xref: /freebsd/sys/vm/vm_page.c (revision 77ebcc05eac2658a68b447e654cfdf7ff3e703b8)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
36  */
37 
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *			GENERAL RULES ON VM_PAGE MANIPULATION
67  *
68  *	- A page queue lock is required when adding or removing a page from a
69  *	  page queue regardless of other locks or the busy state of a page.
70  *
71  *		* In general, no thread besides the page daemon can acquire or
72  *		  hold more than one page queue lock at a time.
73  *
74  *		* The page daemon can acquire and hold any pair of page queue
75  *		  locks in any order.
76  *
77  *	- The object lock is required when inserting or removing
78  *	  pages from an object (vm_page_insert() or vm_page_remove()).
79  *
80  */
81 
82 /*
83  *	Resident memory management module.
84  */
85 
86 #include <sys/cdefs.h>
87 __FBSDID("$FreeBSD$");
88 
89 #include "opt_vm.h"
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/lock.h>
94 #include <sys/domainset.h>
95 #include <sys/kernel.h>
96 #include <sys/limits.h>
97 #include <sys/linker.h>
98 #include <sys/malloc.h>
99 #include <sys/mman.h>
100 #include <sys/msgbuf.h>
101 #include <sys/mutex.h>
102 #include <sys/proc.h>
103 #include <sys/rwlock.h>
104 #include <sys/sbuf.h>
105 #include <sys/sched.h>
106 #include <sys/smp.h>
107 #include <sys/sysctl.h>
108 #include <sys/vmmeter.h>
109 #include <sys/vnode.h>
110 
111 #include <vm/vm.h>
112 #include <vm/pmap.h>
113 #include <vm/vm_param.h>
114 #include <vm/vm_domainset.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_map.h>
117 #include <vm/vm_object.h>
118 #include <vm/vm_page.h>
119 #include <vm/vm_pageout.h>
120 #include <vm/vm_phys.h>
121 #include <vm/vm_pagequeue.h>
122 #include <vm/vm_pager.h>
123 #include <vm/vm_radix.h>
124 #include <vm/vm_reserv.h>
125 #include <vm/vm_extern.h>
126 #include <vm/uma.h>
127 #include <vm/uma_int.h>
128 
129 #include <machine/md_var.h>
130 
131 extern int	uma_startup_count(int);
132 extern void	uma_startup(void *, int);
133 extern int	vmem_startup_count(void);
134 
135 struct vm_domain vm_dom[MAXMEMDOM];
136 
137 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
138 
139 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
140 
141 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
142 /* The following fields are protected by the domainset lock. */
143 domainset_t __exclusive_cache_line vm_min_domains;
144 domainset_t __exclusive_cache_line vm_severe_domains;
145 static int vm_min_waiters;
146 static int vm_severe_waiters;
147 static int vm_pageproc_waiters;
148 
149 /*
150  * bogus page -- for I/O to/from partially complete buffers,
151  * or for paging into sparsely invalid regions.
152  */
153 vm_page_t bogus_page;
154 
155 vm_page_t vm_page_array;
156 long vm_page_array_size;
157 long first_page;
158 
159 static int boot_pages;
160 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
161     &boot_pages, 0,
162     "number of pages allocated for bootstrapping the VM system");
163 
164 static int pa_tryrelock_restart;
165 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
166     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
167 
168 static TAILQ_HEAD(, vm_page) blacklist_head;
169 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
170 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
171     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
172 
173 static uma_zone_t fakepg_zone;
174 
175 static void vm_page_alloc_check(vm_page_t m);
176 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
177 static void vm_page_dequeue_complete(vm_page_t m);
178 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
179 static void vm_page_init(void *dummy);
180 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
181     vm_pindex_t pindex, vm_page_t mpred);
182 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
183     vm_page_t mpred);
184 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
185     vm_page_t m_run, vm_paddr_t high);
186 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
187     int req);
188 static int vm_page_import(void *arg, void **store, int cnt, int domain,
189     int flags);
190 static void vm_page_release(void *arg, void **store, int cnt);
191 
192 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
193 
194 static void
195 vm_page_init(void *dummy)
196 {
197 
198 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
199 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
200 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
201 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
202 }
203 
204 /*
205  * The cache page zone is initialized later since we need to be able to allocate
206  * pages before UMA is fully initialized.
207  */
208 static void
209 vm_page_init_cache_zones(void *dummy __unused)
210 {
211 	struct vm_domain *vmd;
212 	int i;
213 
214 	for (i = 0; i < vm_ndomains; i++) {
215 		vmd = VM_DOMAIN(i);
216 		/*
217 		 * Don't allow the page cache to take up more than .25% of
218 		 * memory.
219 		 */
220 		if (vmd->vmd_page_count / 400 < 256 * mp_ncpus)
221 			continue;
222 		vmd->vmd_pgcache = uma_zcache_create("vm pgcache",
223 		    sizeof(struct vm_page), NULL, NULL, NULL, NULL,
224 		    vm_page_import, vm_page_release, vmd,
225 		    UMA_ZONE_NOBUCKETCACHE | UMA_ZONE_MAXBUCKET | UMA_ZONE_VM);
226 	}
227 }
228 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
229 
230 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
231 #if PAGE_SIZE == 32768
232 #ifdef CTASSERT
233 CTASSERT(sizeof(u_long) >= 8);
234 #endif
235 #endif
236 
237 /*
238  * Try to acquire a physical address lock while a pmap is locked.  If we
239  * fail to trylock we unlock and lock the pmap directly and cache the
240  * locked pa in *locked.  The caller should then restart their loop in case
241  * the virtual to physical mapping has changed.
242  */
243 int
244 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
245 {
246 	vm_paddr_t lockpa;
247 
248 	lockpa = *locked;
249 	*locked = pa;
250 	if (lockpa) {
251 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
252 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
253 			return (0);
254 		PA_UNLOCK(lockpa);
255 	}
256 	if (PA_TRYLOCK(pa))
257 		return (0);
258 	PMAP_UNLOCK(pmap);
259 	atomic_add_int(&pa_tryrelock_restart, 1);
260 	PA_LOCK(pa);
261 	PMAP_LOCK(pmap);
262 	return (EAGAIN);
263 }
264 
265 /*
266  *	vm_set_page_size:
267  *
268  *	Sets the page size, perhaps based upon the memory
269  *	size.  Must be called before any use of page-size
270  *	dependent functions.
271  */
272 void
273 vm_set_page_size(void)
274 {
275 	if (vm_cnt.v_page_size == 0)
276 		vm_cnt.v_page_size = PAGE_SIZE;
277 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
278 		panic("vm_set_page_size: page size not a power of two");
279 }
280 
281 /*
282  *	vm_page_blacklist_next:
283  *
284  *	Find the next entry in the provided string of blacklist
285  *	addresses.  Entries are separated by space, comma, or newline.
286  *	If an invalid integer is encountered then the rest of the
287  *	string is skipped.  Updates the list pointer to the next
288  *	character, or NULL if the string is exhausted or invalid.
289  */
290 static vm_paddr_t
291 vm_page_blacklist_next(char **list, char *end)
292 {
293 	vm_paddr_t bad;
294 	char *cp, *pos;
295 
296 	if (list == NULL || *list == NULL)
297 		return (0);
298 	if (**list =='\0') {
299 		*list = NULL;
300 		return (0);
301 	}
302 
303 	/*
304 	 * If there's no end pointer then the buffer is coming from
305 	 * the kenv and we know it's null-terminated.
306 	 */
307 	if (end == NULL)
308 		end = *list + strlen(*list);
309 
310 	/* Ensure that strtoq() won't walk off the end */
311 	if (*end != '\0') {
312 		if (*end == '\n' || *end == ' ' || *end  == ',')
313 			*end = '\0';
314 		else {
315 			printf("Blacklist not terminated, skipping\n");
316 			*list = NULL;
317 			return (0);
318 		}
319 	}
320 
321 	for (pos = *list; *pos != '\0'; pos = cp) {
322 		bad = strtoq(pos, &cp, 0);
323 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
324 			if (bad == 0) {
325 				if (++cp < end)
326 					continue;
327 				else
328 					break;
329 			}
330 		} else
331 			break;
332 		if (*cp == '\0' || ++cp >= end)
333 			*list = NULL;
334 		else
335 			*list = cp;
336 		return (trunc_page(bad));
337 	}
338 	printf("Garbage in RAM blacklist, skipping\n");
339 	*list = NULL;
340 	return (0);
341 }
342 
343 bool
344 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
345 {
346 	struct vm_domain *vmd;
347 	vm_page_t m;
348 	int ret;
349 
350 	m = vm_phys_paddr_to_vm_page(pa);
351 	if (m == NULL)
352 		return (true); /* page does not exist, no failure */
353 
354 	vmd = vm_pagequeue_domain(m);
355 	vm_domain_free_lock(vmd);
356 	ret = vm_phys_unfree_page(m);
357 	vm_domain_free_unlock(vmd);
358 	if (ret != 0) {
359 		vm_domain_freecnt_inc(vmd, -1);
360 		TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
361 		if (verbose)
362 			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
363 	}
364 	return (ret);
365 }
366 
367 /*
368  *	vm_page_blacklist_check:
369  *
370  *	Iterate through the provided string of blacklist addresses, pulling
371  *	each entry out of the physical allocator free list and putting it
372  *	onto a list for reporting via the vm.page_blacklist sysctl.
373  */
374 static void
375 vm_page_blacklist_check(char *list, char *end)
376 {
377 	vm_paddr_t pa;
378 	char *next;
379 
380 	next = list;
381 	while (next != NULL) {
382 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
383 			continue;
384 		vm_page_blacklist_add(pa, bootverbose);
385 	}
386 }
387 
388 /*
389  *	vm_page_blacklist_load:
390  *
391  *	Search for a special module named "ram_blacklist".  It'll be a
392  *	plain text file provided by the user via the loader directive
393  *	of the same name.
394  */
395 static void
396 vm_page_blacklist_load(char **list, char **end)
397 {
398 	void *mod;
399 	u_char *ptr;
400 	u_int len;
401 
402 	mod = NULL;
403 	ptr = NULL;
404 
405 	mod = preload_search_by_type("ram_blacklist");
406 	if (mod != NULL) {
407 		ptr = preload_fetch_addr(mod);
408 		len = preload_fetch_size(mod);
409         }
410 	*list = ptr;
411 	if (ptr != NULL)
412 		*end = ptr + len;
413 	else
414 		*end = NULL;
415 	return;
416 }
417 
418 static int
419 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
420 {
421 	vm_page_t m;
422 	struct sbuf sbuf;
423 	int error, first;
424 
425 	first = 1;
426 	error = sysctl_wire_old_buffer(req, 0);
427 	if (error != 0)
428 		return (error);
429 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
430 	TAILQ_FOREACH(m, &blacklist_head, listq) {
431 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
432 		    (uintmax_t)m->phys_addr);
433 		first = 0;
434 	}
435 	error = sbuf_finish(&sbuf);
436 	sbuf_delete(&sbuf);
437 	return (error);
438 }
439 
440 /*
441  * Initialize a dummy page for use in scans of the specified paging queue.
442  * In principle, this function only needs to set the flag PG_MARKER.
443  * Nonetheless, it write busies and initializes the hold count to one as
444  * safety precautions.
445  */
446 static void
447 vm_page_init_marker(vm_page_t marker, int queue, uint8_t aflags)
448 {
449 
450 	bzero(marker, sizeof(*marker));
451 	marker->flags = PG_MARKER;
452 	marker->aflags = aflags;
453 	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
454 	marker->queue = queue;
455 	marker->hold_count = 1;
456 }
457 
458 static void
459 vm_page_domain_init(int domain)
460 {
461 	struct vm_domain *vmd;
462 	struct vm_pagequeue *pq;
463 	int i;
464 
465 	vmd = VM_DOMAIN(domain);
466 	bzero(vmd, sizeof(*vmd));
467 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
468 	    "vm inactive pagequeue";
469 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
470 	    "vm active pagequeue";
471 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
472 	    "vm laundry pagequeue";
473 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
474 	    "vm unswappable pagequeue";
475 	vmd->vmd_domain = domain;
476 	vmd->vmd_page_count = 0;
477 	vmd->vmd_free_count = 0;
478 	vmd->vmd_segs = 0;
479 	vmd->vmd_oom = FALSE;
480 	for (i = 0; i < PQ_COUNT; i++) {
481 		pq = &vmd->vmd_pagequeues[i];
482 		TAILQ_INIT(&pq->pq_pl);
483 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
484 		    MTX_DEF | MTX_DUPOK);
485 		pq->pq_pdpages = 0;
486 		vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
487 	}
488 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
489 	mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
490 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
491 
492 	/*
493 	 * inacthead is used to provide FIFO ordering for LRU-bypassing
494 	 * insertions.
495 	 */
496 	vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
497 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
498 	    &vmd->vmd_inacthead, plinks.q);
499 
500 	/*
501 	 * The clock pages are used to implement active queue scanning without
502 	 * requeues.  Scans start at clock[0], which is advanced after the scan
503 	 * ends.  When the two clock hands meet, they are reset and scanning
504 	 * resumes from the head of the queue.
505 	 */
506 	vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
507 	vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
508 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
509 	    &vmd->vmd_clock[0], plinks.q);
510 	TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
511 	    &vmd->vmd_clock[1], plinks.q);
512 }
513 
514 /*
515  * Initialize a physical page in preparation for adding it to the free
516  * lists.
517  */
518 static void
519 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
520 {
521 
522 	m->object = NULL;
523 	m->wire_count = 0;
524 	m->busy_lock = VPB_UNBUSIED;
525 	m->hold_count = 0;
526 	m->flags = m->aflags = 0;
527 	m->phys_addr = pa;
528 	m->queue = PQ_NONE;
529 	m->psind = 0;
530 	m->segind = segind;
531 	m->order = VM_NFREEORDER;
532 	m->pool = VM_FREEPOOL_DEFAULT;
533 	m->valid = m->dirty = 0;
534 	pmap_page_init(m);
535 }
536 
537 /*
538  *	vm_page_startup:
539  *
540  *	Initializes the resident memory module.  Allocates physical memory for
541  *	bootstrapping UMA and some data structures that are used to manage
542  *	physical pages.  Initializes these structures, and populates the free
543  *	page queues.
544  */
545 vm_offset_t
546 vm_page_startup(vm_offset_t vaddr)
547 {
548 	struct vm_phys_seg *seg;
549 	vm_page_t m;
550 	char *list, *listend;
551 	vm_offset_t mapped;
552 	vm_paddr_t end, high_avail, low_avail, new_end, page_range, size;
553 	vm_paddr_t biggestsize, last_pa, pa;
554 	u_long pagecount;
555 	int biggestone, i, segind;
556 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
557 	long ii;
558 #endif
559 
560 	biggestsize = 0;
561 	biggestone = 0;
562 	vaddr = round_page(vaddr);
563 
564 	for (i = 0; phys_avail[i + 1]; i += 2) {
565 		phys_avail[i] = round_page(phys_avail[i]);
566 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
567 	}
568 	for (i = 0; phys_avail[i + 1]; i += 2) {
569 		size = phys_avail[i + 1] - phys_avail[i];
570 		if (size > biggestsize) {
571 			biggestone = i;
572 			biggestsize = size;
573 		}
574 	}
575 
576 	end = phys_avail[biggestone+1];
577 
578 	/*
579 	 * Initialize the page and queue locks.
580 	 */
581 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
582 	for (i = 0; i < PA_LOCK_COUNT; i++)
583 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
584 	for (i = 0; i < vm_ndomains; i++)
585 		vm_page_domain_init(i);
586 
587 	/*
588 	 * Allocate memory for use when boot strapping the kernel memory
589 	 * allocator.  Tell UMA how many zones we are going to create
590 	 * before going fully functional.  UMA will add its zones.
591 	 *
592 	 * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP,
593 	 * KMAP ENTRY, MAP ENTRY, VMSPACE.
594 	 */
595 	boot_pages = uma_startup_count(8);
596 
597 #ifndef UMA_MD_SMALL_ALLOC
598 	/* vmem_startup() calls uma_prealloc(). */
599 	boot_pages += vmem_startup_count();
600 	/* vm_map_startup() calls uma_prealloc(). */
601 	boot_pages += howmany(MAX_KMAP,
602 	    UMA_SLAB_SPACE / sizeof(struct vm_map));
603 
604 	/*
605 	 * Before going fully functional kmem_init() does allocation
606 	 * from "KMAP ENTRY" and vmem_create() does allocation from "vmem".
607 	 */
608 	boot_pages += 2;
609 #endif
610 	/*
611 	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
612 	 * manually fetch the value.
613 	 */
614 	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
615 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
616 	new_end = trunc_page(new_end);
617 	mapped = pmap_map(&vaddr, new_end, end,
618 	    VM_PROT_READ | VM_PROT_WRITE);
619 	bzero((void *)mapped, end - new_end);
620 	uma_startup((void *)mapped, boot_pages);
621 
622 #ifdef WITNESS
623 	end = new_end;
624 	new_end = end - round_page(witness_startup_count());
625 	mapped = pmap_map(&vaddr, new_end, end,
626 	    VM_PROT_READ | VM_PROT_WRITE);
627 	bzero((void *)mapped, end - new_end);
628 	witness_startup((void *)mapped);
629 #endif
630 
631 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
632     defined(__i386__) || defined(__mips__)
633 	/*
634 	 * Allocate a bitmap to indicate that a random physical page
635 	 * needs to be included in a minidump.
636 	 *
637 	 * The amd64 port needs this to indicate which direct map pages
638 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
639 	 *
640 	 * However, i386 still needs this workspace internally within the
641 	 * minidump code.  In theory, they are not needed on i386, but are
642 	 * included should the sf_buf code decide to use them.
643 	 */
644 	last_pa = 0;
645 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
646 		if (dump_avail[i + 1] > last_pa)
647 			last_pa = dump_avail[i + 1];
648 	page_range = last_pa / PAGE_SIZE;
649 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
650 	new_end -= vm_page_dump_size;
651 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
652 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
653 	bzero((void *)vm_page_dump, vm_page_dump_size);
654 #else
655 	(void)last_pa;
656 #endif
657 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
658 	/*
659 	 * Include the UMA bootstrap pages and vm_page_dump in a crash dump.
660 	 * When pmap_map() uses the direct map, they are not automatically
661 	 * included.
662 	 */
663 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
664 		dump_add_page(pa);
665 #endif
666 	phys_avail[biggestone + 1] = new_end;
667 #ifdef __amd64__
668 	/*
669 	 * Request that the physical pages underlying the message buffer be
670 	 * included in a crash dump.  Since the message buffer is accessed
671 	 * through the direct map, they are not automatically included.
672 	 */
673 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
674 	last_pa = pa + round_page(msgbufsize);
675 	while (pa < last_pa) {
676 		dump_add_page(pa);
677 		pa += PAGE_SIZE;
678 	}
679 #endif
680 	/*
681 	 * Compute the number of pages of memory that will be available for
682 	 * use, taking into account the overhead of a page structure per page.
683 	 * In other words, solve
684 	 *	"available physical memory" - round_page(page_range *
685 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
686 	 * for page_range.
687 	 */
688 	low_avail = phys_avail[0];
689 	high_avail = phys_avail[1];
690 	for (i = 0; i < vm_phys_nsegs; i++) {
691 		if (vm_phys_segs[i].start < low_avail)
692 			low_avail = vm_phys_segs[i].start;
693 		if (vm_phys_segs[i].end > high_avail)
694 			high_avail = vm_phys_segs[i].end;
695 	}
696 	/* Skip the first chunk.  It is already accounted for. */
697 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
698 		if (phys_avail[i] < low_avail)
699 			low_avail = phys_avail[i];
700 		if (phys_avail[i + 1] > high_avail)
701 			high_avail = phys_avail[i + 1];
702 	}
703 	first_page = low_avail / PAGE_SIZE;
704 #ifdef VM_PHYSSEG_SPARSE
705 	size = 0;
706 	for (i = 0; i < vm_phys_nsegs; i++)
707 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
708 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
709 		size += phys_avail[i + 1] - phys_avail[i];
710 #elif defined(VM_PHYSSEG_DENSE)
711 	size = high_avail - low_avail;
712 #else
713 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
714 #endif
715 
716 #ifdef VM_PHYSSEG_DENSE
717 	/*
718 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
719 	 * the overhead of a page structure per page only if vm_page_array is
720 	 * allocated from the last physical memory chunk.  Otherwise, we must
721 	 * allocate page structures representing the physical memory
722 	 * underlying vm_page_array, even though they will not be used.
723 	 */
724 	if (new_end != high_avail)
725 		page_range = size / PAGE_SIZE;
726 	else
727 #endif
728 	{
729 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
730 
731 		/*
732 		 * If the partial bytes remaining are large enough for
733 		 * a page (PAGE_SIZE) without a corresponding
734 		 * 'struct vm_page', then new_end will contain an
735 		 * extra page after subtracting the length of the VM
736 		 * page array.  Compensate by subtracting an extra
737 		 * page from new_end.
738 		 */
739 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
740 			if (new_end == high_avail)
741 				high_avail -= PAGE_SIZE;
742 			new_end -= PAGE_SIZE;
743 		}
744 	}
745 	end = new_end;
746 
747 	/*
748 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
749 	 * However, because this page is allocated from KVM, out-of-bounds
750 	 * accesses using the direct map will not be trapped.
751 	 */
752 	vaddr += PAGE_SIZE;
753 
754 	/*
755 	 * Allocate physical memory for the page structures, and map it.
756 	 */
757 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
758 	mapped = pmap_map(&vaddr, new_end, end,
759 	    VM_PROT_READ | VM_PROT_WRITE);
760 	vm_page_array = (vm_page_t)mapped;
761 	vm_page_array_size = page_range;
762 
763 #if VM_NRESERVLEVEL > 0
764 	/*
765 	 * Allocate physical memory for the reservation management system's
766 	 * data structures, and map it.
767 	 */
768 	if (high_avail == end)
769 		high_avail = new_end;
770 	new_end = vm_reserv_startup(&vaddr, new_end, high_avail);
771 #endif
772 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
773 	/*
774 	 * Include vm_page_array and vm_reserv_array in a crash dump.
775 	 */
776 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
777 		dump_add_page(pa);
778 #endif
779 	phys_avail[biggestone + 1] = new_end;
780 
781 	/*
782 	 * Add physical memory segments corresponding to the available
783 	 * physical pages.
784 	 */
785 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
786 		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
787 
788 	/*
789 	 * Initialize the physical memory allocator.
790 	 */
791 	vm_phys_init();
792 
793 	/*
794 	 * Initialize the page structures and add every available page to the
795 	 * physical memory allocator's free lists.
796 	 */
797 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
798 	for (ii = 0; ii < vm_page_array_size; ii++) {
799 		m = &vm_page_array[ii];
800 		vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
801 		m->flags = PG_FICTITIOUS;
802 	}
803 #endif
804 	vm_cnt.v_page_count = 0;
805 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
806 		seg = &vm_phys_segs[segind];
807 		for (m = seg->first_page, pa = seg->start; pa < seg->end;
808 		    m++, pa += PAGE_SIZE)
809 			vm_page_init_page(m, pa, segind);
810 
811 		/*
812 		 * Add the segment to the free lists only if it is covered by
813 		 * one of the ranges in phys_avail.  Because we've added the
814 		 * ranges to the vm_phys_segs array, we can assume that each
815 		 * segment is either entirely contained in one of the ranges,
816 		 * or doesn't overlap any of them.
817 		 */
818 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
819 			struct vm_domain *vmd;
820 
821 			if (seg->start < phys_avail[i] ||
822 			    seg->end > phys_avail[i + 1])
823 				continue;
824 
825 			m = seg->first_page;
826 			pagecount = (u_long)atop(seg->end - seg->start);
827 
828 			vmd = VM_DOMAIN(seg->domain);
829 			vm_domain_free_lock(vmd);
830 			vm_phys_free_contig(m, pagecount);
831 			vm_domain_free_unlock(vmd);
832 			vm_domain_freecnt_inc(vmd, pagecount);
833 			vm_cnt.v_page_count += (u_int)pagecount;
834 
835 			vmd = VM_DOMAIN(seg->domain);
836 			vmd->vmd_page_count += (u_int)pagecount;
837 			vmd->vmd_segs |= 1UL << m->segind;
838 			break;
839 		}
840 	}
841 
842 	/*
843 	 * Remove blacklisted pages from the physical memory allocator.
844 	 */
845 	TAILQ_INIT(&blacklist_head);
846 	vm_page_blacklist_load(&list, &listend);
847 	vm_page_blacklist_check(list, listend);
848 
849 	list = kern_getenv("vm.blacklist");
850 	vm_page_blacklist_check(list, NULL);
851 
852 	freeenv(list);
853 #if VM_NRESERVLEVEL > 0
854 	/*
855 	 * Initialize the reservation management system.
856 	 */
857 	vm_reserv_init();
858 #endif
859 
860 	return (vaddr);
861 }
862 
863 void
864 vm_page_reference(vm_page_t m)
865 {
866 
867 	vm_page_aflag_set(m, PGA_REFERENCED);
868 }
869 
870 /*
871  *	vm_page_busy_downgrade:
872  *
873  *	Downgrade an exclusive busy page into a single shared busy page.
874  */
875 void
876 vm_page_busy_downgrade(vm_page_t m)
877 {
878 	u_int x;
879 	bool locked;
880 
881 	vm_page_assert_xbusied(m);
882 	locked = mtx_owned(vm_page_lockptr(m));
883 
884 	for (;;) {
885 		x = m->busy_lock;
886 		x &= VPB_BIT_WAITERS;
887 		if (x != 0 && !locked)
888 			vm_page_lock(m);
889 		if (atomic_cmpset_rel_int(&m->busy_lock,
890 		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1)))
891 			break;
892 		if (x != 0 && !locked)
893 			vm_page_unlock(m);
894 	}
895 	if (x != 0) {
896 		wakeup(m);
897 		if (!locked)
898 			vm_page_unlock(m);
899 	}
900 }
901 
902 /*
903  *	vm_page_sbusied:
904  *
905  *	Return a positive value if the page is shared busied, 0 otherwise.
906  */
907 int
908 vm_page_sbusied(vm_page_t m)
909 {
910 	u_int x;
911 
912 	x = m->busy_lock;
913 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
914 }
915 
916 /*
917  *	vm_page_sunbusy:
918  *
919  *	Shared unbusy a page.
920  */
921 void
922 vm_page_sunbusy(vm_page_t m)
923 {
924 	u_int x;
925 
926 	vm_page_lock_assert(m, MA_NOTOWNED);
927 	vm_page_assert_sbusied(m);
928 
929 	for (;;) {
930 		x = m->busy_lock;
931 		if (VPB_SHARERS(x) > 1) {
932 			if (atomic_cmpset_int(&m->busy_lock, x,
933 			    x - VPB_ONE_SHARER))
934 				break;
935 			continue;
936 		}
937 		if ((x & VPB_BIT_WAITERS) == 0) {
938 			KASSERT(x == VPB_SHARERS_WORD(1),
939 			    ("vm_page_sunbusy: invalid lock state"));
940 			if (atomic_cmpset_int(&m->busy_lock,
941 			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
942 				break;
943 			continue;
944 		}
945 		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
946 		    ("vm_page_sunbusy: invalid lock state for waiters"));
947 
948 		vm_page_lock(m);
949 		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
950 			vm_page_unlock(m);
951 			continue;
952 		}
953 		wakeup(m);
954 		vm_page_unlock(m);
955 		break;
956 	}
957 }
958 
959 /*
960  *	vm_page_busy_sleep:
961  *
962  *	Sleep and release the page lock, using the page pointer as wchan.
963  *	This is used to implement the hard-path of busying mechanism.
964  *
965  *	The given page must be locked.
966  *
967  *	If nonshared is true, sleep only if the page is xbusy.
968  */
969 void
970 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
971 {
972 	u_int x;
973 
974 	vm_page_assert_locked(m);
975 
976 	x = m->busy_lock;
977 	if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
978 	    ((x & VPB_BIT_WAITERS) == 0 &&
979 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
980 		vm_page_unlock(m);
981 		return;
982 	}
983 	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
984 }
985 
986 /*
987  *	vm_page_trysbusy:
988  *
989  *	Try to shared busy a page.
990  *	If the operation succeeds 1 is returned otherwise 0.
991  *	The operation never sleeps.
992  */
993 int
994 vm_page_trysbusy(vm_page_t m)
995 {
996 	u_int x;
997 
998 	for (;;) {
999 		x = m->busy_lock;
1000 		if ((x & VPB_BIT_SHARED) == 0)
1001 			return (0);
1002 		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
1003 			return (1);
1004 	}
1005 }
1006 
1007 static void
1008 vm_page_xunbusy_locked(vm_page_t m)
1009 {
1010 
1011 	vm_page_assert_xbusied(m);
1012 	vm_page_assert_locked(m);
1013 
1014 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1015 	/* There is a waiter, do wakeup() instead of vm_page_flash(). */
1016 	wakeup(m);
1017 }
1018 
1019 void
1020 vm_page_xunbusy_maybelocked(vm_page_t m)
1021 {
1022 	bool lockacq;
1023 
1024 	vm_page_assert_xbusied(m);
1025 
1026 	/*
1027 	 * Fast path for unbusy.  If it succeeds, we know that there
1028 	 * are no waiters, so we do not need a wakeup.
1029 	 */
1030 	if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER,
1031 	    VPB_UNBUSIED))
1032 		return;
1033 
1034 	lockacq = !mtx_owned(vm_page_lockptr(m));
1035 	if (lockacq)
1036 		vm_page_lock(m);
1037 	vm_page_xunbusy_locked(m);
1038 	if (lockacq)
1039 		vm_page_unlock(m);
1040 }
1041 
1042 /*
1043  *	vm_page_xunbusy_hard:
1044  *
1045  *	Called after the first try the exclusive unbusy of a page failed.
1046  *	It is assumed that the waiters bit is on.
1047  */
1048 void
1049 vm_page_xunbusy_hard(vm_page_t m)
1050 {
1051 
1052 	vm_page_assert_xbusied(m);
1053 
1054 	vm_page_lock(m);
1055 	vm_page_xunbusy_locked(m);
1056 	vm_page_unlock(m);
1057 }
1058 
1059 /*
1060  *	vm_page_flash:
1061  *
1062  *	Wakeup anyone waiting for the page.
1063  *	The ownership bits do not change.
1064  *
1065  *	The given page must be locked.
1066  */
1067 void
1068 vm_page_flash(vm_page_t m)
1069 {
1070 	u_int x;
1071 
1072 	vm_page_lock_assert(m, MA_OWNED);
1073 
1074 	for (;;) {
1075 		x = m->busy_lock;
1076 		if ((x & VPB_BIT_WAITERS) == 0)
1077 			return;
1078 		if (atomic_cmpset_int(&m->busy_lock, x,
1079 		    x & (~VPB_BIT_WAITERS)))
1080 			break;
1081 	}
1082 	wakeup(m);
1083 }
1084 
1085 /*
1086  * Avoid releasing and reacquiring the same page lock.
1087  */
1088 void
1089 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
1090 {
1091 	struct mtx *mtx1;
1092 
1093 	mtx1 = vm_page_lockptr(m);
1094 	if (*mtx == mtx1)
1095 		return;
1096 	if (*mtx != NULL)
1097 		mtx_unlock(*mtx);
1098 	*mtx = mtx1;
1099 	mtx_lock(mtx1);
1100 }
1101 
1102 /*
1103  * Keep page from being freed by the page daemon
1104  * much of the same effect as wiring, except much lower
1105  * overhead and should be used only for *very* temporary
1106  * holding ("wiring").
1107  */
1108 void
1109 vm_page_hold(vm_page_t mem)
1110 {
1111 
1112 	vm_page_lock_assert(mem, MA_OWNED);
1113         mem->hold_count++;
1114 }
1115 
1116 void
1117 vm_page_unhold(vm_page_t mem)
1118 {
1119 
1120 	vm_page_lock_assert(mem, MA_OWNED);
1121 	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
1122 	--mem->hold_count;
1123 	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
1124 		vm_page_free_toq(mem);
1125 }
1126 
1127 /*
1128  *	vm_page_unhold_pages:
1129  *
1130  *	Unhold each of the pages that is referenced by the given array.
1131  */
1132 void
1133 vm_page_unhold_pages(vm_page_t *ma, int count)
1134 {
1135 	struct mtx *mtx;
1136 
1137 	mtx = NULL;
1138 	for (; count != 0; count--) {
1139 		vm_page_change_lock(*ma, &mtx);
1140 		vm_page_unhold(*ma);
1141 		ma++;
1142 	}
1143 	if (mtx != NULL)
1144 		mtx_unlock(mtx);
1145 }
1146 
1147 vm_page_t
1148 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1149 {
1150 	vm_page_t m;
1151 
1152 #ifdef VM_PHYSSEG_SPARSE
1153 	m = vm_phys_paddr_to_vm_page(pa);
1154 	if (m == NULL)
1155 		m = vm_phys_fictitious_to_vm_page(pa);
1156 	return (m);
1157 #elif defined(VM_PHYSSEG_DENSE)
1158 	long pi;
1159 
1160 	pi = atop(pa);
1161 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1162 		m = &vm_page_array[pi - first_page];
1163 		return (m);
1164 	}
1165 	return (vm_phys_fictitious_to_vm_page(pa));
1166 #else
1167 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1168 #endif
1169 }
1170 
1171 /*
1172  *	vm_page_getfake:
1173  *
1174  *	Create a fictitious page with the specified physical address and
1175  *	memory attribute.  The memory attribute is the only the machine-
1176  *	dependent aspect of a fictitious page that must be initialized.
1177  */
1178 vm_page_t
1179 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1180 {
1181 	vm_page_t m;
1182 
1183 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1184 	vm_page_initfake(m, paddr, memattr);
1185 	return (m);
1186 }
1187 
1188 void
1189 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1190 {
1191 
1192 	if ((m->flags & PG_FICTITIOUS) != 0) {
1193 		/*
1194 		 * The page's memattr might have changed since the
1195 		 * previous initialization.  Update the pmap to the
1196 		 * new memattr.
1197 		 */
1198 		goto memattr;
1199 	}
1200 	m->phys_addr = paddr;
1201 	m->queue = PQ_NONE;
1202 	/* Fictitious pages don't use "segind". */
1203 	m->flags = PG_FICTITIOUS;
1204 	/* Fictitious pages don't use "order" or "pool". */
1205 	m->oflags = VPO_UNMANAGED;
1206 	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1207 	m->wire_count = 1;
1208 	pmap_page_init(m);
1209 memattr:
1210 	pmap_page_set_memattr(m, memattr);
1211 }
1212 
1213 /*
1214  *	vm_page_putfake:
1215  *
1216  *	Release a fictitious page.
1217  */
1218 void
1219 vm_page_putfake(vm_page_t m)
1220 {
1221 
1222 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1223 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1224 	    ("vm_page_putfake: bad page %p", m));
1225 	uma_zfree(fakepg_zone, m);
1226 }
1227 
1228 /*
1229  *	vm_page_updatefake:
1230  *
1231  *	Update the given fictitious page to the specified physical address and
1232  *	memory attribute.
1233  */
1234 void
1235 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1236 {
1237 
1238 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1239 	    ("vm_page_updatefake: bad page %p", m));
1240 	m->phys_addr = paddr;
1241 	pmap_page_set_memattr(m, memattr);
1242 }
1243 
1244 /*
1245  *	vm_page_free:
1246  *
1247  *	Free a page.
1248  */
1249 void
1250 vm_page_free(vm_page_t m)
1251 {
1252 
1253 	m->flags &= ~PG_ZERO;
1254 	vm_page_free_toq(m);
1255 }
1256 
1257 /*
1258  *	vm_page_free_zero:
1259  *
1260  *	Free a page to the zerod-pages queue
1261  */
1262 void
1263 vm_page_free_zero(vm_page_t m)
1264 {
1265 
1266 	m->flags |= PG_ZERO;
1267 	vm_page_free_toq(m);
1268 }
1269 
1270 /*
1271  * Unbusy and handle the page queueing for a page from a getpages request that
1272  * was optionally read ahead or behind.
1273  */
1274 void
1275 vm_page_readahead_finish(vm_page_t m)
1276 {
1277 
1278 	/* We shouldn't put invalid pages on queues. */
1279 	KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
1280 
1281 	/*
1282 	 * Since the page is not the actually needed one, whether it should
1283 	 * be activated or deactivated is not obvious.  Empirical results
1284 	 * have shown that deactivating the page is usually the best choice,
1285 	 * unless the page is wanted by another thread.
1286 	 */
1287 	vm_page_lock(m);
1288 	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1289 		vm_page_activate(m);
1290 	else
1291 		vm_page_deactivate(m);
1292 	vm_page_unlock(m);
1293 	vm_page_xunbusy(m);
1294 }
1295 
1296 /*
1297  *	vm_page_sleep_if_busy:
1298  *
1299  *	Sleep and release the page queues lock if the page is busied.
1300  *	Returns TRUE if the thread slept.
1301  *
1302  *	The given page must be unlocked and object containing it must
1303  *	be locked.
1304  */
1305 int
1306 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1307 {
1308 	vm_object_t obj;
1309 
1310 	vm_page_lock_assert(m, MA_NOTOWNED);
1311 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1312 
1313 	if (vm_page_busied(m)) {
1314 		/*
1315 		 * The page-specific object must be cached because page
1316 		 * identity can change during the sleep, causing the
1317 		 * re-lock of a different object.
1318 		 * It is assumed that a reference to the object is already
1319 		 * held by the callers.
1320 		 */
1321 		obj = m->object;
1322 		vm_page_lock(m);
1323 		VM_OBJECT_WUNLOCK(obj);
1324 		vm_page_busy_sleep(m, msg, false);
1325 		VM_OBJECT_WLOCK(obj);
1326 		return (TRUE);
1327 	}
1328 	return (FALSE);
1329 }
1330 
1331 /*
1332  *	vm_page_dirty_KBI:		[ internal use only ]
1333  *
1334  *	Set all bits in the page's dirty field.
1335  *
1336  *	The object containing the specified page must be locked if the
1337  *	call is made from the machine-independent layer.
1338  *
1339  *	See vm_page_clear_dirty_mask().
1340  *
1341  *	This function should only be called by vm_page_dirty().
1342  */
1343 void
1344 vm_page_dirty_KBI(vm_page_t m)
1345 {
1346 
1347 	/* Refer to this operation by its public name. */
1348 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1349 	    ("vm_page_dirty: page is invalid!"));
1350 	m->dirty = VM_PAGE_BITS_ALL;
1351 }
1352 
1353 /*
1354  *	vm_page_insert:		[ internal use only ]
1355  *
1356  *	Inserts the given mem entry into the object and object list.
1357  *
1358  *	The object must be locked.
1359  */
1360 int
1361 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1362 {
1363 	vm_page_t mpred;
1364 
1365 	VM_OBJECT_ASSERT_WLOCKED(object);
1366 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1367 	return (vm_page_insert_after(m, object, pindex, mpred));
1368 }
1369 
1370 /*
1371  *	vm_page_insert_after:
1372  *
1373  *	Inserts the page "m" into the specified object at offset "pindex".
1374  *
1375  *	The page "mpred" must immediately precede the offset "pindex" within
1376  *	the specified object.
1377  *
1378  *	The object must be locked.
1379  */
1380 static int
1381 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1382     vm_page_t mpred)
1383 {
1384 	vm_page_t msucc;
1385 
1386 	VM_OBJECT_ASSERT_WLOCKED(object);
1387 	KASSERT(m->object == NULL,
1388 	    ("vm_page_insert_after: page already inserted"));
1389 	if (mpred != NULL) {
1390 		KASSERT(mpred->object == object,
1391 		    ("vm_page_insert_after: object doesn't contain mpred"));
1392 		KASSERT(mpred->pindex < pindex,
1393 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1394 		msucc = TAILQ_NEXT(mpred, listq);
1395 	} else
1396 		msucc = TAILQ_FIRST(&object->memq);
1397 	if (msucc != NULL)
1398 		KASSERT(msucc->pindex > pindex,
1399 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1400 
1401 	/*
1402 	 * Record the object/offset pair in this page
1403 	 */
1404 	m->object = object;
1405 	m->pindex = pindex;
1406 
1407 	/*
1408 	 * Now link into the object's ordered list of backed pages.
1409 	 */
1410 	if (vm_radix_insert(&object->rtree, m)) {
1411 		m->object = NULL;
1412 		m->pindex = 0;
1413 		return (1);
1414 	}
1415 	vm_page_insert_radixdone(m, object, mpred);
1416 	return (0);
1417 }
1418 
1419 /*
1420  *	vm_page_insert_radixdone:
1421  *
1422  *	Complete page "m" insertion into the specified object after the
1423  *	radix trie hooking.
1424  *
1425  *	The page "mpred" must precede the offset "m->pindex" within the
1426  *	specified object.
1427  *
1428  *	The object must be locked.
1429  */
1430 static void
1431 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1432 {
1433 
1434 	VM_OBJECT_ASSERT_WLOCKED(object);
1435 	KASSERT(object != NULL && m->object == object,
1436 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1437 	if (mpred != NULL) {
1438 		KASSERT(mpred->object == object,
1439 		    ("vm_page_insert_after: object doesn't contain mpred"));
1440 		KASSERT(mpred->pindex < m->pindex,
1441 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1442 	}
1443 
1444 	if (mpred != NULL)
1445 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1446 	else
1447 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1448 
1449 	/*
1450 	 * Show that the object has one more resident page.
1451 	 */
1452 	object->resident_page_count++;
1453 
1454 	/*
1455 	 * Hold the vnode until the last page is released.
1456 	 */
1457 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1458 		vhold(object->handle);
1459 
1460 	/*
1461 	 * Since we are inserting a new and possibly dirty page,
1462 	 * update the object's OBJ_MIGHTBEDIRTY flag.
1463 	 */
1464 	if (pmap_page_is_write_mapped(m))
1465 		vm_object_set_writeable_dirty(object);
1466 }
1467 
1468 /*
1469  *	vm_page_remove:
1470  *
1471  *	Removes the specified page from its containing object, but does not
1472  *	invalidate any backing storage.
1473  *
1474  *	The object must be locked.  The page must be locked if it is managed.
1475  */
1476 void
1477 vm_page_remove(vm_page_t m)
1478 {
1479 	vm_object_t object;
1480 	vm_page_t mrem;
1481 
1482 	if ((m->oflags & VPO_UNMANAGED) == 0)
1483 		vm_page_assert_locked(m);
1484 	if ((object = m->object) == NULL)
1485 		return;
1486 	VM_OBJECT_ASSERT_WLOCKED(object);
1487 	if (vm_page_xbusied(m))
1488 		vm_page_xunbusy_maybelocked(m);
1489 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1490 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1491 
1492 	/*
1493 	 * Now remove from the object's list of backed pages.
1494 	 */
1495 	TAILQ_REMOVE(&object->memq, m, listq);
1496 
1497 	/*
1498 	 * And show that the object has one fewer resident page.
1499 	 */
1500 	object->resident_page_count--;
1501 
1502 	/*
1503 	 * The vnode may now be recycled.
1504 	 */
1505 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1506 		vdrop(object->handle);
1507 
1508 	m->object = NULL;
1509 }
1510 
1511 /*
1512  *	vm_page_lookup:
1513  *
1514  *	Returns the page associated with the object/offset
1515  *	pair specified; if none is found, NULL is returned.
1516  *
1517  *	The object must be locked.
1518  */
1519 vm_page_t
1520 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1521 {
1522 
1523 	VM_OBJECT_ASSERT_LOCKED(object);
1524 	return (vm_radix_lookup(&object->rtree, pindex));
1525 }
1526 
1527 /*
1528  *	vm_page_find_least:
1529  *
1530  *	Returns the page associated with the object with least pindex
1531  *	greater than or equal to the parameter pindex, or NULL.
1532  *
1533  *	The object must be locked.
1534  */
1535 vm_page_t
1536 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1537 {
1538 	vm_page_t m;
1539 
1540 	VM_OBJECT_ASSERT_LOCKED(object);
1541 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1542 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1543 	return (m);
1544 }
1545 
1546 /*
1547  * Returns the given page's successor (by pindex) within the object if it is
1548  * resident; if none is found, NULL is returned.
1549  *
1550  * The object must be locked.
1551  */
1552 vm_page_t
1553 vm_page_next(vm_page_t m)
1554 {
1555 	vm_page_t next;
1556 
1557 	VM_OBJECT_ASSERT_LOCKED(m->object);
1558 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1559 		MPASS(next->object == m->object);
1560 		if (next->pindex != m->pindex + 1)
1561 			next = NULL;
1562 	}
1563 	return (next);
1564 }
1565 
1566 /*
1567  * Returns the given page's predecessor (by pindex) within the object if it is
1568  * resident; if none is found, NULL is returned.
1569  *
1570  * The object must be locked.
1571  */
1572 vm_page_t
1573 vm_page_prev(vm_page_t m)
1574 {
1575 	vm_page_t prev;
1576 
1577 	VM_OBJECT_ASSERT_LOCKED(m->object);
1578 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1579 		MPASS(prev->object == m->object);
1580 		if (prev->pindex != m->pindex - 1)
1581 			prev = NULL;
1582 	}
1583 	return (prev);
1584 }
1585 
1586 /*
1587  * Uses the page mnew as a replacement for an existing page at index
1588  * pindex which must be already present in the object.
1589  *
1590  * The existing page must not be on a paging queue.
1591  */
1592 vm_page_t
1593 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1594 {
1595 	vm_page_t mold;
1596 
1597 	VM_OBJECT_ASSERT_WLOCKED(object);
1598 	KASSERT(mnew->object == NULL,
1599 	    ("vm_page_replace: page %p already in object", mnew));
1600 	KASSERT(mnew->queue == PQ_NONE,
1601 	    ("vm_page_replace: new page %p is on a paging queue", mnew));
1602 
1603 	/*
1604 	 * This function mostly follows vm_page_insert() and
1605 	 * vm_page_remove() without the radix, object count and vnode
1606 	 * dance.  Double check such functions for more comments.
1607 	 */
1608 
1609 	mnew->object = object;
1610 	mnew->pindex = pindex;
1611 	mold = vm_radix_replace(&object->rtree, mnew);
1612 	KASSERT(mold->queue == PQ_NONE,
1613 	    ("vm_page_replace: old page %p is on a paging queue", mold));
1614 
1615 	/* Keep the resident page list in sorted order. */
1616 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1617 	TAILQ_REMOVE(&object->memq, mold, listq);
1618 
1619 	mold->object = NULL;
1620 	vm_page_xunbusy_maybelocked(mold);
1621 
1622 	/*
1623 	 * The object's resident_page_count does not change because we have
1624 	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1625 	 */
1626 	if (pmap_page_is_write_mapped(mnew))
1627 		vm_object_set_writeable_dirty(object);
1628 	return (mold);
1629 }
1630 
1631 /*
1632  *	vm_page_rename:
1633  *
1634  *	Move the given memory entry from its
1635  *	current object to the specified target object/offset.
1636  *
1637  *	Note: swap associated with the page must be invalidated by the move.  We
1638  *	      have to do this for several reasons:  (1) we aren't freeing the
1639  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1640  *	      moving the page from object A to B, and will then later move
1641  *	      the backing store from A to B and we can't have a conflict.
1642  *
1643  *	Note: we *always* dirty the page.  It is necessary both for the
1644  *	      fact that we moved it, and because we may be invalidating
1645  *	      swap.
1646  *
1647  *	The objects must be locked.
1648  */
1649 int
1650 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1651 {
1652 	vm_page_t mpred;
1653 	vm_pindex_t opidx;
1654 
1655 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1656 
1657 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1658 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1659 	    ("vm_page_rename: pindex already renamed"));
1660 
1661 	/*
1662 	 * Create a custom version of vm_page_insert() which does not depend
1663 	 * by m_prev and can cheat on the implementation aspects of the
1664 	 * function.
1665 	 */
1666 	opidx = m->pindex;
1667 	m->pindex = new_pindex;
1668 	if (vm_radix_insert(&new_object->rtree, m)) {
1669 		m->pindex = opidx;
1670 		return (1);
1671 	}
1672 
1673 	/*
1674 	 * The operation cannot fail anymore.  The removal must happen before
1675 	 * the listq iterator is tainted.
1676 	 */
1677 	m->pindex = opidx;
1678 	vm_page_lock(m);
1679 	vm_page_remove(m);
1680 
1681 	/* Return back to the new pindex to complete vm_page_insert(). */
1682 	m->pindex = new_pindex;
1683 	m->object = new_object;
1684 	vm_page_unlock(m);
1685 	vm_page_insert_radixdone(m, new_object, mpred);
1686 	vm_page_dirty(m);
1687 	return (0);
1688 }
1689 
1690 /*
1691  *	vm_page_alloc:
1692  *
1693  *	Allocate and return a page that is associated with the specified
1694  *	object and offset pair.  By default, this page is exclusive busied.
1695  *
1696  *	The caller must always specify an allocation class.
1697  *
1698  *	allocation classes:
1699  *	VM_ALLOC_NORMAL		normal process request
1700  *	VM_ALLOC_SYSTEM		system *really* needs a page
1701  *	VM_ALLOC_INTERRUPT	interrupt time request
1702  *
1703  *	optional allocation flags:
1704  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1705  *				intends to allocate
1706  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1707  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1708  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1709  *				should not be exclusive busy
1710  *	VM_ALLOC_SBUSY		shared busy the allocated page
1711  *	VM_ALLOC_WIRED		wire the allocated page
1712  *	VM_ALLOC_ZERO		prefer a zeroed page
1713  */
1714 vm_page_t
1715 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1716 {
1717 
1718 	return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1719 	    vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1720 }
1721 
1722 vm_page_t
1723 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1724     int req)
1725 {
1726 
1727 	return (vm_page_alloc_domain_after(object, pindex, domain, req,
1728 	    object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1729 	    NULL));
1730 }
1731 
1732 /*
1733  * Allocate a page in the specified object with the given page index.  To
1734  * optimize insertion of the page into the object, the caller must also specifiy
1735  * the resident page in the object with largest index smaller than the given
1736  * page index, or NULL if no such page exists.
1737  */
1738 vm_page_t
1739 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1740     int req, vm_page_t mpred)
1741 {
1742 	struct vm_domainset_iter di;
1743 	vm_page_t m;
1744 	int domain;
1745 
1746 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1747 	do {
1748 		m = vm_page_alloc_domain_after(object, pindex, domain, req,
1749 		    mpred);
1750 		if (m != NULL)
1751 			break;
1752 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
1753 
1754 	return (m);
1755 }
1756 
1757 /*
1758  * Returns true if the number of free pages exceeds the minimum
1759  * for the request class and false otherwise.
1760  */
1761 int
1762 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1763 {
1764 	u_int limit, old, new;
1765 
1766 	req = req & VM_ALLOC_CLASS_MASK;
1767 
1768 	/*
1769 	 * The page daemon is allowed to dig deeper into the free page list.
1770 	 */
1771 	if (curproc == pageproc && req != VM_ALLOC_INTERRUPT)
1772 		req = VM_ALLOC_SYSTEM;
1773 	if (req == VM_ALLOC_INTERRUPT)
1774 		limit = 0;
1775 	else if (req == VM_ALLOC_SYSTEM)
1776 		limit = vmd->vmd_interrupt_free_min;
1777 	else
1778 		limit = vmd->vmd_free_reserved;
1779 
1780 	/*
1781 	 * Attempt to reserve the pages.  Fail if we're below the limit.
1782 	 */
1783 	limit += npages;
1784 	old = vmd->vmd_free_count;
1785 	do {
1786 		if (old < limit)
1787 			return (0);
1788 		new = old - npages;
1789 	} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1790 
1791 	/* Wake the page daemon if we've crossed the threshold. */
1792 	if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1793 		pagedaemon_wakeup(vmd->vmd_domain);
1794 
1795 	/* Only update bitsets on transitions. */
1796 	if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1797 	    (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1798 		vm_domain_set(vmd);
1799 
1800 	return (1);
1801 }
1802 
1803 vm_page_t
1804 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1805     int req, vm_page_t mpred)
1806 {
1807 	struct vm_domain *vmd;
1808 	vm_page_t m;
1809 	int flags;
1810 
1811 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1812 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1813 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1814 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1815 	    ("inconsistent object(%p)/req(%x)", object, req));
1816 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1817 	    ("Can't sleep and retry object insertion."));
1818 	KASSERT(mpred == NULL || mpred->pindex < pindex,
1819 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
1820 	    (uintmax_t)pindex));
1821 	if (object != NULL)
1822 		VM_OBJECT_ASSERT_WLOCKED(object);
1823 
1824 again:
1825 	m = NULL;
1826 #if VM_NRESERVLEVEL > 0
1827 	/*
1828 	 * Can we allocate the page from a reservation?
1829 	 */
1830 	if (vm_object_reserv(object) &&
1831 	    ((m = vm_reserv_extend(req, object, pindex, domain, mpred)) != NULL ||
1832 	    (m = vm_reserv_alloc_page(req, object, pindex, domain, mpred)) != NULL)) {
1833 		domain = vm_phys_domain(m);
1834 		vmd = VM_DOMAIN(domain);
1835 		goto found;
1836 	}
1837 #endif
1838 	vmd = VM_DOMAIN(domain);
1839 	if (object != NULL && vmd->vmd_pgcache != NULL) {
1840 		m = uma_zalloc(vmd->vmd_pgcache, M_NOWAIT);
1841 		if (m != NULL)
1842 			goto found;
1843 	}
1844 	if (vm_domain_allocate(vmd, req, 1)) {
1845 		/*
1846 		 * If not, allocate it from the free page queues.
1847 		 */
1848 		vm_domain_free_lock(vmd);
1849 		m = vm_phys_alloc_pages(domain, object != NULL ?
1850 		    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1851 		vm_domain_free_unlock(vmd);
1852 		if (m == NULL) {
1853 			vm_domain_freecnt_inc(vmd, 1);
1854 #if VM_NRESERVLEVEL > 0
1855 			if (vm_reserv_reclaim_inactive(domain))
1856 				goto again;
1857 #endif
1858 		}
1859 	}
1860 	if (m == NULL) {
1861 		/*
1862 		 * Not allocatable, give up.
1863 		 */
1864 		if (vm_domain_alloc_fail(vmd, object, req))
1865 			goto again;
1866 		return (NULL);
1867 	}
1868 
1869 	/*
1870 	 *  At this point we had better have found a good page.
1871 	 */
1872 	KASSERT(m != NULL, ("missing page"));
1873 
1874 found:
1875 	vm_page_dequeue(m);
1876 	vm_page_alloc_check(m);
1877 
1878 	/*
1879 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1880 	 */
1881 	flags = 0;
1882 	if ((req & VM_ALLOC_ZERO) != 0)
1883 		flags = PG_ZERO;
1884 	flags &= m->flags;
1885 	if ((req & VM_ALLOC_NODUMP) != 0)
1886 		flags |= PG_NODUMP;
1887 	m->flags = flags;
1888 	m->aflags = 0;
1889 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1890 	    VPO_UNMANAGED : 0;
1891 	m->busy_lock = VPB_UNBUSIED;
1892 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1893 		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1894 	if ((req & VM_ALLOC_SBUSY) != 0)
1895 		m->busy_lock = VPB_SHARERS_WORD(1);
1896 	if (req & VM_ALLOC_WIRED) {
1897 		/*
1898 		 * The page lock is not required for wiring a page until that
1899 		 * page is inserted into the object.
1900 		 */
1901 		vm_wire_add(1);
1902 		m->wire_count = 1;
1903 	}
1904 	m->act_count = 0;
1905 
1906 	if (object != NULL) {
1907 		if (vm_page_insert_after(m, object, pindex, mpred)) {
1908 			if (req & VM_ALLOC_WIRED) {
1909 				vm_wire_sub(1);
1910 				m->wire_count = 0;
1911 			}
1912 			KASSERT(m->object == NULL, ("page %p has object", m));
1913 			m->oflags = VPO_UNMANAGED;
1914 			m->busy_lock = VPB_UNBUSIED;
1915 			/* Don't change PG_ZERO. */
1916 			vm_page_free_toq(m);
1917 			if (req & VM_ALLOC_WAITFAIL) {
1918 				VM_OBJECT_WUNLOCK(object);
1919 				vm_radix_wait();
1920 				VM_OBJECT_WLOCK(object);
1921 			}
1922 			return (NULL);
1923 		}
1924 
1925 		/* Ignore device objects; the pager sets "memattr" for them. */
1926 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1927 		    (object->flags & OBJ_FICTITIOUS) == 0)
1928 			pmap_page_set_memattr(m, object->memattr);
1929 	} else
1930 		m->pindex = pindex;
1931 
1932 	return (m);
1933 }
1934 
1935 /*
1936  *	vm_page_alloc_contig:
1937  *
1938  *	Allocate a contiguous set of physical pages of the given size "npages"
1939  *	from the free lists.  All of the physical pages must be at or above
1940  *	the given physical address "low" and below the given physical address
1941  *	"high".  The given value "alignment" determines the alignment of the
1942  *	first physical page in the set.  If the given value "boundary" is
1943  *	non-zero, then the set of physical pages cannot cross any physical
1944  *	address boundary that is a multiple of that value.  Both "alignment"
1945  *	and "boundary" must be a power of two.
1946  *
1947  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1948  *	then the memory attribute setting for the physical pages is configured
1949  *	to the object's memory attribute setting.  Otherwise, the memory
1950  *	attribute setting for the physical pages is configured to "memattr",
1951  *	overriding the object's memory attribute setting.  However, if the
1952  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1953  *	memory attribute setting for the physical pages cannot be configured
1954  *	to VM_MEMATTR_DEFAULT.
1955  *
1956  *	The specified object may not contain fictitious pages.
1957  *
1958  *	The caller must always specify an allocation class.
1959  *
1960  *	allocation classes:
1961  *	VM_ALLOC_NORMAL		normal process request
1962  *	VM_ALLOC_SYSTEM		system *really* needs a page
1963  *	VM_ALLOC_INTERRUPT	interrupt time request
1964  *
1965  *	optional allocation flags:
1966  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1967  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1968  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1969  *				should not be exclusive busy
1970  *	VM_ALLOC_SBUSY		shared busy the allocated page
1971  *	VM_ALLOC_WIRED		wire the allocated page
1972  *	VM_ALLOC_ZERO		prefer a zeroed page
1973  */
1974 vm_page_t
1975 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1976     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1977     vm_paddr_t boundary, vm_memattr_t memattr)
1978 {
1979 	struct vm_domainset_iter di;
1980 	vm_page_t m;
1981 	int domain;
1982 
1983 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1984 	do {
1985 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
1986 		    npages, low, high, alignment, boundary, memattr);
1987 		if (m != NULL)
1988 			break;
1989 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
1990 
1991 	return (m);
1992 }
1993 
1994 vm_page_t
1995 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1996     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1997     vm_paddr_t boundary, vm_memattr_t memattr)
1998 {
1999 	struct vm_domain *vmd;
2000 	vm_page_t m, m_ret, mpred;
2001 	u_int busy_lock, flags, oflags;
2002 
2003 	mpred = NULL;	/* XXX: pacify gcc */
2004 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2005 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2006 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2007 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2008 	    ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2009 	    req));
2010 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2011 	    ("Can't sleep and retry object insertion."));
2012 	if (object != NULL) {
2013 		VM_OBJECT_ASSERT_WLOCKED(object);
2014 		KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2015 		    ("vm_page_alloc_contig: object %p has fictitious pages",
2016 		    object));
2017 	}
2018 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2019 
2020 	if (object != NULL) {
2021 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
2022 		KASSERT(mpred == NULL || mpred->pindex != pindex,
2023 		    ("vm_page_alloc_contig: pindex already allocated"));
2024 	}
2025 
2026 	/*
2027 	 * Can we allocate the pages without the number of free pages falling
2028 	 * below the lower bound for the allocation class?
2029 	 */
2030 again:
2031 #if VM_NRESERVLEVEL > 0
2032 	/*
2033 	 * Can we allocate the pages from a reservation?
2034 	 */
2035 	if (vm_object_reserv(object) &&
2036 	    ((m_ret = vm_reserv_extend_contig(req, object, pindex, domain,
2037 	    npages, low, high, alignment, boundary, mpred)) != NULL ||
2038 	    (m_ret = vm_reserv_alloc_contig(req, object, pindex, domain,
2039 	    npages, low, high, alignment, boundary, mpred)) != NULL)) {
2040 		domain = vm_phys_domain(m_ret);
2041 		vmd = VM_DOMAIN(domain);
2042 		goto found;
2043 	}
2044 #endif
2045 	m_ret = NULL;
2046 	vmd = VM_DOMAIN(domain);
2047 	if (vm_domain_allocate(vmd, req, npages)) {
2048 		/*
2049 		 * allocate them from the free page queues.
2050 		 */
2051 		vm_domain_free_lock(vmd);
2052 		m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2053 		    alignment, boundary);
2054 		vm_domain_free_unlock(vmd);
2055 		if (m_ret == NULL) {
2056 			vm_domain_freecnt_inc(vmd, npages);
2057 #if VM_NRESERVLEVEL > 0
2058 			if (vm_reserv_reclaim_contig(domain, npages, low,
2059 			    high, alignment, boundary))
2060 				goto again;
2061 #endif
2062 		}
2063 	}
2064 	if (m_ret == NULL) {
2065 		if (vm_domain_alloc_fail(vmd, object, req))
2066 			goto again;
2067 		return (NULL);
2068 	}
2069 #if VM_NRESERVLEVEL > 0
2070 found:
2071 #endif
2072 	for (m = m_ret; m < &m_ret[npages]; m++) {
2073 		vm_page_dequeue(m);
2074 		vm_page_alloc_check(m);
2075 	}
2076 
2077 	/*
2078 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2079 	 */
2080 	flags = 0;
2081 	if ((req & VM_ALLOC_ZERO) != 0)
2082 		flags = PG_ZERO;
2083 	if ((req & VM_ALLOC_NODUMP) != 0)
2084 		flags |= PG_NODUMP;
2085 	oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2086 	    VPO_UNMANAGED : 0;
2087 	busy_lock = VPB_UNBUSIED;
2088 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2089 		busy_lock = VPB_SINGLE_EXCLUSIVER;
2090 	if ((req & VM_ALLOC_SBUSY) != 0)
2091 		busy_lock = VPB_SHARERS_WORD(1);
2092 	if ((req & VM_ALLOC_WIRED) != 0)
2093 		vm_wire_add(npages);
2094 	if (object != NULL) {
2095 		if (object->memattr != VM_MEMATTR_DEFAULT &&
2096 		    memattr == VM_MEMATTR_DEFAULT)
2097 			memattr = object->memattr;
2098 	}
2099 	for (m = m_ret; m < &m_ret[npages]; m++) {
2100 		m->aflags = 0;
2101 		m->flags = (m->flags | PG_NODUMP) & flags;
2102 		m->busy_lock = busy_lock;
2103 		if ((req & VM_ALLOC_WIRED) != 0)
2104 			m->wire_count = 1;
2105 		m->act_count = 0;
2106 		m->oflags = oflags;
2107 		if (object != NULL) {
2108 			if (vm_page_insert_after(m, object, pindex, mpred)) {
2109 				if ((req & VM_ALLOC_WIRED) != 0)
2110 					vm_wire_sub(npages);
2111 				KASSERT(m->object == NULL,
2112 				    ("page %p has object", m));
2113 				mpred = m;
2114 				for (m = m_ret; m < &m_ret[npages]; m++) {
2115 					if (m <= mpred &&
2116 					    (req & VM_ALLOC_WIRED) != 0)
2117 						m->wire_count = 0;
2118 					m->oflags = VPO_UNMANAGED;
2119 					m->busy_lock = VPB_UNBUSIED;
2120 					/* Don't change PG_ZERO. */
2121 					vm_page_free_toq(m);
2122 				}
2123 				if (req & VM_ALLOC_WAITFAIL) {
2124 					VM_OBJECT_WUNLOCK(object);
2125 					vm_radix_wait();
2126 					VM_OBJECT_WLOCK(object);
2127 				}
2128 				return (NULL);
2129 			}
2130 			mpred = m;
2131 		} else
2132 			m->pindex = pindex;
2133 		if (memattr != VM_MEMATTR_DEFAULT)
2134 			pmap_page_set_memattr(m, memattr);
2135 		pindex++;
2136 	}
2137 	return (m_ret);
2138 }
2139 
2140 /*
2141  * Check a page that has been freshly dequeued from a freelist.
2142  */
2143 static void
2144 vm_page_alloc_check(vm_page_t m)
2145 {
2146 
2147 	KASSERT(m->object == NULL, ("page %p has object", m));
2148 	KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
2149 	    ("page %p has unexpected queue %d, flags %#x",
2150 	    m, m->queue, (m->aflags & PGA_QUEUE_STATE_MASK)));
2151 	KASSERT(!vm_page_held(m), ("page %p is held", m));
2152 	KASSERT(!vm_page_busied(m), ("page %p is busy", m));
2153 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2154 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2155 	    ("page %p has unexpected memattr %d",
2156 	    m, pmap_page_get_memattr(m)));
2157 	KASSERT(m->valid == 0, ("free page %p is valid", m));
2158 }
2159 
2160 /*
2161  * 	vm_page_alloc_freelist:
2162  *
2163  *	Allocate a physical page from the specified free page list.
2164  *
2165  *	The caller must always specify an allocation class.
2166  *
2167  *	allocation classes:
2168  *	VM_ALLOC_NORMAL		normal process request
2169  *	VM_ALLOC_SYSTEM		system *really* needs a page
2170  *	VM_ALLOC_INTERRUPT	interrupt time request
2171  *
2172  *	optional allocation flags:
2173  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2174  *				intends to allocate
2175  *	VM_ALLOC_WIRED		wire the allocated page
2176  *	VM_ALLOC_ZERO		prefer a zeroed page
2177  */
2178 vm_page_t
2179 vm_page_alloc_freelist(int freelist, int req)
2180 {
2181 	struct vm_domainset_iter di;
2182 	vm_page_t m;
2183 	int domain;
2184 
2185 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2186 	do {
2187 		m = vm_page_alloc_freelist_domain(domain, freelist, req);
2188 		if (m != NULL)
2189 			break;
2190 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2191 
2192 	return (m);
2193 }
2194 
2195 vm_page_t
2196 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2197 {
2198 	struct vm_domain *vmd;
2199 	vm_page_t m;
2200 	u_int flags;
2201 
2202 	m = NULL;
2203 	vmd = VM_DOMAIN(domain);
2204 again:
2205 	if (vm_domain_allocate(vmd, req, 1)) {
2206 		vm_domain_free_lock(vmd);
2207 		m = vm_phys_alloc_freelist_pages(domain, freelist,
2208 		    VM_FREEPOOL_DIRECT, 0);
2209 		vm_domain_free_unlock(vmd);
2210 		if (m == NULL)
2211 			vm_domain_freecnt_inc(vmd, 1);
2212 	}
2213 	if (m == NULL) {
2214 		if (vm_domain_alloc_fail(vmd, NULL, req))
2215 			goto again;
2216 		return (NULL);
2217 	}
2218 	vm_page_dequeue(m);
2219 	vm_page_alloc_check(m);
2220 
2221 	/*
2222 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2223 	 */
2224 	m->aflags = 0;
2225 	flags = 0;
2226 	if ((req & VM_ALLOC_ZERO) != 0)
2227 		flags = PG_ZERO;
2228 	m->flags &= flags;
2229 	if ((req & VM_ALLOC_WIRED) != 0) {
2230 		/*
2231 		 * The page lock is not required for wiring a page that does
2232 		 * not belong to an object.
2233 		 */
2234 		vm_wire_add(1);
2235 		m->wire_count = 1;
2236 	}
2237 	/* Unmanaged pages don't use "act_count". */
2238 	m->oflags = VPO_UNMANAGED;
2239 	return (m);
2240 }
2241 
2242 static int
2243 vm_page_import(void *arg, void **store, int cnt, int domain, int flags)
2244 {
2245 	struct vm_domain *vmd;
2246 	int i;
2247 
2248 	vmd = arg;
2249 	/* Only import if we can bring in a full bucket. */
2250 	if (cnt == 1 || !vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2251 		return (0);
2252 	domain = vmd->vmd_domain;
2253 	vm_domain_free_lock(vmd);
2254 	i = vm_phys_alloc_npages(domain, VM_FREEPOOL_DEFAULT, cnt,
2255 	    (vm_page_t *)store);
2256 	vm_domain_free_unlock(vmd);
2257 	if (cnt != i)
2258 		vm_domain_freecnt_inc(vmd, cnt - i);
2259 
2260 	return (i);
2261 }
2262 
2263 static void
2264 vm_page_release(void *arg, void **store, int cnt)
2265 {
2266 	struct vm_domain *vmd;
2267 	vm_page_t m;
2268 	int i;
2269 
2270 	vmd = arg;
2271 	vm_domain_free_lock(vmd);
2272 	for (i = 0; i < cnt; i++) {
2273 		m = (vm_page_t)store[i];
2274 		vm_phys_free_pages(m, 0);
2275 	}
2276 	vm_domain_free_unlock(vmd);
2277 	vm_domain_freecnt_inc(vmd, cnt);
2278 }
2279 
2280 #define	VPSC_ANY	0	/* No restrictions. */
2281 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2282 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2283 
2284 /*
2285  *	vm_page_scan_contig:
2286  *
2287  *	Scan vm_page_array[] between the specified entries "m_start" and
2288  *	"m_end" for a run of contiguous physical pages that satisfy the
2289  *	specified conditions, and return the lowest page in the run.  The
2290  *	specified "alignment" determines the alignment of the lowest physical
2291  *	page in the run.  If the specified "boundary" is non-zero, then the
2292  *	run of physical pages cannot span a physical address that is a
2293  *	multiple of "boundary".
2294  *
2295  *	"m_end" is never dereferenced, so it need not point to a vm_page
2296  *	structure within vm_page_array[].
2297  *
2298  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2299  *	span a hole (or discontiguity) in the physical address space.  Both
2300  *	"alignment" and "boundary" must be a power of two.
2301  */
2302 vm_page_t
2303 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2304     u_long alignment, vm_paddr_t boundary, int options)
2305 {
2306 	struct mtx *m_mtx;
2307 	vm_object_t object;
2308 	vm_paddr_t pa;
2309 	vm_page_t m, m_run;
2310 #if VM_NRESERVLEVEL > 0
2311 	int level;
2312 #endif
2313 	int m_inc, order, run_ext, run_len;
2314 
2315 	KASSERT(npages > 0, ("npages is 0"));
2316 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2317 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2318 	m_run = NULL;
2319 	run_len = 0;
2320 	m_mtx = NULL;
2321 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2322 		KASSERT((m->flags & PG_MARKER) == 0,
2323 		    ("page %p is PG_MARKER", m));
2324 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->wire_count == 1,
2325 		    ("fictitious page %p has invalid wire count", m));
2326 
2327 		/*
2328 		 * If the current page would be the start of a run, check its
2329 		 * physical address against the end, alignment, and boundary
2330 		 * conditions.  If it doesn't satisfy these conditions, either
2331 		 * terminate the scan or advance to the next page that
2332 		 * satisfies the failed condition.
2333 		 */
2334 		if (run_len == 0) {
2335 			KASSERT(m_run == NULL, ("m_run != NULL"));
2336 			if (m + npages > m_end)
2337 				break;
2338 			pa = VM_PAGE_TO_PHYS(m);
2339 			if ((pa & (alignment - 1)) != 0) {
2340 				m_inc = atop(roundup2(pa, alignment) - pa);
2341 				continue;
2342 			}
2343 			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2344 			    boundary) != 0) {
2345 				m_inc = atop(roundup2(pa, boundary) - pa);
2346 				continue;
2347 			}
2348 		} else
2349 			KASSERT(m_run != NULL, ("m_run == NULL"));
2350 
2351 		vm_page_change_lock(m, &m_mtx);
2352 		m_inc = 1;
2353 retry:
2354 		if (vm_page_held(m))
2355 			run_ext = 0;
2356 #if VM_NRESERVLEVEL > 0
2357 		else if ((level = vm_reserv_level(m)) >= 0 &&
2358 		    (options & VPSC_NORESERV) != 0) {
2359 			run_ext = 0;
2360 			/* Advance to the end of the reservation. */
2361 			pa = VM_PAGE_TO_PHYS(m);
2362 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2363 			    pa);
2364 		}
2365 #endif
2366 		else if ((object = m->object) != NULL) {
2367 			/*
2368 			 * The page is considered eligible for relocation if
2369 			 * and only if it could be laundered or reclaimed by
2370 			 * the page daemon.
2371 			 */
2372 			if (!VM_OBJECT_TRYRLOCK(object)) {
2373 				mtx_unlock(m_mtx);
2374 				VM_OBJECT_RLOCK(object);
2375 				mtx_lock(m_mtx);
2376 				if (m->object != object) {
2377 					/*
2378 					 * The page may have been freed.
2379 					 */
2380 					VM_OBJECT_RUNLOCK(object);
2381 					goto retry;
2382 				} else if (vm_page_held(m)) {
2383 					run_ext = 0;
2384 					goto unlock;
2385 				}
2386 			}
2387 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2388 			    ("page %p is PG_UNHOLDFREE", m));
2389 			/* Don't care: PG_NODUMP, PG_ZERO. */
2390 			if (object->type != OBJT_DEFAULT &&
2391 			    object->type != OBJT_SWAP &&
2392 			    object->type != OBJT_VNODE) {
2393 				run_ext = 0;
2394 #if VM_NRESERVLEVEL > 0
2395 			} else if ((options & VPSC_NOSUPER) != 0 &&
2396 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2397 				run_ext = 0;
2398 				/* Advance to the end of the superpage. */
2399 				pa = VM_PAGE_TO_PHYS(m);
2400 				m_inc = atop(roundup2(pa + 1,
2401 				    vm_reserv_size(level)) - pa);
2402 #endif
2403 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2404 			    vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2405 				/*
2406 				 * The page is allocated but eligible for
2407 				 * relocation.  Extend the current run by one
2408 				 * page.
2409 				 */
2410 				KASSERT(pmap_page_get_memattr(m) ==
2411 				    VM_MEMATTR_DEFAULT,
2412 				    ("page %p has an unexpected memattr", m));
2413 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2414 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2415 				    ("page %p has unexpected oflags", m));
2416 				/* Don't care: VPO_NOSYNC. */
2417 				run_ext = 1;
2418 			} else
2419 				run_ext = 0;
2420 unlock:
2421 			VM_OBJECT_RUNLOCK(object);
2422 #if VM_NRESERVLEVEL > 0
2423 		} else if (level >= 0) {
2424 			/*
2425 			 * The page is reserved but not yet allocated.  In
2426 			 * other words, it is still free.  Extend the current
2427 			 * run by one page.
2428 			 */
2429 			run_ext = 1;
2430 #endif
2431 		} else if ((order = m->order) < VM_NFREEORDER) {
2432 			/*
2433 			 * The page is enqueued in the physical memory
2434 			 * allocator's free page queues.  Moreover, it is the
2435 			 * first page in a power-of-two-sized run of
2436 			 * contiguous free pages.  Add these pages to the end
2437 			 * of the current run, and jump ahead.
2438 			 */
2439 			run_ext = 1 << order;
2440 			m_inc = 1 << order;
2441 		} else {
2442 			/*
2443 			 * Skip the page for one of the following reasons: (1)
2444 			 * It is enqueued in the physical memory allocator's
2445 			 * free page queues.  However, it is not the first
2446 			 * page in a run of contiguous free pages.  (This case
2447 			 * rarely occurs because the scan is performed in
2448 			 * ascending order.) (2) It is not reserved, and it is
2449 			 * transitioning from free to allocated.  (Conversely,
2450 			 * the transition from allocated to free for managed
2451 			 * pages is blocked by the page lock.) (3) It is
2452 			 * allocated but not contained by an object and not
2453 			 * wired, e.g., allocated by Xen's balloon driver.
2454 			 */
2455 			run_ext = 0;
2456 		}
2457 
2458 		/*
2459 		 * Extend or reset the current run of pages.
2460 		 */
2461 		if (run_ext > 0) {
2462 			if (run_len == 0)
2463 				m_run = m;
2464 			run_len += run_ext;
2465 		} else {
2466 			if (run_len > 0) {
2467 				m_run = NULL;
2468 				run_len = 0;
2469 			}
2470 		}
2471 	}
2472 	if (m_mtx != NULL)
2473 		mtx_unlock(m_mtx);
2474 	if (run_len >= npages)
2475 		return (m_run);
2476 	return (NULL);
2477 }
2478 
2479 /*
2480  *	vm_page_reclaim_run:
2481  *
2482  *	Try to relocate each of the allocated virtual pages within the
2483  *	specified run of physical pages to a new physical address.  Free the
2484  *	physical pages underlying the relocated virtual pages.  A virtual page
2485  *	is relocatable if and only if it could be laundered or reclaimed by
2486  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2487  *	physical address above "high".
2488  *
2489  *	Returns 0 if every physical page within the run was already free or
2490  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2491  *	value indicating why the last attempt to relocate a virtual page was
2492  *	unsuccessful.
2493  *
2494  *	"req_class" must be an allocation class.
2495  */
2496 static int
2497 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2498     vm_paddr_t high)
2499 {
2500 	struct vm_domain *vmd;
2501 	struct mtx *m_mtx;
2502 	struct spglist free;
2503 	vm_object_t object;
2504 	vm_paddr_t pa;
2505 	vm_page_t m, m_end, m_new;
2506 	int error, order, req;
2507 
2508 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2509 	    ("req_class is not an allocation class"));
2510 	SLIST_INIT(&free);
2511 	error = 0;
2512 	m = m_run;
2513 	m_end = m_run + npages;
2514 	m_mtx = NULL;
2515 	for (; error == 0 && m < m_end; m++) {
2516 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2517 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2518 
2519 		/*
2520 		 * Avoid releasing and reacquiring the same page lock.
2521 		 */
2522 		vm_page_change_lock(m, &m_mtx);
2523 retry:
2524 		if (vm_page_held(m))
2525 			error = EBUSY;
2526 		else if ((object = m->object) != NULL) {
2527 			/*
2528 			 * The page is relocated if and only if it could be
2529 			 * laundered or reclaimed by the page daemon.
2530 			 */
2531 			if (!VM_OBJECT_TRYWLOCK(object)) {
2532 				mtx_unlock(m_mtx);
2533 				VM_OBJECT_WLOCK(object);
2534 				mtx_lock(m_mtx);
2535 				if (m->object != object) {
2536 					/*
2537 					 * The page may have been freed.
2538 					 */
2539 					VM_OBJECT_WUNLOCK(object);
2540 					goto retry;
2541 				} else if (vm_page_held(m)) {
2542 					error = EBUSY;
2543 					goto unlock;
2544 				}
2545 			}
2546 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2547 			    ("page %p is PG_UNHOLDFREE", m));
2548 			/* Don't care: PG_NODUMP, PG_ZERO. */
2549 			if (object->type != OBJT_DEFAULT &&
2550 			    object->type != OBJT_SWAP &&
2551 			    object->type != OBJT_VNODE)
2552 				error = EINVAL;
2553 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2554 				error = EINVAL;
2555 			else if (vm_page_queue(m) != PQ_NONE &&
2556 			    !vm_page_busied(m)) {
2557 				KASSERT(pmap_page_get_memattr(m) ==
2558 				    VM_MEMATTR_DEFAULT,
2559 				    ("page %p has an unexpected memattr", m));
2560 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2561 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2562 				    ("page %p has unexpected oflags", m));
2563 				/* Don't care: VPO_NOSYNC. */
2564 				if (m->valid != 0) {
2565 					/*
2566 					 * First, try to allocate a new page
2567 					 * that is above "high".  Failing
2568 					 * that, try to allocate a new page
2569 					 * that is below "m_run".  Allocate
2570 					 * the new page between the end of
2571 					 * "m_run" and "high" only as a last
2572 					 * resort.
2573 					 */
2574 					req = req_class | VM_ALLOC_NOOBJ;
2575 					if ((m->flags & PG_NODUMP) != 0)
2576 						req |= VM_ALLOC_NODUMP;
2577 					if (trunc_page(high) !=
2578 					    ~(vm_paddr_t)PAGE_MASK) {
2579 						m_new = vm_page_alloc_contig(
2580 						    NULL, 0, req, 1,
2581 						    round_page(high),
2582 						    ~(vm_paddr_t)0,
2583 						    PAGE_SIZE, 0,
2584 						    VM_MEMATTR_DEFAULT);
2585 					} else
2586 						m_new = NULL;
2587 					if (m_new == NULL) {
2588 						pa = VM_PAGE_TO_PHYS(m_run);
2589 						m_new = vm_page_alloc_contig(
2590 						    NULL, 0, req, 1,
2591 						    0, pa - 1, PAGE_SIZE, 0,
2592 						    VM_MEMATTR_DEFAULT);
2593 					}
2594 					if (m_new == NULL) {
2595 						pa += ptoa(npages);
2596 						m_new = vm_page_alloc_contig(
2597 						    NULL, 0, req, 1,
2598 						    pa, high, PAGE_SIZE, 0,
2599 						    VM_MEMATTR_DEFAULT);
2600 					}
2601 					if (m_new == NULL) {
2602 						error = ENOMEM;
2603 						goto unlock;
2604 					}
2605 					KASSERT(m_new->wire_count == 0,
2606 					    ("page %p is wired", m_new));
2607 
2608 					/*
2609 					 * Replace "m" with the new page.  For
2610 					 * vm_page_replace(), "m" must be busy
2611 					 * and dequeued.  Finally, change "m"
2612 					 * as if vm_page_free() was called.
2613 					 */
2614 					if (object->ref_count != 0)
2615 						pmap_remove_all(m);
2616 					m_new->aflags = m->aflags &
2617 					    ~PGA_QUEUE_STATE_MASK;
2618 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2619 					    ("page %p is managed", m_new));
2620 					m_new->oflags = m->oflags & VPO_NOSYNC;
2621 					pmap_copy_page(m, m_new);
2622 					m_new->valid = m->valid;
2623 					m_new->dirty = m->dirty;
2624 					m->flags &= ~PG_ZERO;
2625 					vm_page_xbusy(m);
2626 					vm_page_dequeue(m);
2627 					vm_page_replace_checked(m_new, object,
2628 					    m->pindex, m);
2629 					if (vm_page_free_prep(m))
2630 						SLIST_INSERT_HEAD(&free, m,
2631 						    plinks.s.ss);
2632 
2633 					/*
2634 					 * The new page must be deactivated
2635 					 * before the object is unlocked.
2636 					 */
2637 					vm_page_change_lock(m_new, &m_mtx);
2638 					vm_page_deactivate(m_new);
2639 				} else {
2640 					m->flags &= ~PG_ZERO;
2641 					vm_page_dequeue(m);
2642 					vm_page_remove(m);
2643 					if (vm_page_free_prep(m))
2644 						SLIST_INSERT_HEAD(&free, m,
2645 						    plinks.s.ss);
2646 					KASSERT(m->dirty == 0,
2647 					    ("page %p is dirty", m));
2648 				}
2649 			} else
2650 				error = EBUSY;
2651 unlock:
2652 			VM_OBJECT_WUNLOCK(object);
2653 		} else {
2654 			MPASS(vm_phys_domain(m) == domain);
2655 			vmd = VM_DOMAIN(domain);
2656 			vm_domain_free_lock(vmd);
2657 			order = m->order;
2658 			if (order < VM_NFREEORDER) {
2659 				/*
2660 				 * The page is enqueued in the physical memory
2661 				 * allocator's free page queues.  Moreover, it
2662 				 * is the first page in a power-of-two-sized
2663 				 * run of contiguous free pages.  Jump ahead
2664 				 * to the last page within that run, and
2665 				 * continue from there.
2666 				 */
2667 				m += (1 << order) - 1;
2668 			}
2669 #if VM_NRESERVLEVEL > 0
2670 			else if (vm_reserv_is_page_free(m))
2671 				order = 0;
2672 #endif
2673 			vm_domain_free_unlock(vmd);
2674 			if (order == VM_NFREEORDER)
2675 				error = EINVAL;
2676 		}
2677 	}
2678 	if (m_mtx != NULL)
2679 		mtx_unlock(m_mtx);
2680 	if ((m = SLIST_FIRST(&free)) != NULL) {
2681 		int cnt;
2682 
2683 		vmd = VM_DOMAIN(domain);
2684 		cnt = 0;
2685 		vm_domain_free_lock(vmd);
2686 		do {
2687 			MPASS(vm_phys_domain(m) == domain);
2688 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2689 			vm_phys_free_pages(m, 0);
2690 			cnt++;
2691 		} while ((m = SLIST_FIRST(&free)) != NULL);
2692 		vm_domain_free_unlock(vmd);
2693 		vm_domain_freecnt_inc(vmd, cnt);
2694 	}
2695 	return (error);
2696 }
2697 
2698 #define	NRUNS	16
2699 
2700 CTASSERT(powerof2(NRUNS));
2701 
2702 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2703 
2704 #define	MIN_RECLAIM	8
2705 
2706 /*
2707  *	vm_page_reclaim_contig:
2708  *
2709  *	Reclaim allocated, contiguous physical memory satisfying the specified
2710  *	conditions by relocating the virtual pages using that physical memory.
2711  *	Returns true if reclamation is successful and false otherwise.  Since
2712  *	relocation requires the allocation of physical pages, reclamation may
2713  *	fail due to a shortage of free pages.  When reclamation fails, callers
2714  *	are expected to perform vm_wait() before retrying a failed allocation
2715  *	operation, e.g., vm_page_alloc_contig().
2716  *
2717  *	The caller must always specify an allocation class through "req".
2718  *
2719  *	allocation classes:
2720  *	VM_ALLOC_NORMAL		normal process request
2721  *	VM_ALLOC_SYSTEM		system *really* needs a page
2722  *	VM_ALLOC_INTERRUPT	interrupt time request
2723  *
2724  *	The optional allocation flags are ignored.
2725  *
2726  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2727  *	must be a power of two.
2728  */
2729 bool
2730 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2731     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2732 {
2733 	struct vm_domain *vmd;
2734 	vm_paddr_t curr_low;
2735 	vm_page_t m_run, m_runs[NRUNS];
2736 	u_long count, reclaimed;
2737 	int error, i, options, req_class;
2738 
2739 	KASSERT(npages > 0, ("npages is 0"));
2740 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2741 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2742 	req_class = req & VM_ALLOC_CLASS_MASK;
2743 
2744 	/*
2745 	 * The page daemon is allowed to dig deeper into the free page list.
2746 	 */
2747 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2748 		req_class = VM_ALLOC_SYSTEM;
2749 
2750 	/*
2751 	 * Return if the number of free pages cannot satisfy the requested
2752 	 * allocation.
2753 	 */
2754 	vmd = VM_DOMAIN(domain);
2755 	count = vmd->vmd_free_count;
2756 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
2757 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2758 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2759 		return (false);
2760 
2761 	/*
2762 	 * Scan up to three times, relaxing the restrictions ("options") on
2763 	 * the reclamation of reservations and superpages each time.
2764 	 */
2765 	for (options = VPSC_NORESERV;;) {
2766 		/*
2767 		 * Find the highest runs that satisfy the given constraints
2768 		 * and restrictions, and record them in "m_runs".
2769 		 */
2770 		curr_low = low;
2771 		count = 0;
2772 		for (;;) {
2773 			m_run = vm_phys_scan_contig(domain, npages, curr_low,
2774 			    high, alignment, boundary, options);
2775 			if (m_run == NULL)
2776 				break;
2777 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2778 			m_runs[RUN_INDEX(count)] = m_run;
2779 			count++;
2780 		}
2781 
2782 		/*
2783 		 * Reclaim the highest runs in LIFO (descending) order until
2784 		 * the number of reclaimed pages, "reclaimed", is at least
2785 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2786 		 * reclamation is idempotent, and runs will (likely) recur
2787 		 * from one scan to the next as restrictions are relaxed.
2788 		 */
2789 		reclaimed = 0;
2790 		for (i = 0; count > 0 && i < NRUNS; i++) {
2791 			count--;
2792 			m_run = m_runs[RUN_INDEX(count)];
2793 			error = vm_page_reclaim_run(req_class, domain, npages,
2794 			    m_run, high);
2795 			if (error == 0) {
2796 				reclaimed += npages;
2797 				if (reclaimed >= MIN_RECLAIM)
2798 					return (true);
2799 			}
2800 		}
2801 
2802 		/*
2803 		 * Either relax the restrictions on the next scan or return if
2804 		 * the last scan had no restrictions.
2805 		 */
2806 		if (options == VPSC_NORESERV)
2807 			options = VPSC_NOSUPER;
2808 		else if (options == VPSC_NOSUPER)
2809 			options = VPSC_ANY;
2810 		else if (options == VPSC_ANY)
2811 			return (reclaimed != 0);
2812 	}
2813 }
2814 
2815 bool
2816 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2817     u_long alignment, vm_paddr_t boundary)
2818 {
2819 	struct vm_domainset_iter di;
2820 	int domain;
2821 	bool ret;
2822 
2823 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2824 	do {
2825 		ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
2826 		    high, alignment, boundary);
2827 		if (ret)
2828 			break;
2829 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2830 
2831 	return (ret);
2832 }
2833 
2834 /*
2835  * Set the domain in the appropriate page level domainset.
2836  */
2837 void
2838 vm_domain_set(struct vm_domain *vmd)
2839 {
2840 
2841 	mtx_lock(&vm_domainset_lock);
2842 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
2843 		vmd->vmd_minset = 1;
2844 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
2845 	}
2846 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
2847 		vmd->vmd_severeset = 1;
2848 		DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
2849 	}
2850 	mtx_unlock(&vm_domainset_lock);
2851 }
2852 
2853 /*
2854  * Clear the domain from the appropriate page level domainset.
2855  */
2856 void
2857 vm_domain_clear(struct vm_domain *vmd)
2858 {
2859 
2860 	mtx_lock(&vm_domainset_lock);
2861 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
2862 		vmd->vmd_minset = 0;
2863 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
2864 		if (vm_min_waiters != 0) {
2865 			vm_min_waiters = 0;
2866 			wakeup(&vm_min_domains);
2867 		}
2868 	}
2869 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
2870 		vmd->vmd_severeset = 0;
2871 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
2872 		if (vm_severe_waiters != 0) {
2873 			vm_severe_waiters = 0;
2874 			wakeup(&vm_severe_domains);
2875 		}
2876 	}
2877 
2878 	/*
2879 	 * If pageout daemon needs pages, then tell it that there are
2880 	 * some free.
2881 	 */
2882 	if (vmd->vmd_pageout_pages_needed &&
2883 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
2884 		wakeup(&vmd->vmd_pageout_pages_needed);
2885 		vmd->vmd_pageout_pages_needed = 0;
2886 	}
2887 
2888 	/* See comments in vm_wait_doms(). */
2889 	if (vm_pageproc_waiters) {
2890 		vm_pageproc_waiters = 0;
2891 		wakeup(&vm_pageproc_waiters);
2892 	}
2893 	mtx_unlock(&vm_domainset_lock);
2894 }
2895 
2896 /*
2897  * Wait for free pages to exceed the min threshold globally.
2898  */
2899 void
2900 vm_wait_min(void)
2901 {
2902 
2903 	mtx_lock(&vm_domainset_lock);
2904 	while (vm_page_count_min()) {
2905 		vm_min_waiters++;
2906 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
2907 	}
2908 	mtx_unlock(&vm_domainset_lock);
2909 }
2910 
2911 /*
2912  * Wait for free pages to exceed the severe threshold globally.
2913  */
2914 void
2915 vm_wait_severe(void)
2916 {
2917 
2918 	mtx_lock(&vm_domainset_lock);
2919 	while (vm_page_count_severe()) {
2920 		vm_severe_waiters++;
2921 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
2922 		    "vmwait", 0);
2923 	}
2924 	mtx_unlock(&vm_domainset_lock);
2925 }
2926 
2927 u_int
2928 vm_wait_count(void)
2929 {
2930 
2931 	return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
2932 }
2933 
2934 void
2935 vm_wait_doms(const domainset_t *wdoms)
2936 {
2937 
2938 	/*
2939 	 * We use racey wakeup synchronization to avoid expensive global
2940 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
2941 	 * To handle this, we only sleep for one tick in this instance.  It
2942 	 * is expected that most allocations for the pageproc will come from
2943 	 * kmem or vm_page_grab* which will use the more specific and
2944 	 * race-free vm_wait_domain().
2945 	 */
2946 	if (curproc == pageproc) {
2947 		mtx_lock(&vm_domainset_lock);
2948 		vm_pageproc_waiters++;
2949 		msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
2950 		    "pageprocwait", 1);
2951 	} else {
2952 		/*
2953 		 * XXX Ideally we would wait only until the allocation could
2954 		 * be satisfied.  This condition can cause new allocators to
2955 		 * consume all freed pages while old allocators wait.
2956 		 */
2957 		mtx_lock(&vm_domainset_lock);
2958 		if (vm_page_count_min_set(wdoms)) {
2959 			vm_min_waiters++;
2960 			msleep(&vm_min_domains, &vm_domainset_lock,
2961 			    PVM | PDROP, "vmwait", 0);
2962 		} else
2963 			mtx_unlock(&vm_domainset_lock);
2964 	}
2965 }
2966 
2967 /*
2968  *	vm_wait_domain:
2969  *
2970  *	Sleep until free pages are available for allocation.
2971  *	- Called in various places after failed memory allocations.
2972  */
2973 void
2974 vm_wait_domain(int domain)
2975 {
2976 	struct vm_domain *vmd;
2977 	domainset_t wdom;
2978 
2979 	vmd = VM_DOMAIN(domain);
2980 	vm_domain_free_assert_unlocked(vmd);
2981 
2982 	if (curproc == pageproc) {
2983 		mtx_lock(&vm_domainset_lock);
2984 		if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
2985 			vmd->vmd_pageout_pages_needed = 1;
2986 			msleep(&vmd->vmd_pageout_pages_needed,
2987 			    &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
2988 		} else
2989 			mtx_unlock(&vm_domainset_lock);
2990 	} else {
2991 		if (pageproc == NULL)
2992 			panic("vm_wait in early boot");
2993 		DOMAINSET_ZERO(&wdom);
2994 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
2995 		vm_wait_doms(&wdom);
2996 	}
2997 }
2998 
2999 /*
3000  *	vm_wait:
3001  *
3002  *	Sleep until free pages are available for allocation in the
3003  *	affinity domains of the obj.  If obj is NULL, the domain set
3004  *	for the calling thread is used.
3005  *	Called in various places after failed memory allocations.
3006  */
3007 void
3008 vm_wait(vm_object_t obj)
3009 {
3010 	struct domainset *d;
3011 
3012 	d = NULL;
3013 
3014 	/*
3015 	 * Carefully fetch pointers only once: the struct domainset
3016 	 * itself is ummutable but the pointer might change.
3017 	 */
3018 	if (obj != NULL)
3019 		d = obj->domain.dr_policy;
3020 	if (d == NULL)
3021 		d = curthread->td_domain.dr_policy;
3022 
3023 	vm_wait_doms(&d->ds_mask);
3024 }
3025 
3026 /*
3027  *	vm_domain_alloc_fail:
3028  *
3029  *	Called when a page allocation function fails.  Informs the
3030  *	pagedaemon and performs the requested wait.  Requires the
3031  *	domain_free and object lock on entry.  Returns with the
3032  *	object lock held and free lock released.  Returns an error when
3033  *	retry is necessary.
3034  *
3035  */
3036 static int
3037 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3038 {
3039 
3040 	vm_domain_free_assert_unlocked(vmd);
3041 
3042 	atomic_add_int(&vmd->vmd_pageout_deficit,
3043 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3044 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3045 		if (object != NULL)
3046 			VM_OBJECT_WUNLOCK(object);
3047 		vm_wait_domain(vmd->vmd_domain);
3048 		if (object != NULL)
3049 			VM_OBJECT_WLOCK(object);
3050 		if (req & VM_ALLOC_WAITOK)
3051 			return (EAGAIN);
3052 	}
3053 
3054 	return (0);
3055 }
3056 
3057 /*
3058  *	vm_waitpfault:
3059  *
3060  *	Sleep until free pages are available for allocation.
3061  *	- Called only in vm_fault so that processes page faulting
3062  *	  can be easily tracked.
3063  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3064  *	  processes will be able to grab memory first.  Do not change
3065  *	  this balance without careful testing first.
3066  */
3067 void
3068 vm_waitpfault(struct domainset *dset)
3069 {
3070 
3071 	/*
3072 	 * XXX Ideally we would wait only until the allocation could
3073 	 * be satisfied.  This condition can cause new allocators to
3074 	 * consume all freed pages while old allocators wait.
3075 	 */
3076 	mtx_lock(&vm_domainset_lock);
3077 	if (vm_page_count_min_set(&dset->ds_mask)) {
3078 		vm_min_waiters++;
3079 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3080 		    "pfault", 0);
3081 	} else
3082 		mtx_unlock(&vm_domainset_lock);
3083 }
3084 
3085 struct vm_pagequeue *
3086 vm_page_pagequeue(vm_page_t m)
3087 {
3088 
3089 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[m->queue]);
3090 }
3091 
3092 static struct mtx *
3093 vm_page_pagequeue_lockptr(vm_page_t m)
3094 {
3095 	uint8_t queue;
3096 
3097 	if ((queue = atomic_load_8(&m->queue)) == PQ_NONE)
3098 		return (NULL);
3099 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue].pq_mutex);
3100 }
3101 
3102 static inline void
3103 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m)
3104 {
3105 	struct vm_domain *vmd;
3106 	uint8_t qflags;
3107 
3108 	CRITICAL_ASSERT(curthread);
3109 	vm_pagequeue_assert_locked(pq);
3110 
3111 	/*
3112 	 * The page daemon is allowed to set m->queue = PQ_NONE without
3113 	 * the page queue lock held.  In this case it is about to free the page,
3114 	 * which must not have any queue state.
3115 	 */
3116 	qflags = atomic_load_8(&m->aflags) & PGA_QUEUE_STATE_MASK;
3117 	KASSERT(pq == vm_page_pagequeue(m) || qflags == 0,
3118 	    ("page %p doesn't belong to queue %p but has queue state %#x",
3119 	    m, pq, qflags));
3120 
3121 	if ((qflags & PGA_DEQUEUE) != 0) {
3122 		if (__predict_true((qflags & PGA_ENQUEUED) != 0)) {
3123 			TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3124 			vm_pagequeue_cnt_dec(pq);
3125 		}
3126 		vm_page_dequeue_complete(m);
3127 	} else if ((qflags & (PGA_REQUEUE | PGA_REQUEUE_HEAD)) != 0) {
3128 		if ((qflags & PGA_ENQUEUED) != 0)
3129 			TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3130 		else {
3131 			vm_pagequeue_cnt_inc(pq);
3132 			vm_page_aflag_set(m, PGA_ENQUEUED);
3133 		}
3134 		if ((qflags & PGA_REQUEUE_HEAD) != 0) {
3135 			KASSERT(m->queue == PQ_INACTIVE,
3136 			    ("head enqueue not supported for page %p", m));
3137 			vmd = vm_pagequeue_domain(m);
3138 			TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3139 		} else
3140 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3141 
3142 		/*
3143 		 * PGA_REQUEUE and PGA_REQUEUE_HEAD must be cleared after
3144 		 * setting PGA_ENQUEUED in order to synchronize with the
3145 		 * page daemon.
3146 		 */
3147 		vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
3148 	}
3149 }
3150 
3151 static void
3152 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3153     uint8_t queue)
3154 {
3155 	vm_page_t m;
3156 	int i;
3157 
3158 	for (i = 0; i < bq->bq_cnt; i++) {
3159 		m = bq->bq_pa[i];
3160 		if (__predict_false(m->queue != queue))
3161 			continue;
3162 		vm_pqbatch_process_page(pq, m);
3163 	}
3164 	vm_batchqueue_init(bq);
3165 }
3166 
3167 static void
3168 vm_pqbatch_submit_page(vm_page_t m, uint8_t queue)
3169 {
3170 	struct vm_batchqueue *bq;
3171 	struct vm_pagequeue *pq;
3172 	int domain;
3173 
3174 	vm_page_assert_locked(m);
3175 	KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3176 
3177 	domain = vm_phys_domain(m);
3178 	pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3179 
3180 	critical_enter();
3181 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3182 	if (vm_batchqueue_insert(bq, m)) {
3183 		critical_exit();
3184 		return;
3185 	}
3186 	if (!vm_pagequeue_trylock(pq)) {
3187 		critical_exit();
3188 		vm_pagequeue_lock(pq);
3189 		critical_enter();
3190 		bq = DPCPU_PTR(pqbatch[domain][queue]);
3191 	}
3192 	vm_pqbatch_process(pq, bq, queue);
3193 
3194 	/*
3195 	 * The page may have been logically dequeued before we acquired the
3196 	 * page queue lock.  In this case, the page lock prevents the page
3197 	 * from being logically enqueued elsewhere.
3198 	 */
3199 	if (__predict_true(m->queue == queue))
3200 		vm_pqbatch_process_page(pq, m);
3201 	else {
3202 		KASSERT(m->queue == PQ_NONE,
3203 		    ("invalid queue transition for page %p", m));
3204 		KASSERT((m->aflags & PGA_ENQUEUED) == 0,
3205 		    ("page %p is enqueued with invalid queue index", m));
3206 		vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK);
3207 	}
3208 	vm_pagequeue_unlock(pq);
3209 	critical_exit();
3210 }
3211 
3212 /*
3213  *	vm_page_drain_pqbatch:		[ internal use only ]
3214  *
3215  *	Force all per-CPU page queue batch queues to be drained.  This is
3216  *	intended for use in severe memory shortages, to ensure that pages
3217  *	do not remain stuck in the batch queues.
3218  */
3219 void
3220 vm_page_drain_pqbatch(void)
3221 {
3222 	struct thread *td;
3223 	struct vm_domain *vmd;
3224 	struct vm_pagequeue *pq;
3225 	int cpu, domain, queue;
3226 
3227 	td = curthread;
3228 	CPU_FOREACH(cpu) {
3229 		thread_lock(td);
3230 		sched_bind(td, cpu);
3231 		thread_unlock(td);
3232 
3233 		for (domain = 0; domain < vm_ndomains; domain++) {
3234 			vmd = VM_DOMAIN(domain);
3235 			for (queue = 0; queue < PQ_COUNT; queue++) {
3236 				pq = &vmd->vmd_pagequeues[queue];
3237 				vm_pagequeue_lock(pq);
3238 				critical_enter();
3239 				vm_pqbatch_process(pq,
3240 				    DPCPU_PTR(pqbatch[domain][queue]), queue);
3241 				critical_exit();
3242 				vm_pagequeue_unlock(pq);
3243 			}
3244 		}
3245 	}
3246 	thread_lock(td);
3247 	sched_unbind(td);
3248 	thread_unlock(td);
3249 }
3250 
3251 /*
3252  * Complete the logical removal of a page from a page queue.  We must be
3253  * careful to synchronize with the page daemon, which may be concurrently
3254  * examining the page with only the page lock held.  The page must not be
3255  * in a state where it appears to be logically enqueued.
3256  */
3257 static void
3258 vm_page_dequeue_complete(vm_page_t m)
3259 {
3260 
3261 	m->queue = PQ_NONE;
3262 	atomic_thread_fence_rel();
3263 	vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK);
3264 }
3265 
3266 /*
3267  *	vm_page_dequeue_deferred:	[ internal use only ]
3268  *
3269  *	Request removal of the given page from its current page
3270  *	queue.  Physical removal from the queue may be deferred
3271  *	indefinitely.
3272  *
3273  *	The page must be locked.
3274  */
3275 void
3276 vm_page_dequeue_deferred(vm_page_t m)
3277 {
3278 	int queue;
3279 
3280 	vm_page_assert_locked(m);
3281 
3282 	queue = atomic_load_8(&m->queue);
3283 	if (queue == PQ_NONE) {
3284 		KASSERT((m->aflags & PGA_QUEUE_STATE_MASK) == 0,
3285 		    ("page %p has queue state", m));
3286 		return;
3287 	}
3288 	if ((m->aflags & PGA_DEQUEUE) == 0)
3289 		vm_page_aflag_set(m, PGA_DEQUEUE);
3290 	vm_pqbatch_submit_page(m, queue);
3291 }
3292 
3293 /*
3294  *	vm_page_dequeue:
3295  *
3296  *	Remove the page from whichever page queue it's in, if any.
3297  *	The page must either be locked or unallocated.  This constraint
3298  *	ensures that the queue state of the page will remain consistent
3299  *	after this function returns.
3300  */
3301 void
3302 vm_page_dequeue(vm_page_t m)
3303 {
3304 	struct mtx *lock, *lock1;
3305 	struct vm_pagequeue *pq;
3306 	uint8_t aflags;
3307 
3308 	KASSERT(mtx_owned(vm_page_lockptr(m)) || m->order == VM_NFREEORDER,
3309 	    ("page %p is allocated and unlocked", m));
3310 
3311 	for (;;) {
3312 		lock = vm_page_pagequeue_lockptr(m);
3313 		if (lock == NULL) {
3314 			/*
3315 			 * A thread may be concurrently executing
3316 			 * vm_page_dequeue_complete().  Ensure that all queue
3317 			 * state is cleared before we return.
3318 			 */
3319 			aflags = atomic_load_8(&m->aflags);
3320 			if ((aflags & PGA_QUEUE_STATE_MASK) == 0)
3321 				return;
3322 			KASSERT((aflags & PGA_DEQUEUE) != 0,
3323 			    ("page %p has unexpected queue state flags %#x",
3324 			    m, aflags));
3325 
3326 			/*
3327 			 * Busy wait until the thread updating queue state is
3328 			 * finished.  Such a thread must be executing in a
3329 			 * critical section.
3330 			 */
3331 			cpu_spinwait();
3332 			continue;
3333 		}
3334 		mtx_lock(lock);
3335 		if ((lock1 = vm_page_pagequeue_lockptr(m)) == lock)
3336 			break;
3337 		mtx_unlock(lock);
3338 		lock = lock1;
3339 	}
3340 	KASSERT(lock == vm_page_pagequeue_lockptr(m),
3341 	    ("%s: page %p migrated directly between queues", __func__, m));
3342 	KASSERT((m->aflags & PGA_DEQUEUE) != 0 ||
3343 	    mtx_owned(vm_page_lockptr(m)),
3344 	    ("%s: queued unlocked page %p", __func__, m));
3345 
3346 	if ((m->aflags & PGA_ENQUEUED) != 0) {
3347 		pq = vm_page_pagequeue(m);
3348 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3349 		vm_pagequeue_cnt_dec(pq);
3350 	}
3351 	vm_page_dequeue_complete(m);
3352 	mtx_unlock(lock);
3353 }
3354 
3355 /*
3356  * Schedule the given page for insertion into the specified page queue.
3357  * Physical insertion of the page may be deferred indefinitely.
3358  */
3359 static void
3360 vm_page_enqueue(vm_page_t m, uint8_t queue)
3361 {
3362 
3363 	vm_page_assert_locked(m);
3364 	KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
3365 	    ("%s: page %p is already enqueued", __func__, m));
3366 
3367 	m->queue = queue;
3368 	if ((m->aflags & PGA_REQUEUE) == 0)
3369 		vm_page_aflag_set(m, PGA_REQUEUE);
3370 	vm_pqbatch_submit_page(m, queue);
3371 }
3372 
3373 /*
3374  *	vm_page_requeue:		[ internal use only ]
3375  *
3376  *	Schedule a requeue of the given page.
3377  *
3378  *	The page must be locked.
3379  */
3380 void
3381 vm_page_requeue(vm_page_t m)
3382 {
3383 
3384 	vm_page_assert_locked(m);
3385 	KASSERT(m->queue != PQ_NONE,
3386 	    ("%s: page %p is not logically enqueued", __func__, m));
3387 
3388 	if ((m->aflags & PGA_REQUEUE) == 0)
3389 		vm_page_aflag_set(m, PGA_REQUEUE);
3390 	vm_pqbatch_submit_page(m, atomic_load_8(&m->queue));
3391 }
3392 
3393 /*
3394  *	vm_page_activate:
3395  *
3396  *	Put the specified page on the active list (if appropriate).
3397  *	Ensure that act_count is at least ACT_INIT but do not otherwise
3398  *	mess with it.
3399  *
3400  *	The page must be locked.
3401  */
3402 void
3403 vm_page_activate(vm_page_t m)
3404 {
3405 
3406 	vm_page_assert_locked(m);
3407 
3408 	if (m->wire_count > 0 || (m->oflags & VPO_UNMANAGED) != 0)
3409 		return;
3410 	if (vm_page_queue(m) == PQ_ACTIVE) {
3411 		if (m->act_count < ACT_INIT)
3412 			m->act_count = ACT_INIT;
3413 		return;
3414 	}
3415 
3416 	vm_page_dequeue(m);
3417 	if (m->act_count < ACT_INIT)
3418 		m->act_count = ACT_INIT;
3419 	vm_page_enqueue(m, PQ_ACTIVE);
3420 }
3421 
3422 /*
3423  *	vm_page_free_prep:
3424  *
3425  *	Prepares the given page to be put on the free list,
3426  *	disassociating it from any VM object. The caller may return
3427  *	the page to the free list only if this function returns true.
3428  *
3429  *	The object must be locked.  The page must be locked if it is
3430  *	managed.
3431  */
3432 bool
3433 vm_page_free_prep(vm_page_t m)
3434 {
3435 
3436 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3437 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3438 		uint64_t *p;
3439 		int i;
3440 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3441 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3442 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3443 			    m, i, (uintmax_t)*p));
3444 	}
3445 #endif
3446 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3447 		vm_page_lock_assert(m, MA_OWNED);
3448 		KASSERT(!pmap_page_is_mapped(m),
3449 		    ("vm_page_free_prep: freeing mapped page %p", m));
3450 	} else
3451 		KASSERT(m->queue == PQ_NONE,
3452 		    ("vm_page_free_prep: unmanaged page %p is queued", m));
3453 	VM_CNT_INC(v_tfree);
3454 
3455 	if (vm_page_sbusied(m))
3456 		panic("vm_page_free_prep: freeing busy page %p", m);
3457 
3458 	vm_page_remove(m);
3459 
3460 	/*
3461 	 * If fictitious remove object association and
3462 	 * return.
3463 	 */
3464 	if ((m->flags & PG_FICTITIOUS) != 0) {
3465 		KASSERT(m->wire_count == 1,
3466 		    ("fictitious page %p is not wired", m));
3467 		KASSERT(m->queue == PQ_NONE,
3468 		    ("fictitious page %p is queued", m));
3469 		return (false);
3470 	}
3471 
3472 	/*
3473 	 * Pages need not be dequeued before they are returned to the physical
3474 	 * memory allocator, but they must at least be marked for a deferred
3475 	 * dequeue.
3476 	 */
3477 	if ((m->oflags & VPO_UNMANAGED) == 0)
3478 		vm_page_dequeue_deferred(m);
3479 
3480 	m->valid = 0;
3481 	vm_page_undirty(m);
3482 
3483 	if (m->wire_count != 0)
3484 		panic("vm_page_free_prep: freeing wired page %p", m);
3485 	if (m->hold_count != 0) {
3486 		m->flags &= ~PG_ZERO;
3487 		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
3488 		    ("vm_page_free_prep: freeing PG_UNHOLDFREE page %p", m));
3489 		m->flags |= PG_UNHOLDFREE;
3490 		return (false);
3491 	}
3492 
3493 	/*
3494 	 * Restore the default memory attribute to the page.
3495 	 */
3496 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3497 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3498 
3499 #if VM_NRESERVLEVEL > 0
3500 	if (vm_reserv_free_page(m))
3501 		return (false);
3502 #endif
3503 
3504 	return (true);
3505 }
3506 
3507 /*
3508  *	vm_page_free_toq:
3509  *
3510  *	Returns the given page to the free list, disassociating it
3511  *	from any VM object.
3512  *
3513  *	The object must be locked.  The page must be locked if it is
3514  *	managed.
3515  */
3516 void
3517 vm_page_free_toq(vm_page_t m)
3518 {
3519 	struct vm_domain *vmd;
3520 
3521 	if (!vm_page_free_prep(m))
3522 		return;
3523 
3524 	vmd = vm_pagequeue_domain(m);
3525 	if (m->pool == VM_FREEPOOL_DEFAULT && vmd->vmd_pgcache != NULL) {
3526 		uma_zfree(vmd->vmd_pgcache, m);
3527 		return;
3528 	}
3529 	vm_domain_free_lock(vmd);
3530 	vm_phys_free_pages(m, 0);
3531 	vm_domain_free_unlock(vmd);
3532 	vm_domain_freecnt_inc(vmd, 1);
3533 }
3534 
3535 /*
3536  *	vm_page_free_pages_toq:
3537  *
3538  *	Returns a list of pages to the free list, disassociating it
3539  *	from any VM object.  In other words, this is equivalent to
3540  *	calling vm_page_free_toq() for each page of a list of VM objects.
3541  *
3542  *	The objects must be locked.  The pages must be locked if it is
3543  *	managed.
3544  */
3545 void
3546 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3547 {
3548 	vm_page_t m;
3549 	int count;
3550 
3551 	if (SLIST_EMPTY(free))
3552 		return;
3553 
3554 	count = 0;
3555 	while ((m = SLIST_FIRST(free)) != NULL) {
3556 		count++;
3557 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
3558 		vm_page_free_toq(m);
3559 	}
3560 
3561 	if (update_wire_count)
3562 		vm_wire_sub(count);
3563 }
3564 
3565 /*
3566  *	vm_page_wire:
3567  *
3568  * Mark this page as wired down.  If the page is fictitious, then
3569  * its wire count must remain one.
3570  *
3571  * The page must be locked.
3572  */
3573 void
3574 vm_page_wire(vm_page_t m)
3575 {
3576 
3577 	vm_page_assert_locked(m);
3578 	if ((m->flags & PG_FICTITIOUS) != 0) {
3579 		KASSERT(m->wire_count == 1,
3580 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
3581 		    m));
3582 		return;
3583 	}
3584 	if (m->wire_count == 0) {
3585 		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
3586 		    m->queue == PQ_NONE,
3587 		    ("vm_page_wire: unmanaged page %p is queued", m));
3588 		vm_wire_add(1);
3589 	}
3590 	m->wire_count++;
3591 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
3592 }
3593 
3594 /*
3595  * vm_page_unwire:
3596  *
3597  * Release one wiring of the specified page, potentially allowing it to be
3598  * paged out.  Returns TRUE if the number of wirings transitions to zero and
3599  * FALSE otherwise.
3600  *
3601  * Only managed pages belonging to an object can be paged out.  If the number
3602  * of wirings transitions to zero and the page is eligible for page out, then
3603  * the page is added to the specified paging queue (unless PQ_NONE is
3604  * specified, in which case the page is dequeued if it belongs to a paging
3605  * queue).
3606  *
3607  * If a page is fictitious, then its wire count must always be one.
3608  *
3609  * A managed page must be locked.
3610  */
3611 bool
3612 vm_page_unwire(vm_page_t m, uint8_t queue)
3613 {
3614 	bool unwired;
3615 
3616 	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
3617 	    ("vm_page_unwire: invalid queue %u request for page %p",
3618 	    queue, m));
3619 	if ((m->oflags & VPO_UNMANAGED) == 0)
3620 		vm_page_assert_locked(m);
3621 
3622 	unwired = vm_page_unwire_noq(m);
3623 	if (!unwired || (m->oflags & VPO_UNMANAGED) != 0 || m->object == NULL)
3624 		return (unwired);
3625 
3626 	if (vm_page_queue(m) == queue) {
3627 		if (queue == PQ_ACTIVE)
3628 			vm_page_reference(m);
3629 		else if (queue != PQ_NONE)
3630 			vm_page_requeue(m);
3631 	} else {
3632 		vm_page_dequeue(m);
3633 		if (queue != PQ_NONE) {
3634 			vm_page_enqueue(m, queue);
3635 			if (queue == PQ_ACTIVE)
3636 				/* Initialize act_count. */
3637 				vm_page_activate(m);
3638 		}
3639 	}
3640 	return (unwired);
3641 }
3642 
3643 /*
3644  *
3645  * vm_page_unwire_noq:
3646  *
3647  * Unwire a page without (re-)inserting it into a page queue.  It is up
3648  * to the caller to enqueue, requeue, or free the page as appropriate.
3649  * In most cases, vm_page_unwire() should be used instead.
3650  */
3651 bool
3652 vm_page_unwire_noq(vm_page_t m)
3653 {
3654 
3655 	if ((m->oflags & VPO_UNMANAGED) == 0)
3656 		vm_page_assert_locked(m);
3657 	if ((m->flags & PG_FICTITIOUS) != 0) {
3658 		KASSERT(m->wire_count == 1,
3659 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
3660 		return (false);
3661 	}
3662 	if (m->wire_count == 0)
3663 		panic("vm_page_unwire: page %p's wire count is zero", m);
3664 	m->wire_count--;
3665 	if (m->wire_count == 0) {
3666 		vm_wire_sub(1);
3667 		return (true);
3668 	} else
3669 		return (false);
3670 }
3671 
3672 /*
3673  * Move the specified page to the tail of the inactive queue, or requeue
3674  * the page if it is already in the inactive queue.
3675  *
3676  * The page must be locked.
3677  */
3678 void
3679 vm_page_deactivate(vm_page_t m)
3680 {
3681 
3682 	vm_page_assert_locked(m);
3683 
3684 	if (m->wire_count > 0 || (m->oflags & VPO_UNMANAGED) != 0)
3685 		return;
3686 
3687 	if (!vm_page_inactive(m)) {
3688 		vm_page_dequeue(m);
3689 		vm_page_enqueue(m, PQ_INACTIVE);
3690 	} else
3691 		vm_page_requeue(m);
3692 }
3693 
3694 /*
3695  * Move the specified page close to the head of the inactive queue,
3696  * bypassing LRU.  A marker page is used to maintain FIFO ordering.
3697  * As with regular enqueues, we use a per-CPU batch queue to reduce
3698  * contention on the page queue lock.
3699  *
3700  * The page must be locked.
3701  */
3702 void
3703 vm_page_deactivate_noreuse(vm_page_t m)
3704 {
3705 
3706 	vm_page_assert_locked(m);
3707 
3708 	if (m->wire_count > 0 || (m->oflags & VPO_UNMANAGED) != 0)
3709 		return;
3710 
3711 	if (!vm_page_inactive(m)) {
3712 		vm_page_dequeue(m);
3713 		m->queue = PQ_INACTIVE;
3714 	}
3715 	if ((m->aflags & PGA_REQUEUE_HEAD) == 0)
3716 		vm_page_aflag_set(m, PGA_REQUEUE_HEAD);
3717 	vm_pqbatch_submit_page(m, PQ_INACTIVE);
3718 }
3719 
3720 /*
3721  * vm_page_launder
3722  *
3723  * 	Put a page in the laundry, or requeue it if it is already there.
3724  */
3725 void
3726 vm_page_launder(vm_page_t m)
3727 {
3728 
3729 	vm_page_assert_locked(m);
3730 	if (m->wire_count > 0 || (m->oflags & VPO_UNMANAGED) != 0)
3731 		return;
3732 
3733 	if (vm_page_in_laundry(m))
3734 		vm_page_requeue(m);
3735 	else {
3736 		vm_page_dequeue(m);
3737 		vm_page_enqueue(m, PQ_LAUNDRY);
3738 	}
3739 }
3740 
3741 /*
3742  * vm_page_unswappable
3743  *
3744  *	Put a page in the PQ_UNSWAPPABLE holding queue.
3745  */
3746 void
3747 vm_page_unswappable(vm_page_t m)
3748 {
3749 
3750 	vm_page_assert_locked(m);
3751 	KASSERT(m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0,
3752 	    ("page %p already unswappable", m));
3753 
3754 	vm_page_dequeue(m);
3755 	vm_page_enqueue(m, PQ_UNSWAPPABLE);
3756 }
3757 
3758 /*
3759  * Attempt to free the page.  If it cannot be freed, do nothing.  Returns true
3760  * if the page is freed and false otherwise.
3761  *
3762  * The page must be managed.  The page and its containing object must be
3763  * locked.
3764  */
3765 bool
3766 vm_page_try_to_free(vm_page_t m)
3767 {
3768 
3769 	vm_page_assert_locked(m);
3770 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3771 	KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("page %p is unmanaged", m));
3772 	if (m->dirty != 0 || vm_page_held(m) || vm_page_busied(m))
3773 		return (false);
3774 	if (m->object->ref_count != 0) {
3775 		pmap_remove_all(m);
3776 		if (m->dirty != 0)
3777 			return (false);
3778 	}
3779 	vm_page_free(m);
3780 	return (true);
3781 }
3782 
3783 /*
3784  * vm_page_advise
3785  *
3786  * 	Apply the specified advice to the given page.
3787  *
3788  *	The object and page must be locked.
3789  */
3790 void
3791 vm_page_advise(vm_page_t m, int advice)
3792 {
3793 
3794 	vm_page_assert_locked(m);
3795 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3796 	if (advice == MADV_FREE)
3797 		/*
3798 		 * Mark the page clean.  This will allow the page to be freed
3799 		 * without first paging it out.  MADV_FREE pages are often
3800 		 * quickly reused by malloc(3), so we do not do anything that
3801 		 * would result in a page fault on a later access.
3802 		 */
3803 		vm_page_undirty(m);
3804 	else if (advice != MADV_DONTNEED) {
3805 		if (advice == MADV_WILLNEED)
3806 			vm_page_activate(m);
3807 		return;
3808 	}
3809 
3810 	/*
3811 	 * Clear any references to the page.  Otherwise, the page daemon will
3812 	 * immediately reactivate the page.
3813 	 */
3814 	vm_page_aflag_clear(m, PGA_REFERENCED);
3815 
3816 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
3817 		vm_page_dirty(m);
3818 
3819 	/*
3820 	 * Place clean pages near the head of the inactive queue rather than
3821 	 * the tail, thus defeating the queue's LRU operation and ensuring that
3822 	 * the page will be reused quickly.  Dirty pages not already in the
3823 	 * laundry are moved there.
3824 	 */
3825 	if (m->dirty == 0)
3826 		vm_page_deactivate_noreuse(m);
3827 	else if (!vm_page_in_laundry(m))
3828 		vm_page_launder(m);
3829 }
3830 
3831 /*
3832  * Grab a page, waiting until we are waken up due to the page
3833  * changing state.  We keep on waiting, if the page continues
3834  * to be in the object.  If the page doesn't exist, first allocate it
3835  * and then conditionally zero it.
3836  *
3837  * This routine may sleep.
3838  *
3839  * The object must be locked on entry.  The lock will, however, be released
3840  * and reacquired if the routine sleeps.
3841  */
3842 vm_page_t
3843 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3844 {
3845 	vm_page_t m;
3846 	int sleep;
3847 	int pflags;
3848 
3849 	VM_OBJECT_ASSERT_WLOCKED(object);
3850 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3851 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3852 	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
3853 	pflags = allocflags &
3854 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
3855 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
3856 		pflags |= VM_ALLOC_WAITFAIL;
3857 retrylookup:
3858 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
3859 		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3860 		    vm_page_xbusied(m) : vm_page_busied(m);
3861 		if (sleep) {
3862 			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3863 				return (NULL);
3864 			/*
3865 			 * Reference the page before unlocking and
3866 			 * sleeping so that the page daemon is less
3867 			 * likely to reclaim it.
3868 			 */
3869 			vm_page_aflag_set(m, PGA_REFERENCED);
3870 			vm_page_lock(m);
3871 			VM_OBJECT_WUNLOCK(object);
3872 			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
3873 			    VM_ALLOC_IGN_SBUSY) != 0);
3874 			VM_OBJECT_WLOCK(object);
3875 			goto retrylookup;
3876 		} else {
3877 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3878 				vm_page_lock(m);
3879 				vm_page_wire(m);
3880 				vm_page_unlock(m);
3881 			}
3882 			if ((allocflags &
3883 			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
3884 				vm_page_xbusy(m);
3885 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3886 				vm_page_sbusy(m);
3887 			return (m);
3888 		}
3889 	}
3890 	m = vm_page_alloc(object, pindex, pflags);
3891 	if (m == NULL) {
3892 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3893 			return (NULL);
3894 		goto retrylookup;
3895 	}
3896 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
3897 		pmap_zero_page(m);
3898 	return (m);
3899 }
3900 
3901 /*
3902  * Return the specified range of pages from the given object.  For each
3903  * page offset within the range, if a page already exists within the object
3904  * at that offset and it is busy, then wait for it to change state.  If,
3905  * instead, the page doesn't exist, then allocate it.
3906  *
3907  * The caller must always specify an allocation class.
3908  *
3909  * allocation classes:
3910  *	VM_ALLOC_NORMAL		normal process request
3911  *	VM_ALLOC_SYSTEM		system *really* needs the pages
3912  *
3913  * The caller must always specify that the pages are to be busied and/or
3914  * wired.
3915  *
3916  * optional allocation flags:
3917  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
3918  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
3919  *	VM_ALLOC_NOWAIT		do not sleep
3920  *	VM_ALLOC_SBUSY		set page to sbusy state
3921  *	VM_ALLOC_WIRED		wire the pages
3922  *	VM_ALLOC_ZERO		zero and validate any invalid pages
3923  *
3924  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
3925  * may return a partial prefix of the requested range.
3926  */
3927 int
3928 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
3929     vm_page_t *ma, int count)
3930 {
3931 	vm_page_t m, mpred;
3932 	int pflags;
3933 	int i;
3934 	bool sleep;
3935 
3936 	VM_OBJECT_ASSERT_WLOCKED(object);
3937 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
3938 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
3939 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
3940 	    (allocflags & VM_ALLOC_WIRED) != 0,
3941 	    ("vm_page_grab_pages: the pages must be busied or wired"));
3942 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3943 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3944 	    ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch"));
3945 	if (count == 0)
3946 		return (0);
3947 	pflags = allocflags & ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK |
3948 	    VM_ALLOC_WAITFAIL | VM_ALLOC_IGN_SBUSY);
3949 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
3950 		pflags |= VM_ALLOC_WAITFAIL;
3951 	i = 0;
3952 retrylookup:
3953 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
3954 	if (m == NULL || m->pindex != pindex + i) {
3955 		mpred = m;
3956 		m = NULL;
3957 	} else
3958 		mpred = TAILQ_PREV(m, pglist, listq);
3959 	for (; i < count; i++) {
3960 		if (m != NULL) {
3961 			sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3962 			    vm_page_xbusied(m) : vm_page_busied(m);
3963 			if (sleep) {
3964 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3965 					break;
3966 				/*
3967 				 * Reference the page before unlocking and
3968 				 * sleeping so that the page daemon is less
3969 				 * likely to reclaim it.
3970 				 */
3971 				vm_page_aflag_set(m, PGA_REFERENCED);
3972 				vm_page_lock(m);
3973 				VM_OBJECT_WUNLOCK(object);
3974 				vm_page_busy_sleep(m, "grbmaw", (allocflags &
3975 				    VM_ALLOC_IGN_SBUSY) != 0);
3976 				VM_OBJECT_WLOCK(object);
3977 				goto retrylookup;
3978 			}
3979 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3980 				vm_page_lock(m);
3981 				vm_page_wire(m);
3982 				vm_page_unlock(m);
3983 			}
3984 			if ((allocflags & (VM_ALLOC_NOBUSY |
3985 			    VM_ALLOC_SBUSY)) == 0)
3986 				vm_page_xbusy(m);
3987 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3988 				vm_page_sbusy(m);
3989 		} else {
3990 			m = vm_page_alloc_after(object, pindex + i,
3991 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
3992 			if (m == NULL) {
3993 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3994 					break;
3995 				goto retrylookup;
3996 			}
3997 		}
3998 		if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) {
3999 			if ((m->flags & PG_ZERO) == 0)
4000 				pmap_zero_page(m);
4001 			m->valid = VM_PAGE_BITS_ALL;
4002 		}
4003 		ma[i] = mpred = m;
4004 		m = vm_page_next(m);
4005 	}
4006 	return (i);
4007 }
4008 
4009 /*
4010  * Mapping function for valid or dirty bits in a page.
4011  *
4012  * Inputs are required to range within a page.
4013  */
4014 vm_page_bits_t
4015 vm_page_bits(int base, int size)
4016 {
4017 	int first_bit;
4018 	int last_bit;
4019 
4020 	KASSERT(
4021 	    base + size <= PAGE_SIZE,
4022 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
4023 	);
4024 
4025 	if (size == 0)		/* handle degenerate case */
4026 		return (0);
4027 
4028 	first_bit = base >> DEV_BSHIFT;
4029 	last_bit = (base + size - 1) >> DEV_BSHIFT;
4030 
4031 	return (((vm_page_bits_t)2 << last_bit) -
4032 	    ((vm_page_bits_t)1 << first_bit));
4033 }
4034 
4035 /*
4036  *	vm_page_set_valid_range:
4037  *
4038  *	Sets portions of a page valid.  The arguments are expected
4039  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4040  *	of any partial chunks touched by the range.  The invalid portion of
4041  *	such chunks will be zeroed.
4042  *
4043  *	(base + size) must be less then or equal to PAGE_SIZE.
4044  */
4045 void
4046 vm_page_set_valid_range(vm_page_t m, int base, int size)
4047 {
4048 	int endoff, frag;
4049 
4050 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4051 	if (size == 0)	/* handle degenerate case */
4052 		return;
4053 
4054 	/*
4055 	 * If the base is not DEV_BSIZE aligned and the valid
4056 	 * bit is clear, we have to zero out a portion of the
4057 	 * first block.
4058 	 */
4059 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4060 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4061 		pmap_zero_page_area(m, frag, base - frag);
4062 
4063 	/*
4064 	 * If the ending offset is not DEV_BSIZE aligned and the
4065 	 * valid bit is clear, we have to zero out a portion of
4066 	 * the last block.
4067 	 */
4068 	endoff = base + size;
4069 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4070 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
4071 		pmap_zero_page_area(m, endoff,
4072 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4073 
4074 	/*
4075 	 * Assert that no previously invalid block that is now being validated
4076 	 * is already dirty.
4077 	 */
4078 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
4079 	    ("vm_page_set_valid_range: page %p is dirty", m));
4080 
4081 	/*
4082 	 * Set valid bits inclusive of any overlap.
4083 	 */
4084 	m->valid |= vm_page_bits(base, size);
4085 }
4086 
4087 /*
4088  * Clear the given bits from the specified page's dirty field.
4089  */
4090 static __inline void
4091 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
4092 {
4093 	uintptr_t addr;
4094 #if PAGE_SIZE < 16384
4095 	int shift;
4096 #endif
4097 
4098 	/*
4099 	 * If the object is locked and the page is neither exclusive busy nor
4100 	 * write mapped, then the page's dirty field cannot possibly be
4101 	 * set by a concurrent pmap operation.
4102 	 */
4103 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4104 	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
4105 		m->dirty &= ~pagebits;
4106 	else {
4107 		/*
4108 		 * The pmap layer can call vm_page_dirty() without
4109 		 * holding a distinguished lock.  The combination of
4110 		 * the object's lock and an atomic operation suffice
4111 		 * to guarantee consistency of the page dirty field.
4112 		 *
4113 		 * For PAGE_SIZE == 32768 case, compiler already
4114 		 * properly aligns the dirty field, so no forcible
4115 		 * alignment is needed. Only require existence of
4116 		 * atomic_clear_64 when page size is 32768.
4117 		 */
4118 		addr = (uintptr_t)&m->dirty;
4119 #if PAGE_SIZE == 32768
4120 		atomic_clear_64((uint64_t *)addr, pagebits);
4121 #elif PAGE_SIZE == 16384
4122 		atomic_clear_32((uint32_t *)addr, pagebits);
4123 #else		/* PAGE_SIZE <= 8192 */
4124 		/*
4125 		 * Use a trick to perform a 32-bit atomic on the
4126 		 * containing aligned word, to not depend on the existence
4127 		 * of atomic_clear_{8, 16}.
4128 		 */
4129 		shift = addr & (sizeof(uint32_t) - 1);
4130 #if BYTE_ORDER == BIG_ENDIAN
4131 		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
4132 #else
4133 		shift *= NBBY;
4134 #endif
4135 		addr &= ~(sizeof(uint32_t) - 1);
4136 		atomic_clear_32((uint32_t *)addr, pagebits << shift);
4137 #endif		/* PAGE_SIZE */
4138 	}
4139 }
4140 
4141 /*
4142  *	vm_page_set_validclean:
4143  *
4144  *	Sets portions of a page valid and clean.  The arguments are expected
4145  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4146  *	of any partial chunks touched by the range.  The invalid portion of
4147  *	such chunks will be zero'd.
4148  *
4149  *	(base + size) must be less then or equal to PAGE_SIZE.
4150  */
4151 void
4152 vm_page_set_validclean(vm_page_t m, int base, int size)
4153 {
4154 	vm_page_bits_t oldvalid, pagebits;
4155 	int endoff, frag;
4156 
4157 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4158 	if (size == 0)	/* handle degenerate case */
4159 		return;
4160 
4161 	/*
4162 	 * If the base is not DEV_BSIZE aligned and the valid
4163 	 * bit is clear, we have to zero out a portion of the
4164 	 * first block.
4165 	 */
4166 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4167 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
4168 		pmap_zero_page_area(m, frag, base - frag);
4169 
4170 	/*
4171 	 * If the ending offset is not DEV_BSIZE aligned and the
4172 	 * valid bit is clear, we have to zero out a portion of
4173 	 * the last block.
4174 	 */
4175 	endoff = base + size;
4176 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4177 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
4178 		pmap_zero_page_area(m, endoff,
4179 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4180 
4181 	/*
4182 	 * Set valid, clear dirty bits.  If validating the entire
4183 	 * page we can safely clear the pmap modify bit.  We also
4184 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
4185 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
4186 	 * be set again.
4187 	 *
4188 	 * We set valid bits inclusive of any overlap, but we can only
4189 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
4190 	 * the range.
4191 	 */
4192 	oldvalid = m->valid;
4193 	pagebits = vm_page_bits(base, size);
4194 	m->valid |= pagebits;
4195 #if 0	/* NOT YET */
4196 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
4197 		frag = DEV_BSIZE - frag;
4198 		base += frag;
4199 		size -= frag;
4200 		if (size < 0)
4201 			size = 0;
4202 	}
4203 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
4204 #endif
4205 	if (base == 0 && size == PAGE_SIZE) {
4206 		/*
4207 		 * The page can only be modified within the pmap if it is
4208 		 * mapped, and it can only be mapped if it was previously
4209 		 * fully valid.
4210 		 */
4211 		if (oldvalid == VM_PAGE_BITS_ALL)
4212 			/*
4213 			 * Perform the pmap_clear_modify() first.  Otherwise,
4214 			 * a concurrent pmap operation, such as
4215 			 * pmap_protect(), could clear a modification in the
4216 			 * pmap and set the dirty field on the page before
4217 			 * pmap_clear_modify() had begun and after the dirty
4218 			 * field was cleared here.
4219 			 */
4220 			pmap_clear_modify(m);
4221 		m->dirty = 0;
4222 		m->oflags &= ~VPO_NOSYNC;
4223 	} else if (oldvalid != VM_PAGE_BITS_ALL)
4224 		m->dirty &= ~pagebits;
4225 	else
4226 		vm_page_clear_dirty_mask(m, pagebits);
4227 }
4228 
4229 void
4230 vm_page_clear_dirty(vm_page_t m, int base, int size)
4231 {
4232 
4233 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
4234 }
4235 
4236 /*
4237  *	vm_page_set_invalid:
4238  *
4239  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
4240  *	valid and dirty bits for the effected areas are cleared.
4241  */
4242 void
4243 vm_page_set_invalid(vm_page_t m, int base, int size)
4244 {
4245 	vm_page_bits_t bits;
4246 	vm_object_t object;
4247 
4248 	object = m->object;
4249 	VM_OBJECT_ASSERT_WLOCKED(object);
4250 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
4251 	    size >= object->un_pager.vnp.vnp_size)
4252 		bits = VM_PAGE_BITS_ALL;
4253 	else
4254 		bits = vm_page_bits(base, size);
4255 	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
4256 	    bits != 0)
4257 		pmap_remove_all(m);
4258 	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
4259 	    !pmap_page_is_mapped(m),
4260 	    ("vm_page_set_invalid: page %p is mapped", m));
4261 	m->valid &= ~bits;
4262 	m->dirty &= ~bits;
4263 }
4264 
4265 /*
4266  * vm_page_zero_invalid()
4267  *
4268  *	The kernel assumes that the invalid portions of a page contain
4269  *	garbage, but such pages can be mapped into memory by user code.
4270  *	When this occurs, we must zero out the non-valid portions of the
4271  *	page so user code sees what it expects.
4272  *
4273  *	Pages are most often semi-valid when the end of a file is mapped
4274  *	into memory and the file's size is not page aligned.
4275  */
4276 void
4277 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
4278 {
4279 	int b;
4280 	int i;
4281 
4282 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4283 	/*
4284 	 * Scan the valid bits looking for invalid sections that
4285 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
4286 	 * valid bit may be set ) have already been zeroed by
4287 	 * vm_page_set_validclean().
4288 	 */
4289 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
4290 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
4291 		    (m->valid & ((vm_page_bits_t)1 << i))) {
4292 			if (i > b) {
4293 				pmap_zero_page_area(m,
4294 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
4295 			}
4296 			b = i + 1;
4297 		}
4298 	}
4299 
4300 	/*
4301 	 * setvalid is TRUE when we can safely set the zero'd areas
4302 	 * as being valid.  We can do this if there are no cache consistancy
4303 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
4304 	 */
4305 	if (setvalid)
4306 		m->valid = VM_PAGE_BITS_ALL;
4307 }
4308 
4309 /*
4310  *	vm_page_is_valid:
4311  *
4312  *	Is (partial) page valid?  Note that the case where size == 0
4313  *	will return FALSE in the degenerate case where the page is
4314  *	entirely invalid, and TRUE otherwise.
4315  */
4316 int
4317 vm_page_is_valid(vm_page_t m, int base, int size)
4318 {
4319 	vm_page_bits_t bits;
4320 
4321 	VM_OBJECT_ASSERT_LOCKED(m->object);
4322 	bits = vm_page_bits(base, size);
4323 	return (m->valid != 0 && (m->valid & bits) == bits);
4324 }
4325 
4326 /*
4327  * Returns true if all of the specified predicates are true for the entire
4328  * (super)page and false otherwise.
4329  */
4330 bool
4331 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
4332 {
4333 	vm_object_t object;
4334 	int i, npages;
4335 
4336 	object = m->object;
4337 	if (skip_m != NULL && skip_m->object != object)
4338 		return (false);
4339 	VM_OBJECT_ASSERT_LOCKED(object);
4340 	npages = atop(pagesizes[m->psind]);
4341 
4342 	/*
4343 	 * The physically contiguous pages that make up a superpage, i.e., a
4344 	 * page with a page size index ("psind") greater than zero, will
4345 	 * occupy adjacent entries in vm_page_array[].
4346 	 */
4347 	for (i = 0; i < npages; i++) {
4348 		/* Always test object consistency, including "skip_m". */
4349 		if (m[i].object != object)
4350 			return (false);
4351 		if (&m[i] == skip_m)
4352 			continue;
4353 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
4354 			return (false);
4355 		if ((flags & PS_ALL_DIRTY) != 0) {
4356 			/*
4357 			 * Calling vm_page_test_dirty() or pmap_is_modified()
4358 			 * might stop this case from spuriously returning
4359 			 * "false".  However, that would require a write lock
4360 			 * on the object containing "m[i]".
4361 			 */
4362 			if (m[i].dirty != VM_PAGE_BITS_ALL)
4363 				return (false);
4364 		}
4365 		if ((flags & PS_ALL_VALID) != 0 &&
4366 		    m[i].valid != VM_PAGE_BITS_ALL)
4367 			return (false);
4368 	}
4369 	return (true);
4370 }
4371 
4372 /*
4373  * Set the page's dirty bits if the page is modified.
4374  */
4375 void
4376 vm_page_test_dirty(vm_page_t m)
4377 {
4378 
4379 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4380 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
4381 		vm_page_dirty(m);
4382 }
4383 
4384 void
4385 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
4386 {
4387 
4388 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
4389 }
4390 
4391 void
4392 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
4393 {
4394 
4395 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
4396 }
4397 
4398 int
4399 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
4400 {
4401 
4402 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
4403 }
4404 
4405 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
4406 void
4407 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
4408 {
4409 
4410 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
4411 }
4412 
4413 void
4414 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
4415 {
4416 
4417 	mtx_assert_(vm_page_lockptr(m), a, file, line);
4418 }
4419 #endif
4420 
4421 #ifdef INVARIANTS
4422 void
4423 vm_page_object_lock_assert(vm_page_t m)
4424 {
4425 
4426 	/*
4427 	 * Certain of the page's fields may only be modified by the
4428 	 * holder of the containing object's lock or the exclusive busy.
4429 	 * holder.  Unfortunately, the holder of the write busy is
4430 	 * not recorded, and thus cannot be checked here.
4431 	 */
4432 	if (m->object != NULL && !vm_page_xbusied(m))
4433 		VM_OBJECT_ASSERT_WLOCKED(m->object);
4434 }
4435 
4436 void
4437 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
4438 {
4439 
4440 	if ((bits & PGA_WRITEABLE) == 0)
4441 		return;
4442 
4443 	/*
4444 	 * The PGA_WRITEABLE flag can only be set if the page is
4445 	 * managed, is exclusively busied or the object is locked.
4446 	 * Currently, this flag is only set by pmap_enter().
4447 	 */
4448 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4449 	    ("PGA_WRITEABLE on unmanaged page"));
4450 	if (!vm_page_xbusied(m))
4451 		VM_OBJECT_ASSERT_LOCKED(m->object);
4452 }
4453 #endif
4454 
4455 #include "opt_ddb.h"
4456 #ifdef DDB
4457 #include <sys/kernel.h>
4458 
4459 #include <ddb/ddb.h>
4460 
4461 DB_SHOW_COMMAND(page, vm_page_print_page_info)
4462 {
4463 
4464 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
4465 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
4466 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
4467 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
4468 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
4469 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
4470 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
4471 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
4472 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
4473 }
4474 
4475 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
4476 {
4477 	int dom;
4478 
4479 	db_printf("pq_free %d\n", vm_free_count());
4480 	for (dom = 0; dom < vm_ndomains; dom++) {
4481 		db_printf(
4482     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
4483 		    dom,
4484 		    vm_dom[dom].vmd_page_count,
4485 		    vm_dom[dom].vmd_free_count,
4486 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
4487 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
4488 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
4489 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
4490 	}
4491 }
4492 
4493 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
4494 {
4495 	vm_page_t m;
4496 	boolean_t phys;
4497 
4498 	if (!have_addr) {
4499 		db_printf("show pginfo addr\n");
4500 		return;
4501 	}
4502 
4503 	phys = strchr(modif, 'p') != NULL;
4504 	if (phys)
4505 		m = PHYS_TO_VM_PAGE(addr);
4506 	else
4507 		m = (vm_page_t)addr;
4508 	db_printf(
4509     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
4510     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
4511 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
4512 	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
4513 	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
4514 }
4515 #endif /* DDB */
4516