1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * The Mach Operating System project at Carnegie-Mellon University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 36 */ 37 38 /*- 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 65 /* 66 * Resident memory management module. 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_vm.h" 73 74 #include <sys/param.h> 75 #include <sys/systm.h> 76 #include <sys/lock.h> 77 #include <sys/domainset.h> 78 #include <sys/kernel.h> 79 #include <sys/limits.h> 80 #include <sys/linker.h> 81 #include <sys/malloc.h> 82 #include <sys/mman.h> 83 #include <sys/msgbuf.h> 84 #include <sys/mutex.h> 85 #include <sys/proc.h> 86 #include <sys/rwlock.h> 87 #include <sys/sbuf.h> 88 #include <sys/sched.h> 89 #include <sys/smp.h> 90 #include <sys/sysctl.h> 91 #include <sys/vmmeter.h> 92 #include <sys/vnode.h> 93 94 #include <vm/vm.h> 95 #include <vm/pmap.h> 96 #include <vm/vm_param.h> 97 #include <vm/vm_domainset.h> 98 #include <vm/vm_kern.h> 99 #include <vm/vm_map.h> 100 #include <vm/vm_object.h> 101 #include <vm/vm_page.h> 102 #include <vm/vm_pageout.h> 103 #include <vm/vm_phys.h> 104 #include <vm/vm_pagequeue.h> 105 #include <vm/vm_pager.h> 106 #include <vm/vm_radix.h> 107 #include <vm/vm_reserv.h> 108 #include <vm/vm_extern.h> 109 #include <vm/uma.h> 110 #include <vm/uma_int.h> 111 112 #include <machine/md_var.h> 113 114 extern int uma_startup_count(int); 115 extern void uma_startup(void *, int); 116 extern int vmem_startup_count(void); 117 118 struct vm_domain vm_dom[MAXMEMDOM]; 119 120 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]); 121 122 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT]; 123 124 struct mtx_padalign __exclusive_cache_line vm_domainset_lock; 125 /* The following fields are protected by the domainset lock. */ 126 domainset_t __exclusive_cache_line vm_min_domains; 127 domainset_t __exclusive_cache_line vm_severe_domains; 128 static int vm_min_waiters; 129 static int vm_severe_waiters; 130 static int vm_pageproc_waiters; 131 132 /* 133 * bogus page -- for I/O to/from partially complete buffers, 134 * or for paging into sparsely invalid regions. 135 */ 136 vm_page_t bogus_page; 137 138 #ifdef PMAP_HAS_PAGE_ARRAY 139 vm_page_t vm_page_array = (vm_page_t)PA_MIN_ADDRESS; 140 #else 141 vm_page_t vm_page_array; 142 #endif 143 long vm_page_array_size; 144 long first_page; 145 146 static int boot_pages; 147 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 148 &boot_pages, 0, 149 "number of pages allocated for bootstrapping the VM system"); 150 151 static int pa_tryrelock_restart; 152 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD, 153 &pa_tryrelock_restart, 0, "Number of tryrelock restarts"); 154 155 static TAILQ_HEAD(, vm_page) blacklist_head; 156 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); 157 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | 158 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); 159 160 static uma_zone_t fakepg_zone; 161 162 static void vm_page_alloc_check(vm_page_t m); 163 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 164 static void vm_page_dequeue_complete(vm_page_t m); 165 static void vm_page_enqueue(vm_page_t m, uint8_t queue); 166 static void vm_page_init(void *dummy); 167 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 168 vm_pindex_t pindex, vm_page_t mpred); 169 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 170 vm_page_t mpred); 171 static int vm_page_reclaim_run(int req_class, int domain, u_long npages, 172 vm_page_t m_run, vm_paddr_t high); 173 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, 174 int req); 175 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain, 176 int flags); 177 static void vm_page_zone_release(void *arg, void **store, int cnt); 178 179 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL); 180 181 static void 182 vm_page_init(void *dummy) 183 { 184 185 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 186 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 187 bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | 188 VM_ALLOC_NORMAL | VM_ALLOC_WIRED); 189 } 190 191 /* 192 * The cache page zone is initialized later since we need to be able to allocate 193 * pages before UMA is fully initialized. 194 */ 195 static void 196 vm_page_init_cache_zones(void *dummy __unused) 197 { 198 struct vm_domain *vmd; 199 struct vm_pgcache *pgcache; 200 int domain, pool; 201 202 for (domain = 0; domain < vm_ndomains; domain++) { 203 vmd = VM_DOMAIN(domain); 204 205 /* 206 * Don't allow the page caches to take up more than .25% of 207 * memory. 208 */ 209 if (vmd->vmd_page_count / 400 < 256 * mp_ncpus * VM_NFREEPOOL) 210 continue; 211 for (pool = 0; pool < VM_NFREEPOOL; pool++) { 212 pgcache = &vmd->vmd_pgcache[pool]; 213 pgcache->domain = domain; 214 pgcache->pool = pool; 215 pgcache->zone = uma_zcache_create("vm pgcache", 216 sizeof(struct vm_page), NULL, NULL, NULL, NULL, 217 vm_page_zone_import, vm_page_zone_release, pgcache, 218 UMA_ZONE_MAXBUCKET | UMA_ZONE_VM); 219 (void)uma_zone_set_maxcache(pgcache->zone, 0); 220 } 221 } 222 } 223 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL); 224 225 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 226 #if PAGE_SIZE == 32768 227 #ifdef CTASSERT 228 CTASSERT(sizeof(u_long) >= 8); 229 #endif 230 #endif 231 232 /* 233 * Try to acquire a physical address lock while a pmap is locked. If we 234 * fail to trylock we unlock and lock the pmap directly and cache the 235 * locked pa in *locked. The caller should then restart their loop in case 236 * the virtual to physical mapping has changed. 237 */ 238 int 239 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked) 240 { 241 vm_paddr_t lockpa; 242 243 lockpa = *locked; 244 *locked = pa; 245 if (lockpa) { 246 PA_LOCK_ASSERT(lockpa, MA_OWNED); 247 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa)) 248 return (0); 249 PA_UNLOCK(lockpa); 250 } 251 if (PA_TRYLOCK(pa)) 252 return (0); 253 PMAP_UNLOCK(pmap); 254 atomic_add_int(&pa_tryrelock_restart, 1); 255 PA_LOCK(pa); 256 PMAP_LOCK(pmap); 257 return (EAGAIN); 258 } 259 260 /* 261 * vm_set_page_size: 262 * 263 * Sets the page size, perhaps based upon the memory 264 * size. Must be called before any use of page-size 265 * dependent functions. 266 */ 267 void 268 vm_set_page_size(void) 269 { 270 if (vm_cnt.v_page_size == 0) 271 vm_cnt.v_page_size = PAGE_SIZE; 272 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 273 panic("vm_set_page_size: page size not a power of two"); 274 } 275 276 /* 277 * vm_page_blacklist_next: 278 * 279 * Find the next entry in the provided string of blacklist 280 * addresses. Entries are separated by space, comma, or newline. 281 * If an invalid integer is encountered then the rest of the 282 * string is skipped. Updates the list pointer to the next 283 * character, or NULL if the string is exhausted or invalid. 284 */ 285 static vm_paddr_t 286 vm_page_blacklist_next(char **list, char *end) 287 { 288 vm_paddr_t bad; 289 char *cp, *pos; 290 291 if (list == NULL || *list == NULL) 292 return (0); 293 if (**list =='\0') { 294 *list = NULL; 295 return (0); 296 } 297 298 /* 299 * If there's no end pointer then the buffer is coming from 300 * the kenv and we know it's null-terminated. 301 */ 302 if (end == NULL) 303 end = *list + strlen(*list); 304 305 /* Ensure that strtoq() won't walk off the end */ 306 if (*end != '\0') { 307 if (*end == '\n' || *end == ' ' || *end == ',') 308 *end = '\0'; 309 else { 310 printf("Blacklist not terminated, skipping\n"); 311 *list = NULL; 312 return (0); 313 } 314 } 315 316 for (pos = *list; *pos != '\0'; pos = cp) { 317 bad = strtoq(pos, &cp, 0); 318 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { 319 if (bad == 0) { 320 if (++cp < end) 321 continue; 322 else 323 break; 324 } 325 } else 326 break; 327 if (*cp == '\0' || ++cp >= end) 328 *list = NULL; 329 else 330 *list = cp; 331 return (trunc_page(bad)); 332 } 333 printf("Garbage in RAM blacklist, skipping\n"); 334 *list = NULL; 335 return (0); 336 } 337 338 bool 339 vm_page_blacklist_add(vm_paddr_t pa, bool verbose) 340 { 341 struct vm_domain *vmd; 342 vm_page_t m; 343 int ret; 344 345 m = vm_phys_paddr_to_vm_page(pa); 346 if (m == NULL) 347 return (true); /* page does not exist, no failure */ 348 349 vmd = vm_pagequeue_domain(m); 350 vm_domain_free_lock(vmd); 351 ret = vm_phys_unfree_page(m); 352 vm_domain_free_unlock(vmd); 353 if (ret != 0) { 354 vm_domain_freecnt_inc(vmd, -1); 355 TAILQ_INSERT_TAIL(&blacklist_head, m, listq); 356 if (verbose) 357 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa); 358 } 359 return (ret); 360 } 361 362 /* 363 * vm_page_blacklist_check: 364 * 365 * Iterate through the provided string of blacklist addresses, pulling 366 * each entry out of the physical allocator free list and putting it 367 * onto a list for reporting via the vm.page_blacklist sysctl. 368 */ 369 static void 370 vm_page_blacklist_check(char *list, char *end) 371 { 372 vm_paddr_t pa; 373 char *next; 374 375 next = list; 376 while (next != NULL) { 377 if ((pa = vm_page_blacklist_next(&next, end)) == 0) 378 continue; 379 vm_page_blacklist_add(pa, bootverbose); 380 } 381 } 382 383 /* 384 * vm_page_blacklist_load: 385 * 386 * Search for a special module named "ram_blacklist". It'll be a 387 * plain text file provided by the user via the loader directive 388 * of the same name. 389 */ 390 static void 391 vm_page_blacklist_load(char **list, char **end) 392 { 393 void *mod; 394 u_char *ptr; 395 u_int len; 396 397 mod = NULL; 398 ptr = NULL; 399 400 mod = preload_search_by_type("ram_blacklist"); 401 if (mod != NULL) { 402 ptr = preload_fetch_addr(mod); 403 len = preload_fetch_size(mod); 404 } 405 *list = ptr; 406 if (ptr != NULL) 407 *end = ptr + len; 408 else 409 *end = NULL; 410 return; 411 } 412 413 static int 414 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) 415 { 416 vm_page_t m; 417 struct sbuf sbuf; 418 int error, first; 419 420 first = 1; 421 error = sysctl_wire_old_buffer(req, 0); 422 if (error != 0) 423 return (error); 424 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 425 TAILQ_FOREACH(m, &blacklist_head, listq) { 426 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", 427 (uintmax_t)m->phys_addr); 428 first = 0; 429 } 430 error = sbuf_finish(&sbuf); 431 sbuf_delete(&sbuf); 432 return (error); 433 } 434 435 /* 436 * Initialize a dummy page for use in scans of the specified paging queue. 437 * In principle, this function only needs to set the flag PG_MARKER. 438 * Nonetheless, it write busies the page as a safety precaution. 439 */ 440 static void 441 vm_page_init_marker(vm_page_t marker, int queue, uint8_t aflags) 442 { 443 444 bzero(marker, sizeof(*marker)); 445 marker->flags = PG_MARKER; 446 marker->aflags = aflags; 447 marker->busy_lock = VPB_SINGLE_EXCLUSIVER; 448 marker->queue = queue; 449 } 450 451 static void 452 vm_page_domain_init(int domain) 453 { 454 struct vm_domain *vmd; 455 struct vm_pagequeue *pq; 456 int i; 457 458 vmd = VM_DOMAIN(domain); 459 bzero(vmd, sizeof(*vmd)); 460 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 461 "vm inactive pagequeue"; 462 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 463 "vm active pagequeue"; 464 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) = 465 "vm laundry pagequeue"; 466 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) = 467 "vm unswappable pagequeue"; 468 vmd->vmd_domain = domain; 469 vmd->vmd_page_count = 0; 470 vmd->vmd_free_count = 0; 471 vmd->vmd_segs = 0; 472 vmd->vmd_oom = FALSE; 473 for (i = 0; i < PQ_COUNT; i++) { 474 pq = &vmd->vmd_pagequeues[i]; 475 TAILQ_INIT(&pq->pq_pl); 476 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 477 MTX_DEF | MTX_DUPOK); 478 pq->pq_pdpages = 0; 479 vm_page_init_marker(&vmd->vmd_markers[i], i, 0); 480 } 481 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF); 482 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF); 483 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain); 484 485 /* 486 * inacthead is used to provide FIFO ordering for LRU-bypassing 487 * insertions. 488 */ 489 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED); 490 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl, 491 &vmd->vmd_inacthead, plinks.q); 492 493 /* 494 * The clock pages are used to implement active queue scanning without 495 * requeues. Scans start at clock[0], which is advanced after the scan 496 * ends. When the two clock hands meet, they are reset and scanning 497 * resumes from the head of the queue. 498 */ 499 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED); 500 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED); 501 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 502 &vmd->vmd_clock[0], plinks.q); 503 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 504 &vmd->vmd_clock[1], plinks.q); 505 } 506 507 /* 508 * Initialize a physical page in preparation for adding it to the free 509 * lists. 510 */ 511 static void 512 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind) 513 { 514 515 m->object = NULL; 516 m->wire_count = 0; 517 m->busy_lock = VPB_UNBUSIED; 518 m->flags = m->aflags = 0; 519 m->phys_addr = pa; 520 m->queue = PQ_NONE; 521 m->psind = 0; 522 m->segind = segind; 523 m->order = VM_NFREEORDER; 524 m->pool = VM_FREEPOOL_DEFAULT; 525 m->valid = m->dirty = 0; 526 pmap_page_init(m); 527 } 528 529 #ifndef PMAP_HAS_PAGE_ARRAY 530 static vm_paddr_t 531 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range) 532 { 533 vm_paddr_t new_end; 534 535 /* 536 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 537 * However, because this page is allocated from KVM, out-of-bounds 538 * accesses using the direct map will not be trapped. 539 */ 540 *vaddr += PAGE_SIZE; 541 542 /* 543 * Allocate physical memory for the page structures, and map it. 544 */ 545 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 546 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end, 547 VM_PROT_READ | VM_PROT_WRITE); 548 vm_page_array_size = page_range; 549 550 return (new_end); 551 } 552 #endif 553 554 /* 555 * vm_page_startup: 556 * 557 * Initializes the resident memory module. Allocates physical memory for 558 * bootstrapping UMA and some data structures that are used to manage 559 * physical pages. Initializes these structures, and populates the free 560 * page queues. 561 */ 562 vm_offset_t 563 vm_page_startup(vm_offset_t vaddr) 564 { 565 struct vm_phys_seg *seg; 566 vm_page_t m; 567 char *list, *listend; 568 vm_offset_t mapped; 569 vm_paddr_t end, high_avail, low_avail, new_end, page_range, size; 570 vm_paddr_t last_pa, pa; 571 u_long pagecount; 572 int biggestone, i, segind; 573 #ifdef WITNESS 574 int witness_size; 575 #endif 576 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 577 long ii; 578 #endif 579 580 vaddr = round_page(vaddr); 581 582 vm_phys_early_startup(); 583 biggestone = vm_phys_avail_largest(); 584 end = phys_avail[biggestone+1]; 585 586 /* 587 * Initialize the page and queue locks. 588 */ 589 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF); 590 for (i = 0; i < PA_LOCK_COUNT; i++) 591 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 592 for (i = 0; i < vm_ndomains; i++) 593 vm_page_domain_init(i); 594 595 /* 596 * Allocate memory for use when boot strapping the kernel memory 597 * allocator. Tell UMA how many zones we are going to create 598 * before going fully functional. UMA will add its zones. 599 * 600 * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP, 601 * KMAP ENTRY, MAP ENTRY, VMSPACE. 602 */ 603 boot_pages = uma_startup_count(8); 604 605 #ifndef UMA_MD_SMALL_ALLOC 606 /* vmem_startup() calls uma_prealloc(). */ 607 boot_pages += vmem_startup_count(); 608 /* vm_map_startup() calls uma_prealloc(). */ 609 boot_pages += howmany(MAX_KMAP, 610 UMA_SLAB_SPACE / sizeof(struct vm_map)); 611 612 /* 613 * Before going fully functional kmem_init() does allocation 614 * from "KMAP ENTRY" and vmem_create() does allocation from "vmem". 615 */ 616 boot_pages += 2; 617 #endif 618 /* 619 * CTFLAG_RDTUN doesn't work during the early boot process, so we must 620 * manually fetch the value. 621 */ 622 TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages); 623 new_end = end - (boot_pages * UMA_SLAB_SIZE); 624 new_end = trunc_page(new_end); 625 mapped = pmap_map(&vaddr, new_end, end, 626 VM_PROT_READ | VM_PROT_WRITE); 627 bzero((void *)mapped, end - new_end); 628 uma_startup((void *)mapped, boot_pages); 629 630 #ifdef WITNESS 631 witness_size = round_page(witness_startup_count()); 632 new_end -= witness_size; 633 mapped = pmap_map(&vaddr, new_end, new_end + witness_size, 634 VM_PROT_READ | VM_PROT_WRITE); 635 bzero((void *)mapped, witness_size); 636 witness_startup((void *)mapped); 637 #endif 638 639 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 640 defined(__i386__) || defined(__mips__) || defined(__riscv) 641 /* 642 * Allocate a bitmap to indicate that a random physical page 643 * needs to be included in a minidump. 644 * 645 * The amd64 port needs this to indicate which direct map pages 646 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 647 * 648 * However, i386 still needs this workspace internally within the 649 * minidump code. In theory, they are not needed on i386, but are 650 * included should the sf_buf code decide to use them. 651 */ 652 last_pa = 0; 653 for (i = 0; dump_avail[i + 1] != 0; i += 2) 654 if (dump_avail[i + 1] > last_pa) 655 last_pa = dump_avail[i + 1]; 656 page_range = last_pa / PAGE_SIZE; 657 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 658 new_end -= vm_page_dump_size; 659 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 660 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 661 bzero((void *)vm_page_dump, vm_page_dump_size); 662 #else 663 (void)last_pa; 664 #endif 665 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 666 defined(__riscv) 667 /* 668 * Include the UMA bootstrap pages, witness pages and vm_page_dump 669 * in a crash dump. When pmap_map() uses the direct map, they are 670 * not automatically included. 671 */ 672 for (pa = new_end; pa < end; pa += PAGE_SIZE) 673 dump_add_page(pa); 674 #endif 675 phys_avail[biggestone + 1] = new_end; 676 #ifdef __amd64__ 677 /* 678 * Request that the physical pages underlying the message buffer be 679 * included in a crash dump. Since the message buffer is accessed 680 * through the direct map, they are not automatically included. 681 */ 682 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 683 last_pa = pa + round_page(msgbufsize); 684 while (pa < last_pa) { 685 dump_add_page(pa); 686 pa += PAGE_SIZE; 687 } 688 #endif 689 /* 690 * Compute the number of pages of memory that will be available for 691 * use, taking into account the overhead of a page structure per page. 692 * In other words, solve 693 * "available physical memory" - round_page(page_range * 694 * sizeof(struct vm_page)) = page_range * PAGE_SIZE 695 * for page_range. 696 */ 697 low_avail = phys_avail[0]; 698 high_avail = phys_avail[1]; 699 for (i = 0; i < vm_phys_nsegs; i++) { 700 if (vm_phys_segs[i].start < low_avail) 701 low_avail = vm_phys_segs[i].start; 702 if (vm_phys_segs[i].end > high_avail) 703 high_avail = vm_phys_segs[i].end; 704 } 705 /* Skip the first chunk. It is already accounted for. */ 706 for (i = 2; phys_avail[i + 1] != 0; i += 2) { 707 if (phys_avail[i] < low_avail) 708 low_avail = phys_avail[i]; 709 if (phys_avail[i + 1] > high_avail) 710 high_avail = phys_avail[i + 1]; 711 } 712 first_page = low_avail / PAGE_SIZE; 713 #ifdef VM_PHYSSEG_SPARSE 714 size = 0; 715 for (i = 0; i < vm_phys_nsegs; i++) 716 size += vm_phys_segs[i].end - vm_phys_segs[i].start; 717 for (i = 0; phys_avail[i + 1] != 0; i += 2) 718 size += phys_avail[i + 1] - phys_avail[i]; 719 #elif defined(VM_PHYSSEG_DENSE) 720 size = high_avail - low_avail; 721 #else 722 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 723 #endif 724 725 #ifdef PMAP_HAS_PAGE_ARRAY 726 pmap_page_array_startup(size / PAGE_SIZE); 727 biggestone = vm_phys_avail_largest(); 728 end = new_end = phys_avail[biggestone + 1]; 729 #else 730 #ifdef VM_PHYSSEG_DENSE 731 /* 732 * In the VM_PHYSSEG_DENSE case, the number of pages can account for 733 * the overhead of a page structure per page only if vm_page_array is 734 * allocated from the last physical memory chunk. Otherwise, we must 735 * allocate page structures representing the physical memory 736 * underlying vm_page_array, even though they will not be used. 737 */ 738 if (new_end != high_avail) 739 page_range = size / PAGE_SIZE; 740 else 741 #endif 742 { 743 page_range = size / (PAGE_SIZE + sizeof(struct vm_page)); 744 745 /* 746 * If the partial bytes remaining are large enough for 747 * a page (PAGE_SIZE) without a corresponding 748 * 'struct vm_page', then new_end will contain an 749 * extra page after subtracting the length of the VM 750 * page array. Compensate by subtracting an extra 751 * page from new_end. 752 */ 753 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) { 754 if (new_end == high_avail) 755 high_avail -= PAGE_SIZE; 756 new_end -= PAGE_SIZE; 757 } 758 } 759 end = new_end; 760 new_end = vm_page_array_alloc(&vaddr, end, page_range); 761 #endif 762 763 #if VM_NRESERVLEVEL > 0 764 /* 765 * Allocate physical memory for the reservation management system's 766 * data structures, and map it. 767 */ 768 new_end = vm_reserv_startup(&vaddr, new_end); 769 #endif 770 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 771 defined(__riscv) 772 /* 773 * Include vm_page_array and vm_reserv_array in a crash dump. 774 */ 775 for (pa = new_end; pa < end; pa += PAGE_SIZE) 776 dump_add_page(pa); 777 #endif 778 phys_avail[biggestone + 1] = new_end; 779 780 /* 781 * Add physical memory segments corresponding to the available 782 * physical pages. 783 */ 784 for (i = 0; phys_avail[i + 1] != 0; i += 2) 785 if (vm_phys_avail_size(i) != 0) 786 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 787 788 /* 789 * Initialize the physical memory allocator. 790 */ 791 vm_phys_init(); 792 793 /* 794 * Initialize the page structures and add every available page to the 795 * physical memory allocator's free lists. 796 */ 797 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 798 for (ii = 0; ii < vm_page_array_size; ii++) { 799 m = &vm_page_array[ii]; 800 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0); 801 m->flags = PG_FICTITIOUS; 802 } 803 #endif 804 vm_cnt.v_page_count = 0; 805 for (segind = 0; segind < vm_phys_nsegs; segind++) { 806 seg = &vm_phys_segs[segind]; 807 for (m = seg->first_page, pa = seg->start; pa < seg->end; 808 m++, pa += PAGE_SIZE) 809 vm_page_init_page(m, pa, segind); 810 811 /* 812 * Add the segment to the free lists only if it is covered by 813 * one of the ranges in phys_avail. Because we've added the 814 * ranges to the vm_phys_segs array, we can assume that each 815 * segment is either entirely contained in one of the ranges, 816 * or doesn't overlap any of them. 817 */ 818 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 819 struct vm_domain *vmd; 820 821 if (seg->start < phys_avail[i] || 822 seg->end > phys_avail[i + 1]) 823 continue; 824 825 m = seg->first_page; 826 pagecount = (u_long)atop(seg->end - seg->start); 827 828 vmd = VM_DOMAIN(seg->domain); 829 vm_domain_free_lock(vmd); 830 vm_phys_enqueue_contig(m, pagecount); 831 vm_domain_free_unlock(vmd); 832 vm_domain_freecnt_inc(vmd, pagecount); 833 vm_cnt.v_page_count += (u_int)pagecount; 834 835 vmd = VM_DOMAIN(seg->domain); 836 vmd->vmd_page_count += (u_int)pagecount; 837 vmd->vmd_segs |= 1UL << m->segind; 838 break; 839 } 840 } 841 842 /* 843 * Remove blacklisted pages from the physical memory allocator. 844 */ 845 TAILQ_INIT(&blacklist_head); 846 vm_page_blacklist_load(&list, &listend); 847 vm_page_blacklist_check(list, listend); 848 849 list = kern_getenv("vm.blacklist"); 850 vm_page_blacklist_check(list, NULL); 851 852 freeenv(list); 853 #if VM_NRESERVLEVEL > 0 854 /* 855 * Initialize the reservation management system. 856 */ 857 vm_reserv_init(); 858 #endif 859 860 return (vaddr); 861 } 862 863 void 864 vm_page_reference(vm_page_t m) 865 { 866 867 vm_page_aflag_set(m, PGA_REFERENCED); 868 } 869 870 /* 871 * vm_page_busy_downgrade: 872 * 873 * Downgrade an exclusive busy page into a single shared busy page. 874 */ 875 void 876 vm_page_busy_downgrade(vm_page_t m) 877 { 878 u_int x; 879 bool locked; 880 881 vm_page_assert_xbusied(m); 882 locked = mtx_owned(vm_page_lockptr(m)); 883 884 for (;;) { 885 x = m->busy_lock; 886 x &= VPB_BIT_WAITERS; 887 if (x != 0 && !locked) 888 vm_page_lock(m); 889 if (atomic_cmpset_rel_int(&m->busy_lock, 890 VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1))) 891 break; 892 if (x != 0 && !locked) 893 vm_page_unlock(m); 894 } 895 if (x != 0) { 896 wakeup(m); 897 if (!locked) 898 vm_page_unlock(m); 899 } 900 } 901 902 /* 903 * vm_page_sbusied: 904 * 905 * Return a positive value if the page is shared busied, 0 otherwise. 906 */ 907 int 908 vm_page_sbusied(vm_page_t m) 909 { 910 u_int x; 911 912 x = m->busy_lock; 913 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 914 } 915 916 /* 917 * vm_page_sunbusy: 918 * 919 * Shared unbusy a page. 920 */ 921 void 922 vm_page_sunbusy(vm_page_t m) 923 { 924 u_int x; 925 926 vm_page_lock_assert(m, MA_NOTOWNED); 927 vm_page_assert_sbusied(m); 928 929 for (;;) { 930 x = m->busy_lock; 931 if (VPB_SHARERS(x) > 1) { 932 if (atomic_cmpset_int(&m->busy_lock, x, 933 x - VPB_ONE_SHARER)) 934 break; 935 continue; 936 } 937 if ((x & VPB_BIT_WAITERS) == 0) { 938 KASSERT(x == VPB_SHARERS_WORD(1), 939 ("vm_page_sunbusy: invalid lock state")); 940 if (atomic_cmpset_int(&m->busy_lock, 941 VPB_SHARERS_WORD(1), VPB_UNBUSIED)) 942 break; 943 continue; 944 } 945 KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS), 946 ("vm_page_sunbusy: invalid lock state for waiters")); 947 948 vm_page_lock(m); 949 if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) { 950 vm_page_unlock(m); 951 continue; 952 } 953 wakeup(m); 954 vm_page_unlock(m); 955 break; 956 } 957 } 958 959 /* 960 * vm_page_busy_sleep: 961 * 962 * Sleep and release the page lock, using the page pointer as wchan. 963 * This is used to implement the hard-path of busying mechanism. 964 * 965 * The given page must be locked. 966 * 967 * If nonshared is true, sleep only if the page is xbusy. 968 */ 969 void 970 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared) 971 { 972 u_int x; 973 974 vm_page_assert_locked(m); 975 976 x = m->busy_lock; 977 if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) || 978 ((x & VPB_BIT_WAITERS) == 0 && 979 !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) { 980 vm_page_unlock(m); 981 return; 982 } 983 msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0); 984 } 985 986 /* 987 * vm_page_trysbusy: 988 * 989 * Try to shared busy a page. 990 * If the operation succeeds 1 is returned otherwise 0. 991 * The operation never sleeps. 992 */ 993 int 994 vm_page_trysbusy(vm_page_t m) 995 { 996 u_int x; 997 998 for (;;) { 999 x = m->busy_lock; 1000 if ((x & VPB_BIT_SHARED) == 0) 1001 return (0); 1002 if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER)) 1003 return (1); 1004 } 1005 } 1006 1007 static void 1008 vm_page_xunbusy_locked(vm_page_t m) 1009 { 1010 1011 vm_page_assert_xbusied(m); 1012 vm_page_assert_locked(m); 1013 1014 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 1015 /* There is a waiter, do wakeup() instead of vm_page_flash(). */ 1016 wakeup(m); 1017 } 1018 1019 void 1020 vm_page_xunbusy_maybelocked(vm_page_t m) 1021 { 1022 bool lockacq; 1023 1024 vm_page_assert_xbusied(m); 1025 1026 /* 1027 * Fast path for unbusy. If it succeeds, we know that there 1028 * are no waiters, so we do not need a wakeup. 1029 */ 1030 if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER, 1031 VPB_UNBUSIED)) 1032 return; 1033 1034 lockacq = !mtx_owned(vm_page_lockptr(m)); 1035 if (lockacq) 1036 vm_page_lock(m); 1037 vm_page_xunbusy_locked(m); 1038 if (lockacq) 1039 vm_page_unlock(m); 1040 } 1041 1042 /* 1043 * vm_page_xunbusy_hard: 1044 * 1045 * Called after the first try the exclusive unbusy of a page failed. 1046 * It is assumed that the waiters bit is on. 1047 */ 1048 void 1049 vm_page_xunbusy_hard(vm_page_t m) 1050 { 1051 1052 vm_page_assert_xbusied(m); 1053 1054 vm_page_lock(m); 1055 vm_page_xunbusy_locked(m); 1056 vm_page_unlock(m); 1057 } 1058 1059 /* 1060 * vm_page_flash: 1061 * 1062 * Wakeup anyone waiting for the page. 1063 * The ownership bits do not change. 1064 * 1065 * The given page must be locked. 1066 */ 1067 void 1068 vm_page_flash(vm_page_t m) 1069 { 1070 u_int x; 1071 1072 vm_page_lock_assert(m, MA_OWNED); 1073 1074 for (;;) { 1075 x = m->busy_lock; 1076 if ((x & VPB_BIT_WAITERS) == 0) 1077 return; 1078 if (atomic_cmpset_int(&m->busy_lock, x, 1079 x & (~VPB_BIT_WAITERS))) 1080 break; 1081 } 1082 wakeup(m); 1083 } 1084 1085 /* 1086 * Avoid releasing and reacquiring the same page lock. 1087 */ 1088 void 1089 vm_page_change_lock(vm_page_t m, struct mtx **mtx) 1090 { 1091 struct mtx *mtx1; 1092 1093 mtx1 = vm_page_lockptr(m); 1094 if (*mtx == mtx1) 1095 return; 1096 if (*mtx != NULL) 1097 mtx_unlock(*mtx); 1098 *mtx = mtx1; 1099 mtx_lock(mtx1); 1100 } 1101 1102 /* 1103 * vm_page_unhold_pages: 1104 * 1105 * Unhold each of the pages that is referenced by the given array. 1106 */ 1107 void 1108 vm_page_unhold_pages(vm_page_t *ma, int count) 1109 { 1110 struct mtx *mtx; 1111 1112 mtx = NULL; 1113 for (; count != 0; count--) { 1114 vm_page_change_lock(*ma, &mtx); 1115 if (vm_page_unwire(*ma, PQ_ACTIVE) && (*ma)->object == NULL) 1116 vm_page_free(*ma); 1117 ma++; 1118 } 1119 if (mtx != NULL) 1120 mtx_unlock(mtx); 1121 } 1122 1123 vm_page_t 1124 PHYS_TO_VM_PAGE(vm_paddr_t pa) 1125 { 1126 vm_page_t m; 1127 1128 #ifdef VM_PHYSSEG_SPARSE 1129 m = vm_phys_paddr_to_vm_page(pa); 1130 if (m == NULL) 1131 m = vm_phys_fictitious_to_vm_page(pa); 1132 return (m); 1133 #elif defined(VM_PHYSSEG_DENSE) 1134 long pi; 1135 1136 pi = atop(pa); 1137 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 1138 m = &vm_page_array[pi - first_page]; 1139 return (m); 1140 } 1141 return (vm_phys_fictitious_to_vm_page(pa)); 1142 #else 1143 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 1144 #endif 1145 } 1146 1147 /* 1148 * vm_page_getfake: 1149 * 1150 * Create a fictitious page with the specified physical address and 1151 * memory attribute. The memory attribute is the only the machine- 1152 * dependent aspect of a fictitious page that must be initialized. 1153 */ 1154 vm_page_t 1155 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 1156 { 1157 vm_page_t m; 1158 1159 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 1160 vm_page_initfake(m, paddr, memattr); 1161 return (m); 1162 } 1163 1164 void 1165 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1166 { 1167 1168 if ((m->flags & PG_FICTITIOUS) != 0) { 1169 /* 1170 * The page's memattr might have changed since the 1171 * previous initialization. Update the pmap to the 1172 * new memattr. 1173 */ 1174 goto memattr; 1175 } 1176 m->phys_addr = paddr; 1177 m->queue = PQ_NONE; 1178 /* Fictitious pages don't use "segind". */ 1179 m->flags = PG_FICTITIOUS; 1180 /* Fictitious pages don't use "order" or "pool". */ 1181 m->oflags = VPO_UNMANAGED; 1182 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1183 m->wire_count = 1; 1184 pmap_page_init(m); 1185 memattr: 1186 pmap_page_set_memattr(m, memattr); 1187 } 1188 1189 /* 1190 * vm_page_putfake: 1191 * 1192 * Release a fictitious page. 1193 */ 1194 void 1195 vm_page_putfake(vm_page_t m) 1196 { 1197 1198 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 1199 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1200 ("vm_page_putfake: bad page %p", m)); 1201 uma_zfree(fakepg_zone, m); 1202 } 1203 1204 /* 1205 * vm_page_updatefake: 1206 * 1207 * Update the given fictitious page to the specified physical address and 1208 * memory attribute. 1209 */ 1210 void 1211 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1212 { 1213 1214 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1215 ("vm_page_updatefake: bad page %p", m)); 1216 m->phys_addr = paddr; 1217 pmap_page_set_memattr(m, memattr); 1218 } 1219 1220 /* 1221 * vm_page_free: 1222 * 1223 * Free a page. 1224 */ 1225 void 1226 vm_page_free(vm_page_t m) 1227 { 1228 1229 m->flags &= ~PG_ZERO; 1230 vm_page_free_toq(m); 1231 } 1232 1233 /* 1234 * vm_page_free_zero: 1235 * 1236 * Free a page to the zerod-pages queue 1237 */ 1238 void 1239 vm_page_free_zero(vm_page_t m) 1240 { 1241 1242 m->flags |= PG_ZERO; 1243 vm_page_free_toq(m); 1244 } 1245 1246 /* 1247 * Unbusy and handle the page queueing for a page from a getpages request that 1248 * was optionally read ahead or behind. 1249 */ 1250 void 1251 vm_page_readahead_finish(vm_page_t m) 1252 { 1253 1254 /* We shouldn't put invalid pages on queues. */ 1255 KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m)); 1256 1257 /* 1258 * Since the page is not the actually needed one, whether it should 1259 * be activated or deactivated is not obvious. Empirical results 1260 * have shown that deactivating the page is usually the best choice, 1261 * unless the page is wanted by another thread. 1262 */ 1263 vm_page_lock(m); 1264 if ((m->busy_lock & VPB_BIT_WAITERS) != 0) 1265 vm_page_activate(m); 1266 else 1267 vm_page_deactivate(m); 1268 vm_page_unlock(m); 1269 vm_page_xunbusy(m); 1270 } 1271 1272 /* 1273 * vm_page_sleep_if_busy: 1274 * 1275 * Sleep and release the page queues lock if the page is busied. 1276 * Returns TRUE if the thread slept. 1277 * 1278 * The given page must be unlocked and object containing it must 1279 * be locked. 1280 */ 1281 int 1282 vm_page_sleep_if_busy(vm_page_t m, const char *msg) 1283 { 1284 vm_object_t obj; 1285 1286 vm_page_lock_assert(m, MA_NOTOWNED); 1287 VM_OBJECT_ASSERT_WLOCKED(m->object); 1288 1289 if (vm_page_busied(m)) { 1290 /* 1291 * The page-specific object must be cached because page 1292 * identity can change during the sleep, causing the 1293 * re-lock of a different object. 1294 * It is assumed that a reference to the object is already 1295 * held by the callers. 1296 */ 1297 obj = m->object; 1298 vm_page_lock(m); 1299 VM_OBJECT_WUNLOCK(obj); 1300 vm_page_busy_sleep(m, msg, false); 1301 VM_OBJECT_WLOCK(obj); 1302 return (TRUE); 1303 } 1304 return (FALSE); 1305 } 1306 1307 /* 1308 * vm_page_dirty_KBI: [ internal use only ] 1309 * 1310 * Set all bits in the page's dirty field. 1311 * 1312 * The object containing the specified page must be locked if the 1313 * call is made from the machine-independent layer. 1314 * 1315 * See vm_page_clear_dirty_mask(). 1316 * 1317 * This function should only be called by vm_page_dirty(). 1318 */ 1319 void 1320 vm_page_dirty_KBI(vm_page_t m) 1321 { 1322 1323 /* Refer to this operation by its public name. */ 1324 KASSERT(m->valid == VM_PAGE_BITS_ALL, 1325 ("vm_page_dirty: page is invalid!")); 1326 m->dirty = VM_PAGE_BITS_ALL; 1327 } 1328 1329 /* 1330 * vm_page_insert: [ internal use only ] 1331 * 1332 * Inserts the given mem entry into the object and object list. 1333 * 1334 * The object must be locked. 1335 */ 1336 int 1337 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1338 { 1339 vm_page_t mpred; 1340 1341 VM_OBJECT_ASSERT_WLOCKED(object); 1342 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1343 return (vm_page_insert_after(m, object, pindex, mpred)); 1344 } 1345 1346 /* 1347 * vm_page_insert_after: 1348 * 1349 * Inserts the page "m" into the specified object at offset "pindex". 1350 * 1351 * The page "mpred" must immediately precede the offset "pindex" within 1352 * the specified object. 1353 * 1354 * The object must be locked. 1355 */ 1356 static int 1357 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1358 vm_page_t mpred) 1359 { 1360 vm_page_t msucc; 1361 1362 VM_OBJECT_ASSERT_WLOCKED(object); 1363 KASSERT(m->object == NULL, 1364 ("vm_page_insert_after: page already inserted")); 1365 if (mpred != NULL) { 1366 KASSERT(mpred->object == object, 1367 ("vm_page_insert_after: object doesn't contain mpred")); 1368 KASSERT(mpred->pindex < pindex, 1369 ("vm_page_insert_after: mpred doesn't precede pindex")); 1370 msucc = TAILQ_NEXT(mpred, listq); 1371 } else 1372 msucc = TAILQ_FIRST(&object->memq); 1373 if (msucc != NULL) 1374 KASSERT(msucc->pindex > pindex, 1375 ("vm_page_insert_after: msucc doesn't succeed pindex")); 1376 1377 /* 1378 * Record the object/offset pair in this page 1379 */ 1380 m->object = object; 1381 m->pindex = pindex; 1382 1383 /* 1384 * Now link into the object's ordered list of backed pages. 1385 */ 1386 if (vm_radix_insert(&object->rtree, m)) { 1387 m->object = NULL; 1388 m->pindex = 0; 1389 return (1); 1390 } 1391 vm_page_insert_radixdone(m, object, mpred); 1392 return (0); 1393 } 1394 1395 /* 1396 * vm_page_insert_radixdone: 1397 * 1398 * Complete page "m" insertion into the specified object after the 1399 * radix trie hooking. 1400 * 1401 * The page "mpred" must precede the offset "m->pindex" within the 1402 * specified object. 1403 * 1404 * The object must be locked. 1405 */ 1406 static void 1407 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1408 { 1409 1410 VM_OBJECT_ASSERT_WLOCKED(object); 1411 KASSERT(object != NULL && m->object == object, 1412 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1413 if (mpred != NULL) { 1414 KASSERT(mpred->object == object, 1415 ("vm_page_insert_after: object doesn't contain mpred")); 1416 KASSERT(mpred->pindex < m->pindex, 1417 ("vm_page_insert_after: mpred doesn't precede pindex")); 1418 } 1419 1420 if (mpred != NULL) 1421 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1422 else 1423 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1424 1425 /* 1426 * Show that the object has one more resident page. 1427 */ 1428 object->resident_page_count++; 1429 1430 /* 1431 * Hold the vnode until the last page is released. 1432 */ 1433 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1434 vhold(object->handle); 1435 1436 /* 1437 * Since we are inserting a new and possibly dirty page, 1438 * update the object's OBJ_MIGHTBEDIRTY flag. 1439 */ 1440 if (pmap_page_is_write_mapped(m)) 1441 vm_object_set_writeable_dirty(object); 1442 } 1443 1444 /* 1445 * vm_page_remove: 1446 * 1447 * Removes the specified page from its containing object, but does not 1448 * invalidate any backing storage. Return true if the page may be safely 1449 * freed and false otherwise. 1450 * 1451 * The object must be locked. The page must be locked if it is managed. 1452 */ 1453 bool 1454 vm_page_remove(vm_page_t m) 1455 { 1456 vm_object_t object; 1457 vm_page_t mrem; 1458 1459 object = m->object; 1460 1461 if ((m->oflags & VPO_UNMANAGED) == 0) 1462 vm_page_assert_locked(m); 1463 VM_OBJECT_ASSERT_WLOCKED(object); 1464 if (vm_page_xbusied(m)) 1465 vm_page_xunbusy_maybelocked(m); 1466 mrem = vm_radix_remove(&object->rtree, m->pindex); 1467 KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m)); 1468 1469 /* 1470 * Now remove from the object's list of backed pages. 1471 */ 1472 TAILQ_REMOVE(&object->memq, m, listq); 1473 1474 /* 1475 * And show that the object has one fewer resident page. 1476 */ 1477 object->resident_page_count--; 1478 1479 /* 1480 * The vnode may now be recycled. 1481 */ 1482 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1483 vdrop(object->handle); 1484 1485 m->object = NULL; 1486 return (!vm_page_wired(m)); 1487 } 1488 1489 /* 1490 * vm_page_lookup: 1491 * 1492 * Returns the page associated with the object/offset 1493 * pair specified; if none is found, NULL is returned. 1494 * 1495 * The object must be locked. 1496 */ 1497 vm_page_t 1498 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1499 { 1500 1501 VM_OBJECT_ASSERT_LOCKED(object); 1502 return (vm_radix_lookup(&object->rtree, pindex)); 1503 } 1504 1505 /* 1506 * vm_page_find_least: 1507 * 1508 * Returns the page associated with the object with least pindex 1509 * greater than or equal to the parameter pindex, or NULL. 1510 * 1511 * The object must be locked. 1512 */ 1513 vm_page_t 1514 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1515 { 1516 vm_page_t m; 1517 1518 VM_OBJECT_ASSERT_LOCKED(object); 1519 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1520 m = vm_radix_lookup_ge(&object->rtree, pindex); 1521 return (m); 1522 } 1523 1524 /* 1525 * Returns the given page's successor (by pindex) within the object if it is 1526 * resident; if none is found, NULL is returned. 1527 * 1528 * The object must be locked. 1529 */ 1530 vm_page_t 1531 vm_page_next(vm_page_t m) 1532 { 1533 vm_page_t next; 1534 1535 VM_OBJECT_ASSERT_LOCKED(m->object); 1536 if ((next = TAILQ_NEXT(m, listq)) != NULL) { 1537 MPASS(next->object == m->object); 1538 if (next->pindex != m->pindex + 1) 1539 next = NULL; 1540 } 1541 return (next); 1542 } 1543 1544 /* 1545 * Returns the given page's predecessor (by pindex) within the object if it is 1546 * resident; if none is found, NULL is returned. 1547 * 1548 * The object must be locked. 1549 */ 1550 vm_page_t 1551 vm_page_prev(vm_page_t m) 1552 { 1553 vm_page_t prev; 1554 1555 VM_OBJECT_ASSERT_LOCKED(m->object); 1556 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) { 1557 MPASS(prev->object == m->object); 1558 if (prev->pindex != m->pindex - 1) 1559 prev = NULL; 1560 } 1561 return (prev); 1562 } 1563 1564 /* 1565 * Uses the page mnew as a replacement for an existing page at index 1566 * pindex which must be already present in the object. 1567 * 1568 * The existing page must not be on a paging queue. 1569 */ 1570 vm_page_t 1571 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex) 1572 { 1573 vm_page_t mold; 1574 1575 VM_OBJECT_ASSERT_WLOCKED(object); 1576 KASSERT(mnew->object == NULL, 1577 ("vm_page_replace: page %p already in object", mnew)); 1578 KASSERT(mnew->queue == PQ_NONE || vm_page_wired(mnew), 1579 ("vm_page_replace: new page %p is on a paging queue", mnew)); 1580 1581 /* 1582 * This function mostly follows vm_page_insert() and 1583 * vm_page_remove() without the radix, object count and vnode 1584 * dance. Double check such functions for more comments. 1585 */ 1586 1587 mnew->object = object; 1588 mnew->pindex = pindex; 1589 mold = vm_radix_replace(&object->rtree, mnew); 1590 KASSERT(mold->queue == PQ_NONE, 1591 ("vm_page_replace: old page %p is on a paging queue", mold)); 1592 1593 /* Keep the resident page list in sorted order. */ 1594 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); 1595 TAILQ_REMOVE(&object->memq, mold, listq); 1596 1597 mold->object = NULL; 1598 vm_page_xunbusy_maybelocked(mold); 1599 1600 /* 1601 * The object's resident_page_count does not change because we have 1602 * swapped one page for another, but OBJ_MIGHTBEDIRTY. 1603 */ 1604 if (pmap_page_is_write_mapped(mnew)) 1605 vm_object_set_writeable_dirty(object); 1606 return (mold); 1607 } 1608 1609 /* 1610 * vm_page_rename: 1611 * 1612 * Move the given memory entry from its 1613 * current object to the specified target object/offset. 1614 * 1615 * Note: swap associated with the page must be invalidated by the move. We 1616 * have to do this for several reasons: (1) we aren't freeing the 1617 * page, (2) we are dirtying the page, (3) the VM system is probably 1618 * moving the page from object A to B, and will then later move 1619 * the backing store from A to B and we can't have a conflict. 1620 * 1621 * Note: we *always* dirty the page. It is necessary both for the 1622 * fact that we moved it, and because we may be invalidating 1623 * swap. 1624 * 1625 * The objects must be locked. 1626 */ 1627 int 1628 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1629 { 1630 vm_page_t mpred; 1631 vm_pindex_t opidx; 1632 1633 VM_OBJECT_ASSERT_WLOCKED(new_object); 1634 1635 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); 1636 KASSERT(mpred == NULL || mpred->pindex != new_pindex, 1637 ("vm_page_rename: pindex already renamed")); 1638 1639 /* 1640 * Create a custom version of vm_page_insert() which does not depend 1641 * by m_prev and can cheat on the implementation aspects of the 1642 * function. 1643 */ 1644 opidx = m->pindex; 1645 m->pindex = new_pindex; 1646 if (vm_radix_insert(&new_object->rtree, m)) { 1647 m->pindex = opidx; 1648 return (1); 1649 } 1650 1651 /* 1652 * The operation cannot fail anymore. The removal must happen before 1653 * the listq iterator is tainted. 1654 */ 1655 m->pindex = opidx; 1656 vm_page_lock(m); 1657 (void)vm_page_remove(m); 1658 1659 /* Return back to the new pindex to complete vm_page_insert(). */ 1660 m->pindex = new_pindex; 1661 m->object = new_object; 1662 vm_page_unlock(m); 1663 vm_page_insert_radixdone(m, new_object, mpred); 1664 vm_page_dirty(m); 1665 return (0); 1666 } 1667 1668 /* 1669 * vm_page_alloc: 1670 * 1671 * Allocate and return a page that is associated with the specified 1672 * object and offset pair. By default, this page is exclusive busied. 1673 * 1674 * The caller must always specify an allocation class. 1675 * 1676 * allocation classes: 1677 * VM_ALLOC_NORMAL normal process request 1678 * VM_ALLOC_SYSTEM system *really* needs a page 1679 * VM_ALLOC_INTERRUPT interrupt time request 1680 * 1681 * optional allocation flags: 1682 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1683 * intends to allocate 1684 * VM_ALLOC_NOBUSY do not exclusive busy the page 1685 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1686 * VM_ALLOC_NOOBJ page is not associated with an object and 1687 * should not be exclusive busy 1688 * VM_ALLOC_SBUSY shared busy the allocated page 1689 * VM_ALLOC_WIRED wire the allocated page 1690 * VM_ALLOC_ZERO prefer a zeroed page 1691 */ 1692 vm_page_t 1693 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1694 { 1695 1696 return (vm_page_alloc_after(object, pindex, req, object != NULL ? 1697 vm_radix_lookup_le(&object->rtree, pindex) : NULL)); 1698 } 1699 1700 vm_page_t 1701 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain, 1702 int req) 1703 { 1704 1705 return (vm_page_alloc_domain_after(object, pindex, domain, req, 1706 object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) : 1707 NULL)); 1708 } 1709 1710 /* 1711 * Allocate a page in the specified object with the given page index. To 1712 * optimize insertion of the page into the object, the caller must also specifiy 1713 * the resident page in the object with largest index smaller than the given 1714 * page index, or NULL if no such page exists. 1715 */ 1716 vm_page_t 1717 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, 1718 int req, vm_page_t mpred) 1719 { 1720 struct vm_domainset_iter di; 1721 vm_page_t m; 1722 int domain; 1723 1724 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 1725 do { 1726 m = vm_page_alloc_domain_after(object, pindex, domain, req, 1727 mpred); 1728 if (m != NULL) 1729 break; 1730 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 1731 1732 return (m); 1733 } 1734 1735 /* 1736 * Returns true if the number of free pages exceeds the minimum 1737 * for the request class and false otherwise. 1738 */ 1739 int 1740 vm_domain_allocate(struct vm_domain *vmd, int req, int npages) 1741 { 1742 u_int limit, old, new; 1743 1744 req = req & VM_ALLOC_CLASS_MASK; 1745 1746 /* 1747 * The page daemon is allowed to dig deeper into the free page list. 1748 */ 1749 if (curproc == pageproc && req != VM_ALLOC_INTERRUPT) 1750 req = VM_ALLOC_SYSTEM; 1751 if (req == VM_ALLOC_INTERRUPT) 1752 limit = 0; 1753 else if (req == VM_ALLOC_SYSTEM) 1754 limit = vmd->vmd_interrupt_free_min; 1755 else 1756 limit = vmd->vmd_free_reserved; 1757 1758 /* 1759 * Attempt to reserve the pages. Fail if we're below the limit. 1760 */ 1761 limit += npages; 1762 old = vmd->vmd_free_count; 1763 do { 1764 if (old < limit) 1765 return (0); 1766 new = old - npages; 1767 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0); 1768 1769 /* Wake the page daemon if we've crossed the threshold. */ 1770 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old)) 1771 pagedaemon_wakeup(vmd->vmd_domain); 1772 1773 /* Only update bitsets on transitions. */ 1774 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) || 1775 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe)) 1776 vm_domain_set(vmd); 1777 1778 return (1); 1779 } 1780 1781 vm_page_t 1782 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain, 1783 int req, vm_page_t mpred) 1784 { 1785 struct vm_domain *vmd; 1786 vm_page_t m; 1787 int flags, pool; 1788 1789 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1790 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1791 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1792 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1793 ("inconsistent object(%p)/req(%x)", object, req)); 1794 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, 1795 ("Can't sleep and retry object insertion.")); 1796 KASSERT(mpred == NULL || mpred->pindex < pindex, 1797 ("mpred %p doesn't precede pindex 0x%jx", mpred, 1798 (uintmax_t)pindex)); 1799 if (object != NULL) 1800 VM_OBJECT_ASSERT_WLOCKED(object); 1801 1802 flags = 0; 1803 m = NULL; 1804 pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT; 1805 again: 1806 #if VM_NRESERVLEVEL > 0 1807 /* 1808 * Can we allocate the page from a reservation? 1809 */ 1810 if (vm_object_reserv(object) && 1811 (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) != 1812 NULL) { 1813 domain = vm_phys_domain(m); 1814 vmd = VM_DOMAIN(domain); 1815 goto found; 1816 } 1817 #endif 1818 vmd = VM_DOMAIN(domain); 1819 if (vmd->vmd_pgcache[pool].zone != NULL) { 1820 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT); 1821 if (m != NULL) { 1822 flags |= PG_PCPU_CACHE; 1823 goto found; 1824 } 1825 } 1826 if (vm_domain_allocate(vmd, req, 1)) { 1827 /* 1828 * If not, allocate it from the free page queues. 1829 */ 1830 vm_domain_free_lock(vmd); 1831 m = vm_phys_alloc_pages(domain, pool, 0); 1832 vm_domain_free_unlock(vmd); 1833 if (m == NULL) { 1834 vm_domain_freecnt_inc(vmd, 1); 1835 #if VM_NRESERVLEVEL > 0 1836 if (vm_reserv_reclaim_inactive(domain)) 1837 goto again; 1838 #endif 1839 } 1840 } 1841 if (m == NULL) { 1842 /* 1843 * Not allocatable, give up. 1844 */ 1845 if (vm_domain_alloc_fail(vmd, object, req)) 1846 goto again; 1847 return (NULL); 1848 } 1849 1850 /* 1851 * At this point we had better have found a good page. 1852 */ 1853 found: 1854 vm_page_dequeue(m); 1855 vm_page_alloc_check(m); 1856 1857 /* 1858 * Initialize the page. Only the PG_ZERO flag is inherited. 1859 */ 1860 if ((req & VM_ALLOC_ZERO) != 0) 1861 flags |= (m->flags & PG_ZERO); 1862 if ((req & VM_ALLOC_NODUMP) != 0) 1863 flags |= PG_NODUMP; 1864 m->flags = flags; 1865 m->aflags = 0; 1866 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 1867 VPO_UNMANAGED : 0; 1868 m->busy_lock = VPB_UNBUSIED; 1869 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 1870 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1871 if ((req & VM_ALLOC_SBUSY) != 0) 1872 m->busy_lock = VPB_SHARERS_WORD(1); 1873 if (req & VM_ALLOC_WIRED) { 1874 /* 1875 * The page lock is not required for wiring a page until that 1876 * page is inserted into the object. 1877 */ 1878 vm_wire_add(1); 1879 m->wire_count = 1; 1880 } 1881 m->act_count = 0; 1882 1883 if (object != NULL) { 1884 if (vm_page_insert_after(m, object, pindex, mpred)) { 1885 if (req & VM_ALLOC_WIRED) { 1886 vm_wire_sub(1); 1887 m->wire_count = 0; 1888 } 1889 KASSERT(m->object == NULL, ("page %p has object", m)); 1890 m->oflags = VPO_UNMANAGED; 1891 m->busy_lock = VPB_UNBUSIED; 1892 /* Don't change PG_ZERO. */ 1893 vm_page_free_toq(m); 1894 if (req & VM_ALLOC_WAITFAIL) { 1895 VM_OBJECT_WUNLOCK(object); 1896 vm_radix_wait(); 1897 VM_OBJECT_WLOCK(object); 1898 } 1899 return (NULL); 1900 } 1901 1902 /* Ignore device objects; the pager sets "memattr" for them. */ 1903 if (object->memattr != VM_MEMATTR_DEFAULT && 1904 (object->flags & OBJ_FICTITIOUS) == 0) 1905 pmap_page_set_memattr(m, object->memattr); 1906 } else 1907 m->pindex = pindex; 1908 1909 return (m); 1910 } 1911 1912 /* 1913 * vm_page_alloc_contig: 1914 * 1915 * Allocate a contiguous set of physical pages of the given size "npages" 1916 * from the free lists. All of the physical pages must be at or above 1917 * the given physical address "low" and below the given physical address 1918 * "high". The given value "alignment" determines the alignment of the 1919 * first physical page in the set. If the given value "boundary" is 1920 * non-zero, then the set of physical pages cannot cross any physical 1921 * address boundary that is a multiple of that value. Both "alignment" 1922 * and "boundary" must be a power of two. 1923 * 1924 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 1925 * then the memory attribute setting for the physical pages is configured 1926 * to the object's memory attribute setting. Otherwise, the memory 1927 * attribute setting for the physical pages is configured to "memattr", 1928 * overriding the object's memory attribute setting. However, if the 1929 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 1930 * memory attribute setting for the physical pages cannot be configured 1931 * to VM_MEMATTR_DEFAULT. 1932 * 1933 * The specified object may not contain fictitious pages. 1934 * 1935 * The caller must always specify an allocation class. 1936 * 1937 * allocation classes: 1938 * VM_ALLOC_NORMAL normal process request 1939 * VM_ALLOC_SYSTEM system *really* needs a page 1940 * VM_ALLOC_INTERRUPT interrupt time request 1941 * 1942 * optional allocation flags: 1943 * VM_ALLOC_NOBUSY do not exclusive busy the page 1944 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1945 * VM_ALLOC_NOOBJ page is not associated with an object and 1946 * should not be exclusive busy 1947 * VM_ALLOC_SBUSY shared busy the allocated page 1948 * VM_ALLOC_WIRED wire the allocated page 1949 * VM_ALLOC_ZERO prefer a zeroed page 1950 */ 1951 vm_page_t 1952 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 1953 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1954 vm_paddr_t boundary, vm_memattr_t memattr) 1955 { 1956 struct vm_domainset_iter di; 1957 vm_page_t m; 1958 int domain; 1959 1960 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 1961 do { 1962 m = vm_page_alloc_contig_domain(object, pindex, domain, req, 1963 npages, low, high, alignment, boundary, memattr); 1964 if (m != NULL) 1965 break; 1966 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 1967 1968 return (m); 1969 } 1970 1971 vm_page_t 1972 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, 1973 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1974 vm_paddr_t boundary, vm_memattr_t memattr) 1975 { 1976 struct vm_domain *vmd; 1977 vm_page_t m, m_ret, mpred; 1978 u_int busy_lock, flags, oflags; 1979 1980 mpred = NULL; /* XXX: pacify gcc */ 1981 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1982 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1983 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1984 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1985 ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object, 1986 req)); 1987 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, 1988 ("Can't sleep and retry object insertion.")); 1989 if (object != NULL) { 1990 VM_OBJECT_ASSERT_WLOCKED(object); 1991 KASSERT((object->flags & OBJ_FICTITIOUS) == 0, 1992 ("vm_page_alloc_contig: object %p has fictitious pages", 1993 object)); 1994 } 1995 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 1996 1997 if (object != NULL) { 1998 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1999 KASSERT(mpred == NULL || mpred->pindex != pindex, 2000 ("vm_page_alloc_contig: pindex already allocated")); 2001 } 2002 2003 /* 2004 * Can we allocate the pages without the number of free pages falling 2005 * below the lower bound for the allocation class? 2006 */ 2007 m_ret = NULL; 2008 again: 2009 #if VM_NRESERVLEVEL > 0 2010 /* 2011 * Can we allocate the pages from a reservation? 2012 */ 2013 if (vm_object_reserv(object) && 2014 (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req, 2015 mpred, npages, low, high, alignment, boundary)) != NULL) { 2016 domain = vm_phys_domain(m_ret); 2017 vmd = VM_DOMAIN(domain); 2018 goto found; 2019 } 2020 #endif 2021 vmd = VM_DOMAIN(domain); 2022 if (vm_domain_allocate(vmd, req, npages)) { 2023 /* 2024 * allocate them from the free page queues. 2025 */ 2026 vm_domain_free_lock(vmd); 2027 m_ret = vm_phys_alloc_contig(domain, npages, low, high, 2028 alignment, boundary); 2029 vm_domain_free_unlock(vmd); 2030 if (m_ret == NULL) { 2031 vm_domain_freecnt_inc(vmd, npages); 2032 #if VM_NRESERVLEVEL > 0 2033 if (vm_reserv_reclaim_contig(domain, npages, low, 2034 high, alignment, boundary)) 2035 goto again; 2036 #endif 2037 } 2038 } 2039 if (m_ret == NULL) { 2040 if (vm_domain_alloc_fail(vmd, object, req)) 2041 goto again; 2042 return (NULL); 2043 } 2044 #if VM_NRESERVLEVEL > 0 2045 found: 2046 #endif 2047 for (m = m_ret; m < &m_ret[npages]; m++) { 2048 vm_page_dequeue(m); 2049 vm_page_alloc_check(m); 2050 } 2051 2052 /* 2053 * Initialize the pages. Only the PG_ZERO flag is inherited. 2054 */ 2055 flags = 0; 2056 if ((req & VM_ALLOC_ZERO) != 0) 2057 flags = PG_ZERO; 2058 if ((req & VM_ALLOC_NODUMP) != 0) 2059 flags |= PG_NODUMP; 2060 oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 2061 VPO_UNMANAGED : 0; 2062 busy_lock = VPB_UNBUSIED; 2063 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 2064 busy_lock = VPB_SINGLE_EXCLUSIVER; 2065 if ((req & VM_ALLOC_SBUSY) != 0) 2066 busy_lock = VPB_SHARERS_WORD(1); 2067 if ((req & VM_ALLOC_WIRED) != 0) 2068 vm_wire_add(npages); 2069 if (object != NULL) { 2070 if (object->memattr != VM_MEMATTR_DEFAULT && 2071 memattr == VM_MEMATTR_DEFAULT) 2072 memattr = object->memattr; 2073 } 2074 for (m = m_ret; m < &m_ret[npages]; m++) { 2075 m->aflags = 0; 2076 m->flags = (m->flags | PG_NODUMP) & flags; 2077 m->busy_lock = busy_lock; 2078 if ((req & VM_ALLOC_WIRED) != 0) 2079 m->wire_count = 1; 2080 m->act_count = 0; 2081 m->oflags = oflags; 2082 if (object != NULL) { 2083 if (vm_page_insert_after(m, object, pindex, mpred)) { 2084 if ((req & VM_ALLOC_WIRED) != 0) 2085 vm_wire_sub(npages); 2086 KASSERT(m->object == NULL, 2087 ("page %p has object", m)); 2088 mpred = m; 2089 for (m = m_ret; m < &m_ret[npages]; m++) { 2090 if (m <= mpred && 2091 (req & VM_ALLOC_WIRED) != 0) 2092 m->wire_count = 0; 2093 m->oflags = VPO_UNMANAGED; 2094 m->busy_lock = VPB_UNBUSIED; 2095 /* Don't change PG_ZERO. */ 2096 vm_page_free_toq(m); 2097 } 2098 if (req & VM_ALLOC_WAITFAIL) { 2099 VM_OBJECT_WUNLOCK(object); 2100 vm_radix_wait(); 2101 VM_OBJECT_WLOCK(object); 2102 } 2103 return (NULL); 2104 } 2105 mpred = m; 2106 } else 2107 m->pindex = pindex; 2108 if (memattr != VM_MEMATTR_DEFAULT) 2109 pmap_page_set_memattr(m, memattr); 2110 pindex++; 2111 } 2112 return (m_ret); 2113 } 2114 2115 /* 2116 * Check a page that has been freshly dequeued from a freelist. 2117 */ 2118 static void 2119 vm_page_alloc_check(vm_page_t m) 2120 { 2121 2122 KASSERT(m->object == NULL, ("page %p has object", m)); 2123 KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0, 2124 ("page %p has unexpected queue %d, flags %#x", 2125 m, m->queue, (m->aflags & PGA_QUEUE_STATE_MASK))); 2126 KASSERT(!vm_page_wired(m), ("page %p is wired", m)); 2127 KASSERT(!vm_page_busied(m), ("page %p is busy", m)); 2128 KASSERT(m->dirty == 0, ("page %p is dirty", m)); 2129 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 2130 ("page %p has unexpected memattr %d", 2131 m, pmap_page_get_memattr(m))); 2132 KASSERT(m->valid == 0, ("free page %p is valid", m)); 2133 } 2134 2135 /* 2136 * vm_page_alloc_freelist: 2137 * 2138 * Allocate a physical page from the specified free page list. 2139 * 2140 * The caller must always specify an allocation class. 2141 * 2142 * allocation classes: 2143 * VM_ALLOC_NORMAL normal process request 2144 * VM_ALLOC_SYSTEM system *really* needs a page 2145 * VM_ALLOC_INTERRUPT interrupt time request 2146 * 2147 * optional allocation flags: 2148 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 2149 * intends to allocate 2150 * VM_ALLOC_WIRED wire the allocated page 2151 * VM_ALLOC_ZERO prefer a zeroed page 2152 */ 2153 vm_page_t 2154 vm_page_alloc_freelist(int freelist, int req) 2155 { 2156 struct vm_domainset_iter di; 2157 vm_page_t m; 2158 int domain; 2159 2160 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2161 do { 2162 m = vm_page_alloc_freelist_domain(domain, freelist, req); 2163 if (m != NULL) 2164 break; 2165 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2166 2167 return (m); 2168 } 2169 2170 vm_page_t 2171 vm_page_alloc_freelist_domain(int domain, int freelist, int req) 2172 { 2173 struct vm_domain *vmd; 2174 vm_page_t m; 2175 u_int flags; 2176 2177 m = NULL; 2178 vmd = VM_DOMAIN(domain); 2179 again: 2180 if (vm_domain_allocate(vmd, req, 1)) { 2181 vm_domain_free_lock(vmd); 2182 m = vm_phys_alloc_freelist_pages(domain, freelist, 2183 VM_FREEPOOL_DIRECT, 0); 2184 vm_domain_free_unlock(vmd); 2185 if (m == NULL) 2186 vm_domain_freecnt_inc(vmd, 1); 2187 } 2188 if (m == NULL) { 2189 if (vm_domain_alloc_fail(vmd, NULL, req)) 2190 goto again; 2191 return (NULL); 2192 } 2193 vm_page_dequeue(m); 2194 vm_page_alloc_check(m); 2195 2196 /* 2197 * Initialize the page. Only the PG_ZERO flag is inherited. 2198 */ 2199 m->aflags = 0; 2200 flags = 0; 2201 if ((req & VM_ALLOC_ZERO) != 0) 2202 flags = PG_ZERO; 2203 m->flags &= flags; 2204 if ((req & VM_ALLOC_WIRED) != 0) { 2205 /* 2206 * The page lock is not required for wiring a page that does 2207 * not belong to an object. 2208 */ 2209 vm_wire_add(1); 2210 m->wire_count = 1; 2211 } 2212 /* Unmanaged pages don't use "act_count". */ 2213 m->oflags = VPO_UNMANAGED; 2214 return (m); 2215 } 2216 2217 static int 2218 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags) 2219 { 2220 struct vm_domain *vmd; 2221 struct vm_pgcache *pgcache; 2222 int i; 2223 2224 pgcache = arg; 2225 vmd = VM_DOMAIN(pgcache->domain); 2226 /* Only import if we can bring in a full bucket. */ 2227 if (cnt == 1 || !vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt)) 2228 return (0); 2229 domain = vmd->vmd_domain; 2230 vm_domain_free_lock(vmd); 2231 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt, 2232 (vm_page_t *)store); 2233 vm_domain_free_unlock(vmd); 2234 if (cnt != i) 2235 vm_domain_freecnt_inc(vmd, cnt - i); 2236 2237 return (i); 2238 } 2239 2240 static void 2241 vm_page_zone_release(void *arg, void **store, int cnt) 2242 { 2243 struct vm_domain *vmd; 2244 struct vm_pgcache *pgcache; 2245 vm_page_t m; 2246 int i; 2247 2248 pgcache = arg; 2249 vmd = VM_DOMAIN(pgcache->domain); 2250 vm_domain_free_lock(vmd); 2251 for (i = 0; i < cnt; i++) { 2252 m = (vm_page_t)store[i]; 2253 vm_phys_free_pages(m, 0); 2254 } 2255 vm_domain_free_unlock(vmd); 2256 vm_domain_freecnt_inc(vmd, cnt); 2257 } 2258 2259 #define VPSC_ANY 0 /* No restrictions. */ 2260 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ 2261 #define VPSC_NOSUPER 2 /* Skip superpages. */ 2262 2263 /* 2264 * vm_page_scan_contig: 2265 * 2266 * Scan vm_page_array[] between the specified entries "m_start" and 2267 * "m_end" for a run of contiguous physical pages that satisfy the 2268 * specified conditions, and return the lowest page in the run. The 2269 * specified "alignment" determines the alignment of the lowest physical 2270 * page in the run. If the specified "boundary" is non-zero, then the 2271 * run of physical pages cannot span a physical address that is a 2272 * multiple of "boundary". 2273 * 2274 * "m_end" is never dereferenced, so it need not point to a vm_page 2275 * structure within vm_page_array[]. 2276 * 2277 * "npages" must be greater than zero. "m_start" and "m_end" must not 2278 * span a hole (or discontiguity) in the physical address space. Both 2279 * "alignment" and "boundary" must be a power of two. 2280 */ 2281 vm_page_t 2282 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, 2283 u_long alignment, vm_paddr_t boundary, int options) 2284 { 2285 struct mtx *m_mtx; 2286 vm_object_t object; 2287 vm_paddr_t pa; 2288 vm_page_t m, m_run; 2289 #if VM_NRESERVLEVEL > 0 2290 int level; 2291 #endif 2292 int m_inc, order, run_ext, run_len; 2293 2294 KASSERT(npages > 0, ("npages is 0")); 2295 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2296 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2297 m_run = NULL; 2298 run_len = 0; 2299 m_mtx = NULL; 2300 for (m = m_start; m < m_end && run_len < npages; m += m_inc) { 2301 KASSERT((m->flags & PG_MARKER) == 0, 2302 ("page %p is PG_MARKER", m)); 2303 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->wire_count == 1, 2304 ("fictitious page %p has invalid wire count", m)); 2305 2306 /* 2307 * If the current page would be the start of a run, check its 2308 * physical address against the end, alignment, and boundary 2309 * conditions. If it doesn't satisfy these conditions, either 2310 * terminate the scan or advance to the next page that 2311 * satisfies the failed condition. 2312 */ 2313 if (run_len == 0) { 2314 KASSERT(m_run == NULL, ("m_run != NULL")); 2315 if (m + npages > m_end) 2316 break; 2317 pa = VM_PAGE_TO_PHYS(m); 2318 if ((pa & (alignment - 1)) != 0) { 2319 m_inc = atop(roundup2(pa, alignment) - pa); 2320 continue; 2321 } 2322 if (rounddown2(pa ^ (pa + ptoa(npages) - 1), 2323 boundary) != 0) { 2324 m_inc = atop(roundup2(pa, boundary) - pa); 2325 continue; 2326 } 2327 } else 2328 KASSERT(m_run != NULL, ("m_run == NULL")); 2329 2330 vm_page_change_lock(m, &m_mtx); 2331 m_inc = 1; 2332 retry: 2333 if (vm_page_wired(m)) 2334 run_ext = 0; 2335 #if VM_NRESERVLEVEL > 0 2336 else if ((level = vm_reserv_level(m)) >= 0 && 2337 (options & VPSC_NORESERV) != 0) { 2338 run_ext = 0; 2339 /* Advance to the end of the reservation. */ 2340 pa = VM_PAGE_TO_PHYS(m); 2341 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - 2342 pa); 2343 } 2344 #endif 2345 else if ((object = m->object) != NULL) { 2346 /* 2347 * The page is considered eligible for relocation if 2348 * and only if it could be laundered or reclaimed by 2349 * the page daemon. 2350 */ 2351 if (!VM_OBJECT_TRYRLOCK(object)) { 2352 mtx_unlock(m_mtx); 2353 VM_OBJECT_RLOCK(object); 2354 mtx_lock(m_mtx); 2355 if (m->object != object) { 2356 /* 2357 * The page may have been freed. 2358 */ 2359 VM_OBJECT_RUNLOCK(object); 2360 goto retry; 2361 } else if (vm_page_wired(m)) { 2362 run_ext = 0; 2363 goto unlock; 2364 } 2365 } 2366 /* Don't care: PG_NODUMP, PG_ZERO. */ 2367 if (object->type != OBJT_DEFAULT && 2368 object->type != OBJT_SWAP && 2369 object->type != OBJT_VNODE) { 2370 run_ext = 0; 2371 #if VM_NRESERVLEVEL > 0 2372 } else if ((options & VPSC_NOSUPER) != 0 && 2373 (level = vm_reserv_level_iffullpop(m)) >= 0) { 2374 run_ext = 0; 2375 /* Advance to the end of the superpage. */ 2376 pa = VM_PAGE_TO_PHYS(m); 2377 m_inc = atop(roundup2(pa + 1, 2378 vm_reserv_size(level)) - pa); 2379 #endif 2380 } else if (object->memattr == VM_MEMATTR_DEFAULT && 2381 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) { 2382 /* 2383 * The page is allocated but eligible for 2384 * relocation. Extend the current run by one 2385 * page. 2386 */ 2387 KASSERT(pmap_page_get_memattr(m) == 2388 VM_MEMATTR_DEFAULT, 2389 ("page %p has an unexpected memattr", m)); 2390 KASSERT((m->oflags & (VPO_SWAPINPROG | 2391 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2392 ("page %p has unexpected oflags", m)); 2393 /* Don't care: VPO_NOSYNC. */ 2394 run_ext = 1; 2395 } else 2396 run_ext = 0; 2397 unlock: 2398 VM_OBJECT_RUNLOCK(object); 2399 #if VM_NRESERVLEVEL > 0 2400 } else if (level >= 0) { 2401 /* 2402 * The page is reserved but not yet allocated. In 2403 * other words, it is still free. Extend the current 2404 * run by one page. 2405 */ 2406 run_ext = 1; 2407 #endif 2408 } else if ((order = m->order) < VM_NFREEORDER) { 2409 /* 2410 * The page is enqueued in the physical memory 2411 * allocator's free page queues. Moreover, it is the 2412 * first page in a power-of-two-sized run of 2413 * contiguous free pages. Add these pages to the end 2414 * of the current run, and jump ahead. 2415 */ 2416 run_ext = 1 << order; 2417 m_inc = 1 << order; 2418 } else { 2419 /* 2420 * Skip the page for one of the following reasons: (1) 2421 * It is enqueued in the physical memory allocator's 2422 * free page queues. However, it is not the first 2423 * page in a run of contiguous free pages. (This case 2424 * rarely occurs because the scan is performed in 2425 * ascending order.) (2) It is not reserved, and it is 2426 * transitioning from free to allocated. (Conversely, 2427 * the transition from allocated to free for managed 2428 * pages is blocked by the page lock.) (3) It is 2429 * allocated but not contained by an object and not 2430 * wired, e.g., allocated by Xen's balloon driver. 2431 */ 2432 run_ext = 0; 2433 } 2434 2435 /* 2436 * Extend or reset the current run of pages. 2437 */ 2438 if (run_ext > 0) { 2439 if (run_len == 0) 2440 m_run = m; 2441 run_len += run_ext; 2442 } else { 2443 if (run_len > 0) { 2444 m_run = NULL; 2445 run_len = 0; 2446 } 2447 } 2448 } 2449 if (m_mtx != NULL) 2450 mtx_unlock(m_mtx); 2451 if (run_len >= npages) 2452 return (m_run); 2453 return (NULL); 2454 } 2455 2456 /* 2457 * vm_page_reclaim_run: 2458 * 2459 * Try to relocate each of the allocated virtual pages within the 2460 * specified run of physical pages to a new physical address. Free the 2461 * physical pages underlying the relocated virtual pages. A virtual page 2462 * is relocatable if and only if it could be laundered or reclaimed by 2463 * the page daemon. Whenever possible, a virtual page is relocated to a 2464 * physical address above "high". 2465 * 2466 * Returns 0 if every physical page within the run was already free or 2467 * just freed by a successful relocation. Otherwise, returns a non-zero 2468 * value indicating why the last attempt to relocate a virtual page was 2469 * unsuccessful. 2470 * 2471 * "req_class" must be an allocation class. 2472 */ 2473 static int 2474 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run, 2475 vm_paddr_t high) 2476 { 2477 struct vm_domain *vmd; 2478 struct mtx *m_mtx; 2479 struct spglist free; 2480 vm_object_t object; 2481 vm_paddr_t pa; 2482 vm_page_t m, m_end, m_new; 2483 int error, order, req; 2484 2485 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, 2486 ("req_class is not an allocation class")); 2487 SLIST_INIT(&free); 2488 error = 0; 2489 m = m_run; 2490 m_end = m_run + npages; 2491 m_mtx = NULL; 2492 for (; error == 0 && m < m_end; m++) { 2493 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, 2494 ("page %p is PG_FICTITIOUS or PG_MARKER", m)); 2495 2496 /* 2497 * Avoid releasing and reacquiring the same page lock. 2498 */ 2499 vm_page_change_lock(m, &m_mtx); 2500 retry: 2501 if (vm_page_wired(m)) 2502 error = EBUSY; 2503 else if ((object = m->object) != NULL) { 2504 /* 2505 * The page is relocated if and only if it could be 2506 * laundered or reclaimed by the page daemon. 2507 */ 2508 if (!VM_OBJECT_TRYWLOCK(object)) { 2509 mtx_unlock(m_mtx); 2510 VM_OBJECT_WLOCK(object); 2511 mtx_lock(m_mtx); 2512 if (m->object != object) { 2513 /* 2514 * The page may have been freed. 2515 */ 2516 VM_OBJECT_WUNLOCK(object); 2517 goto retry; 2518 } else if (vm_page_wired(m)) { 2519 error = EBUSY; 2520 goto unlock; 2521 } 2522 } 2523 /* Don't care: PG_NODUMP, PG_ZERO. */ 2524 if (object->type != OBJT_DEFAULT && 2525 object->type != OBJT_SWAP && 2526 object->type != OBJT_VNODE) 2527 error = EINVAL; 2528 else if (object->memattr != VM_MEMATTR_DEFAULT) 2529 error = EINVAL; 2530 else if (vm_page_queue(m) != PQ_NONE && 2531 !vm_page_busied(m)) { 2532 KASSERT(pmap_page_get_memattr(m) == 2533 VM_MEMATTR_DEFAULT, 2534 ("page %p has an unexpected memattr", m)); 2535 KASSERT((m->oflags & (VPO_SWAPINPROG | 2536 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2537 ("page %p has unexpected oflags", m)); 2538 /* Don't care: VPO_NOSYNC. */ 2539 if (m->valid != 0) { 2540 /* 2541 * First, try to allocate a new page 2542 * that is above "high". Failing 2543 * that, try to allocate a new page 2544 * that is below "m_run". Allocate 2545 * the new page between the end of 2546 * "m_run" and "high" only as a last 2547 * resort. 2548 */ 2549 req = req_class | VM_ALLOC_NOOBJ; 2550 if ((m->flags & PG_NODUMP) != 0) 2551 req |= VM_ALLOC_NODUMP; 2552 if (trunc_page(high) != 2553 ~(vm_paddr_t)PAGE_MASK) { 2554 m_new = vm_page_alloc_contig( 2555 NULL, 0, req, 1, 2556 round_page(high), 2557 ~(vm_paddr_t)0, 2558 PAGE_SIZE, 0, 2559 VM_MEMATTR_DEFAULT); 2560 } else 2561 m_new = NULL; 2562 if (m_new == NULL) { 2563 pa = VM_PAGE_TO_PHYS(m_run); 2564 m_new = vm_page_alloc_contig( 2565 NULL, 0, req, 1, 2566 0, pa - 1, PAGE_SIZE, 0, 2567 VM_MEMATTR_DEFAULT); 2568 } 2569 if (m_new == NULL) { 2570 pa += ptoa(npages); 2571 m_new = vm_page_alloc_contig( 2572 NULL, 0, req, 1, 2573 pa, high, PAGE_SIZE, 0, 2574 VM_MEMATTR_DEFAULT); 2575 } 2576 if (m_new == NULL) { 2577 error = ENOMEM; 2578 goto unlock; 2579 } 2580 KASSERT(!vm_page_wired(m_new), 2581 ("page %p is wired", m_new)); 2582 2583 /* 2584 * Replace "m" with the new page. For 2585 * vm_page_replace(), "m" must be busy 2586 * and dequeued. Finally, change "m" 2587 * as if vm_page_free() was called. 2588 */ 2589 if (object->ref_count != 0) 2590 pmap_remove_all(m); 2591 m_new->aflags = m->aflags & 2592 ~PGA_QUEUE_STATE_MASK; 2593 KASSERT(m_new->oflags == VPO_UNMANAGED, 2594 ("page %p is managed", m_new)); 2595 m_new->oflags = m->oflags & VPO_NOSYNC; 2596 pmap_copy_page(m, m_new); 2597 m_new->valid = m->valid; 2598 m_new->dirty = m->dirty; 2599 m->flags &= ~PG_ZERO; 2600 vm_page_xbusy(m); 2601 vm_page_dequeue(m); 2602 vm_page_replace_checked(m_new, object, 2603 m->pindex, m); 2604 if (vm_page_free_prep(m)) 2605 SLIST_INSERT_HEAD(&free, m, 2606 plinks.s.ss); 2607 2608 /* 2609 * The new page must be deactivated 2610 * before the object is unlocked. 2611 */ 2612 vm_page_change_lock(m_new, &m_mtx); 2613 vm_page_deactivate(m_new); 2614 } else { 2615 m->flags &= ~PG_ZERO; 2616 vm_page_dequeue(m); 2617 if (vm_page_free_prep(m)) 2618 SLIST_INSERT_HEAD(&free, m, 2619 plinks.s.ss); 2620 KASSERT(m->dirty == 0, 2621 ("page %p is dirty", m)); 2622 } 2623 } else 2624 error = EBUSY; 2625 unlock: 2626 VM_OBJECT_WUNLOCK(object); 2627 } else { 2628 MPASS(vm_phys_domain(m) == domain); 2629 vmd = VM_DOMAIN(domain); 2630 vm_domain_free_lock(vmd); 2631 order = m->order; 2632 if (order < VM_NFREEORDER) { 2633 /* 2634 * The page is enqueued in the physical memory 2635 * allocator's free page queues. Moreover, it 2636 * is the first page in a power-of-two-sized 2637 * run of contiguous free pages. Jump ahead 2638 * to the last page within that run, and 2639 * continue from there. 2640 */ 2641 m += (1 << order) - 1; 2642 } 2643 #if VM_NRESERVLEVEL > 0 2644 else if (vm_reserv_is_page_free(m)) 2645 order = 0; 2646 #endif 2647 vm_domain_free_unlock(vmd); 2648 if (order == VM_NFREEORDER) 2649 error = EINVAL; 2650 } 2651 } 2652 if (m_mtx != NULL) 2653 mtx_unlock(m_mtx); 2654 if ((m = SLIST_FIRST(&free)) != NULL) { 2655 int cnt; 2656 2657 vmd = VM_DOMAIN(domain); 2658 cnt = 0; 2659 vm_domain_free_lock(vmd); 2660 do { 2661 MPASS(vm_phys_domain(m) == domain); 2662 SLIST_REMOVE_HEAD(&free, plinks.s.ss); 2663 vm_phys_free_pages(m, 0); 2664 cnt++; 2665 } while ((m = SLIST_FIRST(&free)) != NULL); 2666 vm_domain_free_unlock(vmd); 2667 vm_domain_freecnt_inc(vmd, cnt); 2668 } 2669 return (error); 2670 } 2671 2672 #define NRUNS 16 2673 2674 CTASSERT(powerof2(NRUNS)); 2675 2676 #define RUN_INDEX(count) ((count) & (NRUNS - 1)) 2677 2678 #define MIN_RECLAIM 8 2679 2680 /* 2681 * vm_page_reclaim_contig: 2682 * 2683 * Reclaim allocated, contiguous physical memory satisfying the specified 2684 * conditions by relocating the virtual pages using that physical memory. 2685 * Returns true if reclamation is successful and false otherwise. Since 2686 * relocation requires the allocation of physical pages, reclamation may 2687 * fail due to a shortage of free pages. When reclamation fails, callers 2688 * are expected to perform vm_wait() before retrying a failed allocation 2689 * operation, e.g., vm_page_alloc_contig(). 2690 * 2691 * The caller must always specify an allocation class through "req". 2692 * 2693 * allocation classes: 2694 * VM_ALLOC_NORMAL normal process request 2695 * VM_ALLOC_SYSTEM system *really* needs a page 2696 * VM_ALLOC_INTERRUPT interrupt time request 2697 * 2698 * The optional allocation flags are ignored. 2699 * 2700 * "npages" must be greater than zero. Both "alignment" and "boundary" 2701 * must be a power of two. 2702 */ 2703 bool 2704 vm_page_reclaim_contig_domain(int domain, int req, u_long npages, 2705 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 2706 { 2707 struct vm_domain *vmd; 2708 vm_paddr_t curr_low; 2709 vm_page_t m_run, m_runs[NRUNS]; 2710 u_long count, reclaimed; 2711 int error, i, options, req_class; 2712 2713 KASSERT(npages > 0, ("npages is 0")); 2714 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2715 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2716 req_class = req & VM_ALLOC_CLASS_MASK; 2717 2718 /* 2719 * The page daemon is allowed to dig deeper into the free page list. 2720 */ 2721 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2722 req_class = VM_ALLOC_SYSTEM; 2723 2724 /* 2725 * Return if the number of free pages cannot satisfy the requested 2726 * allocation. 2727 */ 2728 vmd = VM_DOMAIN(domain); 2729 count = vmd->vmd_free_count; 2730 if (count < npages + vmd->vmd_free_reserved || (count < npages + 2731 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || 2732 (count < npages && req_class == VM_ALLOC_INTERRUPT)) 2733 return (false); 2734 2735 /* 2736 * Scan up to three times, relaxing the restrictions ("options") on 2737 * the reclamation of reservations and superpages each time. 2738 */ 2739 for (options = VPSC_NORESERV;;) { 2740 /* 2741 * Find the highest runs that satisfy the given constraints 2742 * and restrictions, and record them in "m_runs". 2743 */ 2744 curr_low = low; 2745 count = 0; 2746 for (;;) { 2747 m_run = vm_phys_scan_contig(domain, npages, curr_low, 2748 high, alignment, boundary, options); 2749 if (m_run == NULL) 2750 break; 2751 curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages); 2752 m_runs[RUN_INDEX(count)] = m_run; 2753 count++; 2754 } 2755 2756 /* 2757 * Reclaim the highest runs in LIFO (descending) order until 2758 * the number of reclaimed pages, "reclaimed", is at least 2759 * MIN_RECLAIM. Reset "reclaimed" each time because each 2760 * reclamation is idempotent, and runs will (likely) recur 2761 * from one scan to the next as restrictions are relaxed. 2762 */ 2763 reclaimed = 0; 2764 for (i = 0; count > 0 && i < NRUNS; i++) { 2765 count--; 2766 m_run = m_runs[RUN_INDEX(count)]; 2767 error = vm_page_reclaim_run(req_class, domain, npages, 2768 m_run, high); 2769 if (error == 0) { 2770 reclaimed += npages; 2771 if (reclaimed >= MIN_RECLAIM) 2772 return (true); 2773 } 2774 } 2775 2776 /* 2777 * Either relax the restrictions on the next scan or return if 2778 * the last scan had no restrictions. 2779 */ 2780 if (options == VPSC_NORESERV) 2781 options = VPSC_NOSUPER; 2782 else if (options == VPSC_NOSUPER) 2783 options = VPSC_ANY; 2784 else if (options == VPSC_ANY) 2785 return (reclaimed != 0); 2786 } 2787 } 2788 2789 bool 2790 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, 2791 u_long alignment, vm_paddr_t boundary) 2792 { 2793 struct vm_domainset_iter di; 2794 int domain; 2795 bool ret; 2796 2797 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2798 do { 2799 ret = vm_page_reclaim_contig_domain(domain, req, npages, low, 2800 high, alignment, boundary); 2801 if (ret) 2802 break; 2803 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2804 2805 return (ret); 2806 } 2807 2808 /* 2809 * Set the domain in the appropriate page level domainset. 2810 */ 2811 void 2812 vm_domain_set(struct vm_domain *vmd) 2813 { 2814 2815 mtx_lock(&vm_domainset_lock); 2816 if (!vmd->vmd_minset && vm_paging_min(vmd)) { 2817 vmd->vmd_minset = 1; 2818 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains); 2819 } 2820 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) { 2821 vmd->vmd_severeset = 1; 2822 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains); 2823 } 2824 mtx_unlock(&vm_domainset_lock); 2825 } 2826 2827 /* 2828 * Clear the domain from the appropriate page level domainset. 2829 */ 2830 void 2831 vm_domain_clear(struct vm_domain *vmd) 2832 { 2833 2834 mtx_lock(&vm_domainset_lock); 2835 if (vmd->vmd_minset && !vm_paging_min(vmd)) { 2836 vmd->vmd_minset = 0; 2837 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains); 2838 if (vm_min_waiters != 0) { 2839 vm_min_waiters = 0; 2840 wakeup(&vm_min_domains); 2841 } 2842 } 2843 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) { 2844 vmd->vmd_severeset = 0; 2845 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains); 2846 if (vm_severe_waiters != 0) { 2847 vm_severe_waiters = 0; 2848 wakeup(&vm_severe_domains); 2849 } 2850 } 2851 2852 /* 2853 * If pageout daemon needs pages, then tell it that there are 2854 * some free. 2855 */ 2856 if (vmd->vmd_pageout_pages_needed && 2857 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) { 2858 wakeup(&vmd->vmd_pageout_pages_needed); 2859 vmd->vmd_pageout_pages_needed = 0; 2860 } 2861 2862 /* See comments in vm_wait_doms(). */ 2863 if (vm_pageproc_waiters) { 2864 vm_pageproc_waiters = 0; 2865 wakeup(&vm_pageproc_waiters); 2866 } 2867 mtx_unlock(&vm_domainset_lock); 2868 } 2869 2870 /* 2871 * Wait for free pages to exceed the min threshold globally. 2872 */ 2873 void 2874 vm_wait_min(void) 2875 { 2876 2877 mtx_lock(&vm_domainset_lock); 2878 while (vm_page_count_min()) { 2879 vm_min_waiters++; 2880 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0); 2881 } 2882 mtx_unlock(&vm_domainset_lock); 2883 } 2884 2885 /* 2886 * Wait for free pages to exceed the severe threshold globally. 2887 */ 2888 void 2889 vm_wait_severe(void) 2890 { 2891 2892 mtx_lock(&vm_domainset_lock); 2893 while (vm_page_count_severe()) { 2894 vm_severe_waiters++; 2895 msleep(&vm_severe_domains, &vm_domainset_lock, PVM, 2896 "vmwait", 0); 2897 } 2898 mtx_unlock(&vm_domainset_lock); 2899 } 2900 2901 u_int 2902 vm_wait_count(void) 2903 { 2904 2905 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters); 2906 } 2907 2908 void 2909 vm_wait_doms(const domainset_t *wdoms) 2910 { 2911 2912 /* 2913 * We use racey wakeup synchronization to avoid expensive global 2914 * locking for the pageproc when sleeping with a non-specific vm_wait. 2915 * To handle this, we only sleep for one tick in this instance. It 2916 * is expected that most allocations for the pageproc will come from 2917 * kmem or vm_page_grab* which will use the more specific and 2918 * race-free vm_wait_domain(). 2919 */ 2920 if (curproc == pageproc) { 2921 mtx_lock(&vm_domainset_lock); 2922 vm_pageproc_waiters++; 2923 msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP, 2924 "pageprocwait", 1); 2925 } else { 2926 /* 2927 * XXX Ideally we would wait only until the allocation could 2928 * be satisfied. This condition can cause new allocators to 2929 * consume all freed pages while old allocators wait. 2930 */ 2931 mtx_lock(&vm_domainset_lock); 2932 if (vm_page_count_min_set(wdoms)) { 2933 vm_min_waiters++; 2934 msleep(&vm_min_domains, &vm_domainset_lock, 2935 PVM | PDROP, "vmwait", 0); 2936 } else 2937 mtx_unlock(&vm_domainset_lock); 2938 } 2939 } 2940 2941 /* 2942 * vm_wait_domain: 2943 * 2944 * Sleep until free pages are available for allocation. 2945 * - Called in various places after failed memory allocations. 2946 */ 2947 void 2948 vm_wait_domain(int domain) 2949 { 2950 struct vm_domain *vmd; 2951 domainset_t wdom; 2952 2953 vmd = VM_DOMAIN(domain); 2954 vm_domain_free_assert_unlocked(vmd); 2955 2956 if (curproc == pageproc) { 2957 mtx_lock(&vm_domainset_lock); 2958 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) { 2959 vmd->vmd_pageout_pages_needed = 1; 2960 msleep(&vmd->vmd_pageout_pages_needed, 2961 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0); 2962 } else 2963 mtx_unlock(&vm_domainset_lock); 2964 } else { 2965 if (pageproc == NULL) 2966 panic("vm_wait in early boot"); 2967 DOMAINSET_ZERO(&wdom); 2968 DOMAINSET_SET(vmd->vmd_domain, &wdom); 2969 vm_wait_doms(&wdom); 2970 } 2971 } 2972 2973 /* 2974 * vm_wait: 2975 * 2976 * Sleep until free pages are available for allocation in the 2977 * affinity domains of the obj. If obj is NULL, the domain set 2978 * for the calling thread is used. 2979 * Called in various places after failed memory allocations. 2980 */ 2981 void 2982 vm_wait(vm_object_t obj) 2983 { 2984 struct domainset *d; 2985 2986 d = NULL; 2987 2988 /* 2989 * Carefully fetch pointers only once: the struct domainset 2990 * itself is ummutable but the pointer might change. 2991 */ 2992 if (obj != NULL) 2993 d = obj->domain.dr_policy; 2994 if (d == NULL) 2995 d = curthread->td_domain.dr_policy; 2996 2997 vm_wait_doms(&d->ds_mask); 2998 } 2999 3000 /* 3001 * vm_domain_alloc_fail: 3002 * 3003 * Called when a page allocation function fails. Informs the 3004 * pagedaemon and performs the requested wait. Requires the 3005 * domain_free and object lock on entry. Returns with the 3006 * object lock held and free lock released. Returns an error when 3007 * retry is necessary. 3008 * 3009 */ 3010 static int 3011 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req) 3012 { 3013 3014 vm_domain_free_assert_unlocked(vmd); 3015 3016 atomic_add_int(&vmd->vmd_pageout_deficit, 3017 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 3018 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) { 3019 if (object != NULL) 3020 VM_OBJECT_WUNLOCK(object); 3021 vm_wait_domain(vmd->vmd_domain); 3022 if (object != NULL) 3023 VM_OBJECT_WLOCK(object); 3024 if (req & VM_ALLOC_WAITOK) 3025 return (EAGAIN); 3026 } 3027 3028 return (0); 3029 } 3030 3031 /* 3032 * vm_waitpfault: 3033 * 3034 * Sleep until free pages are available for allocation. 3035 * - Called only in vm_fault so that processes page faulting 3036 * can be easily tracked. 3037 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 3038 * processes will be able to grab memory first. Do not change 3039 * this balance without careful testing first. 3040 */ 3041 void 3042 vm_waitpfault(struct domainset *dset, int timo) 3043 { 3044 3045 /* 3046 * XXX Ideally we would wait only until the allocation could 3047 * be satisfied. This condition can cause new allocators to 3048 * consume all freed pages while old allocators wait. 3049 */ 3050 mtx_lock(&vm_domainset_lock); 3051 if (vm_page_count_min_set(&dset->ds_mask)) { 3052 vm_min_waiters++; 3053 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP, 3054 "pfault", timo); 3055 } else 3056 mtx_unlock(&vm_domainset_lock); 3057 } 3058 3059 static struct vm_pagequeue * 3060 vm_page_pagequeue(vm_page_t m) 3061 { 3062 3063 uint8_t queue; 3064 3065 if ((queue = atomic_load_8(&m->queue)) == PQ_NONE) 3066 return (NULL); 3067 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]); 3068 } 3069 3070 static inline void 3071 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m) 3072 { 3073 struct vm_domain *vmd; 3074 uint8_t qflags; 3075 3076 CRITICAL_ASSERT(curthread); 3077 vm_pagequeue_assert_locked(pq); 3078 3079 /* 3080 * The page daemon is allowed to set m->queue = PQ_NONE without 3081 * the page queue lock held. In this case it is about to free the page, 3082 * which must not have any queue state. 3083 */ 3084 qflags = atomic_load_8(&m->aflags); 3085 KASSERT(pq == vm_page_pagequeue(m) || 3086 (qflags & PGA_QUEUE_STATE_MASK) == 0, 3087 ("page %p doesn't belong to queue %p but has aflags %#x", 3088 m, pq, qflags)); 3089 3090 if ((qflags & PGA_DEQUEUE) != 0) { 3091 if (__predict_true((qflags & PGA_ENQUEUED) != 0)) 3092 vm_pagequeue_remove(pq, m); 3093 vm_page_dequeue_complete(m); 3094 } else if ((qflags & (PGA_REQUEUE | PGA_REQUEUE_HEAD)) != 0) { 3095 if ((qflags & PGA_ENQUEUED) != 0) 3096 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3097 else { 3098 vm_pagequeue_cnt_inc(pq); 3099 vm_page_aflag_set(m, PGA_ENQUEUED); 3100 } 3101 3102 /* 3103 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. 3104 * In particular, if both flags are set in close succession, 3105 * only PGA_REQUEUE_HEAD will be applied, even if it was set 3106 * first. 3107 */ 3108 if ((qflags & PGA_REQUEUE_HEAD) != 0) { 3109 KASSERT(m->queue == PQ_INACTIVE, 3110 ("head enqueue not supported for page %p", m)); 3111 vmd = vm_pagequeue_domain(m); 3112 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 3113 } else 3114 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3115 3116 vm_page_aflag_clear(m, qflags & (PGA_REQUEUE | 3117 PGA_REQUEUE_HEAD)); 3118 } 3119 } 3120 3121 static void 3122 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq, 3123 uint8_t queue) 3124 { 3125 vm_page_t m; 3126 int i; 3127 3128 for (i = 0; i < bq->bq_cnt; i++) { 3129 m = bq->bq_pa[i]; 3130 if (__predict_false(m->queue != queue)) 3131 continue; 3132 vm_pqbatch_process_page(pq, m); 3133 } 3134 vm_batchqueue_init(bq); 3135 } 3136 3137 void 3138 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue) 3139 { 3140 struct vm_batchqueue *bq; 3141 struct vm_pagequeue *pq; 3142 int domain; 3143 3144 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3145 ("page %p is unmanaged", m)); 3146 KASSERT(mtx_owned(vm_page_lockptr(m)) || 3147 (m->object == NULL && (m->aflags & PGA_DEQUEUE) != 0), 3148 ("missing synchronization for page %p", m)); 3149 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue)); 3150 3151 domain = vm_phys_domain(m); 3152 pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue]; 3153 3154 critical_enter(); 3155 bq = DPCPU_PTR(pqbatch[domain][queue]); 3156 if (vm_batchqueue_insert(bq, m)) { 3157 critical_exit(); 3158 return; 3159 } 3160 if (!vm_pagequeue_trylock(pq)) { 3161 critical_exit(); 3162 vm_pagequeue_lock(pq); 3163 critical_enter(); 3164 bq = DPCPU_PTR(pqbatch[domain][queue]); 3165 } 3166 vm_pqbatch_process(pq, bq, queue); 3167 3168 /* 3169 * The page may have been logically dequeued before we acquired the 3170 * page queue lock. In this case, since we either hold the page lock 3171 * or the page is being freed, a different thread cannot be concurrently 3172 * enqueuing the page. 3173 */ 3174 if (__predict_true(m->queue == queue)) 3175 vm_pqbatch_process_page(pq, m); 3176 else { 3177 KASSERT(m->queue == PQ_NONE, 3178 ("invalid queue transition for page %p", m)); 3179 KASSERT((m->aflags & PGA_ENQUEUED) == 0, 3180 ("page %p is enqueued with invalid queue index", m)); 3181 } 3182 vm_pagequeue_unlock(pq); 3183 critical_exit(); 3184 } 3185 3186 /* 3187 * vm_page_pqbatch_drain: [ internal use only ] 3188 * 3189 * Force all per-CPU page queue batch queues to be drained. This is 3190 * intended for use in severe memory shortages, to ensure that pages 3191 * do not remain stuck in the batch queues. 3192 */ 3193 void 3194 vm_page_pqbatch_drain(void) 3195 { 3196 struct thread *td; 3197 struct vm_domain *vmd; 3198 struct vm_pagequeue *pq; 3199 int cpu, domain, queue; 3200 3201 td = curthread; 3202 CPU_FOREACH(cpu) { 3203 thread_lock(td); 3204 sched_bind(td, cpu); 3205 thread_unlock(td); 3206 3207 for (domain = 0; domain < vm_ndomains; domain++) { 3208 vmd = VM_DOMAIN(domain); 3209 for (queue = 0; queue < PQ_COUNT; queue++) { 3210 pq = &vmd->vmd_pagequeues[queue]; 3211 vm_pagequeue_lock(pq); 3212 critical_enter(); 3213 vm_pqbatch_process(pq, 3214 DPCPU_PTR(pqbatch[domain][queue]), queue); 3215 critical_exit(); 3216 vm_pagequeue_unlock(pq); 3217 } 3218 } 3219 } 3220 thread_lock(td); 3221 sched_unbind(td); 3222 thread_unlock(td); 3223 } 3224 3225 /* 3226 * Complete the logical removal of a page from a page queue. We must be 3227 * careful to synchronize with the page daemon, which may be concurrently 3228 * examining the page with only the page lock held. The page must not be 3229 * in a state where it appears to be logically enqueued. 3230 */ 3231 static void 3232 vm_page_dequeue_complete(vm_page_t m) 3233 { 3234 3235 m->queue = PQ_NONE; 3236 atomic_thread_fence_rel(); 3237 vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK); 3238 } 3239 3240 /* 3241 * vm_page_dequeue_deferred: [ internal use only ] 3242 * 3243 * Request removal of the given page from its current page 3244 * queue. Physical removal from the queue may be deferred 3245 * indefinitely. 3246 * 3247 * The page must be locked. 3248 */ 3249 void 3250 vm_page_dequeue_deferred(vm_page_t m) 3251 { 3252 uint8_t queue; 3253 3254 vm_page_assert_locked(m); 3255 3256 if ((queue = vm_page_queue(m)) == PQ_NONE) 3257 return; 3258 vm_page_aflag_set(m, PGA_DEQUEUE); 3259 vm_page_pqbatch_submit(m, queue); 3260 } 3261 3262 /* 3263 * A variant of vm_page_dequeue_deferred() that does not assert the page 3264 * lock and is only to be called from vm_page_free_prep(). It is just an 3265 * open-coded implementation of vm_page_dequeue_deferred(). Because the 3266 * page is being freed, we can assume that nothing else is scheduling queue 3267 * operations on this page, so we get for free the mutual exclusion that 3268 * is otherwise provided by the page lock. 3269 */ 3270 static void 3271 vm_page_dequeue_deferred_free(vm_page_t m) 3272 { 3273 uint8_t queue; 3274 3275 KASSERT(m->object == NULL, ("page %p has an object reference", m)); 3276 3277 if ((m->aflags & PGA_DEQUEUE) != 0) 3278 return; 3279 atomic_thread_fence_acq(); 3280 if ((queue = m->queue) == PQ_NONE) 3281 return; 3282 vm_page_aflag_set(m, PGA_DEQUEUE); 3283 vm_page_pqbatch_submit(m, queue); 3284 } 3285 3286 /* 3287 * vm_page_dequeue: 3288 * 3289 * Remove the page from whichever page queue it's in, if any. 3290 * The page must either be locked or unallocated. This constraint 3291 * ensures that the queue state of the page will remain consistent 3292 * after this function returns. 3293 */ 3294 void 3295 vm_page_dequeue(vm_page_t m) 3296 { 3297 struct vm_pagequeue *pq, *pq1; 3298 uint8_t aflags; 3299 3300 KASSERT(mtx_owned(vm_page_lockptr(m)) || m->object == NULL, 3301 ("page %p is allocated and unlocked", m)); 3302 3303 for (pq = vm_page_pagequeue(m);; pq = pq1) { 3304 if (pq == NULL) { 3305 /* 3306 * A thread may be concurrently executing 3307 * vm_page_dequeue_complete(). Ensure that all queue 3308 * state is cleared before we return. 3309 */ 3310 aflags = atomic_load_8(&m->aflags); 3311 if ((aflags & PGA_QUEUE_STATE_MASK) == 0) 3312 return; 3313 KASSERT((aflags & PGA_DEQUEUE) != 0, 3314 ("page %p has unexpected queue state flags %#x", 3315 m, aflags)); 3316 3317 /* 3318 * Busy wait until the thread updating queue state is 3319 * finished. Such a thread must be executing in a 3320 * critical section. 3321 */ 3322 cpu_spinwait(); 3323 pq1 = vm_page_pagequeue(m); 3324 continue; 3325 } 3326 vm_pagequeue_lock(pq); 3327 if ((pq1 = vm_page_pagequeue(m)) == pq) 3328 break; 3329 vm_pagequeue_unlock(pq); 3330 } 3331 KASSERT(pq == vm_page_pagequeue(m), 3332 ("%s: page %p migrated directly between queues", __func__, m)); 3333 KASSERT((m->aflags & PGA_DEQUEUE) != 0 || 3334 mtx_owned(vm_page_lockptr(m)), 3335 ("%s: queued unlocked page %p", __func__, m)); 3336 3337 if ((m->aflags & PGA_ENQUEUED) != 0) 3338 vm_pagequeue_remove(pq, m); 3339 vm_page_dequeue_complete(m); 3340 vm_pagequeue_unlock(pq); 3341 } 3342 3343 /* 3344 * Schedule the given page for insertion into the specified page queue. 3345 * Physical insertion of the page may be deferred indefinitely. 3346 */ 3347 static void 3348 vm_page_enqueue(vm_page_t m, uint8_t queue) 3349 { 3350 3351 vm_page_assert_locked(m); 3352 KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0, 3353 ("%s: page %p is already enqueued", __func__, m)); 3354 3355 m->queue = queue; 3356 if ((m->aflags & PGA_REQUEUE) == 0) 3357 vm_page_aflag_set(m, PGA_REQUEUE); 3358 vm_page_pqbatch_submit(m, queue); 3359 } 3360 3361 /* 3362 * vm_page_requeue: [ internal use only ] 3363 * 3364 * Schedule a requeue of the given page. 3365 * 3366 * The page must be locked. 3367 */ 3368 void 3369 vm_page_requeue(vm_page_t m) 3370 { 3371 3372 vm_page_assert_locked(m); 3373 KASSERT(vm_page_queue(m) != PQ_NONE, 3374 ("%s: page %p is not logically enqueued", __func__, m)); 3375 3376 if ((m->aflags & PGA_REQUEUE) == 0) 3377 vm_page_aflag_set(m, PGA_REQUEUE); 3378 vm_page_pqbatch_submit(m, atomic_load_8(&m->queue)); 3379 } 3380 3381 /* 3382 * vm_page_free_prep: 3383 * 3384 * Prepares the given page to be put on the free list, 3385 * disassociating it from any VM object. The caller may return 3386 * the page to the free list only if this function returns true. 3387 * 3388 * The object must be locked. The page must be locked if it is 3389 * managed. 3390 */ 3391 bool 3392 vm_page_free_prep(vm_page_t m) 3393 { 3394 3395 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP) 3396 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) { 3397 uint64_t *p; 3398 int i; 3399 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 3400 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++) 3401 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx", 3402 m, i, (uintmax_t)*p)); 3403 } 3404 #endif 3405 if ((m->oflags & VPO_UNMANAGED) == 0) { 3406 vm_page_lock_assert(m, MA_OWNED); 3407 KASSERT(!pmap_page_is_mapped(m), 3408 ("vm_page_free_prep: freeing mapped page %p", m)); 3409 } else 3410 KASSERT(m->queue == PQ_NONE, 3411 ("vm_page_free_prep: unmanaged page %p is queued", m)); 3412 VM_CNT_INC(v_tfree); 3413 3414 if (vm_page_sbusied(m)) 3415 panic("vm_page_free_prep: freeing busy page %p", m); 3416 3417 if (m->object != NULL) 3418 (void)vm_page_remove(m); 3419 3420 /* 3421 * If fictitious remove object association and 3422 * return. 3423 */ 3424 if ((m->flags & PG_FICTITIOUS) != 0) { 3425 KASSERT(m->wire_count == 1, 3426 ("fictitious page %p is not wired", m)); 3427 KASSERT(m->queue == PQ_NONE, 3428 ("fictitious page %p is queued", m)); 3429 return (false); 3430 } 3431 3432 /* 3433 * Pages need not be dequeued before they are returned to the physical 3434 * memory allocator, but they must at least be marked for a deferred 3435 * dequeue. 3436 */ 3437 if ((m->oflags & VPO_UNMANAGED) == 0) 3438 vm_page_dequeue_deferred_free(m); 3439 3440 m->valid = 0; 3441 vm_page_undirty(m); 3442 3443 if (vm_page_wired(m) != 0) 3444 panic("vm_page_free_prep: freeing wired page %p", m); 3445 3446 /* 3447 * Restore the default memory attribute to the page. 3448 */ 3449 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 3450 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 3451 3452 #if VM_NRESERVLEVEL > 0 3453 /* 3454 * Determine whether the page belongs to a reservation. If the page was 3455 * allocated from a per-CPU cache, it cannot belong to a reservation, so 3456 * as an optimization, we avoid the check in that case. 3457 */ 3458 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m)) 3459 return (false); 3460 #endif 3461 3462 return (true); 3463 } 3464 3465 /* 3466 * vm_page_free_toq: 3467 * 3468 * Returns the given page to the free list, disassociating it 3469 * from any VM object. 3470 * 3471 * The object must be locked. The page must be locked if it is 3472 * managed. 3473 */ 3474 void 3475 vm_page_free_toq(vm_page_t m) 3476 { 3477 struct vm_domain *vmd; 3478 uma_zone_t zone; 3479 3480 if (!vm_page_free_prep(m)) 3481 return; 3482 3483 vmd = vm_pagequeue_domain(m); 3484 zone = vmd->vmd_pgcache[m->pool].zone; 3485 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) { 3486 uma_zfree(zone, m); 3487 return; 3488 } 3489 vm_domain_free_lock(vmd); 3490 vm_phys_free_pages(m, 0); 3491 vm_domain_free_unlock(vmd); 3492 vm_domain_freecnt_inc(vmd, 1); 3493 } 3494 3495 /* 3496 * vm_page_free_pages_toq: 3497 * 3498 * Returns a list of pages to the free list, disassociating it 3499 * from any VM object. In other words, this is equivalent to 3500 * calling vm_page_free_toq() for each page of a list of VM objects. 3501 * 3502 * The objects must be locked. The pages must be locked if it is 3503 * managed. 3504 */ 3505 void 3506 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count) 3507 { 3508 vm_page_t m; 3509 int count; 3510 3511 if (SLIST_EMPTY(free)) 3512 return; 3513 3514 count = 0; 3515 while ((m = SLIST_FIRST(free)) != NULL) { 3516 count++; 3517 SLIST_REMOVE_HEAD(free, plinks.s.ss); 3518 vm_page_free_toq(m); 3519 } 3520 3521 if (update_wire_count) 3522 vm_wire_sub(count); 3523 } 3524 3525 /* 3526 * vm_page_wire: 3527 * 3528 * Mark this page as wired down. If the page is fictitious, then 3529 * its wire count must remain one. 3530 * 3531 * The page must be locked. 3532 */ 3533 void 3534 vm_page_wire(vm_page_t m) 3535 { 3536 3537 vm_page_assert_locked(m); 3538 if ((m->flags & PG_FICTITIOUS) != 0) { 3539 KASSERT(m->wire_count == 1, 3540 ("vm_page_wire: fictitious page %p's wire count isn't one", 3541 m)); 3542 return; 3543 } 3544 if (!vm_page_wired(m)) { 3545 KASSERT((m->oflags & VPO_UNMANAGED) == 0 || 3546 m->queue == PQ_NONE, 3547 ("vm_page_wire: unmanaged page %p is queued", m)); 3548 vm_wire_add(1); 3549 } 3550 m->wire_count++; 3551 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 3552 } 3553 3554 /* 3555 * vm_page_unwire: 3556 * 3557 * Release one wiring of the specified page, potentially allowing it to be 3558 * paged out. Returns TRUE if the number of wirings transitions to zero and 3559 * FALSE otherwise. 3560 * 3561 * Only managed pages belonging to an object can be paged out. If the number 3562 * of wirings transitions to zero and the page is eligible for page out, then 3563 * the page is added to the specified paging queue (unless PQ_NONE is 3564 * specified, in which case the page is dequeued if it belongs to a paging 3565 * queue). 3566 * 3567 * If a page is fictitious, then its wire count must always be one. 3568 * 3569 * A managed page must be locked. 3570 */ 3571 bool 3572 vm_page_unwire(vm_page_t m, uint8_t queue) 3573 { 3574 bool unwired; 3575 3576 KASSERT(queue < PQ_COUNT || queue == PQ_NONE, 3577 ("vm_page_unwire: invalid queue %u request for page %p", 3578 queue, m)); 3579 if ((m->oflags & VPO_UNMANAGED) == 0) 3580 vm_page_assert_locked(m); 3581 3582 unwired = vm_page_unwire_noq(m); 3583 if (!unwired || (m->oflags & VPO_UNMANAGED) != 0 || m->object == NULL) 3584 return (unwired); 3585 3586 if (vm_page_queue(m) == queue) { 3587 if (queue == PQ_ACTIVE) 3588 vm_page_reference(m); 3589 else if (queue != PQ_NONE) 3590 vm_page_requeue(m); 3591 } else { 3592 vm_page_dequeue(m); 3593 if (queue != PQ_NONE) { 3594 vm_page_enqueue(m, queue); 3595 if (queue == PQ_ACTIVE) 3596 /* Initialize act_count. */ 3597 vm_page_activate(m); 3598 } 3599 } 3600 return (unwired); 3601 } 3602 3603 /* 3604 * 3605 * vm_page_unwire_noq: 3606 * 3607 * Unwire a page without (re-)inserting it into a page queue. It is up 3608 * to the caller to enqueue, requeue, or free the page as appropriate. 3609 * In most cases, vm_page_unwire() should be used instead. 3610 */ 3611 bool 3612 vm_page_unwire_noq(vm_page_t m) 3613 { 3614 3615 if ((m->oflags & VPO_UNMANAGED) == 0) 3616 vm_page_assert_locked(m); 3617 if ((m->flags & PG_FICTITIOUS) != 0) { 3618 KASSERT(m->wire_count == 1, 3619 ("vm_page_unwire: fictitious page %p's wire count isn't one", m)); 3620 return (false); 3621 } 3622 if (!vm_page_wired(m)) 3623 panic("vm_page_unwire: page %p's wire count is zero", m); 3624 m->wire_count--; 3625 if (m->wire_count == 0) { 3626 vm_wire_sub(1); 3627 return (true); 3628 } else 3629 return (false); 3630 } 3631 3632 /* 3633 * vm_page_activate: 3634 * 3635 * Put the specified page on the active list (if appropriate). 3636 * Ensure that act_count is at least ACT_INIT but do not otherwise 3637 * mess with it. 3638 * 3639 * The page must be locked. 3640 */ 3641 void 3642 vm_page_activate(vm_page_t m) 3643 { 3644 3645 vm_page_assert_locked(m); 3646 3647 if (vm_page_wired(m) || (m->oflags & VPO_UNMANAGED) != 0) 3648 return; 3649 if (vm_page_queue(m) == PQ_ACTIVE) { 3650 if (m->act_count < ACT_INIT) 3651 m->act_count = ACT_INIT; 3652 return; 3653 } 3654 3655 vm_page_dequeue(m); 3656 if (m->act_count < ACT_INIT) 3657 m->act_count = ACT_INIT; 3658 vm_page_enqueue(m, PQ_ACTIVE); 3659 } 3660 3661 /* 3662 * Move the specified page to the tail of the inactive queue, or requeue 3663 * the page if it is already in the inactive queue. 3664 * 3665 * The page must be locked. 3666 */ 3667 void 3668 vm_page_deactivate(vm_page_t m) 3669 { 3670 3671 vm_page_assert_locked(m); 3672 3673 if (vm_page_wired(m) || (m->oflags & VPO_UNMANAGED) != 0) 3674 return; 3675 3676 if (!vm_page_inactive(m)) { 3677 vm_page_dequeue(m); 3678 vm_page_enqueue(m, PQ_INACTIVE); 3679 } else 3680 vm_page_requeue(m); 3681 } 3682 3683 /* 3684 * Move the specified page close to the head of the inactive queue, 3685 * bypassing LRU. A marker page is used to maintain FIFO ordering. 3686 * As with regular enqueues, we use a per-CPU batch queue to reduce 3687 * contention on the page queue lock. 3688 * 3689 * The page must be locked. 3690 */ 3691 void 3692 vm_page_deactivate_noreuse(vm_page_t m) 3693 { 3694 3695 vm_page_assert_locked(m); 3696 3697 if (vm_page_wired(m) || (m->oflags & VPO_UNMANAGED) != 0) 3698 return; 3699 3700 if (!vm_page_inactive(m)) { 3701 vm_page_dequeue(m); 3702 m->queue = PQ_INACTIVE; 3703 } 3704 if ((m->aflags & PGA_REQUEUE_HEAD) == 0) 3705 vm_page_aflag_set(m, PGA_REQUEUE_HEAD); 3706 vm_page_pqbatch_submit(m, PQ_INACTIVE); 3707 } 3708 3709 /* 3710 * vm_page_launder 3711 * 3712 * Put a page in the laundry, or requeue it if it is already there. 3713 */ 3714 void 3715 vm_page_launder(vm_page_t m) 3716 { 3717 3718 vm_page_assert_locked(m); 3719 if (vm_page_wired(m) || (m->oflags & VPO_UNMANAGED) != 0) 3720 return; 3721 3722 if (vm_page_in_laundry(m)) 3723 vm_page_requeue(m); 3724 else { 3725 vm_page_dequeue(m); 3726 vm_page_enqueue(m, PQ_LAUNDRY); 3727 } 3728 } 3729 3730 /* 3731 * vm_page_unswappable 3732 * 3733 * Put a page in the PQ_UNSWAPPABLE holding queue. 3734 */ 3735 void 3736 vm_page_unswappable(vm_page_t m) 3737 { 3738 3739 vm_page_assert_locked(m); 3740 KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0, 3741 ("page %p already unswappable", m)); 3742 3743 vm_page_dequeue(m); 3744 vm_page_enqueue(m, PQ_UNSWAPPABLE); 3745 } 3746 3747 static void 3748 vm_page_release_toq(vm_page_t m, int flags) 3749 { 3750 3751 /* 3752 * Use a check of the valid bits to determine whether we should 3753 * accelerate reclamation of the page. The object lock might not be 3754 * held here, in which case the check is racy. At worst we will either 3755 * accelerate reclamation of a valid page and violate LRU, or 3756 * unnecessarily defer reclamation of an invalid page. 3757 * 3758 * If we were asked to not cache the page, place it near the head of the 3759 * inactive queue so that is reclaimed sooner. 3760 */ 3761 if ((flags & (VPR_TRYFREE | VPR_NOREUSE)) != 0 || m->valid == 0) 3762 vm_page_deactivate_noreuse(m); 3763 else if (vm_page_active(m)) 3764 vm_page_reference(m); 3765 else 3766 vm_page_deactivate(m); 3767 } 3768 3769 /* 3770 * Unwire a page and either attempt to free it or re-add it to the page queues. 3771 */ 3772 void 3773 vm_page_release(vm_page_t m, int flags) 3774 { 3775 vm_object_t object; 3776 bool freed; 3777 3778 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3779 ("vm_page_release: page %p is unmanaged", m)); 3780 3781 vm_page_lock(m); 3782 if (m->object != NULL) 3783 VM_OBJECT_ASSERT_UNLOCKED(m->object); 3784 if (vm_page_unwire_noq(m)) { 3785 if ((object = m->object) == NULL) { 3786 vm_page_free(m); 3787 } else { 3788 freed = false; 3789 if ((flags & VPR_TRYFREE) != 0 && !vm_page_busied(m) && 3790 /* Depends on type stability. */ 3791 VM_OBJECT_TRYWLOCK(object)) { 3792 /* 3793 * Only free unmapped pages. The busy test from 3794 * before the object was locked cannot be relied 3795 * upon. 3796 */ 3797 if ((object->ref_count == 0 || 3798 !pmap_page_is_mapped(m)) && m->dirty == 0 && 3799 !vm_page_busied(m)) { 3800 vm_page_free(m); 3801 freed = true; 3802 } 3803 VM_OBJECT_WUNLOCK(object); 3804 } 3805 3806 if (!freed) 3807 vm_page_release_toq(m, flags); 3808 } 3809 } 3810 vm_page_unlock(m); 3811 } 3812 3813 /* See vm_page_release(). */ 3814 void 3815 vm_page_release_locked(vm_page_t m, int flags) 3816 { 3817 3818 VM_OBJECT_ASSERT_WLOCKED(m->object); 3819 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3820 ("vm_page_release_locked: page %p is unmanaged", m)); 3821 3822 vm_page_lock(m); 3823 if (vm_page_unwire_noq(m)) { 3824 if ((flags & VPR_TRYFREE) != 0 && 3825 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) && 3826 m->dirty == 0 && !vm_page_busied(m)) { 3827 vm_page_free(m); 3828 } else { 3829 vm_page_release_toq(m, flags); 3830 } 3831 } 3832 vm_page_unlock(m); 3833 } 3834 3835 /* 3836 * vm_page_advise 3837 * 3838 * Apply the specified advice to the given page. 3839 * 3840 * The object and page must be locked. 3841 */ 3842 void 3843 vm_page_advise(vm_page_t m, int advice) 3844 { 3845 3846 vm_page_assert_locked(m); 3847 VM_OBJECT_ASSERT_WLOCKED(m->object); 3848 if (advice == MADV_FREE) 3849 /* 3850 * Mark the page clean. This will allow the page to be freed 3851 * without first paging it out. MADV_FREE pages are often 3852 * quickly reused by malloc(3), so we do not do anything that 3853 * would result in a page fault on a later access. 3854 */ 3855 vm_page_undirty(m); 3856 else if (advice != MADV_DONTNEED) { 3857 if (advice == MADV_WILLNEED) 3858 vm_page_activate(m); 3859 return; 3860 } 3861 3862 /* 3863 * Clear any references to the page. Otherwise, the page daemon will 3864 * immediately reactivate the page. 3865 */ 3866 vm_page_aflag_clear(m, PGA_REFERENCED); 3867 3868 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 3869 vm_page_dirty(m); 3870 3871 /* 3872 * Place clean pages near the head of the inactive queue rather than 3873 * the tail, thus defeating the queue's LRU operation and ensuring that 3874 * the page will be reused quickly. Dirty pages not already in the 3875 * laundry are moved there. 3876 */ 3877 if (m->dirty == 0) 3878 vm_page_deactivate_noreuse(m); 3879 else if (!vm_page_in_laundry(m)) 3880 vm_page_launder(m); 3881 } 3882 3883 /* 3884 * Grab a page, waiting until we are waken up due to the page 3885 * changing state. We keep on waiting, if the page continues 3886 * to be in the object. If the page doesn't exist, first allocate it 3887 * and then conditionally zero it. 3888 * 3889 * This routine may sleep. 3890 * 3891 * The object must be locked on entry. The lock will, however, be released 3892 * and reacquired if the routine sleeps. 3893 */ 3894 vm_page_t 3895 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 3896 { 3897 vm_page_t m; 3898 int sleep; 3899 int pflags; 3900 3901 VM_OBJECT_ASSERT_WLOCKED(object); 3902 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 3903 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 3904 ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 3905 pflags = allocflags & 3906 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL); 3907 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 3908 pflags |= VM_ALLOC_WAITFAIL; 3909 retrylookup: 3910 if ((m = vm_page_lookup(object, pindex)) != NULL) { 3911 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? 3912 vm_page_xbusied(m) : vm_page_busied(m); 3913 if (sleep) { 3914 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3915 return (NULL); 3916 /* 3917 * Reference the page before unlocking and 3918 * sleeping so that the page daemon is less 3919 * likely to reclaim it. 3920 */ 3921 vm_page_aflag_set(m, PGA_REFERENCED); 3922 vm_page_lock(m); 3923 VM_OBJECT_WUNLOCK(object); 3924 vm_page_busy_sleep(m, "pgrbwt", (allocflags & 3925 VM_ALLOC_IGN_SBUSY) != 0); 3926 VM_OBJECT_WLOCK(object); 3927 goto retrylookup; 3928 } else { 3929 if ((allocflags & VM_ALLOC_WIRED) != 0) { 3930 vm_page_lock(m); 3931 vm_page_wire(m); 3932 vm_page_unlock(m); 3933 } 3934 if ((allocflags & 3935 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 3936 vm_page_xbusy(m); 3937 if ((allocflags & VM_ALLOC_SBUSY) != 0) 3938 vm_page_sbusy(m); 3939 return (m); 3940 } 3941 } 3942 m = vm_page_alloc(object, pindex, pflags); 3943 if (m == NULL) { 3944 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3945 return (NULL); 3946 goto retrylookup; 3947 } 3948 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 3949 pmap_zero_page(m); 3950 return (m); 3951 } 3952 3953 /* 3954 * Return the specified range of pages from the given object. For each 3955 * page offset within the range, if a page already exists within the object 3956 * at that offset and it is busy, then wait for it to change state. If, 3957 * instead, the page doesn't exist, then allocate it. 3958 * 3959 * The caller must always specify an allocation class. 3960 * 3961 * allocation classes: 3962 * VM_ALLOC_NORMAL normal process request 3963 * VM_ALLOC_SYSTEM system *really* needs the pages 3964 * 3965 * The caller must always specify that the pages are to be busied and/or 3966 * wired. 3967 * 3968 * optional allocation flags: 3969 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages 3970 * VM_ALLOC_NOBUSY do not exclusive busy the page 3971 * VM_ALLOC_NOWAIT do not sleep 3972 * VM_ALLOC_SBUSY set page to sbusy state 3973 * VM_ALLOC_WIRED wire the pages 3974 * VM_ALLOC_ZERO zero and validate any invalid pages 3975 * 3976 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it 3977 * may return a partial prefix of the requested range. 3978 */ 3979 int 3980 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, 3981 vm_page_t *ma, int count) 3982 { 3983 vm_page_t m, mpred; 3984 int pflags; 3985 int i; 3986 bool sleep; 3987 3988 VM_OBJECT_ASSERT_WLOCKED(object); 3989 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0, 3990 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed")); 3991 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 || 3992 (allocflags & VM_ALLOC_WIRED) != 0, 3993 ("vm_page_grab_pages: the pages must be busied or wired")); 3994 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 3995 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 3996 ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch")); 3997 if (count == 0) 3998 return (0); 3999 pflags = allocflags & ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | 4000 VM_ALLOC_WAITFAIL | VM_ALLOC_IGN_SBUSY); 4001 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 4002 pflags |= VM_ALLOC_WAITFAIL; 4003 i = 0; 4004 retrylookup: 4005 m = vm_radix_lookup_le(&object->rtree, pindex + i); 4006 if (m == NULL || m->pindex != pindex + i) { 4007 mpred = m; 4008 m = NULL; 4009 } else 4010 mpred = TAILQ_PREV(m, pglist, listq); 4011 for (; i < count; i++) { 4012 if (m != NULL) { 4013 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? 4014 vm_page_xbusied(m) : vm_page_busied(m); 4015 if (sleep) { 4016 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 4017 break; 4018 /* 4019 * Reference the page before unlocking and 4020 * sleeping so that the page daemon is less 4021 * likely to reclaim it. 4022 */ 4023 vm_page_aflag_set(m, PGA_REFERENCED); 4024 vm_page_lock(m); 4025 VM_OBJECT_WUNLOCK(object); 4026 vm_page_busy_sleep(m, "grbmaw", (allocflags & 4027 VM_ALLOC_IGN_SBUSY) != 0); 4028 VM_OBJECT_WLOCK(object); 4029 goto retrylookup; 4030 } 4031 if ((allocflags & VM_ALLOC_WIRED) != 0) { 4032 vm_page_lock(m); 4033 vm_page_wire(m); 4034 vm_page_unlock(m); 4035 } 4036 if ((allocflags & (VM_ALLOC_NOBUSY | 4037 VM_ALLOC_SBUSY)) == 0) 4038 vm_page_xbusy(m); 4039 if ((allocflags & VM_ALLOC_SBUSY) != 0) 4040 vm_page_sbusy(m); 4041 } else { 4042 m = vm_page_alloc_after(object, pindex + i, 4043 pflags | VM_ALLOC_COUNT(count - i), mpred); 4044 if (m == NULL) { 4045 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 4046 break; 4047 goto retrylookup; 4048 } 4049 } 4050 if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) { 4051 if ((m->flags & PG_ZERO) == 0) 4052 pmap_zero_page(m); 4053 m->valid = VM_PAGE_BITS_ALL; 4054 } 4055 ma[i] = mpred = m; 4056 m = vm_page_next(m); 4057 } 4058 return (i); 4059 } 4060 4061 /* 4062 * Mapping function for valid or dirty bits in a page. 4063 * 4064 * Inputs are required to range within a page. 4065 */ 4066 vm_page_bits_t 4067 vm_page_bits(int base, int size) 4068 { 4069 int first_bit; 4070 int last_bit; 4071 4072 KASSERT( 4073 base + size <= PAGE_SIZE, 4074 ("vm_page_bits: illegal base/size %d/%d", base, size) 4075 ); 4076 4077 if (size == 0) /* handle degenerate case */ 4078 return (0); 4079 4080 first_bit = base >> DEV_BSHIFT; 4081 last_bit = (base + size - 1) >> DEV_BSHIFT; 4082 4083 return (((vm_page_bits_t)2 << last_bit) - 4084 ((vm_page_bits_t)1 << first_bit)); 4085 } 4086 4087 /* 4088 * vm_page_set_valid_range: 4089 * 4090 * Sets portions of a page valid. The arguments are expected 4091 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 4092 * of any partial chunks touched by the range. The invalid portion of 4093 * such chunks will be zeroed. 4094 * 4095 * (base + size) must be less then or equal to PAGE_SIZE. 4096 */ 4097 void 4098 vm_page_set_valid_range(vm_page_t m, int base, int size) 4099 { 4100 int endoff, frag; 4101 4102 VM_OBJECT_ASSERT_WLOCKED(m->object); 4103 if (size == 0) /* handle degenerate case */ 4104 return; 4105 4106 /* 4107 * If the base is not DEV_BSIZE aligned and the valid 4108 * bit is clear, we have to zero out a portion of the 4109 * first block. 4110 */ 4111 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 4112 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 4113 pmap_zero_page_area(m, frag, base - frag); 4114 4115 /* 4116 * If the ending offset is not DEV_BSIZE aligned and the 4117 * valid bit is clear, we have to zero out a portion of 4118 * the last block. 4119 */ 4120 endoff = base + size; 4121 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 4122 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 4123 pmap_zero_page_area(m, endoff, 4124 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 4125 4126 /* 4127 * Assert that no previously invalid block that is now being validated 4128 * is already dirty. 4129 */ 4130 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 4131 ("vm_page_set_valid_range: page %p is dirty", m)); 4132 4133 /* 4134 * Set valid bits inclusive of any overlap. 4135 */ 4136 m->valid |= vm_page_bits(base, size); 4137 } 4138 4139 /* 4140 * Clear the given bits from the specified page's dirty field. 4141 */ 4142 static __inline void 4143 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 4144 { 4145 uintptr_t addr; 4146 #if PAGE_SIZE < 16384 4147 int shift; 4148 #endif 4149 4150 /* 4151 * If the object is locked and the page is neither exclusive busy nor 4152 * write mapped, then the page's dirty field cannot possibly be 4153 * set by a concurrent pmap operation. 4154 */ 4155 VM_OBJECT_ASSERT_WLOCKED(m->object); 4156 if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 4157 m->dirty &= ~pagebits; 4158 else { 4159 /* 4160 * The pmap layer can call vm_page_dirty() without 4161 * holding a distinguished lock. The combination of 4162 * the object's lock and an atomic operation suffice 4163 * to guarantee consistency of the page dirty field. 4164 * 4165 * For PAGE_SIZE == 32768 case, compiler already 4166 * properly aligns the dirty field, so no forcible 4167 * alignment is needed. Only require existence of 4168 * atomic_clear_64 when page size is 32768. 4169 */ 4170 addr = (uintptr_t)&m->dirty; 4171 #if PAGE_SIZE == 32768 4172 atomic_clear_64((uint64_t *)addr, pagebits); 4173 #elif PAGE_SIZE == 16384 4174 atomic_clear_32((uint32_t *)addr, pagebits); 4175 #else /* PAGE_SIZE <= 8192 */ 4176 /* 4177 * Use a trick to perform a 32-bit atomic on the 4178 * containing aligned word, to not depend on the existence 4179 * of atomic_clear_{8, 16}. 4180 */ 4181 shift = addr & (sizeof(uint32_t) - 1); 4182 #if BYTE_ORDER == BIG_ENDIAN 4183 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY; 4184 #else 4185 shift *= NBBY; 4186 #endif 4187 addr &= ~(sizeof(uint32_t) - 1); 4188 atomic_clear_32((uint32_t *)addr, pagebits << shift); 4189 #endif /* PAGE_SIZE */ 4190 } 4191 } 4192 4193 /* 4194 * vm_page_set_validclean: 4195 * 4196 * Sets portions of a page valid and clean. The arguments are expected 4197 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 4198 * of any partial chunks touched by the range. The invalid portion of 4199 * such chunks will be zero'd. 4200 * 4201 * (base + size) must be less then or equal to PAGE_SIZE. 4202 */ 4203 void 4204 vm_page_set_validclean(vm_page_t m, int base, int size) 4205 { 4206 vm_page_bits_t oldvalid, pagebits; 4207 int endoff, frag; 4208 4209 VM_OBJECT_ASSERT_WLOCKED(m->object); 4210 if (size == 0) /* handle degenerate case */ 4211 return; 4212 4213 /* 4214 * If the base is not DEV_BSIZE aligned and the valid 4215 * bit is clear, we have to zero out a portion of the 4216 * first block. 4217 */ 4218 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 4219 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 4220 pmap_zero_page_area(m, frag, base - frag); 4221 4222 /* 4223 * If the ending offset is not DEV_BSIZE aligned and the 4224 * valid bit is clear, we have to zero out a portion of 4225 * the last block. 4226 */ 4227 endoff = base + size; 4228 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 4229 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 4230 pmap_zero_page_area(m, endoff, 4231 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 4232 4233 /* 4234 * Set valid, clear dirty bits. If validating the entire 4235 * page we can safely clear the pmap modify bit. We also 4236 * use this opportunity to clear the VPO_NOSYNC flag. If a process 4237 * takes a write fault on a MAP_NOSYNC memory area the flag will 4238 * be set again. 4239 * 4240 * We set valid bits inclusive of any overlap, but we can only 4241 * clear dirty bits for DEV_BSIZE chunks that are fully within 4242 * the range. 4243 */ 4244 oldvalid = m->valid; 4245 pagebits = vm_page_bits(base, size); 4246 m->valid |= pagebits; 4247 #if 0 /* NOT YET */ 4248 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 4249 frag = DEV_BSIZE - frag; 4250 base += frag; 4251 size -= frag; 4252 if (size < 0) 4253 size = 0; 4254 } 4255 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 4256 #endif 4257 if (base == 0 && size == PAGE_SIZE) { 4258 /* 4259 * The page can only be modified within the pmap if it is 4260 * mapped, and it can only be mapped if it was previously 4261 * fully valid. 4262 */ 4263 if (oldvalid == VM_PAGE_BITS_ALL) 4264 /* 4265 * Perform the pmap_clear_modify() first. Otherwise, 4266 * a concurrent pmap operation, such as 4267 * pmap_protect(), could clear a modification in the 4268 * pmap and set the dirty field on the page before 4269 * pmap_clear_modify() had begun and after the dirty 4270 * field was cleared here. 4271 */ 4272 pmap_clear_modify(m); 4273 m->dirty = 0; 4274 m->oflags &= ~VPO_NOSYNC; 4275 } else if (oldvalid != VM_PAGE_BITS_ALL) 4276 m->dirty &= ~pagebits; 4277 else 4278 vm_page_clear_dirty_mask(m, pagebits); 4279 } 4280 4281 void 4282 vm_page_clear_dirty(vm_page_t m, int base, int size) 4283 { 4284 4285 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 4286 } 4287 4288 /* 4289 * vm_page_set_invalid: 4290 * 4291 * Invalidates DEV_BSIZE'd chunks within a page. Both the 4292 * valid and dirty bits for the effected areas are cleared. 4293 */ 4294 void 4295 vm_page_set_invalid(vm_page_t m, int base, int size) 4296 { 4297 vm_page_bits_t bits; 4298 vm_object_t object; 4299 4300 object = m->object; 4301 VM_OBJECT_ASSERT_WLOCKED(object); 4302 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 4303 size >= object->un_pager.vnp.vnp_size) 4304 bits = VM_PAGE_BITS_ALL; 4305 else 4306 bits = vm_page_bits(base, size); 4307 if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL && 4308 bits != 0) 4309 pmap_remove_all(m); 4310 KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) || 4311 !pmap_page_is_mapped(m), 4312 ("vm_page_set_invalid: page %p is mapped", m)); 4313 m->valid &= ~bits; 4314 m->dirty &= ~bits; 4315 } 4316 4317 /* 4318 * vm_page_zero_invalid() 4319 * 4320 * The kernel assumes that the invalid portions of a page contain 4321 * garbage, but such pages can be mapped into memory by user code. 4322 * When this occurs, we must zero out the non-valid portions of the 4323 * page so user code sees what it expects. 4324 * 4325 * Pages are most often semi-valid when the end of a file is mapped 4326 * into memory and the file's size is not page aligned. 4327 */ 4328 void 4329 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 4330 { 4331 int b; 4332 int i; 4333 4334 VM_OBJECT_ASSERT_WLOCKED(m->object); 4335 /* 4336 * Scan the valid bits looking for invalid sections that 4337 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the 4338 * valid bit may be set ) have already been zeroed by 4339 * vm_page_set_validclean(). 4340 */ 4341 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 4342 if (i == (PAGE_SIZE / DEV_BSIZE) || 4343 (m->valid & ((vm_page_bits_t)1 << i))) { 4344 if (i > b) { 4345 pmap_zero_page_area(m, 4346 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 4347 } 4348 b = i + 1; 4349 } 4350 } 4351 4352 /* 4353 * setvalid is TRUE when we can safely set the zero'd areas 4354 * as being valid. We can do this if there are no cache consistancy 4355 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 4356 */ 4357 if (setvalid) 4358 m->valid = VM_PAGE_BITS_ALL; 4359 } 4360 4361 /* 4362 * vm_page_is_valid: 4363 * 4364 * Is (partial) page valid? Note that the case where size == 0 4365 * will return FALSE in the degenerate case where the page is 4366 * entirely invalid, and TRUE otherwise. 4367 */ 4368 int 4369 vm_page_is_valid(vm_page_t m, int base, int size) 4370 { 4371 vm_page_bits_t bits; 4372 4373 VM_OBJECT_ASSERT_LOCKED(m->object); 4374 bits = vm_page_bits(base, size); 4375 return (m->valid != 0 && (m->valid & bits) == bits); 4376 } 4377 4378 /* 4379 * Returns true if all of the specified predicates are true for the entire 4380 * (super)page and false otherwise. 4381 */ 4382 bool 4383 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m) 4384 { 4385 vm_object_t object; 4386 int i, npages; 4387 4388 object = m->object; 4389 if (skip_m != NULL && skip_m->object != object) 4390 return (false); 4391 VM_OBJECT_ASSERT_LOCKED(object); 4392 npages = atop(pagesizes[m->psind]); 4393 4394 /* 4395 * The physically contiguous pages that make up a superpage, i.e., a 4396 * page with a page size index ("psind") greater than zero, will 4397 * occupy adjacent entries in vm_page_array[]. 4398 */ 4399 for (i = 0; i < npages; i++) { 4400 /* Always test object consistency, including "skip_m". */ 4401 if (m[i].object != object) 4402 return (false); 4403 if (&m[i] == skip_m) 4404 continue; 4405 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i])) 4406 return (false); 4407 if ((flags & PS_ALL_DIRTY) != 0) { 4408 /* 4409 * Calling vm_page_test_dirty() or pmap_is_modified() 4410 * might stop this case from spuriously returning 4411 * "false". However, that would require a write lock 4412 * on the object containing "m[i]". 4413 */ 4414 if (m[i].dirty != VM_PAGE_BITS_ALL) 4415 return (false); 4416 } 4417 if ((flags & PS_ALL_VALID) != 0 && 4418 m[i].valid != VM_PAGE_BITS_ALL) 4419 return (false); 4420 } 4421 return (true); 4422 } 4423 4424 /* 4425 * Set the page's dirty bits if the page is modified. 4426 */ 4427 void 4428 vm_page_test_dirty(vm_page_t m) 4429 { 4430 4431 VM_OBJECT_ASSERT_WLOCKED(m->object); 4432 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 4433 vm_page_dirty(m); 4434 } 4435 4436 void 4437 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 4438 { 4439 4440 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 4441 } 4442 4443 void 4444 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 4445 { 4446 4447 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 4448 } 4449 4450 int 4451 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 4452 { 4453 4454 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 4455 } 4456 4457 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 4458 void 4459 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 4460 { 4461 4462 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 4463 } 4464 4465 void 4466 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 4467 { 4468 4469 mtx_assert_(vm_page_lockptr(m), a, file, line); 4470 } 4471 #endif 4472 4473 #ifdef INVARIANTS 4474 void 4475 vm_page_object_lock_assert(vm_page_t m) 4476 { 4477 4478 /* 4479 * Certain of the page's fields may only be modified by the 4480 * holder of the containing object's lock or the exclusive busy. 4481 * holder. Unfortunately, the holder of the write busy is 4482 * not recorded, and thus cannot be checked here. 4483 */ 4484 if (m->object != NULL && !vm_page_xbusied(m)) 4485 VM_OBJECT_ASSERT_WLOCKED(m->object); 4486 } 4487 4488 void 4489 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits) 4490 { 4491 4492 if ((bits & PGA_WRITEABLE) == 0) 4493 return; 4494 4495 /* 4496 * The PGA_WRITEABLE flag can only be set if the page is 4497 * managed, is exclusively busied or the object is locked. 4498 * Currently, this flag is only set by pmap_enter(). 4499 */ 4500 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4501 ("PGA_WRITEABLE on unmanaged page")); 4502 if (!vm_page_xbusied(m)) 4503 VM_OBJECT_ASSERT_LOCKED(m->object); 4504 } 4505 #endif 4506 4507 #include "opt_ddb.h" 4508 #ifdef DDB 4509 #include <sys/kernel.h> 4510 4511 #include <ddb/ddb.h> 4512 4513 DB_SHOW_COMMAND(page, vm_page_print_page_info) 4514 { 4515 4516 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count()); 4517 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count()); 4518 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count()); 4519 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count()); 4520 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count()); 4521 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 4522 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 4523 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 4524 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 4525 } 4526 4527 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 4528 { 4529 int dom; 4530 4531 db_printf("pq_free %d\n", vm_free_count()); 4532 for (dom = 0; dom < vm_ndomains; dom++) { 4533 db_printf( 4534 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n", 4535 dom, 4536 vm_dom[dom].vmd_page_count, 4537 vm_dom[dom].vmd_free_count, 4538 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 4539 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 4540 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt, 4541 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt); 4542 } 4543 } 4544 4545 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 4546 { 4547 vm_page_t m; 4548 boolean_t phys, virt; 4549 4550 if (!have_addr) { 4551 db_printf("show pginfo addr\n"); 4552 return; 4553 } 4554 4555 phys = strchr(modif, 'p') != NULL; 4556 virt = strchr(modif, 'v') != NULL; 4557 if (virt) 4558 m = PHYS_TO_VM_PAGE(pmap_kextract(addr)); 4559 else if (phys) 4560 m = PHYS_TO_VM_PAGE(addr); 4561 else 4562 m = (vm_page_t)addr; 4563 db_printf( 4564 "page %p obj %p pidx 0x%jx phys 0x%jx q %d wire %d\n" 4565 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 4566 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 4567 m->queue, m->wire_count, m->aflags, m->oflags, 4568 m->flags, m->act_count, m->busy_lock, m->valid, m->dirty); 4569 } 4570 #endif /* DDB */ 4571