xref: /freebsd/sys/vm/vm_page.c (revision 7cc1fde083b1fe9d55388045ba3df7d770d4f3bf)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- a pageq mutex is required when adding or removing a page from a
67  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68  *	  busy state of a page.
69  *
70  *	- a hash chain mutex is required when associating or disassociating
71  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
72  *	  regardless of other mutexes or the busy state of a page.
73  *
74  *	- either a hash chain mutex OR a busied page is required in order
75  *	  to modify the page flags.  A hash chain mutex must be obtained in
76  *	  order to busy a page.  A page's flags cannot be modified by a
77  *	  hash chain mutex if the page is marked busy.
78  *
79  *	- The object memq mutex is held when inserting or removing
80  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
81  *	  is different from the object's main mutex.
82  *
83  *	Generally speaking, you have to be aware of side effects when running
84  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
85  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
86  *	vm_page_cache(), vm_page_activate(), and a number of other routines
87  *	will release the hash chain mutex for you.  Intermediate manipulation
88  *	routines such as vm_page_flag_set() expect the hash chain to be held
89  *	on entry and the hash chain will remain held on return.
90  *
91  *	pageq scanning can only occur with the pageq in question locked.
92  *	We have a known bottleneck with the active queue, but the cache
93  *	and free queues are actually arrays already.
94  */
95 
96 /*
97  *	Resident memory management module.
98  */
99 
100 #include <sys/cdefs.h>
101 __FBSDID("$FreeBSD$");
102 
103 #include "opt_msgbuf.h"
104 #include "opt_vm.h"
105 
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/lock.h>
109 #include <sys/kernel.h>
110 #include <sys/limits.h>
111 #include <sys/malloc.h>
112 #include <sys/msgbuf.h>
113 #include <sys/mutex.h>
114 #include <sys/proc.h>
115 #include <sys/sysctl.h>
116 #include <sys/vmmeter.h>
117 #include <sys/vnode.h>
118 
119 #include <vm/vm.h>
120 #include <vm/pmap.h>
121 #include <vm/vm_param.h>
122 #include <vm/vm_kern.h>
123 #include <vm/vm_object.h>
124 #include <vm/vm_page.h>
125 #include <vm/vm_pageout.h>
126 #include <vm/vm_pager.h>
127 #include <vm/vm_phys.h>
128 #include <vm/vm_reserv.h>
129 #include <vm/vm_extern.h>
130 #include <vm/uma.h>
131 #include <vm/uma_int.h>
132 
133 #include <machine/md_var.h>
134 
135 #if defined(__amd64__) || defined (__i386__)
136 extern struct sysctl_oid_list sysctl__vm_pmap_children;
137 #else
138 SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
139 #endif
140 
141 static uint64_t pmap_tryrelock_calls;
142 SYSCTL_QUAD(_vm_pmap, OID_AUTO, tryrelock_calls, CTLFLAG_RD,
143     &pmap_tryrelock_calls, 0, "Number of tryrelock calls");
144 
145 static int pmap_tryrelock_restart;
146 SYSCTL_INT(_vm_pmap, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
147     &pmap_tryrelock_restart, 0, "Number of tryrelock restarts");
148 
149 static int pmap_tryrelock_race;
150 SYSCTL_INT(_vm_pmap, OID_AUTO, tryrelock_race, CTLFLAG_RD,
151     &pmap_tryrelock_race, 0, "Number of tryrelock pmap race cases");
152 
153 /*
154  *	Associated with page of user-allocatable memory is a
155  *	page structure.
156  */
157 
158 struct vpgqueues vm_page_queues[PQ_COUNT];
159 struct vpglocks vm_page_queue_lock;
160 struct vpglocks vm_page_queue_free_lock;
161 
162 struct vpglocks	pa_lock[PA_LOCK_COUNT] __aligned(CACHE_LINE_SIZE);
163 
164 vm_page_t vm_page_array = 0;
165 int vm_page_array_size = 0;
166 long first_page = 0;
167 int vm_page_zero_count = 0;
168 
169 static int boot_pages = UMA_BOOT_PAGES;
170 TUNABLE_INT("vm.boot_pages", &boot_pages);
171 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
172 	"number of pages allocated for bootstrapping the VM system");
173 
174 static void vm_page_clear_dirty_mask(vm_page_t m, int pagebits);
175 static void vm_page_queue_remove(int queue, vm_page_t m);
176 static void vm_page_enqueue(int queue, vm_page_t m);
177 
178 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
179 #if PAGE_SIZE == 32768
180 #ifdef CTASSERT
181 CTASSERT(sizeof(u_long) >= 8);
182 #endif
183 #endif
184 
185 /*
186  * Try to acquire a physical address lock while a pmap is locked.  If we
187  * fail to trylock we unlock and lock the pmap directly and cache the
188  * locked pa in *locked.  The caller should then restart their loop in case
189  * the virtual to physical mapping has changed.
190  */
191 int
192 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
193 {
194 	vm_paddr_t lockpa;
195 	uint32_t gen_count;
196 
197 	gen_count = pmap->pm_gen_count;
198 	atomic_add_long((volatile long *)&pmap_tryrelock_calls, 1);
199 	lockpa = *locked;
200 	*locked = pa;
201 	if (lockpa) {
202 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
203 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
204 			return (0);
205 		PA_UNLOCK(lockpa);
206 	}
207 	if (PA_TRYLOCK(pa))
208 		return (0);
209 	PMAP_UNLOCK(pmap);
210 	atomic_add_int((volatile int *)&pmap_tryrelock_restart, 1);
211 	PA_LOCK(pa);
212 	PMAP_LOCK(pmap);
213 
214 	if (pmap->pm_gen_count != gen_count + 1) {
215 		pmap->pm_retries++;
216 		atomic_add_int((volatile int *)&pmap_tryrelock_race, 1);
217 		return (EAGAIN);
218 	}
219 	return (0);
220 }
221 
222 /*
223  *	vm_set_page_size:
224  *
225  *	Sets the page size, perhaps based upon the memory
226  *	size.  Must be called before any use of page-size
227  *	dependent functions.
228  */
229 void
230 vm_set_page_size(void)
231 {
232 	if (cnt.v_page_size == 0)
233 		cnt.v_page_size = PAGE_SIZE;
234 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
235 		panic("vm_set_page_size: page size not a power of two");
236 }
237 
238 /*
239  *	vm_page_blacklist_lookup:
240  *
241  *	See if a physical address in this page has been listed
242  *	in the blacklist tunable.  Entries in the tunable are
243  *	separated by spaces or commas.  If an invalid integer is
244  *	encountered then the rest of the string is skipped.
245  */
246 static int
247 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
248 {
249 	vm_paddr_t bad;
250 	char *cp, *pos;
251 
252 	for (pos = list; *pos != '\0'; pos = cp) {
253 		bad = strtoq(pos, &cp, 0);
254 		if (*cp != '\0') {
255 			if (*cp == ' ' || *cp == ',') {
256 				cp++;
257 				if (cp == pos)
258 					continue;
259 			} else
260 				break;
261 		}
262 		if (pa == trunc_page(bad))
263 			return (1);
264 	}
265 	return (0);
266 }
267 
268 /*
269  *	vm_page_startup:
270  *
271  *	Initializes the resident memory module.
272  *
273  *	Allocates memory for the page cells, and
274  *	for the object/offset-to-page hash table headers.
275  *	Each page cell is initialized and placed on the free list.
276  */
277 vm_offset_t
278 vm_page_startup(vm_offset_t vaddr)
279 {
280 	vm_offset_t mapped;
281 	vm_paddr_t page_range;
282 	vm_paddr_t new_end;
283 	int i;
284 	vm_paddr_t pa;
285 	int nblocks;
286 	vm_paddr_t last_pa;
287 	char *list;
288 
289 	/* the biggest memory array is the second group of pages */
290 	vm_paddr_t end;
291 	vm_paddr_t biggestsize;
292 	vm_paddr_t low_water, high_water;
293 	int biggestone;
294 
295 	biggestsize = 0;
296 	biggestone = 0;
297 	nblocks = 0;
298 	vaddr = round_page(vaddr);
299 
300 	for (i = 0; phys_avail[i + 1]; i += 2) {
301 		phys_avail[i] = round_page(phys_avail[i]);
302 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
303 	}
304 
305 	low_water = phys_avail[0];
306 	high_water = phys_avail[1];
307 
308 	for (i = 0; phys_avail[i + 1]; i += 2) {
309 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
310 
311 		if (size > biggestsize) {
312 			biggestone = i;
313 			biggestsize = size;
314 		}
315 		if (phys_avail[i] < low_water)
316 			low_water = phys_avail[i];
317 		if (phys_avail[i + 1] > high_water)
318 			high_water = phys_avail[i + 1];
319 		++nblocks;
320 	}
321 
322 #ifdef XEN
323 	low_water = 0;
324 #endif
325 
326 	end = phys_avail[biggestone+1];
327 
328 	/*
329 	 * Initialize the locks.
330 	 */
331 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
332 	    MTX_RECURSE);
333 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
334 	    MTX_DEF);
335 
336 	/* Setup page locks. */
337 	for (i = 0; i < PA_LOCK_COUNT; i++)
338 		mtx_init(&pa_lock[i].data, "page lock", NULL,
339 		    MTX_DEF | MTX_RECURSE | MTX_DUPOK);
340 
341 	/*
342 	 * Initialize the queue headers for the hold queue, the active queue,
343 	 * and the inactive queue.
344 	 */
345 	for (i = 0; i < PQ_COUNT; i++)
346 		TAILQ_INIT(&vm_page_queues[i].pl);
347 	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
348 	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
349 	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
350 
351 	/*
352 	 * Allocate memory for use when boot strapping the kernel memory
353 	 * allocator.
354 	 */
355 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
356 	new_end = trunc_page(new_end);
357 	mapped = pmap_map(&vaddr, new_end, end,
358 	    VM_PROT_READ | VM_PROT_WRITE);
359 	bzero((void *)mapped, end - new_end);
360 	uma_startup((void *)mapped, boot_pages);
361 
362 #if defined(__amd64__) || defined(__i386__) || defined(__arm__)
363 	/*
364 	 * Allocate a bitmap to indicate that a random physical page
365 	 * needs to be included in a minidump.
366 	 *
367 	 * The amd64 port needs this to indicate which direct map pages
368 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
369 	 *
370 	 * However, i386 still needs this workspace internally within the
371 	 * minidump code.  In theory, they are not needed on i386, but are
372 	 * included should the sf_buf code decide to use them.
373 	 */
374 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
375 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
376 	new_end -= vm_page_dump_size;
377 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
378 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
379 	bzero((void *)vm_page_dump, vm_page_dump_size);
380 #endif
381 #ifdef __amd64__
382 	/*
383 	 * Request that the physical pages underlying the message buffer be
384 	 * included in a crash dump.  Since the message buffer is accessed
385 	 * through the direct map, they are not automatically included.
386 	 */
387 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
388 	last_pa = pa + round_page(MSGBUF_SIZE);
389 	while (pa < last_pa) {
390 		dump_add_page(pa);
391 		pa += PAGE_SIZE;
392 	}
393 #endif
394 	/*
395 	 * Compute the number of pages of memory that will be available for
396 	 * use (taking into account the overhead of a page structure per
397 	 * page).
398 	 */
399 	first_page = low_water / PAGE_SIZE;
400 #ifdef VM_PHYSSEG_SPARSE
401 	page_range = 0;
402 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
403 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
404 #elif defined(VM_PHYSSEG_DENSE)
405 	page_range = high_water / PAGE_SIZE - first_page;
406 #else
407 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
408 #endif
409 	end = new_end;
410 
411 	/*
412 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
413 	 */
414 	vaddr += PAGE_SIZE;
415 
416 	/*
417 	 * Initialize the mem entry structures now, and put them in the free
418 	 * queue.
419 	 */
420 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
421 	mapped = pmap_map(&vaddr, new_end, end,
422 	    VM_PROT_READ | VM_PROT_WRITE);
423 	vm_page_array = (vm_page_t) mapped;
424 #if VM_NRESERVLEVEL > 0
425 	/*
426 	 * Allocate memory for the reservation management system's data
427 	 * structures.
428 	 */
429 	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
430 #endif
431 #ifdef __amd64__
432 	/*
433 	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
434 	 * so the pages must be tracked for a crashdump to include this data.
435 	 * This includes the vm_page_array and the early UMA bootstrap pages.
436 	 */
437 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
438 		dump_add_page(pa);
439 #endif
440 	phys_avail[biggestone + 1] = new_end;
441 
442 	/*
443 	 * Clear all of the page structures
444 	 */
445 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
446 	for (i = 0; i < page_range; i++)
447 		vm_page_array[i].order = VM_NFREEORDER;
448 	vm_page_array_size = page_range;
449 
450 	/*
451 	 * Initialize the physical memory allocator.
452 	 */
453 	vm_phys_init();
454 
455 	/*
456 	 * Add every available physical page that is not blacklisted to
457 	 * the free lists.
458 	 */
459 	cnt.v_page_count = 0;
460 	cnt.v_free_count = 0;
461 	list = getenv("vm.blacklist");
462 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
463 		pa = phys_avail[i];
464 		last_pa = phys_avail[i + 1];
465 		while (pa < last_pa) {
466 			if (list != NULL &&
467 			    vm_page_blacklist_lookup(list, pa))
468 				printf("Skipping page with pa 0x%jx\n",
469 				    (uintmax_t)pa);
470 			else
471 				vm_phys_add_page(pa);
472 			pa += PAGE_SIZE;
473 		}
474 	}
475 	freeenv(list);
476 #if VM_NRESERVLEVEL > 0
477 	/*
478 	 * Initialize the reservation management system.
479 	 */
480 	vm_reserv_init();
481 #endif
482 	return (vaddr);
483 }
484 
485 void
486 vm_page_flag_set(vm_page_t m, unsigned short bits)
487 {
488 
489 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
490 	/*
491 	 * The PG_WRITEABLE flag can only be set if the page is managed and
492 	 * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
493 	 */
494 	KASSERT((bits & PG_WRITEABLE) == 0 ||
495 	    ((m->flags & (PG_UNMANAGED | PG_FICTITIOUS)) == 0 &&
496 	    (m->oflags & VPO_BUSY) != 0), ("PG_WRITEABLE and !VPO_BUSY"));
497 	m->flags |= bits;
498 }
499 
500 void
501 vm_page_flag_clear(vm_page_t m, unsigned short bits)
502 {
503 
504 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
505 	/*
506 	 * The PG_REFERENCED flag can only be cleared if the object
507 	 * containing the page is locked.
508 	 */
509 	KASSERT((bits & PG_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
510 	    ("PG_REFERENCED and !VM_OBJECT_LOCKED"));
511 	m->flags &= ~bits;
512 }
513 
514 void
515 vm_page_busy(vm_page_t m)
516 {
517 
518 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
519 	KASSERT((m->oflags & VPO_BUSY) == 0,
520 	    ("vm_page_busy: page already busy!!!"));
521 	m->oflags |= VPO_BUSY;
522 }
523 
524 /*
525  *      vm_page_flash:
526  *
527  *      wakeup anyone waiting for the page.
528  */
529 void
530 vm_page_flash(vm_page_t m)
531 {
532 
533 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
534 	if (m->oflags & VPO_WANTED) {
535 		m->oflags &= ~VPO_WANTED;
536 		wakeup(m);
537 	}
538 }
539 
540 /*
541  *      vm_page_wakeup:
542  *
543  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
544  *      page.
545  *
546  */
547 void
548 vm_page_wakeup(vm_page_t m)
549 {
550 
551 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
552 	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
553 	m->oflags &= ~VPO_BUSY;
554 	vm_page_flash(m);
555 }
556 
557 void
558 vm_page_io_start(vm_page_t m)
559 {
560 
561 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
562 	m->busy++;
563 }
564 
565 void
566 vm_page_io_finish(vm_page_t m)
567 {
568 
569 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
570 	m->busy--;
571 	if (m->busy == 0)
572 		vm_page_flash(m);
573 }
574 
575 /*
576  * Keep page from being freed by the page daemon
577  * much of the same effect as wiring, except much lower
578  * overhead and should be used only for *very* temporary
579  * holding ("wiring").
580  */
581 void
582 vm_page_hold(vm_page_t mem)
583 {
584 
585 	vm_page_lock_assert(mem, MA_OWNED);
586         mem->hold_count++;
587 }
588 
589 void
590 vm_page_unhold(vm_page_t mem)
591 {
592 
593 	vm_page_lock_assert(mem, MA_OWNED);
594 	--mem->hold_count;
595 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
596 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
597 		vm_page_free_toq(mem);
598 }
599 
600 /*
601  *	vm_page_free:
602  *
603  *	Free a page.
604  */
605 void
606 vm_page_free(vm_page_t m)
607 {
608 
609 	m->flags &= ~PG_ZERO;
610 	vm_page_free_toq(m);
611 }
612 
613 /*
614  *	vm_page_free_zero:
615  *
616  *	Free a page to the zerod-pages queue
617  */
618 void
619 vm_page_free_zero(vm_page_t m)
620 {
621 
622 	m->flags |= PG_ZERO;
623 	vm_page_free_toq(m);
624 }
625 
626 /*
627  *	vm_page_sleep:
628  *
629  *	Sleep and release the page and page queues locks.
630  *
631  *	The object containing the given page must be locked.
632  */
633 void
634 vm_page_sleep(vm_page_t m, const char *msg)
635 {
636 
637 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
638 	if (mtx_owned(&vm_page_queue_mtx))
639 		vm_page_unlock_queues();
640 	if (mtx_owned(vm_page_lockptr(m)))
641 		vm_page_unlock(m);
642 
643 	/*
644 	 * It's possible that while we sleep, the page will get
645 	 * unbusied and freed.  If we are holding the object
646 	 * lock, we will assume we hold a reference to the object
647 	 * such that even if m->object changes, we can re-lock
648 	 * it.
649 	 */
650 	m->oflags |= VPO_WANTED;
651 	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
652 }
653 
654 /*
655  *	vm_page_dirty:
656  *
657  *	make page all dirty
658  */
659 void
660 vm_page_dirty(vm_page_t m)
661 {
662 
663 	KASSERT((m->flags & PG_CACHED) == 0,
664 	    ("vm_page_dirty: page in cache!"));
665 	KASSERT(!VM_PAGE_IS_FREE(m),
666 	    ("vm_page_dirty: page is free!"));
667 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
668 	    ("vm_page_dirty: page is invalid!"));
669 	m->dirty = VM_PAGE_BITS_ALL;
670 }
671 
672 /*
673  *	vm_page_splay:
674  *
675  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
676  *	the vm_page containing the given pindex.  If, however, that
677  *	pindex is not found in the vm_object, returns a vm_page that is
678  *	adjacent to the pindex, coming before or after it.
679  */
680 vm_page_t
681 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
682 {
683 	struct vm_page dummy;
684 	vm_page_t lefttreemax, righttreemin, y;
685 
686 	if (root == NULL)
687 		return (root);
688 	lefttreemax = righttreemin = &dummy;
689 	for (;; root = y) {
690 		if (pindex < root->pindex) {
691 			if ((y = root->left) == NULL)
692 				break;
693 			if (pindex < y->pindex) {
694 				/* Rotate right. */
695 				root->left = y->right;
696 				y->right = root;
697 				root = y;
698 				if ((y = root->left) == NULL)
699 					break;
700 			}
701 			/* Link into the new root's right tree. */
702 			righttreemin->left = root;
703 			righttreemin = root;
704 		} else if (pindex > root->pindex) {
705 			if ((y = root->right) == NULL)
706 				break;
707 			if (pindex > y->pindex) {
708 				/* Rotate left. */
709 				root->right = y->left;
710 				y->left = root;
711 				root = y;
712 				if ((y = root->right) == NULL)
713 					break;
714 			}
715 			/* Link into the new root's left tree. */
716 			lefttreemax->right = root;
717 			lefttreemax = root;
718 		} else
719 			break;
720 	}
721 	/* Assemble the new root. */
722 	lefttreemax->right = root->left;
723 	righttreemin->left = root->right;
724 	root->left = dummy.right;
725 	root->right = dummy.left;
726 	return (root);
727 }
728 
729 /*
730  *	vm_page_insert:		[ internal use only ]
731  *
732  *	Inserts the given mem entry into the object and object list.
733  *
734  *	The pagetables are not updated but will presumably fault the page
735  *	in if necessary, or if a kernel page the caller will at some point
736  *	enter the page into the kernel's pmap.  We are not allowed to block
737  *	here so we *can't* do this anyway.
738  *
739  *	The object and page must be locked.
740  *	This routine may not block.
741  */
742 void
743 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
744 {
745 	vm_page_t root;
746 
747 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
748 	if (m->object != NULL)
749 		panic("vm_page_insert: page already inserted");
750 
751 	/*
752 	 * Record the object/offset pair in this page
753 	 */
754 	m->object = object;
755 	m->pindex = pindex;
756 
757 	/*
758 	 * Now link into the object's ordered list of backed pages.
759 	 */
760 	root = object->root;
761 	if (root == NULL) {
762 		m->left = NULL;
763 		m->right = NULL;
764 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
765 	} else {
766 		root = vm_page_splay(pindex, root);
767 		if (pindex < root->pindex) {
768 			m->left = root->left;
769 			m->right = root;
770 			root->left = NULL;
771 			TAILQ_INSERT_BEFORE(root, m, listq);
772 		} else if (pindex == root->pindex)
773 			panic("vm_page_insert: offset already allocated");
774 		else {
775 			m->right = root->right;
776 			m->left = root;
777 			root->right = NULL;
778 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
779 		}
780 	}
781 	object->root = m;
782 	object->generation++;
783 
784 	/*
785 	 * show that the object has one more resident page.
786 	 */
787 	object->resident_page_count++;
788 	/*
789 	 * Hold the vnode until the last page is released.
790 	 */
791 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
792 		vhold((struct vnode *)object->handle);
793 
794 	/*
795 	 * Since we are inserting a new and possibly dirty page,
796 	 * update the object's OBJ_MIGHTBEDIRTY flag.
797 	 */
798 	if (m->flags & PG_WRITEABLE)
799 		vm_object_set_writeable_dirty(object);
800 }
801 
802 /*
803  *	vm_page_remove:
804  *				NOTE: used by device pager as well -wfj
805  *
806  *	Removes the given mem entry from the object/offset-page
807  *	table and the object page list, but do not invalidate/terminate
808  *	the backing store.
809  *
810  *	The object and page must be locked.
811  *	The underlying pmap entry (if any) is NOT removed here.
812  *	This routine may not block.
813  */
814 void
815 vm_page_remove(vm_page_t m)
816 {
817 	vm_object_t object;
818 	vm_page_t root;
819 
820 	if ((m->flags & PG_UNMANAGED) == 0)
821 		vm_page_lock_assert(m, MA_OWNED);
822 	if ((object = m->object) == NULL)
823 		return;
824 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
825 	if (m->oflags & VPO_BUSY) {
826 		m->oflags &= ~VPO_BUSY;
827 		vm_page_flash(m);
828 	}
829 
830 	/*
831 	 * Now remove from the object's list of backed pages.
832 	 */
833 	if (m != object->root)
834 		vm_page_splay(m->pindex, object->root);
835 	if (m->left == NULL)
836 		root = m->right;
837 	else {
838 		root = vm_page_splay(m->pindex, m->left);
839 		root->right = m->right;
840 	}
841 	object->root = root;
842 	TAILQ_REMOVE(&object->memq, m, listq);
843 
844 	/*
845 	 * And show that the object has one fewer resident page.
846 	 */
847 	object->resident_page_count--;
848 	object->generation++;
849 	/*
850 	 * The vnode may now be recycled.
851 	 */
852 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
853 		vdrop((struct vnode *)object->handle);
854 
855 	m->object = NULL;
856 }
857 
858 /*
859  *	vm_page_lookup:
860  *
861  *	Returns the page associated with the object/offset
862  *	pair specified; if none is found, NULL is returned.
863  *
864  *	The object must be locked.
865  *	This routine may not block.
866  *	This is a critical path routine
867  */
868 vm_page_t
869 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
870 {
871 	vm_page_t m;
872 
873 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
874 	if ((m = object->root) != NULL && m->pindex != pindex) {
875 		m = vm_page_splay(pindex, m);
876 		if ((object->root = m)->pindex != pindex)
877 			m = NULL;
878 	}
879 	return (m);
880 }
881 
882 /*
883  *	vm_page_find_least:
884  *
885  *	Returns the page associated with the object with least pindex
886  *	greater than or equal to the parameter pindex, or NULL.
887  *
888  *	The object must be locked.
889  *	The routine may not block.
890  */
891 vm_page_t
892 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
893 {
894 	vm_page_t m;
895 
896 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
897 	if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
898 		if (m->pindex < pindex) {
899 			m = vm_page_splay(pindex, object->root);
900 			if ((object->root = m)->pindex < pindex)
901 				m = TAILQ_NEXT(m, listq);
902 		}
903 	}
904 	return (m);
905 }
906 
907 /*
908  * Returns the given page's successor (by pindex) within the object if it is
909  * resident; if none is found, NULL is returned.
910  *
911  * The object must be locked.
912  */
913 vm_page_t
914 vm_page_next(vm_page_t m)
915 {
916 	vm_page_t next;
917 
918 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
919 	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
920 	    next->pindex != m->pindex + 1)
921 		next = NULL;
922 	return (next);
923 }
924 
925 /*
926  * Returns the given page's predecessor (by pindex) within the object if it is
927  * resident; if none is found, NULL is returned.
928  *
929  * The object must be locked.
930  */
931 vm_page_t
932 vm_page_prev(vm_page_t m)
933 {
934 	vm_page_t prev;
935 
936 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
937 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
938 	    prev->pindex != m->pindex - 1)
939 		prev = NULL;
940 	return (prev);
941 }
942 
943 /*
944  *	vm_page_rename:
945  *
946  *	Move the given memory entry from its
947  *	current object to the specified target object/offset.
948  *
949  *	The object must be locked.
950  *	This routine may not block.
951  *
952  *	Note: swap associated with the page must be invalidated by the move.  We
953  *	      have to do this for several reasons:  (1) we aren't freeing the
954  *	      page, (2) we are dirtying the page, (3) the VM system is probably
955  *	      moving the page from object A to B, and will then later move
956  *	      the backing store from A to B and we can't have a conflict.
957  *
958  *	Note: we *always* dirty the page.  It is necessary both for the
959  *	      fact that we moved it, and because we may be invalidating
960  *	      swap.  If the page is on the cache, we have to deactivate it
961  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
962  *	      on the cache.
963  */
964 void
965 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
966 {
967 
968 	vm_page_remove(m);
969 	vm_page_insert(m, new_object, new_pindex);
970 	vm_page_dirty(m);
971 }
972 
973 /*
974  *	Convert all of the given object's cached pages that have a
975  *	pindex within the given range into free pages.  If the value
976  *	zero is given for "end", then the range's upper bound is
977  *	infinity.  If the given object is backed by a vnode and it
978  *	transitions from having one or more cached pages to none, the
979  *	vnode's hold count is reduced.
980  */
981 void
982 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
983 {
984 	vm_page_t m, m_next;
985 	boolean_t empty;
986 
987 	mtx_lock(&vm_page_queue_free_mtx);
988 	if (__predict_false(object->cache == NULL)) {
989 		mtx_unlock(&vm_page_queue_free_mtx);
990 		return;
991 	}
992 	m = object->cache = vm_page_splay(start, object->cache);
993 	if (m->pindex < start) {
994 		if (m->right == NULL)
995 			m = NULL;
996 		else {
997 			m_next = vm_page_splay(start, m->right);
998 			m_next->left = m;
999 			m->right = NULL;
1000 			m = object->cache = m_next;
1001 		}
1002 	}
1003 
1004 	/*
1005 	 * At this point, "m" is either (1) a reference to the page
1006 	 * with the least pindex that is greater than or equal to
1007 	 * "start" or (2) NULL.
1008 	 */
1009 	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
1010 		/*
1011 		 * Find "m"'s successor and remove "m" from the
1012 		 * object's cache.
1013 		 */
1014 		if (m->right == NULL) {
1015 			object->cache = m->left;
1016 			m_next = NULL;
1017 		} else {
1018 			m_next = vm_page_splay(start, m->right);
1019 			m_next->left = m->left;
1020 			object->cache = m_next;
1021 		}
1022 		/* Convert "m" to a free page. */
1023 		m->object = NULL;
1024 		m->valid = 0;
1025 		/* Clear PG_CACHED and set PG_FREE. */
1026 		m->flags ^= PG_CACHED | PG_FREE;
1027 		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1028 		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1029 		cnt.v_cache_count--;
1030 		cnt.v_free_count++;
1031 	}
1032 	empty = object->cache == NULL;
1033 	mtx_unlock(&vm_page_queue_free_mtx);
1034 	if (object->type == OBJT_VNODE && empty)
1035 		vdrop(object->handle);
1036 }
1037 
1038 /*
1039  *	Returns the cached page that is associated with the given
1040  *	object and offset.  If, however, none exists, returns NULL.
1041  *
1042  *	The free page queue must be locked.
1043  */
1044 static inline vm_page_t
1045 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1046 {
1047 	vm_page_t m;
1048 
1049 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1050 	if ((m = object->cache) != NULL && m->pindex != pindex) {
1051 		m = vm_page_splay(pindex, m);
1052 		if ((object->cache = m)->pindex != pindex)
1053 			m = NULL;
1054 	}
1055 	return (m);
1056 }
1057 
1058 /*
1059  *	Remove the given cached page from its containing object's
1060  *	collection of cached pages.
1061  *
1062  *	The free page queue must be locked.
1063  */
1064 void
1065 vm_page_cache_remove(vm_page_t m)
1066 {
1067 	vm_object_t object;
1068 	vm_page_t root;
1069 
1070 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1071 	KASSERT((m->flags & PG_CACHED) != 0,
1072 	    ("vm_page_cache_remove: page %p is not cached", m));
1073 	object = m->object;
1074 	if (m != object->cache) {
1075 		root = vm_page_splay(m->pindex, object->cache);
1076 		KASSERT(root == m,
1077 		    ("vm_page_cache_remove: page %p is not cached in object %p",
1078 		    m, object));
1079 	}
1080 	if (m->left == NULL)
1081 		root = m->right;
1082 	else if (m->right == NULL)
1083 		root = m->left;
1084 	else {
1085 		root = vm_page_splay(m->pindex, m->left);
1086 		root->right = m->right;
1087 	}
1088 	object->cache = root;
1089 	m->object = NULL;
1090 	cnt.v_cache_count--;
1091 }
1092 
1093 /*
1094  *	Transfer all of the cached pages with offset greater than or
1095  *	equal to 'offidxstart' from the original object's cache to the
1096  *	new object's cache.  However, any cached pages with offset
1097  *	greater than or equal to the new object's size are kept in the
1098  *	original object.  Initially, the new object's cache must be
1099  *	empty.  Offset 'offidxstart' in the original object must
1100  *	correspond to offset zero in the new object.
1101  *
1102  *	The new object must be locked.
1103  */
1104 void
1105 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1106     vm_object_t new_object)
1107 {
1108 	vm_page_t m, m_next;
1109 
1110 	/*
1111 	 * Insertion into an object's collection of cached pages
1112 	 * requires the object to be locked.  In contrast, removal does
1113 	 * not.
1114 	 */
1115 	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1116 	KASSERT(new_object->cache == NULL,
1117 	    ("vm_page_cache_transfer: object %p has cached pages",
1118 	    new_object));
1119 	mtx_lock(&vm_page_queue_free_mtx);
1120 	if ((m = orig_object->cache) != NULL) {
1121 		/*
1122 		 * Transfer all of the pages with offset greater than or
1123 		 * equal to 'offidxstart' from the original object's
1124 		 * cache to the new object's cache.
1125 		 */
1126 		m = vm_page_splay(offidxstart, m);
1127 		if (m->pindex < offidxstart) {
1128 			orig_object->cache = m;
1129 			new_object->cache = m->right;
1130 			m->right = NULL;
1131 		} else {
1132 			orig_object->cache = m->left;
1133 			new_object->cache = m;
1134 			m->left = NULL;
1135 		}
1136 		while ((m = new_object->cache) != NULL) {
1137 			if ((m->pindex - offidxstart) >= new_object->size) {
1138 				/*
1139 				 * Return all of the cached pages with
1140 				 * offset greater than or equal to the
1141 				 * new object's size to the original
1142 				 * object's cache.
1143 				 */
1144 				new_object->cache = m->left;
1145 				m->left = orig_object->cache;
1146 				orig_object->cache = m;
1147 				break;
1148 			}
1149 			m_next = vm_page_splay(m->pindex, m->right);
1150 			/* Update the page's object and offset. */
1151 			m->object = new_object;
1152 			m->pindex -= offidxstart;
1153 			if (m_next == NULL)
1154 				break;
1155 			m->right = NULL;
1156 			m_next->left = m;
1157 			new_object->cache = m_next;
1158 		}
1159 		KASSERT(new_object->cache == NULL ||
1160 		    new_object->type == OBJT_SWAP,
1161 		    ("vm_page_cache_transfer: object %p's type is incompatible"
1162 		    " with cached pages", new_object));
1163 	}
1164 	mtx_unlock(&vm_page_queue_free_mtx);
1165 }
1166 
1167 /*
1168  *	vm_page_alloc:
1169  *
1170  *	Allocate and return a memory cell associated
1171  *	with this VM object/offset pair.
1172  *
1173  *	The caller must always specify an allocation class.
1174  *
1175  *	allocation classes:
1176  *	VM_ALLOC_NORMAL		normal process request
1177  *	VM_ALLOC_SYSTEM		system *really* needs a page
1178  *	VM_ALLOC_INTERRUPT	interrupt time request
1179  *
1180  *	optional allocation flags:
1181  *	VM_ALLOC_ZERO		prefer a zeroed page
1182  *	VM_ALLOC_WIRED		wire the allocated page
1183  *	VM_ALLOC_NOOBJ		page is not associated with a vm object
1184  *	VM_ALLOC_NOBUSY		do not set the page busy
1185  *	VM_ALLOC_IFCACHED	return page only if it is cached
1186  *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1187  *				is cached
1188  *
1189  *	This routine may not sleep.
1190  */
1191 vm_page_t
1192 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1193 {
1194 	struct vnode *vp = NULL;
1195 	vm_object_t m_object;
1196 	vm_page_t m;
1197 	int flags, page_req;
1198 
1199 	page_req = req & VM_ALLOC_CLASS_MASK;
1200 	KASSERT(curthread->td_intr_nesting_level == 0 ||
1201 	    page_req == VM_ALLOC_INTERRUPT,
1202 	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
1203 
1204 	if ((req & VM_ALLOC_NOOBJ) == 0) {
1205 		KASSERT(object != NULL,
1206 		    ("vm_page_alloc: NULL object."));
1207 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1208 	}
1209 
1210 	/*
1211 	 * The pager is allowed to eat deeper into the free page list.
1212 	 */
1213 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
1214 		page_req = VM_ALLOC_SYSTEM;
1215 	};
1216 
1217 	mtx_lock(&vm_page_queue_free_mtx);
1218 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1219 	    (page_req == VM_ALLOC_SYSTEM &&
1220 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1221 	    (page_req == VM_ALLOC_INTERRUPT &&
1222 	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1223 		/*
1224 		 * Allocate from the free queue if the number of free pages
1225 		 * exceeds the minimum for the request class.
1226 		 */
1227 		if (object != NULL &&
1228 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1229 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1230 				mtx_unlock(&vm_page_queue_free_mtx);
1231 				return (NULL);
1232 			}
1233 			if (vm_phys_unfree_page(m))
1234 				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1235 #if VM_NRESERVLEVEL > 0
1236 			else if (!vm_reserv_reactivate_page(m))
1237 #else
1238 			else
1239 #endif
1240 				panic("vm_page_alloc: cache page %p is missing"
1241 				    " from the free queue", m);
1242 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1243 			mtx_unlock(&vm_page_queue_free_mtx);
1244 			return (NULL);
1245 #if VM_NRESERVLEVEL > 0
1246 		} else if (object == NULL || object->type == OBJT_DEVICE ||
1247 		    object->type == OBJT_SG ||
1248 		    (object->flags & OBJ_COLORED) == 0 ||
1249 		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1250 #else
1251 		} else {
1252 #endif
1253 			m = vm_phys_alloc_pages(object != NULL ?
1254 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1255 #if VM_NRESERVLEVEL > 0
1256 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1257 				m = vm_phys_alloc_pages(object != NULL ?
1258 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1259 				    0);
1260 			}
1261 #endif
1262 		}
1263 	} else {
1264 		/*
1265 		 * Not allocatable, give up.
1266 		 */
1267 		mtx_unlock(&vm_page_queue_free_mtx);
1268 		atomic_add_int(&vm_pageout_deficit,
1269 		    MAX((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1270 		pagedaemon_wakeup();
1271 		return (NULL);
1272 	}
1273 
1274 	/*
1275 	 *  At this point we had better have found a good page.
1276 	 */
1277 
1278 	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1279 	KASSERT(m->queue == PQ_NONE,
1280 	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1281 	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1282 	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1283 	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1284 	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1285 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1286 	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1287 	    pmap_page_get_memattr(m)));
1288 	if ((m->flags & PG_CACHED) != 0) {
1289 		KASSERT(m->valid != 0,
1290 		    ("vm_page_alloc: cached page %p is invalid", m));
1291 		if (m->object == object && m->pindex == pindex)
1292 	  		cnt.v_reactivated++;
1293 		else
1294 			m->valid = 0;
1295 		m_object = m->object;
1296 		vm_page_cache_remove(m);
1297 		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1298 			vp = m_object->handle;
1299 	} else {
1300 		KASSERT(VM_PAGE_IS_FREE(m),
1301 		    ("vm_page_alloc: page %p is not free", m));
1302 		KASSERT(m->valid == 0,
1303 		    ("vm_page_alloc: free page %p is valid", m));
1304 		cnt.v_free_count--;
1305 	}
1306 
1307 	/*
1308 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
1309 	 */
1310 	flags = 0;
1311 	if (m->flags & PG_ZERO) {
1312 		vm_page_zero_count--;
1313 		if (req & VM_ALLOC_ZERO)
1314 			flags = PG_ZERO;
1315 	}
1316 	if (object == NULL || object->type == OBJT_PHYS)
1317 		flags |= PG_UNMANAGED;
1318 	m->flags = flags;
1319 	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1320 		m->oflags = 0;
1321 	else
1322 		m->oflags = VPO_BUSY;
1323 	if (req & VM_ALLOC_WIRED) {
1324 		atomic_add_int(&cnt.v_wire_count, 1);
1325 		m->wire_count = 1;
1326 	}
1327 	m->act_count = 0;
1328 	mtx_unlock(&vm_page_queue_free_mtx);
1329 
1330 	if (object != NULL) {
1331 		/* Ignore device objects; the pager sets "memattr" for them. */
1332 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1333 		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1334 			pmap_page_set_memattr(m, object->memattr);
1335 		vm_page_insert(m, object, pindex);
1336 	} else
1337 		m->pindex = pindex;
1338 
1339 	/*
1340 	 * The following call to vdrop() must come after the above call
1341 	 * to vm_page_insert() in case both affect the same object and
1342 	 * vnode.  Otherwise, the affected vnode's hold count could
1343 	 * temporarily become zero.
1344 	 */
1345 	if (vp != NULL)
1346 		vdrop(vp);
1347 
1348 	/*
1349 	 * Don't wakeup too often - wakeup the pageout daemon when
1350 	 * we would be nearly out of memory.
1351 	 */
1352 	if (vm_paging_needed())
1353 		pagedaemon_wakeup();
1354 
1355 	return (m);
1356 }
1357 
1358 /*
1359  * Initialize a page that has been freshly dequeued from a freelist.
1360  * The caller has to drop the vnode returned, if it is not NULL.
1361  *
1362  * To be called with vm_page_queue_free_mtx held.
1363  */
1364 struct vnode *
1365 vm_page_alloc_init(vm_page_t m)
1366 {
1367 	struct vnode *drop;
1368 	vm_object_t m_object;
1369 
1370 	KASSERT(m->queue == PQ_NONE,
1371 	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1372 	    m, m->queue));
1373 	KASSERT(m->wire_count == 0,
1374 	    ("vm_page_alloc_init: page %p is wired", m));
1375 	KASSERT(m->hold_count == 0,
1376 	    ("vm_page_alloc_init: page %p is held", m));
1377 	KASSERT(m->busy == 0,
1378 	    ("vm_page_alloc_init: page %p is busy", m));
1379 	KASSERT(m->dirty == 0,
1380 	    ("vm_page_alloc_init: page %p is dirty", m));
1381 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1382 	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1383 	    m, pmap_page_get_memattr(m)));
1384 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1385 	drop = NULL;
1386 	if ((m->flags & PG_CACHED) != 0) {
1387 		m->valid = 0;
1388 		m_object = m->object;
1389 		vm_page_cache_remove(m);
1390 		if (m_object->type == OBJT_VNODE &&
1391 		    m_object->cache == NULL)
1392 			drop = m_object->handle;
1393 	} else {
1394 		KASSERT(VM_PAGE_IS_FREE(m),
1395 		    ("vm_page_alloc_init: page %p is not free", m));
1396 		KASSERT(m->valid == 0,
1397 		    ("vm_page_alloc_init: free page %p is valid", m));
1398 		cnt.v_free_count--;
1399 	}
1400 	if (m->flags & PG_ZERO)
1401 		vm_page_zero_count--;
1402 	/* Don't clear the PG_ZERO flag; we'll need it later. */
1403 	m->flags = PG_UNMANAGED | (m->flags & PG_ZERO);
1404 	m->oflags = 0;
1405 	/* Unmanaged pages don't use "act_count". */
1406 	return (drop);
1407 }
1408 
1409 /*
1410  * 	vm_page_alloc_freelist:
1411  *
1412  *	Allocate a page from the specified freelist with specified order.
1413  *	Only the ALLOC_CLASS values in req are honored, other request flags
1414  *	are ignored.
1415  */
1416 vm_page_t
1417 vm_page_alloc_freelist(int flind, int order, int req)
1418 {
1419 	struct vnode *drop;
1420 	vm_page_t m;
1421 	int page_req;
1422 
1423 	m = NULL;
1424 	page_req = req & VM_ALLOC_CLASS_MASK;
1425 	mtx_lock(&vm_page_queue_free_mtx);
1426 	/*
1427 	 * Do not allocate reserved pages unless the req has asked for it.
1428 	 */
1429 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1430 	    (page_req == VM_ALLOC_SYSTEM &&
1431 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1432 	    (page_req == VM_ALLOC_INTERRUPT &&
1433 	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1434 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, order);
1435 	}
1436 	if (m == NULL) {
1437 		mtx_unlock(&vm_page_queue_free_mtx);
1438 		return (NULL);
1439 	}
1440 	drop = vm_page_alloc_init(m);
1441 	mtx_unlock(&vm_page_queue_free_mtx);
1442 	if (drop)
1443 		vdrop(drop);
1444 	return (m);
1445 }
1446 
1447 /*
1448  *	vm_wait:	(also see VM_WAIT macro)
1449  *
1450  *	Block until free pages are available for allocation
1451  *	- Called in various places before memory allocations.
1452  */
1453 void
1454 vm_wait(void)
1455 {
1456 
1457 	mtx_lock(&vm_page_queue_free_mtx);
1458 	if (curproc == pageproc) {
1459 		vm_pageout_pages_needed = 1;
1460 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1461 		    PDROP | PSWP, "VMWait", 0);
1462 	} else {
1463 		if (!vm_pages_needed) {
1464 			vm_pages_needed = 1;
1465 			wakeup(&vm_pages_needed);
1466 		}
1467 		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1468 		    "vmwait", 0);
1469 	}
1470 }
1471 
1472 /*
1473  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1474  *
1475  *	Block until free pages are available for allocation
1476  *	- Called only in vm_fault so that processes page faulting
1477  *	  can be easily tracked.
1478  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1479  *	  processes will be able to grab memory first.  Do not change
1480  *	  this balance without careful testing first.
1481  */
1482 void
1483 vm_waitpfault(void)
1484 {
1485 
1486 	mtx_lock(&vm_page_queue_free_mtx);
1487 	if (!vm_pages_needed) {
1488 		vm_pages_needed = 1;
1489 		wakeup(&vm_pages_needed);
1490 	}
1491 	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1492 	    "pfault", 0);
1493 }
1494 
1495 /*
1496  *	vm_page_requeue:
1497  *
1498  *	Move the given page to the tail of its present page queue.
1499  *
1500  *	The page queues must be locked.
1501  */
1502 void
1503 vm_page_requeue(vm_page_t m)
1504 {
1505 	struct vpgqueues *vpq;
1506 	int queue;
1507 
1508 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1509 	queue = m->queue;
1510 	KASSERT(queue != PQ_NONE,
1511 	    ("vm_page_requeue: page %p is not queued", m));
1512 	vpq = &vm_page_queues[queue];
1513 	TAILQ_REMOVE(&vpq->pl, m, pageq);
1514 	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1515 }
1516 
1517 /*
1518  *	vm_page_queue_remove:
1519  *
1520  *	Remove the given page from the specified queue.
1521  *
1522  *	The page and page queues must be locked.
1523  */
1524 static __inline void
1525 vm_page_queue_remove(int queue, vm_page_t m)
1526 {
1527 	struct vpgqueues *pq;
1528 
1529 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1530 	vm_page_lock_assert(m, MA_OWNED);
1531 	pq = &vm_page_queues[queue];
1532 	TAILQ_REMOVE(&pq->pl, m, pageq);
1533 	(*pq->cnt)--;
1534 }
1535 
1536 /*
1537  *	vm_pageq_remove:
1538  *
1539  *	Remove a page from its queue.
1540  *
1541  *	The given page must be locked.
1542  *	This routine may not block.
1543  */
1544 void
1545 vm_pageq_remove(vm_page_t m)
1546 {
1547 	int queue;
1548 
1549 	vm_page_lock_assert(m, MA_OWNED);
1550 	if ((queue = m->queue) != PQ_NONE) {
1551 		vm_page_lock_queues();
1552 		m->queue = PQ_NONE;
1553 		vm_page_queue_remove(queue, m);
1554 		vm_page_unlock_queues();
1555 	}
1556 }
1557 
1558 /*
1559  *	vm_page_enqueue:
1560  *
1561  *	Add the given page to the specified queue.
1562  *
1563  *	The page queues must be locked.
1564  */
1565 static void
1566 vm_page_enqueue(int queue, vm_page_t m)
1567 {
1568 	struct vpgqueues *vpq;
1569 
1570 	vpq = &vm_page_queues[queue];
1571 	m->queue = queue;
1572 	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1573 	++*vpq->cnt;
1574 }
1575 
1576 /*
1577  *	vm_page_activate:
1578  *
1579  *	Put the specified page on the active list (if appropriate).
1580  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1581  *	mess with it.
1582  *
1583  *	The page must be locked.
1584  *	This routine may not block.
1585  */
1586 void
1587 vm_page_activate(vm_page_t m)
1588 {
1589 	int queue;
1590 
1591 	vm_page_lock_assert(m, MA_OWNED);
1592 	if ((queue = m->queue) != PQ_ACTIVE) {
1593 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1594 			if (m->act_count < ACT_INIT)
1595 				m->act_count = ACT_INIT;
1596 			vm_page_lock_queues();
1597 			if (queue != PQ_NONE)
1598 				vm_page_queue_remove(queue, m);
1599 			vm_page_enqueue(PQ_ACTIVE, m);
1600 			vm_page_unlock_queues();
1601 		} else
1602 			KASSERT(queue == PQ_NONE,
1603 			    ("vm_page_activate: wired page %p is queued", m));
1604 	} else {
1605 		if (m->act_count < ACT_INIT)
1606 			m->act_count = ACT_INIT;
1607 	}
1608 }
1609 
1610 /*
1611  *	vm_page_free_wakeup:
1612  *
1613  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1614  *	routine is called when a page has been added to the cache or free
1615  *	queues.
1616  *
1617  *	The page queues must be locked.
1618  *	This routine may not block.
1619  */
1620 static inline void
1621 vm_page_free_wakeup(void)
1622 {
1623 
1624 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1625 	/*
1626 	 * if pageout daemon needs pages, then tell it that there are
1627 	 * some free.
1628 	 */
1629 	if (vm_pageout_pages_needed &&
1630 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1631 		wakeup(&vm_pageout_pages_needed);
1632 		vm_pageout_pages_needed = 0;
1633 	}
1634 	/*
1635 	 * wakeup processes that are waiting on memory if we hit a
1636 	 * high water mark. And wakeup scheduler process if we have
1637 	 * lots of memory. this process will swapin processes.
1638 	 */
1639 	if (vm_pages_needed && !vm_page_count_min()) {
1640 		vm_pages_needed = 0;
1641 		wakeup(&cnt.v_free_count);
1642 	}
1643 }
1644 
1645 /*
1646  *	vm_page_free_toq:
1647  *
1648  *	Returns the given page to the free list,
1649  *	disassociating it with any VM object.
1650  *
1651  *	Object and page must be locked prior to entry.
1652  *	This routine may not block.
1653  */
1654 
1655 void
1656 vm_page_free_toq(vm_page_t m)
1657 {
1658 
1659 	if ((m->flags & PG_UNMANAGED) == 0) {
1660 		vm_page_lock_assert(m, MA_OWNED);
1661 		KASSERT(!pmap_page_is_mapped(m),
1662 		    ("vm_page_free_toq: freeing mapped page %p", m));
1663 	}
1664 	PCPU_INC(cnt.v_tfree);
1665 
1666 	if (m->busy || VM_PAGE_IS_FREE(m)) {
1667 		printf(
1668 		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1669 		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1670 		    m->hold_count);
1671 		if (VM_PAGE_IS_FREE(m))
1672 			panic("vm_page_free: freeing free page");
1673 		else
1674 			panic("vm_page_free: freeing busy page");
1675 	}
1676 
1677 	/*
1678 	 * unqueue, then remove page.  Note that we cannot destroy
1679 	 * the page here because we do not want to call the pager's
1680 	 * callback routine until after we've put the page on the
1681 	 * appropriate free queue.
1682 	 */
1683 	if ((m->flags & PG_UNMANAGED) == 0)
1684 		vm_pageq_remove(m);
1685 	vm_page_remove(m);
1686 
1687 	/*
1688 	 * If fictitious remove object association and
1689 	 * return, otherwise delay object association removal.
1690 	 */
1691 	if ((m->flags & PG_FICTITIOUS) != 0) {
1692 		return;
1693 	}
1694 
1695 	m->valid = 0;
1696 	vm_page_undirty(m);
1697 
1698 	if (m->wire_count != 0) {
1699 		if (m->wire_count > 1) {
1700 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1701 				m->wire_count, (long)m->pindex);
1702 		}
1703 		panic("vm_page_free: freeing wired page");
1704 	}
1705 	if (m->hold_count != 0) {
1706 		m->flags &= ~PG_ZERO;
1707 		vm_page_lock_queues();
1708 		vm_page_enqueue(PQ_HOLD, m);
1709 		vm_page_unlock_queues();
1710 	} else {
1711 		/*
1712 		 * Restore the default memory attribute to the page.
1713 		 */
1714 		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1715 			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1716 
1717 		/*
1718 		 * Insert the page into the physical memory allocator's
1719 		 * cache/free page queues.
1720 		 */
1721 		mtx_lock(&vm_page_queue_free_mtx);
1722 		m->flags |= PG_FREE;
1723 		cnt.v_free_count++;
1724 #if VM_NRESERVLEVEL > 0
1725 		if (!vm_reserv_free_page(m))
1726 #else
1727 		if (TRUE)
1728 #endif
1729 			vm_phys_free_pages(m, 0);
1730 		if ((m->flags & PG_ZERO) != 0)
1731 			++vm_page_zero_count;
1732 		else
1733 			vm_page_zero_idle_wakeup();
1734 		vm_page_free_wakeup();
1735 		mtx_unlock(&vm_page_queue_free_mtx);
1736 	}
1737 }
1738 
1739 /*
1740  *	vm_page_wire:
1741  *
1742  *	Mark this page as wired down by yet
1743  *	another map, removing it from paging queues
1744  *	as necessary.
1745  *
1746  *	If the page is fictitious, then its wire count must remain one.
1747  *
1748  *	The page must be locked.
1749  *	This routine may not block.
1750  */
1751 void
1752 vm_page_wire(vm_page_t m)
1753 {
1754 
1755 	/*
1756 	 * Only bump the wire statistics if the page is not already wired,
1757 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1758 	 * it is already off the queues).
1759 	 */
1760 	vm_page_lock_assert(m, MA_OWNED);
1761 	if ((m->flags & PG_FICTITIOUS) != 0) {
1762 		KASSERT(m->wire_count == 1,
1763 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
1764 		    m));
1765 		return;
1766 	}
1767 	if (m->wire_count == 0) {
1768 		if ((m->flags & PG_UNMANAGED) == 0)
1769 			vm_pageq_remove(m);
1770 		atomic_add_int(&cnt.v_wire_count, 1);
1771 	}
1772 	m->wire_count++;
1773 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1774 }
1775 
1776 /*
1777  * vm_page_unwire:
1778  *
1779  * Release one wiring of the specified page, potentially enabling it to be
1780  * paged again.  If paging is enabled, then the value of the parameter
1781  * "activate" determines to which queue the page is added.  If "activate" is
1782  * non-zero, then the page is added to the active queue.  Otherwise, it is
1783  * added to the inactive queue.
1784  *
1785  * However, unless the page belongs to an object, it is not enqueued because
1786  * it cannot be paged out.
1787  *
1788  * If a page is fictitious, then its wire count must alway be one.
1789  *
1790  * A managed page must be locked.
1791  */
1792 void
1793 vm_page_unwire(vm_page_t m, int activate)
1794 {
1795 
1796 	if ((m->flags & PG_UNMANAGED) == 0)
1797 		vm_page_lock_assert(m, MA_OWNED);
1798 	if ((m->flags & PG_FICTITIOUS) != 0) {
1799 		KASSERT(m->wire_count == 1,
1800 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
1801 		return;
1802 	}
1803 	if (m->wire_count > 0) {
1804 		m->wire_count--;
1805 		if (m->wire_count == 0) {
1806 			atomic_subtract_int(&cnt.v_wire_count, 1);
1807 			if ((m->flags & PG_UNMANAGED) != 0 ||
1808 			    m->object == NULL)
1809 				return;
1810 			vm_page_lock_queues();
1811 			if (activate)
1812 				vm_page_enqueue(PQ_ACTIVE, m);
1813 			else {
1814 				vm_page_flag_clear(m, PG_WINATCFLS);
1815 				vm_page_enqueue(PQ_INACTIVE, m);
1816 			}
1817 			vm_page_unlock_queues();
1818 		}
1819 	} else
1820 		panic("vm_page_unwire: page %p's wire count is zero", m);
1821 }
1822 
1823 /*
1824  * Move the specified page to the inactive queue.
1825  *
1826  * Many pages placed on the inactive queue should actually go
1827  * into the cache, but it is difficult to figure out which.  What
1828  * we do instead, if the inactive target is well met, is to put
1829  * clean pages at the head of the inactive queue instead of the tail.
1830  * This will cause them to be moved to the cache more quickly and
1831  * if not actively re-referenced, reclaimed more quickly.  If we just
1832  * stick these pages at the end of the inactive queue, heavy filesystem
1833  * meta-data accesses can cause an unnecessary paging load on memory bound
1834  * processes.  This optimization causes one-time-use metadata to be
1835  * reused more quickly.
1836  *
1837  * Normally athead is 0 resulting in LRU operation.  athead is set
1838  * to 1 if we want this page to be 'as if it were placed in the cache',
1839  * except without unmapping it from the process address space.
1840  *
1841  * This routine may not block.
1842  */
1843 static inline void
1844 _vm_page_deactivate(vm_page_t m, int athead)
1845 {
1846 	int queue;
1847 
1848 	vm_page_lock_assert(m, MA_OWNED);
1849 
1850 	/*
1851 	 * Ignore if already inactive.
1852 	 */
1853 	if ((queue = m->queue) == PQ_INACTIVE)
1854 		return;
1855 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1856 		vm_page_lock_queues();
1857 		vm_page_flag_clear(m, PG_WINATCFLS);
1858 		if (queue != PQ_NONE)
1859 			vm_page_queue_remove(queue, m);
1860 		if (athead)
1861 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
1862 			    pageq);
1863 		else
1864 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
1865 			    pageq);
1866 		m->queue = PQ_INACTIVE;
1867 		cnt.v_inactive_count++;
1868 		vm_page_unlock_queues();
1869 	}
1870 }
1871 
1872 /*
1873  * Move the specified page to the inactive queue.
1874  *
1875  * The page must be locked.
1876  */
1877 void
1878 vm_page_deactivate(vm_page_t m)
1879 {
1880 
1881 	_vm_page_deactivate(m, 0);
1882 }
1883 
1884 /*
1885  * vm_page_try_to_cache:
1886  *
1887  * Returns 0 on failure, 1 on success
1888  */
1889 int
1890 vm_page_try_to_cache(vm_page_t m)
1891 {
1892 
1893 	vm_page_lock_assert(m, MA_OWNED);
1894 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1895 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1896 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1897 		return (0);
1898 	pmap_remove_all(m);
1899 	if (m->dirty)
1900 		return (0);
1901 	vm_page_cache(m);
1902 	return (1);
1903 }
1904 
1905 /*
1906  * vm_page_try_to_free()
1907  *
1908  *	Attempt to free the page.  If we cannot free it, we do nothing.
1909  *	1 is returned on success, 0 on failure.
1910  */
1911 int
1912 vm_page_try_to_free(vm_page_t m)
1913 {
1914 
1915 	vm_page_lock_assert(m, MA_OWNED);
1916 	if (m->object != NULL)
1917 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1918 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1919 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1920 		return (0);
1921 	pmap_remove_all(m);
1922 	if (m->dirty)
1923 		return (0);
1924 	vm_page_free(m);
1925 	return (1);
1926 }
1927 
1928 /*
1929  * vm_page_cache
1930  *
1931  * Put the specified page onto the page cache queue (if appropriate).
1932  *
1933  * This routine may not block.
1934  */
1935 void
1936 vm_page_cache(vm_page_t m)
1937 {
1938 	vm_object_t object;
1939 	vm_page_t root;
1940 
1941 	vm_page_lock_assert(m, MA_OWNED);
1942 	object = m->object;
1943 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1944 	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1945 	    m->hold_count || m->wire_count)
1946 		panic("vm_page_cache: attempting to cache busy page");
1947 	pmap_remove_all(m);
1948 	if (m->dirty != 0)
1949 		panic("vm_page_cache: page %p is dirty", m);
1950 	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
1951 	    (object->type == OBJT_SWAP &&
1952 	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
1953 		/*
1954 		 * Hypothesis: A cache-elgible page belonging to a
1955 		 * default object or swap object but without a backing
1956 		 * store must be zero filled.
1957 		 */
1958 		vm_page_free(m);
1959 		return;
1960 	}
1961 	KASSERT((m->flags & PG_CACHED) == 0,
1962 	    ("vm_page_cache: page %p is already cached", m));
1963 	PCPU_INC(cnt.v_tcached);
1964 
1965 	/*
1966 	 * Remove the page from the paging queues.
1967 	 */
1968 	vm_pageq_remove(m);
1969 
1970 	/*
1971 	 * Remove the page from the object's collection of resident
1972 	 * pages.
1973 	 */
1974 	if (m != object->root)
1975 		vm_page_splay(m->pindex, object->root);
1976 	if (m->left == NULL)
1977 		root = m->right;
1978 	else {
1979 		root = vm_page_splay(m->pindex, m->left);
1980 		root->right = m->right;
1981 	}
1982 	object->root = root;
1983 	TAILQ_REMOVE(&object->memq, m, listq);
1984 	object->resident_page_count--;
1985 	object->generation++;
1986 
1987 	/*
1988 	 * Restore the default memory attribute to the page.
1989 	 */
1990 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1991 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1992 
1993 	/*
1994 	 * Insert the page into the object's collection of cached pages
1995 	 * and the physical memory allocator's cache/free page queues.
1996 	 */
1997 	m->flags &= ~PG_ZERO;
1998 	mtx_lock(&vm_page_queue_free_mtx);
1999 	m->flags |= PG_CACHED;
2000 	cnt.v_cache_count++;
2001 	root = object->cache;
2002 	if (root == NULL) {
2003 		m->left = NULL;
2004 		m->right = NULL;
2005 	} else {
2006 		root = vm_page_splay(m->pindex, root);
2007 		if (m->pindex < root->pindex) {
2008 			m->left = root->left;
2009 			m->right = root;
2010 			root->left = NULL;
2011 		} else if (__predict_false(m->pindex == root->pindex))
2012 			panic("vm_page_cache: offset already cached");
2013 		else {
2014 			m->right = root->right;
2015 			m->left = root;
2016 			root->right = NULL;
2017 		}
2018 	}
2019 	object->cache = m;
2020 #if VM_NRESERVLEVEL > 0
2021 	if (!vm_reserv_free_page(m)) {
2022 #else
2023 	if (TRUE) {
2024 #endif
2025 		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2026 		vm_phys_free_pages(m, 0);
2027 	}
2028 	vm_page_free_wakeup();
2029 	mtx_unlock(&vm_page_queue_free_mtx);
2030 
2031 	/*
2032 	 * Increment the vnode's hold count if this is the object's only
2033 	 * cached page.  Decrement the vnode's hold count if this was
2034 	 * the object's only resident page.
2035 	 */
2036 	if (object->type == OBJT_VNODE) {
2037 		if (root == NULL && object->resident_page_count != 0)
2038 			vhold(object->handle);
2039 		else if (root != NULL && object->resident_page_count == 0)
2040 			vdrop(object->handle);
2041 	}
2042 }
2043 
2044 /*
2045  * vm_page_dontneed
2046  *
2047  *	Cache, deactivate, or do nothing as appropriate.  This routine
2048  *	is typically used by madvise() MADV_DONTNEED.
2049  *
2050  *	Generally speaking we want to move the page into the cache so
2051  *	it gets reused quickly.  However, this can result in a silly syndrome
2052  *	due to the page recycling too quickly.  Small objects will not be
2053  *	fully cached.  On the otherhand, if we move the page to the inactive
2054  *	queue we wind up with a problem whereby very large objects
2055  *	unnecessarily blow away our inactive and cache queues.
2056  *
2057  *	The solution is to move the pages based on a fixed weighting.  We
2058  *	either leave them alone, deactivate them, or move them to the cache,
2059  *	where moving them to the cache has the highest weighting.
2060  *	By forcing some pages into other queues we eventually force the
2061  *	system to balance the queues, potentially recovering other unrelated
2062  *	space from active.  The idea is to not force this to happen too
2063  *	often.
2064  */
2065 void
2066 vm_page_dontneed(vm_page_t m)
2067 {
2068 	int dnw;
2069 	int head;
2070 
2071 	vm_page_lock_assert(m, MA_OWNED);
2072 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2073 	dnw = PCPU_GET(dnweight);
2074 	PCPU_INC(dnweight);
2075 
2076 	/*
2077 	 * Occasionally leave the page alone.
2078 	 */
2079 	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2080 		if (m->act_count >= ACT_INIT)
2081 			--m->act_count;
2082 		return;
2083 	}
2084 
2085 	/*
2086 	 * Clear any references to the page.  Otherwise, the page daemon will
2087 	 * immediately reactivate the page.
2088 	 *
2089 	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2090 	 * pmap operation, such as pmap_remove(), could clear a reference in
2091 	 * the pmap and set PG_REFERENCED on the page before the
2092 	 * pmap_clear_reference() had completed.  Consequently, the page would
2093 	 * appear referenced based upon an old reference that occurred before
2094 	 * this function ran.
2095 	 */
2096 	pmap_clear_reference(m);
2097 	vm_page_lock_queues();
2098 	vm_page_flag_clear(m, PG_REFERENCED);
2099 	vm_page_unlock_queues();
2100 
2101 	if (m->dirty == 0 && pmap_is_modified(m))
2102 		vm_page_dirty(m);
2103 
2104 	if (m->dirty || (dnw & 0x0070) == 0) {
2105 		/*
2106 		 * Deactivate the page 3 times out of 32.
2107 		 */
2108 		head = 0;
2109 	} else {
2110 		/*
2111 		 * Cache the page 28 times out of every 32.  Note that
2112 		 * the page is deactivated instead of cached, but placed
2113 		 * at the head of the queue instead of the tail.
2114 		 */
2115 		head = 1;
2116 	}
2117 	_vm_page_deactivate(m, head);
2118 }
2119 
2120 /*
2121  * Grab a page, waiting until we are waken up due to the page
2122  * changing state.  We keep on waiting, if the page continues
2123  * to be in the object.  If the page doesn't exist, first allocate it
2124  * and then conditionally zero it.
2125  *
2126  * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2127  * to facilitate its eventual removal.
2128  *
2129  * This routine may block.
2130  */
2131 vm_page_t
2132 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2133 {
2134 	vm_page_t m;
2135 
2136 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2137 	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2138 	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2139 retrylookup:
2140 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2141 		if ((m->oflags & VPO_BUSY) != 0 ||
2142 		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2143 			/*
2144 			 * Reference the page before unlocking and
2145 			 * sleeping so that the page daemon is less
2146 			 * likely to reclaim it.
2147 			 */
2148 			vm_page_lock_queues();
2149 			vm_page_flag_set(m, PG_REFERENCED);
2150 			vm_page_sleep(m, "pgrbwt");
2151 			goto retrylookup;
2152 		} else {
2153 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2154 				vm_page_lock(m);
2155 				vm_page_wire(m);
2156 				vm_page_unlock(m);
2157 			}
2158 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2159 				vm_page_busy(m);
2160 			return (m);
2161 		}
2162 	}
2163 	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2164 	    VM_ALLOC_IGN_SBUSY));
2165 	if (m == NULL) {
2166 		VM_OBJECT_UNLOCK(object);
2167 		VM_WAIT;
2168 		VM_OBJECT_LOCK(object);
2169 		goto retrylookup;
2170 	} else if (m->valid != 0)
2171 		return (m);
2172 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2173 		pmap_zero_page(m);
2174 	return (m);
2175 }
2176 
2177 /*
2178  * Mapping function for valid bits or for dirty bits in
2179  * a page.  May not block.
2180  *
2181  * Inputs are required to range within a page.
2182  */
2183 int
2184 vm_page_bits(int base, int size)
2185 {
2186 	int first_bit;
2187 	int last_bit;
2188 
2189 	KASSERT(
2190 	    base + size <= PAGE_SIZE,
2191 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2192 	);
2193 
2194 	if (size == 0)		/* handle degenerate case */
2195 		return (0);
2196 
2197 	first_bit = base >> DEV_BSHIFT;
2198 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2199 
2200 	return ((2 << last_bit) - (1 << first_bit));
2201 }
2202 
2203 /*
2204  *	vm_page_set_valid:
2205  *
2206  *	Sets portions of a page valid.  The arguments are expected
2207  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2208  *	of any partial chunks touched by the range.  The invalid portion of
2209  *	such chunks will be zeroed.
2210  *
2211  *	(base + size) must be less then or equal to PAGE_SIZE.
2212  */
2213 void
2214 vm_page_set_valid(vm_page_t m, int base, int size)
2215 {
2216 	int endoff, frag;
2217 
2218 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2219 	if (size == 0)	/* handle degenerate case */
2220 		return;
2221 
2222 	/*
2223 	 * If the base is not DEV_BSIZE aligned and the valid
2224 	 * bit is clear, we have to zero out a portion of the
2225 	 * first block.
2226 	 */
2227 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2228 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2229 		pmap_zero_page_area(m, frag, base - frag);
2230 
2231 	/*
2232 	 * If the ending offset is not DEV_BSIZE aligned and the
2233 	 * valid bit is clear, we have to zero out a portion of
2234 	 * the last block.
2235 	 */
2236 	endoff = base + size;
2237 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2238 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2239 		pmap_zero_page_area(m, endoff,
2240 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2241 
2242 	/*
2243 	 * Assert that no previously invalid block that is now being validated
2244 	 * is already dirty.
2245 	 */
2246 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2247 	    ("vm_page_set_valid: page %p is dirty", m));
2248 
2249 	/*
2250 	 * Set valid bits inclusive of any overlap.
2251 	 */
2252 	m->valid |= vm_page_bits(base, size);
2253 }
2254 
2255 /*
2256  * Clear the given bits from the specified page's dirty field.
2257  */
2258 static __inline void
2259 vm_page_clear_dirty_mask(vm_page_t m, int pagebits)
2260 {
2261 
2262 	/*
2263 	 * If the object is locked and the page is neither VPO_BUSY nor
2264 	 * PG_WRITEABLE, then the page's dirty field cannot possibly be
2265 	 * modified by a concurrent pmap operation.
2266 	 */
2267 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2268 	if ((m->oflags & VPO_BUSY) == 0 && (m->flags & PG_WRITEABLE) == 0)
2269 		m->dirty &= ~pagebits;
2270 	else {
2271 		vm_page_lock_queues();
2272 		m->dirty &= ~pagebits;
2273 		vm_page_unlock_queues();
2274 	}
2275 }
2276 
2277 /*
2278  *	vm_page_set_validclean:
2279  *
2280  *	Sets portions of a page valid and clean.  The arguments are expected
2281  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2282  *	of any partial chunks touched by the range.  The invalid portion of
2283  *	such chunks will be zero'd.
2284  *
2285  *	This routine may not block.
2286  *
2287  *	(base + size) must be less then or equal to PAGE_SIZE.
2288  */
2289 void
2290 vm_page_set_validclean(vm_page_t m, int base, int size)
2291 {
2292 	u_long oldvalid;
2293 	int endoff, frag, pagebits;
2294 
2295 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2296 	if (size == 0)	/* handle degenerate case */
2297 		return;
2298 
2299 	/*
2300 	 * If the base is not DEV_BSIZE aligned and the valid
2301 	 * bit is clear, we have to zero out a portion of the
2302 	 * first block.
2303 	 */
2304 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2305 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2306 		pmap_zero_page_area(m, frag, base - frag);
2307 
2308 	/*
2309 	 * If the ending offset is not DEV_BSIZE aligned and the
2310 	 * valid bit is clear, we have to zero out a portion of
2311 	 * the last block.
2312 	 */
2313 	endoff = base + size;
2314 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2315 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2316 		pmap_zero_page_area(m, endoff,
2317 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2318 
2319 	/*
2320 	 * Set valid, clear dirty bits.  If validating the entire
2321 	 * page we can safely clear the pmap modify bit.  We also
2322 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2323 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2324 	 * be set again.
2325 	 *
2326 	 * We set valid bits inclusive of any overlap, but we can only
2327 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2328 	 * the range.
2329 	 */
2330 	oldvalid = m->valid;
2331 	pagebits = vm_page_bits(base, size);
2332 	m->valid |= pagebits;
2333 #if 0	/* NOT YET */
2334 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2335 		frag = DEV_BSIZE - frag;
2336 		base += frag;
2337 		size -= frag;
2338 		if (size < 0)
2339 			size = 0;
2340 	}
2341 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2342 #endif
2343 	if (base == 0 && size == PAGE_SIZE) {
2344 		/*
2345 		 * The page can only be modified within the pmap if it is
2346 		 * mapped, and it can only be mapped if it was previously
2347 		 * fully valid.
2348 		 */
2349 		if (oldvalid == VM_PAGE_BITS_ALL)
2350 			/*
2351 			 * Perform the pmap_clear_modify() first.  Otherwise,
2352 			 * a concurrent pmap operation, such as
2353 			 * pmap_protect(), could clear a modification in the
2354 			 * pmap and set the dirty field on the page before
2355 			 * pmap_clear_modify() had begun and after the dirty
2356 			 * field was cleared here.
2357 			 */
2358 			pmap_clear_modify(m);
2359 		m->dirty = 0;
2360 		m->oflags &= ~VPO_NOSYNC;
2361 	} else if (oldvalid != VM_PAGE_BITS_ALL)
2362 		m->dirty &= ~pagebits;
2363 	else
2364 		vm_page_clear_dirty_mask(m, pagebits);
2365 }
2366 
2367 void
2368 vm_page_clear_dirty(vm_page_t m, int base, int size)
2369 {
2370 
2371 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2372 }
2373 
2374 /*
2375  *	vm_page_set_invalid:
2376  *
2377  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2378  *	valid and dirty bits for the effected areas are cleared.
2379  *
2380  *	May not block.
2381  */
2382 void
2383 vm_page_set_invalid(vm_page_t m, int base, int size)
2384 {
2385 	int bits;
2386 
2387 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2388 	KASSERT((m->oflags & VPO_BUSY) == 0,
2389 	    ("vm_page_set_invalid: page %p is busy", m));
2390 	bits = vm_page_bits(base, size);
2391 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2392 		pmap_remove_all(m);
2393 	KASSERT(!pmap_page_is_mapped(m),
2394 	    ("vm_page_set_invalid: page %p is mapped", m));
2395 	m->valid &= ~bits;
2396 	m->dirty &= ~bits;
2397 	m->object->generation++;
2398 }
2399 
2400 /*
2401  * vm_page_zero_invalid()
2402  *
2403  *	The kernel assumes that the invalid portions of a page contain
2404  *	garbage, but such pages can be mapped into memory by user code.
2405  *	When this occurs, we must zero out the non-valid portions of the
2406  *	page so user code sees what it expects.
2407  *
2408  *	Pages are most often semi-valid when the end of a file is mapped
2409  *	into memory and the file's size is not page aligned.
2410  */
2411 void
2412 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2413 {
2414 	int b;
2415 	int i;
2416 
2417 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2418 	/*
2419 	 * Scan the valid bits looking for invalid sections that
2420 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2421 	 * valid bit may be set ) have already been zerod by
2422 	 * vm_page_set_validclean().
2423 	 */
2424 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2425 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2426 		    (m->valid & (1 << i))
2427 		) {
2428 			if (i > b) {
2429 				pmap_zero_page_area(m,
2430 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2431 			}
2432 			b = i + 1;
2433 		}
2434 	}
2435 
2436 	/*
2437 	 * setvalid is TRUE when we can safely set the zero'd areas
2438 	 * as being valid.  We can do this if there are no cache consistancy
2439 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2440 	 */
2441 	if (setvalid)
2442 		m->valid = VM_PAGE_BITS_ALL;
2443 }
2444 
2445 /*
2446  *	vm_page_is_valid:
2447  *
2448  *	Is (partial) page valid?  Note that the case where size == 0
2449  *	will return FALSE in the degenerate case where the page is
2450  *	entirely invalid, and TRUE otherwise.
2451  *
2452  *	May not block.
2453  */
2454 int
2455 vm_page_is_valid(vm_page_t m, int base, int size)
2456 {
2457 	int bits = vm_page_bits(base, size);
2458 
2459 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2460 	if (m->valid && ((m->valid & bits) == bits))
2461 		return 1;
2462 	else
2463 		return 0;
2464 }
2465 
2466 /*
2467  * update dirty bits from pmap/mmu.  May not block.
2468  */
2469 void
2470 vm_page_test_dirty(vm_page_t m)
2471 {
2472 
2473 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2474 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2475 		vm_page_dirty(m);
2476 }
2477 
2478 int so_zerocp_fullpage = 0;
2479 
2480 /*
2481  *	Replace the given page with a copy.  The copied page assumes
2482  *	the portion of the given page's "wire_count" that is not the
2483  *	responsibility of this copy-on-write mechanism.
2484  *
2485  *	The object containing the given page must have a non-zero
2486  *	paging-in-progress count and be locked.
2487  */
2488 void
2489 vm_page_cowfault(vm_page_t m)
2490 {
2491 	vm_page_t mnew;
2492 	vm_object_t object;
2493 	vm_pindex_t pindex;
2494 
2495 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2496 	vm_page_lock_assert(m, MA_OWNED);
2497 	object = m->object;
2498 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2499 	KASSERT(object->paging_in_progress != 0,
2500 	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2501 	    object));
2502 	pindex = m->pindex;
2503 
2504  retry_alloc:
2505 	pmap_remove_all(m);
2506 	vm_page_remove(m);
2507 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2508 	if (mnew == NULL) {
2509 		vm_page_insert(m, object, pindex);
2510 		vm_page_unlock(m);
2511 		VM_OBJECT_UNLOCK(object);
2512 		VM_WAIT;
2513 		VM_OBJECT_LOCK(object);
2514 		if (m == vm_page_lookup(object, pindex)) {
2515 			vm_page_lock(m);
2516 			goto retry_alloc;
2517 		} else {
2518 			/*
2519 			 * Page disappeared during the wait.
2520 			 */
2521 			return;
2522 		}
2523 	}
2524 
2525 	if (m->cow == 0) {
2526 		/*
2527 		 * check to see if we raced with an xmit complete when
2528 		 * waiting to allocate a page.  If so, put things back
2529 		 * the way they were
2530 		 */
2531 		vm_page_unlock(m);
2532 		vm_page_lock(mnew);
2533 		vm_page_free(mnew);
2534 		vm_page_unlock(mnew);
2535 		vm_page_insert(m, object, pindex);
2536 	} else { /* clear COW & copy page */
2537 		if (!so_zerocp_fullpage)
2538 			pmap_copy_page(m, mnew);
2539 		mnew->valid = VM_PAGE_BITS_ALL;
2540 		vm_page_dirty(mnew);
2541 		mnew->wire_count = m->wire_count - m->cow;
2542 		m->wire_count = m->cow;
2543 		vm_page_unlock(m);
2544 	}
2545 }
2546 
2547 void
2548 vm_page_cowclear(vm_page_t m)
2549 {
2550 
2551 	vm_page_lock_assert(m, MA_OWNED);
2552 	if (m->cow) {
2553 		m->cow--;
2554 		/*
2555 		 * let vm_fault add back write permission  lazily
2556 		 */
2557 	}
2558 	/*
2559 	 *  sf_buf_free() will free the page, so we needn't do it here
2560 	 */
2561 }
2562 
2563 int
2564 vm_page_cowsetup(vm_page_t m)
2565 {
2566 
2567 	vm_page_lock_assert(m, MA_OWNED);
2568 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2569 	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
2570 		return (EBUSY);
2571 	m->cow++;
2572 	pmap_remove_write(m);
2573 	VM_OBJECT_UNLOCK(m->object);
2574 	return (0);
2575 }
2576 
2577 #include "opt_ddb.h"
2578 #ifdef DDB
2579 #include <sys/kernel.h>
2580 
2581 #include <ddb/ddb.h>
2582 
2583 DB_SHOW_COMMAND(page, vm_page_print_page_info)
2584 {
2585 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2586 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2587 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2588 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2589 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2590 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2591 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2592 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2593 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2594 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2595 }
2596 
2597 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2598 {
2599 
2600 	db_printf("PQ_FREE:");
2601 	db_printf(" %d", cnt.v_free_count);
2602 	db_printf("\n");
2603 
2604 	db_printf("PQ_CACHE:");
2605 	db_printf(" %d", cnt.v_cache_count);
2606 	db_printf("\n");
2607 
2608 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2609 		*vm_page_queues[PQ_ACTIVE].cnt,
2610 		*vm_page_queues[PQ_INACTIVE].cnt);
2611 }
2612 #endif /* DDB */
2613