xref: /freebsd/sys/vm/vm_page.c (revision 7dfd9569a2f0637fb9a48157b1c1bfe5709faee3)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33  */
34 
35 /*-
36  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37  * All rights reserved.
38  *
39  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40  *
41  * Permission to use, copy, modify and distribute this software and
42  * its documentation is hereby granted, provided that both the copyright
43  * notice and this permission notice appear in all copies of the
44  * software, derivative works or modified versions, and any portions
45  * thereof, and that both notices appear in supporting documentation.
46  *
47  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50  *
51  * Carnegie Mellon requests users of this software to return to
52  *
53  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54  *  School of Computer Science
55  *  Carnegie Mellon University
56  *  Pittsburgh PA 15213-3890
57  *
58  * any improvements or extensions that they make and grant Carnegie the
59  * rights to redistribute these changes.
60  */
61 
62 /*
63  *			GENERAL RULES ON VM_PAGE MANIPULATION
64  *
65  *	- a pageq mutex is required when adding or removing a page from a
66  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67  *	  busy state of a page.
68  *
69  *	- a hash chain mutex is required when associating or disassociating
70  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71  *	  regardless of other mutexes or the busy state of a page.
72  *
73  *	- either a hash chain mutex OR a busied page is required in order
74  *	  to modify the page flags.  A hash chain mutex must be obtained in
75  *	  order to busy a page.  A page's flags cannot be modified by a
76  *	  hash chain mutex if the page is marked busy.
77  *
78  *	- The object memq mutex is held when inserting or removing
79  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80  *	  is different from the object's main mutex.
81  *
82  *	Generally speaking, you have to be aware of side effects when running
83  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85  *	vm_page_cache(), vm_page_activate(), and a number of other routines
86  *	will release the hash chain mutex for you.  Intermediate manipulation
87  *	routines such as vm_page_flag_set() expect the hash chain to be held
88  *	on entry and the hash chain will remain held on return.
89  *
90  *	pageq scanning can only occur with the pageq in question locked.
91  *	We have a known bottleneck with the active queue, but the cache
92  *	and free queues are actually arrays already.
93  */
94 
95 /*
96  *	Resident memory management module.
97  */
98 
99 #include <sys/cdefs.h>
100 __FBSDID("$FreeBSD$");
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/lock.h>
105 #include <sys/kernel.h>
106 #include <sys/malloc.h>
107 #include <sys/mutex.h>
108 #include <sys/proc.h>
109 #include <sys/sysctl.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 #include <vm/uma_int.h>
123 
124 #include <machine/md_var.h>
125 
126 /*
127  *	Associated with page of user-allocatable memory is a
128  *	page structure.
129  */
130 
131 struct mtx vm_page_queue_mtx;
132 struct mtx vm_page_queue_free_mtx;
133 
134 vm_page_t vm_page_array = 0;
135 int vm_page_array_size = 0;
136 long first_page = 0;
137 int vm_page_zero_count = 0;
138 
139 static int boot_pages = UMA_BOOT_PAGES;
140 TUNABLE_INT("vm.boot_pages", &boot_pages);
141 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
142 	"number of pages allocated for bootstrapping the VM system");
143 
144 /*
145  *	vm_set_page_size:
146  *
147  *	Sets the page size, perhaps based upon the memory
148  *	size.  Must be called before any use of page-size
149  *	dependent functions.
150  */
151 void
152 vm_set_page_size(void)
153 {
154 	if (cnt.v_page_size == 0)
155 		cnt.v_page_size = PAGE_SIZE;
156 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
157 		panic("vm_set_page_size: page size not a power of two");
158 }
159 
160 /*
161  *	vm_page_startup:
162  *
163  *	Initializes the resident memory module.
164  *
165  *	Allocates memory for the page cells, and
166  *	for the object/offset-to-page hash table headers.
167  *	Each page cell is initialized and placed on the free list.
168  */
169 vm_offset_t
170 vm_page_startup(vm_offset_t vaddr)
171 {
172 	vm_offset_t mapped;
173 	vm_size_t npages;
174 	vm_paddr_t page_range;
175 	vm_paddr_t new_end;
176 	int i;
177 	vm_paddr_t pa;
178 	int nblocks;
179 	vm_paddr_t last_pa;
180 
181 	/* the biggest memory array is the second group of pages */
182 	vm_paddr_t end;
183 	vm_paddr_t biggestsize;
184 	int biggestone;
185 
186 	vm_paddr_t total;
187 
188 	total = 0;
189 	biggestsize = 0;
190 	biggestone = 0;
191 	nblocks = 0;
192 	vaddr = round_page(vaddr);
193 
194 	for (i = 0; phys_avail[i + 1]; i += 2) {
195 		phys_avail[i] = round_page(phys_avail[i]);
196 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
197 	}
198 
199 	for (i = 0; phys_avail[i + 1]; i += 2) {
200 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
201 
202 		if (size > biggestsize) {
203 			biggestone = i;
204 			biggestsize = size;
205 		}
206 		++nblocks;
207 		total += size;
208 	}
209 
210 	end = phys_avail[biggestone+1];
211 
212 	/*
213 	 * Initialize the locks.
214 	 */
215 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
216 	    MTX_RECURSE);
217 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
218 	    MTX_SPIN);
219 
220 	/*
221 	 * Initialize the queue headers for the free queue, the active queue
222 	 * and the inactive queue.
223 	 */
224 	vm_pageq_init();
225 
226 	/*
227 	 * Allocate memory for use when boot strapping the kernel memory
228 	 * allocator.
229 	 */
230 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
231 	new_end = trunc_page(new_end);
232 	mapped = pmap_map(&vaddr, new_end, end,
233 	    VM_PROT_READ | VM_PROT_WRITE);
234 	bzero((void *)mapped, end - new_end);
235 	uma_startup((void *)mapped, boot_pages);
236 
237 #if defined(__amd64__) || defined(__i386__)
238 	/*
239 	 * Allocate a bitmap to indicate that a random physical page
240 	 * needs to be included in a minidump.
241 	 *
242 	 * The amd64 port needs this to indicate which direct map pages
243 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
244 	 *
245 	 * However, i386 still needs this workspace internally within the
246 	 * minidump code.  In theory, they are not needed on i386, but are
247 	 * included should the sf_buf code decide to use them.
248 	 */
249 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
250 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
251 	new_end -= vm_page_dump_size;
252 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
253 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
254 	bzero((void *)vm_page_dump, vm_page_dump_size);
255 #endif
256 	/*
257 	 * Compute the number of pages of memory that will be available for
258 	 * use (taking into account the overhead of a page structure per
259 	 * page).
260 	 */
261 	first_page = phys_avail[0] / PAGE_SIZE;
262 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
263 	npages = (total - (page_range * sizeof(struct vm_page)) -
264 	    (end - new_end)) / PAGE_SIZE;
265 	end = new_end;
266 
267 	/*
268 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
269 	 */
270 	vaddr += PAGE_SIZE;
271 
272 	/*
273 	 * Initialize the mem entry structures now, and put them in the free
274 	 * queue.
275 	 */
276 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
277 	mapped = pmap_map(&vaddr, new_end, end,
278 	    VM_PROT_READ | VM_PROT_WRITE);
279 	vm_page_array = (vm_page_t) mapped;
280 	phys_avail[biggestone + 1] = new_end;
281 
282 	/*
283 	 * Clear all of the page structures
284 	 */
285 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
286 	vm_page_array_size = page_range;
287 
288 	/*
289 	 * Construct the free queue(s) in descending order (by physical
290 	 * address) so that the first 16MB of physical memory is allocated
291 	 * last rather than first.  On large-memory machines, this avoids
292 	 * the exhaustion of low physical memory before isa_dma_init has run.
293 	 */
294 	cnt.v_page_count = 0;
295 	cnt.v_free_count = 0;
296 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
297 		pa = phys_avail[i];
298 		last_pa = phys_avail[i + 1];
299 		while (pa < last_pa && npages-- > 0) {
300 			vm_pageq_add_new_page(pa);
301 			pa += PAGE_SIZE;
302 		}
303 	}
304 	return (vaddr);
305 }
306 
307 void
308 vm_page_flag_set(vm_page_t m, unsigned short bits)
309 {
310 
311 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
312 	m->flags |= bits;
313 }
314 
315 void
316 vm_page_flag_clear(vm_page_t m, unsigned short bits)
317 {
318 
319 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
320 	m->flags &= ~bits;
321 }
322 
323 void
324 vm_page_busy(vm_page_t m)
325 {
326 
327 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
328 	KASSERT((m->flags & PG_BUSY) == 0,
329 	    ("vm_page_busy: page already busy!!!"));
330 	vm_page_flag_set(m, PG_BUSY);
331 }
332 
333 /*
334  *      vm_page_flash:
335  *
336  *      wakeup anyone waiting for the page.
337  */
338 void
339 vm_page_flash(vm_page_t m)
340 {
341 
342 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
343 	if (m->flags & PG_WANTED) {
344 		vm_page_flag_clear(m, PG_WANTED);
345 		wakeup(m);
346 	}
347 }
348 
349 /*
350  *      vm_page_wakeup:
351  *
352  *      clear the PG_BUSY flag and wakeup anyone waiting for the
353  *      page.
354  *
355  */
356 void
357 vm_page_wakeup(vm_page_t m)
358 {
359 
360 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
361 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
362 	vm_page_flag_clear(m, PG_BUSY);
363 	vm_page_flash(m);
364 }
365 
366 void
367 vm_page_io_start(vm_page_t m)
368 {
369 
370 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
371 	m->busy++;
372 }
373 
374 void
375 vm_page_io_finish(vm_page_t m)
376 {
377 
378 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
379 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
380 	m->busy--;
381 	if (m->busy == 0)
382 		vm_page_flash(m);
383 }
384 
385 /*
386  * Keep page from being freed by the page daemon
387  * much of the same effect as wiring, except much lower
388  * overhead and should be used only for *very* temporary
389  * holding ("wiring").
390  */
391 void
392 vm_page_hold(vm_page_t mem)
393 {
394 
395 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
396         mem->hold_count++;
397 }
398 
399 void
400 vm_page_unhold(vm_page_t mem)
401 {
402 
403 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
404 	--mem->hold_count;
405 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
406 	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
407 		vm_page_free_toq(mem);
408 }
409 
410 /*
411  *	vm_page_free:
412  *
413  *	Free a page
414  *
415  *	The clearing of PG_ZERO is a temporary safety until the code can be
416  *	reviewed to determine that PG_ZERO is being properly cleared on
417  *	write faults or maps.  PG_ZERO was previously cleared in
418  *	vm_page_alloc().
419  */
420 void
421 vm_page_free(vm_page_t m)
422 {
423 	vm_page_flag_clear(m, PG_ZERO);
424 	vm_page_free_toq(m);
425 	vm_page_zero_idle_wakeup();
426 }
427 
428 /*
429  *	vm_page_free_zero:
430  *
431  *	Free a page to the zerod-pages queue
432  */
433 void
434 vm_page_free_zero(vm_page_t m)
435 {
436 	vm_page_flag_set(m, PG_ZERO);
437 	vm_page_free_toq(m);
438 }
439 
440 /*
441  *	vm_page_sleep_if_busy:
442  *
443  *	Sleep and release the page queues lock if PG_BUSY is set or,
444  *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
445  *	thread slept and the page queues lock was released.
446  *	Otherwise, retains the page queues lock and returns FALSE.
447  */
448 int
449 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
450 {
451 	vm_object_t object;
452 
453 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
454 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
455 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
456 		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
457 		/*
458 		 * It's possible that while we sleep, the page will get
459 		 * unbusied and freed.  If we are holding the object
460 		 * lock, we will assume we hold a reference to the object
461 		 * such that even if m->object changes, we can re-lock
462 		 * it.
463 		 */
464 		object = m->object;
465 		VM_OBJECT_UNLOCK(object);
466 		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
467 		VM_OBJECT_LOCK(object);
468 		return (TRUE);
469 	}
470 	return (FALSE);
471 }
472 
473 /*
474  *	vm_page_dirty:
475  *
476  *	make page all dirty
477  */
478 void
479 vm_page_dirty(vm_page_t m)
480 {
481 	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE,
482 	    ("vm_page_dirty: page in cache!"));
483 	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_FREE,
484 	    ("vm_page_dirty: page is free!"));
485 	m->dirty = VM_PAGE_BITS_ALL;
486 }
487 
488 /*
489  *	vm_page_splay:
490  *
491  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
492  *	the vm_page containing the given pindex.  If, however, that
493  *	pindex is not found in the vm_object, returns a vm_page that is
494  *	adjacent to the pindex, coming before or after it.
495  */
496 vm_page_t
497 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
498 {
499 	struct vm_page dummy;
500 	vm_page_t lefttreemax, righttreemin, y;
501 
502 	if (root == NULL)
503 		return (root);
504 	lefttreemax = righttreemin = &dummy;
505 	for (;; root = y) {
506 		if (pindex < root->pindex) {
507 			if ((y = root->left) == NULL)
508 				break;
509 			if (pindex < y->pindex) {
510 				/* Rotate right. */
511 				root->left = y->right;
512 				y->right = root;
513 				root = y;
514 				if ((y = root->left) == NULL)
515 					break;
516 			}
517 			/* Link into the new root's right tree. */
518 			righttreemin->left = root;
519 			righttreemin = root;
520 		} else if (pindex > root->pindex) {
521 			if ((y = root->right) == NULL)
522 				break;
523 			if (pindex > y->pindex) {
524 				/* Rotate left. */
525 				root->right = y->left;
526 				y->left = root;
527 				root = y;
528 				if ((y = root->right) == NULL)
529 					break;
530 			}
531 			/* Link into the new root's left tree. */
532 			lefttreemax->right = root;
533 			lefttreemax = root;
534 		} else
535 			break;
536 	}
537 	/* Assemble the new root. */
538 	lefttreemax->right = root->left;
539 	righttreemin->left = root->right;
540 	root->left = dummy.right;
541 	root->right = dummy.left;
542 	return (root);
543 }
544 
545 /*
546  *	vm_page_insert:		[ internal use only ]
547  *
548  *	Inserts the given mem entry into the object and object list.
549  *
550  *	The pagetables are not updated but will presumably fault the page
551  *	in if necessary, or if a kernel page the caller will at some point
552  *	enter the page into the kernel's pmap.  We are not allowed to block
553  *	here so we *can't* do this anyway.
554  *
555  *	The object and page must be locked.
556  *	This routine may not block.
557  */
558 void
559 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
560 {
561 	vm_page_t root;
562 
563 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
564 	if (m->object != NULL)
565 		panic("vm_page_insert: page already inserted");
566 
567 	/*
568 	 * Record the object/offset pair in this page
569 	 */
570 	m->object = object;
571 	m->pindex = pindex;
572 
573 	/*
574 	 * Now link into the object's ordered list of backed pages.
575 	 */
576 	root = object->root;
577 	if (root == NULL) {
578 		m->left = NULL;
579 		m->right = NULL;
580 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
581 	} else {
582 		root = vm_page_splay(pindex, root);
583 		if (pindex < root->pindex) {
584 			m->left = root->left;
585 			m->right = root;
586 			root->left = NULL;
587 			TAILQ_INSERT_BEFORE(root, m, listq);
588 		} else if (pindex == root->pindex)
589 			panic("vm_page_insert: offset already allocated");
590 		else {
591 			m->right = root->right;
592 			m->left = root;
593 			root->right = NULL;
594 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
595 		}
596 	}
597 	object->root = m;
598 	object->generation++;
599 
600 	/*
601 	 * show that the object has one more resident page.
602 	 */
603 	object->resident_page_count++;
604 	/*
605 	 * Hold the vnode until the last page is released.
606 	 */
607 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
608 		vhold((struct vnode *)object->handle);
609 
610 	/*
611 	 * Since we are inserting a new and possibly dirty page,
612 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
613 	 */
614 	if (m->flags & PG_WRITEABLE)
615 		vm_object_set_writeable_dirty(object);
616 }
617 
618 /*
619  *	vm_page_remove:
620  *				NOTE: used by device pager as well -wfj
621  *
622  *	Removes the given mem entry from the object/offset-page
623  *	table and the object page list, but do not invalidate/terminate
624  *	the backing store.
625  *
626  *	The object and page must be locked.
627  *	The underlying pmap entry (if any) is NOT removed here.
628  *	This routine may not block.
629  */
630 void
631 vm_page_remove(vm_page_t m)
632 {
633 	vm_object_t object;
634 	vm_page_t root;
635 
636 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
637 	if ((object = m->object) == NULL)
638 		return;
639 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
640 	if (m->flags & PG_BUSY) {
641 		vm_page_flag_clear(m, PG_BUSY);
642 		vm_page_flash(m);
643 	}
644 
645 	/*
646 	 * Now remove from the object's list of backed pages.
647 	 */
648 	if (m != object->root)
649 		vm_page_splay(m->pindex, object->root);
650 	if (m->left == NULL)
651 		root = m->right;
652 	else {
653 		root = vm_page_splay(m->pindex, m->left);
654 		root->right = m->right;
655 	}
656 	object->root = root;
657 	TAILQ_REMOVE(&object->memq, m, listq);
658 
659 	/*
660 	 * And show that the object has one fewer resident page.
661 	 */
662 	object->resident_page_count--;
663 	object->generation++;
664 	/*
665 	 * The vnode may now be recycled.
666 	 */
667 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
668 		vdrop((struct vnode *)object->handle);
669 
670 	m->object = NULL;
671 }
672 
673 /*
674  *	vm_page_lookup:
675  *
676  *	Returns the page associated with the object/offset
677  *	pair specified; if none is found, NULL is returned.
678  *
679  *	The object must be locked.
680  *	This routine may not block.
681  *	This is a critical path routine
682  */
683 vm_page_t
684 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
685 {
686 	vm_page_t m;
687 
688 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
689 	if ((m = object->root) != NULL && m->pindex != pindex) {
690 		m = vm_page_splay(pindex, m);
691 		if ((object->root = m)->pindex != pindex)
692 			m = NULL;
693 	}
694 	return (m);
695 }
696 
697 /*
698  *	vm_page_rename:
699  *
700  *	Move the given memory entry from its
701  *	current object to the specified target object/offset.
702  *
703  *	The object must be locked.
704  *	This routine may not block.
705  *
706  *	Note: swap associated with the page must be invalidated by the move.  We
707  *	      have to do this for several reasons:  (1) we aren't freeing the
708  *	      page, (2) we are dirtying the page, (3) the VM system is probably
709  *	      moving the page from object A to B, and will then later move
710  *	      the backing store from A to B and we can't have a conflict.
711  *
712  *	Note: we *always* dirty the page.  It is necessary both for the
713  *	      fact that we moved it, and because we may be invalidating
714  *	      swap.  If the page is on the cache, we have to deactivate it
715  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
716  *	      on the cache.
717  */
718 void
719 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
720 {
721 
722 	vm_page_remove(m);
723 	vm_page_insert(m, new_object, new_pindex);
724 	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
725 		vm_page_deactivate(m);
726 	vm_page_dirty(m);
727 }
728 
729 /*
730  *	vm_page_select_cache:
731  *
732  *	Move a page of the given color from the cache queue to the free
733  *	queue.  As pages might be found, but are not applicable, they are
734  *	deactivated.
735  *
736  *	This routine may not block.
737  */
738 vm_page_t
739 vm_page_select_cache(int color)
740 {
741 	vm_object_t object;
742 	vm_page_t m;
743 	boolean_t was_trylocked;
744 
745 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
746 	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
747 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
748 		KASSERT(!pmap_page_is_mapped(m),
749 		    ("Found mapped cache page %p", m));
750 		KASSERT((m->flags & PG_UNMANAGED) == 0,
751 		    ("Found unmanaged cache page %p", m));
752 		KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
753 		if (m->hold_count == 0 && (object = m->object,
754 		    (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
755 		    VM_OBJECT_LOCKED(object))) {
756 			KASSERT((m->flags & PG_BUSY) == 0 && m->busy == 0,
757 			    ("Found busy cache page %p", m));
758 			vm_page_free(m);
759 			if (was_trylocked)
760 				VM_OBJECT_UNLOCK(object);
761 			break;
762 		}
763 		vm_page_deactivate(m);
764 	}
765 	return (m);
766 }
767 
768 /*
769  *	vm_page_alloc:
770  *
771  *	Allocate and return a memory cell associated
772  *	with this VM object/offset pair.
773  *
774  *	page_req classes:
775  *	VM_ALLOC_NORMAL		normal process request
776  *	VM_ALLOC_SYSTEM		system *really* needs a page
777  *	VM_ALLOC_INTERRUPT	interrupt time request
778  *	VM_ALLOC_ZERO		zero page
779  *
780  *	This routine may not block.
781  *
782  *	Additional special handling is required when called from an
783  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
784  *	the page cache in this case.
785  */
786 vm_page_t
787 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
788 {
789 	vm_page_t m = NULL;
790 	int color, flags, page_req;
791 
792 	page_req = req & VM_ALLOC_CLASS_MASK;
793 	KASSERT(curthread->td_intr_nesting_level == 0 ||
794 	    page_req == VM_ALLOC_INTERRUPT,
795 	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
796 
797 	if ((req & VM_ALLOC_NOOBJ) == 0) {
798 		KASSERT(object != NULL,
799 		    ("vm_page_alloc: NULL object."));
800 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
801 		color = (pindex + object->pg_color) & PQ_COLORMASK;
802 	} else
803 		color = pindex & PQ_COLORMASK;
804 
805 	/*
806 	 * The pager is allowed to eat deeper into the free page list.
807 	 */
808 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
809 		page_req = VM_ALLOC_SYSTEM;
810 	};
811 
812 loop:
813 	mtx_lock_spin(&vm_page_queue_free_mtx);
814 	if (cnt.v_free_count > cnt.v_free_reserved ||
815 	    (page_req == VM_ALLOC_SYSTEM &&
816 	     cnt.v_cache_count == 0 &&
817 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
818 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
819 		/*
820 		 * Allocate from the free queue if the number of free pages
821 		 * exceeds the minimum for the request class.
822 		 */
823 		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
824 	} else if (page_req != VM_ALLOC_INTERRUPT) {
825 		mtx_unlock_spin(&vm_page_queue_free_mtx);
826 		/*
827 		 * Allocatable from cache (non-interrupt only).  On success,
828 		 * we must free the page and try again, thus ensuring that
829 		 * cnt.v_*_free_min counters are replenished.
830 		 */
831 		vm_page_lock_queues();
832 		if ((m = vm_page_select_cache(color)) == NULL) {
833 			KASSERT(cnt.v_cache_count == 0,
834 			    ("vm_page_alloc: cache queue is missing %d pages",
835 			    cnt.v_cache_count));
836 			vm_page_unlock_queues();
837 			atomic_add_int(&vm_pageout_deficit, 1);
838 			pagedaemon_wakeup();
839 
840 			if (page_req != VM_ALLOC_SYSTEM)
841 				return NULL;
842 
843 			mtx_lock_spin(&vm_page_queue_free_mtx);
844 			if (cnt.v_free_count <=  cnt.v_interrupt_free_min) {
845 				mtx_unlock_spin(&vm_page_queue_free_mtx);
846 				return (NULL);
847 			}
848 			m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
849 		} else {
850 			vm_page_unlock_queues();
851 			goto loop;
852 		}
853 	} else {
854 		/*
855 		 * Not allocatable from cache from interrupt, give up.
856 		 */
857 		mtx_unlock_spin(&vm_page_queue_free_mtx);
858 		atomic_add_int(&vm_pageout_deficit, 1);
859 		pagedaemon_wakeup();
860 		return (NULL);
861 	}
862 
863 	/*
864 	 *  At this point we had better have found a good page.
865 	 */
866 
867 	KASSERT(
868 	    m != NULL,
869 	    ("vm_page_alloc(): missing page on free queue")
870 	);
871 
872 	/*
873 	 * Remove from free queue
874 	 */
875 	vm_pageq_remove_nowakeup(m);
876 
877 	/*
878 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
879 	 */
880 	flags = PG_BUSY;
881 	if (m->flags & PG_ZERO) {
882 		vm_page_zero_count--;
883 		if (req & VM_ALLOC_ZERO)
884 			flags = PG_ZERO | PG_BUSY;
885 	}
886 	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
887 		flags &= ~PG_BUSY;
888 	m->flags = flags;
889 	if (req & VM_ALLOC_WIRED) {
890 		atomic_add_int(&cnt.v_wire_count, 1);
891 		m->wire_count = 1;
892 	} else
893 		m->wire_count = 0;
894 	m->hold_count = 0;
895 	m->act_count = 0;
896 	m->busy = 0;
897 	m->valid = 0;
898 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
899 	mtx_unlock_spin(&vm_page_queue_free_mtx);
900 
901 	if ((req & VM_ALLOC_NOOBJ) == 0)
902 		vm_page_insert(m, object, pindex);
903 	else
904 		m->pindex = pindex;
905 
906 	/*
907 	 * Don't wakeup too often - wakeup the pageout daemon when
908 	 * we would be nearly out of memory.
909 	 */
910 	if (vm_paging_needed())
911 		pagedaemon_wakeup();
912 
913 	return (m);
914 }
915 
916 /*
917  *	vm_wait:	(also see VM_WAIT macro)
918  *
919  *	Block until free pages are available for allocation
920  *	- Called in various places before memory allocations.
921  */
922 void
923 vm_wait(void)
924 {
925 
926 	vm_page_lock_queues();
927 	if (curproc == pageproc) {
928 		vm_pageout_pages_needed = 1;
929 		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
930 		    PDROP | PSWP, "VMWait", 0);
931 	} else {
932 		if (!vm_pages_needed) {
933 			vm_pages_needed = 1;
934 			wakeup(&vm_pages_needed);
935 		}
936 		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
937 		    "vmwait", 0);
938 	}
939 }
940 
941 /*
942  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
943  *
944  *	Block until free pages are available for allocation
945  *	- Called only in vm_fault so that processes page faulting
946  *	  can be easily tracked.
947  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
948  *	  processes will be able to grab memory first.  Do not change
949  *	  this balance without careful testing first.
950  */
951 void
952 vm_waitpfault(void)
953 {
954 
955 	vm_page_lock_queues();
956 	if (!vm_pages_needed) {
957 		vm_pages_needed = 1;
958 		wakeup(&vm_pages_needed);
959 	}
960 	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
961 	    "pfault", 0);
962 }
963 
964 /*
965  *	vm_page_activate:
966  *
967  *	Put the specified page on the active list (if appropriate).
968  *	Ensure that act_count is at least ACT_INIT but do not otherwise
969  *	mess with it.
970  *
971  *	The page queues must be locked.
972  *	This routine may not block.
973  */
974 void
975 vm_page_activate(vm_page_t m)
976 {
977 
978 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
979 	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
980 		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
981 			cnt.v_reactivated++;
982 		vm_pageq_remove(m);
983 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
984 			if (m->act_count < ACT_INIT)
985 				m->act_count = ACT_INIT;
986 			vm_pageq_enqueue(PQ_ACTIVE, m);
987 		}
988 	} else {
989 		if (m->act_count < ACT_INIT)
990 			m->act_count = ACT_INIT;
991 	}
992 }
993 
994 /*
995  *	vm_page_free_wakeup:
996  *
997  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
998  *	routine is called when a page has been added to the cache or free
999  *	queues.
1000  *
1001  *	The page queues must be locked.
1002  *	This routine may not block.
1003  */
1004 static inline void
1005 vm_page_free_wakeup(void)
1006 {
1007 
1008 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1009 	/*
1010 	 * if pageout daemon needs pages, then tell it that there are
1011 	 * some free.
1012 	 */
1013 	if (vm_pageout_pages_needed &&
1014 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1015 		wakeup(&vm_pageout_pages_needed);
1016 		vm_pageout_pages_needed = 0;
1017 	}
1018 	/*
1019 	 * wakeup processes that are waiting on memory if we hit a
1020 	 * high water mark. And wakeup scheduler process if we have
1021 	 * lots of memory. this process will swapin processes.
1022 	 */
1023 	if (vm_pages_needed && !vm_page_count_min()) {
1024 		vm_pages_needed = 0;
1025 		wakeup(&cnt.v_free_count);
1026 	}
1027 }
1028 
1029 /*
1030  *	vm_page_free_toq:
1031  *
1032  *	Returns the given page to the PQ_FREE list,
1033  *	disassociating it with any VM object.
1034  *
1035  *	Object and page must be locked prior to entry.
1036  *	This routine may not block.
1037  */
1038 
1039 void
1040 vm_page_free_toq(vm_page_t m)
1041 {
1042 	struct vpgqueues *pq;
1043 
1044 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1045 	KASSERT(!pmap_page_is_mapped(m),
1046 	    ("vm_page_free_toq: freeing mapped page %p", m));
1047 	cnt.v_tfree++;
1048 
1049 	if (m->busy || VM_PAGE_INQUEUE1(m, PQ_FREE)) {
1050 		printf(
1051 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1052 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1053 		    m->hold_count);
1054 		if (VM_PAGE_INQUEUE1(m, PQ_FREE))
1055 			panic("vm_page_free: freeing free page");
1056 		else
1057 			panic("vm_page_free: freeing busy page");
1058 	}
1059 
1060 	/*
1061 	 * unqueue, then remove page.  Note that we cannot destroy
1062 	 * the page here because we do not want to call the pager's
1063 	 * callback routine until after we've put the page on the
1064 	 * appropriate free queue.
1065 	 */
1066 	vm_pageq_remove_nowakeup(m);
1067 	vm_page_remove(m);
1068 
1069 	/*
1070 	 * If fictitious remove object association and
1071 	 * return, otherwise delay object association removal.
1072 	 */
1073 	if ((m->flags & PG_FICTITIOUS) != 0) {
1074 		return;
1075 	}
1076 
1077 	m->valid = 0;
1078 	vm_page_undirty(m);
1079 
1080 	if (m->wire_count != 0) {
1081 		if (m->wire_count > 1) {
1082 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1083 				m->wire_count, (long)m->pindex);
1084 		}
1085 		panic("vm_page_free: freeing wired page");
1086 	}
1087 
1088 	/*
1089 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1090 	 */
1091 	if (m->flags & PG_UNMANAGED) {
1092 		m->flags &= ~PG_UNMANAGED;
1093 	}
1094 
1095 	if (m->hold_count != 0) {
1096 		m->flags &= ~PG_ZERO;
1097 		VM_PAGE_SETQUEUE2(m, PQ_HOLD);
1098 	} else
1099 		VM_PAGE_SETQUEUE1(m, PQ_FREE);
1100 	pq = &vm_page_queues[VM_PAGE_GETQUEUE(m)];
1101 	mtx_lock_spin(&vm_page_queue_free_mtx);
1102 	pq->lcnt++;
1103 	++(*pq->cnt);
1104 
1105 	/*
1106 	 * Put zero'd pages on the end ( where we look for zero'd pages
1107 	 * first ) and non-zerod pages at the head.
1108 	 */
1109 	if (m->flags & PG_ZERO) {
1110 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1111 		++vm_page_zero_count;
1112 	} else {
1113 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1114 	}
1115 	mtx_unlock_spin(&vm_page_queue_free_mtx);
1116 	vm_page_free_wakeup();
1117 }
1118 
1119 /*
1120  *	vm_page_unmanage:
1121  *
1122  * 	Prevent PV management from being done on the page.  The page is
1123  *	removed from the paging queues as if it were wired, and as a
1124  *	consequence of no longer being managed the pageout daemon will not
1125  *	touch it (since there is no way to locate the pte mappings for the
1126  *	page).  madvise() calls that mess with the pmap will also no longer
1127  *	operate on the page.
1128  *
1129  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1130  *	will clear the flag.
1131  *
1132  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1133  *	physical memory as backing store rather then swap-backed memory and
1134  *	will eventually be extended to support 4MB unmanaged physical
1135  *	mappings.
1136  */
1137 void
1138 vm_page_unmanage(vm_page_t m)
1139 {
1140 
1141 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1142 	if ((m->flags & PG_UNMANAGED) == 0) {
1143 		if (m->wire_count == 0)
1144 			vm_pageq_remove(m);
1145 	}
1146 	vm_page_flag_set(m, PG_UNMANAGED);
1147 }
1148 
1149 /*
1150  *	vm_page_wire:
1151  *
1152  *	Mark this page as wired down by yet
1153  *	another map, removing it from paging queues
1154  *	as necessary.
1155  *
1156  *	The page queues must be locked.
1157  *	This routine may not block.
1158  */
1159 void
1160 vm_page_wire(vm_page_t m)
1161 {
1162 
1163 	/*
1164 	 * Only bump the wire statistics if the page is not already wired,
1165 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1166 	 * it is already off the queues).
1167 	 */
1168 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1169 	if (m->flags & PG_FICTITIOUS)
1170 		return;
1171 	if (m->wire_count == 0) {
1172 		if ((m->flags & PG_UNMANAGED) == 0)
1173 			vm_pageq_remove(m);
1174 		atomic_add_int(&cnt.v_wire_count, 1);
1175 	}
1176 	m->wire_count++;
1177 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1178 }
1179 
1180 /*
1181  *	vm_page_unwire:
1182  *
1183  *	Release one wiring of this page, potentially
1184  *	enabling it to be paged again.
1185  *
1186  *	Many pages placed on the inactive queue should actually go
1187  *	into the cache, but it is difficult to figure out which.  What
1188  *	we do instead, if the inactive target is well met, is to put
1189  *	clean pages at the head of the inactive queue instead of the tail.
1190  *	This will cause them to be moved to the cache more quickly and
1191  *	if not actively re-referenced, freed more quickly.  If we just
1192  *	stick these pages at the end of the inactive queue, heavy filesystem
1193  *	meta-data accesses can cause an unnecessary paging load on memory bound
1194  *	processes.  This optimization causes one-time-use metadata to be
1195  *	reused more quickly.
1196  *
1197  *	BUT, if we are in a low-memory situation we have no choice but to
1198  *	put clean pages on the cache queue.
1199  *
1200  *	A number of routines use vm_page_unwire() to guarantee that the page
1201  *	will go into either the inactive or active queues, and will NEVER
1202  *	be placed in the cache - for example, just after dirtying a page.
1203  *	dirty pages in the cache are not allowed.
1204  *
1205  *	The page queues must be locked.
1206  *	This routine may not block.
1207  */
1208 void
1209 vm_page_unwire(vm_page_t m, int activate)
1210 {
1211 
1212 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1213 	if (m->flags & PG_FICTITIOUS)
1214 		return;
1215 	if (m->wire_count > 0) {
1216 		m->wire_count--;
1217 		if (m->wire_count == 0) {
1218 			atomic_subtract_int(&cnt.v_wire_count, 1);
1219 			if (m->flags & PG_UNMANAGED) {
1220 				;
1221 			} else if (activate)
1222 				vm_pageq_enqueue(PQ_ACTIVE, m);
1223 			else {
1224 				vm_page_flag_clear(m, PG_WINATCFLS);
1225 				vm_pageq_enqueue(PQ_INACTIVE, m);
1226 			}
1227 		}
1228 	} else {
1229 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1230 	}
1231 }
1232 
1233 
1234 /*
1235  * Move the specified page to the inactive queue.  If the page has
1236  * any associated swap, the swap is deallocated.
1237  *
1238  * Normally athead is 0 resulting in LRU operation.  athead is set
1239  * to 1 if we want this page to be 'as if it were placed in the cache',
1240  * except without unmapping it from the process address space.
1241  *
1242  * This routine may not block.
1243  */
1244 static inline void
1245 _vm_page_deactivate(vm_page_t m, int athead)
1246 {
1247 
1248 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1249 
1250 	/*
1251 	 * Ignore if already inactive.
1252 	 */
1253 	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1254 		return;
1255 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1256 		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1257 			cnt.v_reactivated++;
1258 		vm_page_flag_clear(m, PG_WINATCFLS);
1259 		vm_pageq_remove(m);
1260 		if (athead)
1261 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1262 		else
1263 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1264 		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1265 		vm_page_queues[PQ_INACTIVE].lcnt++;
1266 		cnt.v_inactive_count++;
1267 	}
1268 }
1269 
1270 void
1271 vm_page_deactivate(vm_page_t m)
1272 {
1273     _vm_page_deactivate(m, 0);
1274 }
1275 
1276 /*
1277  * vm_page_try_to_cache:
1278  *
1279  * Returns 0 on failure, 1 on success
1280  */
1281 int
1282 vm_page_try_to_cache(vm_page_t m)
1283 {
1284 
1285 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1286 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1287 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1288 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1289 		return (0);
1290 	}
1291 	pmap_remove_all(m);
1292 	if (m->dirty)
1293 		return (0);
1294 	vm_page_cache(m);
1295 	return (1);
1296 }
1297 
1298 /*
1299  * vm_page_try_to_free()
1300  *
1301  *	Attempt to free the page.  If we cannot free it, we do nothing.
1302  *	1 is returned on success, 0 on failure.
1303  */
1304 int
1305 vm_page_try_to_free(vm_page_t m)
1306 {
1307 
1308 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1309 	if (m->object != NULL)
1310 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1311 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1312 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1313 		return (0);
1314 	}
1315 	pmap_remove_all(m);
1316 	if (m->dirty)
1317 		return (0);
1318 	vm_page_free(m);
1319 	return (1);
1320 }
1321 
1322 /*
1323  * vm_page_cache
1324  *
1325  * Put the specified page onto the page cache queue (if appropriate).
1326  *
1327  * This routine may not block.
1328  */
1329 void
1330 vm_page_cache(vm_page_t m)
1331 {
1332 
1333 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1334 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1335 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1336 	    m->hold_count || m->wire_count) {
1337 		printf("vm_page_cache: attempting to cache busy page\n");
1338 		return;
1339 	}
1340 	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1341 		return;
1342 
1343 	/*
1344 	 * Remove all pmaps and indicate that the page is not
1345 	 * writeable or mapped.
1346 	 */
1347 	pmap_remove_all(m);
1348 	if (m->dirty != 0) {
1349 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1350 			(long)m->pindex);
1351 	}
1352 	vm_pageq_remove_nowakeup(m);
1353 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1354 	vm_page_free_wakeup();
1355 }
1356 
1357 /*
1358  * vm_page_dontneed
1359  *
1360  *	Cache, deactivate, or do nothing as appropriate.  This routine
1361  *	is typically used by madvise() MADV_DONTNEED.
1362  *
1363  *	Generally speaking we want to move the page into the cache so
1364  *	it gets reused quickly.  However, this can result in a silly syndrome
1365  *	due to the page recycling too quickly.  Small objects will not be
1366  *	fully cached.  On the otherhand, if we move the page to the inactive
1367  *	queue we wind up with a problem whereby very large objects
1368  *	unnecessarily blow away our inactive and cache queues.
1369  *
1370  *	The solution is to move the pages based on a fixed weighting.  We
1371  *	either leave them alone, deactivate them, or move them to the cache,
1372  *	where moving them to the cache has the highest weighting.
1373  *	By forcing some pages into other queues we eventually force the
1374  *	system to balance the queues, potentially recovering other unrelated
1375  *	space from active.  The idea is to not force this to happen too
1376  *	often.
1377  */
1378 void
1379 vm_page_dontneed(vm_page_t m)
1380 {
1381 	static int dnweight;
1382 	int dnw;
1383 	int head;
1384 
1385 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1386 	dnw = ++dnweight;
1387 
1388 	/*
1389 	 * occassionally leave the page alone
1390 	 */
1391 	if ((dnw & 0x01F0) == 0 ||
1392 	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE) ||
1393 	    VM_PAGE_INQUEUE1(m, PQ_CACHE)
1394 	) {
1395 		if (m->act_count >= ACT_INIT)
1396 			--m->act_count;
1397 		return;
1398 	}
1399 
1400 	if (m->dirty == 0 && pmap_is_modified(m))
1401 		vm_page_dirty(m);
1402 
1403 	if (m->dirty || (dnw & 0x0070) == 0) {
1404 		/*
1405 		 * Deactivate the page 3 times out of 32.
1406 		 */
1407 		head = 0;
1408 	} else {
1409 		/*
1410 		 * Cache the page 28 times out of every 32.  Note that
1411 		 * the page is deactivated instead of cached, but placed
1412 		 * at the head of the queue instead of the tail.
1413 		 */
1414 		head = 1;
1415 	}
1416 	_vm_page_deactivate(m, head);
1417 }
1418 
1419 /*
1420  * Grab a page, waiting until we are waken up due to the page
1421  * changing state.  We keep on waiting, if the page continues
1422  * to be in the object.  If the page doesn't exist, first allocate it
1423  * and then conditionally zero it.
1424  *
1425  * This routine may block.
1426  */
1427 vm_page_t
1428 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1429 {
1430 	vm_page_t m;
1431 
1432 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1433 retrylookup:
1434 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1435 		vm_page_lock_queues();
1436 		if (m->busy || (m->flags & PG_BUSY)) {
1437 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1438 			VM_OBJECT_UNLOCK(object);
1439 			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1440 			VM_OBJECT_LOCK(object);
1441 			if ((allocflags & VM_ALLOC_RETRY) == 0)
1442 				return (NULL);
1443 			goto retrylookup;
1444 		} else {
1445 			if (allocflags & VM_ALLOC_WIRED)
1446 				vm_page_wire(m);
1447 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1448 				vm_page_busy(m);
1449 			vm_page_unlock_queues();
1450 			return (m);
1451 		}
1452 	}
1453 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1454 	if (m == NULL) {
1455 		VM_OBJECT_UNLOCK(object);
1456 		VM_WAIT;
1457 		VM_OBJECT_LOCK(object);
1458 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1459 			return (NULL);
1460 		goto retrylookup;
1461 	}
1462 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1463 		pmap_zero_page(m);
1464 	return (m);
1465 }
1466 
1467 /*
1468  * Mapping function for valid bits or for dirty bits in
1469  * a page.  May not block.
1470  *
1471  * Inputs are required to range within a page.
1472  */
1473 inline int
1474 vm_page_bits(int base, int size)
1475 {
1476 	int first_bit;
1477 	int last_bit;
1478 
1479 	KASSERT(
1480 	    base + size <= PAGE_SIZE,
1481 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1482 	);
1483 
1484 	if (size == 0)		/* handle degenerate case */
1485 		return (0);
1486 
1487 	first_bit = base >> DEV_BSHIFT;
1488 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1489 
1490 	return ((2 << last_bit) - (1 << first_bit));
1491 }
1492 
1493 /*
1494  *	vm_page_set_validclean:
1495  *
1496  *	Sets portions of a page valid and clean.  The arguments are expected
1497  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1498  *	of any partial chunks touched by the range.  The invalid portion of
1499  *	such chunks will be zero'd.
1500  *
1501  *	This routine may not block.
1502  *
1503  *	(base + size) must be less then or equal to PAGE_SIZE.
1504  */
1505 void
1506 vm_page_set_validclean(vm_page_t m, int base, int size)
1507 {
1508 	int pagebits;
1509 	int frag;
1510 	int endoff;
1511 
1512 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1513 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1514 	if (size == 0)	/* handle degenerate case */
1515 		return;
1516 
1517 	/*
1518 	 * If the base is not DEV_BSIZE aligned and the valid
1519 	 * bit is clear, we have to zero out a portion of the
1520 	 * first block.
1521 	 */
1522 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1523 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1524 		pmap_zero_page_area(m, frag, base - frag);
1525 
1526 	/*
1527 	 * If the ending offset is not DEV_BSIZE aligned and the
1528 	 * valid bit is clear, we have to zero out a portion of
1529 	 * the last block.
1530 	 */
1531 	endoff = base + size;
1532 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1533 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1534 		pmap_zero_page_area(m, endoff,
1535 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1536 
1537 	/*
1538 	 * Set valid, clear dirty bits.  If validating the entire
1539 	 * page we can safely clear the pmap modify bit.  We also
1540 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1541 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1542 	 * be set again.
1543 	 *
1544 	 * We set valid bits inclusive of any overlap, but we can only
1545 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1546 	 * the range.
1547 	 */
1548 	pagebits = vm_page_bits(base, size);
1549 	m->valid |= pagebits;
1550 #if 0	/* NOT YET */
1551 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1552 		frag = DEV_BSIZE - frag;
1553 		base += frag;
1554 		size -= frag;
1555 		if (size < 0)
1556 			size = 0;
1557 	}
1558 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1559 #endif
1560 	m->dirty &= ~pagebits;
1561 	if (base == 0 && size == PAGE_SIZE) {
1562 		pmap_clear_modify(m);
1563 		vm_page_flag_clear(m, PG_NOSYNC);
1564 	}
1565 }
1566 
1567 void
1568 vm_page_clear_dirty(vm_page_t m, int base, int size)
1569 {
1570 
1571 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1572 	m->dirty &= ~vm_page_bits(base, size);
1573 }
1574 
1575 /*
1576  *	vm_page_set_invalid:
1577  *
1578  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1579  *	valid and dirty bits for the effected areas are cleared.
1580  *
1581  *	May not block.
1582  */
1583 void
1584 vm_page_set_invalid(vm_page_t m, int base, int size)
1585 {
1586 	int bits;
1587 
1588 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1589 	bits = vm_page_bits(base, size);
1590 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1591 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1592 		pmap_remove_all(m);
1593 	m->valid &= ~bits;
1594 	m->dirty &= ~bits;
1595 	m->object->generation++;
1596 }
1597 
1598 /*
1599  * vm_page_zero_invalid()
1600  *
1601  *	The kernel assumes that the invalid portions of a page contain
1602  *	garbage, but such pages can be mapped into memory by user code.
1603  *	When this occurs, we must zero out the non-valid portions of the
1604  *	page so user code sees what it expects.
1605  *
1606  *	Pages are most often semi-valid when the end of a file is mapped
1607  *	into memory and the file's size is not page aligned.
1608  */
1609 void
1610 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1611 {
1612 	int b;
1613 	int i;
1614 
1615 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1616 	/*
1617 	 * Scan the valid bits looking for invalid sections that
1618 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1619 	 * valid bit may be set ) have already been zerod by
1620 	 * vm_page_set_validclean().
1621 	 */
1622 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1623 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1624 		    (m->valid & (1 << i))
1625 		) {
1626 			if (i > b) {
1627 				pmap_zero_page_area(m,
1628 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1629 			}
1630 			b = i + 1;
1631 		}
1632 	}
1633 
1634 	/*
1635 	 * setvalid is TRUE when we can safely set the zero'd areas
1636 	 * as being valid.  We can do this if there are no cache consistancy
1637 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1638 	 */
1639 	if (setvalid)
1640 		m->valid = VM_PAGE_BITS_ALL;
1641 }
1642 
1643 /*
1644  *	vm_page_is_valid:
1645  *
1646  *	Is (partial) page valid?  Note that the case where size == 0
1647  *	will return FALSE in the degenerate case where the page is
1648  *	entirely invalid, and TRUE otherwise.
1649  *
1650  *	May not block.
1651  */
1652 int
1653 vm_page_is_valid(vm_page_t m, int base, int size)
1654 {
1655 	int bits = vm_page_bits(base, size);
1656 
1657 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1658 	if (m->valid && ((m->valid & bits) == bits))
1659 		return 1;
1660 	else
1661 		return 0;
1662 }
1663 
1664 /*
1665  * update dirty bits from pmap/mmu.  May not block.
1666  */
1667 void
1668 vm_page_test_dirty(vm_page_t m)
1669 {
1670 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1671 		vm_page_dirty(m);
1672 	}
1673 }
1674 
1675 int so_zerocp_fullpage = 0;
1676 
1677 void
1678 vm_page_cowfault(vm_page_t m)
1679 {
1680 	vm_page_t mnew;
1681 	vm_object_t object;
1682 	vm_pindex_t pindex;
1683 
1684 	object = m->object;
1685 	pindex = m->pindex;
1686 
1687  retry_alloc:
1688 	pmap_remove_all(m);
1689 	vm_page_remove(m);
1690 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1691 	if (mnew == NULL) {
1692 		vm_page_insert(m, object, pindex);
1693 		vm_page_unlock_queues();
1694 		VM_OBJECT_UNLOCK(object);
1695 		VM_WAIT;
1696 		VM_OBJECT_LOCK(object);
1697 		vm_page_lock_queues();
1698 		goto retry_alloc;
1699 	}
1700 
1701 	if (m->cow == 0) {
1702 		/*
1703 		 * check to see if we raced with an xmit complete when
1704 		 * waiting to allocate a page.  If so, put things back
1705 		 * the way they were
1706 		 */
1707 		vm_page_free(mnew);
1708 		vm_page_insert(m, object, pindex);
1709 	} else { /* clear COW & copy page */
1710 		if (!so_zerocp_fullpage)
1711 			pmap_copy_page(m, mnew);
1712 		mnew->valid = VM_PAGE_BITS_ALL;
1713 		vm_page_dirty(mnew);
1714 		vm_page_flag_clear(mnew, PG_BUSY);
1715 		mnew->wire_count = m->wire_count - m->cow;
1716 		m->wire_count = m->cow;
1717 	}
1718 }
1719 
1720 void
1721 vm_page_cowclear(vm_page_t m)
1722 {
1723 
1724 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1725 	if (m->cow) {
1726 		m->cow--;
1727 		/*
1728 		 * let vm_fault add back write permission  lazily
1729 		 */
1730 	}
1731 	/*
1732 	 *  sf_buf_free() will free the page, so we needn't do it here
1733 	 */
1734 }
1735 
1736 void
1737 vm_page_cowsetup(vm_page_t m)
1738 {
1739 
1740 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1741 	m->cow++;
1742 	pmap_page_protect(m, VM_PROT_READ);
1743 }
1744 
1745 #include "opt_ddb.h"
1746 #ifdef DDB
1747 #include <sys/kernel.h>
1748 
1749 #include <ddb/ddb.h>
1750 
1751 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1752 {
1753 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1754 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1755 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1756 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1757 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1758 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1759 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1760 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1761 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1762 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1763 }
1764 
1765 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1766 {
1767 	int i;
1768 	db_printf("PQ_FREE:");
1769 	for (i = 0; i < PQ_NUMCOLORS; i++) {
1770 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1771 	}
1772 	db_printf("\n");
1773 
1774 	db_printf("PQ_CACHE:");
1775 	for (i = 0; i < PQ_NUMCOLORS; i++) {
1776 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1777 	}
1778 	db_printf("\n");
1779 
1780 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1781 		vm_page_queues[PQ_ACTIVE].lcnt,
1782 		vm_page_queues[PQ_INACTIVE].lcnt);
1783 }
1784 #endif /* DDB */
1785