899 		vm_page_assert_locked(m);
2900 	if ((m->flags & PG_FICTITIOUS) != 0) {
2901 		KASSERT(m->wire_count == 1,
2902 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2903 		return (FALSE);
2904 	}
2905 	if (m->wire_count > 0) {
2906 		m->wire_count--;
2907 		if (m->wire_count == 0) {
2908 			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
2909 			if ((m->oflags & VPO_UNMANAGED) == 0 &&
2910 			    m->object != NULL && queue != PQ_NONE)
2911 				vm_page_enqueue(queue, m);
2912 			return (TRUE);
2913 		} else
2914 			return (FALSE);
2915 	} else
2916 		panic("vm_page_unwire: page %p's wire count is zero", m);
2917 }
2918 
2919 /*
2920  * Move the specified page to the inactive queue.
2921  *
2922  * Normally, "noreuse" is FALSE, resulting in LRU ordering of the inactive
2923  * queue.  However, setting "noreuse" to TRUE will accelerate the specified
2924  * page's reclamation, but it will not unmap the page from any address space.
2925  * This is implemented by inserting the page near the head of the inactive
2926  * queue, using a marker page to guide FIFO insertion ordering.
2927  *
2928  * The page must be locked.
2929  */
2930 static inline void
2931 _vm_page_deactivate(vm_page_t m, boolean_t noreuse)
2932 {
2933 	struct vm_pagequeue *pq;
2934 	int queue;
2935 
2936 	vm_page_assert_locked(m);
2937 
2938 	/*
2939 	 * Ignore if the page is already inactive, unless it is unlikely to be
2940 	 * reactivated.
2941 	 */
2942 	if ((queue = m->queue) == PQ_INACTIVE && !noreuse)
2943 		return;
2944 	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2945 		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
2946 		/* Avoid multiple acquisitions of the inactive queue lock. */
2947 		if (queue == PQ_INACTIVE) {
2948 			vm_pagequeue_lock(pq);
2949 			vm_page_dequeue_locked(m);
2950 		} else {
2951 			if (queue != PQ_NONE)
2952 				vm_page_dequeue(m);
2953 			vm_pagequeue_lock(pq);
2954 		}
2955 		m->queue = PQ_INACTIVE;
2956 		if (noreuse)
2957 			TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead,
2958 			    m, plinks.q);
2959 		else
2960 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2961 		vm_pagequeue_cnt_inc(pq);
2962 		vm_pagequeue_unlock(pq);
2963 	}
2964 }
2965 
2966 /*
2967  * Move the specified page to the inactive queue.
2968  *
2969  * The page must be locked.
2970  */
2971 void
2972 vm_page_deactivate(vm_page_t m)
2973 {
2974 
2975 	_vm_page_deactivate(m, FALSE);
2976 }
2977 
2978 /*
2979  * Move the specified page to the inactive queue with the expectation
2980  * that it is unlikely to be reused.
2981  *
2982  * The page must be locked.
2983  */
2984 void
2985 vm_page_deactivate_noreuse(vm_page_t m)
2986 {
2987 
2988 	_vm_page_deactivate(m, TRUE);
2989 }
2990 
2991 /*
2992  * vm_page_launder
2993  *
2994  * 	Put a page in the laundry.
2995  */
2996 void
2997 vm_page_launder(vm_page_t m)
2998 {
2999 	int queue;
3000 
3001 	vm_page_assert_locked(m);
3002 	if ((queue = m->queue) != PQ_LAUNDRY) {
3003 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3004 			if (queue != PQ_NONE)
3005 				vm_page_dequeue(m);
3006 			vm_page_enqueue(PQ_LAUNDRY, m);
3007 		} else
3008 			KASSERT(queue == PQ_NONE,
3009 			    ("wired page %p is queued", m));
3010 	}
3011 }
3012 
3013 /*
3014  * vm_page_unswappable
3015  *
3016  *	Put a page in the PQ_UNSWAPPABLE holding queue.
3017  */
3018 void
3019 vm_page_unswappable(vm_page_t m)
3020 {
3021 
3022 	vm_page_assert_locked(m);
3023 	KASSERT(m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0,
3024 	    ("page %p already unswappable", m));
3025 	if (m->queue != PQ_NONE)
3026 		vm_page_dequeue(m);
3027 	vm_page_enqueue(PQ_UNSWAPPABLE, m);
3028 }
3029 
3030 /*
3031  * vm_page_try_to_free()
3032  *
3033  *	Attempt to free the page.  If we cannot free it, we do nothing.
3034  *	1 is returned on success, 0 on failure.
3035  */
3036 int
3037 vm_page_try_to_free(vm_page_t m)
3038 {
3039 
3040 	vm_page_lock_assert(m, MA_OWNED);
3041 	if (m->object != NULL)
3042 		VM_OBJECT_ASSERT_WLOCKED(m->object);
3043 	if (m->dirty || m->hold_count || m->wire_count ||
3044 	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
3045 		return (0);
3046 	pmap_remove_all(m);
3047 	if (m->dirty)
3048 		return (0);
3049 	vm_page_free(m);
3050 	return (1);
3051 }
3052 
3053 /*
3054  * vm_page_advise
3055  *
3056  * 	Apply the specified advice to the given page.
3057  *
3058  *	The object and page must be locked.
3059  */
3060 void
3061 vm_page_advise(vm_page_t m, int advice)
3062 {
3063 
3064 	vm_page_assert_locked(m);
3065 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3066 	if (advice == MADV_FREE)
3067 		/*
3068 		 * Mark the page clean.  This will allow the page to be freed
3069 		 * without first paging it out.  MADV_FREE pages are often
3070 		 * quickly reused by malloc(3), so we do not do anything that
3071 		 * would result in a page fault on a later access.
3072 		 */
3073 		vm_page_undirty(m);
3074 	else if (advice != MADV_DONTNEED) {
3075 		if (advice == MADV_WILLNEED)
3076 			vm_page_activate(m);
3077 		return;
3078 	}
3079 
3080 	/*
3081 	 * Clear any references to the page.  Otherwise, the page daemon will
3082 	 * immediately reactivate the page.
3083 	 */
3084 	vm_page_aflag_clear(m, PGA_REFERENCED);
3085 
3086 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
3087 		vm_page_dirty(m);
3088 
3089 	/*
3090 	 * Place clean pages near the head of the inactive queue rather than
3091 	 * the tail, thus defeating the queue's LRU operation and ensuring that
3092 	 * the page will be reused quickly.  Dirty pages not already in the
3093 	 * laundry are moved there.
3094 	 */
3095 	if (m->dirty == 0)
3096 		vm_page_deactivate_noreuse(m);
3097 	else
3098 		vm_page_launder(m);
3099 }
3100 
3101 /*
3102  * Grab a page, waiting until we are waken up due to the page
3103  * changing state.  We keep on waiting, if the page continues
3104  * to be in the object.  If the page doesn't exist, first allocate it
3105  * and then conditionally zero it.
3106  *
3107  * This routine may sleep.
3108  *
3109  * The object must be locked on entry.  The lock will, however, be released
3110  * and reacquired if the routine sleeps.
3111  */
3112 vm_page_t
3113 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3114 {
3115 	vm_page_t m;
3116 	int sleep;
3117 
3118 	VM_OBJECT_ASSERT_WLOCKED(object);
3119 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3120 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3121 	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
3122 retrylookup:
3123 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
3124 		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3125 		    vm_page_xbusied(m) : vm_page_busied(m);
3126 		if (sleep) {
3127 			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3128 				return (NULL);
3129 			/*
3130 			 * Reference the page before unlocking and
3131 			 * sleeping so that the page daemon is less
3132 			 * likely to reclaim it.
3133 			 */
3134 			vm_page_aflag_set(m, PGA_REFERENCED);
3135 			vm_page_lock(m);
3136 			VM_OBJECT_WUNLOCK(object);
3137 			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
3138 			    VM_ALLOC_IGN_SBUSY) != 0);
3139 			VM_OBJECT_WLOCK(object);
3140 			goto retrylookup;
3141 		} else {
3142 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3143 				vm_page_lock(m);
3144 				vm_page_wire(m);
3145 				vm_page_unlock(m);
3146 			}
3147 			if ((allocflags &
3148 			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
3149 				vm_page_xbusy(m);
3150 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3151 				vm_page_sbusy(m);
3152 			return (m);
3153 		}
3154 	}
3155 	m = vm_page_alloc(object, pindex, allocflags);
3156 	if (m == NULL) {
3157 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3158 			return (NULL);
3159 		VM_OBJECT_WUNLOCK(object);
3160 		VM_WAIT;
3161 		VM_OBJECT_WLOCK(object);
3162 		goto retrylookup;
3163 	}
3164 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
3165 		pmap_zero_page(m);
3166 	return (m);
3167 }
3168 
3169 /*
3170  * Return the specified range of pages from the given object.  For each
3171  * page offset within the range, if a page already exists within the object
3172  * at that offset and it is busy, then wait for it to change state.  If,
3173  * instead, the page doesn't exist, then allocate it.
3174  *
3175  * The caller must always specify an allocation class.
3176  *
3177  * allocation classes:
3178  *	VM_ALLOC_NORMAL		normal process request
3179  *	VM_ALLOC_SYSTEM		system *really* needs the pages
3180  *
3181  * The caller must always specify that the pages are to be busied and/or
3182  * wired.
3183  *
3184  * optional allocation flags:
3185  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
3186  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
3187  *	VM_ALLOC_NOWAIT		do not sleep
3188  *	VM_ALLOC_SBUSY		set page to sbusy state
3189  *	VM_ALLOC_WIRED		wire the pages
3190  *	VM_ALLOC_ZERO		zero and validate any invalid pages
3191  *
3192  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
3193  * may return a partial prefix of the requested range.
3194  */
3195 int
3196 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
3197     vm_page_t *ma, int count)
3198 {
3199 	vm_page_t m, mpred;
3200 	int i;
3201 	bool sleep;
3202 
3203 	VM_OBJECT_ASSERT_WLOCKED(object);
3204 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
3205 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
3206 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
3207 	    (allocflags & VM_ALLOC_WIRED) != 0,
3208 	    ("vm_page_grab_pages: the pages must be busied or wired"));
3209 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3210 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3211 	    ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch"));
3212 	if (count == 0)
3213 		return (0);
3214 	i = 0;
3215 retrylookup:
3216 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
3217 	if (m == NULL || m->pindex != pindex + i) {
3218 		mpred = m;
3219 		m = NULL;
3220 	} else
3221 		mpred = TAILQ_PREV(m, pglist, listq);
3222 	for (; i < count; i++) {
3223 		if (m != NULL) {
3224 			sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3225 			    vm_page_xbusied(m) : vm_page_busied(m);
3226 			if (sleep) {
3227 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3228 					break;
3229 				/*
3230 				 * Reference the page before unlocking and
3231 				 * sleeping so that the page daemon is less
3232 				 * likely to reclaim it.
3233 				 */
3234 				vm_page_aflag_set(m, PGA_REFERENCED);
3235 				vm_page_lock(m);
3236 				VM_OBJECT_WUNLOCK(object);
3237 				vm_page_busy_sleep(m, "grbmaw", (allocflags &
3238 				    VM_ALLOC_IGN_SBUSY) != 0);
3239 				VM_OBJECT_WLOCK(object);
3240 				goto retrylookup;
3241 			}
3242 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3243 				vm_page_lock(m);
3244 				vm_page_wire(m);
3245 				vm_page_unlock(m);
3246 			}
3247 			if ((allocflags & (VM_ALLOC_NOBUSY |
3248 			    VM_ALLOC_SBUSY)) == 0)
3249 				vm_page_xbusy(m);
3250 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3251 				vm_page_sbusy(m);
3252 		} else {
3253 			m = vm_page_alloc_after(object, pindex + i,
3254 			    (allocflags & ~VM_ALLOC_IGN_SBUSY) |
3255 			    VM_ALLOC_COUNT(count - i), mpred);
3256 			if (m == NULL) {
3257 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3258 					break;
3259 				VM_OBJECT_WUNLOCK(object);
3260 				VM_WAIT;
3261 				VM_OBJECT_WLOCK(object);
3262 				goto retrylookup;
3263 			}
3264 		}
3265 		if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) {
3266 			if ((m->flags & PG_ZERO) == 0)
3267 				pmap_zero_page(m);
3268 			m->valid = VM_PAGE_BITS_ALL;
3269 		}
3270 		ma[i] = mpred = m;
3271 		m = vm_page_next(m);
3272 	}
3273 	return (i);
3274 }
3275 
3276 /*
3277  * Mapping function for valid or dirty bits in a page.
3278  *
3279  * Inputs are required to range within a page.
3280  */
3281 vm_page_bits_t
3282 vm_page_bits(int base, int size)
3283 {
3284 	int first_bit;
3285 	int last_bit;
3286 
3287 	KASSERT(
3288 	    base + size <= PAGE_SIZE,
3289 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3290 	);
3291 
3292 	if (size == 0)		/* handle degenerate case */
3293 		return (0);
3294 
3295 	first_bit = base >> DEV_BSHIFT;
3296 	last_bit = (base + size - 1) >> DEV_BSHIFT;
3297 
3298 	return (((vm_page_bits_t)2 << last_bit) -
3299 	    ((vm_page_bits_t)1 << first_bit));
3300 }
3301 
3302 /*
3303  *	vm_page_set_valid_range:
3304  *
3305  *	Sets portions of a page valid.  The arguments are expected
3306  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3307  *	of any partial chunks touched by the range.  The invalid portion of
3308  *	such chunks will be zeroed.
3309  *
3310  *	(base + size) must be less then or equal to PAGE_SIZE.
3311  */
3312 void
3313 vm_page_set_valid_range(vm_page_t m, int base, int size)
3314 {
3315 	int endoff, frag;
3316 
3317 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3318 	if (size == 0)	/* handle degenerate case */
3319 		return;
3320 
3321 	/*
3322 	 * If the base is not DEV_BSIZE aligned and the valid
3323 	 * bit is clear, we have to zero out a portion of the
3324 	 * first block.
3325 	 */
3326 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3327 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
3328 		pmap_zero_page_area(m, frag, base - frag);
3329 
3330 	/*
3331 	 * If the ending offset is not DEV_BSIZE aligned and the
3332 	 * valid bit is clear, we have to zero out a portion of
3333 	 * the last block.
3334 	 */
3335 	endoff = base + size;
3336 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3337 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
3338 		pmap_zero_page_area(m, endoff,
3339 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3340 
3341 	/*
3342 	 * Assert that no previously invalid block that is now being validated
3343 	 * is already dirty.
3344 	 */
3345 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
3346 	    ("vm_page_set_valid_range: page %p is dirty", m));
3347 
3348 	/*
3349 	 * Set valid bits inclusive of any overlap.
3350 	 */
3351 	m->valid |= vm_page_bits(base, size);
3352 }
3353 
3354 /*
3355  * Clear the given bits from the specified page's dirty field.
3356  */
3357 static __inline void
3358 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
3359 {
3360 	uintptr_t addr;
3361 #if PAGE_SIZE < 16384
3362 	int shift;
3363 #endif
3364 
3365 	/*
3366 	 * If the object is locked and the page is neither exclusive busy nor
3367 	 * write mapped, then the page's dirty field cannot possibly be
3368 	 * set by a concurrent pmap operation.
3369 	 */
3370 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3371 	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
3372 		m->dirty &= ~pagebits;
3373 	else {
3374 		/*
3375 		 * The pmap layer can call vm_page_dirty() without
3376 		 * holding a distinguished lock.  The combination of
3377 		 * the object's lock and an atomic operation suffice
3378 		 * to guarantee consistency of the page dirty field.
3379 		 *
3380 		 * For PAGE_SIZE == 32768 case, compiler already
3381 		 * properly aligns the dirty field, so no forcible
3382 		 * alignment is needed. Only require existence of
3383 		 * atomic_clear_64 when page size is 32768.
3384 		 */
3385 		addr = (uintptr_t)&m->dirty;
3386 #if PAGE_SIZE == 32768
3387 		atomic_clear_64((uint64_t *)addr, pagebits);
3388 #elif PAGE_SIZE == 16384
3389 		atomic_clear_32((uint32_t *)addr, pagebits);
3390 #else		/* PAGE_SIZE <= 8192 */
3391 		/*
3392 		 * Use a trick to perform a 32-bit atomic on the
3393 		 * containing aligned word, to not depend on the existence
3394 		 * of atomic_clear_{8, 16}.
3395 		 */
3396 		shift = addr & (sizeof(uint32_t) - 1);
3397 #if BYTE_ORDER == BIG_ENDIAN
3398 		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
3399 #else
3400 		shift *= NBBY;
3401 #endif
3402 		addr &= ~(sizeof(uint32_t) - 1);
3403 		atomic_clear_32((uint32_t *)addr, pagebits << shift);
3404 #endif		/* PAGE_SIZE */
3405 	}
3406 }
3407 
3408 /*
3409  *	vm_page_set_validclean:
3410  *
3411  *	Sets portions of a page valid and clean.  The arguments are expected
3412  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3413  *	of any partial chunks touched by the range.  The invalid portion of
3414  *	such chunks will be zero'd.
3415  *
3416  *	(base + size) must be less then or equal to PAGE_SIZE.
3417  */
3418 void
3419 vm_page_set_validclean(vm_page_t m, int base, int size)
3420 {
3421 	vm_page_bits_t oldvalid, pagebits;
3422 	int endoff, frag;
3423 
3424 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3425 	if (size == 0)	/* handle degenerate case */
3426 		return;
3427 
3428 	/*
3429 	 * If the base is not DEV_BSIZE aligned and the valid
3430 	 * bit is clear, we have to zero out a portion of the
3431 	 * first block.
3432 	 */
3433 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3434 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
3435 		pmap_zero_page_area(m, frag, base - frag);
3436 
3437 	/*
3438 	 * If the ending offset is not DEV_BSIZE aligned and the
3439 	 * valid bit is clear, we have to zero out a portion of
3440 	 * the last block.
3441 	 */
3442 	endoff = base + size;
3443 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3444 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
3445 		pmap_zero_page_area(m, endoff,
3446 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3447 
3448 	/*
3449 	 * Set valid, clear dirty bits.  If validating the entire
3450 	 * page we can safely clear the pmap modify bit.  We also
3451 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
3452 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
3453 	 * be set again.
3454 	 *
3455 	 * We set valid bits inclusive of any overlap, but we can only
3456 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
3457 	 * the range.
3458 	 */
3459 	oldvalid = m->valid;
3460 	pagebits = vm_page_bits(base, size);
3461 	m->valid |= pagebits;
3462 #if 0	/* NOT YET */
3463 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
3464 		frag = DEV_BSIZE - frag;
3465 		base += frag;
3466 		size -= frag;
3467 		if (size < 0)
3468 			size = 0;
3469 	}
3470 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
3471 #endif
3472 	if (base == 0 && size == PAGE_SIZE) {
3473 		/*
3474 		 * The page can only be modified within the pmap if it is
3475 		 * mapped, and it can only be mapped if it was previously
3476 		 * fully valid.
3477 		 */
3478 		if (oldvalid == VM_PAGE_BITS_ALL)
3479 			/*
3480 			 * Perform the pmap_clear_modify() first.  Otherwise,
3481 			 * a concurrent pmap operation, such as
3482 			 * pmap_protect(), could clear a modification in the
3483 			 * pmap and set the dirty field on the page before
3484 			 * pmap_clear_modify() had begun and after the dirty
3485 			 * field was cleared here.
3486 			 */
3487 			pmap_clear_modify(m);
3488 		m->dirty = 0;
3489 		m->oflags &= ~VPO_NOSYNC;
3490 	} else if (oldvalid != VM_PAGE_BITS_ALL)
3491 		m->dirty &= ~pagebits;
3492 	else
3493 		vm_page_clear_dirty_mask(m, pagebits);
3494 }
3495 
3496 void
3497 vm_page_clear_dirty(vm_page_t m, int base, int size)
3498 {
3499 
3500 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3501 }
3502 
3503 /*
3504  *	vm_page_set_invalid:
3505  *
3506  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
3507  *	valid and dirty bits for the effected areas are cleared.
3508  */
3509 void
3510 vm_page_set_invalid(vm_page_t m, int base, int size)
3511 {
3512 	vm_page_bits_t bits;
3513 	vm_object_t object;
3514 
3515 	object = m->object;
3516 	VM_OBJECT_ASSERT_WLOCKED(object);
3517 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3518 	    size >= object->un_pager.vnp.vnp_size)
3519 		bits = VM_PAGE_BITS_ALL;
3520 	else
3521 		bits = vm_page_bits(base, size);
3522 	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3523 	    bits != 0)
3524 		pmap_remove_all(m);
3525 	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3526 	    !pmap_page_is_mapped(m),
3527 	    ("vm_page_set_invalid: page %p is mapped", m));
3528 	m->valid &= ~bits;
3529 	m->dirty &= ~bits;
3530 }
3531 
3532 /*
3533  * vm_page_zero_invalid()
3534  *
3535  *	The kernel assumes that the invalid portions of a page contain
3536  *	garbage, but such pages can be mapped into memory by user code.
3537  *	When this occurs, we must zero out the non-valid portions of the
3538  *	page so user code sees what it expects.
3539  *
3540  *	Pages are most often semi-valid when the end of a file is mapped
3541  *	into memory and the file's size is not page aligned.
3542  */
3543 void
3544 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3545 {
3546 	int b;
3547 	int i;
3548 
3549 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3550 	/*
3551 	 * Scan the valid bits looking for invalid sections that
3552 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3553 	 * valid bit may be set ) have already been zeroed by
3554 	 * vm_page_set_validclean().
3555 	 */
3556 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3557 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3558 		    (m->valid & ((vm_page_bits_t)1 << i))) {
3559 			if (i > b) {
3560 				pmap_zero_page_area(m,
3561 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3562 			}
3563 			b = i + 1;
3564 		}
3565 	}
3566 
3567 	/*
3568 	 * setvalid is TRUE when we can safely set the zero'd areas
3569 	 * as being valid.  We can do this if there are no cache consistancy
3570 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3571 	 */
3572 	if (setvalid)
3573 		m->valid = VM_PAGE_BITS_ALL;
3574 }
3575 
3576 /*
3577  *	vm_page_is_valid:
3578  *
3579  *	Is (partial) page valid?  Note that the case where size == 0
3580  *	will return FALSE in the degenerate case where the page is
3581  *	entirely invalid, and TRUE otherwise.
3582  */
3583 int
3584 vm_page_is_valid(vm_page_t m, int base, int size)
3585 {
3586 	vm_page_bits_t bits;
3587 
3588 	VM_OBJECT_ASSERT_LOCKED(m->object);
3589 	bits = vm_page_bits(base, size);
3590 	return (m->valid != 0 && (m->valid & bits) == bits);
3591 }
3592 
3593 /*
3594  * Returns true if all of the specified predicates are true for the entire
3595  * (super)page and false otherwise.
3596  */
3597 bool
3598 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
3599 {
3600 	vm_object_t object;
3601 	int i, npages;
3602 
3603 	object = m->object;
3604 	VM_OBJECT_ASSERT_LOCKED(object);
3605 	npages = atop(pagesizes[m->psind]);
3606 
3607 	/*
3608 	 * The physically contiguous pages that make up a superpage, i.e., a
3609 	 * page with a page size index ("psind") greater than zero, will
3610 	 * occupy adjacent entries in vm_page_array[].
3611 	 */
3612 	for (i = 0; i < npages; i++) {
3613 		/* Always test object consistency, including "skip_m". */
3614 		if (m[i].object != object)
3615 			return (false);
3616 		if (&m[i] == skip_m)
3617 			continue;
3618 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
3619 			return (false);
3620 		if ((flags & PS_ALL_DIRTY) != 0) {
3621 			/*
3622 			 * Calling vm_page_test_dirty() or pmap_is_modified()
3623 			 * might stop this case from spuriously returning
3624 			 * "false".  However, that would require a write lock
3625 			 * on the object containing "m[i]".
3626 			 */
3627 			if (m[i].dirty != VM_PAGE_BITS_ALL)
3628 				return (false);
3629 		}
3630 		if ((flags & PS_ALL_VALID) != 0 &&
3631 		    m[i].valid != VM_PAGE_BITS_ALL)
3632 			return (false);
3633 	}
3634 	return (true);
3635 }
3636 
3637 /*
3638  * Set the page's dirty bits if the page is modified.
3639  */
3640 void
3641 vm_page_test_dirty(vm_page_t m)
3642 {
3643 
3644 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3645 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3646 		vm_page_dirty(m);
3647 }
3648 
3649 void
3650 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3651 {
3652 
3653 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3654 }
3655 
3656 void
3657 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3658 {
3659 
3660 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3661 }
3662 
3663 int
3664 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3665 {
3666 
3667 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3668 }
3669 
3670 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3671 void
3672 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3673 {
3674 
3675 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3676 }
3677 
3678 void
3679 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3680 {
3681 
3682 	mtx_assert_(vm_page_lockptr(m), a, file, line);
3683 }
3684 #endif
3685 
3686 #ifdef INVARIANTS
3687 void
3688 vm_page_object_lock_assert(vm_page_t m)
3689 {
3690 
3691 	/*
3692 	 * Certain of the page's fields may only be modified by the
3693 	 * holder of the containing object's lock or the exclusive busy.
3694 	 * holder.  Unfortunately, the holder of the write busy is
3695 	 * not recorded, and thus cannot be checked here.
3696 	 */
3697 	if (m->object != NULL && !vm_page_xbusied(m))
3698 		VM_OBJECT_ASSERT_WLOCKED(m->object);
3699 }
3700 
3701 void
3702 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3703 {
3704 
3705 	if ((bits & PGA_WRITEABLE) == 0)
3706 		return;
3707 
3708 	/*
3709 	 * The PGA_WRITEABLE flag can only be set if the page is
3710 	 * managed, is exclusively busied or the object is locked.
3711 	 * Currently, this flag is only set by pmap_enter().
3712 	 */
3713 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3714 	    ("PGA_WRITEABLE on unmanaged page"));
3715 	if (!vm_page_xbusied(m))
3716 		VM_OBJECT_ASSERT_LOCKED(m->object);
3717 }
3718 #endif
3719 
3720 #include "opt_ddb.h"
3721 #ifdef DDB
3722 #include <sys/kernel.h>
3723 
3724 #include <ddb/ddb.h>
3725 
3726 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3727 {
3728 
3729 	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3730 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3731 	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3732 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_cnt.v_laundry_count);
3733 	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3734 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3735 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3736 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3737 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3738 }
3739 
3740 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3741 {
3742 	int dom;
3743 
3744 	db_printf("pq_free %d\n", vm_cnt.v_free_count);
3745 	for (dom = 0; dom < vm_ndomains; dom++) {
3746 		db_printf(
3747     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
3748 		    dom,
3749 		    vm_dom[dom].vmd_page_count,
3750 		    vm_dom[dom].vmd_free_count,
3751 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3752 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3753 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
3754 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
3755 	}
3756 }
3757 
3758 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3759 {
3760 	vm_page_t m;
3761 	boolean_t phys;
3762 
3763 	if (!have_addr) {
3764 		db_printf("show pginfo addr\n");
3765 		return;
3766 	}
3767 
3768 	phys = strchr(modif, 'p') != NULL;
3769 	if (phys)
3770 		m = PHYS_TO_VM_PAGE(addr);
3771 	else
3772 		m = (vm_page_t)addr;
3773 	db_printf(
3774     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3775     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3776 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3777 	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3778 	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3779 }
3780 #endif /* DDB */
3781