xref: /freebsd/sys/vm/vm_page.c (revision 77b7cdf1999ee965ad494fddd184b18f532ac91a)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD$
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 
67 /*
68  *			GENERAL RULES ON VM_PAGE MANIPULATION
69  *
70  *	- a pageq mutex is required when adding or removing a page from a
71  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72  *	  busy state of a page.
73  *
74  *	- a hash chain mutex is required when associating or disassociating
75  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76  *	  regardless of other mutexes or the busy state of a page.
77  *
78  *	- either a hash chain mutex OR a busied page is required in order
79  *	  to modify the page flags.  A hash chain mutex must be obtained in
80  *	  order to busy a page.  A page's flags cannot be modified by a
81  *	  hash chain mutex if the page is marked busy.
82  *
83  *	- The object memq mutex is held when inserting or removing
84  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85  *	  is different from the object's main mutex.
86  *
87  *	Generally speaking, you have to be aware of side effects when running
88  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90  *	vm_page_cache(), vm_page_activate(), and a number of other routines
91  *	will release the hash chain mutex for you.  Intermediate manipulation
92  *	routines such as vm_page_flag_set() expect the hash chain to be held
93  *	on entry and the hash chain will remain held on return.
94  *
95  *	pageq scanning can only occur with the pageq in question locked.
96  *	We have a known bottleneck with the active queue, but the cache
97  *	and free queues are actually arrays already.
98  */
99 
100 /*
101  *	Resident memory management module.
102  */
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/lock.h>
107 #include <sys/malloc.h>
108 #include <sys/mutex.h>
109 #include <sys/proc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 #include <vm/uma_int.h>
123 
124 /*
125  *	Associated with page of user-allocatable memory is a
126  *	page structure.
127  */
128 
129 struct mtx vm_page_queue_mtx;
130 struct mtx vm_page_queue_free_mtx;
131 
132 vm_page_t vm_page_array = 0;
133 int vm_page_array_size = 0;
134 long first_page = 0;
135 int vm_page_zero_count = 0;
136 
137 /*
138  *	vm_set_page_size:
139  *
140  *	Sets the page size, perhaps based upon the memory
141  *	size.  Must be called before any use of page-size
142  *	dependent functions.
143  */
144 void
145 vm_set_page_size(void)
146 {
147 	if (cnt.v_page_size == 0)
148 		cnt.v_page_size = PAGE_SIZE;
149 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
150 		panic("vm_set_page_size: page size not a power of two");
151 }
152 
153 /*
154  *	vm_page_startup:
155  *
156  *	Initializes the resident memory module.
157  *
158  *	Allocates memory for the page cells, and
159  *	for the object/offset-to-page hash table headers.
160  *	Each page cell is initialized and placed on the free list.
161  */
162 vm_offset_t
163 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
164 {
165 	vm_offset_t mapped;
166 	vm_size_t npages;
167 	vm_paddr_t page_range;
168 	vm_paddr_t new_end;
169 	int i;
170 	vm_paddr_t pa;
171 	int nblocks;
172 	vm_paddr_t last_pa;
173 
174 	/* the biggest memory array is the second group of pages */
175 	vm_paddr_t end;
176 	vm_paddr_t biggestsize;
177 	int biggestone;
178 
179 	vm_paddr_t total;
180 	vm_size_t bootpages;
181 
182 	total = 0;
183 	biggestsize = 0;
184 	biggestone = 0;
185 	nblocks = 0;
186 	vaddr = round_page(vaddr);
187 
188 	for (i = 0; phys_avail[i + 1]; i += 2) {
189 		phys_avail[i] = round_page(phys_avail[i]);
190 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
191 	}
192 
193 	for (i = 0; phys_avail[i + 1]; i += 2) {
194 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
195 
196 		if (size > biggestsize) {
197 			biggestone = i;
198 			biggestsize = size;
199 		}
200 		++nblocks;
201 		total += size;
202 	}
203 
204 	end = phys_avail[biggestone+1];
205 
206 	/*
207 	 * Initialize the locks.
208 	 */
209 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
210 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
211 	   MTX_SPIN);
212 
213 	/*
214 	 * Initialize the queue headers for the free queue, the active queue
215 	 * and the inactive queue.
216 	 */
217 	vm_pageq_init();
218 
219 	/*
220 	 * Allocate memory for use when boot strapping the kernel memory
221 	 * allocator.
222 	 */
223 	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
224 	new_end = end - bootpages;
225 	new_end = trunc_page(new_end);
226 	mapped = pmap_map(&vaddr, new_end, end,
227 	    VM_PROT_READ | VM_PROT_WRITE);
228 	bzero((caddr_t) mapped, end - new_end);
229 	uma_startup((caddr_t)mapped);
230 
231 	/*
232 	 * Compute the number of pages of memory that will be available for
233 	 * use (taking into account the overhead of a page structure per
234 	 * page).
235 	 */
236 	first_page = phys_avail[0] / PAGE_SIZE;
237 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
238 	npages = (total - (page_range * sizeof(struct vm_page)) -
239 	    (end - new_end)) / PAGE_SIZE;
240 	end = new_end;
241 
242 	/*
243 	 * Initialize the mem entry structures now, and put them in the free
244 	 * queue.
245 	 */
246 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
247 	mapped = pmap_map(&vaddr, new_end, end,
248 	    VM_PROT_READ | VM_PROT_WRITE);
249 	vm_page_array = (vm_page_t) mapped;
250 	phys_avail[biggestone + 1] = new_end;
251 
252 	/*
253 	 * Clear all of the page structures
254 	 */
255 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
256 	vm_page_array_size = page_range;
257 
258 	/*
259 	 * Construct the free queue(s) in descending order (by physical
260 	 * address) so that the first 16MB of physical memory is allocated
261 	 * last rather than first.  On large-memory machines, this avoids
262 	 * the exhaustion of low physical memory before isa_dmainit has run.
263 	 */
264 	cnt.v_page_count = 0;
265 	cnt.v_free_count = 0;
266 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
267 		pa = phys_avail[i];
268 		last_pa = phys_avail[i + 1];
269 		while (pa < last_pa && npages-- > 0) {
270 			vm_pageq_add_new_page(pa);
271 			pa += PAGE_SIZE;
272 		}
273 	}
274 	return (vaddr);
275 }
276 
277 void
278 vm_page_flag_set(vm_page_t m, unsigned short bits)
279 {
280 
281 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
282 	m->flags |= bits;
283 }
284 
285 void
286 vm_page_flag_clear(vm_page_t m, unsigned short bits)
287 {
288 
289 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
290 	m->flags &= ~bits;
291 }
292 
293 void
294 vm_page_busy(vm_page_t m)
295 {
296 	KASSERT((m->flags & PG_BUSY) == 0,
297 	    ("vm_page_busy: page already busy!!!"));
298 	vm_page_flag_set(m, PG_BUSY);
299 }
300 
301 /*
302  *      vm_page_flash:
303  *
304  *      wakeup anyone waiting for the page.
305  */
306 void
307 vm_page_flash(vm_page_t m)
308 {
309 	if (m->flags & PG_WANTED) {
310 		vm_page_flag_clear(m, PG_WANTED);
311 		wakeup(m);
312 	}
313 }
314 
315 /*
316  *      vm_page_wakeup:
317  *
318  *      clear the PG_BUSY flag and wakeup anyone waiting for the
319  *      page.
320  *
321  */
322 void
323 vm_page_wakeup(vm_page_t m)
324 {
325 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
326 	vm_page_flag_clear(m, PG_BUSY);
327 	vm_page_flash(m);
328 }
329 
330 void
331 vm_page_io_start(vm_page_t m)
332 {
333 
334 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
335 	m->busy++;
336 }
337 
338 void
339 vm_page_io_finish(vm_page_t m)
340 {
341 
342 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
343 	m->busy--;
344 	if (m->busy == 0)
345 		vm_page_flash(m);
346 }
347 
348 /*
349  * Keep page from being freed by the page daemon
350  * much of the same effect as wiring, except much lower
351  * overhead and should be used only for *very* temporary
352  * holding ("wiring").
353  */
354 void
355 vm_page_hold(vm_page_t mem)
356 {
357 
358 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
359         mem->hold_count++;
360 }
361 
362 void
363 vm_page_unhold(vm_page_t mem)
364 {
365 
366 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
367 	--mem->hold_count;
368 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
369 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
370 		vm_page_free_toq(mem);
371 }
372 
373 /*
374  *	vm_page_copy:
375  *
376  *	Copy one page to another
377  */
378 void
379 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
380 {
381 	pmap_copy_page(src_m, dest_m);
382 	dest_m->valid = VM_PAGE_BITS_ALL;
383 }
384 
385 /*
386  *	vm_page_free:
387  *
388  *	Free a page
389  *
390  *	The clearing of PG_ZERO is a temporary safety until the code can be
391  *	reviewed to determine that PG_ZERO is being properly cleared on
392  *	write faults or maps.  PG_ZERO was previously cleared in
393  *	vm_page_alloc().
394  */
395 void
396 vm_page_free(vm_page_t m)
397 {
398 	vm_page_flag_clear(m, PG_ZERO);
399 	vm_page_free_toq(m);
400 	vm_page_zero_idle_wakeup();
401 }
402 
403 /*
404  *	vm_page_free_zero:
405  *
406  *	Free a page to the zerod-pages queue
407  */
408 void
409 vm_page_free_zero(vm_page_t m)
410 {
411 	vm_page_flag_set(m, PG_ZERO);
412 	vm_page_free_toq(m);
413 }
414 
415 /*
416  *	vm_page_sleep_if_busy:
417  *
418  *	Sleep and release the page queues lock if PG_BUSY is set or,
419  *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
420  *	thread slept and the page queues lock was released.
421  *	Otherwise, retains the page queues lock and returns FALSE.
422  */
423 int
424 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
425 {
426 	int is_object_locked;
427 
428 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
429 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
430 		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
431 		/*
432 		 * Remove mtx_owned() after vm_object locking is finished.
433 		 */
434 		if ((is_object_locked = m->object != NULL &&
435 		     mtx_owned(&m->object->mtx)))
436 			mtx_unlock(&m->object->mtx);
437 		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
438 		if (is_object_locked)
439 			mtx_lock(&m->object->mtx);
440 		return (TRUE);
441 	}
442 	return (FALSE);
443 }
444 
445 /*
446  *	vm_page_dirty:
447  *
448  *	make page all dirty
449  */
450 void
451 vm_page_dirty(vm_page_t m)
452 {
453 	KASSERT(m->queue - m->pc != PQ_CACHE,
454 	    ("vm_page_dirty: page in cache!"));
455 	KASSERT(m->queue - m->pc != PQ_FREE,
456 	    ("vm_page_dirty: page is free!"));
457 	m->dirty = VM_PAGE_BITS_ALL;
458 }
459 
460 /*
461  *	vm_page_splay:
462  *
463  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
464  *	the vm_page containing the given pindex.  If, however, that
465  *	pindex is not found in the vm_object, returns a vm_page that is
466  *	adjacent to the pindex, coming before or after it.
467  */
468 vm_page_t
469 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
470 {
471 	struct vm_page dummy;
472 	vm_page_t lefttreemax, righttreemin, y;
473 
474 	if (root == NULL)
475 		return (root);
476 	lefttreemax = righttreemin = &dummy;
477 	for (;; root = y) {
478 		if (pindex < root->pindex) {
479 			if ((y = root->left) == NULL)
480 				break;
481 			if (pindex < y->pindex) {
482 				/* Rotate right. */
483 				root->left = y->right;
484 				y->right = root;
485 				root = y;
486 				if ((y = root->left) == NULL)
487 					break;
488 			}
489 			/* Link into the new root's right tree. */
490 			righttreemin->left = root;
491 			righttreemin = root;
492 		} else if (pindex > root->pindex) {
493 			if ((y = root->right) == NULL)
494 				break;
495 			if (pindex > y->pindex) {
496 				/* Rotate left. */
497 				root->right = y->left;
498 				y->left = root;
499 				root = y;
500 				if ((y = root->right) == NULL)
501 					break;
502 			}
503 			/* Link into the new root's left tree. */
504 			lefttreemax->right = root;
505 			lefttreemax = root;
506 		} else
507 			break;
508 	}
509 	/* Assemble the new root. */
510 	lefttreemax->right = root->left;
511 	righttreemin->left = root->right;
512 	root->left = dummy.right;
513 	root->right = dummy.left;
514 	return (root);
515 }
516 
517 /*
518  *	vm_page_insert:		[ internal use only ]
519  *
520  *	Inserts the given mem entry into the object and object list.
521  *
522  *	The pagetables are not updated but will presumably fault the page
523  *	in if necessary, or if a kernel page the caller will at some point
524  *	enter the page into the kernel's pmap.  We are not allowed to block
525  *	here so we *can't* do this anyway.
526  *
527  *	The object and page must be locked, and must be splhigh.
528  *	This routine may not block.
529  */
530 void
531 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
532 {
533 	vm_page_t root;
534 
535 	if (!VM_OBJECT_LOCKED(object))
536 		GIANT_REQUIRED;
537 	if (m->object != NULL)
538 		panic("vm_page_insert: already inserted");
539 
540 	/*
541 	 * Record the object/offset pair in this page
542 	 */
543 	m->object = object;
544 	m->pindex = pindex;
545 
546 	/*
547 	 * Now link into the object's ordered list of backed pages.
548 	 */
549 	root = object->root;
550 	if (root == NULL) {
551 		m->left = NULL;
552 		m->right = NULL;
553 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
554 	} else {
555 		root = vm_page_splay(pindex, root);
556 		if (pindex < root->pindex) {
557 			m->left = root->left;
558 			m->right = root;
559 			root->left = NULL;
560 			TAILQ_INSERT_BEFORE(root, m, listq);
561 		} else {
562 			m->right = root->right;
563 			m->left = root;
564 			root->right = NULL;
565 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
566 		}
567 	}
568 	object->root = m;
569 	object->generation++;
570 
571 	/*
572 	 * show that the object has one more resident page.
573 	 */
574 	object->resident_page_count++;
575 
576 	/*
577 	 * Since we are inserting a new and possibly dirty page,
578 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
579 	 */
580 	if (m->flags & PG_WRITEABLE)
581 		vm_object_set_writeable_dirty(object);
582 }
583 
584 /*
585  *	vm_page_remove:
586  *				NOTE: used by device pager as well -wfj
587  *
588  *	Removes the given mem entry from the object/offset-page
589  *	table and the object page list, but do not invalidate/terminate
590  *	the backing store.
591  *
592  *	The object and page must be locked, and at splhigh.
593  *	The underlying pmap entry (if any) is NOT removed here.
594  *	This routine may not block.
595  */
596 void
597 vm_page_remove(vm_page_t m)
598 {
599 	vm_object_t object;
600 	vm_page_t root;
601 
602 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
603 	if (m->object == NULL)
604 		return;
605 	if (!VM_OBJECT_LOCKED(m->object))
606 		GIANT_REQUIRED;
607 	if ((m->flags & PG_BUSY) == 0) {
608 		panic("vm_page_remove: page not busy");
609 	}
610 
611 	/*
612 	 * Basically destroy the page.
613 	 */
614 	vm_page_wakeup(m);
615 
616 	object = m->object;
617 
618 	/*
619 	 * Now remove from the object's list of backed pages.
620 	 */
621 	if (m != object->root)
622 		vm_page_splay(m->pindex, object->root);
623 	if (m->left == NULL)
624 		root = m->right;
625 	else {
626 		root = vm_page_splay(m->pindex, m->left);
627 		root->right = m->right;
628 	}
629 	object->root = root;
630 	TAILQ_REMOVE(&object->memq, m, listq);
631 
632 	/*
633 	 * And show that the object has one fewer resident page.
634 	 */
635 	object->resident_page_count--;
636 	object->generation++;
637 
638 	m->object = NULL;
639 }
640 
641 /*
642  *	vm_page_lookup:
643  *
644  *	Returns the page associated with the object/offset
645  *	pair specified; if none is found, NULL is returned.
646  *
647  *	The object must be locked.
648  *	This routine may not block.
649  *	This is a critical path routine
650  */
651 vm_page_t
652 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
653 {
654 	vm_page_t m;
655 
656 	if (!VM_OBJECT_LOCKED(object))
657 		GIANT_REQUIRED;
658 	m = vm_page_splay(pindex, object->root);
659 	if ((object->root = m) != NULL && m->pindex != pindex)
660 		m = NULL;
661 	return (m);
662 }
663 
664 /*
665  *	vm_page_rename:
666  *
667  *	Move the given memory entry from its
668  *	current object to the specified target object/offset.
669  *
670  *	The object must be locked.
671  *	This routine may not block.
672  *
673  *	Note: this routine will raise itself to splvm(), the caller need not.
674  *
675  *	Note: swap associated with the page must be invalidated by the move.  We
676  *	      have to do this for several reasons:  (1) we aren't freeing the
677  *	      page, (2) we are dirtying the page, (3) the VM system is probably
678  *	      moving the page from object A to B, and will then later move
679  *	      the backing store from A to B and we can't have a conflict.
680  *
681  *	Note: we *always* dirty the page.  It is necessary both for the
682  *	      fact that we moved it, and because we may be invalidating
683  *	      swap.  If the page is on the cache, we have to deactivate it
684  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
685  *	      on the cache.
686  */
687 void
688 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
689 {
690 	int s;
691 
692 	s = splvm();
693 	vm_page_remove(m);
694 	vm_page_insert(m, new_object, new_pindex);
695 	if (m->queue - m->pc == PQ_CACHE)
696 		vm_page_deactivate(m);
697 	vm_page_dirty(m);
698 	splx(s);
699 }
700 
701 /*
702  *	vm_page_select_cache:
703  *
704  *	Find a page on the cache queue with color optimization.  As pages
705  *	might be found, but not applicable, they are deactivated.  This
706  *	keeps us from using potentially busy cached pages.
707  *
708  *	This routine must be called at splvm().
709  *	This routine may not block.
710  */
711 static vm_page_t
712 vm_page_select_cache(vm_pindex_t color)
713 {
714 	vm_page_t m;
715 
716 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
717 	while (TRUE) {
718 		m = vm_pageq_find(PQ_CACHE, color & PQ_L2_MASK, FALSE);
719 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
720 			       m->hold_count || m->wire_count)) {
721 			vm_page_deactivate(m);
722 			continue;
723 		}
724 		return m;
725 	}
726 }
727 
728 /*
729  *	vm_page_select_free:
730  *
731  *	Find a free or zero page, with specified preference.
732  *
733  *	This routine must be called at splvm().
734  *	This routine may not block.
735  */
736 static __inline vm_page_t
737 vm_page_select_free(vm_pindex_t color, boolean_t prefer_zero)
738 {
739 	vm_page_t m;
740 
741 	m = vm_pageq_find(PQ_FREE, color & PQ_L2_MASK, prefer_zero);
742 	return (m);
743 }
744 
745 /*
746  *	vm_page_alloc:
747  *
748  *	Allocate and return a memory cell associated
749  *	with this VM object/offset pair.
750  *
751  *	page_req classes:
752  *	VM_ALLOC_NORMAL		normal process request
753  *	VM_ALLOC_SYSTEM		system *really* needs a page
754  *	VM_ALLOC_INTERRUPT	interrupt time request
755  *	VM_ALLOC_ZERO		zero page
756  *
757  *	This routine may not block.
758  *
759  *	Additional special handling is required when called from an
760  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
761  *	the page cache in this case.
762  */
763 vm_page_t
764 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
765 {
766 	vm_page_t m = NULL;
767 	vm_pindex_t color;
768 	int flags, page_req, s;
769 
770 	page_req = req & VM_ALLOC_CLASS_MASK;
771 
772 	if ((req & VM_ALLOC_NOOBJ) == 0) {
773 		KASSERT(object != NULL,
774 		    ("vm_page_alloc: NULL object."));
775 		KASSERT(!vm_page_lookup(object, pindex),
776 		    ("vm_page_alloc: page already allocated"));
777 		color = pindex + object->pg_color;
778 	} else
779 		color = pindex;
780 
781 	/*
782 	 * The pager is allowed to eat deeper into the free page list.
783 	 */
784 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
785 		page_req = VM_ALLOC_SYSTEM;
786 	};
787 
788 	s = splvm();
789 loop:
790 	mtx_lock_spin(&vm_page_queue_free_mtx);
791 	if (cnt.v_free_count > cnt.v_free_reserved ||
792 	    (page_req == VM_ALLOC_SYSTEM &&
793 	     cnt.v_cache_count == 0 &&
794 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
795 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
796 		/*
797 		 * Allocate from the free queue if the number of free pages
798 		 * exceeds the minimum for the request class.
799 		 */
800 		m = vm_page_select_free(color, (req & VM_ALLOC_ZERO) != 0);
801 	} else if (page_req != VM_ALLOC_INTERRUPT) {
802 		mtx_unlock_spin(&vm_page_queue_free_mtx);
803 		/*
804 		 * Allocatable from cache (non-interrupt only).  On success,
805 		 * we must free the page and try again, thus ensuring that
806 		 * cnt.v_*_free_min counters are replenished.
807 		 */
808 		vm_page_lock_queues();
809 		if ((m = vm_page_select_cache(color)) == NULL) {
810 			vm_page_unlock_queues();
811 			splx(s);
812 #if defined(DIAGNOSTIC)
813 			if (cnt.v_cache_count > 0)
814 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
815 #endif
816 			atomic_add_int(&vm_pageout_deficit, 1);
817 			pagedaemon_wakeup();
818 			return (NULL);
819 		}
820 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
821 		vm_page_busy(m);
822 		pmap_remove_all(m);
823 		vm_page_free(m);
824 		vm_page_unlock_queues();
825 		goto loop;
826 	} else {
827 		/*
828 		 * Not allocatable from cache from interrupt, give up.
829 		 */
830 		mtx_unlock_spin(&vm_page_queue_free_mtx);
831 		splx(s);
832 		atomic_add_int(&vm_pageout_deficit, 1);
833 		pagedaemon_wakeup();
834 		return (NULL);
835 	}
836 
837 	/*
838 	 *  At this point we had better have found a good page.
839 	 */
840 
841 	KASSERT(
842 	    m != NULL,
843 	    ("vm_page_alloc(): missing page on free queue\n")
844 	);
845 
846 	/*
847 	 * Remove from free queue
848 	 */
849 
850 	vm_pageq_remove_nowakeup(m);
851 
852 	/*
853 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
854 	 */
855 	flags = PG_BUSY;
856 	if (m->flags & PG_ZERO) {
857 		vm_page_zero_count--;
858 		if (req & VM_ALLOC_ZERO)
859 			flags = PG_ZERO | PG_BUSY;
860 	}
861 	m->flags = flags;
862 	if (req & VM_ALLOC_WIRED) {
863 		atomic_add_int(&cnt.v_wire_count, 1);
864 		m->wire_count = 1;
865 	} else
866 		m->wire_count = 0;
867 	m->hold_count = 0;
868 	m->act_count = 0;
869 	m->busy = 0;
870 	m->valid = 0;
871 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
872 	mtx_unlock_spin(&vm_page_queue_free_mtx);
873 
874 	/*
875 	 * vm_page_insert() is safe prior to the splx().  Note also that
876 	 * inserting a page here does not insert it into the pmap (which
877 	 * could cause us to block allocating memory).  We cannot block
878 	 * anywhere.
879 	 */
880 	if ((req & VM_ALLOC_NOOBJ) == 0)
881 		vm_page_insert(m, object, pindex);
882 
883 	/*
884 	 * Don't wakeup too often - wakeup the pageout daemon when
885 	 * we would be nearly out of memory.
886 	 */
887 	if (vm_paging_needed())
888 		pagedaemon_wakeup();
889 
890 	splx(s);
891 	return (m);
892 }
893 
894 /*
895  *	vm_wait:	(also see VM_WAIT macro)
896  *
897  *	Block until free pages are available for allocation
898  *	- Called in various places before memory allocations.
899  */
900 void
901 vm_wait(void)
902 {
903 	int s;
904 
905 	s = splvm();
906 	vm_page_lock_queues();
907 	if (curproc == pageproc) {
908 		vm_pageout_pages_needed = 1;
909 		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
910 		    PDROP | PSWP, "VMWait", 0);
911 	} else {
912 		if (!vm_pages_needed) {
913 			vm_pages_needed = 1;
914 			wakeup(&vm_pages_needed);
915 		}
916 		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
917 		    "vmwait", 0);
918 	}
919 	splx(s);
920 }
921 
922 /*
923  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
924  *
925  *	Block until free pages are available for allocation
926  *	- Called only in vm_fault so that processes page faulting
927  *	  can be easily tracked.
928  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
929  *	  processes will be able to grab memory first.  Do not change
930  *	  this balance without careful testing first.
931  */
932 void
933 vm_waitpfault(void)
934 {
935 	int s;
936 
937 	s = splvm();
938 	vm_page_lock_queues();
939 	if (!vm_pages_needed) {
940 		vm_pages_needed = 1;
941 		wakeup(&vm_pages_needed);
942 	}
943 	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
944 	    "pfault", 0);
945 	splx(s);
946 }
947 
948 /*
949  *	vm_page_activate:
950  *
951  *	Put the specified page on the active list (if appropriate).
952  *	Ensure that act_count is at least ACT_INIT but do not otherwise
953  *	mess with it.
954  *
955  *	The page queues must be locked.
956  *	This routine may not block.
957  */
958 void
959 vm_page_activate(vm_page_t m)
960 {
961 	int s;
962 
963 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
964 	s = splvm();
965 	if (m->queue != PQ_ACTIVE) {
966 		if ((m->queue - m->pc) == PQ_CACHE)
967 			cnt.v_reactivated++;
968 		vm_pageq_remove(m);
969 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
970 			if (m->act_count < ACT_INIT)
971 				m->act_count = ACT_INIT;
972 			vm_pageq_enqueue(PQ_ACTIVE, m);
973 		}
974 	} else {
975 		if (m->act_count < ACT_INIT)
976 			m->act_count = ACT_INIT;
977 	}
978 	splx(s);
979 }
980 
981 /*
982  *	vm_page_free_wakeup:
983  *
984  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
985  *	routine is called when a page has been added to the cache or free
986  *	queues.
987  *
988  *	This routine may not block.
989  *	This routine must be called at splvm()
990  */
991 static __inline void
992 vm_page_free_wakeup(void)
993 {
994 
995 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
996 	/*
997 	 * if pageout daemon needs pages, then tell it that there are
998 	 * some free.
999 	 */
1000 	if (vm_pageout_pages_needed &&
1001 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1002 		wakeup(&vm_pageout_pages_needed);
1003 		vm_pageout_pages_needed = 0;
1004 	}
1005 	/*
1006 	 * wakeup processes that are waiting on memory if we hit a
1007 	 * high water mark. And wakeup scheduler process if we have
1008 	 * lots of memory. this process will swapin processes.
1009 	 */
1010 	if (vm_pages_needed && !vm_page_count_min()) {
1011 		vm_pages_needed = 0;
1012 		wakeup(&cnt.v_free_count);
1013 	}
1014 }
1015 
1016 /*
1017  *	vm_page_free_toq:
1018  *
1019  *	Returns the given page to the PQ_FREE list,
1020  *	disassociating it with any VM object.
1021  *
1022  *	Object and page must be locked prior to entry.
1023  *	This routine may not block.
1024  */
1025 
1026 void
1027 vm_page_free_toq(vm_page_t m)
1028 {
1029 	int s;
1030 	struct vpgqueues *pq;
1031 	vm_object_t object = m->object;
1032 
1033 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1034 	s = splvm();
1035 	cnt.v_tfree++;
1036 
1037 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1038 		printf(
1039 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1040 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1041 		    m->hold_count);
1042 		if ((m->queue - m->pc) == PQ_FREE)
1043 			panic("vm_page_free: freeing free page");
1044 		else
1045 			panic("vm_page_free: freeing busy page");
1046 	}
1047 
1048 	/*
1049 	 * unqueue, then remove page.  Note that we cannot destroy
1050 	 * the page here because we do not want to call the pager's
1051 	 * callback routine until after we've put the page on the
1052 	 * appropriate free queue.
1053 	 */
1054 	vm_pageq_remove_nowakeup(m);
1055 	vm_page_remove(m);
1056 
1057 	/*
1058 	 * If fictitious remove object association and
1059 	 * return, otherwise delay object association removal.
1060 	 */
1061 	if ((m->flags & PG_FICTITIOUS) != 0) {
1062 		splx(s);
1063 		return;
1064 	}
1065 
1066 	m->valid = 0;
1067 	vm_page_undirty(m);
1068 
1069 	if (m->wire_count != 0) {
1070 		if (m->wire_count > 1) {
1071 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1072 				m->wire_count, (long)m->pindex);
1073 		}
1074 		panic("vm_page_free: freeing wired page\n");
1075 	}
1076 
1077 	/*
1078 	 * If we've exhausted the object's resident pages we want to free
1079 	 * it up.
1080 	 */
1081 	if (object &&
1082 	    (object->type == OBJT_VNODE) &&
1083 	    ((object->flags & OBJ_DEAD) == 0)
1084 	) {
1085 		struct vnode *vp = (struct vnode *)object->handle;
1086 
1087 		if (vp) {
1088 			VI_LOCK(vp);
1089 			if (VSHOULDFREE(vp))
1090 				vfree(vp);
1091 			VI_UNLOCK(vp);
1092 		}
1093 	}
1094 
1095 	/*
1096 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1097 	 */
1098 	if (m->flags & PG_UNMANAGED) {
1099 		m->flags &= ~PG_UNMANAGED;
1100 	}
1101 
1102 	if (m->hold_count != 0) {
1103 		m->flags &= ~PG_ZERO;
1104 		m->queue = PQ_HOLD;
1105 	} else
1106 		m->queue = PQ_FREE + m->pc;
1107 	pq = &vm_page_queues[m->queue];
1108 	mtx_lock_spin(&vm_page_queue_free_mtx);
1109 	pq->lcnt++;
1110 	++(*pq->cnt);
1111 
1112 	/*
1113 	 * Put zero'd pages on the end ( where we look for zero'd pages
1114 	 * first ) and non-zerod pages at the head.
1115 	 */
1116 	if (m->flags & PG_ZERO) {
1117 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1118 		++vm_page_zero_count;
1119 	} else {
1120 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1121 	}
1122 	mtx_unlock_spin(&vm_page_queue_free_mtx);
1123 	vm_page_free_wakeup();
1124 	splx(s);
1125 }
1126 
1127 /*
1128  *	vm_page_unmanage:
1129  *
1130  * 	Prevent PV management from being done on the page.  The page is
1131  *	removed from the paging queues as if it were wired, and as a
1132  *	consequence of no longer being managed the pageout daemon will not
1133  *	touch it (since there is no way to locate the pte mappings for the
1134  *	page).  madvise() calls that mess with the pmap will also no longer
1135  *	operate on the page.
1136  *
1137  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1138  *	will clear the flag.
1139  *
1140  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1141  *	physical memory as backing store rather then swap-backed memory and
1142  *	will eventually be extended to support 4MB unmanaged physical
1143  *	mappings.
1144  */
1145 void
1146 vm_page_unmanage(vm_page_t m)
1147 {
1148 	int s;
1149 
1150 	s = splvm();
1151 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1152 	if ((m->flags & PG_UNMANAGED) == 0) {
1153 		if (m->wire_count == 0)
1154 			vm_pageq_remove(m);
1155 	}
1156 	vm_page_flag_set(m, PG_UNMANAGED);
1157 	splx(s);
1158 }
1159 
1160 /*
1161  *	vm_page_wire:
1162  *
1163  *	Mark this page as wired down by yet
1164  *	another map, removing it from paging queues
1165  *	as necessary.
1166  *
1167  *	The page queues must be locked.
1168  *	This routine may not block.
1169  */
1170 void
1171 vm_page_wire(vm_page_t m)
1172 {
1173 	int s;
1174 
1175 	/*
1176 	 * Only bump the wire statistics if the page is not already wired,
1177 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1178 	 * it is already off the queues).
1179 	 */
1180 	s = splvm();
1181 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1182 	if (m->wire_count == 0) {
1183 		if ((m->flags & PG_UNMANAGED) == 0)
1184 			vm_pageq_remove(m);
1185 		atomic_add_int(&cnt.v_wire_count, 1);
1186 	}
1187 	m->wire_count++;
1188 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1189 	splx(s);
1190 }
1191 
1192 /*
1193  *	vm_page_unwire:
1194  *
1195  *	Release one wiring of this page, potentially
1196  *	enabling it to be paged again.
1197  *
1198  *	Many pages placed on the inactive queue should actually go
1199  *	into the cache, but it is difficult to figure out which.  What
1200  *	we do instead, if the inactive target is well met, is to put
1201  *	clean pages at the head of the inactive queue instead of the tail.
1202  *	This will cause them to be moved to the cache more quickly and
1203  *	if not actively re-referenced, freed more quickly.  If we just
1204  *	stick these pages at the end of the inactive queue, heavy filesystem
1205  *	meta-data accesses can cause an unnecessary paging load on memory bound
1206  *	processes.  This optimization causes one-time-use metadata to be
1207  *	reused more quickly.
1208  *
1209  *	BUT, if we are in a low-memory situation we have no choice but to
1210  *	put clean pages on the cache queue.
1211  *
1212  *	A number of routines use vm_page_unwire() to guarantee that the page
1213  *	will go into either the inactive or active queues, and will NEVER
1214  *	be placed in the cache - for example, just after dirtying a page.
1215  *	dirty pages in the cache are not allowed.
1216  *
1217  *	The page queues must be locked.
1218  *	This routine may not block.
1219  */
1220 void
1221 vm_page_unwire(vm_page_t m, int activate)
1222 {
1223 	int s;
1224 
1225 	s = splvm();
1226 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1227 	if (m->wire_count > 0) {
1228 		m->wire_count--;
1229 		if (m->wire_count == 0) {
1230 			atomic_subtract_int(&cnt.v_wire_count, 1);
1231 			if (m->flags & PG_UNMANAGED) {
1232 				;
1233 			} else if (activate)
1234 				vm_pageq_enqueue(PQ_ACTIVE, m);
1235 			else {
1236 				vm_page_flag_clear(m, PG_WINATCFLS);
1237 				vm_pageq_enqueue(PQ_INACTIVE, m);
1238 			}
1239 		}
1240 	} else {
1241 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1242 	}
1243 	splx(s);
1244 }
1245 
1246 
1247 /*
1248  * Move the specified page to the inactive queue.  If the page has
1249  * any associated swap, the swap is deallocated.
1250  *
1251  * Normally athead is 0 resulting in LRU operation.  athead is set
1252  * to 1 if we want this page to be 'as if it were placed in the cache',
1253  * except without unmapping it from the process address space.
1254  *
1255  * This routine may not block.
1256  */
1257 static __inline void
1258 _vm_page_deactivate(vm_page_t m, int athead)
1259 {
1260 	int s;
1261 
1262 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1263 	/*
1264 	 * Ignore if already inactive.
1265 	 */
1266 	if (m->queue == PQ_INACTIVE)
1267 		return;
1268 
1269 	s = splvm();
1270 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1271 		if ((m->queue - m->pc) == PQ_CACHE)
1272 			cnt.v_reactivated++;
1273 		vm_page_flag_clear(m, PG_WINATCFLS);
1274 		vm_pageq_remove(m);
1275 		if (athead)
1276 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1277 		else
1278 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1279 		m->queue = PQ_INACTIVE;
1280 		vm_page_queues[PQ_INACTIVE].lcnt++;
1281 		cnt.v_inactive_count++;
1282 	}
1283 	splx(s);
1284 }
1285 
1286 void
1287 vm_page_deactivate(vm_page_t m)
1288 {
1289     _vm_page_deactivate(m, 0);
1290 }
1291 
1292 /*
1293  * vm_page_try_to_cache:
1294  *
1295  * Returns 0 on failure, 1 on success
1296  */
1297 int
1298 vm_page_try_to_cache(vm_page_t m)
1299 {
1300 
1301 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1302 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1303 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1304 		return (0);
1305 	}
1306 	vm_page_test_dirty(m);
1307 	if (m->dirty)
1308 		return (0);
1309 	vm_page_cache(m);
1310 	return (1);
1311 }
1312 
1313 /*
1314  * vm_page_try_to_free()
1315  *
1316  *	Attempt to free the page.  If we cannot free it, we do nothing.
1317  *	1 is returned on success, 0 on failure.
1318  */
1319 int
1320 vm_page_try_to_free(vm_page_t m)
1321 {
1322 
1323 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1324 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1325 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1326 		return (0);
1327 	}
1328 	vm_page_test_dirty(m);
1329 	if (m->dirty)
1330 		return (0);
1331 	vm_page_busy(m);
1332 	pmap_remove_all(m);
1333 	vm_page_free(m);
1334 	return (1);
1335 }
1336 
1337 /*
1338  * vm_page_cache
1339  *
1340  * Put the specified page onto the page cache queue (if appropriate).
1341  *
1342  * This routine may not block.
1343  */
1344 void
1345 vm_page_cache(vm_page_t m)
1346 {
1347 	int s;
1348 
1349 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1350 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1351 		printf("vm_page_cache: attempting to cache busy page\n");
1352 		return;
1353 	}
1354 	if ((m->queue - m->pc) == PQ_CACHE)
1355 		return;
1356 
1357 	/*
1358 	 * Remove all pmaps and indicate that the page is not
1359 	 * writeable or mapped.
1360 	 */
1361 	pmap_remove_all(m);
1362 	if (m->dirty != 0) {
1363 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1364 			(long)m->pindex);
1365 	}
1366 	s = splvm();
1367 	vm_pageq_remove_nowakeup(m);
1368 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1369 	vm_page_free_wakeup();
1370 	splx(s);
1371 }
1372 
1373 /*
1374  * vm_page_dontneed
1375  *
1376  *	Cache, deactivate, or do nothing as appropriate.  This routine
1377  *	is typically used by madvise() MADV_DONTNEED.
1378  *
1379  *	Generally speaking we want to move the page into the cache so
1380  *	it gets reused quickly.  However, this can result in a silly syndrome
1381  *	due to the page recycling too quickly.  Small objects will not be
1382  *	fully cached.  On the otherhand, if we move the page to the inactive
1383  *	queue we wind up with a problem whereby very large objects
1384  *	unnecessarily blow away our inactive and cache queues.
1385  *
1386  *	The solution is to move the pages based on a fixed weighting.  We
1387  *	either leave them alone, deactivate them, or move them to the cache,
1388  *	where moving them to the cache has the highest weighting.
1389  *	By forcing some pages into other queues we eventually force the
1390  *	system to balance the queues, potentially recovering other unrelated
1391  *	space from active.  The idea is to not force this to happen too
1392  *	often.
1393  */
1394 void
1395 vm_page_dontneed(vm_page_t m)
1396 {
1397 	static int dnweight;
1398 	int dnw;
1399 	int head;
1400 
1401 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1402 	dnw = ++dnweight;
1403 
1404 	/*
1405 	 * occassionally leave the page alone
1406 	 */
1407 	if ((dnw & 0x01F0) == 0 ||
1408 	    m->queue == PQ_INACTIVE ||
1409 	    m->queue - m->pc == PQ_CACHE
1410 	) {
1411 		if (m->act_count >= ACT_INIT)
1412 			--m->act_count;
1413 		return;
1414 	}
1415 
1416 	if (m->dirty == 0)
1417 		vm_page_test_dirty(m);
1418 
1419 	if (m->dirty || (dnw & 0x0070) == 0) {
1420 		/*
1421 		 * Deactivate the page 3 times out of 32.
1422 		 */
1423 		head = 0;
1424 	} else {
1425 		/*
1426 		 * Cache the page 28 times out of every 32.  Note that
1427 		 * the page is deactivated instead of cached, but placed
1428 		 * at the head of the queue instead of the tail.
1429 		 */
1430 		head = 1;
1431 	}
1432 	_vm_page_deactivate(m, head);
1433 }
1434 
1435 /*
1436  * Grab a page, waiting until we are waken up due to the page
1437  * changing state.  We keep on waiting, if the page continues
1438  * to be in the object.  If the page doesn't exist, allocate it.
1439  *
1440  * This routine may block.
1441  */
1442 vm_page_t
1443 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1444 {
1445 	vm_page_t m;
1446 	int s, generation;
1447 
1448 	GIANT_REQUIRED;
1449 retrylookup:
1450 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1451 		vm_page_lock_queues();
1452 		if (m->busy || (m->flags & PG_BUSY)) {
1453 			generation = object->generation;
1454 
1455 			s = splvm();
1456 			while ((object->generation == generation) &&
1457 					(m->busy || (m->flags & PG_BUSY))) {
1458 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1459 				msleep(m, &vm_page_queue_mtx, PVM, "pgrbwt", 0);
1460 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1461 					vm_page_unlock_queues();
1462 					splx(s);
1463 					return NULL;
1464 				}
1465 			}
1466 			vm_page_unlock_queues();
1467 			splx(s);
1468 			goto retrylookup;
1469 		} else {
1470 			if (allocflags & VM_ALLOC_WIRED)
1471 				vm_page_wire(m);
1472 			vm_page_busy(m);
1473 			vm_page_unlock_queues();
1474 			return m;
1475 		}
1476 	}
1477 
1478 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1479 	if (m == NULL) {
1480 		VM_WAIT;
1481 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1482 			return NULL;
1483 		goto retrylookup;
1484 	}
1485 
1486 	return m;
1487 }
1488 
1489 /*
1490  * Mapping function for valid bits or for dirty bits in
1491  * a page.  May not block.
1492  *
1493  * Inputs are required to range within a page.
1494  */
1495 __inline int
1496 vm_page_bits(int base, int size)
1497 {
1498 	int first_bit;
1499 	int last_bit;
1500 
1501 	KASSERT(
1502 	    base + size <= PAGE_SIZE,
1503 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1504 	);
1505 
1506 	if (size == 0)		/* handle degenerate case */
1507 		return (0);
1508 
1509 	first_bit = base >> DEV_BSHIFT;
1510 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1511 
1512 	return ((2 << last_bit) - (1 << first_bit));
1513 }
1514 
1515 /*
1516  *	vm_page_set_validclean:
1517  *
1518  *	Sets portions of a page valid and clean.  The arguments are expected
1519  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1520  *	of any partial chunks touched by the range.  The invalid portion of
1521  *	such chunks will be zero'd.
1522  *
1523  *	This routine may not block.
1524  *
1525  *	(base + size) must be less then or equal to PAGE_SIZE.
1526  */
1527 void
1528 vm_page_set_validclean(vm_page_t m, int base, int size)
1529 {
1530 	int pagebits;
1531 	int frag;
1532 	int endoff;
1533 
1534 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1535 	if (size == 0)	/* handle degenerate case */
1536 		return;
1537 
1538 	/*
1539 	 * If the base is not DEV_BSIZE aligned and the valid
1540 	 * bit is clear, we have to zero out a portion of the
1541 	 * first block.
1542 	 */
1543 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1544 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1545 		pmap_zero_page_area(m, frag, base - frag);
1546 
1547 	/*
1548 	 * If the ending offset is not DEV_BSIZE aligned and the
1549 	 * valid bit is clear, we have to zero out a portion of
1550 	 * the last block.
1551 	 */
1552 	endoff = base + size;
1553 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1554 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1555 		pmap_zero_page_area(m, endoff,
1556 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1557 
1558 	/*
1559 	 * Set valid, clear dirty bits.  If validating the entire
1560 	 * page we can safely clear the pmap modify bit.  We also
1561 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1562 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1563 	 * be set again.
1564 	 *
1565 	 * We set valid bits inclusive of any overlap, but we can only
1566 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1567 	 * the range.
1568 	 */
1569 	pagebits = vm_page_bits(base, size);
1570 	m->valid |= pagebits;
1571 #if 0	/* NOT YET */
1572 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1573 		frag = DEV_BSIZE - frag;
1574 		base += frag;
1575 		size -= frag;
1576 		if (size < 0)
1577 			size = 0;
1578 	}
1579 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1580 #endif
1581 	m->dirty &= ~pagebits;
1582 	if (base == 0 && size == PAGE_SIZE) {
1583 		pmap_clear_modify(m);
1584 		vm_page_flag_clear(m, PG_NOSYNC);
1585 	}
1586 }
1587 
1588 #if 0
1589 
1590 void
1591 vm_page_set_dirty(vm_page_t m, int base, int size)
1592 {
1593 	m->dirty |= vm_page_bits(base, size);
1594 }
1595 
1596 #endif
1597 
1598 void
1599 vm_page_clear_dirty(vm_page_t m, int base, int size)
1600 {
1601 	GIANT_REQUIRED;
1602 	m->dirty &= ~vm_page_bits(base, size);
1603 }
1604 
1605 /*
1606  *	vm_page_set_invalid:
1607  *
1608  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1609  *	valid and dirty bits for the effected areas are cleared.
1610  *
1611  *	May not block.
1612  */
1613 void
1614 vm_page_set_invalid(vm_page_t m, int base, int size)
1615 {
1616 	int bits;
1617 
1618 	GIANT_REQUIRED;
1619 	bits = vm_page_bits(base, size);
1620 	m->valid &= ~bits;
1621 	m->dirty &= ~bits;
1622 	m->object->generation++;
1623 }
1624 
1625 /*
1626  * vm_page_zero_invalid()
1627  *
1628  *	The kernel assumes that the invalid portions of a page contain
1629  *	garbage, but such pages can be mapped into memory by user code.
1630  *	When this occurs, we must zero out the non-valid portions of the
1631  *	page so user code sees what it expects.
1632  *
1633  *	Pages are most often semi-valid when the end of a file is mapped
1634  *	into memory and the file's size is not page aligned.
1635  */
1636 void
1637 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1638 {
1639 	int b;
1640 	int i;
1641 
1642 	/*
1643 	 * Scan the valid bits looking for invalid sections that
1644 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1645 	 * valid bit may be set ) have already been zerod by
1646 	 * vm_page_set_validclean().
1647 	 */
1648 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1649 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1650 		    (m->valid & (1 << i))
1651 		) {
1652 			if (i > b) {
1653 				pmap_zero_page_area(m,
1654 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1655 			}
1656 			b = i + 1;
1657 		}
1658 	}
1659 
1660 	/*
1661 	 * setvalid is TRUE when we can safely set the zero'd areas
1662 	 * as being valid.  We can do this if there are no cache consistancy
1663 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1664 	 */
1665 	if (setvalid)
1666 		m->valid = VM_PAGE_BITS_ALL;
1667 }
1668 
1669 /*
1670  *	vm_page_is_valid:
1671  *
1672  *	Is (partial) page valid?  Note that the case where size == 0
1673  *	will return FALSE in the degenerate case where the page is
1674  *	entirely invalid, and TRUE otherwise.
1675  *
1676  *	May not block.
1677  */
1678 int
1679 vm_page_is_valid(vm_page_t m, int base, int size)
1680 {
1681 	int bits = vm_page_bits(base, size);
1682 
1683 	if (m->valid && ((m->valid & bits) == bits))
1684 		return 1;
1685 	else
1686 		return 0;
1687 }
1688 
1689 /*
1690  * update dirty bits from pmap/mmu.  May not block.
1691  */
1692 void
1693 vm_page_test_dirty(vm_page_t m)
1694 {
1695 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1696 		vm_page_dirty(m);
1697 	}
1698 }
1699 
1700 int so_zerocp_fullpage = 0;
1701 
1702 void
1703 vm_page_cowfault(vm_page_t m)
1704 {
1705 	vm_page_t mnew;
1706 	vm_object_t object;
1707 	vm_pindex_t pindex;
1708 
1709 	object = m->object;
1710 	pindex = m->pindex;
1711 	vm_page_busy(m);
1712 
1713  retry_alloc:
1714 	vm_page_remove(m);
1715 	/*
1716 	 * An interrupt allocation is requested because the page
1717 	 * queues lock is held.
1718 	 */
1719 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1720 	if (mnew == NULL) {
1721 		vm_page_insert(m, object, pindex);
1722 		vm_page_unlock_queues();
1723 		VM_WAIT;
1724 		vm_page_lock_queues();
1725 		goto retry_alloc;
1726 	}
1727 
1728 	if (m->cow == 0) {
1729 		/*
1730 		 * check to see if we raced with an xmit complete when
1731 		 * waiting to allocate a page.  If so, put things back
1732 		 * the way they were
1733 		 */
1734 		vm_page_busy(mnew);
1735 		vm_page_free(mnew);
1736 		vm_page_insert(m, object, pindex);
1737 	} else { /* clear COW & copy page */
1738 		if (so_zerocp_fullpage) {
1739 			mnew->valid = VM_PAGE_BITS_ALL;
1740 		} else {
1741 			vm_page_copy(m, mnew);
1742 		}
1743 		vm_page_dirty(mnew);
1744 		vm_page_flag_clear(mnew, PG_BUSY);
1745 	}
1746 }
1747 
1748 void
1749 vm_page_cowclear(vm_page_t m)
1750 {
1751 
1752 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1753 	if (m->cow) {
1754 		m->cow--;
1755 		/*
1756 		 * let vm_fault add back write permission  lazily
1757 		 */
1758 	}
1759 	/*
1760 	 *  sf_buf_free() will free the page, so we needn't do it here
1761 	 */
1762 }
1763 
1764 void
1765 vm_page_cowsetup(vm_page_t m)
1766 {
1767 
1768 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1769 	m->cow++;
1770 	pmap_page_protect(m, VM_PROT_READ);
1771 }
1772 
1773 #include "opt_ddb.h"
1774 #ifdef DDB
1775 #include <sys/kernel.h>
1776 
1777 #include <ddb/ddb.h>
1778 
1779 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1780 {
1781 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1782 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1783 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1784 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1785 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1786 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1787 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1788 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1789 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1790 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1791 }
1792 
1793 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1794 {
1795 	int i;
1796 	db_printf("PQ_FREE:");
1797 	for (i = 0; i < PQ_L2_SIZE; i++) {
1798 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1799 	}
1800 	db_printf("\n");
1801 
1802 	db_printf("PQ_CACHE:");
1803 	for (i = 0; i < PQ_L2_SIZE; i++) {
1804 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1805 	}
1806 	db_printf("\n");
1807 
1808 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1809 		vm_page_queues[PQ_ACTIVE].lcnt,
1810 		vm_page_queues[PQ_INACTIVE].lcnt);
1811 }
1812 #endif /* DDB */
1813