1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 33 */ 34 35 /*- 36 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 37 * All rights reserved. 38 * 39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 40 * 41 * Permission to use, copy, modify and distribute this software and 42 * its documentation is hereby granted, provided that both the copyright 43 * notice and this permission notice appear in all copies of the 44 * software, derivative works or modified versions, and any portions 45 * thereof, and that both notices appear in supporting documentation. 46 * 47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 48 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 50 * 51 * Carnegie Mellon requests users of this software to return to 52 * 53 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 54 * School of Computer Science 55 * Carnegie Mellon University 56 * Pittsburgh PA 15213-3890 57 * 58 * any improvements or extensions that they make and grant Carnegie the 59 * rights to redistribute these changes. 60 */ 61 62 /* 63 * GENERAL RULES ON VM_PAGE MANIPULATION 64 * 65 * - a pageq mutex is required when adding or removing a page from a 66 * page queue (vm_page_queue[]), regardless of other mutexes or the 67 * busy state of a page. 68 * 69 * - a hash chain mutex is required when associating or disassociating 70 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 71 * regardless of other mutexes or the busy state of a page. 72 * 73 * - either a hash chain mutex OR a busied page is required in order 74 * to modify the page flags. A hash chain mutex must be obtained in 75 * order to busy a page. A page's flags cannot be modified by a 76 * hash chain mutex if the page is marked busy. 77 * 78 * - The object memq mutex is held when inserting or removing 79 * pages from an object (vm_page_insert() or vm_page_remove()). This 80 * is different from the object's main mutex. 81 * 82 * Generally speaking, you have to be aware of side effects when running 83 * vm_page ops. A vm_page_lookup() will return with the hash chain 84 * locked, whether it was able to lookup the page or not. vm_page_free(), 85 * vm_page_cache(), vm_page_activate(), and a number of other routines 86 * will release the hash chain mutex for you. Intermediate manipulation 87 * routines such as vm_page_flag_set() expect the hash chain to be held 88 * on entry and the hash chain will remain held on return. 89 * 90 * pageq scanning can only occur with the pageq in question locked. 91 * We have a known bottleneck with the active queue, but the cache 92 * and free queues are actually arrays already. 93 */ 94 95 /* 96 * Resident memory management module. 97 */ 98 99 #include <sys/cdefs.h> 100 __FBSDID("$FreeBSD$"); 101 102 #include <sys/param.h> 103 #include <sys/systm.h> 104 #include <sys/lock.h> 105 #include <sys/malloc.h> 106 #include <sys/mutex.h> 107 #include <sys/proc.h> 108 #include <sys/vmmeter.h> 109 #include <sys/vnode.h> 110 111 #include <vm/vm.h> 112 #include <vm/vm_param.h> 113 #include <vm/vm_kern.h> 114 #include <vm/vm_object.h> 115 #include <vm/vm_page.h> 116 #include <vm/vm_pageout.h> 117 #include <vm/vm_pager.h> 118 #include <vm/vm_extern.h> 119 #include <vm/uma.h> 120 #include <vm/uma_int.h> 121 122 /* 123 * Associated with page of user-allocatable memory is a 124 * page structure. 125 */ 126 127 struct mtx vm_page_queue_mtx; 128 struct mtx vm_page_queue_free_mtx; 129 130 vm_page_t vm_page_array = 0; 131 int vm_page_array_size = 0; 132 long first_page = 0; 133 int vm_page_zero_count = 0; 134 135 /* 136 * vm_set_page_size: 137 * 138 * Sets the page size, perhaps based upon the memory 139 * size. Must be called before any use of page-size 140 * dependent functions. 141 */ 142 void 143 vm_set_page_size(void) 144 { 145 if (cnt.v_page_size == 0) 146 cnt.v_page_size = PAGE_SIZE; 147 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 148 panic("vm_set_page_size: page size not a power of two"); 149 } 150 151 /* 152 * vm_page_startup: 153 * 154 * Initializes the resident memory module. 155 * 156 * Allocates memory for the page cells, and 157 * for the object/offset-to-page hash table headers. 158 * Each page cell is initialized and placed on the free list. 159 */ 160 vm_offset_t 161 vm_page_startup(vm_offset_t vaddr) 162 { 163 vm_offset_t mapped; 164 vm_size_t npages; 165 vm_paddr_t page_range; 166 vm_paddr_t new_end; 167 int i; 168 vm_paddr_t pa; 169 int nblocks; 170 vm_paddr_t last_pa; 171 172 /* the biggest memory array is the second group of pages */ 173 vm_paddr_t end; 174 vm_paddr_t biggestsize; 175 int biggestone; 176 177 vm_paddr_t total; 178 vm_size_t bootpages; 179 180 total = 0; 181 biggestsize = 0; 182 biggestone = 0; 183 nblocks = 0; 184 vaddr = round_page(vaddr); 185 186 for (i = 0; phys_avail[i + 1]; i += 2) { 187 phys_avail[i] = round_page(phys_avail[i]); 188 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 189 } 190 191 for (i = 0; phys_avail[i + 1]; i += 2) { 192 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 193 194 if (size > biggestsize) { 195 biggestone = i; 196 biggestsize = size; 197 } 198 ++nblocks; 199 total += size; 200 } 201 202 end = phys_avail[biggestone+1]; 203 204 /* 205 * Initialize the locks. 206 */ 207 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF | 208 MTX_RECURSE); 209 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 210 MTX_SPIN); 211 212 /* 213 * Initialize the queue headers for the free queue, the active queue 214 * and the inactive queue. 215 */ 216 vm_pageq_init(); 217 218 /* 219 * Allocate memory for use when boot strapping the kernel memory 220 * allocator. 221 */ 222 bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE; 223 new_end = end - bootpages; 224 new_end = trunc_page(new_end); 225 mapped = pmap_map(&vaddr, new_end, end, 226 VM_PROT_READ | VM_PROT_WRITE); 227 bzero((caddr_t) mapped, end - new_end); 228 uma_startup((caddr_t)mapped); 229 230 /* 231 * Compute the number of pages of memory that will be available for 232 * use (taking into account the overhead of a page structure per 233 * page). 234 */ 235 first_page = phys_avail[0] / PAGE_SIZE; 236 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 237 npages = (total - (page_range * sizeof(struct vm_page)) - 238 (end - new_end)) / PAGE_SIZE; 239 end = new_end; 240 241 /* 242 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 243 */ 244 vaddr += PAGE_SIZE; 245 246 /* 247 * Initialize the mem entry structures now, and put them in the free 248 * queue. 249 */ 250 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 251 mapped = pmap_map(&vaddr, new_end, end, 252 VM_PROT_READ | VM_PROT_WRITE); 253 vm_page_array = (vm_page_t) mapped; 254 phys_avail[biggestone + 1] = new_end; 255 256 /* 257 * Clear all of the page structures 258 */ 259 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 260 vm_page_array_size = page_range; 261 262 /* 263 * Construct the free queue(s) in descending order (by physical 264 * address) so that the first 16MB of physical memory is allocated 265 * last rather than first. On large-memory machines, this avoids 266 * the exhaustion of low physical memory before isa_dma_init has run. 267 */ 268 cnt.v_page_count = 0; 269 cnt.v_free_count = 0; 270 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 271 pa = phys_avail[i]; 272 last_pa = phys_avail[i + 1]; 273 while (pa < last_pa && npages-- > 0) { 274 vm_pageq_add_new_page(pa); 275 pa += PAGE_SIZE; 276 } 277 } 278 return (vaddr); 279 } 280 281 void 282 vm_page_flag_set(vm_page_t m, unsigned short bits) 283 { 284 285 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 286 m->flags |= bits; 287 } 288 289 void 290 vm_page_flag_clear(vm_page_t m, unsigned short bits) 291 { 292 293 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 294 m->flags &= ~bits; 295 } 296 297 void 298 vm_page_busy(vm_page_t m) 299 { 300 301 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 302 KASSERT((m->flags & PG_BUSY) == 0, 303 ("vm_page_busy: page already busy!!!")); 304 vm_page_flag_set(m, PG_BUSY); 305 } 306 307 /* 308 * vm_page_flash: 309 * 310 * wakeup anyone waiting for the page. 311 */ 312 void 313 vm_page_flash(vm_page_t m) 314 { 315 316 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 317 if (m->flags & PG_WANTED) { 318 vm_page_flag_clear(m, PG_WANTED); 319 wakeup(m); 320 } 321 } 322 323 /* 324 * vm_page_wakeup: 325 * 326 * clear the PG_BUSY flag and wakeup anyone waiting for the 327 * page. 328 * 329 */ 330 void 331 vm_page_wakeup(vm_page_t m) 332 { 333 334 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 335 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 336 vm_page_flag_clear(m, PG_BUSY); 337 vm_page_flash(m); 338 } 339 340 void 341 vm_page_io_start(vm_page_t m) 342 { 343 344 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 345 m->busy++; 346 } 347 348 void 349 vm_page_io_finish(vm_page_t m) 350 { 351 352 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 353 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 354 m->busy--; 355 if (m->busy == 0) 356 vm_page_flash(m); 357 } 358 359 /* 360 * Keep page from being freed by the page daemon 361 * much of the same effect as wiring, except much lower 362 * overhead and should be used only for *very* temporary 363 * holding ("wiring"). 364 */ 365 void 366 vm_page_hold(vm_page_t mem) 367 { 368 369 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 370 mem->hold_count++; 371 } 372 373 void 374 vm_page_unhold(vm_page_t mem) 375 { 376 377 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 378 --mem->hold_count; 379 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 380 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) 381 vm_page_free_toq(mem); 382 } 383 384 /* 385 * vm_page_free: 386 * 387 * Free a page 388 * 389 * The clearing of PG_ZERO is a temporary safety until the code can be 390 * reviewed to determine that PG_ZERO is being properly cleared on 391 * write faults or maps. PG_ZERO was previously cleared in 392 * vm_page_alloc(). 393 */ 394 void 395 vm_page_free(vm_page_t m) 396 { 397 vm_page_flag_clear(m, PG_ZERO); 398 vm_page_free_toq(m); 399 vm_page_zero_idle_wakeup(); 400 } 401 402 /* 403 * vm_page_free_zero: 404 * 405 * Free a page to the zerod-pages queue 406 */ 407 void 408 vm_page_free_zero(vm_page_t m) 409 { 410 vm_page_flag_set(m, PG_ZERO); 411 vm_page_free_toq(m); 412 } 413 414 /* 415 * vm_page_sleep_if_busy: 416 * 417 * Sleep and release the page queues lock if PG_BUSY is set or, 418 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the 419 * thread slept and the page queues lock was released. 420 * Otherwise, retains the page queues lock and returns FALSE. 421 */ 422 int 423 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg) 424 { 425 vm_object_t object; 426 427 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 428 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 429 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 430 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 431 /* 432 * It's possible that while we sleep, the page will get 433 * unbusied and freed. If we are holding the object 434 * lock, we will assume we hold a reference to the object 435 * such that even if m->object changes, we can re-lock 436 * it. 437 */ 438 object = m->object; 439 VM_OBJECT_UNLOCK(object); 440 msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0); 441 VM_OBJECT_LOCK(object); 442 return (TRUE); 443 } 444 return (FALSE); 445 } 446 447 /* 448 * vm_page_dirty: 449 * 450 * make page all dirty 451 */ 452 void 453 vm_page_dirty(vm_page_t m) 454 { 455 KASSERT(m->queue - m->pc != PQ_CACHE, 456 ("vm_page_dirty: page in cache!")); 457 KASSERT(m->queue - m->pc != PQ_FREE, 458 ("vm_page_dirty: page is free!")); 459 m->dirty = VM_PAGE_BITS_ALL; 460 } 461 462 /* 463 * vm_page_splay: 464 * 465 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 466 * the vm_page containing the given pindex. If, however, that 467 * pindex is not found in the vm_object, returns a vm_page that is 468 * adjacent to the pindex, coming before or after it. 469 */ 470 vm_page_t 471 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 472 { 473 struct vm_page dummy; 474 vm_page_t lefttreemax, righttreemin, y; 475 476 if (root == NULL) 477 return (root); 478 lefttreemax = righttreemin = &dummy; 479 for (;; root = y) { 480 if (pindex < root->pindex) { 481 if ((y = root->left) == NULL) 482 break; 483 if (pindex < y->pindex) { 484 /* Rotate right. */ 485 root->left = y->right; 486 y->right = root; 487 root = y; 488 if ((y = root->left) == NULL) 489 break; 490 } 491 /* Link into the new root's right tree. */ 492 righttreemin->left = root; 493 righttreemin = root; 494 } else if (pindex > root->pindex) { 495 if ((y = root->right) == NULL) 496 break; 497 if (pindex > y->pindex) { 498 /* Rotate left. */ 499 root->right = y->left; 500 y->left = root; 501 root = y; 502 if ((y = root->right) == NULL) 503 break; 504 } 505 /* Link into the new root's left tree. */ 506 lefttreemax->right = root; 507 lefttreemax = root; 508 } else 509 break; 510 } 511 /* Assemble the new root. */ 512 lefttreemax->right = root->left; 513 righttreemin->left = root->right; 514 root->left = dummy.right; 515 root->right = dummy.left; 516 return (root); 517 } 518 519 /* 520 * vm_page_insert: [ internal use only ] 521 * 522 * Inserts the given mem entry into the object and object list. 523 * 524 * The pagetables are not updated but will presumably fault the page 525 * in if necessary, or if a kernel page the caller will at some point 526 * enter the page into the kernel's pmap. We are not allowed to block 527 * here so we *can't* do this anyway. 528 * 529 * The object and page must be locked. 530 * This routine may not block. 531 */ 532 void 533 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 534 { 535 vm_page_t root; 536 537 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 538 if (m->object != NULL) 539 panic("vm_page_insert: page already inserted"); 540 541 /* 542 * Record the object/offset pair in this page 543 */ 544 m->object = object; 545 m->pindex = pindex; 546 547 /* 548 * Now link into the object's ordered list of backed pages. 549 */ 550 root = object->root; 551 if (root == NULL) { 552 m->left = NULL; 553 m->right = NULL; 554 TAILQ_INSERT_TAIL(&object->memq, m, listq); 555 } else { 556 root = vm_page_splay(pindex, root); 557 if (pindex < root->pindex) { 558 m->left = root->left; 559 m->right = root; 560 root->left = NULL; 561 TAILQ_INSERT_BEFORE(root, m, listq); 562 } else if (pindex == root->pindex) 563 panic("vm_page_insert: offset already allocated"); 564 else { 565 m->right = root->right; 566 m->left = root; 567 root->right = NULL; 568 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 569 } 570 } 571 object->root = m; 572 object->generation++; 573 574 /* 575 * show that the object has one more resident page. 576 */ 577 object->resident_page_count++; 578 /* 579 * Hold the vnode until the last page is released. 580 */ 581 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 582 vhold((struct vnode *)object->handle); 583 584 /* 585 * Since we are inserting a new and possibly dirty page, 586 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 587 */ 588 if (m->flags & PG_WRITEABLE) 589 vm_object_set_writeable_dirty(object); 590 } 591 592 /* 593 * vm_page_remove: 594 * NOTE: used by device pager as well -wfj 595 * 596 * Removes the given mem entry from the object/offset-page 597 * table and the object page list, but do not invalidate/terminate 598 * the backing store. 599 * 600 * The object and page must be locked. 601 * The underlying pmap entry (if any) is NOT removed here. 602 * This routine may not block. 603 */ 604 void 605 vm_page_remove(vm_page_t m) 606 { 607 vm_object_t object; 608 vm_page_t root; 609 610 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 611 if ((object = m->object) == NULL) 612 return; 613 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 614 if (m->flags & PG_BUSY) { 615 vm_page_flag_clear(m, PG_BUSY); 616 vm_page_flash(m); 617 } 618 619 /* 620 * Now remove from the object's list of backed pages. 621 */ 622 if (m != object->root) 623 vm_page_splay(m->pindex, object->root); 624 if (m->left == NULL) 625 root = m->right; 626 else { 627 root = vm_page_splay(m->pindex, m->left); 628 root->right = m->right; 629 } 630 object->root = root; 631 TAILQ_REMOVE(&object->memq, m, listq); 632 633 /* 634 * And show that the object has one fewer resident page. 635 */ 636 object->resident_page_count--; 637 object->generation++; 638 /* 639 * The vnode may now be recycled. 640 */ 641 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 642 vdrop((struct vnode *)object->handle); 643 644 m->object = NULL; 645 } 646 647 /* 648 * vm_page_lookup: 649 * 650 * Returns the page associated with the object/offset 651 * pair specified; if none is found, NULL is returned. 652 * 653 * The object must be locked. 654 * This routine may not block. 655 * This is a critical path routine 656 */ 657 vm_page_t 658 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 659 { 660 vm_page_t m; 661 662 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 663 if ((m = object->root) != NULL && m->pindex != pindex) { 664 m = vm_page_splay(pindex, m); 665 if ((object->root = m)->pindex != pindex) 666 m = NULL; 667 } 668 return (m); 669 } 670 671 /* 672 * vm_page_rename: 673 * 674 * Move the given memory entry from its 675 * current object to the specified target object/offset. 676 * 677 * The object must be locked. 678 * This routine may not block. 679 * 680 * Note: swap associated with the page must be invalidated by the move. We 681 * have to do this for several reasons: (1) we aren't freeing the 682 * page, (2) we are dirtying the page, (3) the VM system is probably 683 * moving the page from object A to B, and will then later move 684 * the backing store from A to B and we can't have a conflict. 685 * 686 * Note: we *always* dirty the page. It is necessary both for the 687 * fact that we moved it, and because we may be invalidating 688 * swap. If the page is on the cache, we have to deactivate it 689 * or vm_page_dirty() will panic. Dirty pages are not allowed 690 * on the cache. 691 */ 692 void 693 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 694 { 695 696 vm_page_remove(m); 697 vm_page_insert(m, new_object, new_pindex); 698 if (m->queue - m->pc == PQ_CACHE) 699 vm_page_deactivate(m); 700 vm_page_dirty(m); 701 } 702 703 /* 704 * vm_page_select_cache: 705 * 706 * Move a page of the given color from the cache queue to the free 707 * queue. As pages might be found, but are not applicable, they are 708 * deactivated. 709 * 710 * This routine may not block. 711 */ 712 vm_page_t 713 vm_page_select_cache(int color) 714 { 715 vm_object_t object; 716 vm_page_t m; 717 boolean_t was_trylocked; 718 719 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 720 while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) { 721 KASSERT(m->dirty == 0, ("Found dirty cache page %p", m)); 722 KASSERT(!pmap_page_is_mapped(m), 723 ("Found mapped cache page %p", m)); 724 KASSERT((m->flags & PG_UNMANAGED) == 0, 725 ("Found unmanaged cache page %p", m)); 726 KASSERT(m->wire_count == 0, ("Found wired cache page %p", m)); 727 if (m->hold_count == 0 && (object = m->object, 728 (was_trylocked = VM_OBJECT_TRYLOCK(object)) || 729 VM_OBJECT_LOCKED(object))) { 730 KASSERT((m->flags & PG_BUSY) == 0 && m->busy == 0, 731 ("Found busy cache page %p", m)); 732 vm_page_free(m); 733 if (was_trylocked) 734 VM_OBJECT_UNLOCK(object); 735 break; 736 } 737 vm_page_deactivate(m); 738 } 739 return (m); 740 } 741 742 /* 743 * vm_page_alloc: 744 * 745 * Allocate and return a memory cell associated 746 * with this VM object/offset pair. 747 * 748 * page_req classes: 749 * VM_ALLOC_NORMAL normal process request 750 * VM_ALLOC_SYSTEM system *really* needs a page 751 * VM_ALLOC_INTERRUPT interrupt time request 752 * VM_ALLOC_ZERO zero page 753 * 754 * This routine may not block. 755 * 756 * Additional special handling is required when called from an 757 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with 758 * the page cache in this case. 759 */ 760 vm_page_t 761 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 762 { 763 vm_page_t m = NULL; 764 int color, flags, page_req; 765 766 page_req = req & VM_ALLOC_CLASS_MASK; 767 KASSERT(curthread->td_intr_nesting_level == 0 || 768 page_req == VM_ALLOC_INTERRUPT, 769 ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context")); 770 771 if ((req & VM_ALLOC_NOOBJ) == 0) { 772 KASSERT(object != NULL, 773 ("vm_page_alloc: NULL object.")); 774 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 775 color = (pindex + object->pg_color) & PQ_L2_MASK; 776 } else 777 color = pindex & PQ_L2_MASK; 778 779 /* 780 * The pager is allowed to eat deeper into the free page list. 781 */ 782 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 783 page_req = VM_ALLOC_SYSTEM; 784 }; 785 786 loop: 787 mtx_lock_spin(&vm_page_queue_free_mtx); 788 if (cnt.v_free_count > cnt.v_free_reserved || 789 (page_req == VM_ALLOC_SYSTEM && 790 cnt.v_cache_count == 0 && 791 cnt.v_free_count > cnt.v_interrupt_free_min) || 792 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) { 793 /* 794 * Allocate from the free queue if the number of free pages 795 * exceeds the minimum for the request class. 796 */ 797 m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0); 798 } else if (page_req != VM_ALLOC_INTERRUPT) { 799 mtx_unlock_spin(&vm_page_queue_free_mtx); 800 /* 801 * Allocatable from cache (non-interrupt only). On success, 802 * we must free the page and try again, thus ensuring that 803 * cnt.v_*_free_min counters are replenished. 804 */ 805 vm_page_lock_queues(); 806 if ((m = vm_page_select_cache(color)) == NULL) { 807 #if defined(DIAGNOSTIC) 808 if (cnt.v_cache_count > 0) 809 printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count); 810 #endif 811 vm_page_unlock_queues(); 812 atomic_add_int(&vm_pageout_deficit, 1); 813 pagedaemon_wakeup(); 814 return (NULL); 815 } 816 vm_page_unlock_queues(); 817 goto loop; 818 } else { 819 /* 820 * Not allocatable from cache from interrupt, give up. 821 */ 822 mtx_unlock_spin(&vm_page_queue_free_mtx); 823 atomic_add_int(&vm_pageout_deficit, 1); 824 pagedaemon_wakeup(); 825 return (NULL); 826 } 827 828 /* 829 * At this point we had better have found a good page. 830 */ 831 832 KASSERT( 833 m != NULL, 834 ("vm_page_alloc(): missing page on free queue") 835 ); 836 837 /* 838 * Remove from free queue 839 */ 840 vm_pageq_remove_nowakeup(m); 841 842 /* 843 * Initialize structure. Only the PG_ZERO flag is inherited. 844 */ 845 flags = PG_BUSY; 846 if (m->flags & PG_ZERO) { 847 vm_page_zero_count--; 848 if (req & VM_ALLOC_ZERO) 849 flags = PG_ZERO | PG_BUSY; 850 } 851 if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) 852 flags &= ~PG_BUSY; 853 m->flags = flags; 854 if (req & VM_ALLOC_WIRED) { 855 atomic_add_int(&cnt.v_wire_count, 1); 856 m->wire_count = 1; 857 } else 858 m->wire_count = 0; 859 m->hold_count = 0; 860 m->act_count = 0; 861 m->busy = 0; 862 m->valid = 0; 863 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 864 mtx_unlock_spin(&vm_page_queue_free_mtx); 865 866 if ((req & VM_ALLOC_NOOBJ) == 0) 867 vm_page_insert(m, object, pindex); 868 else 869 m->pindex = pindex; 870 871 /* 872 * Don't wakeup too often - wakeup the pageout daemon when 873 * we would be nearly out of memory. 874 */ 875 if (vm_paging_needed()) 876 pagedaemon_wakeup(); 877 878 return (m); 879 } 880 881 /* 882 * vm_wait: (also see VM_WAIT macro) 883 * 884 * Block until free pages are available for allocation 885 * - Called in various places before memory allocations. 886 */ 887 void 888 vm_wait(void) 889 { 890 891 vm_page_lock_queues(); 892 if (curproc == pageproc) { 893 vm_pageout_pages_needed = 1; 894 msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx, 895 PDROP | PSWP, "VMWait", 0); 896 } else { 897 if (!vm_pages_needed) { 898 vm_pages_needed = 1; 899 wakeup(&vm_pages_needed); 900 } 901 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM, 902 "vmwait", 0); 903 } 904 } 905 906 /* 907 * vm_waitpfault: (also see VM_WAITPFAULT macro) 908 * 909 * Block until free pages are available for allocation 910 * - Called only in vm_fault so that processes page faulting 911 * can be easily tracked. 912 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 913 * processes will be able to grab memory first. Do not change 914 * this balance without careful testing first. 915 */ 916 void 917 vm_waitpfault(void) 918 { 919 920 vm_page_lock_queues(); 921 if (!vm_pages_needed) { 922 vm_pages_needed = 1; 923 wakeup(&vm_pages_needed); 924 } 925 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER, 926 "pfault", 0); 927 } 928 929 /* 930 * vm_page_activate: 931 * 932 * Put the specified page on the active list (if appropriate). 933 * Ensure that act_count is at least ACT_INIT but do not otherwise 934 * mess with it. 935 * 936 * The page queues must be locked. 937 * This routine may not block. 938 */ 939 void 940 vm_page_activate(vm_page_t m) 941 { 942 943 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 944 if (m->queue != PQ_ACTIVE) { 945 if ((m->queue - m->pc) == PQ_CACHE) 946 cnt.v_reactivated++; 947 vm_pageq_remove(m); 948 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 949 if (m->act_count < ACT_INIT) 950 m->act_count = ACT_INIT; 951 vm_pageq_enqueue(PQ_ACTIVE, m); 952 } 953 } else { 954 if (m->act_count < ACT_INIT) 955 m->act_count = ACT_INIT; 956 } 957 } 958 959 /* 960 * vm_page_free_wakeup: 961 * 962 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 963 * routine is called when a page has been added to the cache or free 964 * queues. 965 * 966 * The page queues must be locked. 967 * This routine may not block. 968 */ 969 static __inline void 970 vm_page_free_wakeup(void) 971 { 972 973 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 974 /* 975 * if pageout daemon needs pages, then tell it that there are 976 * some free. 977 */ 978 if (vm_pageout_pages_needed && 979 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 980 wakeup(&vm_pageout_pages_needed); 981 vm_pageout_pages_needed = 0; 982 } 983 /* 984 * wakeup processes that are waiting on memory if we hit a 985 * high water mark. And wakeup scheduler process if we have 986 * lots of memory. this process will swapin processes. 987 */ 988 if (vm_pages_needed && !vm_page_count_min()) { 989 vm_pages_needed = 0; 990 wakeup(&cnt.v_free_count); 991 } 992 } 993 994 /* 995 * vm_page_free_toq: 996 * 997 * Returns the given page to the PQ_FREE list, 998 * disassociating it with any VM object. 999 * 1000 * Object and page must be locked prior to entry. 1001 * This routine may not block. 1002 */ 1003 1004 void 1005 vm_page_free_toq(vm_page_t m) 1006 { 1007 struct vpgqueues *pq; 1008 1009 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1010 cnt.v_tfree++; 1011 1012 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1013 printf( 1014 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 1015 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 1016 m->hold_count); 1017 if ((m->queue - m->pc) == PQ_FREE) 1018 panic("vm_page_free: freeing free page"); 1019 else 1020 panic("vm_page_free: freeing busy page"); 1021 } 1022 1023 /* 1024 * unqueue, then remove page. Note that we cannot destroy 1025 * the page here because we do not want to call the pager's 1026 * callback routine until after we've put the page on the 1027 * appropriate free queue. 1028 */ 1029 vm_pageq_remove_nowakeup(m); 1030 vm_page_remove(m); 1031 1032 /* 1033 * If fictitious remove object association and 1034 * return, otherwise delay object association removal. 1035 */ 1036 if ((m->flags & PG_FICTITIOUS) != 0) { 1037 return; 1038 } 1039 1040 m->valid = 0; 1041 vm_page_undirty(m); 1042 1043 if (m->wire_count != 0) { 1044 if (m->wire_count > 1) { 1045 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1046 m->wire_count, (long)m->pindex); 1047 } 1048 panic("vm_page_free: freeing wired page"); 1049 } 1050 1051 /* 1052 * Clear the UNMANAGED flag when freeing an unmanaged page. 1053 */ 1054 if (m->flags & PG_UNMANAGED) { 1055 m->flags &= ~PG_UNMANAGED; 1056 } 1057 1058 if (m->hold_count != 0) { 1059 m->flags &= ~PG_ZERO; 1060 m->queue = PQ_HOLD; 1061 } else 1062 m->queue = PQ_FREE + m->pc; 1063 pq = &vm_page_queues[m->queue]; 1064 mtx_lock_spin(&vm_page_queue_free_mtx); 1065 pq->lcnt++; 1066 ++(*pq->cnt); 1067 1068 /* 1069 * Put zero'd pages on the end ( where we look for zero'd pages 1070 * first ) and non-zerod pages at the head. 1071 */ 1072 if (m->flags & PG_ZERO) { 1073 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1074 ++vm_page_zero_count; 1075 } else { 1076 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1077 } 1078 mtx_unlock_spin(&vm_page_queue_free_mtx); 1079 vm_page_free_wakeup(); 1080 } 1081 1082 /* 1083 * vm_page_unmanage: 1084 * 1085 * Prevent PV management from being done on the page. The page is 1086 * removed from the paging queues as if it were wired, and as a 1087 * consequence of no longer being managed the pageout daemon will not 1088 * touch it (since there is no way to locate the pte mappings for the 1089 * page). madvise() calls that mess with the pmap will also no longer 1090 * operate on the page. 1091 * 1092 * Beyond that the page is still reasonably 'normal'. Freeing the page 1093 * will clear the flag. 1094 * 1095 * This routine is used by OBJT_PHYS objects - objects using unswappable 1096 * physical memory as backing store rather then swap-backed memory and 1097 * will eventually be extended to support 4MB unmanaged physical 1098 * mappings. 1099 */ 1100 void 1101 vm_page_unmanage(vm_page_t m) 1102 { 1103 1104 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1105 if ((m->flags & PG_UNMANAGED) == 0) { 1106 if (m->wire_count == 0) 1107 vm_pageq_remove(m); 1108 } 1109 vm_page_flag_set(m, PG_UNMANAGED); 1110 } 1111 1112 /* 1113 * vm_page_wire: 1114 * 1115 * Mark this page as wired down by yet 1116 * another map, removing it from paging queues 1117 * as necessary. 1118 * 1119 * The page queues must be locked. 1120 * This routine may not block. 1121 */ 1122 void 1123 vm_page_wire(vm_page_t m) 1124 { 1125 1126 /* 1127 * Only bump the wire statistics if the page is not already wired, 1128 * and only unqueue the page if it is on some queue (if it is unmanaged 1129 * it is already off the queues). 1130 */ 1131 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1132 if (m->flags & PG_FICTITIOUS) 1133 return; 1134 if (m->wire_count == 0) { 1135 if ((m->flags & PG_UNMANAGED) == 0) 1136 vm_pageq_remove(m); 1137 atomic_add_int(&cnt.v_wire_count, 1); 1138 } 1139 m->wire_count++; 1140 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1141 } 1142 1143 /* 1144 * vm_page_unwire: 1145 * 1146 * Release one wiring of this page, potentially 1147 * enabling it to be paged again. 1148 * 1149 * Many pages placed on the inactive queue should actually go 1150 * into the cache, but it is difficult to figure out which. What 1151 * we do instead, if the inactive target is well met, is to put 1152 * clean pages at the head of the inactive queue instead of the tail. 1153 * This will cause them to be moved to the cache more quickly and 1154 * if not actively re-referenced, freed more quickly. If we just 1155 * stick these pages at the end of the inactive queue, heavy filesystem 1156 * meta-data accesses can cause an unnecessary paging load on memory bound 1157 * processes. This optimization causes one-time-use metadata to be 1158 * reused more quickly. 1159 * 1160 * BUT, if we are in a low-memory situation we have no choice but to 1161 * put clean pages on the cache queue. 1162 * 1163 * A number of routines use vm_page_unwire() to guarantee that the page 1164 * will go into either the inactive or active queues, and will NEVER 1165 * be placed in the cache - for example, just after dirtying a page. 1166 * dirty pages in the cache are not allowed. 1167 * 1168 * The page queues must be locked. 1169 * This routine may not block. 1170 */ 1171 void 1172 vm_page_unwire(vm_page_t m, int activate) 1173 { 1174 1175 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1176 if (m->flags & PG_FICTITIOUS) 1177 return; 1178 if (m->wire_count > 0) { 1179 m->wire_count--; 1180 if (m->wire_count == 0) { 1181 atomic_subtract_int(&cnt.v_wire_count, 1); 1182 if (m->flags & PG_UNMANAGED) { 1183 ; 1184 } else if (activate) 1185 vm_pageq_enqueue(PQ_ACTIVE, m); 1186 else { 1187 vm_page_flag_clear(m, PG_WINATCFLS); 1188 vm_pageq_enqueue(PQ_INACTIVE, m); 1189 } 1190 } 1191 } else { 1192 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 1193 } 1194 } 1195 1196 1197 /* 1198 * Move the specified page to the inactive queue. If the page has 1199 * any associated swap, the swap is deallocated. 1200 * 1201 * Normally athead is 0 resulting in LRU operation. athead is set 1202 * to 1 if we want this page to be 'as if it were placed in the cache', 1203 * except without unmapping it from the process address space. 1204 * 1205 * This routine may not block. 1206 */ 1207 static __inline void 1208 _vm_page_deactivate(vm_page_t m, int athead) 1209 { 1210 1211 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1212 1213 /* 1214 * Ignore if already inactive. 1215 */ 1216 if (m->queue == PQ_INACTIVE) 1217 return; 1218 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1219 if ((m->queue - m->pc) == PQ_CACHE) 1220 cnt.v_reactivated++; 1221 vm_page_flag_clear(m, PG_WINATCFLS); 1222 vm_pageq_remove(m); 1223 if (athead) 1224 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1225 else 1226 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1227 m->queue = PQ_INACTIVE; 1228 vm_page_queues[PQ_INACTIVE].lcnt++; 1229 cnt.v_inactive_count++; 1230 } 1231 } 1232 1233 void 1234 vm_page_deactivate(vm_page_t m) 1235 { 1236 _vm_page_deactivate(m, 0); 1237 } 1238 1239 /* 1240 * vm_page_try_to_cache: 1241 * 1242 * Returns 0 on failure, 1 on success 1243 */ 1244 int 1245 vm_page_try_to_cache(vm_page_t m) 1246 { 1247 1248 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1249 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1250 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1251 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1252 return (0); 1253 } 1254 pmap_remove_all(m); 1255 if (m->dirty) 1256 return (0); 1257 vm_page_cache(m); 1258 return (1); 1259 } 1260 1261 /* 1262 * vm_page_try_to_free() 1263 * 1264 * Attempt to free the page. If we cannot free it, we do nothing. 1265 * 1 is returned on success, 0 on failure. 1266 */ 1267 int 1268 vm_page_try_to_free(vm_page_t m) 1269 { 1270 1271 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1272 if (m->object != NULL) 1273 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1274 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1275 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1276 return (0); 1277 } 1278 pmap_remove_all(m); 1279 if (m->dirty) 1280 return (0); 1281 vm_page_free(m); 1282 return (1); 1283 } 1284 1285 /* 1286 * vm_page_cache 1287 * 1288 * Put the specified page onto the page cache queue (if appropriate). 1289 * 1290 * This routine may not block. 1291 */ 1292 void 1293 vm_page_cache(vm_page_t m) 1294 { 1295 1296 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1297 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1298 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 1299 m->hold_count || m->wire_count) { 1300 printf("vm_page_cache: attempting to cache busy page\n"); 1301 return; 1302 } 1303 if ((m->queue - m->pc) == PQ_CACHE) 1304 return; 1305 1306 /* 1307 * Remove all pmaps and indicate that the page is not 1308 * writeable or mapped. 1309 */ 1310 pmap_remove_all(m); 1311 if (m->dirty != 0) { 1312 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1313 (long)m->pindex); 1314 } 1315 vm_pageq_remove_nowakeup(m); 1316 vm_pageq_enqueue(PQ_CACHE + m->pc, m); 1317 vm_page_free_wakeup(); 1318 } 1319 1320 /* 1321 * vm_page_dontneed 1322 * 1323 * Cache, deactivate, or do nothing as appropriate. This routine 1324 * is typically used by madvise() MADV_DONTNEED. 1325 * 1326 * Generally speaking we want to move the page into the cache so 1327 * it gets reused quickly. However, this can result in a silly syndrome 1328 * due to the page recycling too quickly. Small objects will not be 1329 * fully cached. On the otherhand, if we move the page to the inactive 1330 * queue we wind up with a problem whereby very large objects 1331 * unnecessarily blow away our inactive and cache queues. 1332 * 1333 * The solution is to move the pages based on a fixed weighting. We 1334 * either leave them alone, deactivate them, or move them to the cache, 1335 * where moving them to the cache has the highest weighting. 1336 * By forcing some pages into other queues we eventually force the 1337 * system to balance the queues, potentially recovering other unrelated 1338 * space from active. The idea is to not force this to happen too 1339 * often. 1340 */ 1341 void 1342 vm_page_dontneed(vm_page_t m) 1343 { 1344 static int dnweight; 1345 int dnw; 1346 int head; 1347 1348 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1349 dnw = ++dnweight; 1350 1351 /* 1352 * occassionally leave the page alone 1353 */ 1354 if ((dnw & 0x01F0) == 0 || 1355 m->queue == PQ_INACTIVE || 1356 m->queue - m->pc == PQ_CACHE 1357 ) { 1358 if (m->act_count >= ACT_INIT) 1359 --m->act_count; 1360 return; 1361 } 1362 1363 if (m->dirty == 0 && pmap_is_modified(m)) 1364 vm_page_dirty(m); 1365 1366 if (m->dirty || (dnw & 0x0070) == 0) { 1367 /* 1368 * Deactivate the page 3 times out of 32. 1369 */ 1370 head = 0; 1371 } else { 1372 /* 1373 * Cache the page 28 times out of every 32. Note that 1374 * the page is deactivated instead of cached, but placed 1375 * at the head of the queue instead of the tail. 1376 */ 1377 head = 1; 1378 } 1379 _vm_page_deactivate(m, head); 1380 } 1381 1382 /* 1383 * Grab a page, waiting until we are waken up due to the page 1384 * changing state. We keep on waiting, if the page continues 1385 * to be in the object. If the page doesn't exist, first allocate it 1386 * and then conditionally zero it. 1387 * 1388 * This routine may block. 1389 */ 1390 vm_page_t 1391 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1392 { 1393 vm_page_t m; 1394 1395 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1396 retrylookup: 1397 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1398 vm_page_lock_queues(); 1399 if (m->busy || (m->flags & PG_BUSY)) { 1400 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1401 VM_OBJECT_UNLOCK(object); 1402 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0); 1403 VM_OBJECT_LOCK(object); 1404 if ((allocflags & VM_ALLOC_RETRY) == 0) 1405 return (NULL); 1406 goto retrylookup; 1407 } else { 1408 if (allocflags & VM_ALLOC_WIRED) 1409 vm_page_wire(m); 1410 if ((allocflags & VM_ALLOC_NOBUSY) == 0) 1411 vm_page_busy(m); 1412 vm_page_unlock_queues(); 1413 return (m); 1414 } 1415 } 1416 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1417 if (m == NULL) { 1418 VM_OBJECT_UNLOCK(object); 1419 VM_WAIT; 1420 VM_OBJECT_LOCK(object); 1421 if ((allocflags & VM_ALLOC_RETRY) == 0) 1422 return (NULL); 1423 goto retrylookup; 1424 } 1425 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 1426 pmap_zero_page(m); 1427 return (m); 1428 } 1429 1430 /* 1431 * Mapping function for valid bits or for dirty bits in 1432 * a page. May not block. 1433 * 1434 * Inputs are required to range within a page. 1435 */ 1436 __inline int 1437 vm_page_bits(int base, int size) 1438 { 1439 int first_bit; 1440 int last_bit; 1441 1442 KASSERT( 1443 base + size <= PAGE_SIZE, 1444 ("vm_page_bits: illegal base/size %d/%d", base, size) 1445 ); 1446 1447 if (size == 0) /* handle degenerate case */ 1448 return (0); 1449 1450 first_bit = base >> DEV_BSHIFT; 1451 last_bit = (base + size - 1) >> DEV_BSHIFT; 1452 1453 return ((2 << last_bit) - (1 << first_bit)); 1454 } 1455 1456 /* 1457 * vm_page_set_validclean: 1458 * 1459 * Sets portions of a page valid and clean. The arguments are expected 1460 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1461 * of any partial chunks touched by the range. The invalid portion of 1462 * such chunks will be zero'd. 1463 * 1464 * This routine may not block. 1465 * 1466 * (base + size) must be less then or equal to PAGE_SIZE. 1467 */ 1468 void 1469 vm_page_set_validclean(vm_page_t m, int base, int size) 1470 { 1471 int pagebits; 1472 int frag; 1473 int endoff; 1474 1475 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1476 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1477 if (size == 0) /* handle degenerate case */ 1478 return; 1479 1480 /* 1481 * If the base is not DEV_BSIZE aligned and the valid 1482 * bit is clear, we have to zero out a portion of the 1483 * first block. 1484 */ 1485 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1486 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1487 pmap_zero_page_area(m, frag, base - frag); 1488 1489 /* 1490 * If the ending offset is not DEV_BSIZE aligned and the 1491 * valid bit is clear, we have to zero out a portion of 1492 * the last block. 1493 */ 1494 endoff = base + size; 1495 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1496 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1497 pmap_zero_page_area(m, endoff, 1498 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1499 1500 /* 1501 * Set valid, clear dirty bits. If validating the entire 1502 * page we can safely clear the pmap modify bit. We also 1503 * use this opportunity to clear the PG_NOSYNC flag. If a process 1504 * takes a write fault on a MAP_NOSYNC memory area the flag will 1505 * be set again. 1506 * 1507 * We set valid bits inclusive of any overlap, but we can only 1508 * clear dirty bits for DEV_BSIZE chunks that are fully within 1509 * the range. 1510 */ 1511 pagebits = vm_page_bits(base, size); 1512 m->valid |= pagebits; 1513 #if 0 /* NOT YET */ 1514 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1515 frag = DEV_BSIZE - frag; 1516 base += frag; 1517 size -= frag; 1518 if (size < 0) 1519 size = 0; 1520 } 1521 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1522 #endif 1523 m->dirty &= ~pagebits; 1524 if (base == 0 && size == PAGE_SIZE) { 1525 pmap_clear_modify(m); 1526 vm_page_flag_clear(m, PG_NOSYNC); 1527 } 1528 } 1529 1530 void 1531 vm_page_clear_dirty(vm_page_t m, int base, int size) 1532 { 1533 1534 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1535 m->dirty &= ~vm_page_bits(base, size); 1536 } 1537 1538 /* 1539 * vm_page_set_invalid: 1540 * 1541 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1542 * valid and dirty bits for the effected areas are cleared. 1543 * 1544 * May not block. 1545 */ 1546 void 1547 vm_page_set_invalid(vm_page_t m, int base, int size) 1548 { 1549 int bits; 1550 1551 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1552 bits = vm_page_bits(base, size); 1553 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1554 m->valid &= ~bits; 1555 m->dirty &= ~bits; 1556 m->object->generation++; 1557 } 1558 1559 /* 1560 * vm_page_zero_invalid() 1561 * 1562 * The kernel assumes that the invalid portions of a page contain 1563 * garbage, but such pages can be mapped into memory by user code. 1564 * When this occurs, we must zero out the non-valid portions of the 1565 * page so user code sees what it expects. 1566 * 1567 * Pages are most often semi-valid when the end of a file is mapped 1568 * into memory and the file's size is not page aligned. 1569 */ 1570 void 1571 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1572 { 1573 int b; 1574 int i; 1575 1576 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1577 /* 1578 * Scan the valid bits looking for invalid sections that 1579 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1580 * valid bit may be set ) have already been zerod by 1581 * vm_page_set_validclean(). 1582 */ 1583 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1584 if (i == (PAGE_SIZE / DEV_BSIZE) || 1585 (m->valid & (1 << i)) 1586 ) { 1587 if (i > b) { 1588 pmap_zero_page_area(m, 1589 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1590 } 1591 b = i + 1; 1592 } 1593 } 1594 1595 /* 1596 * setvalid is TRUE when we can safely set the zero'd areas 1597 * as being valid. We can do this if there are no cache consistancy 1598 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1599 */ 1600 if (setvalid) 1601 m->valid = VM_PAGE_BITS_ALL; 1602 } 1603 1604 /* 1605 * vm_page_is_valid: 1606 * 1607 * Is (partial) page valid? Note that the case where size == 0 1608 * will return FALSE in the degenerate case where the page is 1609 * entirely invalid, and TRUE otherwise. 1610 * 1611 * May not block. 1612 */ 1613 int 1614 vm_page_is_valid(vm_page_t m, int base, int size) 1615 { 1616 int bits = vm_page_bits(base, size); 1617 1618 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1619 if (m->valid && ((m->valid & bits) == bits)) 1620 return 1; 1621 else 1622 return 0; 1623 } 1624 1625 /* 1626 * update dirty bits from pmap/mmu. May not block. 1627 */ 1628 void 1629 vm_page_test_dirty(vm_page_t m) 1630 { 1631 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1632 vm_page_dirty(m); 1633 } 1634 } 1635 1636 int so_zerocp_fullpage = 0; 1637 1638 void 1639 vm_page_cowfault(vm_page_t m) 1640 { 1641 vm_page_t mnew; 1642 vm_object_t object; 1643 vm_pindex_t pindex; 1644 1645 object = m->object; 1646 pindex = m->pindex; 1647 1648 retry_alloc: 1649 vm_page_remove(m); 1650 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL); 1651 if (mnew == NULL) { 1652 vm_page_insert(m, object, pindex); 1653 vm_page_unlock_queues(); 1654 VM_OBJECT_UNLOCK(object); 1655 VM_WAIT; 1656 VM_OBJECT_LOCK(object); 1657 vm_page_lock_queues(); 1658 goto retry_alloc; 1659 } 1660 1661 if (m->cow == 0) { 1662 /* 1663 * check to see if we raced with an xmit complete when 1664 * waiting to allocate a page. If so, put things back 1665 * the way they were 1666 */ 1667 vm_page_free(mnew); 1668 vm_page_insert(m, object, pindex); 1669 } else { /* clear COW & copy page */ 1670 if (!so_zerocp_fullpage) 1671 pmap_copy_page(m, mnew); 1672 mnew->valid = VM_PAGE_BITS_ALL; 1673 vm_page_dirty(mnew); 1674 vm_page_flag_clear(mnew, PG_BUSY); 1675 } 1676 } 1677 1678 void 1679 vm_page_cowclear(vm_page_t m) 1680 { 1681 1682 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1683 if (m->cow) { 1684 m->cow--; 1685 /* 1686 * let vm_fault add back write permission lazily 1687 */ 1688 } 1689 /* 1690 * sf_buf_free() will free the page, so we needn't do it here 1691 */ 1692 } 1693 1694 void 1695 vm_page_cowsetup(vm_page_t m) 1696 { 1697 1698 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1699 m->cow++; 1700 pmap_page_protect(m, VM_PROT_READ); 1701 } 1702 1703 #include "opt_ddb.h" 1704 #ifdef DDB 1705 #include <sys/kernel.h> 1706 1707 #include <ddb/ddb.h> 1708 1709 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1710 { 1711 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 1712 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 1713 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 1714 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 1715 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 1716 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 1717 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 1718 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 1719 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 1720 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 1721 } 1722 1723 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1724 { 1725 int i; 1726 db_printf("PQ_FREE:"); 1727 for (i = 0; i < PQ_L2_SIZE; i++) { 1728 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 1729 } 1730 db_printf("\n"); 1731 1732 db_printf("PQ_CACHE:"); 1733 for (i = 0; i < PQ_L2_SIZE; i++) { 1734 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 1735 } 1736 db_printf("\n"); 1737 1738 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1739 vm_page_queues[PQ_ACTIVE].lcnt, 1740 vm_page_queues[PQ_INACTIVE].lcnt); 1741 } 1742 #endif /* DDB */ 1743