1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * The Mach Operating System project at Carnegie-Mellon University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 34 */ 35 36 /*- 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * GENERAL RULES ON VM_PAGE MANIPULATION 65 * 66 * - A page queue lock is required when adding or removing a page from a 67 * page queue regardless of other locks or the busy state of a page. 68 * 69 * * In general, no thread besides the page daemon can acquire or 70 * hold more than one page queue lock at a time. 71 * 72 * * The page daemon can acquire and hold any pair of page queue 73 * locks in any order. 74 * 75 * - The object lock is required when inserting or removing 76 * pages from an object (vm_page_insert() or vm_page_remove()). 77 * 78 */ 79 80 /* 81 * Resident memory management module. 82 */ 83 84 #include <sys/cdefs.h> 85 __FBSDID("$FreeBSD$"); 86 87 #include "opt_vm.h" 88 89 #include <sys/param.h> 90 #include <sys/systm.h> 91 #include <sys/lock.h> 92 #include <sys/kernel.h> 93 #include <sys/limits.h> 94 #include <sys/malloc.h> 95 #include <sys/mman.h> 96 #include <sys/msgbuf.h> 97 #include <sys/mutex.h> 98 #include <sys/proc.h> 99 #include <sys/rwlock.h> 100 #include <sys/sysctl.h> 101 #include <sys/vmmeter.h> 102 #include <sys/vnode.h> 103 104 #include <vm/vm.h> 105 #include <vm/pmap.h> 106 #include <vm/vm_param.h> 107 #include <vm/vm_kern.h> 108 #include <vm/vm_object.h> 109 #include <vm/vm_page.h> 110 #include <vm/vm_pageout.h> 111 #include <vm/vm_pager.h> 112 #include <vm/vm_phys.h> 113 #include <vm/vm_radix.h> 114 #include <vm/vm_reserv.h> 115 #include <vm/vm_extern.h> 116 #include <vm/uma.h> 117 #include <vm/uma_int.h> 118 119 #include <machine/md_var.h> 120 121 /* 122 * Associated with page of user-allocatable memory is a 123 * page structure. 124 */ 125 126 struct vm_domain vm_dom[MAXMEMDOM]; 127 struct mtx_padalign vm_page_queue_free_mtx; 128 129 struct mtx_padalign pa_lock[PA_LOCK_COUNT]; 130 131 vm_page_t vm_page_array; 132 long vm_page_array_size; 133 long first_page; 134 int vm_page_zero_count; 135 136 static int boot_pages = UMA_BOOT_PAGES; 137 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 138 &boot_pages, 0, 139 "number of pages allocated for bootstrapping the VM system"); 140 141 static int pa_tryrelock_restart; 142 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD, 143 &pa_tryrelock_restart, 0, "Number of tryrelock restarts"); 144 145 static uma_zone_t fakepg_zone; 146 147 static struct vnode *vm_page_alloc_init(vm_page_t m); 148 static void vm_page_cache_turn_free(vm_page_t m); 149 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 150 static void vm_page_enqueue(uint8_t queue, vm_page_t m); 151 static void vm_page_init_fakepg(void *dummy); 152 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 153 vm_pindex_t pindex, vm_page_t mpred); 154 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 155 vm_page_t mpred); 156 157 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL); 158 159 static void 160 vm_page_init_fakepg(void *dummy) 161 { 162 163 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 164 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 165 } 166 167 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 168 #if PAGE_SIZE == 32768 169 #ifdef CTASSERT 170 CTASSERT(sizeof(u_long) >= 8); 171 #endif 172 #endif 173 174 /* 175 * Try to acquire a physical address lock while a pmap is locked. If we 176 * fail to trylock we unlock and lock the pmap directly and cache the 177 * locked pa in *locked. The caller should then restart their loop in case 178 * the virtual to physical mapping has changed. 179 */ 180 int 181 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked) 182 { 183 vm_paddr_t lockpa; 184 185 lockpa = *locked; 186 *locked = pa; 187 if (lockpa) { 188 PA_LOCK_ASSERT(lockpa, MA_OWNED); 189 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa)) 190 return (0); 191 PA_UNLOCK(lockpa); 192 } 193 if (PA_TRYLOCK(pa)) 194 return (0); 195 PMAP_UNLOCK(pmap); 196 atomic_add_int(&pa_tryrelock_restart, 1); 197 PA_LOCK(pa); 198 PMAP_LOCK(pmap); 199 return (EAGAIN); 200 } 201 202 /* 203 * vm_set_page_size: 204 * 205 * Sets the page size, perhaps based upon the memory 206 * size. Must be called before any use of page-size 207 * dependent functions. 208 */ 209 void 210 vm_set_page_size(void) 211 { 212 if (vm_cnt.v_page_size == 0) 213 vm_cnt.v_page_size = PAGE_SIZE; 214 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 215 panic("vm_set_page_size: page size not a power of two"); 216 } 217 218 /* 219 * vm_page_blacklist_lookup: 220 * 221 * See if a physical address in this page has been listed 222 * in the blacklist tunable. Entries in the tunable are 223 * separated by spaces or commas. If an invalid integer is 224 * encountered then the rest of the string is skipped. 225 */ 226 static int 227 vm_page_blacklist_lookup(char *list, vm_paddr_t pa) 228 { 229 vm_paddr_t bad; 230 char *cp, *pos; 231 232 for (pos = list; *pos != '\0'; pos = cp) { 233 bad = strtoq(pos, &cp, 0); 234 if (*cp != '\0') { 235 if (*cp == ' ' || *cp == ',') { 236 cp++; 237 if (cp == pos) 238 continue; 239 } else 240 break; 241 } 242 if (pa == trunc_page(bad)) 243 return (1); 244 } 245 return (0); 246 } 247 248 static void 249 vm_page_domain_init(struct vm_domain *vmd) 250 { 251 struct vm_pagequeue *pq; 252 int i; 253 254 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 255 "vm inactive pagequeue"; 256 *__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) = 257 &vm_cnt.v_inactive_count; 258 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 259 "vm active pagequeue"; 260 *__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) = 261 &vm_cnt.v_active_count; 262 vmd->vmd_page_count = 0; 263 vmd->vmd_free_count = 0; 264 vmd->vmd_segs = 0; 265 vmd->vmd_oom = FALSE; 266 vmd->vmd_pass = 0; 267 for (i = 0; i < PQ_COUNT; i++) { 268 pq = &vmd->vmd_pagequeues[i]; 269 TAILQ_INIT(&pq->pq_pl); 270 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 271 MTX_DEF | MTX_DUPOK); 272 } 273 } 274 275 /* 276 * vm_page_startup: 277 * 278 * Initializes the resident memory module. 279 * 280 * Allocates memory for the page cells, and 281 * for the object/offset-to-page hash table headers. 282 * Each page cell is initialized and placed on the free list. 283 */ 284 vm_offset_t 285 vm_page_startup(vm_offset_t vaddr) 286 { 287 vm_offset_t mapped; 288 vm_paddr_t page_range; 289 vm_paddr_t new_end; 290 int i; 291 vm_paddr_t pa; 292 vm_paddr_t last_pa; 293 char *list; 294 vm_paddr_t end; 295 vm_paddr_t biggestsize; 296 vm_paddr_t low_water, high_water; 297 int biggestone; 298 299 biggestsize = 0; 300 biggestone = 0; 301 vaddr = round_page(vaddr); 302 303 for (i = 0; phys_avail[i + 1]; i += 2) { 304 phys_avail[i] = round_page(phys_avail[i]); 305 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 306 } 307 308 #ifdef XEN 309 /* 310 * There is no obvious reason why i386 PV Xen needs vm_page structs 311 * created for these pseudo-physical addresses. XXX 312 */ 313 vm_phys_add_seg(0, phys_avail[0]); 314 #endif 315 316 low_water = phys_avail[0]; 317 high_water = phys_avail[1]; 318 319 for (i = 0; i < vm_phys_nsegs; i++) { 320 if (vm_phys_segs[i].start < low_water) 321 low_water = vm_phys_segs[i].start; 322 if (vm_phys_segs[i].end > high_water) 323 high_water = vm_phys_segs[i].end; 324 } 325 for (i = 0; phys_avail[i + 1]; i += 2) { 326 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 327 328 if (size > biggestsize) { 329 biggestone = i; 330 biggestsize = size; 331 } 332 if (phys_avail[i] < low_water) 333 low_water = phys_avail[i]; 334 if (phys_avail[i + 1] > high_water) 335 high_water = phys_avail[i + 1]; 336 } 337 338 end = phys_avail[biggestone+1]; 339 340 /* 341 * Initialize the page and queue locks. 342 */ 343 mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF); 344 for (i = 0; i < PA_LOCK_COUNT; i++) 345 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 346 for (i = 0; i < vm_ndomains; i++) 347 vm_page_domain_init(&vm_dom[i]); 348 349 /* 350 * Allocate memory for use when boot strapping the kernel memory 351 * allocator. 352 * 353 * CTFLAG_RDTUN doesn't work during the early boot process, so we must 354 * manually fetch the value. 355 */ 356 TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages); 357 new_end = end - (boot_pages * UMA_SLAB_SIZE); 358 new_end = trunc_page(new_end); 359 mapped = pmap_map(&vaddr, new_end, end, 360 VM_PROT_READ | VM_PROT_WRITE); 361 bzero((void *)mapped, end - new_end); 362 uma_startup((void *)mapped, boot_pages); 363 364 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \ 365 defined(__mips__) 366 /* 367 * Allocate a bitmap to indicate that a random physical page 368 * needs to be included in a minidump. 369 * 370 * The amd64 port needs this to indicate which direct map pages 371 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 372 * 373 * However, i386 still needs this workspace internally within the 374 * minidump code. In theory, they are not needed on i386, but are 375 * included should the sf_buf code decide to use them. 376 */ 377 last_pa = 0; 378 for (i = 0; dump_avail[i + 1] != 0; i += 2) 379 if (dump_avail[i + 1] > last_pa) 380 last_pa = dump_avail[i + 1]; 381 page_range = last_pa / PAGE_SIZE; 382 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 383 new_end -= vm_page_dump_size; 384 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 385 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 386 bzero((void *)vm_page_dump, vm_page_dump_size); 387 #endif 388 #ifdef __amd64__ 389 /* 390 * Request that the physical pages underlying the message buffer be 391 * included in a crash dump. Since the message buffer is accessed 392 * through the direct map, they are not automatically included. 393 */ 394 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 395 last_pa = pa + round_page(msgbufsize); 396 while (pa < last_pa) { 397 dump_add_page(pa); 398 pa += PAGE_SIZE; 399 } 400 #endif 401 /* 402 * Compute the number of pages of memory that will be available for 403 * use (taking into account the overhead of a page structure per 404 * page). 405 */ 406 first_page = low_water / PAGE_SIZE; 407 #ifdef VM_PHYSSEG_SPARSE 408 page_range = 0; 409 for (i = 0; i < vm_phys_nsegs; i++) { 410 page_range += atop(vm_phys_segs[i].end - 411 vm_phys_segs[i].start); 412 } 413 for (i = 0; phys_avail[i + 1] != 0; i += 2) 414 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 415 #elif defined(VM_PHYSSEG_DENSE) 416 page_range = high_water / PAGE_SIZE - first_page; 417 #else 418 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 419 #endif 420 end = new_end; 421 422 /* 423 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 424 */ 425 vaddr += PAGE_SIZE; 426 427 /* 428 * Initialize the mem entry structures now, and put them in the free 429 * queue. 430 */ 431 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 432 mapped = pmap_map(&vaddr, new_end, end, 433 VM_PROT_READ | VM_PROT_WRITE); 434 vm_page_array = (vm_page_t) mapped; 435 #if VM_NRESERVLEVEL > 0 436 /* 437 * Allocate memory for the reservation management system's data 438 * structures. 439 */ 440 new_end = vm_reserv_startup(&vaddr, new_end, high_water); 441 #endif 442 #if defined(__amd64__) || defined(__mips__) 443 /* 444 * pmap_map on amd64 and mips can come out of the direct-map, not kvm 445 * like i386, so the pages must be tracked for a crashdump to include 446 * this data. This includes the vm_page_array and the early UMA 447 * bootstrap pages. 448 */ 449 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 450 dump_add_page(pa); 451 #endif 452 phys_avail[biggestone + 1] = new_end; 453 454 /* 455 * Add physical memory segments corresponding to the available 456 * physical pages. 457 */ 458 for (i = 0; phys_avail[i + 1] != 0; i += 2) 459 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 460 461 /* 462 * Clear all of the page structures 463 */ 464 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 465 for (i = 0; i < page_range; i++) 466 vm_page_array[i].order = VM_NFREEORDER; 467 vm_page_array_size = page_range; 468 469 /* 470 * Initialize the physical memory allocator. 471 */ 472 vm_phys_init(); 473 474 /* 475 * Add every available physical page that is not blacklisted to 476 * the free lists. 477 */ 478 vm_cnt.v_page_count = 0; 479 vm_cnt.v_free_count = 0; 480 list = kern_getenv("vm.blacklist"); 481 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 482 pa = phys_avail[i]; 483 last_pa = phys_avail[i + 1]; 484 while (pa < last_pa) { 485 if (list != NULL && 486 vm_page_blacklist_lookup(list, pa)) 487 printf("Skipping page with pa 0x%jx\n", 488 (uintmax_t)pa); 489 else 490 vm_phys_add_page(pa); 491 pa += PAGE_SIZE; 492 } 493 } 494 freeenv(list); 495 #if VM_NRESERVLEVEL > 0 496 /* 497 * Initialize the reservation management system. 498 */ 499 vm_reserv_init(); 500 #endif 501 return (vaddr); 502 } 503 504 void 505 vm_page_reference(vm_page_t m) 506 { 507 508 vm_page_aflag_set(m, PGA_REFERENCED); 509 } 510 511 /* 512 * vm_page_busy_downgrade: 513 * 514 * Downgrade an exclusive busy page into a single shared busy page. 515 */ 516 void 517 vm_page_busy_downgrade(vm_page_t m) 518 { 519 u_int x; 520 521 vm_page_assert_xbusied(m); 522 523 for (;;) { 524 x = m->busy_lock; 525 x &= VPB_BIT_WAITERS; 526 if (atomic_cmpset_rel_int(&m->busy_lock, 527 VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x)) 528 break; 529 } 530 } 531 532 /* 533 * vm_page_sbusied: 534 * 535 * Return a positive value if the page is shared busied, 0 otherwise. 536 */ 537 int 538 vm_page_sbusied(vm_page_t m) 539 { 540 u_int x; 541 542 x = m->busy_lock; 543 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 544 } 545 546 /* 547 * vm_page_sunbusy: 548 * 549 * Shared unbusy a page. 550 */ 551 void 552 vm_page_sunbusy(vm_page_t m) 553 { 554 u_int x; 555 556 vm_page_assert_sbusied(m); 557 558 for (;;) { 559 x = m->busy_lock; 560 if (VPB_SHARERS(x) > 1) { 561 if (atomic_cmpset_int(&m->busy_lock, x, 562 x - VPB_ONE_SHARER)) 563 break; 564 continue; 565 } 566 if ((x & VPB_BIT_WAITERS) == 0) { 567 KASSERT(x == VPB_SHARERS_WORD(1), 568 ("vm_page_sunbusy: invalid lock state")); 569 if (atomic_cmpset_int(&m->busy_lock, 570 VPB_SHARERS_WORD(1), VPB_UNBUSIED)) 571 break; 572 continue; 573 } 574 KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS), 575 ("vm_page_sunbusy: invalid lock state for waiters")); 576 577 vm_page_lock(m); 578 if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) { 579 vm_page_unlock(m); 580 continue; 581 } 582 wakeup(m); 583 vm_page_unlock(m); 584 break; 585 } 586 } 587 588 /* 589 * vm_page_busy_sleep: 590 * 591 * Sleep and release the page lock, using the page pointer as wchan. 592 * This is used to implement the hard-path of busying mechanism. 593 * 594 * The given page must be locked. 595 */ 596 void 597 vm_page_busy_sleep(vm_page_t m, const char *wmesg) 598 { 599 u_int x; 600 601 vm_page_lock_assert(m, MA_OWNED); 602 603 x = m->busy_lock; 604 if (x == VPB_UNBUSIED) { 605 vm_page_unlock(m); 606 return; 607 } 608 if ((x & VPB_BIT_WAITERS) == 0 && 609 !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) { 610 vm_page_unlock(m); 611 return; 612 } 613 msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0); 614 } 615 616 /* 617 * vm_page_trysbusy: 618 * 619 * Try to shared busy a page. 620 * If the operation succeeds 1 is returned otherwise 0. 621 * The operation never sleeps. 622 */ 623 int 624 vm_page_trysbusy(vm_page_t m) 625 { 626 u_int x; 627 628 for (;;) { 629 x = m->busy_lock; 630 if ((x & VPB_BIT_SHARED) == 0) 631 return (0); 632 if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER)) 633 return (1); 634 } 635 } 636 637 /* 638 * vm_page_xunbusy_hard: 639 * 640 * Called after the first try the exclusive unbusy of a page failed. 641 * It is assumed that the waiters bit is on. 642 */ 643 void 644 vm_page_xunbusy_hard(vm_page_t m) 645 { 646 647 vm_page_assert_xbusied(m); 648 649 vm_page_lock(m); 650 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 651 wakeup(m); 652 vm_page_unlock(m); 653 } 654 655 /* 656 * vm_page_flash: 657 * 658 * Wakeup anyone waiting for the page. 659 * The ownership bits do not change. 660 * 661 * The given page must be locked. 662 */ 663 void 664 vm_page_flash(vm_page_t m) 665 { 666 u_int x; 667 668 vm_page_lock_assert(m, MA_OWNED); 669 670 for (;;) { 671 x = m->busy_lock; 672 if ((x & VPB_BIT_WAITERS) == 0) 673 return; 674 if (atomic_cmpset_int(&m->busy_lock, x, 675 x & (~VPB_BIT_WAITERS))) 676 break; 677 } 678 wakeup(m); 679 } 680 681 /* 682 * Keep page from being freed by the page daemon 683 * much of the same effect as wiring, except much lower 684 * overhead and should be used only for *very* temporary 685 * holding ("wiring"). 686 */ 687 void 688 vm_page_hold(vm_page_t mem) 689 { 690 691 vm_page_lock_assert(mem, MA_OWNED); 692 mem->hold_count++; 693 } 694 695 void 696 vm_page_unhold(vm_page_t mem) 697 { 698 699 vm_page_lock_assert(mem, MA_OWNED); 700 KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!")); 701 --mem->hold_count; 702 if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0) 703 vm_page_free_toq(mem); 704 } 705 706 /* 707 * vm_page_unhold_pages: 708 * 709 * Unhold each of the pages that is referenced by the given array. 710 */ 711 void 712 vm_page_unhold_pages(vm_page_t *ma, int count) 713 { 714 struct mtx *mtx, *new_mtx; 715 716 mtx = NULL; 717 for (; count != 0; count--) { 718 /* 719 * Avoid releasing and reacquiring the same page lock. 720 */ 721 new_mtx = vm_page_lockptr(*ma); 722 if (mtx != new_mtx) { 723 if (mtx != NULL) 724 mtx_unlock(mtx); 725 mtx = new_mtx; 726 mtx_lock(mtx); 727 } 728 vm_page_unhold(*ma); 729 ma++; 730 } 731 if (mtx != NULL) 732 mtx_unlock(mtx); 733 } 734 735 vm_page_t 736 PHYS_TO_VM_PAGE(vm_paddr_t pa) 737 { 738 vm_page_t m; 739 740 #ifdef VM_PHYSSEG_SPARSE 741 m = vm_phys_paddr_to_vm_page(pa); 742 if (m == NULL) 743 m = vm_phys_fictitious_to_vm_page(pa); 744 return (m); 745 #elif defined(VM_PHYSSEG_DENSE) 746 long pi; 747 748 pi = atop(pa); 749 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 750 m = &vm_page_array[pi - first_page]; 751 return (m); 752 } 753 return (vm_phys_fictitious_to_vm_page(pa)); 754 #else 755 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 756 #endif 757 } 758 759 /* 760 * vm_page_getfake: 761 * 762 * Create a fictitious page with the specified physical address and 763 * memory attribute. The memory attribute is the only the machine- 764 * dependent aspect of a fictitious page that must be initialized. 765 */ 766 vm_page_t 767 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 768 { 769 vm_page_t m; 770 771 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 772 vm_page_initfake(m, paddr, memattr); 773 return (m); 774 } 775 776 void 777 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 778 { 779 780 if ((m->flags & PG_FICTITIOUS) != 0) { 781 /* 782 * The page's memattr might have changed since the 783 * previous initialization. Update the pmap to the 784 * new memattr. 785 */ 786 goto memattr; 787 } 788 m->phys_addr = paddr; 789 m->queue = PQ_NONE; 790 /* Fictitious pages don't use "segind". */ 791 m->flags = PG_FICTITIOUS; 792 /* Fictitious pages don't use "order" or "pool". */ 793 m->oflags = VPO_UNMANAGED; 794 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 795 m->wire_count = 1; 796 pmap_page_init(m); 797 memattr: 798 pmap_page_set_memattr(m, memattr); 799 } 800 801 /* 802 * vm_page_putfake: 803 * 804 * Release a fictitious page. 805 */ 806 void 807 vm_page_putfake(vm_page_t m) 808 { 809 810 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 811 KASSERT((m->flags & PG_FICTITIOUS) != 0, 812 ("vm_page_putfake: bad page %p", m)); 813 uma_zfree(fakepg_zone, m); 814 } 815 816 /* 817 * vm_page_updatefake: 818 * 819 * Update the given fictitious page to the specified physical address and 820 * memory attribute. 821 */ 822 void 823 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 824 { 825 826 KASSERT((m->flags & PG_FICTITIOUS) != 0, 827 ("vm_page_updatefake: bad page %p", m)); 828 m->phys_addr = paddr; 829 pmap_page_set_memattr(m, memattr); 830 } 831 832 /* 833 * vm_page_free: 834 * 835 * Free a page. 836 */ 837 void 838 vm_page_free(vm_page_t m) 839 { 840 841 m->flags &= ~PG_ZERO; 842 vm_page_free_toq(m); 843 } 844 845 /* 846 * vm_page_free_zero: 847 * 848 * Free a page to the zerod-pages queue 849 */ 850 void 851 vm_page_free_zero(vm_page_t m) 852 { 853 854 m->flags |= PG_ZERO; 855 vm_page_free_toq(m); 856 } 857 858 /* 859 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES() 860 * array which is not the request page. 861 */ 862 void 863 vm_page_readahead_finish(vm_page_t m) 864 { 865 866 if (m->valid != 0) { 867 /* 868 * Since the page is not the requested page, whether 869 * it should be activated or deactivated is not 870 * obvious. Empirical results have shown that 871 * deactivating the page is usually the best choice, 872 * unless the page is wanted by another thread. 873 */ 874 vm_page_lock(m); 875 if ((m->busy_lock & VPB_BIT_WAITERS) != 0) 876 vm_page_activate(m); 877 else 878 vm_page_deactivate(m); 879 vm_page_unlock(m); 880 vm_page_xunbusy(m); 881 } else { 882 /* 883 * Free the completely invalid page. Such page state 884 * occurs due to the short read operation which did 885 * not covered our page at all, or in case when a read 886 * error happens. 887 */ 888 vm_page_lock(m); 889 vm_page_free(m); 890 vm_page_unlock(m); 891 } 892 } 893 894 /* 895 * vm_page_sleep_if_busy: 896 * 897 * Sleep and release the page queues lock if the page is busied. 898 * Returns TRUE if the thread slept. 899 * 900 * The given page must be unlocked and object containing it must 901 * be locked. 902 */ 903 int 904 vm_page_sleep_if_busy(vm_page_t m, const char *msg) 905 { 906 vm_object_t obj; 907 908 vm_page_lock_assert(m, MA_NOTOWNED); 909 VM_OBJECT_ASSERT_WLOCKED(m->object); 910 911 if (vm_page_busied(m)) { 912 /* 913 * The page-specific object must be cached because page 914 * identity can change during the sleep, causing the 915 * re-lock of a different object. 916 * It is assumed that a reference to the object is already 917 * held by the callers. 918 */ 919 obj = m->object; 920 vm_page_lock(m); 921 VM_OBJECT_WUNLOCK(obj); 922 vm_page_busy_sleep(m, msg); 923 VM_OBJECT_WLOCK(obj); 924 return (TRUE); 925 } 926 return (FALSE); 927 } 928 929 /* 930 * vm_page_dirty_KBI: [ internal use only ] 931 * 932 * Set all bits in the page's dirty field. 933 * 934 * The object containing the specified page must be locked if the 935 * call is made from the machine-independent layer. 936 * 937 * See vm_page_clear_dirty_mask(). 938 * 939 * This function should only be called by vm_page_dirty(). 940 */ 941 void 942 vm_page_dirty_KBI(vm_page_t m) 943 { 944 945 /* These assertions refer to this operation by its public name. */ 946 KASSERT((m->flags & PG_CACHED) == 0, 947 ("vm_page_dirty: page in cache!")); 948 KASSERT(m->valid == VM_PAGE_BITS_ALL, 949 ("vm_page_dirty: page is invalid!")); 950 m->dirty = VM_PAGE_BITS_ALL; 951 } 952 953 /* 954 * vm_page_insert: [ internal use only ] 955 * 956 * Inserts the given mem entry into the object and object list. 957 * 958 * The object must be locked. 959 */ 960 int 961 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 962 { 963 vm_page_t mpred; 964 965 VM_OBJECT_ASSERT_WLOCKED(object); 966 mpred = vm_radix_lookup_le(&object->rtree, pindex); 967 return (vm_page_insert_after(m, object, pindex, mpred)); 968 } 969 970 /* 971 * vm_page_insert_after: 972 * 973 * Inserts the page "m" into the specified object at offset "pindex". 974 * 975 * The page "mpred" must immediately precede the offset "pindex" within 976 * the specified object. 977 * 978 * The object must be locked. 979 */ 980 static int 981 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 982 vm_page_t mpred) 983 { 984 vm_pindex_t sidx; 985 vm_object_t sobj; 986 vm_page_t msucc; 987 988 VM_OBJECT_ASSERT_WLOCKED(object); 989 KASSERT(m->object == NULL, 990 ("vm_page_insert_after: page already inserted")); 991 if (mpred != NULL) { 992 KASSERT(mpred->object == object, 993 ("vm_page_insert_after: object doesn't contain mpred")); 994 KASSERT(mpred->pindex < pindex, 995 ("vm_page_insert_after: mpred doesn't precede pindex")); 996 msucc = TAILQ_NEXT(mpred, listq); 997 } else 998 msucc = TAILQ_FIRST(&object->memq); 999 if (msucc != NULL) 1000 KASSERT(msucc->pindex > pindex, 1001 ("vm_page_insert_after: msucc doesn't succeed pindex")); 1002 1003 /* 1004 * Record the object/offset pair in this page 1005 */ 1006 sobj = m->object; 1007 sidx = m->pindex; 1008 m->object = object; 1009 m->pindex = pindex; 1010 1011 /* 1012 * Now link into the object's ordered list of backed pages. 1013 */ 1014 if (vm_radix_insert(&object->rtree, m)) { 1015 m->object = sobj; 1016 m->pindex = sidx; 1017 return (1); 1018 } 1019 vm_page_insert_radixdone(m, object, mpred); 1020 return (0); 1021 } 1022 1023 /* 1024 * vm_page_insert_radixdone: 1025 * 1026 * Complete page "m" insertion into the specified object after the 1027 * radix trie hooking. 1028 * 1029 * The page "mpred" must precede the offset "m->pindex" within the 1030 * specified object. 1031 * 1032 * The object must be locked. 1033 */ 1034 static void 1035 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1036 { 1037 1038 VM_OBJECT_ASSERT_WLOCKED(object); 1039 KASSERT(object != NULL && m->object == object, 1040 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1041 if (mpred != NULL) { 1042 KASSERT(mpred->object == object, 1043 ("vm_page_insert_after: object doesn't contain mpred")); 1044 KASSERT(mpred->pindex < m->pindex, 1045 ("vm_page_insert_after: mpred doesn't precede pindex")); 1046 } 1047 1048 if (mpred != NULL) 1049 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1050 else 1051 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1052 1053 /* 1054 * Show that the object has one more resident page. 1055 */ 1056 object->resident_page_count++; 1057 1058 /* 1059 * Hold the vnode until the last page is released. 1060 */ 1061 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1062 vhold(object->handle); 1063 1064 /* 1065 * Since we are inserting a new and possibly dirty page, 1066 * update the object's OBJ_MIGHTBEDIRTY flag. 1067 */ 1068 if (pmap_page_is_write_mapped(m)) 1069 vm_object_set_writeable_dirty(object); 1070 } 1071 1072 /* 1073 * vm_page_remove: 1074 * 1075 * Removes the given mem entry from the object/offset-page 1076 * table and the object page list, but do not invalidate/terminate 1077 * the backing store. 1078 * 1079 * The object must be locked. The page must be locked if it is managed. 1080 */ 1081 void 1082 vm_page_remove(vm_page_t m) 1083 { 1084 vm_object_t object; 1085 boolean_t lockacq; 1086 1087 if ((m->oflags & VPO_UNMANAGED) == 0) 1088 vm_page_lock_assert(m, MA_OWNED); 1089 if ((object = m->object) == NULL) 1090 return; 1091 VM_OBJECT_ASSERT_WLOCKED(object); 1092 if (vm_page_xbusied(m)) { 1093 lockacq = FALSE; 1094 if ((m->oflags & VPO_UNMANAGED) != 0 && 1095 !mtx_owned(vm_page_lockptr(m))) { 1096 lockacq = TRUE; 1097 vm_page_lock(m); 1098 } 1099 vm_page_flash(m); 1100 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 1101 if (lockacq) 1102 vm_page_unlock(m); 1103 } 1104 1105 /* 1106 * Now remove from the object's list of backed pages. 1107 */ 1108 vm_radix_remove(&object->rtree, m->pindex); 1109 TAILQ_REMOVE(&object->memq, m, listq); 1110 1111 /* 1112 * And show that the object has one fewer resident page. 1113 */ 1114 object->resident_page_count--; 1115 1116 /* 1117 * The vnode may now be recycled. 1118 */ 1119 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1120 vdrop(object->handle); 1121 1122 m->object = NULL; 1123 } 1124 1125 /* 1126 * vm_page_lookup: 1127 * 1128 * Returns the page associated with the object/offset 1129 * pair specified; if none is found, NULL is returned. 1130 * 1131 * The object must be locked. 1132 */ 1133 vm_page_t 1134 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1135 { 1136 1137 VM_OBJECT_ASSERT_LOCKED(object); 1138 return (vm_radix_lookup(&object->rtree, pindex)); 1139 } 1140 1141 /* 1142 * vm_page_find_least: 1143 * 1144 * Returns the page associated with the object with least pindex 1145 * greater than or equal to the parameter pindex, or NULL. 1146 * 1147 * The object must be locked. 1148 */ 1149 vm_page_t 1150 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1151 { 1152 vm_page_t m; 1153 1154 VM_OBJECT_ASSERT_LOCKED(object); 1155 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1156 m = vm_radix_lookup_ge(&object->rtree, pindex); 1157 return (m); 1158 } 1159 1160 /* 1161 * Returns the given page's successor (by pindex) within the object if it is 1162 * resident; if none is found, NULL is returned. 1163 * 1164 * The object must be locked. 1165 */ 1166 vm_page_t 1167 vm_page_next(vm_page_t m) 1168 { 1169 vm_page_t next; 1170 1171 VM_OBJECT_ASSERT_WLOCKED(m->object); 1172 if ((next = TAILQ_NEXT(m, listq)) != NULL && 1173 next->pindex != m->pindex + 1) 1174 next = NULL; 1175 return (next); 1176 } 1177 1178 /* 1179 * Returns the given page's predecessor (by pindex) within the object if it is 1180 * resident; if none is found, NULL is returned. 1181 * 1182 * The object must be locked. 1183 */ 1184 vm_page_t 1185 vm_page_prev(vm_page_t m) 1186 { 1187 vm_page_t prev; 1188 1189 VM_OBJECT_ASSERT_WLOCKED(m->object); 1190 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL && 1191 prev->pindex != m->pindex - 1) 1192 prev = NULL; 1193 return (prev); 1194 } 1195 1196 /* 1197 * Uses the page mnew as a replacement for an existing page at index 1198 * pindex which must be already present in the object. 1199 * 1200 * The existing page must not be on a paging queue. 1201 */ 1202 vm_page_t 1203 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex) 1204 { 1205 vm_page_t mold, mpred; 1206 1207 VM_OBJECT_ASSERT_WLOCKED(object); 1208 1209 /* 1210 * This function mostly follows vm_page_insert() and 1211 * vm_page_remove() without the radix, object count and vnode 1212 * dance. Double check such functions for more comments. 1213 */ 1214 mpred = vm_radix_lookup(&object->rtree, pindex); 1215 KASSERT(mpred != NULL, 1216 ("vm_page_replace: replacing page not present with pindex")); 1217 mpred = TAILQ_PREV(mpred, respgs, listq); 1218 if (mpred != NULL) 1219 KASSERT(mpred->pindex < pindex, 1220 ("vm_page_insert_after: mpred doesn't precede pindex")); 1221 1222 mnew->object = object; 1223 mnew->pindex = pindex; 1224 mold = vm_radix_replace(&object->rtree, mnew); 1225 KASSERT(mold->queue == PQ_NONE, 1226 ("vm_page_replace: mold is on a paging queue")); 1227 1228 /* Detach the old page from the resident tailq. */ 1229 TAILQ_REMOVE(&object->memq, mold, listq); 1230 1231 mold->object = NULL; 1232 vm_page_xunbusy(mold); 1233 1234 /* Insert the new page in the resident tailq. */ 1235 if (mpred != NULL) 1236 TAILQ_INSERT_AFTER(&object->memq, mpred, mnew, listq); 1237 else 1238 TAILQ_INSERT_HEAD(&object->memq, mnew, listq); 1239 if (pmap_page_is_write_mapped(mnew)) 1240 vm_object_set_writeable_dirty(object); 1241 return (mold); 1242 } 1243 1244 /* 1245 * vm_page_rename: 1246 * 1247 * Move the given memory entry from its 1248 * current object to the specified target object/offset. 1249 * 1250 * Note: swap associated with the page must be invalidated by the move. We 1251 * have to do this for several reasons: (1) we aren't freeing the 1252 * page, (2) we are dirtying the page, (3) the VM system is probably 1253 * moving the page from object A to B, and will then later move 1254 * the backing store from A to B and we can't have a conflict. 1255 * 1256 * Note: we *always* dirty the page. It is necessary both for the 1257 * fact that we moved it, and because we may be invalidating 1258 * swap. If the page is on the cache, we have to deactivate it 1259 * or vm_page_dirty() will panic. Dirty pages are not allowed 1260 * on the cache. 1261 * 1262 * The objects must be locked. 1263 */ 1264 int 1265 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1266 { 1267 vm_page_t mpred; 1268 vm_pindex_t opidx; 1269 1270 VM_OBJECT_ASSERT_WLOCKED(new_object); 1271 1272 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); 1273 KASSERT(mpred == NULL || mpred->pindex != new_pindex, 1274 ("vm_page_rename: pindex already renamed")); 1275 1276 /* 1277 * Create a custom version of vm_page_insert() which does not depend 1278 * by m_prev and can cheat on the implementation aspects of the 1279 * function. 1280 */ 1281 opidx = m->pindex; 1282 m->pindex = new_pindex; 1283 if (vm_radix_insert(&new_object->rtree, m)) { 1284 m->pindex = opidx; 1285 return (1); 1286 } 1287 1288 /* 1289 * The operation cannot fail anymore. The removal must happen before 1290 * the listq iterator is tainted. 1291 */ 1292 m->pindex = opidx; 1293 vm_page_lock(m); 1294 vm_page_remove(m); 1295 1296 /* Return back to the new pindex to complete vm_page_insert(). */ 1297 m->pindex = new_pindex; 1298 m->object = new_object; 1299 vm_page_unlock(m); 1300 vm_page_insert_radixdone(m, new_object, mpred); 1301 vm_page_dirty(m); 1302 return (0); 1303 } 1304 1305 /* 1306 * Convert all of the given object's cached pages that have a 1307 * pindex within the given range into free pages. If the value 1308 * zero is given for "end", then the range's upper bound is 1309 * infinity. If the given object is backed by a vnode and it 1310 * transitions from having one or more cached pages to none, the 1311 * vnode's hold count is reduced. 1312 */ 1313 void 1314 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1315 { 1316 vm_page_t m; 1317 boolean_t empty; 1318 1319 mtx_lock(&vm_page_queue_free_mtx); 1320 if (__predict_false(vm_radix_is_empty(&object->cache))) { 1321 mtx_unlock(&vm_page_queue_free_mtx); 1322 return; 1323 } 1324 while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) { 1325 if (end != 0 && m->pindex >= end) 1326 break; 1327 vm_radix_remove(&object->cache, m->pindex); 1328 vm_page_cache_turn_free(m); 1329 } 1330 empty = vm_radix_is_empty(&object->cache); 1331 mtx_unlock(&vm_page_queue_free_mtx); 1332 if (object->type == OBJT_VNODE && empty) 1333 vdrop(object->handle); 1334 } 1335 1336 /* 1337 * Returns the cached page that is associated with the given 1338 * object and offset. If, however, none exists, returns NULL. 1339 * 1340 * The free page queue must be locked. 1341 */ 1342 static inline vm_page_t 1343 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex) 1344 { 1345 1346 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1347 return (vm_radix_lookup(&object->cache, pindex)); 1348 } 1349 1350 /* 1351 * Remove the given cached page from its containing object's 1352 * collection of cached pages. 1353 * 1354 * The free page queue must be locked. 1355 */ 1356 static void 1357 vm_page_cache_remove(vm_page_t m) 1358 { 1359 1360 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1361 KASSERT((m->flags & PG_CACHED) != 0, 1362 ("vm_page_cache_remove: page %p is not cached", m)); 1363 vm_radix_remove(&m->object->cache, m->pindex); 1364 m->object = NULL; 1365 vm_cnt.v_cache_count--; 1366 } 1367 1368 /* 1369 * Transfer all of the cached pages with offset greater than or 1370 * equal to 'offidxstart' from the original object's cache to the 1371 * new object's cache. However, any cached pages with offset 1372 * greater than or equal to the new object's size are kept in the 1373 * original object. Initially, the new object's cache must be 1374 * empty. Offset 'offidxstart' in the original object must 1375 * correspond to offset zero in the new object. 1376 * 1377 * The new object must be locked. 1378 */ 1379 void 1380 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart, 1381 vm_object_t new_object) 1382 { 1383 vm_page_t m; 1384 1385 /* 1386 * Insertion into an object's collection of cached pages 1387 * requires the object to be locked. In contrast, removal does 1388 * not. 1389 */ 1390 VM_OBJECT_ASSERT_WLOCKED(new_object); 1391 KASSERT(vm_radix_is_empty(&new_object->cache), 1392 ("vm_page_cache_transfer: object %p has cached pages", 1393 new_object)); 1394 mtx_lock(&vm_page_queue_free_mtx); 1395 while ((m = vm_radix_lookup_ge(&orig_object->cache, 1396 offidxstart)) != NULL) { 1397 /* 1398 * Transfer all of the pages with offset greater than or 1399 * equal to 'offidxstart' from the original object's 1400 * cache to the new object's cache. 1401 */ 1402 if ((m->pindex - offidxstart) >= new_object->size) 1403 break; 1404 vm_radix_remove(&orig_object->cache, m->pindex); 1405 /* Update the page's object and offset. */ 1406 m->object = new_object; 1407 m->pindex -= offidxstart; 1408 if (vm_radix_insert(&new_object->cache, m)) 1409 vm_page_cache_turn_free(m); 1410 } 1411 mtx_unlock(&vm_page_queue_free_mtx); 1412 } 1413 1414 /* 1415 * Returns TRUE if a cached page is associated with the given object and 1416 * offset, and FALSE otherwise. 1417 * 1418 * The object must be locked. 1419 */ 1420 boolean_t 1421 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex) 1422 { 1423 vm_page_t m; 1424 1425 /* 1426 * Insertion into an object's collection of cached pages requires the 1427 * object to be locked. Therefore, if the object is locked and the 1428 * object's collection is empty, there is no need to acquire the free 1429 * page queues lock in order to prove that the specified page doesn't 1430 * exist. 1431 */ 1432 VM_OBJECT_ASSERT_WLOCKED(object); 1433 if (__predict_true(vm_object_cache_is_empty(object))) 1434 return (FALSE); 1435 mtx_lock(&vm_page_queue_free_mtx); 1436 m = vm_page_cache_lookup(object, pindex); 1437 mtx_unlock(&vm_page_queue_free_mtx); 1438 return (m != NULL); 1439 } 1440 1441 /* 1442 * vm_page_alloc: 1443 * 1444 * Allocate and return a page that is associated with the specified 1445 * object and offset pair. By default, this page is exclusive busied. 1446 * 1447 * The caller must always specify an allocation class. 1448 * 1449 * allocation classes: 1450 * VM_ALLOC_NORMAL normal process request 1451 * VM_ALLOC_SYSTEM system *really* needs a page 1452 * VM_ALLOC_INTERRUPT interrupt time request 1453 * 1454 * optional allocation flags: 1455 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1456 * intends to allocate 1457 * VM_ALLOC_IFCACHED return page only if it is cached 1458 * VM_ALLOC_IFNOTCACHED return NULL, do not reactivate if the page 1459 * is cached 1460 * VM_ALLOC_NOBUSY do not exclusive busy the page 1461 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1462 * VM_ALLOC_NOOBJ page is not associated with an object and 1463 * should not be exclusive busy 1464 * VM_ALLOC_SBUSY shared busy the allocated page 1465 * VM_ALLOC_WIRED wire the allocated page 1466 * VM_ALLOC_ZERO prefer a zeroed page 1467 * 1468 * This routine may not sleep. 1469 */ 1470 vm_page_t 1471 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1472 { 1473 struct vnode *vp = NULL; 1474 vm_object_t m_object; 1475 vm_page_t m, mpred; 1476 int flags, req_class; 1477 1478 mpred = 0; /* XXX: pacify gcc */ 1479 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1480 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1481 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1482 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1483 ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object, 1484 req)); 1485 if (object != NULL) 1486 VM_OBJECT_ASSERT_WLOCKED(object); 1487 1488 req_class = req & VM_ALLOC_CLASS_MASK; 1489 1490 /* 1491 * The page daemon is allowed to dig deeper into the free page list. 1492 */ 1493 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1494 req_class = VM_ALLOC_SYSTEM; 1495 1496 if (object != NULL) { 1497 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1498 KASSERT(mpred == NULL || mpred->pindex != pindex, 1499 ("vm_page_alloc: pindex already allocated")); 1500 } 1501 1502 /* 1503 * The page allocation request can came from consumers which already 1504 * hold the free page queue mutex, like vm_page_insert() in 1505 * vm_page_cache(). 1506 */ 1507 mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE); 1508 if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved || 1509 (req_class == VM_ALLOC_SYSTEM && 1510 vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) || 1511 (req_class == VM_ALLOC_INTERRUPT && 1512 vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) { 1513 /* 1514 * Allocate from the free queue if the number of free pages 1515 * exceeds the minimum for the request class. 1516 */ 1517 if (object != NULL && 1518 (m = vm_page_cache_lookup(object, pindex)) != NULL) { 1519 if ((req & VM_ALLOC_IFNOTCACHED) != 0) { 1520 mtx_unlock(&vm_page_queue_free_mtx); 1521 return (NULL); 1522 } 1523 if (vm_phys_unfree_page(m)) 1524 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0); 1525 #if VM_NRESERVLEVEL > 0 1526 else if (!vm_reserv_reactivate_page(m)) 1527 #else 1528 else 1529 #endif 1530 panic("vm_page_alloc: cache page %p is missing" 1531 " from the free queue", m); 1532 } else if ((req & VM_ALLOC_IFCACHED) != 0) { 1533 mtx_unlock(&vm_page_queue_free_mtx); 1534 return (NULL); 1535 #if VM_NRESERVLEVEL > 0 1536 } else if (object == NULL || (object->flags & (OBJ_COLORED | 1537 OBJ_FICTITIOUS)) != OBJ_COLORED || (m = 1538 vm_reserv_alloc_page(object, pindex, mpred)) == NULL) { 1539 #else 1540 } else { 1541 #endif 1542 m = vm_phys_alloc_pages(object != NULL ? 1543 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 1544 #if VM_NRESERVLEVEL > 0 1545 if (m == NULL && vm_reserv_reclaim_inactive()) { 1546 m = vm_phys_alloc_pages(object != NULL ? 1547 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 1548 0); 1549 } 1550 #endif 1551 } 1552 } else { 1553 /* 1554 * Not allocatable, give up. 1555 */ 1556 mtx_unlock(&vm_page_queue_free_mtx); 1557 atomic_add_int(&vm_pageout_deficit, 1558 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 1559 pagedaemon_wakeup(); 1560 return (NULL); 1561 } 1562 1563 /* 1564 * At this point we had better have found a good page. 1565 */ 1566 KASSERT(m != NULL, ("vm_page_alloc: missing page")); 1567 KASSERT(m->queue == PQ_NONE, 1568 ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue)); 1569 KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m)); 1570 KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m)); 1571 KASSERT(!vm_page_sbusied(m), 1572 ("vm_page_alloc: page %p is busy", m)); 1573 KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m)); 1574 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1575 ("vm_page_alloc: page %p has unexpected memattr %d", m, 1576 pmap_page_get_memattr(m))); 1577 if ((m->flags & PG_CACHED) != 0) { 1578 KASSERT((m->flags & PG_ZERO) == 0, 1579 ("vm_page_alloc: cached page %p is PG_ZERO", m)); 1580 KASSERT(m->valid != 0, 1581 ("vm_page_alloc: cached page %p is invalid", m)); 1582 if (m->object == object && m->pindex == pindex) 1583 vm_cnt.v_reactivated++; 1584 else 1585 m->valid = 0; 1586 m_object = m->object; 1587 vm_page_cache_remove(m); 1588 if (m_object->type == OBJT_VNODE && 1589 vm_object_cache_is_empty(m_object)) 1590 vp = m_object->handle; 1591 } else { 1592 KASSERT(m->valid == 0, 1593 ("vm_page_alloc: free page %p is valid", m)); 1594 vm_phys_freecnt_adj(m, -1); 1595 if ((m->flags & PG_ZERO) != 0) 1596 vm_page_zero_count--; 1597 } 1598 mtx_unlock(&vm_page_queue_free_mtx); 1599 1600 /* 1601 * Initialize the page. Only the PG_ZERO flag is inherited. 1602 */ 1603 flags = 0; 1604 if ((req & VM_ALLOC_ZERO) != 0) 1605 flags = PG_ZERO; 1606 flags &= m->flags; 1607 if ((req & VM_ALLOC_NODUMP) != 0) 1608 flags |= PG_NODUMP; 1609 m->flags = flags; 1610 m->aflags = 0; 1611 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 1612 VPO_UNMANAGED : 0; 1613 m->busy_lock = VPB_UNBUSIED; 1614 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 1615 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1616 if ((req & VM_ALLOC_SBUSY) != 0) 1617 m->busy_lock = VPB_SHARERS_WORD(1); 1618 if (req & VM_ALLOC_WIRED) { 1619 /* 1620 * The page lock is not required for wiring a page until that 1621 * page is inserted into the object. 1622 */ 1623 atomic_add_int(&vm_cnt.v_wire_count, 1); 1624 m->wire_count = 1; 1625 } 1626 m->act_count = 0; 1627 1628 if (object != NULL) { 1629 if (vm_page_insert_after(m, object, pindex, mpred)) { 1630 /* See the comment below about hold count. */ 1631 if (vp != NULL) 1632 vdrop(vp); 1633 pagedaemon_wakeup(); 1634 if (req & VM_ALLOC_WIRED) { 1635 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 1636 m->wire_count = 0; 1637 } 1638 m->object = NULL; 1639 vm_page_free(m); 1640 return (NULL); 1641 } 1642 1643 /* Ignore device objects; the pager sets "memattr" for them. */ 1644 if (object->memattr != VM_MEMATTR_DEFAULT && 1645 (object->flags & OBJ_FICTITIOUS) == 0) 1646 pmap_page_set_memattr(m, object->memattr); 1647 } else 1648 m->pindex = pindex; 1649 1650 /* 1651 * The following call to vdrop() must come after the above call 1652 * to vm_page_insert() in case both affect the same object and 1653 * vnode. Otherwise, the affected vnode's hold count could 1654 * temporarily become zero. 1655 */ 1656 if (vp != NULL) 1657 vdrop(vp); 1658 1659 /* 1660 * Don't wakeup too often - wakeup the pageout daemon when 1661 * we would be nearly out of memory. 1662 */ 1663 if (vm_paging_needed()) 1664 pagedaemon_wakeup(); 1665 1666 return (m); 1667 } 1668 1669 static void 1670 vm_page_alloc_contig_vdrop(struct spglist *lst) 1671 { 1672 1673 while (!SLIST_EMPTY(lst)) { 1674 vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv); 1675 SLIST_REMOVE_HEAD(lst, plinks.s.ss); 1676 } 1677 } 1678 1679 /* 1680 * vm_page_alloc_contig: 1681 * 1682 * Allocate a contiguous set of physical pages of the given size "npages" 1683 * from the free lists. All of the physical pages must be at or above 1684 * the given physical address "low" and below the given physical address 1685 * "high". The given value "alignment" determines the alignment of the 1686 * first physical page in the set. If the given value "boundary" is 1687 * non-zero, then the set of physical pages cannot cross any physical 1688 * address boundary that is a multiple of that value. Both "alignment" 1689 * and "boundary" must be a power of two. 1690 * 1691 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 1692 * then the memory attribute setting for the physical pages is configured 1693 * to the object's memory attribute setting. Otherwise, the memory 1694 * attribute setting for the physical pages is configured to "memattr", 1695 * overriding the object's memory attribute setting. However, if the 1696 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 1697 * memory attribute setting for the physical pages cannot be configured 1698 * to VM_MEMATTR_DEFAULT. 1699 * 1700 * The caller must always specify an allocation class. 1701 * 1702 * allocation classes: 1703 * VM_ALLOC_NORMAL normal process request 1704 * VM_ALLOC_SYSTEM system *really* needs a page 1705 * VM_ALLOC_INTERRUPT interrupt time request 1706 * 1707 * optional allocation flags: 1708 * VM_ALLOC_NOBUSY do not exclusive busy the page 1709 * VM_ALLOC_NOOBJ page is not associated with an object and 1710 * should not be exclusive busy 1711 * VM_ALLOC_SBUSY shared busy the allocated page 1712 * VM_ALLOC_WIRED wire the allocated page 1713 * VM_ALLOC_ZERO prefer a zeroed page 1714 * 1715 * This routine may not sleep. 1716 */ 1717 vm_page_t 1718 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 1719 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1720 vm_paddr_t boundary, vm_memattr_t memattr) 1721 { 1722 struct vnode *drop; 1723 struct spglist deferred_vdrop_list; 1724 vm_page_t m, m_tmp, m_ret; 1725 u_int flags; 1726 int req_class; 1727 1728 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1729 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1730 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1731 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1732 ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object, 1733 req)); 1734 if (object != NULL) { 1735 VM_OBJECT_ASSERT_WLOCKED(object); 1736 KASSERT(object->type == OBJT_PHYS, 1737 ("vm_page_alloc_contig: object %p isn't OBJT_PHYS", 1738 object)); 1739 } 1740 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 1741 req_class = req & VM_ALLOC_CLASS_MASK; 1742 1743 /* 1744 * The page daemon is allowed to dig deeper into the free page list. 1745 */ 1746 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1747 req_class = VM_ALLOC_SYSTEM; 1748 1749 SLIST_INIT(&deferred_vdrop_list); 1750 mtx_lock(&vm_page_queue_free_mtx); 1751 if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages + 1752 vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM && 1753 vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages + 1754 vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT && 1755 vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) { 1756 #if VM_NRESERVLEVEL > 0 1757 retry: 1758 if (object == NULL || (object->flags & OBJ_COLORED) == 0 || 1759 (m_ret = vm_reserv_alloc_contig(object, pindex, npages, 1760 low, high, alignment, boundary)) == NULL) 1761 #endif 1762 m_ret = vm_phys_alloc_contig(npages, low, high, 1763 alignment, boundary); 1764 } else { 1765 mtx_unlock(&vm_page_queue_free_mtx); 1766 atomic_add_int(&vm_pageout_deficit, npages); 1767 pagedaemon_wakeup(); 1768 return (NULL); 1769 } 1770 if (m_ret != NULL) 1771 for (m = m_ret; m < &m_ret[npages]; m++) { 1772 drop = vm_page_alloc_init(m); 1773 if (drop != NULL) { 1774 /* 1775 * Enqueue the vnode for deferred vdrop(). 1776 */ 1777 m->plinks.s.pv = drop; 1778 SLIST_INSERT_HEAD(&deferred_vdrop_list, m, 1779 plinks.s.ss); 1780 } 1781 } 1782 else { 1783 #if VM_NRESERVLEVEL > 0 1784 if (vm_reserv_reclaim_contig(npages, low, high, alignment, 1785 boundary)) 1786 goto retry; 1787 #endif 1788 } 1789 mtx_unlock(&vm_page_queue_free_mtx); 1790 if (m_ret == NULL) 1791 return (NULL); 1792 1793 /* 1794 * Initialize the pages. Only the PG_ZERO flag is inherited. 1795 */ 1796 flags = 0; 1797 if ((req & VM_ALLOC_ZERO) != 0) 1798 flags = PG_ZERO; 1799 if ((req & VM_ALLOC_NODUMP) != 0) 1800 flags |= PG_NODUMP; 1801 if ((req & VM_ALLOC_WIRED) != 0) 1802 atomic_add_int(&vm_cnt.v_wire_count, npages); 1803 if (object != NULL) { 1804 if (object->memattr != VM_MEMATTR_DEFAULT && 1805 memattr == VM_MEMATTR_DEFAULT) 1806 memattr = object->memattr; 1807 } 1808 for (m = m_ret; m < &m_ret[npages]; m++) { 1809 m->aflags = 0; 1810 m->flags = (m->flags | PG_NODUMP) & flags; 1811 m->busy_lock = VPB_UNBUSIED; 1812 if (object != NULL) { 1813 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 1814 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1815 if ((req & VM_ALLOC_SBUSY) != 0) 1816 m->busy_lock = VPB_SHARERS_WORD(1); 1817 } 1818 if ((req & VM_ALLOC_WIRED) != 0) 1819 m->wire_count = 1; 1820 /* Unmanaged pages don't use "act_count". */ 1821 m->oflags = VPO_UNMANAGED; 1822 if (object != NULL) { 1823 if (vm_page_insert(m, object, pindex)) { 1824 vm_page_alloc_contig_vdrop( 1825 &deferred_vdrop_list); 1826 if (vm_paging_needed()) 1827 pagedaemon_wakeup(); 1828 if ((req & VM_ALLOC_WIRED) != 0) 1829 atomic_subtract_int(&vm_cnt.v_wire_count, 1830 npages); 1831 for (m_tmp = m, m = m_ret; 1832 m < &m_ret[npages]; m++) { 1833 if ((req & VM_ALLOC_WIRED) != 0) 1834 m->wire_count = 0; 1835 if (m >= m_tmp) 1836 m->object = NULL; 1837 vm_page_free(m); 1838 } 1839 return (NULL); 1840 } 1841 } else 1842 m->pindex = pindex; 1843 if (memattr != VM_MEMATTR_DEFAULT) 1844 pmap_page_set_memattr(m, memattr); 1845 pindex++; 1846 } 1847 vm_page_alloc_contig_vdrop(&deferred_vdrop_list); 1848 if (vm_paging_needed()) 1849 pagedaemon_wakeup(); 1850 return (m_ret); 1851 } 1852 1853 /* 1854 * Initialize a page that has been freshly dequeued from a freelist. 1855 * The caller has to drop the vnode returned, if it is not NULL. 1856 * 1857 * This function may only be used to initialize unmanaged pages. 1858 * 1859 * To be called with vm_page_queue_free_mtx held. 1860 */ 1861 static struct vnode * 1862 vm_page_alloc_init(vm_page_t m) 1863 { 1864 struct vnode *drop; 1865 vm_object_t m_object; 1866 1867 KASSERT(m->queue == PQ_NONE, 1868 ("vm_page_alloc_init: page %p has unexpected queue %d", 1869 m, m->queue)); 1870 KASSERT(m->wire_count == 0, 1871 ("vm_page_alloc_init: page %p is wired", m)); 1872 KASSERT(m->hold_count == 0, 1873 ("vm_page_alloc_init: page %p is held", m)); 1874 KASSERT(!vm_page_sbusied(m), 1875 ("vm_page_alloc_init: page %p is busy", m)); 1876 KASSERT(m->dirty == 0, 1877 ("vm_page_alloc_init: page %p is dirty", m)); 1878 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1879 ("vm_page_alloc_init: page %p has unexpected memattr %d", 1880 m, pmap_page_get_memattr(m))); 1881 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1882 drop = NULL; 1883 if ((m->flags & PG_CACHED) != 0) { 1884 KASSERT((m->flags & PG_ZERO) == 0, 1885 ("vm_page_alloc_init: cached page %p is PG_ZERO", m)); 1886 m->valid = 0; 1887 m_object = m->object; 1888 vm_page_cache_remove(m); 1889 if (m_object->type == OBJT_VNODE && 1890 vm_object_cache_is_empty(m_object)) 1891 drop = m_object->handle; 1892 } else { 1893 KASSERT(m->valid == 0, 1894 ("vm_page_alloc_init: free page %p is valid", m)); 1895 vm_phys_freecnt_adj(m, -1); 1896 if ((m->flags & PG_ZERO) != 0) 1897 vm_page_zero_count--; 1898 } 1899 return (drop); 1900 } 1901 1902 /* 1903 * vm_page_alloc_freelist: 1904 * 1905 * Allocate a physical page from the specified free page list. 1906 * 1907 * The caller must always specify an allocation class. 1908 * 1909 * allocation classes: 1910 * VM_ALLOC_NORMAL normal process request 1911 * VM_ALLOC_SYSTEM system *really* needs a page 1912 * VM_ALLOC_INTERRUPT interrupt time request 1913 * 1914 * optional allocation flags: 1915 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1916 * intends to allocate 1917 * VM_ALLOC_WIRED wire the allocated page 1918 * VM_ALLOC_ZERO prefer a zeroed page 1919 * 1920 * This routine may not sleep. 1921 */ 1922 vm_page_t 1923 vm_page_alloc_freelist(int flind, int req) 1924 { 1925 struct vnode *drop; 1926 vm_page_t m; 1927 u_int flags; 1928 int req_class; 1929 1930 req_class = req & VM_ALLOC_CLASS_MASK; 1931 1932 /* 1933 * The page daemon is allowed to dig deeper into the free page list. 1934 */ 1935 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1936 req_class = VM_ALLOC_SYSTEM; 1937 1938 /* 1939 * Do not allocate reserved pages unless the req has asked for it. 1940 */ 1941 mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE); 1942 if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved || 1943 (req_class == VM_ALLOC_SYSTEM && 1944 vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) || 1945 (req_class == VM_ALLOC_INTERRUPT && 1946 vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) 1947 m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0); 1948 else { 1949 mtx_unlock(&vm_page_queue_free_mtx); 1950 atomic_add_int(&vm_pageout_deficit, 1951 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 1952 pagedaemon_wakeup(); 1953 return (NULL); 1954 } 1955 if (m == NULL) { 1956 mtx_unlock(&vm_page_queue_free_mtx); 1957 return (NULL); 1958 } 1959 drop = vm_page_alloc_init(m); 1960 mtx_unlock(&vm_page_queue_free_mtx); 1961 1962 /* 1963 * Initialize the page. Only the PG_ZERO flag is inherited. 1964 */ 1965 m->aflags = 0; 1966 flags = 0; 1967 if ((req & VM_ALLOC_ZERO) != 0) 1968 flags = PG_ZERO; 1969 m->flags &= flags; 1970 if ((req & VM_ALLOC_WIRED) != 0) { 1971 /* 1972 * The page lock is not required for wiring a page that does 1973 * not belong to an object. 1974 */ 1975 atomic_add_int(&vm_cnt.v_wire_count, 1); 1976 m->wire_count = 1; 1977 } 1978 /* Unmanaged pages don't use "act_count". */ 1979 m->oflags = VPO_UNMANAGED; 1980 if (drop != NULL) 1981 vdrop(drop); 1982 if (vm_paging_needed()) 1983 pagedaemon_wakeup(); 1984 return (m); 1985 } 1986 1987 /* 1988 * vm_wait: (also see VM_WAIT macro) 1989 * 1990 * Sleep until free pages are available for allocation. 1991 * - Called in various places before memory allocations. 1992 */ 1993 void 1994 vm_wait(void) 1995 { 1996 1997 mtx_lock(&vm_page_queue_free_mtx); 1998 if (curproc == pageproc) { 1999 vm_pageout_pages_needed = 1; 2000 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, 2001 PDROP | PSWP, "VMWait", 0); 2002 } else { 2003 if (!vm_pages_needed) { 2004 vm_pages_needed = 1; 2005 wakeup(&vm_pages_needed); 2006 } 2007 msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, 2008 "vmwait", 0); 2009 } 2010 } 2011 2012 /* 2013 * vm_waitpfault: (also see VM_WAITPFAULT macro) 2014 * 2015 * Sleep until free pages are available for allocation. 2016 * - Called only in vm_fault so that processes page faulting 2017 * can be easily tracked. 2018 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 2019 * processes will be able to grab memory first. Do not change 2020 * this balance without careful testing first. 2021 */ 2022 void 2023 vm_waitpfault(void) 2024 { 2025 2026 mtx_lock(&vm_page_queue_free_mtx); 2027 if (!vm_pages_needed) { 2028 vm_pages_needed = 1; 2029 wakeup(&vm_pages_needed); 2030 } 2031 msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, 2032 "pfault", 0); 2033 } 2034 2035 struct vm_pagequeue * 2036 vm_page_pagequeue(vm_page_t m) 2037 { 2038 2039 return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]); 2040 } 2041 2042 /* 2043 * vm_page_dequeue: 2044 * 2045 * Remove the given page from its current page queue. 2046 * 2047 * The page must be locked. 2048 */ 2049 void 2050 vm_page_dequeue(vm_page_t m) 2051 { 2052 struct vm_pagequeue *pq; 2053 2054 vm_page_assert_locked(m); 2055 KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued", 2056 m)); 2057 pq = vm_page_pagequeue(m); 2058 vm_pagequeue_lock(pq); 2059 m->queue = PQ_NONE; 2060 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2061 vm_pagequeue_cnt_dec(pq); 2062 vm_pagequeue_unlock(pq); 2063 } 2064 2065 /* 2066 * vm_page_dequeue_locked: 2067 * 2068 * Remove the given page from its current page queue. 2069 * 2070 * The page and page queue must be locked. 2071 */ 2072 void 2073 vm_page_dequeue_locked(vm_page_t m) 2074 { 2075 struct vm_pagequeue *pq; 2076 2077 vm_page_lock_assert(m, MA_OWNED); 2078 pq = vm_page_pagequeue(m); 2079 vm_pagequeue_assert_locked(pq); 2080 m->queue = PQ_NONE; 2081 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2082 vm_pagequeue_cnt_dec(pq); 2083 } 2084 2085 /* 2086 * vm_page_enqueue: 2087 * 2088 * Add the given page to the specified page queue. 2089 * 2090 * The page must be locked. 2091 */ 2092 static void 2093 vm_page_enqueue(uint8_t queue, vm_page_t m) 2094 { 2095 struct vm_pagequeue *pq; 2096 2097 vm_page_lock_assert(m, MA_OWNED); 2098 KASSERT(queue < PQ_COUNT, 2099 ("vm_page_enqueue: invalid queue %u request for page %p", 2100 queue, m)); 2101 pq = &vm_phys_domain(m)->vmd_pagequeues[queue]; 2102 vm_pagequeue_lock(pq); 2103 m->queue = queue; 2104 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2105 vm_pagequeue_cnt_inc(pq); 2106 vm_pagequeue_unlock(pq); 2107 } 2108 2109 /* 2110 * vm_page_requeue: 2111 * 2112 * Move the given page to the tail of its current page queue. 2113 * 2114 * The page must be locked. 2115 */ 2116 void 2117 vm_page_requeue(vm_page_t m) 2118 { 2119 struct vm_pagequeue *pq; 2120 2121 vm_page_lock_assert(m, MA_OWNED); 2122 KASSERT(m->queue != PQ_NONE, 2123 ("vm_page_requeue: page %p is not queued", m)); 2124 pq = vm_page_pagequeue(m); 2125 vm_pagequeue_lock(pq); 2126 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2127 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2128 vm_pagequeue_unlock(pq); 2129 } 2130 2131 /* 2132 * vm_page_requeue_locked: 2133 * 2134 * Move the given page to the tail of its current page queue. 2135 * 2136 * The page queue must be locked. 2137 */ 2138 void 2139 vm_page_requeue_locked(vm_page_t m) 2140 { 2141 struct vm_pagequeue *pq; 2142 2143 KASSERT(m->queue != PQ_NONE, 2144 ("vm_page_requeue_locked: page %p is not queued", m)); 2145 pq = vm_page_pagequeue(m); 2146 vm_pagequeue_assert_locked(pq); 2147 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2148 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2149 } 2150 2151 /* 2152 * vm_page_activate: 2153 * 2154 * Put the specified page on the active list (if appropriate). 2155 * Ensure that act_count is at least ACT_INIT but do not otherwise 2156 * mess with it. 2157 * 2158 * The page must be locked. 2159 */ 2160 void 2161 vm_page_activate(vm_page_t m) 2162 { 2163 int queue; 2164 2165 vm_page_lock_assert(m, MA_OWNED); 2166 if ((queue = m->queue) != PQ_ACTIVE) { 2167 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 2168 if (m->act_count < ACT_INIT) 2169 m->act_count = ACT_INIT; 2170 if (queue != PQ_NONE) 2171 vm_page_dequeue(m); 2172 vm_page_enqueue(PQ_ACTIVE, m); 2173 } else 2174 KASSERT(queue == PQ_NONE, 2175 ("vm_page_activate: wired page %p is queued", m)); 2176 } else { 2177 if (m->act_count < ACT_INIT) 2178 m->act_count = ACT_INIT; 2179 } 2180 } 2181 2182 /* 2183 * vm_page_free_wakeup: 2184 * 2185 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 2186 * routine is called when a page has been added to the cache or free 2187 * queues. 2188 * 2189 * The page queues must be locked. 2190 */ 2191 static inline void 2192 vm_page_free_wakeup(void) 2193 { 2194 2195 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 2196 /* 2197 * if pageout daemon needs pages, then tell it that there are 2198 * some free. 2199 */ 2200 if (vm_pageout_pages_needed && 2201 vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) { 2202 wakeup(&vm_pageout_pages_needed); 2203 vm_pageout_pages_needed = 0; 2204 } 2205 /* 2206 * wakeup processes that are waiting on memory if we hit a 2207 * high water mark. And wakeup scheduler process if we have 2208 * lots of memory. this process will swapin processes. 2209 */ 2210 if (vm_pages_needed && !vm_page_count_min()) { 2211 vm_pages_needed = 0; 2212 wakeup(&vm_cnt.v_free_count); 2213 } 2214 } 2215 2216 /* 2217 * Turn a cached page into a free page, by changing its attributes. 2218 * Keep the statistics up-to-date. 2219 * 2220 * The free page queue must be locked. 2221 */ 2222 static void 2223 vm_page_cache_turn_free(vm_page_t m) 2224 { 2225 2226 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 2227 2228 m->object = NULL; 2229 m->valid = 0; 2230 KASSERT((m->flags & PG_CACHED) != 0, 2231 ("vm_page_cache_turn_free: page %p is not cached", m)); 2232 m->flags &= ~PG_CACHED; 2233 vm_cnt.v_cache_count--; 2234 vm_phys_freecnt_adj(m, 1); 2235 } 2236 2237 /* 2238 * vm_page_free_toq: 2239 * 2240 * Returns the given page to the free list, 2241 * disassociating it with any VM object. 2242 * 2243 * The object must be locked. The page must be locked if it is managed. 2244 */ 2245 void 2246 vm_page_free_toq(vm_page_t m) 2247 { 2248 2249 if ((m->oflags & VPO_UNMANAGED) == 0) { 2250 vm_page_lock_assert(m, MA_OWNED); 2251 KASSERT(!pmap_page_is_mapped(m), 2252 ("vm_page_free_toq: freeing mapped page %p", m)); 2253 } else 2254 KASSERT(m->queue == PQ_NONE, 2255 ("vm_page_free_toq: unmanaged page %p is queued", m)); 2256 PCPU_INC(cnt.v_tfree); 2257 2258 if (vm_page_sbusied(m)) 2259 panic("vm_page_free: freeing busy page %p", m); 2260 2261 /* 2262 * Unqueue, then remove page. Note that we cannot destroy 2263 * the page here because we do not want to call the pager's 2264 * callback routine until after we've put the page on the 2265 * appropriate free queue. 2266 */ 2267 vm_page_remque(m); 2268 vm_page_remove(m); 2269 2270 /* 2271 * If fictitious remove object association and 2272 * return, otherwise delay object association removal. 2273 */ 2274 if ((m->flags & PG_FICTITIOUS) != 0) { 2275 return; 2276 } 2277 2278 m->valid = 0; 2279 vm_page_undirty(m); 2280 2281 if (m->wire_count != 0) 2282 panic("vm_page_free: freeing wired page %p", m); 2283 if (m->hold_count != 0) { 2284 m->flags &= ~PG_ZERO; 2285 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 2286 ("vm_page_free: freeing PG_UNHOLDFREE page %p", m)); 2287 m->flags |= PG_UNHOLDFREE; 2288 } else { 2289 /* 2290 * Restore the default memory attribute to the page. 2291 */ 2292 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 2293 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 2294 2295 /* 2296 * Insert the page into the physical memory allocator's 2297 * cache/free page queues. 2298 */ 2299 mtx_lock(&vm_page_queue_free_mtx); 2300 vm_phys_freecnt_adj(m, 1); 2301 #if VM_NRESERVLEVEL > 0 2302 if (!vm_reserv_free_page(m)) 2303 #else 2304 if (TRUE) 2305 #endif 2306 vm_phys_free_pages(m, 0); 2307 if ((m->flags & PG_ZERO) != 0) 2308 ++vm_page_zero_count; 2309 else 2310 vm_page_zero_idle_wakeup(); 2311 vm_page_free_wakeup(); 2312 mtx_unlock(&vm_page_queue_free_mtx); 2313 } 2314 } 2315 2316 /* 2317 * vm_page_wire: 2318 * 2319 * Mark this page as wired down by yet 2320 * another map, removing it from paging queues 2321 * as necessary. 2322 * 2323 * If the page is fictitious, then its wire count must remain one. 2324 * 2325 * The page must be locked. 2326 */ 2327 void 2328 vm_page_wire(vm_page_t m) 2329 { 2330 2331 /* 2332 * Only bump the wire statistics if the page is not already wired, 2333 * and only unqueue the page if it is on some queue (if it is unmanaged 2334 * it is already off the queues). 2335 */ 2336 vm_page_lock_assert(m, MA_OWNED); 2337 if ((m->flags & PG_FICTITIOUS) != 0) { 2338 KASSERT(m->wire_count == 1, 2339 ("vm_page_wire: fictitious page %p's wire count isn't one", 2340 m)); 2341 return; 2342 } 2343 if (m->wire_count == 0) { 2344 KASSERT((m->oflags & VPO_UNMANAGED) == 0 || 2345 m->queue == PQ_NONE, 2346 ("vm_page_wire: unmanaged page %p is queued", m)); 2347 vm_page_remque(m); 2348 atomic_add_int(&vm_cnt.v_wire_count, 1); 2349 } 2350 m->wire_count++; 2351 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 2352 } 2353 2354 /* 2355 * vm_page_unwire: 2356 * 2357 * Release one wiring of the specified page, potentially enabling it to be 2358 * paged again. If paging is enabled, then the value of the parameter 2359 * "queue" determines the queue to which the page is added. 2360 * 2361 * However, unless the page belongs to an object, it is not enqueued because 2362 * it cannot be paged out. 2363 * 2364 * If a page is fictitious, then its wire count must always be one. 2365 * 2366 * A managed page must be locked. 2367 */ 2368 void 2369 vm_page_unwire(vm_page_t m, uint8_t queue) 2370 { 2371 2372 KASSERT(queue < PQ_COUNT, 2373 ("vm_page_unwire: invalid queue %u request for page %p", 2374 queue, m)); 2375 if ((m->oflags & VPO_UNMANAGED) == 0) 2376 vm_page_lock_assert(m, MA_OWNED); 2377 if ((m->flags & PG_FICTITIOUS) != 0) { 2378 KASSERT(m->wire_count == 1, 2379 ("vm_page_unwire: fictitious page %p's wire count isn't one", m)); 2380 return; 2381 } 2382 if (m->wire_count > 0) { 2383 m->wire_count--; 2384 if (m->wire_count == 0) { 2385 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 2386 if ((m->oflags & VPO_UNMANAGED) != 0 || 2387 m->object == NULL) 2388 return; 2389 if (queue == PQ_INACTIVE) 2390 m->flags &= ~PG_WINATCFLS; 2391 vm_page_enqueue(queue, m); 2392 } 2393 } else 2394 panic("vm_page_unwire: page %p's wire count is zero", m); 2395 } 2396 2397 /* 2398 * Move the specified page to the inactive queue. 2399 * 2400 * Many pages placed on the inactive queue should actually go 2401 * into the cache, but it is difficult to figure out which. What 2402 * we do instead, if the inactive target is well met, is to put 2403 * clean pages at the head of the inactive queue instead of the tail. 2404 * This will cause them to be moved to the cache more quickly and 2405 * if not actively re-referenced, reclaimed more quickly. If we just 2406 * stick these pages at the end of the inactive queue, heavy filesystem 2407 * meta-data accesses can cause an unnecessary paging load on memory bound 2408 * processes. This optimization causes one-time-use metadata to be 2409 * reused more quickly. 2410 * 2411 * Normally athead is 0 resulting in LRU operation. athead is set 2412 * to 1 if we want this page to be 'as if it were placed in the cache', 2413 * except without unmapping it from the process address space. 2414 * 2415 * The page must be locked. 2416 */ 2417 static inline void 2418 _vm_page_deactivate(vm_page_t m, int athead) 2419 { 2420 struct vm_pagequeue *pq; 2421 int queue; 2422 2423 vm_page_lock_assert(m, MA_OWNED); 2424 2425 /* 2426 * Ignore if already inactive. 2427 */ 2428 if ((queue = m->queue) == PQ_INACTIVE) 2429 return; 2430 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 2431 if (queue != PQ_NONE) 2432 vm_page_dequeue(m); 2433 m->flags &= ~PG_WINATCFLS; 2434 pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE]; 2435 vm_pagequeue_lock(pq); 2436 m->queue = PQ_INACTIVE; 2437 if (athead) 2438 TAILQ_INSERT_HEAD(&pq->pq_pl, m, plinks.q); 2439 else 2440 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2441 vm_pagequeue_cnt_inc(pq); 2442 vm_pagequeue_unlock(pq); 2443 } 2444 } 2445 2446 /* 2447 * Move the specified page to the inactive queue. 2448 * 2449 * The page must be locked. 2450 */ 2451 void 2452 vm_page_deactivate(vm_page_t m) 2453 { 2454 2455 _vm_page_deactivate(m, 0); 2456 } 2457 2458 /* 2459 * vm_page_try_to_cache: 2460 * 2461 * Returns 0 on failure, 1 on success 2462 */ 2463 int 2464 vm_page_try_to_cache(vm_page_t m) 2465 { 2466 2467 vm_page_lock_assert(m, MA_OWNED); 2468 VM_OBJECT_ASSERT_WLOCKED(m->object); 2469 if (m->dirty || m->hold_count || m->wire_count || 2470 (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m)) 2471 return (0); 2472 pmap_remove_all(m); 2473 if (m->dirty) 2474 return (0); 2475 vm_page_cache(m); 2476 return (1); 2477 } 2478 2479 /* 2480 * vm_page_try_to_free() 2481 * 2482 * Attempt to free the page. If we cannot free it, we do nothing. 2483 * 1 is returned on success, 0 on failure. 2484 */ 2485 int 2486 vm_page_try_to_free(vm_page_t m) 2487 { 2488 2489 vm_page_lock_assert(m, MA_OWNED); 2490 if (m->object != NULL) 2491 VM_OBJECT_ASSERT_WLOCKED(m->object); 2492 if (m->dirty || m->hold_count || m->wire_count || 2493 (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m)) 2494 return (0); 2495 pmap_remove_all(m); 2496 if (m->dirty) 2497 return (0); 2498 vm_page_free(m); 2499 return (1); 2500 } 2501 2502 /* 2503 * vm_page_cache 2504 * 2505 * Put the specified page onto the page cache queue (if appropriate). 2506 * 2507 * The object and page must be locked. 2508 */ 2509 void 2510 vm_page_cache(vm_page_t m) 2511 { 2512 vm_object_t object; 2513 boolean_t cache_was_empty; 2514 2515 vm_page_lock_assert(m, MA_OWNED); 2516 object = m->object; 2517 VM_OBJECT_ASSERT_WLOCKED(object); 2518 if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) || 2519 m->hold_count || m->wire_count) 2520 panic("vm_page_cache: attempting to cache busy page"); 2521 KASSERT(!pmap_page_is_mapped(m), 2522 ("vm_page_cache: page %p is mapped", m)); 2523 KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m)); 2524 if (m->valid == 0 || object->type == OBJT_DEFAULT || 2525 (object->type == OBJT_SWAP && 2526 !vm_pager_has_page(object, m->pindex, NULL, NULL))) { 2527 /* 2528 * Hypothesis: A cache-eligible page belonging to a 2529 * default object or swap object but without a backing 2530 * store must be zero filled. 2531 */ 2532 vm_page_free(m); 2533 return; 2534 } 2535 KASSERT((m->flags & PG_CACHED) == 0, 2536 ("vm_page_cache: page %p is already cached", m)); 2537 2538 /* 2539 * Remove the page from the paging queues. 2540 */ 2541 vm_page_remque(m); 2542 2543 /* 2544 * Remove the page from the object's collection of resident 2545 * pages. 2546 */ 2547 vm_radix_remove(&object->rtree, m->pindex); 2548 TAILQ_REMOVE(&object->memq, m, listq); 2549 object->resident_page_count--; 2550 2551 /* 2552 * Restore the default memory attribute to the page. 2553 */ 2554 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 2555 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 2556 2557 /* 2558 * Insert the page into the object's collection of cached pages 2559 * and the physical memory allocator's cache/free page queues. 2560 */ 2561 m->flags &= ~PG_ZERO; 2562 mtx_lock(&vm_page_queue_free_mtx); 2563 cache_was_empty = vm_radix_is_empty(&object->cache); 2564 if (vm_radix_insert(&object->cache, m)) { 2565 mtx_unlock(&vm_page_queue_free_mtx); 2566 if (object->resident_page_count == 0) 2567 vdrop(object->handle); 2568 m->object = NULL; 2569 vm_page_free(m); 2570 return; 2571 } 2572 2573 /* 2574 * The above call to vm_radix_insert() could reclaim the one pre- 2575 * existing cached page from this object, resulting in a call to 2576 * vdrop(). 2577 */ 2578 if (!cache_was_empty) 2579 cache_was_empty = vm_radix_is_singleton(&object->cache); 2580 2581 m->flags |= PG_CACHED; 2582 vm_cnt.v_cache_count++; 2583 PCPU_INC(cnt.v_tcached); 2584 #if VM_NRESERVLEVEL > 0 2585 if (!vm_reserv_free_page(m)) { 2586 #else 2587 if (TRUE) { 2588 #endif 2589 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0); 2590 vm_phys_free_pages(m, 0); 2591 } 2592 vm_page_free_wakeup(); 2593 mtx_unlock(&vm_page_queue_free_mtx); 2594 2595 /* 2596 * Increment the vnode's hold count if this is the object's only 2597 * cached page. Decrement the vnode's hold count if this was 2598 * the object's only resident page. 2599 */ 2600 if (object->type == OBJT_VNODE) { 2601 if (cache_was_empty && object->resident_page_count != 0) 2602 vhold(object->handle); 2603 else if (!cache_was_empty && object->resident_page_count == 0) 2604 vdrop(object->handle); 2605 } 2606 } 2607 2608 /* 2609 * vm_page_advise 2610 * 2611 * Cache, deactivate, or do nothing as appropriate. This routine 2612 * is used by madvise(). 2613 * 2614 * Generally speaking we want to move the page into the cache so 2615 * it gets reused quickly. However, this can result in a silly syndrome 2616 * due to the page recycling too quickly. Small objects will not be 2617 * fully cached. On the other hand, if we move the page to the inactive 2618 * queue we wind up with a problem whereby very large objects 2619 * unnecessarily blow away our inactive and cache queues. 2620 * 2621 * The solution is to move the pages based on a fixed weighting. We 2622 * either leave them alone, deactivate them, or move them to the cache, 2623 * where moving them to the cache has the highest weighting. 2624 * By forcing some pages into other queues we eventually force the 2625 * system to balance the queues, potentially recovering other unrelated 2626 * space from active. The idea is to not force this to happen too 2627 * often. 2628 * 2629 * The object and page must be locked. 2630 */ 2631 void 2632 vm_page_advise(vm_page_t m, int advice) 2633 { 2634 int dnw, head; 2635 2636 vm_page_assert_locked(m); 2637 VM_OBJECT_ASSERT_WLOCKED(m->object); 2638 if (advice == MADV_FREE) { 2639 /* 2640 * Mark the page clean. This will allow the page to be freed 2641 * up by the system. However, such pages are often reused 2642 * quickly by malloc() so we do not do anything that would 2643 * cause a page fault if we can help it. 2644 * 2645 * Specifically, we do not try to actually free the page now 2646 * nor do we try to put it in the cache (which would cause a 2647 * page fault on reuse). 2648 * 2649 * But we do make the page is freeable as we can without 2650 * actually taking the step of unmapping it. 2651 */ 2652 m->dirty = 0; 2653 m->act_count = 0; 2654 } else if (advice != MADV_DONTNEED) 2655 return; 2656 dnw = PCPU_GET(dnweight); 2657 PCPU_INC(dnweight); 2658 2659 /* 2660 * Occasionally leave the page alone. 2661 */ 2662 if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) { 2663 if (m->act_count >= ACT_INIT) 2664 --m->act_count; 2665 return; 2666 } 2667 2668 /* 2669 * Clear any references to the page. Otherwise, the page daemon will 2670 * immediately reactivate the page. 2671 */ 2672 vm_page_aflag_clear(m, PGA_REFERENCED); 2673 2674 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 2675 vm_page_dirty(m); 2676 2677 if (m->dirty || (dnw & 0x0070) == 0) { 2678 /* 2679 * Deactivate the page 3 times out of 32. 2680 */ 2681 head = 0; 2682 } else { 2683 /* 2684 * Cache the page 28 times out of every 32. Note that 2685 * the page is deactivated instead of cached, but placed 2686 * at the head of the queue instead of the tail. 2687 */ 2688 head = 1; 2689 } 2690 _vm_page_deactivate(m, head); 2691 } 2692 2693 /* 2694 * Grab a page, waiting until we are waken up due to the page 2695 * changing state. We keep on waiting, if the page continues 2696 * to be in the object. If the page doesn't exist, first allocate it 2697 * and then conditionally zero it. 2698 * 2699 * This routine may sleep. 2700 * 2701 * The object must be locked on entry. The lock will, however, be released 2702 * and reacquired if the routine sleeps. 2703 */ 2704 vm_page_t 2705 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2706 { 2707 vm_page_t m; 2708 int sleep; 2709 2710 VM_OBJECT_ASSERT_WLOCKED(object); 2711 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 2712 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 2713 ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 2714 retrylookup: 2715 if ((m = vm_page_lookup(object, pindex)) != NULL) { 2716 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? 2717 vm_page_xbusied(m) : vm_page_busied(m); 2718 if (sleep) { 2719 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 2720 return (NULL); 2721 /* 2722 * Reference the page before unlocking and 2723 * sleeping so that the page daemon is less 2724 * likely to reclaim it. 2725 */ 2726 vm_page_aflag_set(m, PGA_REFERENCED); 2727 vm_page_lock(m); 2728 VM_OBJECT_WUNLOCK(object); 2729 vm_page_busy_sleep(m, "pgrbwt"); 2730 VM_OBJECT_WLOCK(object); 2731 goto retrylookup; 2732 } else { 2733 if ((allocflags & VM_ALLOC_WIRED) != 0) { 2734 vm_page_lock(m); 2735 vm_page_wire(m); 2736 vm_page_unlock(m); 2737 } 2738 if ((allocflags & 2739 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 2740 vm_page_xbusy(m); 2741 if ((allocflags & VM_ALLOC_SBUSY) != 0) 2742 vm_page_sbusy(m); 2743 return (m); 2744 } 2745 } 2746 m = vm_page_alloc(object, pindex, allocflags); 2747 if (m == NULL) { 2748 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 2749 return (NULL); 2750 VM_OBJECT_WUNLOCK(object); 2751 VM_WAIT; 2752 VM_OBJECT_WLOCK(object); 2753 goto retrylookup; 2754 } else if (m->valid != 0) 2755 return (m); 2756 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 2757 pmap_zero_page(m); 2758 return (m); 2759 } 2760 2761 /* 2762 * Mapping function for valid or dirty bits in a page. 2763 * 2764 * Inputs are required to range within a page. 2765 */ 2766 vm_page_bits_t 2767 vm_page_bits(int base, int size) 2768 { 2769 int first_bit; 2770 int last_bit; 2771 2772 KASSERT( 2773 base + size <= PAGE_SIZE, 2774 ("vm_page_bits: illegal base/size %d/%d", base, size) 2775 ); 2776 2777 if (size == 0) /* handle degenerate case */ 2778 return (0); 2779 2780 first_bit = base >> DEV_BSHIFT; 2781 last_bit = (base + size - 1) >> DEV_BSHIFT; 2782 2783 return (((vm_page_bits_t)2 << last_bit) - 2784 ((vm_page_bits_t)1 << first_bit)); 2785 } 2786 2787 /* 2788 * vm_page_set_valid_range: 2789 * 2790 * Sets portions of a page valid. The arguments are expected 2791 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2792 * of any partial chunks touched by the range. The invalid portion of 2793 * such chunks will be zeroed. 2794 * 2795 * (base + size) must be less then or equal to PAGE_SIZE. 2796 */ 2797 void 2798 vm_page_set_valid_range(vm_page_t m, int base, int size) 2799 { 2800 int endoff, frag; 2801 2802 VM_OBJECT_ASSERT_WLOCKED(m->object); 2803 if (size == 0) /* handle degenerate case */ 2804 return; 2805 2806 /* 2807 * If the base is not DEV_BSIZE aligned and the valid 2808 * bit is clear, we have to zero out a portion of the 2809 * first block. 2810 */ 2811 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2812 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 2813 pmap_zero_page_area(m, frag, base - frag); 2814 2815 /* 2816 * If the ending offset is not DEV_BSIZE aligned and the 2817 * valid bit is clear, we have to zero out a portion of 2818 * the last block. 2819 */ 2820 endoff = base + size; 2821 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2822 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 2823 pmap_zero_page_area(m, endoff, 2824 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 2825 2826 /* 2827 * Assert that no previously invalid block that is now being validated 2828 * is already dirty. 2829 */ 2830 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 2831 ("vm_page_set_valid_range: page %p is dirty", m)); 2832 2833 /* 2834 * Set valid bits inclusive of any overlap. 2835 */ 2836 m->valid |= vm_page_bits(base, size); 2837 } 2838 2839 /* 2840 * Clear the given bits from the specified page's dirty field. 2841 */ 2842 static __inline void 2843 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 2844 { 2845 uintptr_t addr; 2846 #if PAGE_SIZE < 16384 2847 int shift; 2848 #endif 2849 2850 /* 2851 * If the object is locked and the page is neither exclusive busy nor 2852 * write mapped, then the page's dirty field cannot possibly be 2853 * set by a concurrent pmap operation. 2854 */ 2855 VM_OBJECT_ASSERT_WLOCKED(m->object); 2856 if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 2857 m->dirty &= ~pagebits; 2858 else { 2859 /* 2860 * The pmap layer can call vm_page_dirty() without 2861 * holding a distinguished lock. The combination of 2862 * the object's lock and an atomic operation suffice 2863 * to guarantee consistency of the page dirty field. 2864 * 2865 * For PAGE_SIZE == 32768 case, compiler already 2866 * properly aligns the dirty field, so no forcible 2867 * alignment is needed. Only require existence of 2868 * atomic_clear_64 when page size is 32768. 2869 */ 2870 addr = (uintptr_t)&m->dirty; 2871 #if PAGE_SIZE == 32768 2872 atomic_clear_64((uint64_t *)addr, pagebits); 2873 #elif PAGE_SIZE == 16384 2874 atomic_clear_32((uint32_t *)addr, pagebits); 2875 #else /* PAGE_SIZE <= 8192 */ 2876 /* 2877 * Use a trick to perform a 32-bit atomic on the 2878 * containing aligned word, to not depend on the existence 2879 * of atomic_clear_{8, 16}. 2880 */ 2881 shift = addr & (sizeof(uint32_t) - 1); 2882 #if BYTE_ORDER == BIG_ENDIAN 2883 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY; 2884 #else 2885 shift *= NBBY; 2886 #endif 2887 addr &= ~(sizeof(uint32_t) - 1); 2888 atomic_clear_32((uint32_t *)addr, pagebits << shift); 2889 #endif /* PAGE_SIZE */ 2890 } 2891 } 2892 2893 /* 2894 * vm_page_set_validclean: 2895 * 2896 * Sets portions of a page valid and clean. The arguments are expected 2897 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2898 * of any partial chunks touched by the range. The invalid portion of 2899 * such chunks will be zero'd. 2900 * 2901 * (base + size) must be less then or equal to PAGE_SIZE. 2902 */ 2903 void 2904 vm_page_set_validclean(vm_page_t m, int base, int size) 2905 { 2906 vm_page_bits_t oldvalid, pagebits; 2907 int endoff, frag; 2908 2909 VM_OBJECT_ASSERT_WLOCKED(m->object); 2910 if (size == 0) /* handle degenerate case */ 2911 return; 2912 2913 /* 2914 * If the base is not DEV_BSIZE aligned and the valid 2915 * bit is clear, we have to zero out a portion of the 2916 * first block. 2917 */ 2918 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2919 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 2920 pmap_zero_page_area(m, frag, base - frag); 2921 2922 /* 2923 * If the ending offset is not DEV_BSIZE aligned and the 2924 * valid bit is clear, we have to zero out a portion of 2925 * the last block. 2926 */ 2927 endoff = base + size; 2928 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2929 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 2930 pmap_zero_page_area(m, endoff, 2931 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 2932 2933 /* 2934 * Set valid, clear dirty bits. If validating the entire 2935 * page we can safely clear the pmap modify bit. We also 2936 * use this opportunity to clear the VPO_NOSYNC flag. If a process 2937 * takes a write fault on a MAP_NOSYNC memory area the flag will 2938 * be set again. 2939 * 2940 * We set valid bits inclusive of any overlap, but we can only 2941 * clear dirty bits for DEV_BSIZE chunks that are fully within 2942 * the range. 2943 */ 2944 oldvalid = m->valid; 2945 pagebits = vm_page_bits(base, size); 2946 m->valid |= pagebits; 2947 #if 0 /* NOT YET */ 2948 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 2949 frag = DEV_BSIZE - frag; 2950 base += frag; 2951 size -= frag; 2952 if (size < 0) 2953 size = 0; 2954 } 2955 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 2956 #endif 2957 if (base == 0 && size == PAGE_SIZE) { 2958 /* 2959 * The page can only be modified within the pmap if it is 2960 * mapped, and it can only be mapped if it was previously 2961 * fully valid. 2962 */ 2963 if (oldvalid == VM_PAGE_BITS_ALL) 2964 /* 2965 * Perform the pmap_clear_modify() first. Otherwise, 2966 * a concurrent pmap operation, such as 2967 * pmap_protect(), could clear a modification in the 2968 * pmap and set the dirty field on the page before 2969 * pmap_clear_modify() had begun and after the dirty 2970 * field was cleared here. 2971 */ 2972 pmap_clear_modify(m); 2973 m->dirty = 0; 2974 m->oflags &= ~VPO_NOSYNC; 2975 } else if (oldvalid != VM_PAGE_BITS_ALL) 2976 m->dirty &= ~pagebits; 2977 else 2978 vm_page_clear_dirty_mask(m, pagebits); 2979 } 2980 2981 void 2982 vm_page_clear_dirty(vm_page_t m, int base, int size) 2983 { 2984 2985 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 2986 } 2987 2988 /* 2989 * vm_page_set_invalid: 2990 * 2991 * Invalidates DEV_BSIZE'd chunks within a page. Both the 2992 * valid and dirty bits for the effected areas are cleared. 2993 */ 2994 void 2995 vm_page_set_invalid(vm_page_t m, int base, int size) 2996 { 2997 vm_page_bits_t bits; 2998 vm_object_t object; 2999 3000 object = m->object; 3001 VM_OBJECT_ASSERT_WLOCKED(object); 3002 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 3003 size >= object->un_pager.vnp.vnp_size) 3004 bits = VM_PAGE_BITS_ALL; 3005 else 3006 bits = vm_page_bits(base, size); 3007 if (m->valid == VM_PAGE_BITS_ALL && bits != 0) 3008 pmap_remove_all(m); 3009 KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) || 3010 !pmap_page_is_mapped(m), 3011 ("vm_page_set_invalid: page %p is mapped", m)); 3012 m->valid &= ~bits; 3013 m->dirty &= ~bits; 3014 } 3015 3016 /* 3017 * vm_page_zero_invalid() 3018 * 3019 * The kernel assumes that the invalid portions of a page contain 3020 * garbage, but such pages can be mapped into memory by user code. 3021 * When this occurs, we must zero out the non-valid portions of the 3022 * page so user code sees what it expects. 3023 * 3024 * Pages are most often semi-valid when the end of a file is mapped 3025 * into memory and the file's size is not page aligned. 3026 */ 3027 void 3028 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 3029 { 3030 int b; 3031 int i; 3032 3033 VM_OBJECT_ASSERT_WLOCKED(m->object); 3034 /* 3035 * Scan the valid bits looking for invalid sections that 3036 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 3037 * valid bit may be set ) have already been zerod by 3038 * vm_page_set_validclean(). 3039 */ 3040 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 3041 if (i == (PAGE_SIZE / DEV_BSIZE) || 3042 (m->valid & ((vm_page_bits_t)1 << i))) { 3043 if (i > b) { 3044 pmap_zero_page_area(m, 3045 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 3046 } 3047 b = i + 1; 3048 } 3049 } 3050 3051 /* 3052 * setvalid is TRUE when we can safely set the zero'd areas 3053 * as being valid. We can do this if there are no cache consistancy 3054 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 3055 */ 3056 if (setvalid) 3057 m->valid = VM_PAGE_BITS_ALL; 3058 } 3059 3060 /* 3061 * vm_page_is_valid: 3062 * 3063 * Is (partial) page valid? Note that the case where size == 0 3064 * will return FALSE in the degenerate case where the page is 3065 * entirely invalid, and TRUE otherwise. 3066 */ 3067 int 3068 vm_page_is_valid(vm_page_t m, int base, int size) 3069 { 3070 vm_page_bits_t bits; 3071 3072 VM_OBJECT_ASSERT_LOCKED(m->object); 3073 bits = vm_page_bits(base, size); 3074 return (m->valid != 0 && (m->valid & bits) == bits); 3075 } 3076 3077 /* 3078 * vm_page_ps_is_valid: 3079 * 3080 * Returns TRUE if the entire (super)page is valid and FALSE otherwise. 3081 */ 3082 boolean_t 3083 vm_page_ps_is_valid(vm_page_t m) 3084 { 3085 int i, npages; 3086 3087 VM_OBJECT_ASSERT_LOCKED(m->object); 3088 npages = atop(pagesizes[m->psind]); 3089 3090 /* 3091 * The physically contiguous pages that make up a superpage, i.e., a 3092 * page with a page size index ("psind") greater than zero, will 3093 * occupy adjacent entries in vm_page_array[]. 3094 */ 3095 for (i = 0; i < npages; i++) { 3096 if (m[i].valid != VM_PAGE_BITS_ALL) 3097 return (FALSE); 3098 } 3099 return (TRUE); 3100 } 3101 3102 /* 3103 * Set the page's dirty bits if the page is modified. 3104 */ 3105 void 3106 vm_page_test_dirty(vm_page_t m) 3107 { 3108 3109 VM_OBJECT_ASSERT_WLOCKED(m->object); 3110 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 3111 vm_page_dirty(m); 3112 } 3113 3114 void 3115 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 3116 { 3117 3118 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 3119 } 3120 3121 void 3122 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 3123 { 3124 3125 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 3126 } 3127 3128 int 3129 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 3130 { 3131 3132 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 3133 } 3134 3135 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 3136 void 3137 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 3138 { 3139 3140 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 3141 } 3142 3143 void 3144 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 3145 { 3146 3147 mtx_assert_(vm_page_lockptr(m), a, file, line); 3148 } 3149 #endif 3150 3151 #ifdef INVARIANTS 3152 void 3153 vm_page_object_lock_assert(vm_page_t m) 3154 { 3155 3156 /* 3157 * Certain of the page's fields may only be modified by the 3158 * holder of the containing object's lock or the exclusive busy. 3159 * holder. Unfortunately, the holder of the write busy is 3160 * not recorded, and thus cannot be checked here. 3161 */ 3162 if (m->object != NULL && !vm_page_xbusied(m)) 3163 VM_OBJECT_ASSERT_WLOCKED(m->object); 3164 } 3165 3166 void 3167 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits) 3168 { 3169 3170 if ((bits & PGA_WRITEABLE) == 0) 3171 return; 3172 3173 /* 3174 * The PGA_WRITEABLE flag can only be set if the page is 3175 * managed, is exclusively busied or the object is locked. 3176 * Currently, this flag is only set by pmap_enter(). 3177 */ 3178 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3179 ("PGA_WRITEABLE on unmanaged page")); 3180 if (!vm_page_xbusied(m)) 3181 VM_OBJECT_ASSERT_LOCKED(m->object); 3182 } 3183 #endif 3184 3185 #include "opt_ddb.h" 3186 #ifdef DDB 3187 #include <sys/kernel.h> 3188 3189 #include <ddb/ddb.h> 3190 3191 DB_SHOW_COMMAND(page, vm_page_print_page_info) 3192 { 3193 db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count); 3194 db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count); 3195 db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count); 3196 db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count); 3197 db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count); 3198 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 3199 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 3200 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 3201 db_printf("vm_cnt.v_cache_min: %d\n", vm_cnt.v_cache_min); 3202 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 3203 } 3204 3205 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 3206 { 3207 int dom; 3208 3209 db_printf("pq_free %d pq_cache %d\n", 3210 vm_cnt.v_free_count, vm_cnt.v_cache_count); 3211 for (dom = 0; dom < vm_ndomains; dom++) { 3212 db_printf( 3213 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n", 3214 dom, 3215 vm_dom[dom].vmd_page_count, 3216 vm_dom[dom].vmd_free_count, 3217 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 3218 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 3219 vm_dom[dom].vmd_pass); 3220 } 3221 } 3222 3223 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 3224 { 3225 vm_page_t m; 3226 boolean_t phys; 3227 3228 if (!have_addr) { 3229 db_printf("show pginfo addr\n"); 3230 return; 3231 } 3232 3233 phys = strchr(modif, 'p') != NULL; 3234 if (phys) 3235 m = PHYS_TO_VM_PAGE(addr); 3236 else 3237 m = (vm_page_t)addr; 3238 db_printf( 3239 "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n" 3240 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 3241 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 3242 m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags, 3243 m->flags, m->act_count, m->busy_lock, m->valid, m->dirty); 3244 } 3245 #endif /* DDB */ 3246