1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 33 */ 34 35 /*- 36 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 37 * All rights reserved. 38 * 39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 40 * 41 * Permission to use, copy, modify and distribute this software and 42 * its documentation is hereby granted, provided that both the copyright 43 * notice and this permission notice appear in all copies of the 44 * software, derivative works or modified versions, and any portions 45 * thereof, and that both notices appear in supporting documentation. 46 * 47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 48 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 50 * 51 * Carnegie Mellon requests users of this software to return to 52 * 53 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 54 * School of Computer Science 55 * Carnegie Mellon University 56 * Pittsburgh PA 15213-3890 57 * 58 * any improvements or extensions that they make and grant Carnegie the 59 * rights to redistribute these changes. 60 */ 61 62 /* 63 * GENERAL RULES ON VM_PAGE MANIPULATION 64 * 65 * - a pageq mutex is required when adding or removing a page from a 66 * page queue (vm_page_queue[]), regardless of other mutexes or the 67 * busy state of a page. 68 * 69 * - a hash chain mutex is required when associating or disassociating 70 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 71 * regardless of other mutexes or the busy state of a page. 72 * 73 * - either a hash chain mutex OR a busied page is required in order 74 * to modify the page flags. A hash chain mutex must be obtained in 75 * order to busy a page. A page's flags cannot be modified by a 76 * hash chain mutex if the page is marked busy. 77 * 78 * - The object memq mutex is held when inserting or removing 79 * pages from an object (vm_page_insert() or vm_page_remove()). This 80 * is different from the object's main mutex. 81 * 82 * Generally speaking, you have to be aware of side effects when running 83 * vm_page ops. A vm_page_lookup() will return with the hash chain 84 * locked, whether it was able to lookup the page or not. vm_page_free(), 85 * vm_page_cache(), vm_page_activate(), and a number of other routines 86 * will release the hash chain mutex for you. Intermediate manipulation 87 * routines such as vm_page_flag_set() expect the hash chain to be held 88 * on entry and the hash chain will remain held on return. 89 * 90 * pageq scanning can only occur with the pageq in question locked. 91 * We have a known bottleneck with the active queue, but the cache 92 * and free queues are actually arrays already. 93 */ 94 95 /* 96 * Resident memory management module. 97 */ 98 99 #include <sys/cdefs.h> 100 __FBSDID("$FreeBSD$"); 101 102 #include <sys/param.h> 103 #include <sys/systm.h> 104 #include <sys/lock.h> 105 #include <sys/kernel.h> 106 #include <sys/malloc.h> 107 #include <sys/mutex.h> 108 #include <sys/proc.h> 109 #include <sys/sysctl.h> 110 #include <sys/vmmeter.h> 111 #include <sys/vnode.h> 112 113 #include <vm/vm.h> 114 #include <vm/vm_param.h> 115 #include <vm/vm_kern.h> 116 #include <vm/vm_object.h> 117 #include <vm/vm_page.h> 118 #include <vm/vm_pageout.h> 119 #include <vm/vm_pager.h> 120 #include <vm/vm_extern.h> 121 #include <vm/uma.h> 122 #include <vm/uma_int.h> 123 124 #include <machine/md_var.h> 125 126 /* 127 * Associated with page of user-allocatable memory is a 128 * page structure. 129 */ 130 131 struct mtx vm_page_queue_mtx; 132 struct mtx vm_page_queue_free_mtx; 133 134 vm_page_t vm_page_array = 0; 135 int vm_page_array_size = 0; 136 long first_page = 0; 137 int vm_page_zero_count = 0; 138 139 static int boot_pages = UMA_BOOT_PAGES; 140 TUNABLE_INT("vm.boot_pages", &boot_pages); 141 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0, 142 "number of pages allocated for bootstrapping the VM system"); 143 144 /* 145 * vm_set_page_size: 146 * 147 * Sets the page size, perhaps based upon the memory 148 * size. Must be called before any use of page-size 149 * dependent functions. 150 */ 151 void 152 vm_set_page_size(void) 153 { 154 if (cnt.v_page_size == 0) 155 cnt.v_page_size = PAGE_SIZE; 156 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 157 panic("vm_set_page_size: page size not a power of two"); 158 } 159 160 /* 161 * vm_page_startup: 162 * 163 * Initializes the resident memory module. 164 * 165 * Allocates memory for the page cells, and 166 * for the object/offset-to-page hash table headers. 167 * Each page cell is initialized and placed on the free list. 168 */ 169 vm_offset_t 170 vm_page_startup(vm_offset_t vaddr) 171 { 172 vm_offset_t mapped; 173 vm_size_t npages; 174 vm_paddr_t page_range; 175 vm_paddr_t new_end; 176 int i; 177 vm_paddr_t pa; 178 int nblocks; 179 vm_paddr_t last_pa; 180 181 /* the biggest memory array is the second group of pages */ 182 vm_paddr_t end; 183 vm_paddr_t biggestsize; 184 int biggestone; 185 186 vm_paddr_t total; 187 188 total = 0; 189 biggestsize = 0; 190 biggestone = 0; 191 nblocks = 0; 192 vaddr = round_page(vaddr); 193 194 for (i = 0; phys_avail[i + 1]; i += 2) { 195 phys_avail[i] = round_page(phys_avail[i]); 196 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 197 } 198 199 for (i = 0; phys_avail[i + 1]; i += 2) { 200 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 201 202 if (size > biggestsize) { 203 biggestone = i; 204 biggestsize = size; 205 } 206 ++nblocks; 207 total += size; 208 } 209 210 end = phys_avail[biggestone+1]; 211 212 /* 213 * Initialize the locks. 214 */ 215 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF | 216 MTX_RECURSE); 217 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 218 MTX_SPIN); 219 220 /* 221 * Initialize the queue headers for the free queue, the active queue 222 * and the inactive queue. 223 */ 224 vm_pageq_init(); 225 226 /* 227 * Allocate memory for use when boot strapping the kernel memory 228 * allocator. 229 */ 230 new_end = end - (boot_pages * UMA_SLAB_SIZE); 231 new_end = trunc_page(new_end); 232 mapped = pmap_map(&vaddr, new_end, end, 233 VM_PROT_READ | VM_PROT_WRITE); 234 bzero((void *)mapped, end - new_end); 235 uma_startup((void *)mapped, boot_pages); 236 237 #if defined(__amd64__) || defined(__i386__) 238 /* 239 * Allocate a bitmap to indicate that a random physical page 240 * needs to be included in a minidump. 241 * 242 * The amd64 port needs this to indicate which direct map pages 243 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 244 * 245 * However, i386 still needs this workspace internally within the 246 * minidump code. In theory, they are not needed on i386, but are 247 * included should the sf_buf code decide to use them. 248 */ 249 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; 250 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 251 new_end -= vm_page_dump_size; 252 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 253 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 254 bzero((void *)vm_page_dump, vm_page_dump_size); 255 #endif 256 /* 257 * Compute the number of pages of memory that will be available for 258 * use (taking into account the overhead of a page structure per 259 * page). 260 */ 261 first_page = phys_avail[0] / PAGE_SIZE; 262 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 263 npages = (total - (page_range * sizeof(struct vm_page)) - 264 (end - new_end)) / PAGE_SIZE; 265 end = new_end; 266 267 /* 268 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 269 */ 270 vaddr += PAGE_SIZE; 271 272 /* 273 * Initialize the mem entry structures now, and put them in the free 274 * queue. 275 */ 276 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 277 mapped = pmap_map(&vaddr, new_end, end, 278 VM_PROT_READ | VM_PROT_WRITE); 279 vm_page_array = (vm_page_t) mapped; 280 phys_avail[biggestone + 1] = new_end; 281 282 /* 283 * Clear all of the page structures 284 */ 285 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 286 vm_page_array_size = page_range; 287 288 /* 289 * Construct the free queue(s) in descending order (by physical 290 * address) so that the first 16MB of physical memory is allocated 291 * last rather than first. On large-memory machines, this avoids 292 * the exhaustion of low physical memory before isa_dma_init has run. 293 */ 294 cnt.v_page_count = 0; 295 cnt.v_free_count = 0; 296 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 297 pa = phys_avail[i]; 298 last_pa = phys_avail[i + 1]; 299 while (pa < last_pa && npages-- > 0) { 300 vm_pageq_add_new_page(pa); 301 pa += PAGE_SIZE; 302 } 303 } 304 return (vaddr); 305 } 306 307 void 308 vm_page_flag_set(vm_page_t m, unsigned short bits) 309 { 310 311 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 312 m->flags |= bits; 313 } 314 315 void 316 vm_page_flag_clear(vm_page_t m, unsigned short bits) 317 { 318 319 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 320 m->flags &= ~bits; 321 } 322 323 void 324 vm_page_busy(vm_page_t m) 325 { 326 327 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 328 KASSERT((m->flags & PG_BUSY) == 0, 329 ("vm_page_busy: page already busy!!!")); 330 vm_page_flag_set(m, PG_BUSY); 331 } 332 333 /* 334 * vm_page_flash: 335 * 336 * wakeup anyone waiting for the page. 337 */ 338 void 339 vm_page_flash(vm_page_t m) 340 { 341 342 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 343 if (m->flags & PG_WANTED) { 344 vm_page_flag_clear(m, PG_WANTED); 345 wakeup(m); 346 } 347 } 348 349 /* 350 * vm_page_wakeup: 351 * 352 * clear the PG_BUSY flag and wakeup anyone waiting for the 353 * page. 354 * 355 */ 356 void 357 vm_page_wakeup(vm_page_t m) 358 { 359 360 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 361 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 362 vm_page_flag_clear(m, PG_BUSY); 363 vm_page_flash(m); 364 } 365 366 void 367 vm_page_io_start(vm_page_t m) 368 { 369 370 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 371 m->busy++; 372 } 373 374 void 375 vm_page_io_finish(vm_page_t m) 376 { 377 378 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 379 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 380 m->busy--; 381 if (m->busy == 0) 382 vm_page_flash(m); 383 } 384 385 /* 386 * Keep page from being freed by the page daemon 387 * much of the same effect as wiring, except much lower 388 * overhead and should be used only for *very* temporary 389 * holding ("wiring"). 390 */ 391 void 392 vm_page_hold(vm_page_t mem) 393 { 394 395 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 396 mem->hold_count++; 397 } 398 399 void 400 vm_page_unhold(vm_page_t mem) 401 { 402 403 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 404 --mem->hold_count; 405 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 406 if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD)) 407 vm_page_free_toq(mem); 408 } 409 410 /* 411 * vm_page_free: 412 * 413 * Free a page 414 * 415 * The clearing of PG_ZERO is a temporary safety until the code can be 416 * reviewed to determine that PG_ZERO is being properly cleared on 417 * write faults or maps. PG_ZERO was previously cleared in 418 * vm_page_alloc(). 419 */ 420 void 421 vm_page_free(vm_page_t m) 422 { 423 vm_page_flag_clear(m, PG_ZERO); 424 vm_page_free_toq(m); 425 vm_page_zero_idle_wakeup(); 426 } 427 428 /* 429 * vm_page_free_zero: 430 * 431 * Free a page to the zerod-pages queue 432 */ 433 void 434 vm_page_free_zero(vm_page_t m) 435 { 436 vm_page_flag_set(m, PG_ZERO); 437 vm_page_free_toq(m); 438 } 439 440 /* 441 * vm_page_sleep_if_busy: 442 * 443 * Sleep and release the page queues lock if PG_BUSY is set or, 444 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the 445 * thread slept and the page queues lock was released. 446 * Otherwise, retains the page queues lock and returns FALSE. 447 */ 448 int 449 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg) 450 { 451 vm_object_t object; 452 453 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 454 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 455 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 456 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 457 /* 458 * It's possible that while we sleep, the page will get 459 * unbusied and freed. If we are holding the object 460 * lock, we will assume we hold a reference to the object 461 * such that even if m->object changes, we can re-lock 462 * it. 463 */ 464 object = m->object; 465 VM_OBJECT_UNLOCK(object); 466 msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0); 467 VM_OBJECT_LOCK(object); 468 return (TRUE); 469 } 470 return (FALSE); 471 } 472 473 /* 474 * vm_page_dirty: 475 * 476 * make page all dirty 477 */ 478 void 479 vm_page_dirty(vm_page_t m) 480 { 481 KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE, 482 ("vm_page_dirty: page in cache!")); 483 KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_FREE, 484 ("vm_page_dirty: page is free!")); 485 m->dirty = VM_PAGE_BITS_ALL; 486 } 487 488 /* 489 * vm_page_splay: 490 * 491 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 492 * the vm_page containing the given pindex. If, however, that 493 * pindex is not found in the vm_object, returns a vm_page that is 494 * adjacent to the pindex, coming before or after it. 495 */ 496 vm_page_t 497 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 498 { 499 struct vm_page dummy; 500 vm_page_t lefttreemax, righttreemin, y; 501 502 if (root == NULL) 503 return (root); 504 lefttreemax = righttreemin = &dummy; 505 for (;; root = y) { 506 if (pindex < root->pindex) { 507 if ((y = root->left) == NULL) 508 break; 509 if (pindex < y->pindex) { 510 /* Rotate right. */ 511 root->left = y->right; 512 y->right = root; 513 root = y; 514 if ((y = root->left) == NULL) 515 break; 516 } 517 /* Link into the new root's right tree. */ 518 righttreemin->left = root; 519 righttreemin = root; 520 } else if (pindex > root->pindex) { 521 if ((y = root->right) == NULL) 522 break; 523 if (pindex > y->pindex) { 524 /* Rotate left. */ 525 root->right = y->left; 526 y->left = root; 527 root = y; 528 if ((y = root->right) == NULL) 529 break; 530 } 531 /* Link into the new root's left tree. */ 532 lefttreemax->right = root; 533 lefttreemax = root; 534 } else 535 break; 536 } 537 /* Assemble the new root. */ 538 lefttreemax->right = root->left; 539 righttreemin->left = root->right; 540 root->left = dummy.right; 541 root->right = dummy.left; 542 return (root); 543 } 544 545 /* 546 * vm_page_insert: [ internal use only ] 547 * 548 * Inserts the given mem entry into the object and object list. 549 * 550 * The pagetables are not updated but will presumably fault the page 551 * in if necessary, or if a kernel page the caller will at some point 552 * enter the page into the kernel's pmap. We are not allowed to block 553 * here so we *can't* do this anyway. 554 * 555 * The object and page must be locked. 556 * This routine may not block. 557 */ 558 void 559 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 560 { 561 vm_page_t root; 562 563 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 564 if (m->object != NULL) 565 panic("vm_page_insert: page already inserted"); 566 567 /* 568 * Record the object/offset pair in this page 569 */ 570 m->object = object; 571 m->pindex = pindex; 572 573 /* 574 * Now link into the object's ordered list of backed pages. 575 */ 576 root = object->root; 577 if (root == NULL) { 578 m->left = NULL; 579 m->right = NULL; 580 TAILQ_INSERT_TAIL(&object->memq, m, listq); 581 } else { 582 root = vm_page_splay(pindex, root); 583 if (pindex < root->pindex) { 584 m->left = root->left; 585 m->right = root; 586 root->left = NULL; 587 TAILQ_INSERT_BEFORE(root, m, listq); 588 } else if (pindex == root->pindex) 589 panic("vm_page_insert: offset already allocated"); 590 else { 591 m->right = root->right; 592 m->left = root; 593 root->right = NULL; 594 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 595 } 596 } 597 object->root = m; 598 object->generation++; 599 600 /* 601 * show that the object has one more resident page. 602 */ 603 object->resident_page_count++; 604 /* 605 * Hold the vnode until the last page is released. 606 */ 607 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 608 vhold((struct vnode *)object->handle); 609 610 /* 611 * Since we are inserting a new and possibly dirty page, 612 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 613 */ 614 if (m->flags & PG_WRITEABLE) 615 vm_object_set_writeable_dirty(object); 616 } 617 618 /* 619 * vm_page_remove: 620 * NOTE: used by device pager as well -wfj 621 * 622 * Removes the given mem entry from the object/offset-page 623 * table and the object page list, but do not invalidate/terminate 624 * the backing store. 625 * 626 * The object and page must be locked. 627 * The underlying pmap entry (if any) is NOT removed here. 628 * This routine may not block. 629 */ 630 void 631 vm_page_remove(vm_page_t m) 632 { 633 vm_object_t object; 634 vm_page_t root; 635 636 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 637 if ((object = m->object) == NULL) 638 return; 639 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 640 if (m->flags & PG_BUSY) { 641 vm_page_flag_clear(m, PG_BUSY); 642 vm_page_flash(m); 643 } 644 645 /* 646 * Now remove from the object's list of backed pages. 647 */ 648 if (m != object->root) 649 vm_page_splay(m->pindex, object->root); 650 if (m->left == NULL) 651 root = m->right; 652 else { 653 root = vm_page_splay(m->pindex, m->left); 654 root->right = m->right; 655 } 656 object->root = root; 657 TAILQ_REMOVE(&object->memq, m, listq); 658 659 /* 660 * And show that the object has one fewer resident page. 661 */ 662 object->resident_page_count--; 663 object->generation++; 664 /* 665 * The vnode may now be recycled. 666 */ 667 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 668 vdrop((struct vnode *)object->handle); 669 670 m->object = NULL; 671 } 672 673 /* 674 * vm_page_lookup: 675 * 676 * Returns the page associated with the object/offset 677 * pair specified; if none is found, NULL is returned. 678 * 679 * The object must be locked. 680 * This routine may not block. 681 * This is a critical path routine 682 */ 683 vm_page_t 684 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 685 { 686 vm_page_t m; 687 688 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 689 if ((m = object->root) != NULL && m->pindex != pindex) { 690 m = vm_page_splay(pindex, m); 691 if ((object->root = m)->pindex != pindex) 692 m = NULL; 693 } 694 return (m); 695 } 696 697 /* 698 * vm_page_rename: 699 * 700 * Move the given memory entry from its 701 * current object to the specified target object/offset. 702 * 703 * The object must be locked. 704 * This routine may not block. 705 * 706 * Note: swap associated with the page must be invalidated by the move. We 707 * have to do this for several reasons: (1) we aren't freeing the 708 * page, (2) we are dirtying the page, (3) the VM system is probably 709 * moving the page from object A to B, and will then later move 710 * the backing store from A to B and we can't have a conflict. 711 * 712 * Note: we *always* dirty the page. It is necessary both for the 713 * fact that we moved it, and because we may be invalidating 714 * swap. If the page is on the cache, we have to deactivate it 715 * or vm_page_dirty() will panic. Dirty pages are not allowed 716 * on the cache. 717 */ 718 void 719 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 720 { 721 722 vm_page_remove(m); 723 vm_page_insert(m, new_object, new_pindex); 724 if (VM_PAGE_INQUEUE1(m, PQ_CACHE)) 725 vm_page_deactivate(m); 726 vm_page_dirty(m); 727 } 728 729 /* 730 * vm_page_select_cache: 731 * 732 * Move a page of the given color from the cache queue to the free 733 * queue. As pages might be found, but are not applicable, they are 734 * deactivated. 735 * 736 * This routine may not block. 737 */ 738 vm_page_t 739 vm_page_select_cache(int color) 740 { 741 vm_object_t object; 742 vm_page_t m; 743 boolean_t was_trylocked; 744 745 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 746 while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) { 747 KASSERT(m->dirty == 0, ("Found dirty cache page %p", m)); 748 KASSERT(!pmap_page_is_mapped(m), 749 ("Found mapped cache page %p", m)); 750 KASSERT((m->flags & PG_UNMANAGED) == 0, 751 ("Found unmanaged cache page %p", m)); 752 KASSERT(m->wire_count == 0, ("Found wired cache page %p", m)); 753 if (m->hold_count == 0 && (object = m->object, 754 (was_trylocked = VM_OBJECT_TRYLOCK(object)) || 755 VM_OBJECT_LOCKED(object))) { 756 KASSERT((m->flags & PG_BUSY) == 0 && m->busy == 0, 757 ("Found busy cache page %p", m)); 758 vm_page_free(m); 759 if (was_trylocked) 760 VM_OBJECT_UNLOCK(object); 761 break; 762 } 763 vm_page_deactivate(m); 764 } 765 return (m); 766 } 767 768 /* 769 * vm_page_alloc: 770 * 771 * Allocate and return a memory cell associated 772 * with this VM object/offset pair. 773 * 774 * page_req classes: 775 * VM_ALLOC_NORMAL normal process request 776 * VM_ALLOC_SYSTEM system *really* needs a page 777 * VM_ALLOC_INTERRUPT interrupt time request 778 * VM_ALLOC_ZERO zero page 779 * 780 * This routine may not block. 781 * 782 * Additional special handling is required when called from an 783 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with 784 * the page cache in this case. 785 */ 786 vm_page_t 787 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 788 { 789 vm_page_t m = NULL; 790 int color, flags, page_req; 791 792 page_req = req & VM_ALLOC_CLASS_MASK; 793 KASSERT(curthread->td_intr_nesting_level == 0 || 794 page_req == VM_ALLOC_INTERRUPT, 795 ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context")); 796 797 if ((req & VM_ALLOC_NOOBJ) == 0) { 798 KASSERT(object != NULL, 799 ("vm_page_alloc: NULL object.")); 800 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 801 color = (pindex + object->pg_color) & PQ_COLORMASK; 802 } else 803 color = pindex & PQ_COLORMASK; 804 805 /* 806 * The pager is allowed to eat deeper into the free page list. 807 */ 808 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 809 page_req = VM_ALLOC_SYSTEM; 810 }; 811 812 loop: 813 mtx_lock_spin(&vm_page_queue_free_mtx); 814 if (cnt.v_free_count > cnt.v_free_reserved || 815 (page_req == VM_ALLOC_SYSTEM && 816 cnt.v_cache_count == 0 && 817 cnt.v_free_count > cnt.v_interrupt_free_min) || 818 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) { 819 /* 820 * Allocate from the free queue if the number of free pages 821 * exceeds the minimum for the request class. 822 */ 823 m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0); 824 } else if (page_req != VM_ALLOC_INTERRUPT) { 825 mtx_unlock_spin(&vm_page_queue_free_mtx); 826 /* 827 * Allocatable from cache (non-interrupt only). On success, 828 * we must free the page and try again, thus ensuring that 829 * cnt.v_*_free_min counters are replenished. 830 */ 831 vm_page_lock_queues(); 832 if ((m = vm_page_select_cache(color)) == NULL) { 833 KASSERT(cnt.v_cache_count == 0, 834 ("vm_page_alloc: cache queue is missing %d pages", 835 cnt.v_cache_count)); 836 vm_page_unlock_queues(); 837 atomic_add_int(&vm_pageout_deficit, 1); 838 pagedaemon_wakeup(); 839 840 if (page_req != VM_ALLOC_SYSTEM) 841 return NULL; 842 843 mtx_lock_spin(&vm_page_queue_free_mtx); 844 if (cnt.v_free_count <= cnt.v_interrupt_free_min) { 845 mtx_unlock_spin(&vm_page_queue_free_mtx); 846 return (NULL); 847 } 848 m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0); 849 } else { 850 vm_page_unlock_queues(); 851 goto loop; 852 } 853 } else { 854 /* 855 * Not allocatable from cache from interrupt, give up. 856 */ 857 mtx_unlock_spin(&vm_page_queue_free_mtx); 858 atomic_add_int(&vm_pageout_deficit, 1); 859 pagedaemon_wakeup(); 860 return (NULL); 861 } 862 863 /* 864 * At this point we had better have found a good page. 865 */ 866 867 KASSERT( 868 m != NULL, 869 ("vm_page_alloc(): missing page on free queue") 870 ); 871 872 /* 873 * Remove from free queue 874 */ 875 vm_pageq_remove_nowakeup(m); 876 877 /* 878 * Initialize structure. Only the PG_ZERO flag is inherited. 879 */ 880 flags = PG_BUSY; 881 if (m->flags & PG_ZERO) { 882 vm_page_zero_count--; 883 if (req & VM_ALLOC_ZERO) 884 flags = PG_ZERO | PG_BUSY; 885 } 886 if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) 887 flags &= ~PG_BUSY; 888 m->flags = flags; 889 if (req & VM_ALLOC_WIRED) { 890 atomic_add_int(&cnt.v_wire_count, 1); 891 m->wire_count = 1; 892 } else 893 m->wire_count = 0; 894 m->hold_count = 0; 895 m->act_count = 0; 896 m->busy = 0; 897 m->valid = 0; 898 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 899 mtx_unlock_spin(&vm_page_queue_free_mtx); 900 901 if ((req & VM_ALLOC_NOOBJ) == 0) 902 vm_page_insert(m, object, pindex); 903 else 904 m->pindex = pindex; 905 906 /* 907 * Don't wakeup too often - wakeup the pageout daemon when 908 * we would be nearly out of memory. 909 */ 910 if (vm_paging_needed()) 911 pagedaemon_wakeup(); 912 913 return (m); 914 } 915 916 /* 917 * vm_wait: (also see VM_WAIT macro) 918 * 919 * Block until free pages are available for allocation 920 * - Called in various places before memory allocations. 921 */ 922 void 923 vm_wait(void) 924 { 925 926 vm_page_lock_queues(); 927 if (curproc == pageproc) { 928 vm_pageout_pages_needed = 1; 929 msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx, 930 PDROP | PSWP, "VMWait", 0); 931 } else { 932 if (!vm_pages_needed) { 933 vm_pages_needed = 1; 934 wakeup(&vm_pages_needed); 935 } 936 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM, 937 "vmwait", 0); 938 } 939 } 940 941 /* 942 * vm_waitpfault: (also see VM_WAITPFAULT macro) 943 * 944 * Block until free pages are available for allocation 945 * - Called only in vm_fault so that processes page faulting 946 * can be easily tracked. 947 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 948 * processes will be able to grab memory first. Do not change 949 * this balance without careful testing first. 950 */ 951 void 952 vm_waitpfault(void) 953 { 954 955 vm_page_lock_queues(); 956 if (!vm_pages_needed) { 957 vm_pages_needed = 1; 958 wakeup(&vm_pages_needed); 959 } 960 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER, 961 "pfault", 0); 962 } 963 964 /* 965 * vm_page_activate: 966 * 967 * Put the specified page on the active list (if appropriate). 968 * Ensure that act_count is at least ACT_INIT but do not otherwise 969 * mess with it. 970 * 971 * The page queues must be locked. 972 * This routine may not block. 973 */ 974 void 975 vm_page_activate(vm_page_t m) 976 { 977 978 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 979 if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) { 980 if (VM_PAGE_INQUEUE1(m, PQ_CACHE)) 981 cnt.v_reactivated++; 982 vm_pageq_remove(m); 983 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 984 if (m->act_count < ACT_INIT) 985 m->act_count = ACT_INIT; 986 vm_pageq_enqueue(PQ_ACTIVE, m); 987 } 988 } else { 989 if (m->act_count < ACT_INIT) 990 m->act_count = ACT_INIT; 991 } 992 } 993 994 /* 995 * vm_page_free_wakeup: 996 * 997 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 998 * routine is called when a page has been added to the cache or free 999 * queues. 1000 * 1001 * The page queues must be locked. 1002 * This routine may not block. 1003 */ 1004 static inline void 1005 vm_page_free_wakeup(void) 1006 { 1007 1008 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1009 /* 1010 * if pageout daemon needs pages, then tell it that there are 1011 * some free. 1012 */ 1013 if (vm_pageout_pages_needed && 1014 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1015 wakeup(&vm_pageout_pages_needed); 1016 vm_pageout_pages_needed = 0; 1017 } 1018 /* 1019 * wakeup processes that are waiting on memory if we hit a 1020 * high water mark. And wakeup scheduler process if we have 1021 * lots of memory. this process will swapin processes. 1022 */ 1023 if (vm_pages_needed && !vm_page_count_min()) { 1024 vm_pages_needed = 0; 1025 wakeup(&cnt.v_free_count); 1026 } 1027 } 1028 1029 /* 1030 * vm_page_free_toq: 1031 * 1032 * Returns the given page to the PQ_FREE list, 1033 * disassociating it with any VM object. 1034 * 1035 * Object and page must be locked prior to entry. 1036 * This routine may not block. 1037 */ 1038 1039 void 1040 vm_page_free_toq(vm_page_t m) 1041 { 1042 struct vpgqueues *pq; 1043 1044 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1045 KASSERT(!pmap_page_is_mapped(m), 1046 ("vm_page_free_toq: freeing mapped page %p", m)); 1047 cnt.v_tfree++; 1048 1049 if (m->busy || VM_PAGE_INQUEUE1(m, PQ_FREE)) { 1050 printf( 1051 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 1052 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 1053 m->hold_count); 1054 if (VM_PAGE_INQUEUE1(m, PQ_FREE)) 1055 panic("vm_page_free: freeing free page"); 1056 else 1057 panic("vm_page_free: freeing busy page"); 1058 } 1059 1060 /* 1061 * unqueue, then remove page. Note that we cannot destroy 1062 * the page here because we do not want to call the pager's 1063 * callback routine until after we've put the page on the 1064 * appropriate free queue. 1065 */ 1066 vm_pageq_remove_nowakeup(m); 1067 vm_page_remove(m); 1068 1069 /* 1070 * If fictitious remove object association and 1071 * return, otherwise delay object association removal. 1072 */ 1073 if ((m->flags & PG_FICTITIOUS) != 0) { 1074 return; 1075 } 1076 1077 m->valid = 0; 1078 vm_page_undirty(m); 1079 1080 if (m->wire_count != 0) { 1081 if (m->wire_count > 1) { 1082 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1083 m->wire_count, (long)m->pindex); 1084 } 1085 panic("vm_page_free: freeing wired page"); 1086 } 1087 1088 /* 1089 * Clear the UNMANAGED flag when freeing an unmanaged page. 1090 */ 1091 if (m->flags & PG_UNMANAGED) { 1092 m->flags &= ~PG_UNMANAGED; 1093 } 1094 1095 if (m->hold_count != 0) { 1096 m->flags &= ~PG_ZERO; 1097 VM_PAGE_SETQUEUE2(m, PQ_HOLD); 1098 } else 1099 VM_PAGE_SETQUEUE1(m, PQ_FREE); 1100 pq = &vm_page_queues[VM_PAGE_GETQUEUE(m)]; 1101 mtx_lock_spin(&vm_page_queue_free_mtx); 1102 pq->lcnt++; 1103 ++(*pq->cnt); 1104 1105 /* 1106 * Put zero'd pages on the end ( where we look for zero'd pages 1107 * first ) and non-zerod pages at the head. 1108 */ 1109 if (m->flags & PG_ZERO) { 1110 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1111 ++vm_page_zero_count; 1112 } else { 1113 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1114 } 1115 mtx_unlock_spin(&vm_page_queue_free_mtx); 1116 vm_page_free_wakeup(); 1117 } 1118 1119 /* 1120 * vm_page_unmanage: 1121 * 1122 * Prevent PV management from being done on the page. The page is 1123 * removed from the paging queues as if it were wired, and as a 1124 * consequence of no longer being managed the pageout daemon will not 1125 * touch it (since there is no way to locate the pte mappings for the 1126 * page). madvise() calls that mess with the pmap will also no longer 1127 * operate on the page. 1128 * 1129 * Beyond that the page is still reasonably 'normal'. Freeing the page 1130 * will clear the flag. 1131 * 1132 * This routine is used by OBJT_PHYS objects - objects using unswappable 1133 * physical memory as backing store rather then swap-backed memory and 1134 * will eventually be extended to support 4MB unmanaged physical 1135 * mappings. 1136 */ 1137 void 1138 vm_page_unmanage(vm_page_t m) 1139 { 1140 1141 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1142 if ((m->flags & PG_UNMANAGED) == 0) { 1143 if (m->wire_count == 0) 1144 vm_pageq_remove(m); 1145 } 1146 vm_page_flag_set(m, PG_UNMANAGED); 1147 } 1148 1149 /* 1150 * vm_page_wire: 1151 * 1152 * Mark this page as wired down by yet 1153 * another map, removing it from paging queues 1154 * as necessary. 1155 * 1156 * The page queues must be locked. 1157 * This routine may not block. 1158 */ 1159 void 1160 vm_page_wire(vm_page_t m) 1161 { 1162 1163 /* 1164 * Only bump the wire statistics if the page is not already wired, 1165 * and only unqueue the page if it is on some queue (if it is unmanaged 1166 * it is already off the queues). 1167 */ 1168 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1169 if (m->flags & PG_FICTITIOUS) 1170 return; 1171 if (m->wire_count == 0) { 1172 if ((m->flags & PG_UNMANAGED) == 0) 1173 vm_pageq_remove(m); 1174 atomic_add_int(&cnt.v_wire_count, 1); 1175 } 1176 m->wire_count++; 1177 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1178 } 1179 1180 /* 1181 * vm_page_unwire: 1182 * 1183 * Release one wiring of this page, potentially 1184 * enabling it to be paged again. 1185 * 1186 * Many pages placed on the inactive queue should actually go 1187 * into the cache, but it is difficult to figure out which. What 1188 * we do instead, if the inactive target is well met, is to put 1189 * clean pages at the head of the inactive queue instead of the tail. 1190 * This will cause them to be moved to the cache more quickly and 1191 * if not actively re-referenced, freed more quickly. If we just 1192 * stick these pages at the end of the inactive queue, heavy filesystem 1193 * meta-data accesses can cause an unnecessary paging load on memory bound 1194 * processes. This optimization causes one-time-use metadata to be 1195 * reused more quickly. 1196 * 1197 * BUT, if we are in a low-memory situation we have no choice but to 1198 * put clean pages on the cache queue. 1199 * 1200 * A number of routines use vm_page_unwire() to guarantee that the page 1201 * will go into either the inactive or active queues, and will NEVER 1202 * be placed in the cache - for example, just after dirtying a page. 1203 * dirty pages in the cache are not allowed. 1204 * 1205 * The page queues must be locked. 1206 * This routine may not block. 1207 */ 1208 void 1209 vm_page_unwire(vm_page_t m, int activate) 1210 { 1211 1212 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1213 if (m->flags & PG_FICTITIOUS) 1214 return; 1215 if (m->wire_count > 0) { 1216 m->wire_count--; 1217 if (m->wire_count == 0) { 1218 atomic_subtract_int(&cnt.v_wire_count, 1); 1219 if (m->flags & PG_UNMANAGED) { 1220 ; 1221 } else if (activate) 1222 vm_pageq_enqueue(PQ_ACTIVE, m); 1223 else { 1224 vm_page_flag_clear(m, PG_WINATCFLS); 1225 vm_pageq_enqueue(PQ_INACTIVE, m); 1226 } 1227 } 1228 } else { 1229 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 1230 } 1231 } 1232 1233 1234 /* 1235 * Move the specified page to the inactive queue. If the page has 1236 * any associated swap, the swap is deallocated. 1237 * 1238 * Normally athead is 0 resulting in LRU operation. athead is set 1239 * to 1 if we want this page to be 'as if it were placed in the cache', 1240 * except without unmapping it from the process address space. 1241 * 1242 * This routine may not block. 1243 */ 1244 static inline void 1245 _vm_page_deactivate(vm_page_t m, int athead) 1246 { 1247 1248 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1249 1250 /* 1251 * Ignore if already inactive. 1252 */ 1253 if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) 1254 return; 1255 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1256 if (VM_PAGE_INQUEUE1(m, PQ_CACHE)) 1257 cnt.v_reactivated++; 1258 vm_page_flag_clear(m, PG_WINATCFLS); 1259 vm_pageq_remove(m); 1260 if (athead) 1261 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1262 else 1263 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1264 VM_PAGE_SETQUEUE2(m, PQ_INACTIVE); 1265 vm_page_queues[PQ_INACTIVE].lcnt++; 1266 cnt.v_inactive_count++; 1267 } 1268 } 1269 1270 void 1271 vm_page_deactivate(vm_page_t m) 1272 { 1273 _vm_page_deactivate(m, 0); 1274 } 1275 1276 /* 1277 * vm_page_try_to_cache: 1278 * 1279 * Returns 0 on failure, 1 on success 1280 */ 1281 int 1282 vm_page_try_to_cache(vm_page_t m) 1283 { 1284 1285 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1286 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1287 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1288 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1289 return (0); 1290 } 1291 pmap_remove_all(m); 1292 if (m->dirty) 1293 return (0); 1294 vm_page_cache(m); 1295 return (1); 1296 } 1297 1298 /* 1299 * vm_page_try_to_free() 1300 * 1301 * Attempt to free the page. If we cannot free it, we do nothing. 1302 * 1 is returned on success, 0 on failure. 1303 */ 1304 int 1305 vm_page_try_to_free(vm_page_t m) 1306 { 1307 1308 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1309 if (m->object != NULL) 1310 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1311 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1312 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1313 return (0); 1314 } 1315 pmap_remove_all(m); 1316 if (m->dirty) 1317 return (0); 1318 vm_page_free(m); 1319 return (1); 1320 } 1321 1322 /* 1323 * vm_page_cache 1324 * 1325 * Put the specified page onto the page cache queue (if appropriate). 1326 * 1327 * This routine may not block. 1328 */ 1329 void 1330 vm_page_cache(vm_page_t m) 1331 { 1332 1333 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1334 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1335 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 1336 m->hold_count || m->wire_count) { 1337 printf("vm_page_cache: attempting to cache busy page\n"); 1338 return; 1339 } 1340 if (VM_PAGE_INQUEUE1(m, PQ_CACHE)) 1341 return; 1342 1343 /* 1344 * Remove all pmaps and indicate that the page is not 1345 * writeable or mapped. 1346 */ 1347 pmap_remove_all(m); 1348 if (m->dirty != 0) { 1349 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1350 (long)m->pindex); 1351 } 1352 vm_pageq_remove_nowakeup(m); 1353 vm_pageq_enqueue(PQ_CACHE + m->pc, m); 1354 vm_page_free_wakeup(); 1355 } 1356 1357 /* 1358 * vm_page_dontneed 1359 * 1360 * Cache, deactivate, or do nothing as appropriate. This routine 1361 * is typically used by madvise() MADV_DONTNEED. 1362 * 1363 * Generally speaking we want to move the page into the cache so 1364 * it gets reused quickly. However, this can result in a silly syndrome 1365 * due to the page recycling too quickly. Small objects will not be 1366 * fully cached. On the otherhand, if we move the page to the inactive 1367 * queue we wind up with a problem whereby very large objects 1368 * unnecessarily blow away our inactive and cache queues. 1369 * 1370 * The solution is to move the pages based on a fixed weighting. We 1371 * either leave them alone, deactivate them, or move them to the cache, 1372 * where moving them to the cache has the highest weighting. 1373 * By forcing some pages into other queues we eventually force the 1374 * system to balance the queues, potentially recovering other unrelated 1375 * space from active. The idea is to not force this to happen too 1376 * often. 1377 */ 1378 void 1379 vm_page_dontneed(vm_page_t m) 1380 { 1381 static int dnweight; 1382 int dnw; 1383 int head; 1384 1385 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1386 dnw = ++dnweight; 1387 1388 /* 1389 * occassionally leave the page alone 1390 */ 1391 if ((dnw & 0x01F0) == 0 || 1392 VM_PAGE_INQUEUE2(m, PQ_INACTIVE) || 1393 VM_PAGE_INQUEUE1(m, PQ_CACHE) 1394 ) { 1395 if (m->act_count >= ACT_INIT) 1396 --m->act_count; 1397 return; 1398 } 1399 1400 if (m->dirty == 0 && pmap_is_modified(m)) 1401 vm_page_dirty(m); 1402 1403 if (m->dirty || (dnw & 0x0070) == 0) { 1404 /* 1405 * Deactivate the page 3 times out of 32. 1406 */ 1407 head = 0; 1408 } else { 1409 /* 1410 * Cache the page 28 times out of every 32. Note that 1411 * the page is deactivated instead of cached, but placed 1412 * at the head of the queue instead of the tail. 1413 */ 1414 head = 1; 1415 } 1416 _vm_page_deactivate(m, head); 1417 } 1418 1419 /* 1420 * Grab a page, waiting until we are waken up due to the page 1421 * changing state. We keep on waiting, if the page continues 1422 * to be in the object. If the page doesn't exist, first allocate it 1423 * and then conditionally zero it. 1424 * 1425 * This routine may block. 1426 */ 1427 vm_page_t 1428 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1429 { 1430 vm_page_t m; 1431 1432 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1433 retrylookup: 1434 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1435 vm_page_lock_queues(); 1436 if (m->busy || (m->flags & PG_BUSY)) { 1437 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1438 VM_OBJECT_UNLOCK(object); 1439 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0); 1440 VM_OBJECT_LOCK(object); 1441 if ((allocflags & VM_ALLOC_RETRY) == 0) 1442 return (NULL); 1443 goto retrylookup; 1444 } else { 1445 if (allocflags & VM_ALLOC_WIRED) 1446 vm_page_wire(m); 1447 if ((allocflags & VM_ALLOC_NOBUSY) == 0) 1448 vm_page_busy(m); 1449 vm_page_unlock_queues(); 1450 return (m); 1451 } 1452 } 1453 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1454 if (m == NULL) { 1455 VM_OBJECT_UNLOCK(object); 1456 VM_WAIT; 1457 VM_OBJECT_LOCK(object); 1458 if ((allocflags & VM_ALLOC_RETRY) == 0) 1459 return (NULL); 1460 goto retrylookup; 1461 } 1462 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 1463 pmap_zero_page(m); 1464 return (m); 1465 } 1466 1467 /* 1468 * Mapping function for valid bits or for dirty bits in 1469 * a page. May not block. 1470 * 1471 * Inputs are required to range within a page. 1472 */ 1473 inline int 1474 vm_page_bits(int base, int size) 1475 { 1476 int first_bit; 1477 int last_bit; 1478 1479 KASSERT( 1480 base + size <= PAGE_SIZE, 1481 ("vm_page_bits: illegal base/size %d/%d", base, size) 1482 ); 1483 1484 if (size == 0) /* handle degenerate case */ 1485 return (0); 1486 1487 first_bit = base >> DEV_BSHIFT; 1488 last_bit = (base + size - 1) >> DEV_BSHIFT; 1489 1490 return ((2 << last_bit) - (1 << first_bit)); 1491 } 1492 1493 /* 1494 * vm_page_set_validclean: 1495 * 1496 * Sets portions of a page valid and clean. The arguments are expected 1497 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1498 * of any partial chunks touched by the range. The invalid portion of 1499 * such chunks will be zero'd. 1500 * 1501 * This routine may not block. 1502 * 1503 * (base + size) must be less then or equal to PAGE_SIZE. 1504 */ 1505 void 1506 vm_page_set_validclean(vm_page_t m, int base, int size) 1507 { 1508 int pagebits; 1509 int frag; 1510 int endoff; 1511 1512 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1513 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1514 if (size == 0) /* handle degenerate case */ 1515 return; 1516 1517 /* 1518 * If the base is not DEV_BSIZE aligned and the valid 1519 * bit is clear, we have to zero out a portion of the 1520 * first block. 1521 */ 1522 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1523 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1524 pmap_zero_page_area(m, frag, base - frag); 1525 1526 /* 1527 * If the ending offset is not DEV_BSIZE aligned and the 1528 * valid bit is clear, we have to zero out a portion of 1529 * the last block. 1530 */ 1531 endoff = base + size; 1532 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1533 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1534 pmap_zero_page_area(m, endoff, 1535 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1536 1537 /* 1538 * Set valid, clear dirty bits. If validating the entire 1539 * page we can safely clear the pmap modify bit. We also 1540 * use this opportunity to clear the PG_NOSYNC flag. If a process 1541 * takes a write fault on a MAP_NOSYNC memory area the flag will 1542 * be set again. 1543 * 1544 * We set valid bits inclusive of any overlap, but we can only 1545 * clear dirty bits for DEV_BSIZE chunks that are fully within 1546 * the range. 1547 */ 1548 pagebits = vm_page_bits(base, size); 1549 m->valid |= pagebits; 1550 #if 0 /* NOT YET */ 1551 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1552 frag = DEV_BSIZE - frag; 1553 base += frag; 1554 size -= frag; 1555 if (size < 0) 1556 size = 0; 1557 } 1558 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1559 #endif 1560 m->dirty &= ~pagebits; 1561 if (base == 0 && size == PAGE_SIZE) { 1562 pmap_clear_modify(m); 1563 vm_page_flag_clear(m, PG_NOSYNC); 1564 } 1565 } 1566 1567 void 1568 vm_page_clear_dirty(vm_page_t m, int base, int size) 1569 { 1570 1571 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1572 m->dirty &= ~vm_page_bits(base, size); 1573 } 1574 1575 /* 1576 * vm_page_set_invalid: 1577 * 1578 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1579 * valid and dirty bits for the effected areas are cleared. 1580 * 1581 * May not block. 1582 */ 1583 void 1584 vm_page_set_invalid(vm_page_t m, int base, int size) 1585 { 1586 int bits; 1587 1588 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1589 bits = vm_page_bits(base, size); 1590 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1591 if (m->valid == VM_PAGE_BITS_ALL && bits != 0) 1592 pmap_remove_all(m); 1593 m->valid &= ~bits; 1594 m->dirty &= ~bits; 1595 m->object->generation++; 1596 } 1597 1598 /* 1599 * vm_page_zero_invalid() 1600 * 1601 * The kernel assumes that the invalid portions of a page contain 1602 * garbage, but such pages can be mapped into memory by user code. 1603 * When this occurs, we must zero out the non-valid portions of the 1604 * page so user code sees what it expects. 1605 * 1606 * Pages are most often semi-valid when the end of a file is mapped 1607 * into memory and the file's size is not page aligned. 1608 */ 1609 void 1610 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1611 { 1612 int b; 1613 int i; 1614 1615 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1616 /* 1617 * Scan the valid bits looking for invalid sections that 1618 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1619 * valid bit may be set ) have already been zerod by 1620 * vm_page_set_validclean(). 1621 */ 1622 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1623 if (i == (PAGE_SIZE / DEV_BSIZE) || 1624 (m->valid & (1 << i)) 1625 ) { 1626 if (i > b) { 1627 pmap_zero_page_area(m, 1628 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1629 } 1630 b = i + 1; 1631 } 1632 } 1633 1634 /* 1635 * setvalid is TRUE when we can safely set the zero'd areas 1636 * as being valid. We can do this if there are no cache consistancy 1637 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1638 */ 1639 if (setvalid) 1640 m->valid = VM_PAGE_BITS_ALL; 1641 } 1642 1643 /* 1644 * vm_page_is_valid: 1645 * 1646 * Is (partial) page valid? Note that the case where size == 0 1647 * will return FALSE in the degenerate case where the page is 1648 * entirely invalid, and TRUE otherwise. 1649 * 1650 * May not block. 1651 */ 1652 int 1653 vm_page_is_valid(vm_page_t m, int base, int size) 1654 { 1655 int bits = vm_page_bits(base, size); 1656 1657 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1658 if (m->valid && ((m->valid & bits) == bits)) 1659 return 1; 1660 else 1661 return 0; 1662 } 1663 1664 /* 1665 * update dirty bits from pmap/mmu. May not block. 1666 */ 1667 void 1668 vm_page_test_dirty(vm_page_t m) 1669 { 1670 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1671 vm_page_dirty(m); 1672 } 1673 } 1674 1675 int so_zerocp_fullpage = 0; 1676 1677 void 1678 vm_page_cowfault(vm_page_t m) 1679 { 1680 vm_page_t mnew; 1681 vm_object_t object; 1682 vm_pindex_t pindex; 1683 1684 object = m->object; 1685 pindex = m->pindex; 1686 1687 retry_alloc: 1688 pmap_remove_all(m); 1689 vm_page_remove(m); 1690 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL); 1691 if (mnew == NULL) { 1692 vm_page_insert(m, object, pindex); 1693 vm_page_unlock_queues(); 1694 VM_OBJECT_UNLOCK(object); 1695 VM_WAIT; 1696 VM_OBJECT_LOCK(object); 1697 vm_page_lock_queues(); 1698 goto retry_alloc; 1699 } 1700 1701 if (m->cow == 0) { 1702 /* 1703 * check to see if we raced with an xmit complete when 1704 * waiting to allocate a page. If so, put things back 1705 * the way they were 1706 */ 1707 vm_page_free(mnew); 1708 vm_page_insert(m, object, pindex); 1709 } else { /* clear COW & copy page */ 1710 if (!so_zerocp_fullpage) 1711 pmap_copy_page(m, mnew); 1712 mnew->valid = VM_PAGE_BITS_ALL; 1713 vm_page_dirty(mnew); 1714 vm_page_flag_clear(mnew, PG_BUSY); 1715 mnew->wire_count = m->wire_count - m->cow; 1716 m->wire_count = m->cow; 1717 } 1718 } 1719 1720 void 1721 vm_page_cowclear(vm_page_t m) 1722 { 1723 1724 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1725 if (m->cow) { 1726 m->cow--; 1727 /* 1728 * let vm_fault add back write permission lazily 1729 */ 1730 } 1731 /* 1732 * sf_buf_free() will free the page, so we needn't do it here 1733 */ 1734 } 1735 1736 void 1737 vm_page_cowsetup(vm_page_t m) 1738 { 1739 1740 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1741 m->cow++; 1742 pmap_page_protect(m, VM_PROT_READ); 1743 } 1744 1745 #include "opt_ddb.h" 1746 #ifdef DDB 1747 #include <sys/kernel.h> 1748 1749 #include <ddb/ddb.h> 1750 1751 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1752 { 1753 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 1754 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 1755 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 1756 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 1757 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 1758 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 1759 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 1760 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 1761 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 1762 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 1763 } 1764 1765 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1766 { 1767 int i; 1768 db_printf("PQ_FREE:"); 1769 for (i = 0; i < PQ_NUMCOLORS; i++) { 1770 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 1771 } 1772 db_printf("\n"); 1773 1774 db_printf("PQ_CACHE:"); 1775 for (i = 0; i < PQ_NUMCOLORS; i++) { 1776 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 1777 } 1778 db_printf("\n"); 1779 1780 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1781 vm_page_queues[PQ_ACTIVE].lcnt, 1782 vm_page_queues[PQ_INACTIVE].lcnt); 1783 } 1784 #endif /* DDB */ 1785