1 /* 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 37 */ 38 39 /* 40 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 41 * All rights reserved. 42 * 43 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 44 * 45 * Permission to use, copy, modify and distribute this software and 46 * its documentation is hereby granted, provided that both the copyright 47 * notice and this permission notice appear in all copies of the 48 * software, derivative works or modified versions, and any portions 49 * thereof, and that both notices appear in supporting documentation. 50 * 51 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 52 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 53 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 54 * 55 * Carnegie Mellon requests users of this software to return to 56 * 57 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 58 * School of Computer Science 59 * Carnegie Mellon University 60 * Pittsburgh PA 15213-3890 61 * 62 * any improvements or extensions that they make and grant Carnegie the 63 * rights to redistribute these changes. 64 */ 65 66 /* 67 * GENERAL RULES ON VM_PAGE MANIPULATION 68 * 69 * - a pageq mutex is required when adding or removing a page from a 70 * page queue (vm_page_queue[]), regardless of other mutexes or the 71 * busy state of a page. 72 * 73 * - a hash chain mutex is required when associating or disassociating 74 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 75 * regardless of other mutexes or the busy state of a page. 76 * 77 * - either a hash chain mutex OR a busied page is required in order 78 * to modify the page flags. A hash chain mutex must be obtained in 79 * order to busy a page. A page's flags cannot be modified by a 80 * hash chain mutex if the page is marked busy. 81 * 82 * - The object memq mutex is held when inserting or removing 83 * pages from an object (vm_page_insert() or vm_page_remove()). This 84 * is different from the object's main mutex. 85 * 86 * Generally speaking, you have to be aware of side effects when running 87 * vm_page ops. A vm_page_lookup() will return with the hash chain 88 * locked, whether it was able to lookup the page or not. vm_page_free(), 89 * vm_page_cache(), vm_page_activate(), and a number of other routines 90 * will release the hash chain mutex for you. Intermediate manipulation 91 * routines such as vm_page_flag_set() expect the hash chain to be held 92 * on entry and the hash chain will remain held on return. 93 * 94 * pageq scanning can only occur with the pageq in question locked. 95 * We have a known bottleneck with the active queue, but the cache 96 * and free queues are actually arrays already. 97 */ 98 99 /* 100 * Resident memory management module. 101 */ 102 103 #include <sys/cdefs.h> 104 __FBSDID("$FreeBSD$"); 105 106 #include <sys/param.h> 107 #include <sys/systm.h> 108 #include <sys/lock.h> 109 #include <sys/malloc.h> 110 #include <sys/mutex.h> 111 #include <sys/proc.h> 112 #include <sys/vmmeter.h> 113 #include <sys/vnode.h> 114 115 #include <vm/vm.h> 116 #include <vm/vm_param.h> 117 #include <vm/vm_kern.h> 118 #include <vm/vm_object.h> 119 #include <vm/vm_page.h> 120 #include <vm/vm_pageout.h> 121 #include <vm/vm_pager.h> 122 #include <vm/vm_extern.h> 123 #include <vm/uma.h> 124 #include <vm/uma_int.h> 125 126 /* 127 * Associated with page of user-allocatable memory is a 128 * page structure. 129 */ 130 131 struct mtx vm_page_queue_mtx; 132 struct mtx vm_page_queue_free_mtx; 133 134 vm_page_t vm_page_array = 0; 135 int vm_page_array_size = 0; 136 long first_page = 0; 137 int vm_page_zero_count = 0; 138 139 /* 140 * vm_set_page_size: 141 * 142 * Sets the page size, perhaps based upon the memory 143 * size. Must be called before any use of page-size 144 * dependent functions. 145 */ 146 void 147 vm_set_page_size(void) 148 { 149 if (cnt.v_page_size == 0) 150 cnt.v_page_size = PAGE_SIZE; 151 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 152 panic("vm_set_page_size: page size not a power of two"); 153 } 154 155 /* 156 * vm_page_startup: 157 * 158 * Initializes the resident memory module. 159 * 160 * Allocates memory for the page cells, and 161 * for the object/offset-to-page hash table headers. 162 * Each page cell is initialized and placed on the free list. 163 */ 164 vm_offset_t 165 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr) 166 { 167 vm_offset_t mapped; 168 vm_size_t npages; 169 vm_paddr_t page_range; 170 vm_paddr_t new_end; 171 int i; 172 vm_paddr_t pa; 173 int nblocks; 174 vm_paddr_t last_pa; 175 176 /* the biggest memory array is the second group of pages */ 177 vm_paddr_t end; 178 vm_paddr_t biggestsize; 179 int biggestone; 180 181 vm_paddr_t total; 182 vm_size_t bootpages; 183 184 total = 0; 185 biggestsize = 0; 186 biggestone = 0; 187 nblocks = 0; 188 vaddr = round_page(vaddr); 189 190 for (i = 0; phys_avail[i + 1]; i += 2) { 191 phys_avail[i] = round_page(phys_avail[i]); 192 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 193 } 194 195 for (i = 0; phys_avail[i + 1]; i += 2) { 196 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 197 198 if (size > biggestsize) { 199 biggestone = i; 200 biggestsize = size; 201 } 202 ++nblocks; 203 total += size; 204 } 205 206 end = phys_avail[biggestone+1]; 207 208 /* 209 * Initialize the locks. 210 */ 211 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF); 212 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 213 MTX_SPIN); 214 215 /* 216 * Initialize the queue headers for the free queue, the active queue 217 * and the inactive queue. 218 */ 219 vm_pageq_init(); 220 221 /* 222 * Allocate memory for use when boot strapping the kernel memory 223 * allocator. 224 */ 225 bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE; 226 new_end = end - bootpages; 227 new_end = trunc_page(new_end); 228 mapped = pmap_map(&vaddr, new_end, end, 229 VM_PROT_READ | VM_PROT_WRITE); 230 bzero((caddr_t) mapped, end - new_end); 231 uma_startup((caddr_t)mapped); 232 233 /* 234 * Compute the number of pages of memory that will be available for 235 * use (taking into account the overhead of a page structure per 236 * page). 237 */ 238 first_page = phys_avail[0] / PAGE_SIZE; 239 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 240 npages = (total - (page_range * sizeof(struct vm_page)) - 241 (end - new_end)) / PAGE_SIZE; 242 end = new_end; 243 244 /* 245 * Initialize the mem entry structures now, and put them in the free 246 * queue. 247 */ 248 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 249 mapped = pmap_map(&vaddr, new_end, end, 250 VM_PROT_READ | VM_PROT_WRITE); 251 vm_page_array = (vm_page_t) mapped; 252 phys_avail[biggestone + 1] = new_end; 253 254 /* 255 * Clear all of the page structures 256 */ 257 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 258 vm_page_array_size = page_range; 259 260 /* 261 * Construct the free queue(s) in descending order (by physical 262 * address) so that the first 16MB of physical memory is allocated 263 * last rather than first. On large-memory machines, this avoids 264 * the exhaustion of low physical memory before isa_dmainit has run. 265 */ 266 cnt.v_page_count = 0; 267 cnt.v_free_count = 0; 268 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 269 pa = phys_avail[i]; 270 last_pa = phys_avail[i + 1]; 271 while (pa < last_pa && npages-- > 0) { 272 vm_pageq_add_new_page(pa); 273 pa += PAGE_SIZE; 274 } 275 } 276 return (vaddr); 277 } 278 279 void 280 vm_page_flag_set(vm_page_t m, unsigned short bits) 281 { 282 283 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 284 m->flags |= bits; 285 } 286 287 void 288 vm_page_flag_clear(vm_page_t m, unsigned short bits) 289 { 290 291 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 292 m->flags &= ~bits; 293 } 294 295 void 296 vm_page_busy(vm_page_t m) 297 { 298 KASSERT((m->flags & PG_BUSY) == 0, 299 ("vm_page_busy: page already busy!!!")); 300 vm_page_flag_set(m, PG_BUSY); 301 } 302 303 /* 304 * vm_page_flash: 305 * 306 * wakeup anyone waiting for the page. 307 */ 308 void 309 vm_page_flash(vm_page_t m) 310 { 311 if (m->flags & PG_WANTED) { 312 vm_page_flag_clear(m, PG_WANTED); 313 wakeup(m); 314 } 315 } 316 317 /* 318 * vm_page_wakeup: 319 * 320 * clear the PG_BUSY flag and wakeup anyone waiting for the 321 * page. 322 * 323 */ 324 void 325 vm_page_wakeup(vm_page_t m) 326 { 327 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 328 vm_page_flag_clear(m, PG_BUSY); 329 vm_page_flash(m); 330 } 331 332 void 333 vm_page_io_start(vm_page_t m) 334 { 335 336 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 337 m->busy++; 338 } 339 340 void 341 vm_page_io_finish(vm_page_t m) 342 { 343 344 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 345 m->busy--; 346 if (m->busy == 0) 347 vm_page_flash(m); 348 } 349 350 /* 351 * Keep page from being freed by the page daemon 352 * much of the same effect as wiring, except much lower 353 * overhead and should be used only for *very* temporary 354 * holding ("wiring"). 355 */ 356 void 357 vm_page_hold(vm_page_t mem) 358 { 359 360 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 361 mem->hold_count++; 362 } 363 364 void 365 vm_page_unhold(vm_page_t mem) 366 { 367 368 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 369 --mem->hold_count; 370 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 371 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) 372 vm_page_free_toq(mem); 373 } 374 375 /* 376 * vm_page_copy: 377 * 378 * Copy one page to another 379 */ 380 void 381 vm_page_copy(vm_page_t src_m, vm_page_t dest_m) 382 { 383 pmap_copy_page(src_m, dest_m); 384 dest_m->valid = VM_PAGE_BITS_ALL; 385 } 386 387 /* 388 * vm_page_free: 389 * 390 * Free a page 391 * 392 * The clearing of PG_ZERO is a temporary safety until the code can be 393 * reviewed to determine that PG_ZERO is being properly cleared on 394 * write faults or maps. PG_ZERO was previously cleared in 395 * vm_page_alloc(). 396 */ 397 void 398 vm_page_free(vm_page_t m) 399 { 400 vm_page_flag_clear(m, PG_ZERO); 401 vm_page_free_toq(m); 402 vm_page_zero_idle_wakeup(); 403 } 404 405 /* 406 * vm_page_free_zero: 407 * 408 * Free a page to the zerod-pages queue 409 */ 410 void 411 vm_page_free_zero(vm_page_t m) 412 { 413 vm_page_flag_set(m, PG_ZERO); 414 vm_page_free_toq(m); 415 } 416 417 /* 418 * vm_page_sleep_if_busy: 419 * 420 * Sleep and release the page queues lock if PG_BUSY is set or, 421 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the 422 * thread slept and the page queues lock was released. 423 * Otherwise, retains the page queues lock and returns FALSE. 424 */ 425 int 426 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg) 427 { 428 int is_object_locked; 429 430 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 431 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 432 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 433 /* 434 * Remove mtx_owned() after vm_object locking is finished. 435 */ 436 if ((is_object_locked = m->object != NULL && 437 mtx_owned(&m->object->mtx))) 438 mtx_unlock(&m->object->mtx); 439 msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0); 440 if (is_object_locked) 441 mtx_lock(&m->object->mtx); 442 return (TRUE); 443 } 444 return (FALSE); 445 } 446 447 /* 448 * vm_page_dirty: 449 * 450 * make page all dirty 451 */ 452 void 453 vm_page_dirty(vm_page_t m) 454 { 455 KASSERT(m->queue - m->pc != PQ_CACHE, 456 ("vm_page_dirty: page in cache!")); 457 KASSERT(m->queue - m->pc != PQ_FREE, 458 ("vm_page_dirty: page is free!")); 459 m->dirty = VM_PAGE_BITS_ALL; 460 } 461 462 /* 463 * vm_page_splay: 464 * 465 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 466 * the vm_page containing the given pindex. If, however, that 467 * pindex is not found in the vm_object, returns a vm_page that is 468 * adjacent to the pindex, coming before or after it. 469 */ 470 vm_page_t 471 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 472 { 473 struct vm_page dummy; 474 vm_page_t lefttreemax, righttreemin, y; 475 476 if (root == NULL) 477 return (root); 478 lefttreemax = righttreemin = &dummy; 479 for (;; root = y) { 480 if (pindex < root->pindex) { 481 if ((y = root->left) == NULL) 482 break; 483 if (pindex < y->pindex) { 484 /* Rotate right. */ 485 root->left = y->right; 486 y->right = root; 487 root = y; 488 if ((y = root->left) == NULL) 489 break; 490 } 491 /* Link into the new root's right tree. */ 492 righttreemin->left = root; 493 righttreemin = root; 494 } else if (pindex > root->pindex) { 495 if ((y = root->right) == NULL) 496 break; 497 if (pindex > y->pindex) { 498 /* Rotate left. */ 499 root->right = y->left; 500 y->left = root; 501 root = y; 502 if ((y = root->right) == NULL) 503 break; 504 } 505 /* Link into the new root's left tree. */ 506 lefttreemax->right = root; 507 lefttreemax = root; 508 } else 509 break; 510 } 511 /* Assemble the new root. */ 512 lefttreemax->right = root->left; 513 righttreemin->left = root->right; 514 root->left = dummy.right; 515 root->right = dummy.left; 516 return (root); 517 } 518 519 /* 520 * vm_page_insert: [ internal use only ] 521 * 522 * Inserts the given mem entry into the object and object list. 523 * 524 * The pagetables are not updated but will presumably fault the page 525 * in if necessary, or if a kernel page the caller will at some point 526 * enter the page into the kernel's pmap. We are not allowed to block 527 * here so we *can't* do this anyway. 528 * 529 * The object and page must be locked, and must be splhigh. 530 * This routine may not block. 531 */ 532 void 533 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 534 { 535 vm_page_t root; 536 537 if (!VM_OBJECT_LOCKED(object)) 538 GIANT_REQUIRED; 539 if (m->object != NULL) 540 panic("vm_page_insert: already inserted"); 541 542 /* 543 * Record the object/offset pair in this page 544 */ 545 m->object = object; 546 m->pindex = pindex; 547 548 /* 549 * Now link into the object's ordered list of backed pages. 550 */ 551 root = object->root; 552 if (root == NULL) { 553 m->left = NULL; 554 m->right = NULL; 555 TAILQ_INSERT_TAIL(&object->memq, m, listq); 556 } else { 557 root = vm_page_splay(pindex, root); 558 if (pindex < root->pindex) { 559 m->left = root->left; 560 m->right = root; 561 root->left = NULL; 562 TAILQ_INSERT_BEFORE(root, m, listq); 563 } else { 564 m->right = root->right; 565 m->left = root; 566 root->right = NULL; 567 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 568 } 569 } 570 object->root = m; 571 object->generation++; 572 573 /* 574 * show that the object has one more resident page. 575 */ 576 object->resident_page_count++; 577 578 /* 579 * Since we are inserting a new and possibly dirty page, 580 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 581 */ 582 if (m->flags & PG_WRITEABLE) 583 vm_object_set_writeable_dirty(object); 584 } 585 586 /* 587 * vm_page_remove: 588 * NOTE: used by device pager as well -wfj 589 * 590 * Removes the given mem entry from the object/offset-page 591 * table and the object page list, but do not invalidate/terminate 592 * the backing store. 593 * 594 * The object and page must be locked, and at splhigh. 595 * The underlying pmap entry (if any) is NOT removed here. 596 * This routine may not block. 597 */ 598 void 599 vm_page_remove(vm_page_t m) 600 { 601 vm_object_t object; 602 vm_page_t root; 603 604 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 605 if (m->object == NULL) 606 return; 607 if (!VM_OBJECT_LOCKED(m->object)) 608 GIANT_REQUIRED; 609 if ((m->flags & PG_BUSY) == 0) { 610 panic("vm_page_remove: page not busy"); 611 } 612 613 /* 614 * Basically destroy the page. 615 */ 616 vm_page_wakeup(m); 617 618 object = m->object; 619 620 /* 621 * Now remove from the object's list of backed pages. 622 */ 623 if (m != object->root) 624 vm_page_splay(m->pindex, object->root); 625 if (m->left == NULL) 626 root = m->right; 627 else { 628 root = vm_page_splay(m->pindex, m->left); 629 root->right = m->right; 630 } 631 object->root = root; 632 TAILQ_REMOVE(&object->memq, m, listq); 633 634 /* 635 * And show that the object has one fewer resident page. 636 */ 637 object->resident_page_count--; 638 object->generation++; 639 640 m->object = NULL; 641 } 642 643 /* 644 * vm_page_lookup: 645 * 646 * Returns the page associated with the object/offset 647 * pair specified; if none is found, NULL is returned. 648 * 649 * The object must be locked. 650 * This routine may not block. 651 * This is a critical path routine 652 */ 653 vm_page_t 654 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 655 { 656 vm_page_t m; 657 658 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 659 m = vm_page_splay(pindex, object->root); 660 if ((object->root = m) != NULL && m->pindex != pindex) 661 m = NULL; 662 return (m); 663 } 664 665 /* 666 * vm_page_rename: 667 * 668 * Move the given memory entry from its 669 * current object to the specified target object/offset. 670 * 671 * The object must be locked. 672 * This routine may not block. 673 * 674 * Note: this routine will raise itself to splvm(), the caller need not. 675 * 676 * Note: swap associated with the page must be invalidated by the move. We 677 * have to do this for several reasons: (1) we aren't freeing the 678 * page, (2) we are dirtying the page, (3) the VM system is probably 679 * moving the page from object A to B, and will then later move 680 * the backing store from A to B and we can't have a conflict. 681 * 682 * Note: we *always* dirty the page. It is necessary both for the 683 * fact that we moved it, and because we may be invalidating 684 * swap. If the page is on the cache, we have to deactivate it 685 * or vm_page_dirty() will panic. Dirty pages are not allowed 686 * on the cache. 687 */ 688 void 689 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 690 { 691 int s; 692 693 s = splvm(); 694 vm_page_remove(m); 695 vm_page_insert(m, new_object, new_pindex); 696 if (m->queue - m->pc == PQ_CACHE) 697 vm_page_deactivate(m); 698 vm_page_dirty(m); 699 splx(s); 700 } 701 702 /* 703 * vm_page_select_cache: 704 * 705 * Find a page on the cache queue with color optimization. As pages 706 * might be found, but not applicable, they are deactivated. This 707 * keeps us from using potentially busy cached pages. 708 * 709 * This routine must be called at splvm(). 710 * This routine may not block. 711 */ 712 static vm_page_t 713 vm_page_select_cache(int color) 714 { 715 vm_page_t m; 716 717 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 718 while (TRUE) { 719 m = vm_pageq_find(PQ_CACHE, color, FALSE); 720 if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 721 m->hold_count || m->wire_count || 722 (!VM_OBJECT_TRYLOCK(m->object) && 723 !VM_OBJECT_LOCKED(m->object)))) { 724 vm_page_deactivate(m); 725 continue; 726 } 727 return m; 728 } 729 } 730 731 /* 732 * vm_page_alloc: 733 * 734 * Allocate and return a memory cell associated 735 * with this VM object/offset pair. 736 * 737 * page_req classes: 738 * VM_ALLOC_NORMAL normal process request 739 * VM_ALLOC_SYSTEM system *really* needs a page 740 * VM_ALLOC_INTERRUPT interrupt time request 741 * VM_ALLOC_ZERO zero page 742 * 743 * This routine may not block. 744 * 745 * Additional special handling is required when called from an 746 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with 747 * the page cache in this case. 748 */ 749 vm_page_t 750 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 751 { 752 vm_object_t m_object; 753 vm_page_t m = NULL; 754 int color, flags, page_req, s; 755 756 page_req = req & VM_ALLOC_CLASS_MASK; 757 758 if ((req & VM_ALLOC_NOOBJ) == 0) { 759 KASSERT(object != NULL, 760 ("vm_page_alloc: NULL object.")); 761 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 762 KASSERT(!vm_page_lookup(object, pindex), 763 ("vm_page_alloc: page already allocated")); 764 color = (pindex + object->pg_color) & PQ_L2_MASK; 765 } else 766 color = pindex & PQ_L2_MASK; 767 768 /* 769 * The pager is allowed to eat deeper into the free page list. 770 */ 771 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 772 page_req = VM_ALLOC_SYSTEM; 773 }; 774 775 s = splvm(); 776 loop: 777 mtx_lock_spin(&vm_page_queue_free_mtx); 778 if (cnt.v_free_count > cnt.v_free_reserved || 779 (page_req == VM_ALLOC_SYSTEM && 780 cnt.v_cache_count == 0 && 781 cnt.v_free_count > cnt.v_interrupt_free_min) || 782 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) { 783 /* 784 * Allocate from the free queue if the number of free pages 785 * exceeds the minimum for the request class. 786 */ 787 m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0); 788 } else if (page_req != VM_ALLOC_INTERRUPT) { 789 mtx_unlock_spin(&vm_page_queue_free_mtx); 790 /* 791 * Allocatable from cache (non-interrupt only). On success, 792 * we must free the page and try again, thus ensuring that 793 * cnt.v_*_free_min counters are replenished. 794 */ 795 vm_page_lock_queues(); 796 if ((m = vm_page_select_cache(color)) == NULL) { 797 vm_page_unlock_queues(); 798 splx(s); 799 #if defined(DIAGNOSTIC) 800 if (cnt.v_cache_count > 0) 801 printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count); 802 #endif 803 atomic_add_int(&vm_pageout_deficit, 1); 804 pagedaemon_wakeup(); 805 return (NULL); 806 } 807 KASSERT(m->dirty == 0, ("Found dirty cache page %p", m)); 808 m_object = m->object; 809 VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED); 810 vm_page_busy(m); 811 pmap_remove_all(m); 812 vm_page_free(m); 813 vm_page_unlock_queues(); 814 if (m_object != object) 815 VM_OBJECT_UNLOCK(m_object); 816 goto loop; 817 } else { 818 /* 819 * Not allocatable from cache from interrupt, give up. 820 */ 821 mtx_unlock_spin(&vm_page_queue_free_mtx); 822 splx(s); 823 atomic_add_int(&vm_pageout_deficit, 1); 824 pagedaemon_wakeup(); 825 return (NULL); 826 } 827 828 /* 829 * At this point we had better have found a good page. 830 */ 831 832 KASSERT( 833 m != NULL, 834 ("vm_page_alloc(): missing page on free queue\n") 835 ); 836 837 /* 838 * Remove from free queue 839 */ 840 841 vm_pageq_remove_nowakeup(m); 842 843 /* 844 * Initialize structure. Only the PG_ZERO flag is inherited. 845 */ 846 flags = PG_BUSY; 847 if (m->flags & PG_ZERO) { 848 vm_page_zero_count--; 849 if (req & VM_ALLOC_ZERO) 850 flags = PG_ZERO | PG_BUSY; 851 } 852 m->flags = flags; 853 if (req & VM_ALLOC_WIRED) { 854 atomic_add_int(&cnt.v_wire_count, 1); 855 m->wire_count = 1; 856 } else 857 m->wire_count = 0; 858 m->hold_count = 0; 859 m->act_count = 0; 860 m->busy = 0; 861 m->valid = 0; 862 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 863 mtx_unlock_spin(&vm_page_queue_free_mtx); 864 865 /* 866 * vm_page_insert() is safe prior to the splx(). Note also that 867 * inserting a page here does not insert it into the pmap (which 868 * could cause us to block allocating memory). We cannot block 869 * anywhere. 870 */ 871 if ((req & VM_ALLOC_NOOBJ) == 0) 872 vm_page_insert(m, object, pindex); 873 874 /* 875 * Don't wakeup too often - wakeup the pageout daemon when 876 * we would be nearly out of memory. 877 */ 878 if (vm_paging_needed()) 879 pagedaemon_wakeup(); 880 881 splx(s); 882 return (m); 883 } 884 885 /* 886 * vm_wait: (also see VM_WAIT macro) 887 * 888 * Block until free pages are available for allocation 889 * - Called in various places before memory allocations. 890 */ 891 void 892 vm_wait(void) 893 { 894 int s; 895 896 s = splvm(); 897 vm_page_lock_queues(); 898 if (curproc == pageproc) { 899 vm_pageout_pages_needed = 1; 900 msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx, 901 PDROP | PSWP, "VMWait", 0); 902 } else { 903 if (!vm_pages_needed) { 904 vm_pages_needed = 1; 905 wakeup(&vm_pages_needed); 906 } 907 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM, 908 "vmwait", 0); 909 } 910 splx(s); 911 } 912 913 /* 914 * vm_waitpfault: (also see VM_WAITPFAULT macro) 915 * 916 * Block until free pages are available for allocation 917 * - Called only in vm_fault so that processes page faulting 918 * can be easily tracked. 919 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 920 * processes will be able to grab memory first. Do not change 921 * this balance without careful testing first. 922 */ 923 void 924 vm_waitpfault(void) 925 { 926 int s; 927 928 s = splvm(); 929 vm_page_lock_queues(); 930 if (!vm_pages_needed) { 931 vm_pages_needed = 1; 932 wakeup(&vm_pages_needed); 933 } 934 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER, 935 "pfault", 0); 936 splx(s); 937 } 938 939 /* 940 * vm_page_activate: 941 * 942 * Put the specified page on the active list (if appropriate). 943 * Ensure that act_count is at least ACT_INIT but do not otherwise 944 * mess with it. 945 * 946 * The page queues must be locked. 947 * This routine may not block. 948 */ 949 void 950 vm_page_activate(vm_page_t m) 951 { 952 int s; 953 954 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 955 s = splvm(); 956 if (m->queue != PQ_ACTIVE) { 957 if ((m->queue - m->pc) == PQ_CACHE) 958 cnt.v_reactivated++; 959 vm_pageq_remove(m); 960 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 961 if (m->act_count < ACT_INIT) 962 m->act_count = ACT_INIT; 963 vm_pageq_enqueue(PQ_ACTIVE, m); 964 } 965 } else { 966 if (m->act_count < ACT_INIT) 967 m->act_count = ACT_INIT; 968 } 969 splx(s); 970 } 971 972 /* 973 * vm_page_free_wakeup: 974 * 975 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 976 * routine is called when a page has been added to the cache or free 977 * queues. 978 * 979 * This routine may not block. 980 * This routine must be called at splvm() 981 */ 982 static __inline void 983 vm_page_free_wakeup(void) 984 { 985 986 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 987 /* 988 * if pageout daemon needs pages, then tell it that there are 989 * some free. 990 */ 991 if (vm_pageout_pages_needed && 992 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 993 wakeup(&vm_pageout_pages_needed); 994 vm_pageout_pages_needed = 0; 995 } 996 /* 997 * wakeup processes that are waiting on memory if we hit a 998 * high water mark. And wakeup scheduler process if we have 999 * lots of memory. this process will swapin processes. 1000 */ 1001 if (vm_pages_needed && !vm_page_count_min()) { 1002 vm_pages_needed = 0; 1003 wakeup(&cnt.v_free_count); 1004 } 1005 } 1006 1007 /* 1008 * vm_page_free_toq: 1009 * 1010 * Returns the given page to the PQ_FREE list, 1011 * disassociating it with any VM object. 1012 * 1013 * Object and page must be locked prior to entry. 1014 * This routine may not block. 1015 */ 1016 1017 void 1018 vm_page_free_toq(vm_page_t m) 1019 { 1020 int s; 1021 struct vpgqueues *pq; 1022 vm_object_t object = m->object; 1023 1024 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1025 s = splvm(); 1026 cnt.v_tfree++; 1027 1028 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1029 printf( 1030 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 1031 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 1032 m->hold_count); 1033 if ((m->queue - m->pc) == PQ_FREE) 1034 panic("vm_page_free: freeing free page"); 1035 else 1036 panic("vm_page_free: freeing busy page"); 1037 } 1038 1039 /* 1040 * unqueue, then remove page. Note that we cannot destroy 1041 * the page here because we do not want to call the pager's 1042 * callback routine until after we've put the page on the 1043 * appropriate free queue. 1044 */ 1045 vm_pageq_remove_nowakeup(m); 1046 vm_page_remove(m); 1047 1048 /* 1049 * If fictitious remove object association and 1050 * return, otherwise delay object association removal. 1051 */ 1052 if ((m->flags & PG_FICTITIOUS) != 0) { 1053 splx(s); 1054 return; 1055 } 1056 1057 m->valid = 0; 1058 vm_page_undirty(m); 1059 1060 if (m->wire_count != 0) { 1061 if (m->wire_count > 1) { 1062 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1063 m->wire_count, (long)m->pindex); 1064 } 1065 panic("vm_page_free: freeing wired page\n"); 1066 } 1067 1068 /* 1069 * If we've exhausted the object's resident pages we want to free 1070 * it up. 1071 */ 1072 if (object && 1073 (object->type == OBJT_VNODE) && 1074 ((object->flags & OBJ_DEAD) == 0) 1075 ) { 1076 struct vnode *vp = (struct vnode *)object->handle; 1077 1078 if (vp) { 1079 VI_LOCK(vp); 1080 if (VSHOULDFREE(vp)) 1081 vfree(vp); 1082 VI_UNLOCK(vp); 1083 } 1084 } 1085 1086 /* 1087 * Clear the UNMANAGED flag when freeing an unmanaged page. 1088 */ 1089 if (m->flags & PG_UNMANAGED) { 1090 m->flags &= ~PG_UNMANAGED; 1091 } 1092 1093 if (m->hold_count != 0) { 1094 m->flags &= ~PG_ZERO; 1095 m->queue = PQ_HOLD; 1096 } else 1097 m->queue = PQ_FREE + m->pc; 1098 pq = &vm_page_queues[m->queue]; 1099 mtx_lock_spin(&vm_page_queue_free_mtx); 1100 pq->lcnt++; 1101 ++(*pq->cnt); 1102 1103 /* 1104 * Put zero'd pages on the end ( where we look for zero'd pages 1105 * first ) and non-zerod pages at the head. 1106 */ 1107 if (m->flags & PG_ZERO) { 1108 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1109 ++vm_page_zero_count; 1110 } else { 1111 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1112 } 1113 mtx_unlock_spin(&vm_page_queue_free_mtx); 1114 vm_page_free_wakeup(); 1115 splx(s); 1116 } 1117 1118 /* 1119 * vm_page_unmanage: 1120 * 1121 * Prevent PV management from being done on the page. The page is 1122 * removed from the paging queues as if it were wired, and as a 1123 * consequence of no longer being managed the pageout daemon will not 1124 * touch it (since there is no way to locate the pte mappings for the 1125 * page). madvise() calls that mess with the pmap will also no longer 1126 * operate on the page. 1127 * 1128 * Beyond that the page is still reasonably 'normal'. Freeing the page 1129 * will clear the flag. 1130 * 1131 * This routine is used by OBJT_PHYS objects - objects using unswappable 1132 * physical memory as backing store rather then swap-backed memory and 1133 * will eventually be extended to support 4MB unmanaged physical 1134 * mappings. 1135 */ 1136 void 1137 vm_page_unmanage(vm_page_t m) 1138 { 1139 int s; 1140 1141 s = splvm(); 1142 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1143 if ((m->flags & PG_UNMANAGED) == 0) { 1144 if (m->wire_count == 0) 1145 vm_pageq_remove(m); 1146 } 1147 vm_page_flag_set(m, PG_UNMANAGED); 1148 splx(s); 1149 } 1150 1151 /* 1152 * vm_page_wire: 1153 * 1154 * Mark this page as wired down by yet 1155 * another map, removing it from paging queues 1156 * as necessary. 1157 * 1158 * The page queues must be locked. 1159 * This routine may not block. 1160 */ 1161 void 1162 vm_page_wire(vm_page_t m) 1163 { 1164 int s; 1165 1166 /* 1167 * Only bump the wire statistics if the page is not already wired, 1168 * and only unqueue the page if it is on some queue (if it is unmanaged 1169 * it is already off the queues). 1170 */ 1171 s = splvm(); 1172 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1173 if (m->wire_count == 0) { 1174 if ((m->flags & PG_UNMANAGED) == 0) 1175 vm_pageq_remove(m); 1176 atomic_add_int(&cnt.v_wire_count, 1); 1177 } 1178 m->wire_count++; 1179 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1180 splx(s); 1181 } 1182 1183 /* 1184 * vm_page_unwire: 1185 * 1186 * Release one wiring of this page, potentially 1187 * enabling it to be paged again. 1188 * 1189 * Many pages placed on the inactive queue should actually go 1190 * into the cache, but it is difficult to figure out which. What 1191 * we do instead, if the inactive target is well met, is to put 1192 * clean pages at the head of the inactive queue instead of the tail. 1193 * This will cause them to be moved to the cache more quickly and 1194 * if not actively re-referenced, freed more quickly. If we just 1195 * stick these pages at the end of the inactive queue, heavy filesystem 1196 * meta-data accesses can cause an unnecessary paging load on memory bound 1197 * processes. This optimization causes one-time-use metadata to be 1198 * reused more quickly. 1199 * 1200 * BUT, if we are in a low-memory situation we have no choice but to 1201 * put clean pages on the cache queue. 1202 * 1203 * A number of routines use vm_page_unwire() to guarantee that the page 1204 * will go into either the inactive or active queues, and will NEVER 1205 * be placed in the cache - for example, just after dirtying a page. 1206 * dirty pages in the cache are not allowed. 1207 * 1208 * The page queues must be locked. 1209 * This routine may not block. 1210 */ 1211 void 1212 vm_page_unwire(vm_page_t m, int activate) 1213 { 1214 int s; 1215 1216 s = splvm(); 1217 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1218 if (m->wire_count > 0) { 1219 m->wire_count--; 1220 if (m->wire_count == 0) { 1221 atomic_subtract_int(&cnt.v_wire_count, 1); 1222 if (m->flags & PG_UNMANAGED) { 1223 ; 1224 } else if (activate) 1225 vm_pageq_enqueue(PQ_ACTIVE, m); 1226 else { 1227 vm_page_flag_clear(m, PG_WINATCFLS); 1228 vm_pageq_enqueue(PQ_INACTIVE, m); 1229 } 1230 } 1231 } else { 1232 panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count); 1233 } 1234 splx(s); 1235 } 1236 1237 1238 /* 1239 * Move the specified page to the inactive queue. If the page has 1240 * any associated swap, the swap is deallocated. 1241 * 1242 * Normally athead is 0 resulting in LRU operation. athead is set 1243 * to 1 if we want this page to be 'as if it were placed in the cache', 1244 * except without unmapping it from the process address space. 1245 * 1246 * This routine may not block. 1247 */ 1248 static __inline void 1249 _vm_page_deactivate(vm_page_t m, int athead) 1250 { 1251 int s; 1252 1253 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1254 /* 1255 * Ignore if already inactive. 1256 */ 1257 if (m->queue == PQ_INACTIVE) 1258 return; 1259 1260 s = splvm(); 1261 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1262 if ((m->queue - m->pc) == PQ_CACHE) 1263 cnt.v_reactivated++; 1264 vm_page_flag_clear(m, PG_WINATCFLS); 1265 vm_pageq_remove(m); 1266 if (athead) 1267 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1268 else 1269 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1270 m->queue = PQ_INACTIVE; 1271 vm_page_queues[PQ_INACTIVE].lcnt++; 1272 cnt.v_inactive_count++; 1273 } 1274 splx(s); 1275 } 1276 1277 void 1278 vm_page_deactivate(vm_page_t m) 1279 { 1280 _vm_page_deactivate(m, 0); 1281 } 1282 1283 /* 1284 * vm_page_try_to_cache: 1285 * 1286 * Returns 0 on failure, 1 on success 1287 */ 1288 int 1289 vm_page_try_to_cache(vm_page_t m) 1290 { 1291 1292 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1293 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1294 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1295 return (0); 1296 } 1297 vm_page_test_dirty(m); 1298 if (m->dirty) 1299 return (0); 1300 vm_page_cache(m); 1301 return (1); 1302 } 1303 1304 /* 1305 * vm_page_try_to_free() 1306 * 1307 * Attempt to free the page. If we cannot free it, we do nothing. 1308 * 1 is returned on success, 0 on failure. 1309 */ 1310 int 1311 vm_page_try_to_free(vm_page_t m) 1312 { 1313 1314 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1315 if (m->object != NULL) 1316 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1317 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1318 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1319 return (0); 1320 } 1321 vm_page_test_dirty(m); 1322 if (m->dirty) 1323 return (0); 1324 vm_page_busy(m); 1325 pmap_remove_all(m); 1326 vm_page_free(m); 1327 return (1); 1328 } 1329 1330 /* 1331 * vm_page_cache 1332 * 1333 * Put the specified page onto the page cache queue (if appropriate). 1334 * 1335 * This routine may not block. 1336 */ 1337 void 1338 vm_page_cache(vm_page_t m) 1339 { 1340 int s; 1341 1342 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1343 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 1344 m->hold_count || m->wire_count) { 1345 printf("vm_page_cache: attempting to cache busy page\n"); 1346 return; 1347 } 1348 if ((m->queue - m->pc) == PQ_CACHE) 1349 return; 1350 1351 /* 1352 * Remove all pmaps and indicate that the page is not 1353 * writeable or mapped. 1354 */ 1355 pmap_remove_all(m); 1356 if (m->dirty != 0) { 1357 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1358 (long)m->pindex); 1359 } 1360 s = splvm(); 1361 vm_pageq_remove_nowakeup(m); 1362 vm_pageq_enqueue(PQ_CACHE + m->pc, m); 1363 vm_page_free_wakeup(); 1364 splx(s); 1365 } 1366 1367 /* 1368 * vm_page_dontneed 1369 * 1370 * Cache, deactivate, or do nothing as appropriate. This routine 1371 * is typically used by madvise() MADV_DONTNEED. 1372 * 1373 * Generally speaking we want to move the page into the cache so 1374 * it gets reused quickly. However, this can result in a silly syndrome 1375 * due to the page recycling too quickly. Small objects will not be 1376 * fully cached. On the otherhand, if we move the page to the inactive 1377 * queue we wind up with a problem whereby very large objects 1378 * unnecessarily blow away our inactive and cache queues. 1379 * 1380 * The solution is to move the pages based on a fixed weighting. We 1381 * either leave them alone, deactivate them, or move them to the cache, 1382 * where moving them to the cache has the highest weighting. 1383 * By forcing some pages into other queues we eventually force the 1384 * system to balance the queues, potentially recovering other unrelated 1385 * space from active. The idea is to not force this to happen too 1386 * often. 1387 */ 1388 void 1389 vm_page_dontneed(vm_page_t m) 1390 { 1391 static int dnweight; 1392 int dnw; 1393 int head; 1394 1395 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1396 dnw = ++dnweight; 1397 1398 /* 1399 * occassionally leave the page alone 1400 */ 1401 if ((dnw & 0x01F0) == 0 || 1402 m->queue == PQ_INACTIVE || 1403 m->queue - m->pc == PQ_CACHE 1404 ) { 1405 if (m->act_count >= ACT_INIT) 1406 --m->act_count; 1407 return; 1408 } 1409 1410 if (m->dirty == 0) 1411 vm_page_test_dirty(m); 1412 1413 if (m->dirty || (dnw & 0x0070) == 0) { 1414 /* 1415 * Deactivate the page 3 times out of 32. 1416 */ 1417 head = 0; 1418 } else { 1419 /* 1420 * Cache the page 28 times out of every 32. Note that 1421 * the page is deactivated instead of cached, but placed 1422 * at the head of the queue instead of the tail. 1423 */ 1424 head = 1; 1425 } 1426 _vm_page_deactivate(m, head); 1427 } 1428 1429 /* 1430 * Grab a page, waiting until we are waken up due to the page 1431 * changing state. We keep on waiting, if the page continues 1432 * to be in the object. If the page doesn't exist, allocate it. 1433 * 1434 * This routine may block. 1435 */ 1436 vm_page_t 1437 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1438 { 1439 vm_page_t m; 1440 int s, generation; 1441 1442 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1443 retrylookup: 1444 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1445 vm_page_lock_queues(); 1446 if (m->busy || (m->flags & PG_BUSY)) { 1447 generation = object->generation; 1448 1449 s = splvm(); 1450 while ((object->generation == generation) && 1451 (m->busy || (m->flags & PG_BUSY))) { 1452 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1453 VM_OBJECT_UNLOCK(object); 1454 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0); 1455 VM_OBJECT_LOCK(object); 1456 if ((allocflags & VM_ALLOC_RETRY) == 0) { 1457 splx(s); 1458 return NULL; 1459 } 1460 vm_page_lock_queues(); 1461 } 1462 vm_page_unlock_queues(); 1463 splx(s); 1464 goto retrylookup; 1465 } else { 1466 if (allocflags & VM_ALLOC_WIRED) 1467 vm_page_wire(m); 1468 vm_page_busy(m); 1469 vm_page_unlock_queues(); 1470 return m; 1471 } 1472 } 1473 1474 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1475 if (m == NULL) { 1476 VM_OBJECT_UNLOCK(object); 1477 VM_WAIT; 1478 VM_OBJECT_LOCK(object); 1479 if ((allocflags & VM_ALLOC_RETRY) == 0) 1480 return NULL; 1481 goto retrylookup; 1482 } 1483 1484 return m; 1485 } 1486 1487 /* 1488 * Mapping function for valid bits or for dirty bits in 1489 * a page. May not block. 1490 * 1491 * Inputs are required to range within a page. 1492 */ 1493 __inline int 1494 vm_page_bits(int base, int size) 1495 { 1496 int first_bit; 1497 int last_bit; 1498 1499 KASSERT( 1500 base + size <= PAGE_SIZE, 1501 ("vm_page_bits: illegal base/size %d/%d", base, size) 1502 ); 1503 1504 if (size == 0) /* handle degenerate case */ 1505 return (0); 1506 1507 first_bit = base >> DEV_BSHIFT; 1508 last_bit = (base + size - 1) >> DEV_BSHIFT; 1509 1510 return ((2 << last_bit) - (1 << first_bit)); 1511 } 1512 1513 /* 1514 * vm_page_set_validclean: 1515 * 1516 * Sets portions of a page valid and clean. The arguments are expected 1517 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1518 * of any partial chunks touched by the range. The invalid portion of 1519 * such chunks will be zero'd. 1520 * 1521 * This routine may not block. 1522 * 1523 * (base + size) must be less then or equal to PAGE_SIZE. 1524 */ 1525 void 1526 vm_page_set_validclean(vm_page_t m, int base, int size) 1527 { 1528 int pagebits; 1529 int frag; 1530 int endoff; 1531 1532 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1533 if (size == 0) /* handle degenerate case */ 1534 return; 1535 1536 /* 1537 * If the base is not DEV_BSIZE aligned and the valid 1538 * bit is clear, we have to zero out a portion of the 1539 * first block. 1540 */ 1541 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1542 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1543 pmap_zero_page_area(m, frag, base - frag); 1544 1545 /* 1546 * If the ending offset is not DEV_BSIZE aligned and the 1547 * valid bit is clear, we have to zero out a portion of 1548 * the last block. 1549 */ 1550 endoff = base + size; 1551 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1552 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1553 pmap_zero_page_area(m, endoff, 1554 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1555 1556 /* 1557 * Set valid, clear dirty bits. If validating the entire 1558 * page we can safely clear the pmap modify bit. We also 1559 * use this opportunity to clear the PG_NOSYNC flag. If a process 1560 * takes a write fault on a MAP_NOSYNC memory area the flag will 1561 * be set again. 1562 * 1563 * We set valid bits inclusive of any overlap, but we can only 1564 * clear dirty bits for DEV_BSIZE chunks that are fully within 1565 * the range. 1566 */ 1567 pagebits = vm_page_bits(base, size); 1568 m->valid |= pagebits; 1569 #if 0 /* NOT YET */ 1570 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1571 frag = DEV_BSIZE - frag; 1572 base += frag; 1573 size -= frag; 1574 if (size < 0) 1575 size = 0; 1576 } 1577 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1578 #endif 1579 m->dirty &= ~pagebits; 1580 if (base == 0 && size == PAGE_SIZE) { 1581 pmap_clear_modify(m); 1582 vm_page_flag_clear(m, PG_NOSYNC); 1583 } 1584 } 1585 1586 #if 0 1587 1588 void 1589 vm_page_set_dirty(vm_page_t m, int base, int size) 1590 { 1591 m->dirty |= vm_page_bits(base, size); 1592 } 1593 1594 #endif 1595 1596 void 1597 vm_page_clear_dirty(vm_page_t m, int base, int size) 1598 { 1599 1600 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1601 m->dirty &= ~vm_page_bits(base, size); 1602 } 1603 1604 /* 1605 * vm_page_set_invalid: 1606 * 1607 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1608 * valid and dirty bits for the effected areas are cleared. 1609 * 1610 * May not block. 1611 */ 1612 void 1613 vm_page_set_invalid(vm_page_t m, int base, int size) 1614 { 1615 int bits; 1616 1617 bits = vm_page_bits(base, size); 1618 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1619 m->valid &= ~bits; 1620 m->dirty &= ~bits; 1621 m->object->generation++; 1622 } 1623 1624 /* 1625 * vm_page_zero_invalid() 1626 * 1627 * The kernel assumes that the invalid portions of a page contain 1628 * garbage, but such pages can be mapped into memory by user code. 1629 * When this occurs, we must zero out the non-valid portions of the 1630 * page so user code sees what it expects. 1631 * 1632 * Pages are most often semi-valid when the end of a file is mapped 1633 * into memory and the file's size is not page aligned. 1634 */ 1635 void 1636 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1637 { 1638 int b; 1639 int i; 1640 1641 /* 1642 * Scan the valid bits looking for invalid sections that 1643 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1644 * valid bit may be set ) have already been zerod by 1645 * vm_page_set_validclean(). 1646 */ 1647 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1648 if (i == (PAGE_SIZE / DEV_BSIZE) || 1649 (m->valid & (1 << i)) 1650 ) { 1651 if (i > b) { 1652 pmap_zero_page_area(m, 1653 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1654 } 1655 b = i + 1; 1656 } 1657 } 1658 1659 /* 1660 * setvalid is TRUE when we can safely set the zero'd areas 1661 * as being valid. We can do this if there are no cache consistancy 1662 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1663 */ 1664 if (setvalid) 1665 m->valid = VM_PAGE_BITS_ALL; 1666 } 1667 1668 /* 1669 * vm_page_is_valid: 1670 * 1671 * Is (partial) page valid? Note that the case where size == 0 1672 * will return FALSE in the degenerate case where the page is 1673 * entirely invalid, and TRUE otherwise. 1674 * 1675 * May not block. 1676 */ 1677 int 1678 vm_page_is_valid(vm_page_t m, int base, int size) 1679 { 1680 int bits = vm_page_bits(base, size); 1681 1682 if (m->valid && ((m->valid & bits) == bits)) 1683 return 1; 1684 else 1685 return 0; 1686 } 1687 1688 /* 1689 * update dirty bits from pmap/mmu. May not block. 1690 */ 1691 void 1692 vm_page_test_dirty(vm_page_t m) 1693 { 1694 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1695 vm_page_dirty(m); 1696 } 1697 } 1698 1699 int so_zerocp_fullpage = 0; 1700 1701 void 1702 vm_page_cowfault(vm_page_t m) 1703 { 1704 vm_page_t mnew; 1705 vm_object_t object; 1706 vm_pindex_t pindex; 1707 1708 object = m->object; 1709 pindex = m->pindex; 1710 vm_page_busy(m); 1711 1712 retry_alloc: 1713 vm_page_remove(m); 1714 /* 1715 * An interrupt allocation is requested because the page 1716 * queues lock is held. 1717 */ 1718 mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT); 1719 if (mnew == NULL) { 1720 vm_page_insert(m, object, pindex); 1721 vm_page_unlock_queues(); 1722 VM_OBJECT_UNLOCK(object); 1723 VM_WAIT; 1724 VM_OBJECT_LOCK(object); 1725 vm_page_lock_queues(); 1726 goto retry_alloc; 1727 } 1728 1729 if (m->cow == 0) { 1730 /* 1731 * check to see if we raced with an xmit complete when 1732 * waiting to allocate a page. If so, put things back 1733 * the way they were 1734 */ 1735 vm_page_busy(mnew); 1736 vm_page_free(mnew); 1737 vm_page_insert(m, object, pindex); 1738 } else { /* clear COW & copy page */ 1739 if (so_zerocp_fullpage) { 1740 mnew->valid = VM_PAGE_BITS_ALL; 1741 } else { 1742 vm_page_copy(m, mnew); 1743 } 1744 vm_page_dirty(mnew); 1745 vm_page_flag_clear(mnew, PG_BUSY); 1746 } 1747 } 1748 1749 void 1750 vm_page_cowclear(vm_page_t m) 1751 { 1752 1753 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1754 if (m->cow) { 1755 m->cow--; 1756 /* 1757 * let vm_fault add back write permission lazily 1758 */ 1759 } 1760 /* 1761 * sf_buf_free() will free the page, so we needn't do it here 1762 */ 1763 } 1764 1765 void 1766 vm_page_cowsetup(vm_page_t m) 1767 { 1768 1769 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1770 m->cow++; 1771 pmap_page_protect(m, VM_PROT_READ); 1772 } 1773 1774 #include "opt_ddb.h" 1775 #ifdef DDB 1776 #include <sys/kernel.h> 1777 1778 #include <ddb/ddb.h> 1779 1780 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1781 { 1782 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 1783 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 1784 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 1785 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 1786 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 1787 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 1788 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 1789 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 1790 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 1791 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 1792 } 1793 1794 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1795 { 1796 int i; 1797 db_printf("PQ_FREE:"); 1798 for (i = 0; i < PQ_L2_SIZE; i++) { 1799 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 1800 } 1801 db_printf("\n"); 1802 1803 db_printf("PQ_CACHE:"); 1804 for (i = 0; i < PQ_L2_SIZE; i++) { 1805 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 1806 } 1807 db_printf("\n"); 1808 1809 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1810 vm_page_queues[PQ_ACTIVE].lcnt, 1811 vm_page_queues[PQ_INACTIVE].lcnt); 1812 } 1813 #endif /* DDB */ 1814