xref: /freebsd/sys/vm/vm_page.c (revision 788ca347b816afd83b2885e0c79aeeb88649b2ab)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- A page queue lock is required when adding or removing a page from a
67  *	  page queue regardless of other locks or the busy state of a page.
68  *
69  *		* In general, no thread besides the page daemon can acquire or
70  *		  hold more than one page queue lock at a time.
71  *
72  *		* The page daemon can acquire and hold any pair of page queue
73  *		  locks in any order.
74  *
75  *	- The object lock is required when inserting or removing
76  *	  pages from an object (vm_page_insert() or vm_page_remove()).
77  *
78  */
79 
80 /*
81  *	Resident memory management module.
82  */
83 
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD$");
86 
87 #include "opt_vm.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/lock.h>
92 #include <sys/kernel.h>
93 #include <sys/limits.h>
94 #include <sys/malloc.h>
95 #include <sys/mman.h>
96 #include <sys/msgbuf.h>
97 #include <sys/mutex.h>
98 #include <sys/proc.h>
99 #include <sys/rwlock.h>
100 #include <sys/sysctl.h>
101 #include <sys/vmmeter.h>
102 #include <sys/vnode.h>
103 
104 #include <vm/vm.h>
105 #include <vm/pmap.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_kern.h>
108 #include <vm/vm_object.h>
109 #include <vm/vm_page.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_radix.h>
114 #include <vm/vm_reserv.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117 #include <vm/uma_int.h>
118 
119 #include <machine/md_var.h>
120 
121 /*
122  *	Associated with page of user-allocatable memory is a
123  *	page structure.
124  */
125 
126 struct vm_domain vm_dom[MAXMEMDOM];
127 struct mtx_padalign vm_page_queue_free_mtx;
128 
129 struct mtx_padalign pa_lock[PA_LOCK_COUNT];
130 
131 vm_page_t vm_page_array;
132 long vm_page_array_size;
133 long first_page;
134 int vm_page_zero_count;
135 
136 static int boot_pages = UMA_BOOT_PAGES;
137 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
138     &boot_pages, 0,
139     "number of pages allocated for bootstrapping the VM system");
140 
141 static int pa_tryrelock_restart;
142 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
143     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
144 
145 static uma_zone_t fakepg_zone;
146 
147 static struct vnode *vm_page_alloc_init(vm_page_t m);
148 static void vm_page_cache_turn_free(vm_page_t m);
149 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
150 static void vm_page_enqueue(uint8_t queue, vm_page_t m);
151 static void vm_page_init_fakepg(void *dummy);
152 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
153     vm_pindex_t pindex, vm_page_t mpred);
154 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
155     vm_page_t mpred);
156 
157 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
158 
159 static void
160 vm_page_init_fakepg(void *dummy)
161 {
162 
163 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
164 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
165 }
166 
167 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
168 #if PAGE_SIZE == 32768
169 #ifdef CTASSERT
170 CTASSERT(sizeof(u_long) >= 8);
171 #endif
172 #endif
173 
174 /*
175  * Try to acquire a physical address lock while a pmap is locked.  If we
176  * fail to trylock we unlock and lock the pmap directly and cache the
177  * locked pa in *locked.  The caller should then restart their loop in case
178  * the virtual to physical mapping has changed.
179  */
180 int
181 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
182 {
183 	vm_paddr_t lockpa;
184 
185 	lockpa = *locked;
186 	*locked = pa;
187 	if (lockpa) {
188 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
189 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
190 			return (0);
191 		PA_UNLOCK(lockpa);
192 	}
193 	if (PA_TRYLOCK(pa))
194 		return (0);
195 	PMAP_UNLOCK(pmap);
196 	atomic_add_int(&pa_tryrelock_restart, 1);
197 	PA_LOCK(pa);
198 	PMAP_LOCK(pmap);
199 	return (EAGAIN);
200 }
201 
202 /*
203  *	vm_set_page_size:
204  *
205  *	Sets the page size, perhaps based upon the memory
206  *	size.  Must be called before any use of page-size
207  *	dependent functions.
208  */
209 void
210 vm_set_page_size(void)
211 {
212 	if (vm_cnt.v_page_size == 0)
213 		vm_cnt.v_page_size = PAGE_SIZE;
214 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
215 		panic("vm_set_page_size: page size not a power of two");
216 }
217 
218 /*
219  *	vm_page_blacklist_lookup:
220  *
221  *	See if a physical address in this page has been listed
222  *	in the blacklist tunable.  Entries in the tunable are
223  *	separated by spaces or commas.  If an invalid integer is
224  *	encountered then the rest of the string is skipped.
225  */
226 static int
227 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
228 {
229 	vm_paddr_t bad;
230 	char *cp, *pos;
231 
232 	for (pos = list; *pos != '\0'; pos = cp) {
233 		bad = strtoq(pos, &cp, 0);
234 		if (*cp != '\0') {
235 			if (*cp == ' ' || *cp == ',') {
236 				cp++;
237 				if (cp == pos)
238 					continue;
239 			} else
240 				break;
241 		}
242 		if (pa == trunc_page(bad))
243 			return (1);
244 	}
245 	return (0);
246 }
247 
248 static void
249 vm_page_domain_init(struct vm_domain *vmd)
250 {
251 	struct vm_pagequeue *pq;
252 	int i;
253 
254 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
255 	    "vm inactive pagequeue";
256 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
257 	    &vm_cnt.v_inactive_count;
258 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
259 	    "vm active pagequeue";
260 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
261 	    &vm_cnt.v_active_count;
262 	vmd->vmd_page_count = 0;
263 	vmd->vmd_free_count = 0;
264 	vmd->vmd_segs = 0;
265 	vmd->vmd_oom = FALSE;
266 	vmd->vmd_pass = 0;
267 	for (i = 0; i < PQ_COUNT; i++) {
268 		pq = &vmd->vmd_pagequeues[i];
269 		TAILQ_INIT(&pq->pq_pl);
270 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
271 		    MTX_DEF | MTX_DUPOK);
272 	}
273 }
274 
275 /*
276  *	vm_page_startup:
277  *
278  *	Initializes the resident memory module.
279  *
280  *	Allocates memory for the page cells, and
281  *	for the object/offset-to-page hash table headers.
282  *	Each page cell is initialized and placed on the free list.
283  */
284 vm_offset_t
285 vm_page_startup(vm_offset_t vaddr)
286 {
287 	vm_offset_t mapped;
288 	vm_paddr_t page_range;
289 	vm_paddr_t new_end;
290 	int i;
291 	vm_paddr_t pa;
292 	vm_paddr_t last_pa;
293 	char *list;
294 	vm_paddr_t end;
295 	vm_paddr_t biggestsize;
296 	vm_paddr_t low_water, high_water;
297 	int biggestone;
298 
299 	biggestsize = 0;
300 	biggestone = 0;
301 	vaddr = round_page(vaddr);
302 
303 	for (i = 0; phys_avail[i + 1]; i += 2) {
304 		phys_avail[i] = round_page(phys_avail[i]);
305 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
306 	}
307 
308 #ifdef XEN
309 	/*
310 	 * There is no obvious reason why i386 PV Xen needs vm_page structs
311 	 * created for these pseudo-physical addresses.  XXX
312 	 */
313 	vm_phys_add_seg(0, phys_avail[0]);
314 #endif
315 
316 	low_water = phys_avail[0];
317 	high_water = phys_avail[1];
318 
319 	for (i = 0; i < vm_phys_nsegs; i++) {
320 		if (vm_phys_segs[i].start < low_water)
321 			low_water = vm_phys_segs[i].start;
322 		if (vm_phys_segs[i].end > high_water)
323 			high_water = vm_phys_segs[i].end;
324 	}
325 	for (i = 0; phys_avail[i + 1]; i += 2) {
326 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
327 
328 		if (size > biggestsize) {
329 			biggestone = i;
330 			biggestsize = size;
331 		}
332 		if (phys_avail[i] < low_water)
333 			low_water = phys_avail[i];
334 		if (phys_avail[i + 1] > high_water)
335 			high_water = phys_avail[i + 1];
336 	}
337 
338 	end = phys_avail[biggestone+1];
339 
340 	/*
341 	 * Initialize the page and queue locks.
342 	 */
343 	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
344 	for (i = 0; i < PA_LOCK_COUNT; i++)
345 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
346 	for (i = 0; i < vm_ndomains; i++)
347 		vm_page_domain_init(&vm_dom[i]);
348 
349 	/*
350 	 * Allocate memory for use when boot strapping the kernel memory
351 	 * allocator.
352 	 *
353 	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
354 	 * manually fetch the value.
355 	 */
356 	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
357 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
358 	new_end = trunc_page(new_end);
359 	mapped = pmap_map(&vaddr, new_end, end,
360 	    VM_PROT_READ | VM_PROT_WRITE);
361 	bzero((void *)mapped, end - new_end);
362 	uma_startup((void *)mapped, boot_pages);
363 
364 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
365     defined(__mips__)
366 	/*
367 	 * Allocate a bitmap to indicate that a random physical page
368 	 * needs to be included in a minidump.
369 	 *
370 	 * The amd64 port needs this to indicate which direct map pages
371 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
372 	 *
373 	 * However, i386 still needs this workspace internally within the
374 	 * minidump code.  In theory, they are not needed on i386, but are
375 	 * included should the sf_buf code decide to use them.
376 	 */
377 	last_pa = 0;
378 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
379 		if (dump_avail[i + 1] > last_pa)
380 			last_pa = dump_avail[i + 1];
381 	page_range = last_pa / PAGE_SIZE;
382 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
383 	new_end -= vm_page_dump_size;
384 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
385 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
386 	bzero((void *)vm_page_dump, vm_page_dump_size);
387 #endif
388 #ifdef __amd64__
389 	/*
390 	 * Request that the physical pages underlying the message buffer be
391 	 * included in a crash dump.  Since the message buffer is accessed
392 	 * through the direct map, they are not automatically included.
393 	 */
394 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
395 	last_pa = pa + round_page(msgbufsize);
396 	while (pa < last_pa) {
397 		dump_add_page(pa);
398 		pa += PAGE_SIZE;
399 	}
400 #endif
401 	/*
402 	 * Compute the number of pages of memory that will be available for
403 	 * use (taking into account the overhead of a page structure per
404 	 * page).
405 	 */
406 	first_page = low_water / PAGE_SIZE;
407 #ifdef VM_PHYSSEG_SPARSE
408 	page_range = 0;
409 	for (i = 0; i < vm_phys_nsegs; i++) {
410 		page_range += atop(vm_phys_segs[i].end -
411 		    vm_phys_segs[i].start);
412 	}
413 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
414 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
415 #elif defined(VM_PHYSSEG_DENSE)
416 	page_range = high_water / PAGE_SIZE - first_page;
417 #else
418 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
419 #endif
420 	end = new_end;
421 
422 	/*
423 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
424 	 */
425 	vaddr += PAGE_SIZE;
426 
427 	/*
428 	 * Initialize the mem entry structures now, and put them in the free
429 	 * queue.
430 	 */
431 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
432 	mapped = pmap_map(&vaddr, new_end, end,
433 	    VM_PROT_READ | VM_PROT_WRITE);
434 	vm_page_array = (vm_page_t) mapped;
435 #if VM_NRESERVLEVEL > 0
436 	/*
437 	 * Allocate memory for the reservation management system's data
438 	 * structures.
439 	 */
440 	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
441 #endif
442 #if defined(__amd64__) || defined(__mips__)
443 	/*
444 	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
445 	 * like i386, so the pages must be tracked for a crashdump to include
446 	 * this data.  This includes the vm_page_array and the early UMA
447 	 * bootstrap pages.
448 	 */
449 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
450 		dump_add_page(pa);
451 #endif
452 	phys_avail[biggestone + 1] = new_end;
453 
454 	/*
455 	 * Add physical memory segments corresponding to the available
456 	 * physical pages.
457 	 */
458 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
459 		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
460 
461 	/*
462 	 * Clear all of the page structures
463 	 */
464 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
465 	for (i = 0; i < page_range; i++)
466 		vm_page_array[i].order = VM_NFREEORDER;
467 	vm_page_array_size = page_range;
468 
469 	/*
470 	 * Initialize the physical memory allocator.
471 	 */
472 	vm_phys_init();
473 
474 	/*
475 	 * Add every available physical page that is not blacklisted to
476 	 * the free lists.
477 	 */
478 	vm_cnt.v_page_count = 0;
479 	vm_cnt.v_free_count = 0;
480 	list = kern_getenv("vm.blacklist");
481 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
482 		pa = phys_avail[i];
483 		last_pa = phys_avail[i + 1];
484 		while (pa < last_pa) {
485 			if (list != NULL &&
486 			    vm_page_blacklist_lookup(list, pa))
487 				printf("Skipping page with pa 0x%jx\n",
488 				    (uintmax_t)pa);
489 			else
490 				vm_phys_add_page(pa);
491 			pa += PAGE_SIZE;
492 		}
493 	}
494 	freeenv(list);
495 #if VM_NRESERVLEVEL > 0
496 	/*
497 	 * Initialize the reservation management system.
498 	 */
499 	vm_reserv_init();
500 #endif
501 	return (vaddr);
502 }
503 
504 void
505 vm_page_reference(vm_page_t m)
506 {
507 
508 	vm_page_aflag_set(m, PGA_REFERENCED);
509 }
510 
511 /*
512  *	vm_page_busy_downgrade:
513  *
514  *	Downgrade an exclusive busy page into a single shared busy page.
515  */
516 void
517 vm_page_busy_downgrade(vm_page_t m)
518 {
519 	u_int x;
520 
521 	vm_page_assert_xbusied(m);
522 
523 	for (;;) {
524 		x = m->busy_lock;
525 		x &= VPB_BIT_WAITERS;
526 		if (atomic_cmpset_rel_int(&m->busy_lock,
527 		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
528 			break;
529 	}
530 }
531 
532 /*
533  *	vm_page_sbusied:
534  *
535  *	Return a positive value if the page is shared busied, 0 otherwise.
536  */
537 int
538 vm_page_sbusied(vm_page_t m)
539 {
540 	u_int x;
541 
542 	x = m->busy_lock;
543 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
544 }
545 
546 /*
547  *	vm_page_sunbusy:
548  *
549  *	Shared unbusy a page.
550  */
551 void
552 vm_page_sunbusy(vm_page_t m)
553 {
554 	u_int x;
555 
556 	vm_page_assert_sbusied(m);
557 
558 	for (;;) {
559 		x = m->busy_lock;
560 		if (VPB_SHARERS(x) > 1) {
561 			if (atomic_cmpset_int(&m->busy_lock, x,
562 			    x - VPB_ONE_SHARER))
563 				break;
564 			continue;
565 		}
566 		if ((x & VPB_BIT_WAITERS) == 0) {
567 			KASSERT(x == VPB_SHARERS_WORD(1),
568 			    ("vm_page_sunbusy: invalid lock state"));
569 			if (atomic_cmpset_int(&m->busy_lock,
570 			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
571 				break;
572 			continue;
573 		}
574 		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
575 		    ("vm_page_sunbusy: invalid lock state for waiters"));
576 
577 		vm_page_lock(m);
578 		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
579 			vm_page_unlock(m);
580 			continue;
581 		}
582 		wakeup(m);
583 		vm_page_unlock(m);
584 		break;
585 	}
586 }
587 
588 /*
589  *	vm_page_busy_sleep:
590  *
591  *	Sleep and release the page lock, using the page pointer as wchan.
592  *	This is used to implement the hard-path of busying mechanism.
593  *
594  *	The given page must be locked.
595  */
596 void
597 vm_page_busy_sleep(vm_page_t m, const char *wmesg)
598 {
599 	u_int x;
600 
601 	vm_page_lock_assert(m, MA_OWNED);
602 
603 	x = m->busy_lock;
604 	if (x == VPB_UNBUSIED) {
605 		vm_page_unlock(m);
606 		return;
607 	}
608 	if ((x & VPB_BIT_WAITERS) == 0 &&
609 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
610 		vm_page_unlock(m);
611 		return;
612 	}
613 	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
614 }
615 
616 /*
617  *	vm_page_trysbusy:
618  *
619  *	Try to shared busy a page.
620  *	If the operation succeeds 1 is returned otherwise 0.
621  *	The operation never sleeps.
622  */
623 int
624 vm_page_trysbusy(vm_page_t m)
625 {
626 	u_int x;
627 
628 	for (;;) {
629 		x = m->busy_lock;
630 		if ((x & VPB_BIT_SHARED) == 0)
631 			return (0);
632 		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
633 			return (1);
634 	}
635 }
636 
637 /*
638  *	vm_page_xunbusy_hard:
639  *
640  *	Called after the first try the exclusive unbusy of a page failed.
641  *	It is assumed that the waiters bit is on.
642  */
643 void
644 vm_page_xunbusy_hard(vm_page_t m)
645 {
646 
647 	vm_page_assert_xbusied(m);
648 
649 	vm_page_lock(m);
650 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
651 	wakeup(m);
652 	vm_page_unlock(m);
653 }
654 
655 /*
656  *	vm_page_flash:
657  *
658  *	Wakeup anyone waiting for the page.
659  *	The ownership bits do not change.
660  *
661  *	The given page must be locked.
662  */
663 void
664 vm_page_flash(vm_page_t m)
665 {
666 	u_int x;
667 
668 	vm_page_lock_assert(m, MA_OWNED);
669 
670 	for (;;) {
671 		x = m->busy_lock;
672 		if ((x & VPB_BIT_WAITERS) == 0)
673 			return;
674 		if (atomic_cmpset_int(&m->busy_lock, x,
675 		    x & (~VPB_BIT_WAITERS)))
676 			break;
677 	}
678 	wakeup(m);
679 }
680 
681 /*
682  * Keep page from being freed by the page daemon
683  * much of the same effect as wiring, except much lower
684  * overhead and should be used only for *very* temporary
685  * holding ("wiring").
686  */
687 void
688 vm_page_hold(vm_page_t mem)
689 {
690 
691 	vm_page_lock_assert(mem, MA_OWNED);
692         mem->hold_count++;
693 }
694 
695 void
696 vm_page_unhold(vm_page_t mem)
697 {
698 
699 	vm_page_lock_assert(mem, MA_OWNED);
700 	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
701 	--mem->hold_count;
702 	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
703 		vm_page_free_toq(mem);
704 }
705 
706 /*
707  *	vm_page_unhold_pages:
708  *
709  *	Unhold each of the pages that is referenced by the given array.
710  */
711 void
712 vm_page_unhold_pages(vm_page_t *ma, int count)
713 {
714 	struct mtx *mtx, *new_mtx;
715 
716 	mtx = NULL;
717 	for (; count != 0; count--) {
718 		/*
719 		 * Avoid releasing and reacquiring the same page lock.
720 		 */
721 		new_mtx = vm_page_lockptr(*ma);
722 		if (mtx != new_mtx) {
723 			if (mtx != NULL)
724 				mtx_unlock(mtx);
725 			mtx = new_mtx;
726 			mtx_lock(mtx);
727 		}
728 		vm_page_unhold(*ma);
729 		ma++;
730 	}
731 	if (mtx != NULL)
732 		mtx_unlock(mtx);
733 }
734 
735 vm_page_t
736 PHYS_TO_VM_PAGE(vm_paddr_t pa)
737 {
738 	vm_page_t m;
739 
740 #ifdef VM_PHYSSEG_SPARSE
741 	m = vm_phys_paddr_to_vm_page(pa);
742 	if (m == NULL)
743 		m = vm_phys_fictitious_to_vm_page(pa);
744 	return (m);
745 #elif defined(VM_PHYSSEG_DENSE)
746 	long pi;
747 
748 	pi = atop(pa);
749 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
750 		m = &vm_page_array[pi - first_page];
751 		return (m);
752 	}
753 	return (vm_phys_fictitious_to_vm_page(pa));
754 #else
755 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
756 #endif
757 }
758 
759 /*
760  *	vm_page_getfake:
761  *
762  *	Create a fictitious page with the specified physical address and
763  *	memory attribute.  The memory attribute is the only the machine-
764  *	dependent aspect of a fictitious page that must be initialized.
765  */
766 vm_page_t
767 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
768 {
769 	vm_page_t m;
770 
771 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
772 	vm_page_initfake(m, paddr, memattr);
773 	return (m);
774 }
775 
776 void
777 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
778 {
779 
780 	if ((m->flags & PG_FICTITIOUS) != 0) {
781 		/*
782 		 * The page's memattr might have changed since the
783 		 * previous initialization.  Update the pmap to the
784 		 * new memattr.
785 		 */
786 		goto memattr;
787 	}
788 	m->phys_addr = paddr;
789 	m->queue = PQ_NONE;
790 	/* Fictitious pages don't use "segind". */
791 	m->flags = PG_FICTITIOUS;
792 	/* Fictitious pages don't use "order" or "pool". */
793 	m->oflags = VPO_UNMANAGED;
794 	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
795 	m->wire_count = 1;
796 	pmap_page_init(m);
797 memattr:
798 	pmap_page_set_memattr(m, memattr);
799 }
800 
801 /*
802  *	vm_page_putfake:
803  *
804  *	Release a fictitious page.
805  */
806 void
807 vm_page_putfake(vm_page_t m)
808 {
809 
810 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
811 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
812 	    ("vm_page_putfake: bad page %p", m));
813 	uma_zfree(fakepg_zone, m);
814 }
815 
816 /*
817  *	vm_page_updatefake:
818  *
819  *	Update the given fictitious page to the specified physical address and
820  *	memory attribute.
821  */
822 void
823 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
824 {
825 
826 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
827 	    ("vm_page_updatefake: bad page %p", m));
828 	m->phys_addr = paddr;
829 	pmap_page_set_memattr(m, memattr);
830 }
831 
832 /*
833  *	vm_page_free:
834  *
835  *	Free a page.
836  */
837 void
838 vm_page_free(vm_page_t m)
839 {
840 
841 	m->flags &= ~PG_ZERO;
842 	vm_page_free_toq(m);
843 }
844 
845 /*
846  *	vm_page_free_zero:
847  *
848  *	Free a page to the zerod-pages queue
849  */
850 void
851 vm_page_free_zero(vm_page_t m)
852 {
853 
854 	m->flags |= PG_ZERO;
855 	vm_page_free_toq(m);
856 }
857 
858 /*
859  * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
860  * array which is not the request page.
861  */
862 void
863 vm_page_readahead_finish(vm_page_t m)
864 {
865 
866 	if (m->valid != 0) {
867 		/*
868 		 * Since the page is not the requested page, whether
869 		 * it should be activated or deactivated is not
870 		 * obvious.  Empirical results have shown that
871 		 * deactivating the page is usually the best choice,
872 		 * unless the page is wanted by another thread.
873 		 */
874 		vm_page_lock(m);
875 		if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
876 			vm_page_activate(m);
877 		else
878 			vm_page_deactivate(m);
879 		vm_page_unlock(m);
880 		vm_page_xunbusy(m);
881 	} else {
882 		/*
883 		 * Free the completely invalid page.  Such page state
884 		 * occurs due to the short read operation which did
885 		 * not covered our page at all, or in case when a read
886 		 * error happens.
887 		 */
888 		vm_page_lock(m);
889 		vm_page_free(m);
890 		vm_page_unlock(m);
891 	}
892 }
893 
894 /*
895  *	vm_page_sleep_if_busy:
896  *
897  *	Sleep and release the page queues lock if the page is busied.
898  *	Returns TRUE if the thread slept.
899  *
900  *	The given page must be unlocked and object containing it must
901  *	be locked.
902  */
903 int
904 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
905 {
906 	vm_object_t obj;
907 
908 	vm_page_lock_assert(m, MA_NOTOWNED);
909 	VM_OBJECT_ASSERT_WLOCKED(m->object);
910 
911 	if (vm_page_busied(m)) {
912 		/*
913 		 * The page-specific object must be cached because page
914 		 * identity can change during the sleep, causing the
915 		 * re-lock of a different object.
916 		 * It is assumed that a reference to the object is already
917 		 * held by the callers.
918 		 */
919 		obj = m->object;
920 		vm_page_lock(m);
921 		VM_OBJECT_WUNLOCK(obj);
922 		vm_page_busy_sleep(m, msg);
923 		VM_OBJECT_WLOCK(obj);
924 		return (TRUE);
925 	}
926 	return (FALSE);
927 }
928 
929 /*
930  *	vm_page_dirty_KBI:		[ internal use only ]
931  *
932  *	Set all bits in the page's dirty field.
933  *
934  *	The object containing the specified page must be locked if the
935  *	call is made from the machine-independent layer.
936  *
937  *	See vm_page_clear_dirty_mask().
938  *
939  *	This function should only be called by vm_page_dirty().
940  */
941 void
942 vm_page_dirty_KBI(vm_page_t m)
943 {
944 
945 	/* These assertions refer to this operation by its public name. */
946 	KASSERT((m->flags & PG_CACHED) == 0,
947 	    ("vm_page_dirty: page in cache!"));
948 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
949 	    ("vm_page_dirty: page is invalid!"));
950 	m->dirty = VM_PAGE_BITS_ALL;
951 }
952 
953 /*
954  *	vm_page_insert:		[ internal use only ]
955  *
956  *	Inserts the given mem entry into the object and object list.
957  *
958  *	The object must be locked.
959  */
960 int
961 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
962 {
963 	vm_page_t mpred;
964 
965 	VM_OBJECT_ASSERT_WLOCKED(object);
966 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
967 	return (vm_page_insert_after(m, object, pindex, mpred));
968 }
969 
970 /*
971  *	vm_page_insert_after:
972  *
973  *	Inserts the page "m" into the specified object at offset "pindex".
974  *
975  *	The page "mpred" must immediately precede the offset "pindex" within
976  *	the specified object.
977  *
978  *	The object must be locked.
979  */
980 static int
981 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
982     vm_page_t mpred)
983 {
984 	vm_pindex_t sidx;
985 	vm_object_t sobj;
986 	vm_page_t msucc;
987 
988 	VM_OBJECT_ASSERT_WLOCKED(object);
989 	KASSERT(m->object == NULL,
990 	    ("vm_page_insert_after: page already inserted"));
991 	if (mpred != NULL) {
992 		KASSERT(mpred->object == object,
993 		    ("vm_page_insert_after: object doesn't contain mpred"));
994 		KASSERT(mpred->pindex < pindex,
995 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
996 		msucc = TAILQ_NEXT(mpred, listq);
997 	} else
998 		msucc = TAILQ_FIRST(&object->memq);
999 	if (msucc != NULL)
1000 		KASSERT(msucc->pindex > pindex,
1001 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1002 
1003 	/*
1004 	 * Record the object/offset pair in this page
1005 	 */
1006 	sobj = m->object;
1007 	sidx = m->pindex;
1008 	m->object = object;
1009 	m->pindex = pindex;
1010 
1011 	/*
1012 	 * Now link into the object's ordered list of backed pages.
1013 	 */
1014 	if (vm_radix_insert(&object->rtree, m)) {
1015 		m->object = sobj;
1016 		m->pindex = sidx;
1017 		return (1);
1018 	}
1019 	vm_page_insert_radixdone(m, object, mpred);
1020 	return (0);
1021 }
1022 
1023 /*
1024  *	vm_page_insert_radixdone:
1025  *
1026  *	Complete page "m" insertion into the specified object after the
1027  *	radix trie hooking.
1028  *
1029  *	The page "mpred" must precede the offset "m->pindex" within the
1030  *	specified object.
1031  *
1032  *	The object must be locked.
1033  */
1034 static void
1035 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1036 {
1037 
1038 	VM_OBJECT_ASSERT_WLOCKED(object);
1039 	KASSERT(object != NULL && m->object == object,
1040 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1041 	if (mpred != NULL) {
1042 		KASSERT(mpred->object == object,
1043 		    ("vm_page_insert_after: object doesn't contain mpred"));
1044 		KASSERT(mpred->pindex < m->pindex,
1045 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1046 	}
1047 
1048 	if (mpred != NULL)
1049 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1050 	else
1051 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1052 
1053 	/*
1054 	 * Show that the object has one more resident page.
1055 	 */
1056 	object->resident_page_count++;
1057 
1058 	/*
1059 	 * Hold the vnode until the last page is released.
1060 	 */
1061 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1062 		vhold(object->handle);
1063 
1064 	/*
1065 	 * Since we are inserting a new and possibly dirty page,
1066 	 * update the object's OBJ_MIGHTBEDIRTY flag.
1067 	 */
1068 	if (pmap_page_is_write_mapped(m))
1069 		vm_object_set_writeable_dirty(object);
1070 }
1071 
1072 /*
1073  *	vm_page_remove:
1074  *
1075  *	Removes the given mem entry from the object/offset-page
1076  *	table and the object page list, but do not invalidate/terminate
1077  *	the backing store.
1078  *
1079  *	The object must be locked.  The page must be locked if it is managed.
1080  */
1081 void
1082 vm_page_remove(vm_page_t m)
1083 {
1084 	vm_object_t object;
1085 	boolean_t lockacq;
1086 
1087 	if ((m->oflags & VPO_UNMANAGED) == 0)
1088 		vm_page_lock_assert(m, MA_OWNED);
1089 	if ((object = m->object) == NULL)
1090 		return;
1091 	VM_OBJECT_ASSERT_WLOCKED(object);
1092 	if (vm_page_xbusied(m)) {
1093 		lockacq = FALSE;
1094 		if ((m->oflags & VPO_UNMANAGED) != 0 &&
1095 		    !mtx_owned(vm_page_lockptr(m))) {
1096 			lockacq = TRUE;
1097 			vm_page_lock(m);
1098 		}
1099 		vm_page_flash(m);
1100 		atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1101 		if (lockacq)
1102 			vm_page_unlock(m);
1103 	}
1104 
1105 	/*
1106 	 * Now remove from the object's list of backed pages.
1107 	 */
1108 	vm_radix_remove(&object->rtree, m->pindex);
1109 	TAILQ_REMOVE(&object->memq, m, listq);
1110 
1111 	/*
1112 	 * And show that the object has one fewer resident page.
1113 	 */
1114 	object->resident_page_count--;
1115 
1116 	/*
1117 	 * The vnode may now be recycled.
1118 	 */
1119 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1120 		vdrop(object->handle);
1121 
1122 	m->object = NULL;
1123 }
1124 
1125 /*
1126  *	vm_page_lookup:
1127  *
1128  *	Returns the page associated with the object/offset
1129  *	pair specified; if none is found, NULL is returned.
1130  *
1131  *	The object must be locked.
1132  */
1133 vm_page_t
1134 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1135 {
1136 
1137 	VM_OBJECT_ASSERT_LOCKED(object);
1138 	return (vm_radix_lookup(&object->rtree, pindex));
1139 }
1140 
1141 /*
1142  *	vm_page_find_least:
1143  *
1144  *	Returns the page associated with the object with least pindex
1145  *	greater than or equal to the parameter pindex, or NULL.
1146  *
1147  *	The object must be locked.
1148  */
1149 vm_page_t
1150 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1151 {
1152 	vm_page_t m;
1153 
1154 	VM_OBJECT_ASSERT_LOCKED(object);
1155 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1156 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1157 	return (m);
1158 }
1159 
1160 /*
1161  * Returns the given page's successor (by pindex) within the object if it is
1162  * resident; if none is found, NULL is returned.
1163  *
1164  * The object must be locked.
1165  */
1166 vm_page_t
1167 vm_page_next(vm_page_t m)
1168 {
1169 	vm_page_t next;
1170 
1171 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1172 	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1173 	    next->pindex != m->pindex + 1)
1174 		next = NULL;
1175 	return (next);
1176 }
1177 
1178 /*
1179  * Returns the given page's predecessor (by pindex) within the object if it is
1180  * resident; if none is found, NULL is returned.
1181  *
1182  * The object must be locked.
1183  */
1184 vm_page_t
1185 vm_page_prev(vm_page_t m)
1186 {
1187 	vm_page_t prev;
1188 
1189 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1190 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1191 	    prev->pindex != m->pindex - 1)
1192 		prev = NULL;
1193 	return (prev);
1194 }
1195 
1196 /*
1197  * Uses the page mnew as a replacement for an existing page at index
1198  * pindex which must be already present in the object.
1199  *
1200  * The existing page must not be on a paging queue.
1201  */
1202 vm_page_t
1203 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1204 {
1205 	vm_page_t mold, mpred;
1206 
1207 	VM_OBJECT_ASSERT_WLOCKED(object);
1208 
1209 	/*
1210 	 * This function mostly follows vm_page_insert() and
1211 	 * vm_page_remove() without the radix, object count and vnode
1212 	 * dance.  Double check such functions for more comments.
1213 	 */
1214 	mpred = vm_radix_lookup(&object->rtree, pindex);
1215 	KASSERT(mpred != NULL,
1216 	    ("vm_page_replace: replacing page not present with pindex"));
1217 	mpred = TAILQ_PREV(mpred, respgs, listq);
1218 	if (mpred != NULL)
1219 		KASSERT(mpred->pindex < pindex,
1220 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1221 
1222 	mnew->object = object;
1223 	mnew->pindex = pindex;
1224 	mold = vm_radix_replace(&object->rtree, mnew);
1225 	KASSERT(mold->queue == PQ_NONE,
1226 	    ("vm_page_replace: mold is on a paging queue"));
1227 
1228 	/* Detach the old page from the resident tailq. */
1229 	TAILQ_REMOVE(&object->memq, mold, listq);
1230 
1231 	mold->object = NULL;
1232 	vm_page_xunbusy(mold);
1233 
1234 	/* Insert the new page in the resident tailq. */
1235 	if (mpred != NULL)
1236 		TAILQ_INSERT_AFTER(&object->memq, mpred, mnew, listq);
1237 	else
1238 		TAILQ_INSERT_HEAD(&object->memq, mnew, listq);
1239 	if (pmap_page_is_write_mapped(mnew))
1240 		vm_object_set_writeable_dirty(object);
1241 	return (mold);
1242 }
1243 
1244 /*
1245  *	vm_page_rename:
1246  *
1247  *	Move the given memory entry from its
1248  *	current object to the specified target object/offset.
1249  *
1250  *	Note: swap associated with the page must be invalidated by the move.  We
1251  *	      have to do this for several reasons:  (1) we aren't freeing the
1252  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1253  *	      moving the page from object A to B, and will then later move
1254  *	      the backing store from A to B and we can't have a conflict.
1255  *
1256  *	Note: we *always* dirty the page.  It is necessary both for the
1257  *	      fact that we moved it, and because we may be invalidating
1258  *	      swap.  If the page is on the cache, we have to deactivate it
1259  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1260  *	      on the cache.
1261  *
1262  *	The objects must be locked.
1263  */
1264 int
1265 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1266 {
1267 	vm_page_t mpred;
1268 	vm_pindex_t opidx;
1269 
1270 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1271 
1272 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1273 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1274 	    ("vm_page_rename: pindex already renamed"));
1275 
1276 	/*
1277 	 * Create a custom version of vm_page_insert() which does not depend
1278 	 * by m_prev and can cheat on the implementation aspects of the
1279 	 * function.
1280 	 */
1281 	opidx = m->pindex;
1282 	m->pindex = new_pindex;
1283 	if (vm_radix_insert(&new_object->rtree, m)) {
1284 		m->pindex = opidx;
1285 		return (1);
1286 	}
1287 
1288 	/*
1289 	 * The operation cannot fail anymore.  The removal must happen before
1290 	 * the listq iterator is tainted.
1291 	 */
1292 	m->pindex = opidx;
1293 	vm_page_lock(m);
1294 	vm_page_remove(m);
1295 
1296 	/* Return back to the new pindex to complete vm_page_insert(). */
1297 	m->pindex = new_pindex;
1298 	m->object = new_object;
1299 	vm_page_unlock(m);
1300 	vm_page_insert_radixdone(m, new_object, mpred);
1301 	vm_page_dirty(m);
1302 	return (0);
1303 }
1304 
1305 /*
1306  *	Convert all of the given object's cached pages that have a
1307  *	pindex within the given range into free pages.  If the value
1308  *	zero is given for "end", then the range's upper bound is
1309  *	infinity.  If the given object is backed by a vnode and it
1310  *	transitions from having one or more cached pages to none, the
1311  *	vnode's hold count is reduced.
1312  */
1313 void
1314 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1315 {
1316 	vm_page_t m;
1317 	boolean_t empty;
1318 
1319 	mtx_lock(&vm_page_queue_free_mtx);
1320 	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1321 		mtx_unlock(&vm_page_queue_free_mtx);
1322 		return;
1323 	}
1324 	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1325 		if (end != 0 && m->pindex >= end)
1326 			break;
1327 		vm_radix_remove(&object->cache, m->pindex);
1328 		vm_page_cache_turn_free(m);
1329 	}
1330 	empty = vm_radix_is_empty(&object->cache);
1331 	mtx_unlock(&vm_page_queue_free_mtx);
1332 	if (object->type == OBJT_VNODE && empty)
1333 		vdrop(object->handle);
1334 }
1335 
1336 /*
1337  *	Returns the cached page that is associated with the given
1338  *	object and offset.  If, however, none exists, returns NULL.
1339  *
1340  *	The free page queue must be locked.
1341  */
1342 static inline vm_page_t
1343 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1344 {
1345 
1346 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1347 	return (vm_radix_lookup(&object->cache, pindex));
1348 }
1349 
1350 /*
1351  *	Remove the given cached page from its containing object's
1352  *	collection of cached pages.
1353  *
1354  *	The free page queue must be locked.
1355  */
1356 static void
1357 vm_page_cache_remove(vm_page_t m)
1358 {
1359 
1360 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1361 	KASSERT((m->flags & PG_CACHED) != 0,
1362 	    ("vm_page_cache_remove: page %p is not cached", m));
1363 	vm_radix_remove(&m->object->cache, m->pindex);
1364 	m->object = NULL;
1365 	vm_cnt.v_cache_count--;
1366 }
1367 
1368 /*
1369  *	Transfer all of the cached pages with offset greater than or
1370  *	equal to 'offidxstart' from the original object's cache to the
1371  *	new object's cache.  However, any cached pages with offset
1372  *	greater than or equal to the new object's size are kept in the
1373  *	original object.  Initially, the new object's cache must be
1374  *	empty.  Offset 'offidxstart' in the original object must
1375  *	correspond to offset zero in the new object.
1376  *
1377  *	The new object must be locked.
1378  */
1379 void
1380 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1381     vm_object_t new_object)
1382 {
1383 	vm_page_t m;
1384 
1385 	/*
1386 	 * Insertion into an object's collection of cached pages
1387 	 * requires the object to be locked.  In contrast, removal does
1388 	 * not.
1389 	 */
1390 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1391 	KASSERT(vm_radix_is_empty(&new_object->cache),
1392 	    ("vm_page_cache_transfer: object %p has cached pages",
1393 	    new_object));
1394 	mtx_lock(&vm_page_queue_free_mtx);
1395 	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1396 	    offidxstart)) != NULL) {
1397 		/*
1398 		 * Transfer all of the pages with offset greater than or
1399 		 * equal to 'offidxstart' from the original object's
1400 		 * cache to the new object's cache.
1401 		 */
1402 		if ((m->pindex - offidxstart) >= new_object->size)
1403 			break;
1404 		vm_radix_remove(&orig_object->cache, m->pindex);
1405 		/* Update the page's object and offset. */
1406 		m->object = new_object;
1407 		m->pindex -= offidxstart;
1408 		if (vm_radix_insert(&new_object->cache, m))
1409 			vm_page_cache_turn_free(m);
1410 	}
1411 	mtx_unlock(&vm_page_queue_free_mtx);
1412 }
1413 
1414 /*
1415  *	Returns TRUE if a cached page is associated with the given object and
1416  *	offset, and FALSE otherwise.
1417  *
1418  *	The object must be locked.
1419  */
1420 boolean_t
1421 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1422 {
1423 	vm_page_t m;
1424 
1425 	/*
1426 	 * Insertion into an object's collection of cached pages requires the
1427 	 * object to be locked.  Therefore, if the object is locked and the
1428 	 * object's collection is empty, there is no need to acquire the free
1429 	 * page queues lock in order to prove that the specified page doesn't
1430 	 * exist.
1431 	 */
1432 	VM_OBJECT_ASSERT_WLOCKED(object);
1433 	if (__predict_true(vm_object_cache_is_empty(object)))
1434 		return (FALSE);
1435 	mtx_lock(&vm_page_queue_free_mtx);
1436 	m = vm_page_cache_lookup(object, pindex);
1437 	mtx_unlock(&vm_page_queue_free_mtx);
1438 	return (m != NULL);
1439 }
1440 
1441 /*
1442  *	vm_page_alloc:
1443  *
1444  *	Allocate and return a page that is associated with the specified
1445  *	object and offset pair.  By default, this page is exclusive busied.
1446  *
1447  *	The caller must always specify an allocation class.
1448  *
1449  *	allocation classes:
1450  *	VM_ALLOC_NORMAL		normal process request
1451  *	VM_ALLOC_SYSTEM		system *really* needs a page
1452  *	VM_ALLOC_INTERRUPT	interrupt time request
1453  *
1454  *	optional allocation flags:
1455  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1456  *				intends to allocate
1457  *	VM_ALLOC_IFCACHED	return page only if it is cached
1458  *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1459  *				is cached
1460  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1461  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1462  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1463  *				should not be exclusive busy
1464  *	VM_ALLOC_SBUSY		shared busy the allocated page
1465  *	VM_ALLOC_WIRED		wire the allocated page
1466  *	VM_ALLOC_ZERO		prefer a zeroed page
1467  *
1468  *	This routine may not sleep.
1469  */
1470 vm_page_t
1471 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1472 {
1473 	struct vnode *vp = NULL;
1474 	vm_object_t m_object;
1475 	vm_page_t m, mpred;
1476 	int flags, req_class;
1477 
1478 	mpred = 0;	/* XXX: pacify gcc */
1479 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1480 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1481 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1482 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1483 	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1484 	    req));
1485 	if (object != NULL)
1486 		VM_OBJECT_ASSERT_WLOCKED(object);
1487 
1488 	req_class = req & VM_ALLOC_CLASS_MASK;
1489 
1490 	/*
1491 	 * The page daemon is allowed to dig deeper into the free page list.
1492 	 */
1493 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1494 		req_class = VM_ALLOC_SYSTEM;
1495 
1496 	if (object != NULL) {
1497 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1498 		KASSERT(mpred == NULL || mpred->pindex != pindex,
1499 		   ("vm_page_alloc: pindex already allocated"));
1500 	}
1501 
1502 	/*
1503 	 * The page allocation request can came from consumers which already
1504 	 * hold the free page queue mutex, like vm_page_insert() in
1505 	 * vm_page_cache().
1506 	 */
1507 	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1508 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1509 	    (req_class == VM_ALLOC_SYSTEM &&
1510 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1511 	    (req_class == VM_ALLOC_INTERRUPT &&
1512 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) {
1513 		/*
1514 		 * Allocate from the free queue if the number of free pages
1515 		 * exceeds the minimum for the request class.
1516 		 */
1517 		if (object != NULL &&
1518 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1519 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1520 				mtx_unlock(&vm_page_queue_free_mtx);
1521 				return (NULL);
1522 			}
1523 			if (vm_phys_unfree_page(m))
1524 				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1525 #if VM_NRESERVLEVEL > 0
1526 			else if (!vm_reserv_reactivate_page(m))
1527 #else
1528 			else
1529 #endif
1530 				panic("vm_page_alloc: cache page %p is missing"
1531 				    " from the free queue", m);
1532 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1533 			mtx_unlock(&vm_page_queue_free_mtx);
1534 			return (NULL);
1535 #if VM_NRESERVLEVEL > 0
1536 		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1537 		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1538 		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1539 #else
1540 		} else {
1541 #endif
1542 			m = vm_phys_alloc_pages(object != NULL ?
1543 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1544 #if VM_NRESERVLEVEL > 0
1545 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1546 				m = vm_phys_alloc_pages(object != NULL ?
1547 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1548 				    0);
1549 			}
1550 #endif
1551 		}
1552 	} else {
1553 		/*
1554 		 * Not allocatable, give up.
1555 		 */
1556 		mtx_unlock(&vm_page_queue_free_mtx);
1557 		atomic_add_int(&vm_pageout_deficit,
1558 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1559 		pagedaemon_wakeup();
1560 		return (NULL);
1561 	}
1562 
1563 	/*
1564 	 *  At this point we had better have found a good page.
1565 	 */
1566 	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1567 	KASSERT(m->queue == PQ_NONE,
1568 	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1569 	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1570 	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1571 	KASSERT(!vm_page_sbusied(m),
1572 	    ("vm_page_alloc: page %p is busy", m));
1573 	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1574 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1575 	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1576 	    pmap_page_get_memattr(m)));
1577 	if ((m->flags & PG_CACHED) != 0) {
1578 		KASSERT((m->flags & PG_ZERO) == 0,
1579 		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1580 		KASSERT(m->valid != 0,
1581 		    ("vm_page_alloc: cached page %p is invalid", m));
1582 		if (m->object == object && m->pindex == pindex)
1583 			vm_cnt.v_reactivated++;
1584 		else
1585 			m->valid = 0;
1586 		m_object = m->object;
1587 		vm_page_cache_remove(m);
1588 		if (m_object->type == OBJT_VNODE &&
1589 		    vm_object_cache_is_empty(m_object))
1590 			vp = m_object->handle;
1591 	} else {
1592 		KASSERT(m->valid == 0,
1593 		    ("vm_page_alloc: free page %p is valid", m));
1594 		vm_phys_freecnt_adj(m, -1);
1595 		if ((m->flags & PG_ZERO) != 0)
1596 			vm_page_zero_count--;
1597 	}
1598 	mtx_unlock(&vm_page_queue_free_mtx);
1599 
1600 	/*
1601 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1602 	 */
1603 	flags = 0;
1604 	if ((req & VM_ALLOC_ZERO) != 0)
1605 		flags = PG_ZERO;
1606 	flags &= m->flags;
1607 	if ((req & VM_ALLOC_NODUMP) != 0)
1608 		flags |= PG_NODUMP;
1609 	m->flags = flags;
1610 	m->aflags = 0;
1611 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1612 	    VPO_UNMANAGED : 0;
1613 	m->busy_lock = VPB_UNBUSIED;
1614 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1615 		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1616 	if ((req & VM_ALLOC_SBUSY) != 0)
1617 		m->busy_lock = VPB_SHARERS_WORD(1);
1618 	if (req & VM_ALLOC_WIRED) {
1619 		/*
1620 		 * The page lock is not required for wiring a page until that
1621 		 * page is inserted into the object.
1622 		 */
1623 		atomic_add_int(&vm_cnt.v_wire_count, 1);
1624 		m->wire_count = 1;
1625 	}
1626 	m->act_count = 0;
1627 
1628 	if (object != NULL) {
1629 		if (vm_page_insert_after(m, object, pindex, mpred)) {
1630 			/* See the comment below about hold count. */
1631 			if (vp != NULL)
1632 				vdrop(vp);
1633 			pagedaemon_wakeup();
1634 			if (req & VM_ALLOC_WIRED) {
1635 				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1636 				m->wire_count = 0;
1637 			}
1638 			m->object = NULL;
1639 			vm_page_free(m);
1640 			return (NULL);
1641 		}
1642 
1643 		/* Ignore device objects; the pager sets "memattr" for them. */
1644 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1645 		    (object->flags & OBJ_FICTITIOUS) == 0)
1646 			pmap_page_set_memattr(m, object->memattr);
1647 	} else
1648 		m->pindex = pindex;
1649 
1650 	/*
1651 	 * The following call to vdrop() must come after the above call
1652 	 * to vm_page_insert() in case both affect the same object and
1653 	 * vnode.  Otherwise, the affected vnode's hold count could
1654 	 * temporarily become zero.
1655 	 */
1656 	if (vp != NULL)
1657 		vdrop(vp);
1658 
1659 	/*
1660 	 * Don't wakeup too often - wakeup the pageout daemon when
1661 	 * we would be nearly out of memory.
1662 	 */
1663 	if (vm_paging_needed())
1664 		pagedaemon_wakeup();
1665 
1666 	return (m);
1667 }
1668 
1669 static void
1670 vm_page_alloc_contig_vdrop(struct spglist *lst)
1671 {
1672 
1673 	while (!SLIST_EMPTY(lst)) {
1674 		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1675 		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1676 	}
1677 }
1678 
1679 /*
1680  *	vm_page_alloc_contig:
1681  *
1682  *	Allocate a contiguous set of physical pages of the given size "npages"
1683  *	from the free lists.  All of the physical pages must be at or above
1684  *	the given physical address "low" and below the given physical address
1685  *	"high".  The given value "alignment" determines the alignment of the
1686  *	first physical page in the set.  If the given value "boundary" is
1687  *	non-zero, then the set of physical pages cannot cross any physical
1688  *	address boundary that is a multiple of that value.  Both "alignment"
1689  *	and "boundary" must be a power of two.
1690  *
1691  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1692  *	then the memory attribute setting for the physical pages is configured
1693  *	to the object's memory attribute setting.  Otherwise, the memory
1694  *	attribute setting for the physical pages is configured to "memattr",
1695  *	overriding the object's memory attribute setting.  However, if the
1696  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1697  *	memory attribute setting for the physical pages cannot be configured
1698  *	to VM_MEMATTR_DEFAULT.
1699  *
1700  *	The caller must always specify an allocation class.
1701  *
1702  *	allocation classes:
1703  *	VM_ALLOC_NORMAL		normal process request
1704  *	VM_ALLOC_SYSTEM		system *really* needs a page
1705  *	VM_ALLOC_INTERRUPT	interrupt time request
1706  *
1707  *	optional allocation flags:
1708  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1709  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1710  *				should not be exclusive busy
1711  *	VM_ALLOC_SBUSY		shared busy the allocated page
1712  *	VM_ALLOC_WIRED		wire the allocated page
1713  *	VM_ALLOC_ZERO		prefer a zeroed page
1714  *
1715  *	This routine may not sleep.
1716  */
1717 vm_page_t
1718 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1719     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1720     vm_paddr_t boundary, vm_memattr_t memattr)
1721 {
1722 	struct vnode *drop;
1723 	struct spglist deferred_vdrop_list;
1724 	vm_page_t m, m_tmp, m_ret;
1725 	u_int flags;
1726 	int req_class;
1727 
1728 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1729 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1730 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1731 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1732 	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1733 	    req));
1734 	if (object != NULL) {
1735 		VM_OBJECT_ASSERT_WLOCKED(object);
1736 		KASSERT(object->type == OBJT_PHYS,
1737 		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1738 		    object));
1739 	}
1740 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1741 	req_class = req & VM_ALLOC_CLASS_MASK;
1742 
1743 	/*
1744 	 * The page daemon is allowed to dig deeper into the free page list.
1745 	 */
1746 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1747 		req_class = VM_ALLOC_SYSTEM;
1748 
1749 	SLIST_INIT(&deferred_vdrop_list);
1750 	mtx_lock(&vm_page_queue_free_mtx);
1751 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1752 	    vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1753 	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1754 	    vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1755 	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) {
1756 #if VM_NRESERVLEVEL > 0
1757 retry:
1758 		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1759 		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1760 		    low, high, alignment, boundary)) == NULL)
1761 #endif
1762 			m_ret = vm_phys_alloc_contig(npages, low, high,
1763 			    alignment, boundary);
1764 	} else {
1765 		mtx_unlock(&vm_page_queue_free_mtx);
1766 		atomic_add_int(&vm_pageout_deficit, npages);
1767 		pagedaemon_wakeup();
1768 		return (NULL);
1769 	}
1770 	if (m_ret != NULL)
1771 		for (m = m_ret; m < &m_ret[npages]; m++) {
1772 			drop = vm_page_alloc_init(m);
1773 			if (drop != NULL) {
1774 				/*
1775 				 * Enqueue the vnode for deferred vdrop().
1776 				 */
1777 				m->plinks.s.pv = drop;
1778 				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1779 				    plinks.s.ss);
1780 			}
1781 		}
1782 	else {
1783 #if VM_NRESERVLEVEL > 0
1784 		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1785 		    boundary))
1786 			goto retry;
1787 #endif
1788 	}
1789 	mtx_unlock(&vm_page_queue_free_mtx);
1790 	if (m_ret == NULL)
1791 		return (NULL);
1792 
1793 	/*
1794 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1795 	 */
1796 	flags = 0;
1797 	if ((req & VM_ALLOC_ZERO) != 0)
1798 		flags = PG_ZERO;
1799 	if ((req & VM_ALLOC_NODUMP) != 0)
1800 		flags |= PG_NODUMP;
1801 	if ((req & VM_ALLOC_WIRED) != 0)
1802 		atomic_add_int(&vm_cnt.v_wire_count, npages);
1803 	if (object != NULL) {
1804 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1805 		    memattr == VM_MEMATTR_DEFAULT)
1806 			memattr = object->memattr;
1807 	}
1808 	for (m = m_ret; m < &m_ret[npages]; m++) {
1809 		m->aflags = 0;
1810 		m->flags = (m->flags | PG_NODUMP) & flags;
1811 		m->busy_lock = VPB_UNBUSIED;
1812 		if (object != NULL) {
1813 			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1814 				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1815 			if ((req & VM_ALLOC_SBUSY) != 0)
1816 				m->busy_lock = VPB_SHARERS_WORD(1);
1817 		}
1818 		if ((req & VM_ALLOC_WIRED) != 0)
1819 			m->wire_count = 1;
1820 		/* Unmanaged pages don't use "act_count". */
1821 		m->oflags = VPO_UNMANAGED;
1822 		if (object != NULL) {
1823 			if (vm_page_insert(m, object, pindex)) {
1824 				vm_page_alloc_contig_vdrop(
1825 				    &deferred_vdrop_list);
1826 				if (vm_paging_needed())
1827 					pagedaemon_wakeup();
1828 				if ((req & VM_ALLOC_WIRED) != 0)
1829 					atomic_subtract_int(&vm_cnt.v_wire_count,
1830 					    npages);
1831 				for (m_tmp = m, m = m_ret;
1832 				    m < &m_ret[npages]; m++) {
1833 					if ((req & VM_ALLOC_WIRED) != 0)
1834 						m->wire_count = 0;
1835 					if (m >= m_tmp)
1836 						m->object = NULL;
1837 					vm_page_free(m);
1838 				}
1839 				return (NULL);
1840 			}
1841 		} else
1842 			m->pindex = pindex;
1843 		if (memattr != VM_MEMATTR_DEFAULT)
1844 			pmap_page_set_memattr(m, memattr);
1845 		pindex++;
1846 	}
1847 	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1848 	if (vm_paging_needed())
1849 		pagedaemon_wakeup();
1850 	return (m_ret);
1851 }
1852 
1853 /*
1854  * Initialize a page that has been freshly dequeued from a freelist.
1855  * The caller has to drop the vnode returned, if it is not NULL.
1856  *
1857  * This function may only be used to initialize unmanaged pages.
1858  *
1859  * To be called with vm_page_queue_free_mtx held.
1860  */
1861 static struct vnode *
1862 vm_page_alloc_init(vm_page_t m)
1863 {
1864 	struct vnode *drop;
1865 	vm_object_t m_object;
1866 
1867 	KASSERT(m->queue == PQ_NONE,
1868 	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1869 	    m, m->queue));
1870 	KASSERT(m->wire_count == 0,
1871 	    ("vm_page_alloc_init: page %p is wired", m));
1872 	KASSERT(m->hold_count == 0,
1873 	    ("vm_page_alloc_init: page %p is held", m));
1874 	KASSERT(!vm_page_sbusied(m),
1875 	    ("vm_page_alloc_init: page %p is busy", m));
1876 	KASSERT(m->dirty == 0,
1877 	    ("vm_page_alloc_init: page %p is dirty", m));
1878 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1879 	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1880 	    m, pmap_page_get_memattr(m)));
1881 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1882 	drop = NULL;
1883 	if ((m->flags & PG_CACHED) != 0) {
1884 		KASSERT((m->flags & PG_ZERO) == 0,
1885 		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1886 		m->valid = 0;
1887 		m_object = m->object;
1888 		vm_page_cache_remove(m);
1889 		if (m_object->type == OBJT_VNODE &&
1890 		    vm_object_cache_is_empty(m_object))
1891 			drop = m_object->handle;
1892 	} else {
1893 		KASSERT(m->valid == 0,
1894 		    ("vm_page_alloc_init: free page %p is valid", m));
1895 		vm_phys_freecnt_adj(m, -1);
1896 		if ((m->flags & PG_ZERO) != 0)
1897 			vm_page_zero_count--;
1898 	}
1899 	return (drop);
1900 }
1901 
1902 /*
1903  * 	vm_page_alloc_freelist:
1904  *
1905  *	Allocate a physical page from the specified free page list.
1906  *
1907  *	The caller must always specify an allocation class.
1908  *
1909  *	allocation classes:
1910  *	VM_ALLOC_NORMAL		normal process request
1911  *	VM_ALLOC_SYSTEM		system *really* needs a page
1912  *	VM_ALLOC_INTERRUPT	interrupt time request
1913  *
1914  *	optional allocation flags:
1915  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1916  *				intends to allocate
1917  *	VM_ALLOC_WIRED		wire the allocated page
1918  *	VM_ALLOC_ZERO		prefer a zeroed page
1919  *
1920  *	This routine may not sleep.
1921  */
1922 vm_page_t
1923 vm_page_alloc_freelist(int flind, int req)
1924 {
1925 	struct vnode *drop;
1926 	vm_page_t m;
1927 	u_int flags;
1928 	int req_class;
1929 
1930 	req_class = req & VM_ALLOC_CLASS_MASK;
1931 
1932 	/*
1933 	 * The page daemon is allowed to dig deeper into the free page list.
1934 	 */
1935 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1936 		req_class = VM_ALLOC_SYSTEM;
1937 
1938 	/*
1939 	 * Do not allocate reserved pages unless the req has asked for it.
1940 	 */
1941 	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1942 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1943 	    (req_class == VM_ALLOC_SYSTEM &&
1944 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1945 	    (req_class == VM_ALLOC_INTERRUPT &&
1946 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0))
1947 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1948 	else {
1949 		mtx_unlock(&vm_page_queue_free_mtx);
1950 		atomic_add_int(&vm_pageout_deficit,
1951 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1952 		pagedaemon_wakeup();
1953 		return (NULL);
1954 	}
1955 	if (m == NULL) {
1956 		mtx_unlock(&vm_page_queue_free_mtx);
1957 		return (NULL);
1958 	}
1959 	drop = vm_page_alloc_init(m);
1960 	mtx_unlock(&vm_page_queue_free_mtx);
1961 
1962 	/*
1963 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1964 	 */
1965 	m->aflags = 0;
1966 	flags = 0;
1967 	if ((req & VM_ALLOC_ZERO) != 0)
1968 		flags = PG_ZERO;
1969 	m->flags &= flags;
1970 	if ((req & VM_ALLOC_WIRED) != 0) {
1971 		/*
1972 		 * The page lock is not required for wiring a page that does
1973 		 * not belong to an object.
1974 		 */
1975 		atomic_add_int(&vm_cnt.v_wire_count, 1);
1976 		m->wire_count = 1;
1977 	}
1978 	/* Unmanaged pages don't use "act_count". */
1979 	m->oflags = VPO_UNMANAGED;
1980 	if (drop != NULL)
1981 		vdrop(drop);
1982 	if (vm_paging_needed())
1983 		pagedaemon_wakeup();
1984 	return (m);
1985 }
1986 
1987 /*
1988  *	vm_wait:	(also see VM_WAIT macro)
1989  *
1990  *	Sleep until free pages are available for allocation.
1991  *	- Called in various places before memory allocations.
1992  */
1993 void
1994 vm_wait(void)
1995 {
1996 
1997 	mtx_lock(&vm_page_queue_free_mtx);
1998 	if (curproc == pageproc) {
1999 		vm_pageout_pages_needed = 1;
2000 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2001 		    PDROP | PSWP, "VMWait", 0);
2002 	} else {
2003 		if (!vm_pages_needed) {
2004 			vm_pages_needed = 1;
2005 			wakeup(&vm_pages_needed);
2006 		}
2007 		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2008 		    "vmwait", 0);
2009 	}
2010 }
2011 
2012 /*
2013  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2014  *
2015  *	Sleep until free pages are available for allocation.
2016  *	- Called only in vm_fault so that processes page faulting
2017  *	  can be easily tracked.
2018  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2019  *	  processes will be able to grab memory first.  Do not change
2020  *	  this balance without careful testing first.
2021  */
2022 void
2023 vm_waitpfault(void)
2024 {
2025 
2026 	mtx_lock(&vm_page_queue_free_mtx);
2027 	if (!vm_pages_needed) {
2028 		vm_pages_needed = 1;
2029 		wakeup(&vm_pages_needed);
2030 	}
2031 	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2032 	    "pfault", 0);
2033 }
2034 
2035 struct vm_pagequeue *
2036 vm_page_pagequeue(vm_page_t m)
2037 {
2038 
2039 	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2040 }
2041 
2042 /*
2043  *	vm_page_dequeue:
2044  *
2045  *	Remove the given page from its current page queue.
2046  *
2047  *	The page must be locked.
2048  */
2049 void
2050 vm_page_dequeue(vm_page_t m)
2051 {
2052 	struct vm_pagequeue *pq;
2053 
2054 	vm_page_assert_locked(m);
2055 	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2056 	    m));
2057 	pq = vm_page_pagequeue(m);
2058 	vm_pagequeue_lock(pq);
2059 	m->queue = PQ_NONE;
2060 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2061 	vm_pagequeue_cnt_dec(pq);
2062 	vm_pagequeue_unlock(pq);
2063 }
2064 
2065 /*
2066  *	vm_page_dequeue_locked:
2067  *
2068  *	Remove the given page from its current page queue.
2069  *
2070  *	The page and page queue must be locked.
2071  */
2072 void
2073 vm_page_dequeue_locked(vm_page_t m)
2074 {
2075 	struct vm_pagequeue *pq;
2076 
2077 	vm_page_lock_assert(m, MA_OWNED);
2078 	pq = vm_page_pagequeue(m);
2079 	vm_pagequeue_assert_locked(pq);
2080 	m->queue = PQ_NONE;
2081 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2082 	vm_pagequeue_cnt_dec(pq);
2083 }
2084 
2085 /*
2086  *	vm_page_enqueue:
2087  *
2088  *	Add the given page to the specified page queue.
2089  *
2090  *	The page must be locked.
2091  */
2092 static void
2093 vm_page_enqueue(uint8_t queue, vm_page_t m)
2094 {
2095 	struct vm_pagequeue *pq;
2096 
2097 	vm_page_lock_assert(m, MA_OWNED);
2098 	KASSERT(queue < PQ_COUNT,
2099 	    ("vm_page_enqueue: invalid queue %u request for page %p",
2100 	    queue, m));
2101 	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2102 	vm_pagequeue_lock(pq);
2103 	m->queue = queue;
2104 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2105 	vm_pagequeue_cnt_inc(pq);
2106 	vm_pagequeue_unlock(pq);
2107 }
2108 
2109 /*
2110  *	vm_page_requeue:
2111  *
2112  *	Move the given page to the tail of its current page queue.
2113  *
2114  *	The page must be locked.
2115  */
2116 void
2117 vm_page_requeue(vm_page_t m)
2118 {
2119 	struct vm_pagequeue *pq;
2120 
2121 	vm_page_lock_assert(m, MA_OWNED);
2122 	KASSERT(m->queue != PQ_NONE,
2123 	    ("vm_page_requeue: page %p is not queued", m));
2124 	pq = vm_page_pagequeue(m);
2125 	vm_pagequeue_lock(pq);
2126 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2127 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2128 	vm_pagequeue_unlock(pq);
2129 }
2130 
2131 /*
2132  *	vm_page_requeue_locked:
2133  *
2134  *	Move the given page to the tail of its current page queue.
2135  *
2136  *	The page queue must be locked.
2137  */
2138 void
2139 vm_page_requeue_locked(vm_page_t m)
2140 {
2141 	struct vm_pagequeue *pq;
2142 
2143 	KASSERT(m->queue != PQ_NONE,
2144 	    ("vm_page_requeue_locked: page %p is not queued", m));
2145 	pq = vm_page_pagequeue(m);
2146 	vm_pagequeue_assert_locked(pq);
2147 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2148 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2149 }
2150 
2151 /*
2152  *	vm_page_activate:
2153  *
2154  *	Put the specified page on the active list (if appropriate).
2155  *	Ensure that act_count is at least ACT_INIT but do not otherwise
2156  *	mess with it.
2157  *
2158  *	The page must be locked.
2159  */
2160 void
2161 vm_page_activate(vm_page_t m)
2162 {
2163 	int queue;
2164 
2165 	vm_page_lock_assert(m, MA_OWNED);
2166 	if ((queue = m->queue) != PQ_ACTIVE) {
2167 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2168 			if (m->act_count < ACT_INIT)
2169 				m->act_count = ACT_INIT;
2170 			if (queue != PQ_NONE)
2171 				vm_page_dequeue(m);
2172 			vm_page_enqueue(PQ_ACTIVE, m);
2173 		} else
2174 			KASSERT(queue == PQ_NONE,
2175 			    ("vm_page_activate: wired page %p is queued", m));
2176 	} else {
2177 		if (m->act_count < ACT_INIT)
2178 			m->act_count = ACT_INIT;
2179 	}
2180 }
2181 
2182 /*
2183  *	vm_page_free_wakeup:
2184  *
2185  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2186  *	routine is called when a page has been added to the cache or free
2187  *	queues.
2188  *
2189  *	The page queues must be locked.
2190  */
2191 static inline void
2192 vm_page_free_wakeup(void)
2193 {
2194 
2195 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2196 	/*
2197 	 * if pageout daemon needs pages, then tell it that there are
2198 	 * some free.
2199 	 */
2200 	if (vm_pageout_pages_needed &&
2201 	    vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2202 		wakeup(&vm_pageout_pages_needed);
2203 		vm_pageout_pages_needed = 0;
2204 	}
2205 	/*
2206 	 * wakeup processes that are waiting on memory if we hit a
2207 	 * high water mark. And wakeup scheduler process if we have
2208 	 * lots of memory. this process will swapin processes.
2209 	 */
2210 	if (vm_pages_needed && !vm_page_count_min()) {
2211 		vm_pages_needed = 0;
2212 		wakeup(&vm_cnt.v_free_count);
2213 	}
2214 }
2215 
2216 /*
2217  *	Turn a cached page into a free page, by changing its attributes.
2218  *	Keep the statistics up-to-date.
2219  *
2220  *	The free page queue must be locked.
2221  */
2222 static void
2223 vm_page_cache_turn_free(vm_page_t m)
2224 {
2225 
2226 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2227 
2228 	m->object = NULL;
2229 	m->valid = 0;
2230 	KASSERT((m->flags & PG_CACHED) != 0,
2231 	    ("vm_page_cache_turn_free: page %p is not cached", m));
2232 	m->flags &= ~PG_CACHED;
2233 	vm_cnt.v_cache_count--;
2234 	vm_phys_freecnt_adj(m, 1);
2235 }
2236 
2237 /*
2238  *	vm_page_free_toq:
2239  *
2240  *	Returns the given page to the free list,
2241  *	disassociating it with any VM object.
2242  *
2243  *	The object must be locked.  The page must be locked if it is managed.
2244  */
2245 void
2246 vm_page_free_toq(vm_page_t m)
2247 {
2248 
2249 	if ((m->oflags & VPO_UNMANAGED) == 0) {
2250 		vm_page_lock_assert(m, MA_OWNED);
2251 		KASSERT(!pmap_page_is_mapped(m),
2252 		    ("vm_page_free_toq: freeing mapped page %p", m));
2253 	} else
2254 		KASSERT(m->queue == PQ_NONE,
2255 		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2256 	PCPU_INC(cnt.v_tfree);
2257 
2258 	if (vm_page_sbusied(m))
2259 		panic("vm_page_free: freeing busy page %p", m);
2260 
2261 	/*
2262 	 * Unqueue, then remove page.  Note that we cannot destroy
2263 	 * the page here because we do not want to call the pager's
2264 	 * callback routine until after we've put the page on the
2265 	 * appropriate free queue.
2266 	 */
2267 	vm_page_remque(m);
2268 	vm_page_remove(m);
2269 
2270 	/*
2271 	 * If fictitious remove object association and
2272 	 * return, otherwise delay object association removal.
2273 	 */
2274 	if ((m->flags & PG_FICTITIOUS) != 0) {
2275 		return;
2276 	}
2277 
2278 	m->valid = 0;
2279 	vm_page_undirty(m);
2280 
2281 	if (m->wire_count != 0)
2282 		panic("vm_page_free: freeing wired page %p", m);
2283 	if (m->hold_count != 0) {
2284 		m->flags &= ~PG_ZERO;
2285 		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2286 		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2287 		m->flags |= PG_UNHOLDFREE;
2288 	} else {
2289 		/*
2290 		 * Restore the default memory attribute to the page.
2291 		 */
2292 		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2293 			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2294 
2295 		/*
2296 		 * Insert the page into the physical memory allocator's
2297 		 * cache/free page queues.
2298 		 */
2299 		mtx_lock(&vm_page_queue_free_mtx);
2300 		vm_phys_freecnt_adj(m, 1);
2301 #if VM_NRESERVLEVEL > 0
2302 		if (!vm_reserv_free_page(m))
2303 #else
2304 		if (TRUE)
2305 #endif
2306 			vm_phys_free_pages(m, 0);
2307 		if ((m->flags & PG_ZERO) != 0)
2308 			++vm_page_zero_count;
2309 		else
2310 			vm_page_zero_idle_wakeup();
2311 		vm_page_free_wakeup();
2312 		mtx_unlock(&vm_page_queue_free_mtx);
2313 	}
2314 }
2315 
2316 /*
2317  *	vm_page_wire:
2318  *
2319  *	Mark this page as wired down by yet
2320  *	another map, removing it from paging queues
2321  *	as necessary.
2322  *
2323  *	If the page is fictitious, then its wire count must remain one.
2324  *
2325  *	The page must be locked.
2326  */
2327 void
2328 vm_page_wire(vm_page_t m)
2329 {
2330 
2331 	/*
2332 	 * Only bump the wire statistics if the page is not already wired,
2333 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2334 	 * it is already off the queues).
2335 	 */
2336 	vm_page_lock_assert(m, MA_OWNED);
2337 	if ((m->flags & PG_FICTITIOUS) != 0) {
2338 		KASSERT(m->wire_count == 1,
2339 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2340 		    m));
2341 		return;
2342 	}
2343 	if (m->wire_count == 0) {
2344 		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2345 		    m->queue == PQ_NONE,
2346 		    ("vm_page_wire: unmanaged page %p is queued", m));
2347 		vm_page_remque(m);
2348 		atomic_add_int(&vm_cnt.v_wire_count, 1);
2349 	}
2350 	m->wire_count++;
2351 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2352 }
2353 
2354 /*
2355  * vm_page_unwire:
2356  *
2357  * Release one wiring of the specified page, potentially enabling it to be
2358  * paged again.  If paging is enabled, then the value of the parameter
2359  * "queue" determines the queue to which the page is added.
2360  *
2361  * However, unless the page belongs to an object, it is not enqueued because
2362  * it cannot be paged out.
2363  *
2364  * If a page is fictitious, then its wire count must always be one.
2365  *
2366  * A managed page must be locked.
2367  */
2368 void
2369 vm_page_unwire(vm_page_t m, uint8_t queue)
2370 {
2371 
2372 	KASSERT(queue < PQ_COUNT,
2373 	    ("vm_page_unwire: invalid queue %u request for page %p",
2374 	    queue, m));
2375 	if ((m->oflags & VPO_UNMANAGED) == 0)
2376 		vm_page_lock_assert(m, MA_OWNED);
2377 	if ((m->flags & PG_FICTITIOUS) != 0) {
2378 		KASSERT(m->wire_count == 1,
2379 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2380 		return;
2381 	}
2382 	if (m->wire_count > 0) {
2383 		m->wire_count--;
2384 		if (m->wire_count == 0) {
2385 			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
2386 			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2387 			    m->object == NULL)
2388 				return;
2389 			if (queue == PQ_INACTIVE)
2390 				m->flags &= ~PG_WINATCFLS;
2391 			vm_page_enqueue(queue, m);
2392 		}
2393 	} else
2394 		panic("vm_page_unwire: page %p's wire count is zero", m);
2395 }
2396 
2397 /*
2398  * Move the specified page to the inactive queue.
2399  *
2400  * Many pages placed on the inactive queue should actually go
2401  * into the cache, but it is difficult to figure out which.  What
2402  * we do instead, if the inactive target is well met, is to put
2403  * clean pages at the head of the inactive queue instead of the tail.
2404  * This will cause them to be moved to the cache more quickly and
2405  * if not actively re-referenced, reclaimed more quickly.  If we just
2406  * stick these pages at the end of the inactive queue, heavy filesystem
2407  * meta-data accesses can cause an unnecessary paging load on memory bound
2408  * processes.  This optimization causes one-time-use metadata to be
2409  * reused more quickly.
2410  *
2411  * Normally athead is 0 resulting in LRU operation.  athead is set
2412  * to 1 if we want this page to be 'as if it were placed in the cache',
2413  * except without unmapping it from the process address space.
2414  *
2415  * The page must be locked.
2416  */
2417 static inline void
2418 _vm_page_deactivate(vm_page_t m, int athead)
2419 {
2420 	struct vm_pagequeue *pq;
2421 	int queue;
2422 
2423 	vm_page_lock_assert(m, MA_OWNED);
2424 
2425 	/*
2426 	 * Ignore if already inactive.
2427 	 */
2428 	if ((queue = m->queue) == PQ_INACTIVE)
2429 		return;
2430 	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2431 		if (queue != PQ_NONE)
2432 			vm_page_dequeue(m);
2433 		m->flags &= ~PG_WINATCFLS;
2434 		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
2435 		vm_pagequeue_lock(pq);
2436 		m->queue = PQ_INACTIVE;
2437 		if (athead)
2438 			TAILQ_INSERT_HEAD(&pq->pq_pl, m, plinks.q);
2439 		else
2440 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2441 		vm_pagequeue_cnt_inc(pq);
2442 		vm_pagequeue_unlock(pq);
2443 	}
2444 }
2445 
2446 /*
2447  * Move the specified page to the inactive queue.
2448  *
2449  * The page must be locked.
2450  */
2451 void
2452 vm_page_deactivate(vm_page_t m)
2453 {
2454 
2455 	_vm_page_deactivate(m, 0);
2456 }
2457 
2458 /*
2459  * vm_page_try_to_cache:
2460  *
2461  * Returns 0 on failure, 1 on success
2462  */
2463 int
2464 vm_page_try_to_cache(vm_page_t m)
2465 {
2466 
2467 	vm_page_lock_assert(m, MA_OWNED);
2468 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2469 	if (m->dirty || m->hold_count || m->wire_count ||
2470 	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2471 		return (0);
2472 	pmap_remove_all(m);
2473 	if (m->dirty)
2474 		return (0);
2475 	vm_page_cache(m);
2476 	return (1);
2477 }
2478 
2479 /*
2480  * vm_page_try_to_free()
2481  *
2482  *	Attempt to free the page.  If we cannot free it, we do nothing.
2483  *	1 is returned on success, 0 on failure.
2484  */
2485 int
2486 vm_page_try_to_free(vm_page_t m)
2487 {
2488 
2489 	vm_page_lock_assert(m, MA_OWNED);
2490 	if (m->object != NULL)
2491 		VM_OBJECT_ASSERT_WLOCKED(m->object);
2492 	if (m->dirty || m->hold_count || m->wire_count ||
2493 	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2494 		return (0);
2495 	pmap_remove_all(m);
2496 	if (m->dirty)
2497 		return (0);
2498 	vm_page_free(m);
2499 	return (1);
2500 }
2501 
2502 /*
2503  * vm_page_cache
2504  *
2505  * Put the specified page onto the page cache queue (if appropriate).
2506  *
2507  * The object and page must be locked.
2508  */
2509 void
2510 vm_page_cache(vm_page_t m)
2511 {
2512 	vm_object_t object;
2513 	boolean_t cache_was_empty;
2514 
2515 	vm_page_lock_assert(m, MA_OWNED);
2516 	object = m->object;
2517 	VM_OBJECT_ASSERT_WLOCKED(object);
2518 	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
2519 	    m->hold_count || m->wire_count)
2520 		panic("vm_page_cache: attempting to cache busy page");
2521 	KASSERT(!pmap_page_is_mapped(m),
2522 	    ("vm_page_cache: page %p is mapped", m));
2523 	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2524 	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2525 	    (object->type == OBJT_SWAP &&
2526 	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2527 		/*
2528 		 * Hypothesis: A cache-eligible page belonging to a
2529 		 * default object or swap object but without a backing
2530 		 * store must be zero filled.
2531 		 */
2532 		vm_page_free(m);
2533 		return;
2534 	}
2535 	KASSERT((m->flags & PG_CACHED) == 0,
2536 	    ("vm_page_cache: page %p is already cached", m));
2537 
2538 	/*
2539 	 * Remove the page from the paging queues.
2540 	 */
2541 	vm_page_remque(m);
2542 
2543 	/*
2544 	 * Remove the page from the object's collection of resident
2545 	 * pages.
2546 	 */
2547 	vm_radix_remove(&object->rtree, m->pindex);
2548 	TAILQ_REMOVE(&object->memq, m, listq);
2549 	object->resident_page_count--;
2550 
2551 	/*
2552 	 * Restore the default memory attribute to the page.
2553 	 */
2554 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2555 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2556 
2557 	/*
2558 	 * Insert the page into the object's collection of cached pages
2559 	 * and the physical memory allocator's cache/free page queues.
2560 	 */
2561 	m->flags &= ~PG_ZERO;
2562 	mtx_lock(&vm_page_queue_free_mtx);
2563 	cache_was_empty = vm_radix_is_empty(&object->cache);
2564 	if (vm_radix_insert(&object->cache, m)) {
2565 		mtx_unlock(&vm_page_queue_free_mtx);
2566 		if (object->resident_page_count == 0)
2567 			vdrop(object->handle);
2568 		m->object = NULL;
2569 		vm_page_free(m);
2570 		return;
2571 	}
2572 
2573 	/*
2574 	 * The above call to vm_radix_insert() could reclaim the one pre-
2575 	 * existing cached page from this object, resulting in a call to
2576 	 * vdrop().
2577 	 */
2578 	if (!cache_was_empty)
2579 		cache_was_empty = vm_radix_is_singleton(&object->cache);
2580 
2581 	m->flags |= PG_CACHED;
2582 	vm_cnt.v_cache_count++;
2583 	PCPU_INC(cnt.v_tcached);
2584 #if VM_NRESERVLEVEL > 0
2585 	if (!vm_reserv_free_page(m)) {
2586 #else
2587 	if (TRUE) {
2588 #endif
2589 		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2590 		vm_phys_free_pages(m, 0);
2591 	}
2592 	vm_page_free_wakeup();
2593 	mtx_unlock(&vm_page_queue_free_mtx);
2594 
2595 	/*
2596 	 * Increment the vnode's hold count if this is the object's only
2597 	 * cached page.  Decrement the vnode's hold count if this was
2598 	 * the object's only resident page.
2599 	 */
2600 	if (object->type == OBJT_VNODE) {
2601 		if (cache_was_empty && object->resident_page_count != 0)
2602 			vhold(object->handle);
2603 		else if (!cache_was_empty && object->resident_page_count == 0)
2604 			vdrop(object->handle);
2605 	}
2606 }
2607 
2608 /*
2609  * vm_page_advise
2610  *
2611  *	Cache, deactivate, or do nothing as appropriate.  This routine
2612  *	is used by madvise().
2613  *
2614  *	Generally speaking we want to move the page into the cache so
2615  *	it gets reused quickly.  However, this can result in a silly syndrome
2616  *	due to the page recycling too quickly.  Small objects will not be
2617  *	fully cached.  On the other hand, if we move the page to the inactive
2618  *	queue we wind up with a problem whereby very large objects
2619  *	unnecessarily blow away our inactive and cache queues.
2620  *
2621  *	The solution is to move the pages based on a fixed weighting.  We
2622  *	either leave them alone, deactivate them, or move them to the cache,
2623  *	where moving them to the cache has the highest weighting.
2624  *	By forcing some pages into other queues we eventually force the
2625  *	system to balance the queues, potentially recovering other unrelated
2626  *	space from active.  The idea is to not force this to happen too
2627  *	often.
2628  *
2629  *	The object and page must be locked.
2630  */
2631 void
2632 vm_page_advise(vm_page_t m, int advice)
2633 {
2634 	int dnw, head;
2635 
2636 	vm_page_assert_locked(m);
2637 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2638 	if (advice == MADV_FREE) {
2639 		/*
2640 		 * Mark the page clean.  This will allow the page to be freed
2641 		 * up by the system.  However, such pages are often reused
2642 		 * quickly by malloc() so we do not do anything that would
2643 		 * cause a page fault if we can help it.
2644 		 *
2645 		 * Specifically, we do not try to actually free the page now
2646 		 * nor do we try to put it in the cache (which would cause a
2647 		 * page fault on reuse).
2648 		 *
2649 		 * But we do make the page is freeable as we can without
2650 		 * actually taking the step of unmapping it.
2651 		 */
2652 		m->dirty = 0;
2653 		m->act_count = 0;
2654 	} else if (advice != MADV_DONTNEED)
2655 		return;
2656 	dnw = PCPU_GET(dnweight);
2657 	PCPU_INC(dnweight);
2658 
2659 	/*
2660 	 * Occasionally leave the page alone.
2661 	 */
2662 	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2663 		if (m->act_count >= ACT_INIT)
2664 			--m->act_count;
2665 		return;
2666 	}
2667 
2668 	/*
2669 	 * Clear any references to the page.  Otherwise, the page daemon will
2670 	 * immediately reactivate the page.
2671 	 */
2672 	vm_page_aflag_clear(m, PGA_REFERENCED);
2673 
2674 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
2675 		vm_page_dirty(m);
2676 
2677 	if (m->dirty || (dnw & 0x0070) == 0) {
2678 		/*
2679 		 * Deactivate the page 3 times out of 32.
2680 		 */
2681 		head = 0;
2682 	} else {
2683 		/*
2684 		 * Cache the page 28 times out of every 32.  Note that
2685 		 * the page is deactivated instead of cached, but placed
2686 		 * at the head of the queue instead of the tail.
2687 		 */
2688 		head = 1;
2689 	}
2690 	_vm_page_deactivate(m, head);
2691 }
2692 
2693 /*
2694  * Grab a page, waiting until we are waken up due to the page
2695  * changing state.  We keep on waiting, if the page continues
2696  * to be in the object.  If the page doesn't exist, first allocate it
2697  * and then conditionally zero it.
2698  *
2699  * This routine may sleep.
2700  *
2701  * The object must be locked on entry.  The lock will, however, be released
2702  * and reacquired if the routine sleeps.
2703  */
2704 vm_page_t
2705 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2706 {
2707 	vm_page_t m;
2708 	int sleep;
2709 
2710 	VM_OBJECT_ASSERT_WLOCKED(object);
2711 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
2712 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
2713 	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
2714 retrylookup:
2715 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2716 		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
2717 		    vm_page_xbusied(m) : vm_page_busied(m);
2718 		if (sleep) {
2719 			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
2720 				return (NULL);
2721 			/*
2722 			 * Reference the page before unlocking and
2723 			 * sleeping so that the page daemon is less
2724 			 * likely to reclaim it.
2725 			 */
2726 			vm_page_aflag_set(m, PGA_REFERENCED);
2727 			vm_page_lock(m);
2728 			VM_OBJECT_WUNLOCK(object);
2729 			vm_page_busy_sleep(m, "pgrbwt");
2730 			VM_OBJECT_WLOCK(object);
2731 			goto retrylookup;
2732 		} else {
2733 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2734 				vm_page_lock(m);
2735 				vm_page_wire(m);
2736 				vm_page_unlock(m);
2737 			}
2738 			if ((allocflags &
2739 			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2740 				vm_page_xbusy(m);
2741 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
2742 				vm_page_sbusy(m);
2743 			return (m);
2744 		}
2745 	}
2746 	m = vm_page_alloc(object, pindex, allocflags);
2747 	if (m == NULL) {
2748 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
2749 			return (NULL);
2750 		VM_OBJECT_WUNLOCK(object);
2751 		VM_WAIT;
2752 		VM_OBJECT_WLOCK(object);
2753 		goto retrylookup;
2754 	} else if (m->valid != 0)
2755 		return (m);
2756 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2757 		pmap_zero_page(m);
2758 	return (m);
2759 }
2760 
2761 /*
2762  * Mapping function for valid or dirty bits in a page.
2763  *
2764  * Inputs are required to range within a page.
2765  */
2766 vm_page_bits_t
2767 vm_page_bits(int base, int size)
2768 {
2769 	int first_bit;
2770 	int last_bit;
2771 
2772 	KASSERT(
2773 	    base + size <= PAGE_SIZE,
2774 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2775 	);
2776 
2777 	if (size == 0)		/* handle degenerate case */
2778 		return (0);
2779 
2780 	first_bit = base >> DEV_BSHIFT;
2781 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2782 
2783 	return (((vm_page_bits_t)2 << last_bit) -
2784 	    ((vm_page_bits_t)1 << first_bit));
2785 }
2786 
2787 /*
2788  *	vm_page_set_valid_range:
2789  *
2790  *	Sets portions of a page valid.  The arguments are expected
2791  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2792  *	of any partial chunks touched by the range.  The invalid portion of
2793  *	such chunks will be zeroed.
2794  *
2795  *	(base + size) must be less then or equal to PAGE_SIZE.
2796  */
2797 void
2798 vm_page_set_valid_range(vm_page_t m, int base, int size)
2799 {
2800 	int endoff, frag;
2801 
2802 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2803 	if (size == 0)	/* handle degenerate case */
2804 		return;
2805 
2806 	/*
2807 	 * If the base is not DEV_BSIZE aligned and the valid
2808 	 * bit is clear, we have to zero out a portion of the
2809 	 * first block.
2810 	 */
2811 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2812 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2813 		pmap_zero_page_area(m, frag, base - frag);
2814 
2815 	/*
2816 	 * If the ending offset is not DEV_BSIZE aligned and the
2817 	 * valid bit is clear, we have to zero out a portion of
2818 	 * the last block.
2819 	 */
2820 	endoff = base + size;
2821 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2822 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2823 		pmap_zero_page_area(m, endoff,
2824 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2825 
2826 	/*
2827 	 * Assert that no previously invalid block that is now being validated
2828 	 * is already dirty.
2829 	 */
2830 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2831 	    ("vm_page_set_valid_range: page %p is dirty", m));
2832 
2833 	/*
2834 	 * Set valid bits inclusive of any overlap.
2835 	 */
2836 	m->valid |= vm_page_bits(base, size);
2837 }
2838 
2839 /*
2840  * Clear the given bits from the specified page's dirty field.
2841  */
2842 static __inline void
2843 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2844 {
2845 	uintptr_t addr;
2846 #if PAGE_SIZE < 16384
2847 	int shift;
2848 #endif
2849 
2850 	/*
2851 	 * If the object is locked and the page is neither exclusive busy nor
2852 	 * write mapped, then the page's dirty field cannot possibly be
2853 	 * set by a concurrent pmap operation.
2854 	 */
2855 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2856 	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
2857 		m->dirty &= ~pagebits;
2858 	else {
2859 		/*
2860 		 * The pmap layer can call vm_page_dirty() without
2861 		 * holding a distinguished lock.  The combination of
2862 		 * the object's lock and an atomic operation suffice
2863 		 * to guarantee consistency of the page dirty field.
2864 		 *
2865 		 * For PAGE_SIZE == 32768 case, compiler already
2866 		 * properly aligns the dirty field, so no forcible
2867 		 * alignment is needed. Only require existence of
2868 		 * atomic_clear_64 when page size is 32768.
2869 		 */
2870 		addr = (uintptr_t)&m->dirty;
2871 #if PAGE_SIZE == 32768
2872 		atomic_clear_64((uint64_t *)addr, pagebits);
2873 #elif PAGE_SIZE == 16384
2874 		atomic_clear_32((uint32_t *)addr, pagebits);
2875 #else		/* PAGE_SIZE <= 8192 */
2876 		/*
2877 		 * Use a trick to perform a 32-bit atomic on the
2878 		 * containing aligned word, to not depend on the existence
2879 		 * of atomic_clear_{8, 16}.
2880 		 */
2881 		shift = addr & (sizeof(uint32_t) - 1);
2882 #if BYTE_ORDER == BIG_ENDIAN
2883 		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2884 #else
2885 		shift *= NBBY;
2886 #endif
2887 		addr &= ~(sizeof(uint32_t) - 1);
2888 		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2889 #endif		/* PAGE_SIZE */
2890 	}
2891 }
2892 
2893 /*
2894  *	vm_page_set_validclean:
2895  *
2896  *	Sets portions of a page valid and clean.  The arguments are expected
2897  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2898  *	of any partial chunks touched by the range.  The invalid portion of
2899  *	such chunks will be zero'd.
2900  *
2901  *	(base + size) must be less then or equal to PAGE_SIZE.
2902  */
2903 void
2904 vm_page_set_validclean(vm_page_t m, int base, int size)
2905 {
2906 	vm_page_bits_t oldvalid, pagebits;
2907 	int endoff, frag;
2908 
2909 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2910 	if (size == 0)	/* handle degenerate case */
2911 		return;
2912 
2913 	/*
2914 	 * If the base is not DEV_BSIZE aligned and the valid
2915 	 * bit is clear, we have to zero out a portion of the
2916 	 * first block.
2917 	 */
2918 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2919 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2920 		pmap_zero_page_area(m, frag, base - frag);
2921 
2922 	/*
2923 	 * If the ending offset is not DEV_BSIZE aligned and the
2924 	 * valid bit is clear, we have to zero out a portion of
2925 	 * the last block.
2926 	 */
2927 	endoff = base + size;
2928 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2929 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2930 		pmap_zero_page_area(m, endoff,
2931 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2932 
2933 	/*
2934 	 * Set valid, clear dirty bits.  If validating the entire
2935 	 * page we can safely clear the pmap modify bit.  We also
2936 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2937 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2938 	 * be set again.
2939 	 *
2940 	 * We set valid bits inclusive of any overlap, but we can only
2941 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2942 	 * the range.
2943 	 */
2944 	oldvalid = m->valid;
2945 	pagebits = vm_page_bits(base, size);
2946 	m->valid |= pagebits;
2947 #if 0	/* NOT YET */
2948 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2949 		frag = DEV_BSIZE - frag;
2950 		base += frag;
2951 		size -= frag;
2952 		if (size < 0)
2953 			size = 0;
2954 	}
2955 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2956 #endif
2957 	if (base == 0 && size == PAGE_SIZE) {
2958 		/*
2959 		 * The page can only be modified within the pmap if it is
2960 		 * mapped, and it can only be mapped if it was previously
2961 		 * fully valid.
2962 		 */
2963 		if (oldvalid == VM_PAGE_BITS_ALL)
2964 			/*
2965 			 * Perform the pmap_clear_modify() first.  Otherwise,
2966 			 * a concurrent pmap operation, such as
2967 			 * pmap_protect(), could clear a modification in the
2968 			 * pmap and set the dirty field on the page before
2969 			 * pmap_clear_modify() had begun and after the dirty
2970 			 * field was cleared here.
2971 			 */
2972 			pmap_clear_modify(m);
2973 		m->dirty = 0;
2974 		m->oflags &= ~VPO_NOSYNC;
2975 	} else if (oldvalid != VM_PAGE_BITS_ALL)
2976 		m->dirty &= ~pagebits;
2977 	else
2978 		vm_page_clear_dirty_mask(m, pagebits);
2979 }
2980 
2981 void
2982 vm_page_clear_dirty(vm_page_t m, int base, int size)
2983 {
2984 
2985 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2986 }
2987 
2988 /*
2989  *	vm_page_set_invalid:
2990  *
2991  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2992  *	valid and dirty bits for the effected areas are cleared.
2993  */
2994 void
2995 vm_page_set_invalid(vm_page_t m, int base, int size)
2996 {
2997 	vm_page_bits_t bits;
2998 	vm_object_t object;
2999 
3000 	object = m->object;
3001 	VM_OBJECT_ASSERT_WLOCKED(object);
3002 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3003 	    size >= object->un_pager.vnp.vnp_size)
3004 		bits = VM_PAGE_BITS_ALL;
3005 	else
3006 		bits = vm_page_bits(base, size);
3007 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
3008 		pmap_remove_all(m);
3009 	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3010 	    !pmap_page_is_mapped(m),
3011 	    ("vm_page_set_invalid: page %p is mapped", m));
3012 	m->valid &= ~bits;
3013 	m->dirty &= ~bits;
3014 }
3015 
3016 /*
3017  * vm_page_zero_invalid()
3018  *
3019  *	The kernel assumes that the invalid portions of a page contain
3020  *	garbage, but such pages can be mapped into memory by user code.
3021  *	When this occurs, we must zero out the non-valid portions of the
3022  *	page so user code sees what it expects.
3023  *
3024  *	Pages are most often semi-valid when the end of a file is mapped
3025  *	into memory and the file's size is not page aligned.
3026  */
3027 void
3028 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3029 {
3030 	int b;
3031 	int i;
3032 
3033 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3034 	/*
3035 	 * Scan the valid bits looking for invalid sections that
3036 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
3037 	 * valid bit may be set ) have already been zerod by
3038 	 * vm_page_set_validclean().
3039 	 */
3040 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3041 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3042 		    (m->valid & ((vm_page_bits_t)1 << i))) {
3043 			if (i > b) {
3044 				pmap_zero_page_area(m,
3045 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3046 			}
3047 			b = i + 1;
3048 		}
3049 	}
3050 
3051 	/*
3052 	 * setvalid is TRUE when we can safely set the zero'd areas
3053 	 * as being valid.  We can do this if there are no cache consistancy
3054 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3055 	 */
3056 	if (setvalid)
3057 		m->valid = VM_PAGE_BITS_ALL;
3058 }
3059 
3060 /*
3061  *	vm_page_is_valid:
3062  *
3063  *	Is (partial) page valid?  Note that the case where size == 0
3064  *	will return FALSE in the degenerate case where the page is
3065  *	entirely invalid, and TRUE otherwise.
3066  */
3067 int
3068 vm_page_is_valid(vm_page_t m, int base, int size)
3069 {
3070 	vm_page_bits_t bits;
3071 
3072 	VM_OBJECT_ASSERT_LOCKED(m->object);
3073 	bits = vm_page_bits(base, size);
3074 	return (m->valid != 0 && (m->valid & bits) == bits);
3075 }
3076 
3077 /*
3078  *	vm_page_ps_is_valid:
3079  *
3080  *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3081  */
3082 boolean_t
3083 vm_page_ps_is_valid(vm_page_t m)
3084 {
3085 	int i, npages;
3086 
3087 	VM_OBJECT_ASSERT_LOCKED(m->object);
3088 	npages = atop(pagesizes[m->psind]);
3089 
3090 	/*
3091 	 * The physically contiguous pages that make up a superpage, i.e., a
3092 	 * page with a page size index ("psind") greater than zero, will
3093 	 * occupy adjacent entries in vm_page_array[].
3094 	 */
3095 	for (i = 0; i < npages; i++) {
3096 		if (m[i].valid != VM_PAGE_BITS_ALL)
3097 			return (FALSE);
3098 	}
3099 	return (TRUE);
3100 }
3101 
3102 /*
3103  * Set the page's dirty bits if the page is modified.
3104  */
3105 void
3106 vm_page_test_dirty(vm_page_t m)
3107 {
3108 
3109 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3110 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3111 		vm_page_dirty(m);
3112 }
3113 
3114 void
3115 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3116 {
3117 
3118 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3119 }
3120 
3121 void
3122 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3123 {
3124 
3125 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3126 }
3127 
3128 int
3129 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3130 {
3131 
3132 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3133 }
3134 
3135 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3136 void
3137 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3138 {
3139 
3140 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3141 }
3142 
3143 void
3144 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3145 {
3146 
3147 	mtx_assert_(vm_page_lockptr(m), a, file, line);
3148 }
3149 #endif
3150 
3151 #ifdef INVARIANTS
3152 void
3153 vm_page_object_lock_assert(vm_page_t m)
3154 {
3155 
3156 	/*
3157 	 * Certain of the page's fields may only be modified by the
3158 	 * holder of the containing object's lock or the exclusive busy.
3159 	 * holder.  Unfortunately, the holder of the write busy is
3160 	 * not recorded, and thus cannot be checked here.
3161 	 */
3162 	if (m->object != NULL && !vm_page_xbusied(m))
3163 		VM_OBJECT_ASSERT_WLOCKED(m->object);
3164 }
3165 
3166 void
3167 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3168 {
3169 
3170 	if ((bits & PGA_WRITEABLE) == 0)
3171 		return;
3172 
3173 	/*
3174 	 * The PGA_WRITEABLE flag can only be set if the page is
3175 	 * managed, is exclusively busied or the object is locked.
3176 	 * Currently, this flag is only set by pmap_enter().
3177 	 */
3178 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3179 	    ("PGA_WRITEABLE on unmanaged page"));
3180 	if (!vm_page_xbusied(m))
3181 		VM_OBJECT_ASSERT_LOCKED(m->object);
3182 }
3183 #endif
3184 
3185 #include "opt_ddb.h"
3186 #ifdef DDB
3187 #include <sys/kernel.h>
3188 
3189 #include <ddb/ddb.h>
3190 
3191 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3192 {
3193 	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3194 	db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count);
3195 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3196 	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3197 	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3198 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3199 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3200 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3201 	db_printf("vm_cnt.v_cache_min: %d\n", vm_cnt.v_cache_min);
3202 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3203 }
3204 
3205 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3206 {
3207 	int dom;
3208 
3209 	db_printf("pq_free %d pq_cache %d\n",
3210 	    vm_cnt.v_free_count, vm_cnt.v_cache_count);
3211 	for (dom = 0; dom < vm_ndomains; dom++) {
3212 		db_printf(
3213 	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3214 		    dom,
3215 		    vm_dom[dom].vmd_page_count,
3216 		    vm_dom[dom].vmd_free_count,
3217 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3218 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3219 		    vm_dom[dom].vmd_pass);
3220 	}
3221 }
3222 
3223 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3224 {
3225 	vm_page_t m;
3226 	boolean_t phys;
3227 
3228 	if (!have_addr) {
3229 		db_printf("show pginfo addr\n");
3230 		return;
3231 	}
3232 
3233 	phys = strchr(modif, 'p') != NULL;
3234 	if (phys)
3235 		m = PHYS_TO_VM_PAGE(addr);
3236 	else
3237 		m = (vm_page_t)addr;
3238 	db_printf(
3239     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3240     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3241 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3242 	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3243 	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3244 }
3245 #endif /* DDB */
3246