xref: /freebsd/sys/vm/vm_page.c (revision 718cf2ccb9956613756ab15d7a0e28f2c8e91cab)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
36  */
37 
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *			GENERAL RULES ON VM_PAGE MANIPULATION
67  *
68  *	- A page queue lock is required when adding or removing a page from a
69  *	  page queue regardless of other locks or the busy state of a page.
70  *
71  *		* In general, no thread besides the page daemon can acquire or
72  *		  hold more than one page queue lock at a time.
73  *
74  *		* The page daemon can acquire and hold any pair of page queue
75  *		  locks in any order.
76  *
77  *	- The object lock is required when inserting or removing
78  *	  pages from an object (vm_page_insert() or vm_page_remove()).
79  *
80  */
81 
82 /*
83  *	Resident memory management module.
84  */
85 
86 #include <sys/cdefs.h>
87 __FBSDID("$FreeBSD$");
88 
89 #include "opt_vm.h"
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/lock.h>
94 #include <sys/kernel.h>
95 #include <sys/limits.h>
96 #include <sys/linker.h>
97 #include <sys/malloc.h>
98 #include <sys/mman.h>
99 #include <sys/msgbuf.h>
100 #include <sys/mutex.h>
101 #include <sys/proc.h>
102 #include <sys/rwlock.h>
103 #include <sys/sbuf.h>
104 #include <sys/smp.h>
105 #include <sys/sysctl.h>
106 #include <sys/vmmeter.h>
107 #include <sys/vnode.h>
108 
109 #include <vm/vm.h>
110 #include <vm/pmap.h>
111 #include <vm/vm_param.h>
112 #include <vm/vm_kern.h>
113 #include <vm/vm_object.h>
114 #include <vm/vm_page.h>
115 #include <vm/vm_pageout.h>
116 #include <vm/vm_pager.h>
117 #include <vm/vm_phys.h>
118 #include <vm/vm_radix.h>
119 #include <vm/vm_reserv.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 #include <vm/uma_int.h>
123 
124 #include <machine/md_var.h>
125 
126 /*
127  *	Associated with page of user-allocatable memory is a
128  *	page structure.
129  */
130 
131 struct vm_domain vm_dom[MAXMEMDOM];
132 struct mtx_padalign __exclusive_cache_line vm_page_queue_free_mtx;
133 
134 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
135 
136 /*
137  * bogus page -- for I/O to/from partially complete buffers,
138  * or for paging into sparsely invalid regions.
139  */
140 vm_page_t bogus_page;
141 
142 vm_page_t vm_page_array;
143 long vm_page_array_size;
144 long first_page;
145 
146 static int boot_pages = UMA_BOOT_PAGES;
147 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
148     &boot_pages, 0,
149     "number of pages allocated for bootstrapping the VM system");
150 
151 static int pa_tryrelock_restart;
152 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
153     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
154 
155 static TAILQ_HEAD(, vm_page) blacklist_head;
156 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
157 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
158     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
159 
160 /* Is the page daemon waiting for free pages? */
161 static int vm_pageout_pages_needed;
162 
163 static uma_zone_t fakepg_zone;
164 
165 static void vm_page_alloc_check(vm_page_t m);
166 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
167 static void vm_page_enqueue(uint8_t queue, vm_page_t m);
168 static void vm_page_free_phys(vm_page_t m);
169 static void vm_page_free_wakeup(void);
170 static void vm_page_init(void *dummy);
171 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
172     vm_pindex_t pindex, vm_page_t mpred);
173 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
174     vm_page_t mpred);
175 static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
176     vm_paddr_t high);
177 static int vm_page_alloc_fail(vm_object_t object, int req);
178 
179 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
180 
181 static void
182 vm_page_init(void *dummy)
183 {
184 
185 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
186 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
187 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
188 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
189 }
190 
191 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
192 #if PAGE_SIZE == 32768
193 #ifdef CTASSERT
194 CTASSERT(sizeof(u_long) >= 8);
195 #endif
196 #endif
197 
198 /*
199  * Try to acquire a physical address lock while a pmap is locked.  If we
200  * fail to trylock we unlock and lock the pmap directly and cache the
201  * locked pa in *locked.  The caller should then restart their loop in case
202  * the virtual to physical mapping has changed.
203  */
204 int
205 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
206 {
207 	vm_paddr_t lockpa;
208 
209 	lockpa = *locked;
210 	*locked = pa;
211 	if (lockpa) {
212 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
213 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
214 			return (0);
215 		PA_UNLOCK(lockpa);
216 	}
217 	if (PA_TRYLOCK(pa))
218 		return (0);
219 	PMAP_UNLOCK(pmap);
220 	atomic_add_int(&pa_tryrelock_restart, 1);
221 	PA_LOCK(pa);
222 	PMAP_LOCK(pmap);
223 	return (EAGAIN);
224 }
225 
226 /*
227  *	vm_set_page_size:
228  *
229  *	Sets the page size, perhaps based upon the memory
230  *	size.  Must be called before any use of page-size
231  *	dependent functions.
232  */
233 void
234 vm_set_page_size(void)
235 {
236 	if (vm_cnt.v_page_size == 0)
237 		vm_cnt.v_page_size = PAGE_SIZE;
238 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
239 		panic("vm_set_page_size: page size not a power of two");
240 }
241 
242 /*
243  *	vm_page_blacklist_next:
244  *
245  *	Find the next entry in the provided string of blacklist
246  *	addresses.  Entries are separated by space, comma, or newline.
247  *	If an invalid integer is encountered then the rest of the
248  *	string is skipped.  Updates the list pointer to the next
249  *	character, or NULL if the string is exhausted or invalid.
250  */
251 static vm_paddr_t
252 vm_page_blacklist_next(char **list, char *end)
253 {
254 	vm_paddr_t bad;
255 	char *cp, *pos;
256 
257 	if (list == NULL || *list == NULL)
258 		return (0);
259 	if (**list =='\0') {
260 		*list = NULL;
261 		return (0);
262 	}
263 
264 	/*
265 	 * If there's no end pointer then the buffer is coming from
266 	 * the kenv and we know it's null-terminated.
267 	 */
268 	if (end == NULL)
269 		end = *list + strlen(*list);
270 
271 	/* Ensure that strtoq() won't walk off the end */
272 	if (*end != '\0') {
273 		if (*end == '\n' || *end == ' ' || *end  == ',')
274 			*end = '\0';
275 		else {
276 			printf("Blacklist not terminated, skipping\n");
277 			*list = NULL;
278 			return (0);
279 		}
280 	}
281 
282 	for (pos = *list; *pos != '\0'; pos = cp) {
283 		bad = strtoq(pos, &cp, 0);
284 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
285 			if (bad == 0) {
286 				if (++cp < end)
287 					continue;
288 				else
289 					break;
290 			}
291 		} else
292 			break;
293 		if (*cp == '\0' || ++cp >= end)
294 			*list = NULL;
295 		else
296 			*list = cp;
297 		return (trunc_page(bad));
298 	}
299 	printf("Garbage in RAM blacklist, skipping\n");
300 	*list = NULL;
301 	return (0);
302 }
303 
304 /*
305  *	vm_page_blacklist_check:
306  *
307  *	Iterate through the provided string of blacklist addresses, pulling
308  *	each entry out of the physical allocator free list and putting it
309  *	onto a list for reporting via the vm.page_blacklist sysctl.
310  */
311 static void
312 vm_page_blacklist_check(char *list, char *end)
313 {
314 	vm_paddr_t pa;
315 	vm_page_t m;
316 	char *next;
317 	int ret;
318 
319 	next = list;
320 	while (next != NULL) {
321 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
322 			continue;
323 		m = vm_phys_paddr_to_vm_page(pa);
324 		if (m == NULL)
325 			continue;
326 		mtx_lock(&vm_page_queue_free_mtx);
327 		ret = vm_phys_unfree_page(m);
328 		mtx_unlock(&vm_page_queue_free_mtx);
329 		if (ret == TRUE) {
330 			TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
331 			if (bootverbose)
332 				printf("Skipping page with pa 0x%jx\n",
333 				    (uintmax_t)pa);
334 		}
335 	}
336 }
337 
338 /*
339  *	vm_page_blacklist_load:
340  *
341  *	Search for a special module named "ram_blacklist".  It'll be a
342  *	plain text file provided by the user via the loader directive
343  *	of the same name.
344  */
345 static void
346 vm_page_blacklist_load(char **list, char **end)
347 {
348 	void *mod;
349 	u_char *ptr;
350 	u_int len;
351 
352 	mod = NULL;
353 	ptr = NULL;
354 
355 	mod = preload_search_by_type("ram_blacklist");
356 	if (mod != NULL) {
357 		ptr = preload_fetch_addr(mod);
358 		len = preload_fetch_size(mod);
359         }
360 	*list = ptr;
361 	if (ptr != NULL)
362 		*end = ptr + len;
363 	else
364 		*end = NULL;
365 	return;
366 }
367 
368 static int
369 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
370 {
371 	vm_page_t m;
372 	struct sbuf sbuf;
373 	int error, first;
374 
375 	first = 1;
376 	error = sysctl_wire_old_buffer(req, 0);
377 	if (error != 0)
378 		return (error);
379 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
380 	TAILQ_FOREACH(m, &blacklist_head, listq) {
381 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
382 		    (uintmax_t)m->phys_addr);
383 		first = 0;
384 	}
385 	error = sbuf_finish(&sbuf);
386 	sbuf_delete(&sbuf);
387 	return (error);
388 }
389 
390 static void
391 vm_page_domain_init(struct vm_domain *vmd)
392 {
393 	struct vm_pagequeue *pq;
394 	int i;
395 
396 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
397 	    "vm inactive pagequeue";
398 	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
399 	    &vm_cnt.v_inactive_count;
400 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
401 	    "vm active pagequeue";
402 	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
403 	    &vm_cnt.v_active_count;
404 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
405 	    "vm laundry pagequeue";
406 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_vcnt) =
407 	    &vm_cnt.v_laundry_count;
408 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
409 	    "vm unswappable pagequeue";
410 	/* Unswappable dirty pages are counted as being in the laundry. */
411 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_vcnt) =
412 	    &vm_cnt.v_laundry_count;
413 	vmd->vmd_page_count = 0;
414 	vmd->vmd_free_count = 0;
415 	vmd->vmd_segs = 0;
416 	vmd->vmd_oom = FALSE;
417 	for (i = 0; i < PQ_COUNT; i++) {
418 		pq = &vmd->vmd_pagequeues[i];
419 		TAILQ_INIT(&pq->pq_pl);
420 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
421 		    MTX_DEF | MTX_DUPOK);
422 	}
423 }
424 
425 /*
426  * Initialize a physical page in preparation for adding it to the free
427  * lists.
428  */
429 static void
430 vm_page_init_page(vm_paddr_t pa)
431 {
432 	vm_page_t m;
433 
434 	m = vm_phys_paddr_to_vm_page(pa);
435 	m->object = NULL;
436 	m->wire_count = 0;
437 	m->busy_lock = VPB_UNBUSIED;
438 	m->hold_count = 0;
439 	m->flags = 0;
440 	m->phys_addr = pa;
441 	m->queue = PQ_NONE;
442 	m->psind = 0;
443 	m->segind = vm_phys_paddr_to_segind(pa);
444 	m->order = VM_NFREEORDER;
445 	m->pool = VM_FREEPOOL_DEFAULT;
446 	m->valid = m->dirty = 0;
447 	pmap_page_init(m);
448 }
449 
450 /*
451  *	vm_page_startup:
452  *
453  *	Initializes the resident memory module.  Allocates physical memory for
454  *	bootstrapping UMA and some data structures that are used to manage
455  *	physical pages.  Initializes these structures, and populates the free
456  *	page queues.
457  */
458 vm_offset_t
459 vm_page_startup(vm_offset_t vaddr)
460 {
461 	struct vm_domain *vmd;
462 	struct vm_phys_seg *seg;
463 	vm_page_t m;
464 	char *list, *listend;
465 	vm_offset_t mapped;
466 	vm_paddr_t end, high_avail, low_avail, new_end, page_range, size;
467 	vm_paddr_t biggestsize, last_pa, pa;
468 	u_long pagecount;
469 	int biggestone, i, pages_per_zone, segind;
470 
471 	biggestsize = 0;
472 	biggestone = 0;
473 	vaddr = round_page(vaddr);
474 
475 	for (i = 0; phys_avail[i + 1]; i += 2) {
476 		phys_avail[i] = round_page(phys_avail[i]);
477 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
478 	}
479 	for (i = 0; phys_avail[i + 1]; i += 2) {
480 		size = phys_avail[i + 1] - phys_avail[i];
481 		if (size > biggestsize) {
482 			biggestone = i;
483 			biggestsize = size;
484 		}
485 	}
486 
487 	end = phys_avail[biggestone+1];
488 
489 	/*
490 	 * Initialize the page and queue locks.
491 	 */
492 	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
493 	for (i = 0; i < PA_LOCK_COUNT; i++)
494 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
495 	for (i = 0; i < vm_ndomains; i++)
496 		vm_page_domain_init(&vm_dom[i]);
497 
498 	/*
499 	 * Almost all of the pages needed for bootstrapping UMA are used
500 	 * for zone structures, so if the number of CPUs results in those
501 	 * structures taking more than one page each, we set aside more pages
502 	 * in proportion to the zone structure size.
503 	 */
504 	pages_per_zone = howmany(sizeof(struct uma_zone) +
505 	    sizeof(struct uma_cache) * (mp_maxid + 1) +
506 	    roundup2(sizeof(struct uma_slab), sizeof(void *)), UMA_SLAB_SIZE);
507 	if (pages_per_zone > 1) {
508 		/* Reserve more pages so that we don't run out. */
509 		boot_pages = UMA_BOOT_PAGES_ZONES * pages_per_zone;
510 	}
511 
512 	/*
513 	 * Allocate memory for use when boot strapping the kernel memory
514 	 * allocator.
515 	 *
516 	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
517 	 * manually fetch the value.
518 	 */
519 	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
520 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
521 	new_end = trunc_page(new_end);
522 	mapped = pmap_map(&vaddr, new_end, end,
523 	    VM_PROT_READ | VM_PROT_WRITE);
524 	bzero((void *)mapped, end - new_end);
525 	uma_startup((void *)mapped, boot_pages);
526 
527 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
528     defined(__i386__) || defined(__mips__)
529 	/*
530 	 * Allocate a bitmap to indicate that a random physical page
531 	 * needs to be included in a minidump.
532 	 *
533 	 * The amd64 port needs this to indicate which direct map pages
534 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
535 	 *
536 	 * However, i386 still needs this workspace internally within the
537 	 * minidump code.  In theory, they are not needed on i386, but are
538 	 * included should the sf_buf code decide to use them.
539 	 */
540 	last_pa = 0;
541 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
542 		if (dump_avail[i + 1] > last_pa)
543 			last_pa = dump_avail[i + 1];
544 	page_range = last_pa / PAGE_SIZE;
545 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
546 	new_end -= vm_page_dump_size;
547 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
548 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
549 	bzero((void *)vm_page_dump, vm_page_dump_size);
550 #else
551 	(void)last_pa;
552 #endif
553 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
554 	/*
555 	 * Include the UMA bootstrap pages and vm_page_dump in a crash dump.
556 	 * When pmap_map() uses the direct map, they are not automatically
557 	 * included.
558 	 */
559 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
560 		dump_add_page(pa);
561 #endif
562 	phys_avail[biggestone + 1] = new_end;
563 #ifdef __amd64__
564 	/*
565 	 * Request that the physical pages underlying the message buffer be
566 	 * included in a crash dump.  Since the message buffer is accessed
567 	 * through the direct map, they are not automatically included.
568 	 */
569 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
570 	last_pa = pa + round_page(msgbufsize);
571 	while (pa < last_pa) {
572 		dump_add_page(pa);
573 		pa += PAGE_SIZE;
574 	}
575 #endif
576 	/*
577 	 * Compute the number of pages of memory that will be available for
578 	 * use, taking into account the overhead of a page structure per page.
579 	 * In other words, solve
580 	 *	"available physical memory" - round_page(page_range *
581 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
582 	 * for page_range.
583 	 */
584 	low_avail = phys_avail[0];
585 	high_avail = phys_avail[1];
586 	for (i = 0; i < vm_phys_nsegs; i++) {
587 		if (vm_phys_segs[i].start < low_avail)
588 			low_avail = vm_phys_segs[i].start;
589 		if (vm_phys_segs[i].end > high_avail)
590 			high_avail = vm_phys_segs[i].end;
591 	}
592 	/* Skip the first chunk.  It is already accounted for. */
593 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
594 		if (phys_avail[i] < low_avail)
595 			low_avail = phys_avail[i];
596 		if (phys_avail[i + 1] > high_avail)
597 			high_avail = phys_avail[i + 1];
598 	}
599 	first_page = low_avail / PAGE_SIZE;
600 #ifdef VM_PHYSSEG_SPARSE
601 	size = 0;
602 	for (i = 0; i < vm_phys_nsegs; i++)
603 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
604 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
605 		size += phys_avail[i + 1] - phys_avail[i];
606 #elif defined(VM_PHYSSEG_DENSE)
607 	size = high_avail - low_avail;
608 #else
609 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
610 #endif
611 
612 #ifdef VM_PHYSSEG_DENSE
613 	/*
614 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
615 	 * the overhead of a page structure per page only if vm_page_array is
616 	 * allocated from the last physical memory chunk.  Otherwise, we must
617 	 * allocate page structures representing the physical memory
618 	 * underlying vm_page_array, even though they will not be used.
619 	 */
620 	if (new_end != high_avail)
621 		page_range = size / PAGE_SIZE;
622 	else
623 #endif
624 	{
625 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
626 
627 		/*
628 		 * If the partial bytes remaining are large enough for
629 		 * a page (PAGE_SIZE) without a corresponding
630 		 * 'struct vm_page', then new_end will contain an
631 		 * extra page after subtracting the length of the VM
632 		 * page array.  Compensate by subtracting an extra
633 		 * page from new_end.
634 		 */
635 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
636 			if (new_end == high_avail)
637 				high_avail -= PAGE_SIZE;
638 			new_end -= PAGE_SIZE;
639 		}
640 	}
641 	end = new_end;
642 
643 	/*
644 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
645 	 * However, because this page is allocated from KVM, out-of-bounds
646 	 * accesses using the direct map will not be trapped.
647 	 */
648 	vaddr += PAGE_SIZE;
649 
650 	/*
651 	 * Allocate physical memory for the page structures, and map it.
652 	 */
653 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
654 	mapped = pmap_map(&vaddr, new_end, end,
655 	    VM_PROT_READ | VM_PROT_WRITE);
656 	vm_page_array = (vm_page_t)mapped;
657 	vm_page_array_size = page_range;
658 
659 #if VM_NRESERVLEVEL > 0
660 	/*
661 	 * Allocate physical memory for the reservation management system's
662 	 * data structures, and map it.
663 	 */
664 	if (high_avail == end)
665 		high_avail = new_end;
666 	new_end = vm_reserv_startup(&vaddr, new_end, high_avail);
667 #endif
668 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
669 	/*
670 	 * Include vm_page_array and vm_reserv_array in a crash dump.
671 	 */
672 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
673 		dump_add_page(pa);
674 #endif
675 	phys_avail[biggestone + 1] = new_end;
676 
677 	/*
678 	 * Add physical memory segments corresponding to the available
679 	 * physical pages.
680 	 */
681 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
682 		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
683 
684 	/*
685 	 * Initialize the physical memory allocator.
686 	 */
687 	vm_phys_init();
688 
689 	/*
690 	 * Initialize the page structures and add every available page to the
691 	 * physical memory allocator's free lists.
692 	 */
693 	vm_cnt.v_page_count = 0;
694 	vm_cnt.v_free_count = 0;
695 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
696 		seg = &vm_phys_segs[segind];
697 		for (pa = seg->start; pa < seg->end; pa += PAGE_SIZE)
698 			vm_page_init_page(pa);
699 
700 		/*
701 		 * Add the segment to the free lists only if it is covered by
702 		 * one of the ranges in phys_avail.  Because we've added the
703 		 * ranges to the vm_phys_segs array, we can assume that each
704 		 * segment is either entirely contained in one of the ranges,
705 		 * or doesn't overlap any of them.
706 		 */
707 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
708 			if (seg->start < phys_avail[i] ||
709 			    seg->end > phys_avail[i + 1])
710 				continue;
711 
712 			m = seg->first_page;
713 			pagecount = (u_long)atop(seg->end - seg->start);
714 
715 			mtx_lock(&vm_page_queue_free_mtx);
716 			vm_phys_free_contig(m, pagecount);
717 			vm_phys_freecnt_adj(m, (int)pagecount);
718 			mtx_unlock(&vm_page_queue_free_mtx);
719 			vm_cnt.v_page_count += (u_int)pagecount;
720 
721 			vmd = &vm_dom[seg->domain];
722 			vmd->vmd_page_count += (u_int)pagecount;
723 			vmd->vmd_segs |= 1UL << m->segind;
724 			break;
725 		}
726 	}
727 
728 	/*
729 	 * Remove blacklisted pages from the physical memory allocator.
730 	 */
731 	TAILQ_INIT(&blacklist_head);
732 	vm_page_blacklist_load(&list, &listend);
733 	vm_page_blacklist_check(list, listend);
734 
735 	list = kern_getenv("vm.blacklist");
736 	vm_page_blacklist_check(list, NULL);
737 
738 	freeenv(list);
739 #if VM_NRESERVLEVEL > 0
740 	/*
741 	 * Initialize the reservation management system.
742 	 */
743 	vm_reserv_init();
744 #endif
745 	return (vaddr);
746 }
747 
748 void
749 vm_page_reference(vm_page_t m)
750 {
751 
752 	vm_page_aflag_set(m, PGA_REFERENCED);
753 }
754 
755 /*
756  *	vm_page_busy_downgrade:
757  *
758  *	Downgrade an exclusive busy page into a single shared busy page.
759  */
760 void
761 vm_page_busy_downgrade(vm_page_t m)
762 {
763 	u_int x;
764 	bool locked;
765 
766 	vm_page_assert_xbusied(m);
767 	locked = mtx_owned(vm_page_lockptr(m));
768 
769 	for (;;) {
770 		x = m->busy_lock;
771 		x &= VPB_BIT_WAITERS;
772 		if (x != 0 && !locked)
773 			vm_page_lock(m);
774 		if (atomic_cmpset_rel_int(&m->busy_lock,
775 		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1)))
776 			break;
777 		if (x != 0 && !locked)
778 			vm_page_unlock(m);
779 	}
780 	if (x != 0) {
781 		wakeup(m);
782 		if (!locked)
783 			vm_page_unlock(m);
784 	}
785 }
786 
787 /*
788  *	vm_page_sbusied:
789  *
790  *	Return a positive value if the page is shared busied, 0 otherwise.
791  */
792 int
793 vm_page_sbusied(vm_page_t m)
794 {
795 	u_int x;
796 
797 	x = m->busy_lock;
798 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
799 }
800 
801 /*
802  *	vm_page_sunbusy:
803  *
804  *	Shared unbusy a page.
805  */
806 void
807 vm_page_sunbusy(vm_page_t m)
808 {
809 	u_int x;
810 
811 	vm_page_lock_assert(m, MA_NOTOWNED);
812 	vm_page_assert_sbusied(m);
813 
814 	for (;;) {
815 		x = m->busy_lock;
816 		if (VPB_SHARERS(x) > 1) {
817 			if (atomic_cmpset_int(&m->busy_lock, x,
818 			    x - VPB_ONE_SHARER))
819 				break;
820 			continue;
821 		}
822 		if ((x & VPB_BIT_WAITERS) == 0) {
823 			KASSERT(x == VPB_SHARERS_WORD(1),
824 			    ("vm_page_sunbusy: invalid lock state"));
825 			if (atomic_cmpset_int(&m->busy_lock,
826 			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
827 				break;
828 			continue;
829 		}
830 		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
831 		    ("vm_page_sunbusy: invalid lock state for waiters"));
832 
833 		vm_page_lock(m);
834 		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
835 			vm_page_unlock(m);
836 			continue;
837 		}
838 		wakeup(m);
839 		vm_page_unlock(m);
840 		break;
841 	}
842 }
843 
844 /*
845  *	vm_page_busy_sleep:
846  *
847  *	Sleep and release the page lock, using the page pointer as wchan.
848  *	This is used to implement the hard-path of busying mechanism.
849  *
850  *	The given page must be locked.
851  *
852  *	If nonshared is true, sleep only if the page is xbusy.
853  */
854 void
855 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
856 {
857 	u_int x;
858 
859 	vm_page_assert_locked(m);
860 
861 	x = m->busy_lock;
862 	if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
863 	    ((x & VPB_BIT_WAITERS) == 0 &&
864 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
865 		vm_page_unlock(m);
866 		return;
867 	}
868 	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
869 }
870 
871 /*
872  *	vm_page_trysbusy:
873  *
874  *	Try to shared busy a page.
875  *	If the operation succeeds 1 is returned otherwise 0.
876  *	The operation never sleeps.
877  */
878 int
879 vm_page_trysbusy(vm_page_t m)
880 {
881 	u_int x;
882 
883 	for (;;) {
884 		x = m->busy_lock;
885 		if ((x & VPB_BIT_SHARED) == 0)
886 			return (0);
887 		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
888 			return (1);
889 	}
890 }
891 
892 static void
893 vm_page_xunbusy_locked(vm_page_t m)
894 {
895 
896 	vm_page_assert_xbusied(m);
897 	vm_page_assert_locked(m);
898 
899 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
900 	/* There is a waiter, do wakeup() instead of vm_page_flash(). */
901 	wakeup(m);
902 }
903 
904 void
905 vm_page_xunbusy_maybelocked(vm_page_t m)
906 {
907 	bool lockacq;
908 
909 	vm_page_assert_xbusied(m);
910 
911 	/*
912 	 * Fast path for unbusy.  If it succeeds, we know that there
913 	 * are no waiters, so we do not need a wakeup.
914 	 */
915 	if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER,
916 	    VPB_UNBUSIED))
917 		return;
918 
919 	lockacq = !mtx_owned(vm_page_lockptr(m));
920 	if (lockacq)
921 		vm_page_lock(m);
922 	vm_page_xunbusy_locked(m);
923 	if (lockacq)
924 		vm_page_unlock(m);
925 }
926 
927 /*
928  *	vm_page_xunbusy_hard:
929  *
930  *	Called after the first try the exclusive unbusy of a page failed.
931  *	It is assumed that the waiters bit is on.
932  */
933 void
934 vm_page_xunbusy_hard(vm_page_t m)
935 {
936 
937 	vm_page_assert_xbusied(m);
938 
939 	vm_page_lock(m);
940 	vm_page_xunbusy_locked(m);
941 	vm_page_unlock(m);
942 }
943 
944 /*
945  *	vm_page_flash:
946  *
947  *	Wakeup anyone waiting for the page.
948  *	The ownership bits do not change.
949  *
950  *	The given page must be locked.
951  */
952 void
953 vm_page_flash(vm_page_t m)
954 {
955 	u_int x;
956 
957 	vm_page_lock_assert(m, MA_OWNED);
958 
959 	for (;;) {
960 		x = m->busy_lock;
961 		if ((x & VPB_BIT_WAITERS) == 0)
962 			return;
963 		if (atomic_cmpset_int(&m->busy_lock, x,
964 		    x & (~VPB_BIT_WAITERS)))
965 			break;
966 	}
967 	wakeup(m);
968 }
969 
970 /*
971  * Avoid releasing and reacquiring the same page lock.
972  */
973 void
974 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
975 {
976 	struct mtx *mtx1;
977 
978 	mtx1 = vm_page_lockptr(m);
979 	if (*mtx == mtx1)
980 		return;
981 	if (*mtx != NULL)
982 		mtx_unlock(*mtx);
983 	*mtx = mtx1;
984 	mtx_lock(mtx1);
985 }
986 
987 /*
988  * Keep page from being freed by the page daemon
989  * much of the same effect as wiring, except much lower
990  * overhead and should be used only for *very* temporary
991  * holding ("wiring").
992  */
993 void
994 vm_page_hold(vm_page_t mem)
995 {
996 
997 	vm_page_lock_assert(mem, MA_OWNED);
998         mem->hold_count++;
999 }
1000 
1001 void
1002 vm_page_unhold(vm_page_t mem)
1003 {
1004 
1005 	vm_page_lock_assert(mem, MA_OWNED);
1006 	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
1007 	--mem->hold_count;
1008 	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
1009 		vm_page_free_toq(mem);
1010 }
1011 
1012 /*
1013  *	vm_page_unhold_pages:
1014  *
1015  *	Unhold each of the pages that is referenced by the given array.
1016  */
1017 void
1018 vm_page_unhold_pages(vm_page_t *ma, int count)
1019 {
1020 	struct mtx *mtx;
1021 
1022 	mtx = NULL;
1023 	for (; count != 0; count--) {
1024 		vm_page_change_lock(*ma, &mtx);
1025 		vm_page_unhold(*ma);
1026 		ma++;
1027 	}
1028 	if (mtx != NULL)
1029 		mtx_unlock(mtx);
1030 }
1031 
1032 vm_page_t
1033 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1034 {
1035 	vm_page_t m;
1036 
1037 #ifdef VM_PHYSSEG_SPARSE
1038 	m = vm_phys_paddr_to_vm_page(pa);
1039 	if (m == NULL)
1040 		m = vm_phys_fictitious_to_vm_page(pa);
1041 	return (m);
1042 #elif defined(VM_PHYSSEG_DENSE)
1043 	long pi;
1044 
1045 	pi = atop(pa);
1046 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1047 		m = &vm_page_array[pi - first_page];
1048 		return (m);
1049 	}
1050 	return (vm_phys_fictitious_to_vm_page(pa));
1051 #else
1052 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1053 #endif
1054 }
1055 
1056 /*
1057  *	vm_page_getfake:
1058  *
1059  *	Create a fictitious page with the specified physical address and
1060  *	memory attribute.  The memory attribute is the only the machine-
1061  *	dependent aspect of a fictitious page that must be initialized.
1062  */
1063 vm_page_t
1064 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1065 {
1066 	vm_page_t m;
1067 
1068 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1069 	vm_page_initfake(m, paddr, memattr);
1070 	return (m);
1071 }
1072 
1073 void
1074 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1075 {
1076 
1077 	if ((m->flags & PG_FICTITIOUS) != 0) {
1078 		/*
1079 		 * The page's memattr might have changed since the
1080 		 * previous initialization.  Update the pmap to the
1081 		 * new memattr.
1082 		 */
1083 		goto memattr;
1084 	}
1085 	m->phys_addr = paddr;
1086 	m->queue = PQ_NONE;
1087 	/* Fictitious pages don't use "segind". */
1088 	m->flags = PG_FICTITIOUS;
1089 	/* Fictitious pages don't use "order" or "pool". */
1090 	m->oflags = VPO_UNMANAGED;
1091 	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1092 	m->wire_count = 1;
1093 	pmap_page_init(m);
1094 memattr:
1095 	pmap_page_set_memattr(m, memattr);
1096 }
1097 
1098 /*
1099  *	vm_page_putfake:
1100  *
1101  *	Release a fictitious page.
1102  */
1103 void
1104 vm_page_putfake(vm_page_t m)
1105 {
1106 
1107 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1108 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1109 	    ("vm_page_putfake: bad page %p", m));
1110 	uma_zfree(fakepg_zone, m);
1111 }
1112 
1113 /*
1114  *	vm_page_updatefake:
1115  *
1116  *	Update the given fictitious page to the specified physical address and
1117  *	memory attribute.
1118  */
1119 void
1120 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1121 {
1122 
1123 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1124 	    ("vm_page_updatefake: bad page %p", m));
1125 	m->phys_addr = paddr;
1126 	pmap_page_set_memattr(m, memattr);
1127 }
1128 
1129 /*
1130  *	vm_page_free:
1131  *
1132  *	Free a page.
1133  */
1134 void
1135 vm_page_free(vm_page_t m)
1136 {
1137 
1138 	m->flags &= ~PG_ZERO;
1139 	vm_page_free_toq(m);
1140 }
1141 
1142 /*
1143  *	vm_page_free_zero:
1144  *
1145  *	Free a page to the zerod-pages queue
1146  */
1147 void
1148 vm_page_free_zero(vm_page_t m)
1149 {
1150 
1151 	m->flags |= PG_ZERO;
1152 	vm_page_free_toq(m);
1153 }
1154 
1155 /*
1156  * Unbusy and handle the page queueing for a page from a getpages request that
1157  * was optionally read ahead or behind.
1158  */
1159 void
1160 vm_page_readahead_finish(vm_page_t m)
1161 {
1162 
1163 	/* We shouldn't put invalid pages on queues. */
1164 	KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
1165 
1166 	/*
1167 	 * Since the page is not the actually needed one, whether it should
1168 	 * be activated or deactivated is not obvious.  Empirical results
1169 	 * have shown that deactivating the page is usually the best choice,
1170 	 * unless the page is wanted by another thread.
1171 	 */
1172 	vm_page_lock(m);
1173 	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1174 		vm_page_activate(m);
1175 	else
1176 		vm_page_deactivate(m);
1177 	vm_page_unlock(m);
1178 	vm_page_xunbusy(m);
1179 }
1180 
1181 /*
1182  *	vm_page_sleep_if_busy:
1183  *
1184  *	Sleep and release the page queues lock if the page is busied.
1185  *	Returns TRUE if the thread slept.
1186  *
1187  *	The given page must be unlocked and object containing it must
1188  *	be locked.
1189  */
1190 int
1191 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1192 {
1193 	vm_object_t obj;
1194 
1195 	vm_page_lock_assert(m, MA_NOTOWNED);
1196 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1197 
1198 	if (vm_page_busied(m)) {
1199 		/*
1200 		 * The page-specific object must be cached because page
1201 		 * identity can change during the sleep, causing the
1202 		 * re-lock of a different object.
1203 		 * It is assumed that a reference to the object is already
1204 		 * held by the callers.
1205 		 */
1206 		obj = m->object;
1207 		vm_page_lock(m);
1208 		VM_OBJECT_WUNLOCK(obj);
1209 		vm_page_busy_sleep(m, msg, false);
1210 		VM_OBJECT_WLOCK(obj);
1211 		return (TRUE);
1212 	}
1213 	return (FALSE);
1214 }
1215 
1216 /*
1217  *	vm_page_dirty_KBI:		[ internal use only ]
1218  *
1219  *	Set all bits in the page's dirty field.
1220  *
1221  *	The object containing the specified page must be locked if the
1222  *	call is made from the machine-independent layer.
1223  *
1224  *	See vm_page_clear_dirty_mask().
1225  *
1226  *	This function should only be called by vm_page_dirty().
1227  */
1228 void
1229 vm_page_dirty_KBI(vm_page_t m)
1230 {
1231 
1232 	/* Refer to this operation by its public name. */
1233 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1234 	    ("vm_page_dirty: page is invalid!"));
1235 	m->dirty = VM_PAGE_BITS_ALL;
1236 }
1237 
1238 /*
1239  *	vm_page_insert:		[ internal use only ]
1240  *
1241  *	Inserts the given mem entry into the object and object list.
1242  *
1243  *	The object must be locked.
1244  */
1245 int
1246 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1247 {
1248 	vm_page_t mpred;
1249 
1250 	VM_OBJECT_ASSERT_WLOCKED(object);
1251 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1252 	return (vm_page_insert_after(m, object, pindex, mpred));
1253 }
1254 
1255 /*
1256  *	vm_page_insert_after:
1257  *
1258  *	Inserts the page "m" into the specified object at offset "pindex".
1259  *
1260  *	The page "mpred" must immediately precede the offset "pindex" within
1261  *	the specified object.
1262  *
1263  *	The object must be locked.
1264  */
1265 static int
1266 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1267     vm_page_t mpred)
1268 {
1269 	vm_page_t msucc;
1270 
1271 	VM_OBJECT_ASSERT_WLOCKED(object);
1272 	KASSERT(m->object == NULL,
1273 	    ("vm_page_insert_after: page already inserted"));
1274 	if (mpred != NULL) {
1275 		KASSERT(mpred->object == object,
1276 		    ("vm_page_insert_after: object doesn't contain mpred"));
1277 		KASSERT(mpred->pindex < pindex,
1278 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1279 		msucc = TAILQ_NEXT(mpred, listq);
1280 	} else
1281 		msucc = TAILQ_FIRST(&object->memq);
1282 	if (msucc != NULL)
1283 		KASSERT(msucc->pindex > pindex,
1284 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1285 
1286 	/*
1287 	 * Record the object/offset pair in this page
1288 	 */
1289 	m->object = object;
1290 	m->pindex = pindex;
1291 
1292 	/*
1293 	 * Now link into the object's ordered list of backed pages.
1294 	 */
1295 	if (vm_radix_insert(&object->rtree, m)) {
1296 		m->object = NULL;
1297 		m->pindex = 0;
1298 		return (1);
1299 	}
1300 	vm_page_insert_radixdone(m, object, mpred);
1301 	return (0);
1302 }
1303 
1304 /*
1305  *	vm_page_insert_radixdone:
1306  *
1307  *	Complete page "m" insertion into the specified object after the
1308  *	radix trie hooking.
1309  *
1310  *	The page "mpred" must precede the offset "m->pindex" within the
1311  *	specified object.
1312  *
1313  *	The object must be locked.
1314  */
1315 static void
1316 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1317 {
1318 
1319 	VM_OBJECT_ASSERT_WLOCKED(object);
1320 	KASSERT(object != NULL && m->object == object,
1321 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1322 	if (mpred != NULL) {
1323 		KASSERT(mpred->object == object,
1324 		    ("vm_page_insert_after: object doesn't contain mpred"));
1325 		KASSERT(mpred->pindex < m->pindex,
1326 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1327 	}
1328 
1329 	if (mpred != NULL)
1330 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1331 	else
1332 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1333 
1334 	/*
1335 	 * Show that the object has one more resident page.
1336 	 */
1337 	object->resident_page_count++;
1338 
1339 	/*
1340 	 * Hold the vnode until the last page is released.
1341 	 */
1342 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1343 		vhold(object->handle);
1344 
1345 	/*
1346 	 * Since we are inserting a new and possibly dirty page,
1347 	 * update the object's OBJ_MIGHTBEDIRTY flag.
1348 	 */
1349 	if (pmap_page_is_write_mapped(m))
1350 		vm_object_set_writeable_dirty(object);
1351 }
1352 
1353 /*
1354  *	vm_page_remove:
1355  *
1356  *	Removes the specified page from its containing object, but does not
1357  *	invalidate any backing storage.
1358  *
1359  *	The object must be locked.  The page must be locked if it is managed.
1360  */
1361 void
1362 vm_page_remove(vm_page_t m)
1363 {
1364 	vm_object_t object;
1365 	vm_page_t mrem;
1366 
1367 	if ((m->oflags & VPO_UNMANAGED) == 0)
1368 		vm_page_assert_locked(m);
1369 	if ((object = m->object) == NULL)
1370 		return;
1371 	VM_OBJECT_ASSERT_WLOCKED(object);
1372 	if (vm_page_xbusied(m))
1373 		vm_page_xunbusy_maybelocked(m);
1374 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1375 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1376 
1377 	/*
1378 	 * Now remove from the object's list of backed pages.
1379 	 */
1380 	TAILQ_REMOVE(&object->memq, m, listq);
1381 
1382 	/*
1383 	 * And show that the object has one fewer resident page.
1384 	 */
1385 	object->resident_page_count--;
1386 
1387 	/*
1388 	 * The vnode may now be recycled.
1389 	 */
1390 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1391 		vdrop(object->handle);
1392 
1393 	m->object = NULL;
1394 }
1395 
1396 /*
1397  *	vm_page_lookup:
1398  *
1399  *	Returns the page associated with the object/offset
1400  *	pair specified; if none is found, NULL is returned.
1401  *
1402  *	The object must be locked.
1403  */
1404 vm_page_t
1405 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1406 {
1407 
1408 	VM_OBJECT_ASSERT_LOCKED(object);
1409 	return (vm_radix_lookup(&object->rtree, pindex));
1410 }
1411 
1412 /*
1413  *	vm_page_find_least:
1414  *
1415  *	Returns the page associated with the object with least pindex
1416  *	greater than or equal to the parameter pindex, or NULL.
1417  *
1418  *	The object must be locked.
1419  */
1420 vm_page_t
1421 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1422 {
1423 	vm_page_t m;
1424 
1425 	VM_OBJECT_ASSERT_LOCKED(object);
1426 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1427 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1428 	return (m);
1429 }
1430 
1431 /*
1432  * Returns the given page's successor (by pindex) within the object if it is
1433  * resident; if none is found, NULL is returned.
1434  *
1435  * The object must be locked.
1436  */
1437 vm_page_t
1438 vm_page_next(vm_page_t m)
1439 {
1440 	vm_page_t next;
1441 
1442 	VM_OBJECT_ASSERT_LOCKED(m->object);
1443 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1444 		MPASS(next->object == m->object);
1445 		if (next->pindex != m->pindex + 1)
1446 			next = NULL;
1447 	}
1448 	return (next);
1449 }
1450 
1451 /*
1452  * Returns the given page's predecessor (by pindex) within the object if it is
1453  * resident; if none is found, NULL is returned.
1454  *
1455  * The object must be locked.
1456  */
1457 vm_page_t
1458 vm_page_prev(vm_page_t m)
1459 {
1460 	vm_page_t prev;
1461 
1462 	VM_OBJECT_ASSERT_LOCKED(m->object);
1463 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1464 		MPASS(prev->object == m->object);
1465 		if (prev->pindex != m->pindex - 1)
1466 			prev = NULL;
1467 	}
1468 	return (prev);
1469 }
1470 
1471 /*
1472  * Uses the page mnew as a replacement for an existing page at index
1473  * pindex which must be already present in the object.
1474  *
1475  * The existing page must not be on a paging queue.
1476  */
1477 vm_page_t
1478 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1479 {
1480 	vm_page_t mold;
1481 
1482 	VM_OBJECT_ASSERT_WLOCKED(object);
1483 	KASSERT(mnew->object == NULL,
1484 	    ("vm_page_replace: page already in object"));
1485 
1486 	/*
1487 	 * This function mostly follows vm_page_insert() and
1488 	 * vm_page_remove() without the radix, object count and vnode
1489 	 * dance.  Double check such functions for more comments.
1490 	 */
1491 
1492 	mnew->object = object;
1493 	mnew->pindex = pindex;
1494 	mold = vm_radix_replace(&object->rtree, mnew);
1495 	KASSERT(mold->queue == PQ_NONE,
1496 	    ("vm_page_replace: mold is on a paging queue"));
1497 
1498 	/* Keep the resident page list in sorted order. */
1499 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1500 	TAILQ_REMOVE(&object->memq, mold, listq);
1501 
1502 	mold->object = NULL;
1503 	vm_page_xunbusy_maybelocked(mold);
1504 
1505 	/*
1506 	 * The object's resident_page_count does not change because we have
1507 	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1508 	 */
1509 	if (pmap_page_is_write_mapped(mnew))
1510 		vm_object_set_writeable_dirty(object);
1511 	return (mold);
1512 }
1513 
1514 /*
1515  *	vm_page_rename:
1516  *
1517  *	Move the given memory entry from its
1518  *	current object to the specified target object/offset.
1519  *
1520  *	Note: swap associated with the page must be invalidated by the move.  We
1521  *	      have to do this for several reasons:  (1) we aren't freeing the
1522  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1523  *	      moving the page from object A to B, and will then later move
1524  *	      the backing store from A to B and we can't have a conflict.
1525  *
1526  *	Note: we *always* dirty the page.  It is necessary both for the
1527  *	      fact that we moved it, and because we may be invalidating
1528  *	      swap.
1529  *
1530  *	The objects must be locked.
1531  */
1532 int
1533 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1534 {
1535 	vm_page_t mpred;
1536 	vm_pindex_t opidx;
1537 
1538 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1539 
1540 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1541 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1542 	    ("vm_page_rename: pindex already renamed"));
1543 
1544 	/*
1545 	 * Create a custom version of vm_page_insert() which does not depend
1546 	 * by m_prev and can cheat on the implementation aspects of the
1547 	 * function.
1548 	 */
1549 	opidx = m->pindex;
1550 	m->pindex = new_pindex;
1551 	if (vm_radix_insert(&new_object->rtree, m)) {
1552 		m->pindex = opidx;
1553 		return (1);
1554 	}
1555 
1556 	/*
1557 	 * The operation cannot fail anymore.  The removal must happen before
1558 	 * the listq iterator is tainted.
1559 	 */
1560 	m->pindex = opidx;
1561 	vm_page_lock(m);
1562 	vm_page_remove(m);
1563 
1564 	/* Return back to the new pindex to complete vm_page_insert(). */
1565 	m->pindex = new_pindex;
1566 	m->object = new_object;
1567 	vm_page_unlock(m);
1568 	vm_page_insert_radixdone(m, new_object, mpred);
1569 	vm_page_dirty(m);
1570 	return (0);
1571 }
1572 
1573 /*
1574  *	vm_page_alloc:
1575  *
1576  *	Allocate and return a page that is associated with the specified
1577  *	object and offset pair.  By default, this page is exclusive busied.
1578  *
1579  *	The caller must always specify an allocation class.
1580  *
1581  *	allocation classes:
1582  *	VM_ALLOC_NORMAL		normal process request
1583  *	VM_ALLOC_SYSTEM		system *really* needs a page
1584  *	VM_ALLOC_INTERRUPT	interrupt time request
1585  *
1586  *	optional allocation flags:
1587  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1588  *				intends to allocate
1589  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1590  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1591  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1592  *				should not be exclusive busy
1593  *	VM_ALLOC_SBUSY		shared busy the allocated page
1594  *	VM_ALLOC_WIRED		wire the allocated page
1595  *	VM_ALLOC_ZERO		prefer a zeroed page
1596  *
1597  *	This routine may not sleep.
1598  */
1599 vm_page_t
1600 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1601 {
1602 
1603 	return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1604 	    vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1605 }
1606 
1607 /*
1608  * Allocate a page in the specified object with the given page index.  To
1609  * optimize insertion of the page into the object, the caller must also specifiy
1610  * the resident page in the object with largest index smaller than the given
1611  * page index, or NULL if no such page exists.
1612  */
1613 vm_page_t
1614 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, int req,
1615     vm_page_t mpred)
1616 {
1617 	vm_page_t m;
1618 	int flags, req_class;
1619 	u_int free_count;
1620 
1621 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1622 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1623 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1624 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1625 	    ("inconsistent object(%p)/req(%x)", object, req));
1626 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1627 	    ("Can't sleep and retry object insertion."));
1628 	KASSERT(mpred == NULL || mpred->pindex < pindex,
1629 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
1630 	    (uintmax_t)pindex));
1631 	if (object != NULL)
1632 		VM_OBJECT_ASSERT_WLOCKED(object);
1633 
1634 	req_class = req & VM_ALLOC_CLASS_MASK;
1635 
1636 	/*
1637 	 * The page daemon is allowed to dig deeper into the free page list.
1638 	 */
1639 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1640 		req_class = VM_ALLOC_SYSTEM;
1641 
1642 	/*
1643 	 * Allocate a page if the number of free pages exceeds the minimum
1644 	 * for the request class.
1645 	 */
1646 again:
1647 	mtx_lock(&vm_page_queue_free_mtx);
1648 	if (vm_cnt.v_free_count > vm_cnt.v_free_reserved ||
1649 	    (req_class == VM_ALLOC_SYSTEM &&
1650 	    vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) ||
1651 	    (req_class == VM_ALLOC_INTERRUPT &&
1652 	    vm_cnt.v_free_count > 0)) {
1653 		/*
1654 		 * Can we allocate the page from a reservation?
1655 		 */
1656 #if VM_NRESERVLEVEL > 0
1657 		if (object == NULL || (object->flags & (OBJ_COLORED |
1658 		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1659 		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL)
1660 #endif
1661 		{
1662 			/*
1663 			 * If not, allocate it from the free page queues.
1664 			 */
1665 			m = vm_phys_alloc_pages(object != NULL ?
1666 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1667 #if VM_NRESERVLEVEL > 0
1668 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1669 				m = vm_phys_alloc_pages(object != NULL ?
1670 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1671 				    0);
1672 			}
1673 #endif
1674 		}
1675 	} else {
1676 		/*
1677 		 * Not allocatable, give up.
1678 		 */
1679 		if (vm_page_alloc_fail(object, req))
1680 			goto again;
1681 		return (NULL);
1682 	}
1683 
1684 	/*
1685 	 *  At this point we had better have found a good page.
1686 	 */
1687 	KASSERT(m != NULL, ("missing page"));
1688 	free_count = vm_phys_freecnt_adj(m, -1);
1689 	mtx_unlock(&vm_page_queue_free_mtx);
1690 	vm_page_alloc_check(m);
1691 
1692 	/*
1693 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1694 	 */
1695 	flags = 0;
1696 	if ((req & VM_ALLOC_ZERO) != 0)
1697 		flags = PG_ZERO;
1698 	flags &= m->flags;
1699 	if ((req & VM_ALLOC_NODUMP) != 0)
1700 		flags |= PG_NODUMP;
1701 	m->flags = flags;
1702 	m->aflags = 0;
1703 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1704 	    VPO_UNMANAGED : 0;
1705 	m->busy_lock = VPB_UNBUSIED;
1706 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1707 		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1708 	if ((req & VM_ALLOC_SBUSY) != 0)
1709 		m->busy_lock = VPB_SHARERS_WORD(1);
1710 	if (req & VM_ALLOC_WIRED) {
1711 		/*
1712 		 * The page lock is not required for wiring a page until that
1713 		 * page is inserted into the object.
1714 		 */
1715 		atomic_add_int(&vm_cnt.v_wire_count, 1);
1716 		m->wire_count = 1;
1717 	}
1718 	m->act_count = 0;
1719 
1720 	if (object != NULL) {
1721 		if (vm_page_insert_after(m, object, pindex, mpred)) {
1722 			pagedaemon_wakeup();
1723 			if (req & VM_ALLOC_WIRED) {
1724 				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1725 				m->wire_count = 0;
1726 			}
1727 			KASSERT(m->object == NULL, ("page %p has object", m));
1728 			m->oflags = VPO_UNMANAGED;
1729 			m->busy_lock = VPB_UNBUSIED;
1730 			/* Don't change PG_ZERO. */
1731 			vm_page_free_toq(m);
1732 			if (req & VM_ALLOC_WAITFAIL) {
1733 				VM_OBJECT_WUNLOCK(object);
1734 				vm_radix_wait();
1735 				VM_OBJECT_WLOCK(object);
1736 			}
1737 			return (NULL);
1738 		}
1739 
1740 		/* Ignore device objects; the pager sets "memattr" for them. */
1741 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1742 		    (object->flags & OBJ_FICTITIOUS) == 0)
1743 			pmap_page_set_memattr(m, object->memattr);
1744 	} else
1745 		m->pindex = pindex;
1746 
1747 	/*
1748 	 * Don't wakeup too often - wakeup the pageout daemon when
1749 	 * we would be nearly out of memory.
1750 	 */
1751 	if (vm_paging_needed(free_count))
1752 		pagedaemon_wakeup();
1753 
1754 	return (m);
1755 }
1756 
1757 /*
1758  *	vm_page_alloc_contig:
1759  *
1760  *	Allocate a contiguous set of physical pages of the given size "npages"
1761  *	from the free lists.  All of the physical pages must be at or above
1762  *	the given physical address "low" and below the given physical address
1763  *	"high".  The given value "alignment" determines the alignment of the
1764  *	first physical page in the set.  If the given value "boundary" is
1765  *	non-zero, then the set of physical pages cannot cross any physical
1766  *	address boundary that is a multiple of that value.  Both "alignment"
1767  *	and "boundary" must be a power of two.
1768  *
1769  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1770  *	then the memory attribute setting for the physical pages is configured
1771  *	to the object's memory attribute setting.  Otherwise, the memory
1772  *	attribute setting for the physical pages is configured to "memattr",
1773  *	overriding the object's memory attribute setting.  However, if the
1774  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1775  *	memory attribute setting for the physical pages cannot be configured
1776  *	to VM_MEMATTR_DEFAULT.
1777  *
1778  *	The specified object may not contain fictitious pages.
1779  *
1780  *	The caller must always specify an allocation class.
1781  *
1782  *	allocation classes:
1783  *	VM_ALLOC_NORMAL		normal process request
1784  *	VM_ALLOC_SYSTEM		system *really* needs a page
1785  *	VM_ALLOC_INTERRUPT	interrupt time request
1786  *
1787  *	optional allocation flags:
1788  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1789  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1790  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1791  *				should not be exclusive busy
1792  *	VM_ALLOC_SBUSY		shared busy the allocated page
1793  *	VM_ALLOC_WIRED		wire the allocated page
1794  *	VM_ALLOC_ZERO		prefer a zeroed page
1795  *
1796  *	This routine may not sleep.
1797  */
1798 vm_page_t
1799 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1800     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1801     vm_paddr_t boundary, vm_memattr_t memattr)
1802 {
1803 	vm_page_t m, m_ret, mpred;
1804 	u_int busy_lock, flags, oflags;
1805 	int req_class;
1806 
1807 	mpred = NULL;	/* XXX: pacify gcc */
1808 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1809 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1810 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1811 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1812 	    ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
1813 	    req));
1814 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1815 	    ("Can't sleep and retry object insertion."));
1816 	if (object != NULL) {
1817 		VM_OBJECT_ASSERT_WLOCKED(object);
1818 		KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
1819 		    ("vm_page_alloc_contig: object %p has fictitious pages",
1820 		    object));
1821 	}
1822 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1823 	req_class = req & VM_ALLOC_CLASS_MASK;
1824 
1825 	/*
1826 	 * The page daemon is allowed to dig deeper into the free page list.
1827 	 */
1828 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1829 		req_class = VM_ALLOC_SYSTEM;
1830 
1831 	if (object != NULL) {
1832 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1833 		KASSERT(mpred == NULL || mpred->pindex != pindex,
1834 		    ("vm_page_alloc_contig: pindex already allocated"));
1835 	}
1836 
1837 	/*
1838 	 * Can we allocate the pages without the number of free pages falling
1839 	 * below the lower bound for the allocation class?
1840 	 */
1841 again:
1842 	mtx_lock(&vm_page_queue_free_mtx);
1843 	if (vm_cnt.v_free_count >= npages + vm_cnt.v_free_reserved ||
1844 	    (req_class == VM_ALLOC_SYSTEM &&
1845 	    vm_cnt.v_free_count >= npages + vm_cnt.v_interrupt_free_min) ||
1846 	    (req_class == VM_ALLOC_INTERRUPT &&
1847 	    vm_cnt.v_free_count >= npages)) {
1848 		/*
1849 		 * Can we allocate the pages from a reservation?
1850 		 */
1851 #if VM_NRESERVLEVEL > 0
1852 retry:
1853 		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1854 		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1855 		    low, high, alignment, boundary, mpred)) == NULL)
1856 #endif
1857 			/*
1858 			 * If not, allocate them from the free page queues.
1859 			 */
1860 			m_ret = vm_phys_alloc_contig(npages, low, high,
1861 			    alignment, boundary);
1862 	} else {
1863 		if (vm_page_alloc_fail(object, req))
1864 			goto again;
1865 		return (NULL);
1866 	}
1867 	if (m_ret != NULL)
1868 		vm_phys_freecnt_adj(m_ret, -npages);
1869 	else {
1870 #if VM_NRESERVLEVEL > 0
1871 		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1872 		    boundary))
1873 			goto retry;
1874 #endif
1875 	}
1876 	mtx_unlock(&vm_page_queue_free_mtx);
1877 	if (m_ret == NULL)
1878 		return (NULL);
1879 	for (m = m_ret; m < &m_ret[npages]; m++)
1880 		vm_page_alloc_check(m);
1881 
1882 	/*
1883 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1884 	 */
1885 	flags = 0;
1886 	if ((req & VM_ALLOC_ZERO) != 0)
1887 		flags = PG_ZERO;
1888 	if ((req & VM_ALLOC_NODUMP) != 0)
1889 		flags |= PG_NODUMP;
1890 	oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1891 	    VPO_UNMANAGED : 0;
1892 	busy_lock = VPB_UNBUSIED;
1893 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1894 		busy_lock = VPB_SINGLE_EXCLUSIVER;
1895 	if ((req & VM_ALLOC_SBUSY) != 0)
1896 		busy_lock = VPB_SHARERS_WORD(1);
1897 	if ((req & VM_ALLOC_WIRED) != 0)
1898 		atomic_add_int(&vm_cnt.v_wire_count, npages);
1899 	if (object != NULL) {
1900 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1901 		    memattr == VM_MEMATTR_DEFAULT)
1902 			memattr = object->memattr;
1903 	}
1904 	for (m = m_ret; m < &m_ret[npages]; m++) {
1905 		m->aflags = 0;
1906 		m->flags = (m->flags | PG_NODUMP) & flags;
1907 		m->busy_lock = busy_lock;
1908 		if ((req & VM_ALLOC_WIRED) != 0)
1909 			m->wire_count = 1;
1910 		m->act_count = 0;
1911 		m->oflags = oflags;
1912 		if (object != NULL) {
1913 			if (vm_page_insert_after(m, object, pindex, mpred)) {
1914 				pagedaemon_wakeup();
1915 				if ((req & VM_ALLOC_WIRED) != 0)
1916 					atomic_subtract_int(
1917 					    &vm_cnt.v_wire_count, npages);
1918 				KASSERT(m->object == NULL,
1919 				    ("page %p has object", m));
1920 				mpred = m;
1921 				for (m = m_ret; m < &m_ret[npages]; m++) {
1922 					if (m <= mpred &&
1923 					    (req & VM_ALLOC_WIRED) != 0)
1924 						m->wire_count = 0;
1925 					m->oflags = VPO_UNMANAGED;
1926 					m->busy_lock = VPB_UNBUSIED;
1927 					/* Don't change PG_ZERO. */
1928 					vm_page_free_toq(m);
1929 				}
1930 				if (req & VM_ALLOC_WAITFAIL) {
1931 					VM_OBJECT_WUNLOCK(object);
1932 					vm_radix_wait();
1933 					VM_OBJECT_WLOCK(object);
1934 				}
1935 				return (NULL);
1936 			}
1937 			mpred = m;
1938 		} else
1939 			m->pindex = pindex;
1940 		if (memattr != VM_MEMATTR_DEFAULT)
1941 			pmap_page_set_memattr(m, memattr);
1942 		pindex++;
1943 	}
1944 	if (vm_paging_needed(vm_cnt.v_free_count))
1945 		pagedaemon_wakeup();
1946 	return (m_ret);
1947 }
1948 
1949 /*
1950  * Check a page that has been freshly dequeued from a freelist.
1951  */
1952 static void
1953 vm_page_alloc_check(vm_page_t m)
1954 {
1955 
1956 	KASSERT(m->object == NULL, ("page %p has object", m));
1957 	KASSERT(m->queue == PQ_NONE,
1958 	    ("page %p has unexpected queue %d", m, m->queue));
1959 	KASSERT(m->wire_count == 0, ("page %p is wired", m));
1960 	KASSERT(m->hold_count == 0, ("page %p is held", m));
1961 	KASSERT(!vm_page_busied(m), ("page %p is busy", m));
1962 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
1963 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1964 	    ("page %p has unexpected memattr %d",
1965 	    m, pmap_page_get_memattr(m)));
1966 	KASSERT(m->valid == 0, ("free page %p is valid", m));
1967 }
1968 
1969 /*
1970  * 	vm_page_alloc_freelist:
1971  *
1972  *	Allocate a physical page from the specified free page list.
1973  *
1974  *	The caller must always specify an allocation class.
1975  *
1976  *	allocation classes:
1977  *	VM_ALLOC_NORMAL		normal process request
1978  *	VM_ALLOC_SYSTEM		system *really* needs a page
1979  *	VM_ALLOC_INTERRUPT	interrupt time request
1980  *
1981  *	optional allocation flags:
1982  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1983  *				intends to allocate
1984  *	VM_ALLOC_WIRED		wire the allocated page
1985  *	VM_ALLOC_ZERO		prefer a zeroed page
1986  *
1987  *	This routine may not sleep.
1988  */
1989 vm_page_t
1990 vm_page_alloc_freelist(int flind, int req)
1991 {
1992 	vm_page_t m;
1993 	u_int flags, free_count;
1994 	int req_class;
1995 
1996 	req_class = req & VM_ALLOC_CLASS_MASK;
1997 
1998 	/*
1999 	 * The page daemon is allowed to dig deeper into the free page list.
2000 	 */
2001 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2002 		req_class = VM_ALLOC_SYSTEM;
2003 
2004 	/*
2005 	 * Do not allocate reserved pages unless the req has asked for it.
2006 	 */
2007 again:
2008 	mtx_lock(&vm_page_queue_free_mtx);
2009 	if (vm_cnt.v_free_count > vm_cnt.v_free_reserved ||
2010 	    (req_class == VM_ALLOC_SYSTEM &&
2011 	    vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) ||
2012 	    (req_class == VM_ALLOC_INTERRUPT &&
2013 	    vm_cnt.v_free_count > 0)) {
2014 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
2015 	} else {
2016 		if (vm_page_alloc_fail(NULL, req))
2017 			goto again;
2018 		return (NULL);
2019 	}
2020 	if (m == NULL) {
2021 		mtx_unlock(&vm_page_queue_free_mtx);
2022 		return (NULL);
2023 	}
2024 	free_count = vm_phys_freecnt_adj(m, -1);
2025 	mtx_unlock(&vm_page_queue_free_mtx);
2026 	vm_page_alloc_check(m);
2027 
2028 	/*
2029 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2030 	 */
2031 	m->aflags = 0;
2032 	flags = 0;
2033 	if ((req & VM_ALLOC_ZERO) != 0)
2034 		flags = PG_ZERO;
2035 	m->flags &= flags;
2036 	if ((req & VM_ALLOC_WIRED) != 0) {
2037 		/*
2038 		 * The page lock is not required for wiring a page that does
2039 		 * not belong to an object.
2040 		 */
2041 		atomic_add_int(&vm_cnt.v_wire_count, 1);
2042 		m->wire_count = 1;
2043 	}
2044 	/* Unmanaged pages don't use "act_count". */
2045 	m->oflags = VPO_UNMANAGED;
2046 	if (vm_paging_needed(free_count))
2047 		pagedaemon_wakeup();
2048 	return (m);
2049 }
2050 
2051 #define	VPSC_ANY	0	/* No restrictions. */
2052 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2053 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2054 
2055 /*
2056  *	vm_page_scan_contig:
2057  *
2058  *	Scan vm_page_array[] between the specified entries "m_start" and
2059  *	"m_end" for a run of contiguous physical pages that satisfy the
2060  *	specified conditions, and return the lowest page in the run.  The
2061  *	specified "alignment" determines the alignment of the lowest physical
2062  *	page in the run.  If the specified "boundary" is non-zero, then the
2063  *	run of physical pages cannot span a physical address that is a
2064  *	multiple of "boundary".
2065  *
2066  *	"m_end" is never dereferenced, so it need not point to a vm_page
2067  *	structure within vm_page_array[].
2068  *
2069  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2070  *	span a hole (or discontiguity) in the physical address space.  Both
2071  *	"alignment" and "boundary" must be a power of two.
2072  */
2073 vm_page_t
2074 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2075     u_long alignment, vm_paddr_t boundary, int options)
2076 {
2077 	struct mtx *m_mtx;
2078 	vm_object_t object;
2079 	vm_paddr_t pa;
2080 	vm_page_t m, m_run;
2081 #if VM_NRESERVLEVEL > 0
2082 	int level;
2083 #endif
2084 	int m_inc, order, run_ext, run_len;
2085 
2086 	KASSERT(npages > 0, ("npages is 0"));
2087 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2088 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2089 	m_run = NULL;
2090 	run_len = 0;
2091 	m_mtx = NULL;
2092 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2093 		KASSERT((m->flags & PG_MARKER) == 0,
2094 		    ("page %p is PG_MARKER", m));
2095 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->wire_count == 1,
2096 		    ("fictitious page %p has invalid wire count", m));
2097 
2098 		/*
2099 		 * If the current page would be the start of a run, check its
2100 		 * physical address against the end, alignment, and boundary
2101 		 * conditions.  If it doesn't satisfy these conditions, either
2102 		 * terminate the scan or advance to the next page that
2103 		 * satisfies the failed condition.
2104 		 */
2105 		if (run_len == 0) {
2106 			KASSERT(m_run == NULL, ("m_run != NULL"));
2107 			if (m + npages > m_end)
2108 				break;
2109 			pa = VM_PAGE_TO_PHYS(m);
2110 			if ((pa & (alignment - 1)) != 0) {
2111 				m_inc = atop(roundup2(pa, alignment) - pa);
2112 				continue;
2113 			}
2114 			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2115 			    boundary) != 0) {
2116 				m_inc = atop(roundup2(pa, boundary) - pa);
2117 				continue;
2118 			}
2119 		} else
2120 			KASSERT(m_run != NULL, ("m_run == NULL"));
2121 
2122 		vm_page_change_lock(m, &m_mtx);
2123 		m_inc = 1;
2124 retry:
2125 		if (m->wire_count != 0 || m->hold_count != 0)
2126 			run_ext = 0;
2127 #if VM_NRESERVLEVEL > 0
2128 		else if ((level = vm_reserv_level(m)) >= 0 &&
2129 		    (options & VPSC_NORESERV) != 0) {
2130 			run_ext = 0;
2131 			/* Advance to the end of the reservation. */
2132 			pa = VM_PAGE_TO_PHYS(m);
2133 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2134 			    pa);
2135 		}
2136 #endif
2137 		else if ((object = m->object) != NULL) {
2138 			/*
2139 			 * The page is considered eligible for relocation if
2140 			 * and only if it could be laundered or reclaimed by
2141 			 * the page daemon.
2142 			 */
2143 			if (!VM_OBJECT_TRYRLOCK(object)) {
2144 				mtx_unlock(m_mtx);
2145 				VM_OBJECT_RLOCK(object);
2146 				mtx_lock(m_mtx);
2147 				if (m->object != object) {
2148 					/*
2149 					 * The page may have been freed.
2150 					 */
2151 					VM_OBJECT_RUNLOCK(object);
2152 					goto retry;
2153 				} else if (m->wire_count != 0 ||
2154 				    m->hold_count != 0) {
2155 					run_ext = 0;
2156 					goto unlock;
2157 				}
2158 			}
2159 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2160 			    ("page %p is PG_UNHOLDFREE", m));
2161 			/* Don't care: PG_NODUMP, PG_ZERO. */
2162 			if (object->type != OBJT_DEFAULT &&
2163 			    object->type != OBJT_SWAP &&
2164 			    object->type != OBJT_VNODE) {
2165 				run_ext = 0;
2166 #if VM_NRESERVLEVEL > 0
2167 			} else if ((options & VPSC_NOSUPER) != 0 &&
2168 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2169 				run_ext = 0;
2170 				/* Advance to the end of the superpage. */
2171 				pa = VM_PAGE_TO_PHYS(m);
2172 				m_inc = atop(roundup2(pa + 1,
2173 				    vm_reserv_size(level)) - pa);
2174 #endif
2175 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2176 			    m->queue != PQ_NONE && !vm_page_busied(m)) {
2177 				/*
2178 				 * The page is allocated but eligible for
2179 				 * relocation.  Extend the current run by one
2180 				 * page.
2181 				 */
2182 				KASSERT(pmap_page_get_memattr(m) ==
2183 				    VM_MEMATTR_DEFAULT,
2184 				    ("page %p has an unexpected memattr", m));
2185 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2186 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2187 				    ("page %p has unexpected oflags", m));
2188 				/* Don't care: VPO_NOSYNC. */
2189 				run_ext = 1;
2190 			} else
2191 				run_ext = 0;
2192 unlock:
2193 			VM_OBJECT_RUNLOCK(object);
2194 #if VM_NRESERVLEVEL > 0
2195 		} else if (level >= 0) {
2196 			/*
2197 			 * The page is reserved but not yet allocated.  In
2198 			 * other words, it is still free.  Extend the current
2199 			 * run by one page.
2200 			 */
2201 			run_ext = 1;
2202 #endif
2203 		} else if ((order = m->order) < VM_NFREEORDER) {
2204 			/*
2205 			 * The page is enqueued in the physical memory
2206 			 * allocator's free page queues.  Moreover, it is the
2207 			 * first page in a power-of-two-sized run of
2208 			 * contiguous free pages.  Add these pages to the end
2209 			 * of the current run, and jump ahead.
2210 			 */
2211 			run_ext = 1 << order;
2212 			m_inc = 1 << order;
2213 		} else {
2214 			/*
2215 			 * Skip the page for one of the following reasons: (1)
2216 			 * It is enqueued in the physical memory allocator's
2217 			 * free page queues.  However, it is not the first
2218 			 * page in a run of contiguous free pages.  (This case
2219 			 * rarely occurs because the scan is performed in
2220 			 * ascending order.) (2) It is not reserved, and it is
2221 			 * transitioning from free to allocated.  (Conversely,
2222 			 * the transition from allocated to free for managed
2223 			 * pages is blocked by the page lock.) (3) It is
2224 			 * allocated but not contained by an object and not
2225 			 * wired, e.g., allocated by Xen's balloon driver.
2226 			 */
2227 			run_ext = 0;
2228 		}
2229 
2230 		/*
2231 		 * Extend or reset the current run of pages.
2232 		 */
2233 		if (run_ext > 0) {
2234 			if (run_len == 0)
2235 				m_run = m;
2236 			run_len += run_ext;
2237 		} else {
2238 			if (run_len > 0) {
2239 				m_run = NULL;
2240 				run_len = 0;
2241 			}
2242 		}
2243 	}
2244 	if (m_mtx != NULL)
2245 		mtx_unlock(m_mtx);
2246 	if (run_len >= npages)
2247 		return (m_run);
2248 	return (NULL);
2249 }
2250 
2251 /*
2252  *	vm_page_reclaim_run:
2253  *
2254  *	Try to relocate each of the allocated virtual pages within the
2255  *	specified run of physical pages to a new physical address.  Free the
2256  *	physical pages underlying the relocated virtual pages.  A virtual page
2257  *	is relocatable if and only if it could be laundered or reclaimed by
2258  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2259  *	physical address above "high".
2260  *
2261  *	Returns 0 if every physical page within the run was already free or
2262  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2263  *	value indicating why the last attempt to relocate a virtual page was
2264  *	unsuccessful.
2265  *
2266  *	"req_class" must be an allocation class.
2267  */
2268 static int
2269 vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
2270     vm_paddr_t high)
2271 {
2272 	struct mtx *m_mtx;
2273 	struct spglist free;
2274 	vm_object_t object;
2275 	vm_paddr_t pa;
2276 	vm_page_t m, m_end, m_new;
2277 	int error, order, req;
2278 
2279 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2280 	    ("req_class is not an allocation class"));
2281 	SLIST_INIT(&free);
2282 	error = 0;
2283 	m = m_run;
2284 	m_end = m_run + npages;
2285 	m_mtx = NULL;
2286 	for (; error == 0 && m < m_end; m++) {
2287 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2288 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2289 
2290 		/*
2291 		 * Avoid releasing and reacquiring the same page lock.
2292 		 */
2293 		vm_page_change_lock(m, &m_mtx);
2294 retry:
2295 		if (m->wire_count != 0 || m->hold_count != 0)
2296 			error = EBUSY;
2297 		else if ((object = m->object) != NULL) {
2298 			/*
2299 			 * The page is relocated if and only if it could be
2300 			 * laundered or reclaimed by the page daemon.
2301 			 */
2302 			if (!VM_OBJECT_TRYWLOCK(object)) {
2303 				mtx_unlock(m_mtx);
2304 				VM_OBJECT_WLOCK(object);
2305 				mtx_lock(m_mtx);
2306 				if (m->object != object) {
2307 					/*
2308 					 * The page may have been freed.
2309 					 */
2310 					VM_OBJECT_WUNLOCK(object);
2311 					goto retry;
2312 				} else if (m->wire_count != 0 ||
2313 				    m->hold_count != 0) {
2314 					error = EBUSY;
2315 					goto unlock;
2316 				}
2317 			}
2318 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2319 			    ("page %p is PG_UNHOLDFREE", m));
2320 			/* Don't care: PG_NODUMP, PG_ZERO. */
2321 			if (object->type != OBJT_DEFAULT &&
2322 			    object->type != OBJT_SWAP &&
2323 			    object->type != OBJT_VNODE)
2324 				error = EINVAL;
2325 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2326 				error = EINVAL;
2327 			else if (m->queue != PQ_NONE && !vm_page_busied(m)) {
2328 				KASSERT(pmap_page_get_memattr(m) ==
2329 				    VM_MEMATTR_DEFAULT,
2330 				    ("page %p has an unexpected memattr", m));
2331 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2332 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2333 				    ("page %p has unexpected oflags", m));
2334 				/* Don't care: VPO_NOSYNC. */
2335 				if (m->valid != 0) {
2336 					/*
2337 					 * First, try to allocate a new page
2338 					 * that is above "high".  Failing
2339 					 * that, try to allocate a new page
2340 					 * that is below "m_run".  Allocate
2341 					 * the new page between the end of
2342 					 * "m_run" and "high" only as a last
2343 					 * resort.
2344 					 */
2345 					req = req_class | VM_ALLOC_NOOBJ;
2346 					if ((m->flags & PG_NODUMP) != 0)
2347 						req |= VM_ALLOC_NODUMP;
2348 					if (trunc_page(high) !=
2349 					    ~(vm_paddr_t)PAGE_MASK) {
2350 						m_new = vm_page_alloc_contig(
2351 						    NULL, 0, req, 1,
2352 						    round_page(high),
2353 						    ~(vm_paddr_t)0,
2354 						    PAGE_SIZE, 0,
2355 						    VM_MEMATTR_DEFAULT);
2356 					} else
2357 						m_new = NULL;
2358 					if (m_new == NULL) {
2359 						pa = VM_PAGE_TO_PHYS(m_run);
2360 						m_new = vm_page_alloc_contig(
2361 						    NULL, 0, req, 1,
2362 						    0, pa - 1, PAGE_SIZE, 0,
2363 						    VM_MEMATTR_DEFAULT);
2364 					}
2365 					if (m_new == NULL) {
2366 						pa += ptoa(npages);
2367 						m_new = vm_page_alloc_contig(
2368 						    NULL, 0, req, 1,
2369 						    pa, high, PAGE_SIZE, 0,
2370 						    VM_MEMATTR_DEFAULT);
2371 					}
2372 					if (m_new == NULL) {
2373 						error = ENOMEM;
2374 						goto unlock;
2375 					}
2376 					KASSERT(m_new->wire_count == 0,
2377 					    ("page %p is wired", m));
2378 
2379 					/*
2380 					 * Replace "m" with the new page.  For
2381 					 * vm_page_replace(), "m" must be busy
2382 					 * and dequeued.  Finally, change "m"
2383 					 * as if vm_page_free() was called.
2384 					 */
2385 					if (object->ref_count != 0)
2386 						pmap_remove_all(m);
2387 					m_new->aflags = m->aflags;
2388 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2389 					    ("page %p is managed", m));
2390 					m_new->oflags = m->oflags & VPO_NOSYNC;
2391 					pmap_copy_page(m, m_new);
2392 					m_new->valid = m->valid;
2393 					m_new->dirty = m->dirty;
2394 					m->flags &= ~PG_ZERO;
2395 					vm_page_xbusy(m);
2396 					vm_page_remque(m);
2397 					vm_page_replace_checked(m_new, object,
2398 					    m->pindex, m);
2399 					m->valid = 0;
2400 					vm_page_undirty(m);
2401 
2402 					/*
2403 					 * The new page must be deactivated
2404 					 * before the object is unlocked.
2405 					 */
2406 					vm_page_change_lock(m_new, &m_mtx);
2407 					vm_page_deactivate(m_new);
2408 				} else {
2409 					m->flags &= ~PG_ZERO;
2410 					vm_page_remque(m);
2411 					vm_page_remove(m);
2412 					KASSERT(m->dirty == 0,
2413 					    ("page %p is dirty", m));
2414 				}
2415 				SLIST_INSERT_HEAD(&free, m, plinks.s.ss);
2416 			} else
2417 				error = EBUSY;
2418 unlock:
2419 			VM_OBJECT_WUNLOCK(object);
2420 		} else {
2421 			mtx_lock(&vm_page_queue_free_mtx);
2422 			order = m->order;
2423 			if (order < VM_NFREEORDER) {
2424 				/*
2425 				 * The page is enqueued in the physical memory
2426 				 * allocator's free page queues.  Moreover, it
2427 				 * is the first page in a power-of-two-sized
2428 				 * run of contiguous free pages.  Jump ahead
2429 				 * to the last page within that run, and
2430 				 * continue from there.
2431 				 */
2432 				m += (1 << order) - 1;
2433 			}
2434 #if VM_NRESERVLEVEL > 0
2435 			else if (vm_reserv_is_page_free(m))
2436 				order = 0;
2437 #endif
2438 			mtx_unlock(&vm_page_queue_free_mtx);
2439 			if (order == VM_NFREEORDER)
2440 				error = EINVAL;
2441 		}
2442 	}
2443 	if (m_mtx != NULL)
2444 		mtx_unlock(m_mtx);
2445 	if ((m = SLIST_FIRST(&free)) != NULL) {
2446 		mtx_lock(&vm_page_queue_free_mtx);
2447 		do {
2448 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2449 			vm_page_free_phys(m);
2450 		} while ((m = SLIST_FIRST(&free)) != NULL);
2451 		vm_page_free_wakeup();
2452 		mtx_unlock(&vm_page_queue_free_mtx);
2453 	}
2454 	return (error);
2455 }
2456 
2457 #define	NRUNS	16
2458 
2459 CTASSERT(powerof2(NRUNS));
2460 
2461 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2462 
2463 #define	MIN_RECLAIM	8
2464 
2465 /*
2466  *	vm_page_reclaim_contig:
2467  *
2468  *	Reclaim allocated, contiguous physical memory satisfying the specified
2469  *	conditions by relocating the virtual pages using that physical memory.
2470  *	Returns true if reclamation is successful and false otherwise.  Since
2471  *	relocation requires the allocation of physical pages, reclamation may
2472  *	fail due to a shortage of free pages.  When reclamation fails, callers
2473  *	are expected to perform VM_WAIT before retrying a failed allocation
2474  *	operation, e.g., vm_page_alloc_contig().
2475  *
2476  *	The caller must always specify an allocation class through "req".
2477  *
2478  *	allocation classes:
2479  *	VM_ALLOC_NORMAL		normal process request
2480  *	VM_ALLOC_SYSTEM		system *really* needs a page
2481  *	VM_ALLOC_INTERRUPT	interrupt time request
2482  *
2483  *	The optional allocation flags are ignored.
2484  *
2485  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2486  *	must be a power of two.
2487  */
2488 bool
2489 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2490     u_long alignment, vm_paddr_t boundary)
2491 {
2492 	vm_paddr_t curr_low;
2493 	vm_page_t m_run, m_runs[NRUNS];
2494 	u_long count, reclaimed;
2495 	int error, i, options, req_class;
2496 
2497 	KASSERT(npages > 0, ("npages is 0"));
2498 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2499 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2500 	req_class = req & VM_ALLOC_CLASS_MASK;
2501 
2502 	/*
2503 	 * The page daemon is allowed to dig deeper into the free page list.
2504 	 */
2505 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2506 		req_class = VM_ALLOC_SYSTEM;
2507 
2508 	/*
2509 	 * Return if the number of free pages cannot satisfy the requested
2510 	 * allocation.
2511 	 */
2512 	count = vm_cnt.v_free_count;
2513 	if (count < npages + vm_cnt.v_free_reserved || (count < npages +
2514 	    vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2515 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2516 		return (false);
2517 
2518 	/*
2519 	 * Scan up to three times, relaxing the restrictions ("options") on
2520 	 * the reclamation of reservations and superpages each time.
2521 	 */
2522 	for (options = VPSC_NORESERV;;) {
2523 		/*
2524 		 * Find the highest runs that satisfy the given constraints
2525 		 * and restrictions, and record them in "m_runs".
2526 		 */
2527 		curr_low = low;
2528 		count = 0;
2529 		for (;;) {
2530 			m_run = vm_phys_scan_contig(npages, curr_low, high,
2531 			    alignment, boundary, options);
2532 			if (m_run == NULL)
2533 				break;
2534 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2535 			m_runs[RUN_INDEX(count)] = m_run;
2536 			count++;
2537 		}
2538 
2539 		/*
2540 		 * Reclaim the highest runs in LIFO (descending) order until
2541 		 * the number of reclaimed pages, "reclaimed", is at least
2542 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2543 		 * reclamation is idempotent, and runs will (likely) recur
2544 		 * from one scan to the next as restrictions are relaxed.
2545 		 */
2546 		reclaimed = 0;
2547 		for (i = 0; count > 0 && i < NRUNS; i++) {
2548 			count--;
2549 			m_run = m_runs[RUN_INDEX(count)];
2550 			error = vm_page_reclaim_run(req_class, npages, m_run,
2551 			    high);
2552 			if (error == 0) {
2553 				reclaimed += npages;
2554 				if (reclaimed >= MIN_RECLAIM)
2555 					return (true);
2556 			}
2557 		}
2558 
2559 		/*
2560 		 * Either relax the restrictions on the next scan or return if
2561 		 * the last scan had no restrictions.
2562 		 */
2563 		if (options == VPSC_NORESERV)
2564 			options = VPSC_NOSUPER;
2565 		else if (options == VPSC_NOSUPER)
2566 			options = VPSC_ANY;
2567 		else if (options == VPSC_ANY)
2568 			return (reclaimed != 0);
2569 	}
2570 }
2571 
2572 /*
2573  *	vm_wait:	(also see VM_WAIT macro)
2574  *
2575  *	Sleep until free pages are available for allocation.
2576  *	- Called in various places before memory allocations.
2577  */
2578 static void
2579 _vm_wait(void)
2580 {
2581 
2582 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2583 	if (curproc == pageproc) {
2584 		vm_pageout_pages_needed = 1;
2585 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
2586 		    PDROP | PSWP, "VMWait", 0);
2587 	} else {
2588 		if (__predict_false(pageproc == NULL))
2589 			panic("vm_wait in early boot");
2590 		if (!vm_pageout_wanted) {
2591 			vm_pageout_wanted = true;
2592 			wakeup(&vm_pageout_wanted);
2593 		}
2594 		vm_pages_needed = true;
2595 		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
2596 		    "vmwait", 0);
2597 	}
2598 }
2599 
2600 void
2601 vm_wait(void)
2602 {
2603 
2604 	mtx_lock(&vm_page_queue_free_mtx);
2605 	_vm_wait();
2606 }
2607 
2608 /*
2609  *	vm_page_alloc_fail:
2610  *
2611  *	Called when a page allocation function fails.  Informs the
2612  *	pagedaemon and performs the requested wait.  Requires the
2613  *	page_queue_free and object lock on entry.  Returns with the
2614  *	object lock held and free lock released.  Returns an error when
2615  *	retry is necessary.
2616  *
2617  */
2618 static int
2619 vm_page_alloc_fail(vm_object_t object, int req)
2620 {
2621 
2622 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2623 
2624 	atomic_add_int(&vm_pageout_deficit,
2625 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
2626 	pagedaemon_wakeup();
2627 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
2628 		if (object != NULL)
2629 			VM_OBJECT_WUNLOCK(object);
2630 		_vm_wait();
2631 		if (object != NULL)
2632 			VM_OBJECT_WLOCK(object);
2633 		if (req & VM_ALLOC_WAITOK)
2634 			return (EAGAIN);
2635 	} else
2636 		mtx_unlock(&vm_page_queue_free_mtx);
2637 	return (0);
2638 }
2639 
2640 /*
2641  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
2642  *
2643  *	Sleep until free pages are available for allocation.
2644  *	- Called only in vm_fault so that processes page faulting
2645  *	  can be easily tracked.
2646  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2647  *	  processes will be able to grab memory first.  Do not change
2648  *	  this balance without careful testing first.
2649  */
2650 void
2651 vm_waitpfault(void)
2652 {
2653 
2654 	mtx_lock(&vm_page_queue_free_mtx);
2655 	if (!vm_pageout_wanted) {
2656 		vm_pageout_wanted = true;
2657 		wakeup(&vm_pageout_wanted);
2658 	}
2659 	vm_pages_needed = true;
2660 	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2661 	    "pfault", 0);
2662 }
2663 
2664 struct vm_pagequeue *
2665 vm_page_pagequeue(vm_page_t m)
2666 {
2667 
2668 	if (vm_page_in_laundry(m))
2669 		return (&vm_dom[0].vmd_pagequeues[m->queue]);
2670 	else
2671 		return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2672 }
2673 
2674 /*
2675  *	vm_page_dequeue:
2676  *
2677  *	Remove the given page from its current page queue.
2678  *
2679  *	The page must be locked.
2680  */
2681 void
2682 vm_page_dequeue(vm_page_t m)
2683 {
2684 	struct vm_pagequeue *pq;
2685 
2686 	vm_page_assert_locked(m);
2687 	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2688 	    m));
2689 	pq = vm_page_pagequeue(m);
2690 	vm_pagequeue_lock(pq);
2691 	m->queue = PQ_NONE;
2692 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2693 	vm_pagequeue_cnt_dec(pq);
2694 	vm_pagequeue_unlock(pq);
2695 }
2696 
2697 /*
2698  *	vm_page_dequeue_locked:
2699  *
2700  *	Remove the given page from its current page queue.
2701  *
2702  *	The page and page queue must be locked.
2703  */
2704 void
2705 vm_page_dequeue_locked(vm_page_t m)
2706 {
2707 	struct vm_pagequeue *pq;
2708 
2709 	vm_page_lock_assert(m, MA_OWNED);
2710 	pq = vm_page_pagequeue(m);
2711 	vm_pagequeue_assert_locked(pq);
2712 	m->queue = PQ_NONE;
2713 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2714 	vm_pagequeue_cnt_dec(pq);
2715 }
2716 
2717 /*
2718  *	vm_page_enqueue:
2719  *
2720  *	Add the given page to the specified page queue.
2721  *
2722  *	The page must be locked.
2723  */
2724 static void
2725 vm_page_enqueue(uint8_t queue, vm_page_t m)
2726 {
2727 	struct vm_pagequeue *pq;
2728 
2729 	vm_page_lock_assert(m, MA_OWNED);
2730 	KASSERT(queue < PQ_COUNT,
2731 	    ("vm_page_enqueue: invalid queue %u request for page %p",
2732 	    queue, m));
2733 	if (queue == PQ_LAUNDRY || queue == PQ_UNSWAPPABLE)
2734 		pq = &vm_dom[0].vmd_pagequeues[queue];
2735 	else
2736 		pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2737 	vm_pagequeue_lock(pq);
2738 	m->queue = queue;
2739 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2740 	vm_pagequeue_cnt_inc(pq);
2741 	vm_pagequeue_unlock(pq);
2742 }
2743 
2744 /*
2745  *	vm_page_requeue:
2746  *
2747  *	Move the given page to the tail of its current page queue.
2748  *
2749  *	The page must be locked.
2750  */
2751 void
2752 vm_page_requeue(vm_page_t m)
2753 {
2754 	struct vm_pagequeue *pq;
2755 
2756 	vm_page_lock_assert(m, MA_OWNED);
2757 	KASSERT(m->queue != PQ_NONE,
2758 	    ("vm_page_requeue: page %p is not queued", m));
2759 	pq = vm_page_pagequeue(m);
2760 	vm_pagequeue_lock(pq);
2761 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2762 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2763 	vm_pagequeue_unlock(pq);
2764 }
2765 
2766 /*
2767  *	vm_page_requeue_locked:
2768  *
2769  *	Move the given page to the tail of its current page queue.
2770  *
2771  *	The page queue must be locked.
2772  */
2773 void
2774 vm_page_requeue_locked(vm_page_t m)
2775 {
2776 	struct vm_pagequeue *pq;
2777 
2778 	KASSERT(m->queue != PQ_NONE,
2779 	    ("vm_page_requeue_locked: page %p is not queued", m));
2780 	pq = vm_page_pagequeue(m);
2781 	vm_pagequeue_assert_locked(pq);
2782 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2783 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2784 }
2785 
2786 /*
2787  *	vm_page_activate:
2788  *
2789  *	Put the specified page on the active list (if appropriate).
2790  *	Ensure that act_count is at least ACT_INIT but do not otherwise
2791  *	mess with it.
2792  *
2793  *	The page must be locked.
2794  */
2795 void
2796 vm_page_activate(vm_page_t m)
2797 {
2798 	int queue;
2799 
2800 	vm_page_lock_assert(m, MA_OWNED);
2801 	if ((queue = m->queue) != PQ_ACTIVE) {
2802 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2803 			if (m->act_count < ACT_INIT)
2804 				m->act_count = ACT_INIT;
2805 			if (queue != PQ_NONE)
2806 				vm_page_dequeue(m);
2807 			vm_page_enqueue(PQ_ACTIVE, m);
2808 		} else
2809 			KASSERT(queue == PQ_NONE,
2810 			    ("vm_page_activate: wired page %p is queued", m));
2811 	} else {
2812 		if (m->act_count < ACT_INIT)
2813 			m->act_count = ACT_INIT;
2814 	}
2815 }
2816 
2817 /*
2818  *	vm_page_free_wakeup:
2819  *
2820  *	Helper routine for vm_page_free_toq().  This routine is called
2821  *	when a page is added to the free queues.
2822  *
2823  *	The page queues must be locked.
2824  */
2825 static void
2826 vm_page_free_wakeup(void)
2827 {
2828 
2829 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2830 	/*
2831 	 * if pageout daemon needs pages, then tell it that there are
2832 	 * some free.
2833 	 */
2834 	if (vm_pageout_pages_needed &&
2835 	    vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2836 		wakeup(&vm_pageout_pages_needed);
2837 		vm_pageout_pages_needed = 0;
2838 	}
2839 	/*
2840 	 * wakeup processes that are waiting on memory if we hit a
2841 	 * high water mark. And wakeup scheduler process if we have
2842 	 * lots of memory. this process will swapin processes.
2843 	 */
2844 	if (vm_pages_needed && !vm_page_count_min()) {
2845 		vm_pages_needed = false;
2846 		wakeup(&vm_cnt.v_free_count);
2847 	}
2848 }
2849 
2850 /*
2851  *	vm_page_free_prep:
2852  *
2853  *	Prepares the given page to be put on the free list,
2854  *	disassociating it from any VM object. The caller may return
2855  *	the page to the free list only if this function returns true.
2856  *
2857  *	The object must be locked.  The page must be locked if it is
2858  *	managed.  For a queued managed page, the pagequeue_locked
2859  *	argument specifies whether the page queue is already locked.
2860  */
2861 bool
2862 vm_page_free_prep(vm_page_t m, bool pagequeue_locked)
2863 {
2864 
2865 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
2866 	if ((m->flags & PG_ZERO) != 0) {
2867 		uint64_t *p;
2868 		int i;
2869 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
2870 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
2871 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
2872 			    m, i, (uintmax_t)*p));
2873 	}
2874 #endif
2875 	if ((m->oflags & VPO_UNMANAGED) == 0) {
2876 		vm_page_lock_assert(m, MA_OWNED);
2877 		KASSERT(!pmap_page_is_mapped(m),
2878 		    ("vm_page_free_toq: freeing mapped page %p", m));
2879 	} else
2880 		KASSERT(m->queue == PQ_NONE,
2881 		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2882 	VM_CNT_INC(v_tfree);
2883 
2884 	if (vm_page_sbusied(m))
2885 		panic("vm_page_free: freeing busy page %p", m);
2886 
2887 	vm_page_remove(m);
2888 
2889 	/*
2890 	 * If fictitious remove object association and
2891 	 * return.
2892 	 */
2893 	if ((m->flags & PG_FICTITIOUS) != 0) {
2894 		KASSERT(m->wire_count == 1,
2895 		    ("fictitious page %p is not wired", m));
2896 		KASSERT(m->queue == PQ_NONE,
2897 		    ("fictitious page %p is queued", m));
2898 		return (false);
2899 	}
2900 
2901 	if (m->queue != PQ_NONE) {
2902 		if (pagequeue_locked)
2903 			vm_page_dequeue_locked(m);
2904 		else
2905 			vm_page_dequeue(m);
2906 	}
2907 	m->valid = 0;
2908 	vm_page_undirty(m);
2909 
2910 	if (m->wire_count != 0)
2911 		panic("vm_page_free: freeing wired page %p", m);
2912 	if (m->hold_count != 0) {
2913 		m->flags &= ~PG_ZERO;
2914 		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2915 		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2916 		m->flags |= PG_UNHOLDFREE;
2917 		return (false);
2918 	}
2919 
2920 	/*
2921 	 * Restore the default memory attribute to the page.
2922 	 */
2923 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2924 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2925 
2926 	return (true);
2927 }
2928 
2929 /*
2930  * Insert the page into the physical memory allocator's free page
2931  * queues.  This is the last step to free a page.
2932  */
2933 static void
2934 vm_page_free_phys(vm_page_t m)
2935 {
2936 
2937 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2938 
2939 	vm_phys_freecnt_adj(m, 1);
2940 #if VM_NRESERVLEVEL > 0
2941 	if (!vm_reserv_free_page(m))
2942 #endif
2943 		vm_phys_free_pages(m, 0);
2944 }
2945 
2946 void
2947 vm_page_free_phys_pglist(struct pglist *tq)
2948 {
2949 	vm_page_t m;
2950 
2951 	if (TAILQ_EMPTY(tq))
2952 		return;
2953 	mtx_lock(&vm_page_queue_free_mtx);
2954 	TAILQ_FOREACH(m, tq, listq)
2955 		vm_page_free_phys(m);
2956 	vm_page_free_wakeup();
2957 	mtx_unlock(&vm_page_queue_free_mtx);
2958 }
2959 
2960 /*
2961  *	vm_page_free_toq:
2962  *
2963  *	Returns the given page to the free list, disassociating it
2964  *	from any VM object.
2965  *
2966  *	The object must be locked.  The page must be locked if it is
2967  *	managed.
2968  */
2969 void
2970 vm_page_free_toq(vm_page_t m)
2971 {
2972 
2973 	if (!vm_page_free_prep(m, false))
2974 		return;
2975 	mtx_lock(&vm_page_queue_free_mtx);
2976 	vm_page_free_phys(m);
2977 	vm_page_free_wakeup();
2978 	mtx_unlock(&vm_page_queue_free_mtx);
2979 }
2980 
2981 /*
2982  *	vm_page_wire:
2983  *
2984  *	Mark this page as wired down by yet
2985  *	another map, removing it from paging queues
2986  *	as necessary.
2987  *
2988  *	If the page is fictitious, then its wire count must remain one.
2989  *
2990  *	The page must be locked.
2991  */
2992 void
2993 vm_page_wire(vm_page_t m)
2994 {
2995 
2996 	/*
2997 	 * Only bump the wire statistics if the page is not already wired,
2998 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2999 	 * it is already off the queues).
3000 	 */
3001 	vm_page_lock_assert(m, MA_OWNED);
3002 	if ((m->flags & PG_FICTITIOUS) != 0) {
3003 		KASSERT(m->wire_count == 1,
3004 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
3005 		    m));
3006 		return;
3007 	}
3008 	if (m->wire_count == 0) {
3009 		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
3010 		    m->queue == PQ_NONE,
3011 		    ("vm_page_wire: unmanaged page %p is queued", m));
3012 		vm_page_remque(m);
3013 		atomic_add_int(&vm_cnt.v_wire_count, 1);
3014 	}
3015 	m->wire_count++;
3016 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
3017 }
3018 
3019 /*
3020  * vm_page_unwire:
3021  *
3022  * Release one wiring of the specified page, potentially allowing it to be
3023  * paged out.  Returns TRUE if the number of wirings transitions to zero and
3024  * FALSE otherwise.
3025  *
3026  * Only managed pages belonging to an object can be paged out.  If the number
3027  * of wirings transitions to zero and the page is eligible for page out, then
3028  * the page is added to the specified paging queue (unless PQ_NONE is
3029  * specified).
3030  *
3031  * If a page is fictitious, then its wire count must always be one.
3032  *
3033  * A managed page must be locked.
3034  */
3035 boolean_t
3036 vm_page_unwire(vm_page_t m, uint8_t queue)
3037 {
3038 
3039 	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
3040 	    ("vm_page_unwire: invalid queue %u request for page %p",
3041 	    queue, m));
3042 	if ((m->oflags & VPO_UNMANAGED) == 0)
3043 		vm_page_assert_locked(m);
3044 	if ((m->flags & PG_FICTITIOUS) != 0) {
3045 		KASSERT(m->wire_count == 1,
3046 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
3047 		return (FALSE);
3048 	}
3049 	if (m->wire_count > 0) {
3050 		m->wire_count--;
3051 		if (m->wire_count == 0) {
3052 			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
3053 			if ((m->oflags & VPO_UNMANAGED) == 0 &&
3054 			    m->object != NULL && queue != PQ_NONE)
3055 				vm_page_enqueue(queue, m);
3056 			return (TRUE);
3057 		} else
3058 			return (FALSE);
3059 	} else
3060 		panic("vm_page_unwire: page %p's wire count is zero", m);
3061 }
3062 
3063 /*
3064  * Move the specified page to the inactive queue.
3065  *
3066  * Normally, "noreuse" is FALSE, resulting in LRU ordering of the inactive
3067  * queue.  However, setting "noreuse" to TRUE will accelerate the specified
3068  * page's reclamation, but it will not unmap the page from any address space.
3069  * This is implemented by inserting the page near the head of the inactive
3070  * queue, using a marker page to guide FIFO insertion ordering.
3071  *
3072  * The page must be locked.
3073  */
3074 static inline void
3075 _vm_page_deactivate(vm_page_t m, boolean_t noreuse)
3076 {
3077 	struct vm_pagequeue *pq;
3078 	int queue;
3079 
3080 	vm_page_assert_locked(m);
3081 
3082 	/*
3083 	 * Ignore if the page is already inactive, unless it is unlikely to be
3084 	 * reactivated.
3085 	 */
3086 	if ((queue = m->queue) == PQ_INACTIVE && !noreuse)
3087 		return;
3088 	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3089 		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
3090 		/* Avoid multiple acquisitions of the inactive queue lock. */
3091 		if (queue == PQ_INACTIVE) {
3092 			vm_pagequeue_lock(pq);
3093 			vm_page_dequeue_locked(m);
3094 		} else {
3095 			if (queue != PQ_NONE)
3096 				vm_page_dequeue(m);
3097 			vm_pagequeue_lock(pq);
3098 		}
3099 		m->queue = PQ_INACTIVE;
3100 		if (noreuse)
3101 			TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead,
3102 			    m, plinks.q);
3103 		else
3104 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3105 		vm_pagequeue_cnt_inc(pq);
3106 		vm_pagequeue_unlock(pq);
3107 	}
3108 }
3109 
3110 /*
3111  * Move the specified page to the inactive queue.
3112  *
3113  * The page must be locked.
3114  */
3115 void
3116 vm_page_deactivate(vm_page_t m)
3117 {
3118 
3119 	_vm_page_deactivate(m, FALSE);
3120 }
3121 
3122 /*
3123  * Move the specified page to the inactive queue with the expectation
3124  * that it is unlikely to be reused.
3125  *
3126  * The page must be locked.
3127  */
3128 void
3129 vm_page_deactivate_noreuse(vm_page_t m)
3130 {
3131 
3132 	_vm_page_deactivate(m, TRUE);
3133 }
3134 
3135 /*
3136  * vm_page_launder
3137  *
3138  * 	Put a page in the laundry.
3139  */
3140 void
3141 vm_page_launder(vm_page_t m)
3142 {
3143 	int queue;
3144 
3145 	vm_page_assert_locked(m);
3146 	if ((queue = m->queue) != PQ_LAUNDRY) {
3147 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3148 			if (queue != PQ_NONE)
3149 				vm_page_dequeue(m);
3150 			vm_page_enqueue(PQ_LAUNDRY, m);
3151 		} else
3152 			KASSERT(queue == PQ_NONE,
3153 			    ("wired page %p is queued", m));
3154 	}
3155 }
3156 
3157 /*
3158  * vm_page_unswappable
3159  *
3160  *	Put a page in the PQ_UNSWAPPABLE holding queue.
3161  */
3162 void
3163 vm_page_unswappable(vm_page_t m)
3164 {
3165 
3166 	vm_page_assert_locked(m);
3167 	KASSERT(m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0,
3168 	    ("page %p already unswappable", m));
3169 	if (m->queue != PQ_NONE)
3170 		vm_page_dequeue(m);
3171 	vm_page_enqueue(PQ_UNSWAPPABLE, m);
3172 }
3173 
3174 /*
3175  * Attempt to free the page.  If it cannot be freed, do nothing.  Returns true
3176  * if the page is freed and false otherwise.
3177  *
3178  * The page must be managed.  The page and its containing object must be
3179  * locked.
3180  */
3181 bool
3182 vm_page_try_to_free(vm_page_t m)
3183 {
3184 
3185 	vm_page_assert_locked(m);
3186 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3187 	KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("page %p is unmanaged", m));
3188 	if (m->dirty != 0 || m->hold_count != 0 || m->wire_count != 0 ||
3189 	    vm_page_busied(m))
3190 		return (false);
3191 	if (m->object->ref_count != 0) {
3192 		pmap_remove_all(m);
3193 		if (m->dirty != 0)
3194 			return (false);
3195 	}
3196 	vm_page_free(m);
3197 	return (true);
3198 }
3199 
3200 /*
3201  * vm_page_advise
3202  *
3203  * 	Apply the specified advice to the given page.
3204  *
3205  *	The object and page must be locked.
3206  */
3207 void
3208 vm_page_advise(vm_page_t m, int advice)
3209 {
3210 
3211 	vm_page_assert_locked(m);
3212 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3213 	if (advice == MADV_FREE)
3214 		/*
3215 		 * Mark the page clean.  This will allow the page to be freed
3216 		 * without first paging it out.  MADV_FREE pages are often
3217 		 * quickly reused by malloc(3), so we do not do anything that
3218 		 * would result in a page fault on a later access.
3219 		 */
3220 		vm_page_undirty(m);
3221 	else if (advice != MADV_DONTNEED) {
3222 		if (advice == MADV_WILLNEED)
3223 			vm_page_activate(m);
3224 		return;
3225 	}
3226 
3227 	/*
3228 	 * Clear any references to the page.  Otherwise, the page daemon will
3229 	 * immediately reactivate the page.
3230 	 */
3231 	vm_page_aflag_clear(m, PGA_REFERENCED);
3232 
3233 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
3234 		vm_page_dirty(m);
3235 
3236 	/*
3237 	 * Place clean pages near the head of the inactive queue rather than
3238 	 * the tail, thus defeating the queue's LRU operation and ensuring that
3239 	 * the page will be reused quickly.  Dirty pages not already in the
3240 	 * laundry are moved there.
3241 	 */
3242 	if (m->dirty == 0)
3243 		vm_page_deactivate_noreuse(m);
3244 	else
3245 		vm_page_launder(m);
3246 }
3247 
3248 /*
3249  * Grab a page, waiting until we are waken up due to the page
3250  * changing state.  We keep on waiting, if the page continues
3251  * to be in the object.  If the page doesn't exist, first allocate it
3252  * and then conditionally zero it.
3253  *
3254  * This routine may sleep.
3255  *
3256  * The object must be locked on entry.  The lock will, however, be released
3257  * and reacquired if the routine sleeps.
3258  */
3259 vm_page_t
3260 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3261 {
3262 	vm_page_t m;
3263 	int sleep;
3264 	int pflags;
3265 
3266 	VM_OBJECT_ASSERT_WLOCKED(object);
3267 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3268 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3269 	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
3270 	pflags = allocflags &
3271 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
3272 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
3273 		pflags |= VM_ALLOC_WAITFAIL;
3274 retrylookup:
3275 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
3276 		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3277 		    vm_page_xbusied(m) : vm_page_busied(m);
3278 		if (sleep) {
3279 			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3280 				return (NULL);
3281 			/*
3282 			 * Reference the page before unlocking and
3283 			 * sleeping so that the page daemon is less
3284 			 * likely to reclaim it.
3285 			 */
3286 			vm_page_aflag_set(m, PGA_REFERENCED);
3287 			vm_page_lock(m);
3288 			VM_OBJECT_WUNLOCK(object);
3289 			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
3290 			    VM_ALLOC_IGN_SBUSY) != 0);
3291 			VM_OBJECT_WLOCK(object);
3292 			goto retrylookup;
3293 		} else {
3294 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3295 				vm_page_lock(m);
3296 				vm_page_wire(m);
3297 				vm_page_unlock(m);
3298 			}
3299 			if ((allocflags &
3300 			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
3301 				vm_page_xbusy(m);
3302 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3303 				vm_page_sbusy(m);
3304 			return (m);
3305 		}
3306 	}
3307 	m = vm_page_alloc(object, pindex, pflags);
3308 	if (m == NULL) {
3309 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3310 			return (NULL);
3311 		goto retrylookup;
3312 	}
3313 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
3314 		pmap_zero_page(m);
3315 	return (m);
3316 }
3317 
3318 /*
3319  * Return the specified range of pages from the given object.  For each
3320  * page offset within the range, if a page already exists within the object
3321  * at that offset and it is busy, then wait for it to change state.  If,
3322  * instead, the page doesn't exist, then allocate it.
3323  *
3324  * The caller must always specify an allocation class.
3325  *
3326  * allocation classes:
3327  *	VM_ALLOC_NORMAL		normal process request
3328  *	VM_ALLOC_SYSTEM		system *really* needs the pages
3329  *
3330  * The caller must always specify that the pages are to be busied and/or
3331  * wired.
3332  *
3333  * optional allocation flags:
3334  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
3335  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
3336  *	VM_ALLOC_NOWAIT		do not sleep
3337  *	VM_ALLOC_SBUSY		set page to sbusy state
3338  *	VM_ALLOC_WIRED		wire the pages
3339  *	VM_ALLOC_ZERO		zero and validate any invalid pages
3340  *
3341  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
3342  * may return a partial prefix of the requested range.
3343  */
3344 int
3345 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
3346     vm_page_t *ma, int count)
3347 {
3348 	vm_page_t m, mpred;
3349 	int pflags;
3350 	int i;
3351 	bool sleep;
3352 
3353 	VM_OBJECT_ASSERT_WLOCKED(object);
3354 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
3355 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
3356 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
3357 	    (allocflags & VM_ALLOC_WIRED) != 0,
3358 	    ("vm_page_grab_pages: the pages must be busied or wired"));
3359 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3360 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3361 	    ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch"));
3362 	if (count == 0)
3363 		return (0);
3364 	pflags = allocflags & ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK |
3365 	    VM_ALLOC_WAITFAIL | VM_ALLOC_IGN_SBUSY);
3366 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
3367 		pflags |= VM_ALLOC_WAITFAIL;
3368 	i = 0;
3369 retrylookup:
3370 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
3371 	if (m == NULL || m->pindex != pindex + i) {
3372 		mpred = m;
3373 		m = NULL;
3374 	} else
3375 		mpred = TAILQ_PREV(m, pglist, listq);
3376 	for (; i < count; i++) {
3377 		if (m != NULL) {
3378 			sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3379 			    vm_page_xbusied(m) : vm_page_busied(m);
3380 			if (sleep) {
3381 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3382 					break;
3383 				/*
3384 				 * Reference the page before unlocking and
3385 				 * sleeping so that the page daemon is less
3386 				 * likely to reclaim it.
3387 				 */
3388 				vm_page_aflag_set(m, PGA_REFERENCED);
3389 				vm_page_lock(m);
3390 				VM_OBJECT_WUNLOCK(object);
3391 				vm_page_busy_sleep(m, "grbmaw", (allocflags &
3392 				    VM_ALLOC_IGN_SBUSY) != 0);
3393 				VM_OBJECT_WLOCK(object);
3394 				goto retrylookup;
3395 			}
3396 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3397 				vm_page_lock(m);
3398 				vm_page_wire(m);
3399 				vm_page_unlock(m);
3400 			}
3401 			if ((allocflags & (VM_ALLOC_NOBUSY |
3402 			    VM_ALLOC_SBUSY)) == 0)
3403 				vm_page_xbusy(m);
3404 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3405 				vm_page_sbusy(m);
3406 		} else {
3407 			m = vm_page_alloc_after(object, pindex + i,
3408 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
3409 			if (m == NULL) {
3410 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3411 					break;
3412 				goto retrylookup;
3413 			}
3414 		}
3415 		if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) {
3416 			if ((m->flags & PG_ZERO) == 0)
3417 				pmap_zero_page(m);
3418 			m->valid = VM_PAGE_BITS_ALL;
3419 		}
3420 		ma[i] = mpred = m;
3421 		m = vm_page_next(m);
3422 	}
3423 	return (i);
3424 }
3425 
3426 /*
3427  * Mapping function for valid or dirty bits in a page.
3428  *
3429  * Inputs are required to range within a page.
3430  */
3431 vm_page_bits_t
3432 vm_page_bits(int base, int size)
3433 {
3434 	int first_bit;
3435 	int last_bit;
3436 
3437 	KASSERT(
3438 	    base + size <= PAGE_SIZE,
3439 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3440 	);
3441 
3442 	if (size == 0)		/* handle degenerate case */
3443 		return (0);
3444 
3445 	first_bit = base >> DEV_BSHIFT;
3446 	last_bit = (base + size - 1) >> DEV_BSHIFT;
3447 
3448 	return (((vm_page_bits_t)2 << last_bit) -
3449 	    ((vm_page_bits_t)1 << first_bit));
3450 }
3451 
3452 /*
3453  *	vm_page_set_valid_range:
3454  *
3455  *	Sets portions of a page valid.  The arguments are expected
3456  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3457  *	of any partial chunks touched by the range.  The invalid portion of
3458  *	such chunks will be zeroed.
3459  *
3460  *	(base + size) must be less then or equal to PAGE_SIZE.
3461  */
3462 void
3463 vm_page_set_valid_range(vm_page_t m, int base, int size)
3464 {
3465 	int endoff, frag;
3466 
3467 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3468 	if (size == 0)	/* handle degenerate case */
3469 		return;
3470 
3471 	/*
3472 	 * If the base is not DEV_BSIZE aligned and the valid
3473 	 * bit is clear, we have to zero out a portion of the
3474 	 * first block.
3475 	 */
3476 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3477 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
3478 		pmap_zero_page_area(m, frag, base - frag);
3479 
3480 	/*
3481 	 * If the ending offset is not DEV_BSIZE aligned and the
3482 	 * valid bit is clear, we have to zero out a portion of
3483 	 * the last block.
3484 	 */
3485 	endoff = base + size;
3486 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3487 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
3488 		pmap_zero_page_area(m, endoff,
3489 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3490 
3491 	/*
3492 	 * Assert that no previously invalid block that is now being validated
3493 	 * is already dirty.
3494 	 */
3495 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
3496 	    ("vm_page_set_valid_range: page %p is dirty", m));
3497 
3498 	/*
3499 	 * Set valid bits inclusive of any overlap.
3500 	 */
3501 	m->valid |= vm_page_bits(base, size);
3502 }
3503 
3504 /*
3505  * Clear the given bits from the specified page's dirty field.
3506  */
3507 static __inline void
3508 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
3509 {
3510 	uintptr_t addr;
3511 #if PAGE_SIZE < 16384
3512 	int shift;
3513 #endif
3514 
3515 	/*
3516 	 * If the object is locked and the page is neither exclusive busy nor
3517 	 * write mapped, then the page's dirty field cannot possibly be
3518 	 * set by a concurrent pmap operation.
3519 	 */
3520 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3521 	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
3522 		m->dirty &= ~pagebits;
3523 	else {
3524 		/*
3525 		 * The pmap layer can call vm_page_dirty() without
3526 		 * holding a distinguished lock.  The combination of
3527 		 * the object's lock and an atomic operation suffice
3528 		 * to guarantee consistency of the page dirty field.
3529 		 *
3530 		 * For PAGE_SIZE == 32768 case, compiler already
3531 		 * properly aligns the dirty field, so no forcible
3532 		 * alignment is needed. Only require existence of
3533 		 * atomic_clear_64 when page size is 32768.
3534 		 */
3535 		addr = (uintptr_t)&m->dirty;
3536 #if PAGE_SIZE == 32768
3537 		atomic_clear_64((uint64_t *)addr, pagebits);
3538 #elif PAGE_SIZE == 16384
3539 		atomic_clear_32((uint32_t *)addr, pagebits);
3540 #else		/* PAGE_SIZE <= 8192 */
3541 		/*
3542 		 * Use a trick to perform a 32-bit atomic on the
3543 		 * containing aligned word, to not depend on the existence
3544 		 * of atomic_clear_{8, 16}.
3545 		 */
3546 		shift = addr & (sizeof(uint32_t) - 1);
3547 #if BYTE_ORDER == BIG_ENDIAN
3548 		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
3549 #else
3550 		shift *= NBBY;
3551 #endif
3552 		addr &= ~(sizeof(uint32_t) - 1);
3553 		atomic_clear_32((uint32_t *)addr, pagebits << shift);
3554 #endif		/* PAGE_SIZE */
3555 	}
3556 }
3557 
3558 /*
3559  *	vm_page_set_validclean:
3560  *
3561  *	Sets portions of a page valid and clean.  The arguments are expected
3562  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3563  *	of any partial chunks touched by the range.  The invalid portion of
3564  *	such chunks will be zero'd.
3565  *
3566  *	(base + size) must be less then or equal to PAGE_SIZE.
3567  */
3568 void
3569 vm_page_set_validclean(vm_page_t m, int base, int size)
3570 {
3571 	vm_page_bits_t oldvalid, pagebits;
3572 	int endoff, frag;
3573 
3574 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3575 	if (size == 0)	/* handle degenerate case */
3576 		return;
3577 
3578 	/*
3579 	 * If the base is not DEV_BSIZE aligned and the valid
3580 	 * bit is clear, we have to zero out a portion of the
3581 	 * first block.
3582 	 */
3583 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3584 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
3585 		pmap_zero_page_area(m, frag, base - frag);
3586 
3587 	/*
3588 	 * If the ending offset is not DEV_BSIZE aligned and the
3589 	 * valid bit is clear, we have to zero out a portion of
3590 	 * the last block.
3591 	 */
3592 	endoff = base + size;
3593 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3594 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
3595 		pmap_zero_page_area(m, endoff,
3596 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3597 
3598 	/*
3599 	 * Set valid, clear dirty bits.  If validating the entire
3600 	 * page we can safely clear the pmap modify bit.  We also
3601 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
3602 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
3603 	 * be set again.
3604 	 *
3605 	 * We set valid bits inclusive of any overlap, but we can only
3606 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
3607 	 * the range.
3608 	 */
3609 	oldvalid = m->valid;
3610 	pagebits = vm_page_bits(base, size);
3611 	m->valid |= pagebits;
3612 #if 0	/* NOT YET */
3613 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
3614 		frag = DEV_BSIZE - frag;
3615 		base += frag;
3616 		size -= frag;
3617 		if (size < 0)
3618 			size = 0;
3619 	}
3620 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
3621 #endif
3622 	if (base == 0 && size == PAGE_SIZE) {
3623 		/*
3624 		 * The page can only be modified within the pmap if it is
3625 		 * mapped, and it can only be mapped if it was previously
3626 		 * fully valid.
3627 		 */
3628 		if (oldvalid == VM_PAGE_BITS_ALL)
3629 			/*
3630 			 * Perform the pmap_clear_modify() first.  Otherwise,
3631 			 * a concurrent pmap operation, such as
3632 			 * pmap_protect(), could clear a modification in the
3633 			 * pmap and set the dirty field on the page before
3634 			 * pmap_clear_modify() had begun and after the dirty
3635 			 * field was cleared here.
3636 			 */
3637 			pmap_clear_modify(m);
3638 		m->dirty = 0;
3639 		m->oflags &= ~VPO_NOSYNC;
3640 	} else if (oldvalid != VM_PAGE_BITS_ALL)
3641 		m->dirty &= ~pagebits;
3642 	else
3643 		vm_page_clear_dirty_mask(m, pagebits);
3644 }
3645 
3646 void
3647 vm_page_clear_dirty(vm_page_t m, int base, int size)
3648 {
3649 
3650 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3651 }
3652 
3653 /*
3654  *	vm_page_set_invalid:
3655  *
3656  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
3657  *	valid and dirty bits for the effected areas are cleared.
3658  */
3659 void
3660 vm_page_set_invalid(vm_page_t m, int base, int size)
3661 {
3662 	vm_page_bits_t bits;
3663 	vm_object_t object;
3664 
3665 	object = m->object;
3666 	VM_OBJECT_ASSERT_WLOCKED(object);
3667 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3668 	    size >= object->un_pager.vnp.vnp_size)
3669 		bits = VM_PAGE_BITS_ALL;
3670 	else
3671 		bits = vm_page_bits(base, size);
3672 	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3673 	    bits != 0)
3674 		pmap_remove_all(m);
3675 	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3676 	    !pmap_page_is_mapped(m),
3677 	    ("vm_page_set_invalid: page %p is mapped", m));
3678 	m->valid &= ~bits;
3679 	m->dirty &= ~bits;
3680 }
3681 
3682 /*
3683  * vm_page_zero_invalid()
3684  *
3685  *	The kernel assumes that the invalid portions of a page contain
3686  *	garbage, but such pages can be mapped into memory by user code.
3687  *	When this occurs, we must zero out the non-valid portions of the
3688  *	page so user code sees what it expects.
3689  *
3690  *	Pages are most often semi-valid when the end of a file is mapped
3691  *	into memory and the file's size is not page aligned.
3692  */
3693 void
3694 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3695 {
3696 	int b;
3697 	int i;
3698 
3699 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3700 	/*
3701 	 * Scan the valid bits looking for invalid sections that
3702 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
3703 	 * valid bit may be set ) have already been zeroed by
3704 	 * vm_page_set_validclean().
3705 	 */
3706 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3707 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3708 		    (m->valid & ((vm_page_bits_t)1 << i))) {
3709 			if (i > b) {
3710 				pmap_zero_page_area(m,
3711 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3712 			}
3713 			b = i + 1;
3714 		}
3715 	}
3716 
3717 	/*
3718 	 * setvalid is TRUE when we can safely set the zero'd areas
3719 	 * as being valid.  We can do this if there are no cache consistancy
3720 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3721 	 */
3722 	if (setvalid)
3723 		m->valid = VM_PAGE_BITS_ALL;
3724 }
3725 
3726 /*
3727  *	vm_page_is_valid:
3728  *
3729  *	Is (partial) page valid?  Note that the case where size == 0
3730  *	will return FALSE in the degenerate case where the page is
3731  *	entirely invalid, and TRUE otherwise.
3732  */
3733 int
3734 vm_page_is_valid(vm_page_t m, int base, int size)
3735 {
3736 	vm_page_bits_t bits;
3737 
3738 	VM_OBJECT_ASSERT_LOCKED(m->object);
3739 	bits = vm_page_bits(base, size);
3740 	return (m->valid != 0 && (m->valid & bits) == bits);
3741 }
3742 
3743 /*
3744  * Returns true if all of the specified predicates are true for the entire
3745  * (super)page and false otherwise.
3746  */
3747 bool
3748 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
3749 {
3750 	vm_object_t object;
3751 	int i, npages;
3752 
3753 	object = m->object;
3754 	VM_OBJECT_ASSERT_LOCKED(object);
3755 	npages = atop(pagesizes[m->psind]);
3756 
3757 	/*
3758 	 * The physically contiguous pages that make up a superpage, i.e., a
3759 	 * page with a page size index ("psind") greater than zero, will
3760 	 * occupy adjacent entries in vm_page_array[].
3761 	 */
3762 	for (i = 0; i < npages; i++) {
3763 		/* Always test object consistency, including "skip_m". */
3764 		if (m[i].object != object)
3765 			return (false);
3766 		if (&m[i] == skip_m)
3767 			continue;
3768 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
3769 			return (false);
3770 		if ((flags & PS_ALL_DIRTY) != 0) {
3771 			/*
3772 			 * Calling vm_page_test_dirty() or pmap_is_modified()
3773 			 * might stop this case from spuriously returning
3774 			 * "false".  However, that would require a write lock
3775 			 * on the object containing "m[i]".
3776 			 */
3777 			if (m[i].dirty != VM_PAGE_BITS_ALL)
3778 				return (false);
3779 		}
3780 		if ((flags & PS_ALL_VALID) != 0 &&
3781 		    m[i].valid != VM_PAGE_BITS_ALL)
3782 			return (false);
3783 	}
3784 	return (true);
3785 }
3786 
3787 /*
3788  * Set the page's dirty bits if the page is modified.
3789  */
3790 void
3791 vm_page_test_dirty(vm_page_t m)
3792 {
3793 
3794 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3795 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3796 		vm_page_dirty(m);
3797 }
3798 
3799 void
3800 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3801 {
3802 
3803 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3804 }
3805 
3806 void
3807 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3808 {
3809 
3810 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3811 }
3812 
3813 int
3814 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3815 {
3816 
3817 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3818 }
3819 
3820 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3821 void
3822 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3823 {
3824 
3825 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3826 }
3827 
3828 void
3829 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3830 {
3831 
3832 	mtx_assert_(vm_page_lockptr(m), a, file, line);
3833 }
3834 #endif
3835 
3836 #ifdef INVARIANTS
3837 void
3838 vm_page_object_lock_assert(vm_page_t m)
3839 {
3840 
3841 	/*
3842 	 * Certain of the page's fields may only be modified by the
3843 	 * holder of the containing object's lock or the exclusive busy.
3844 	 * holder.  Unfortunately, the holder of the write busy is
3845 	 * not recorded, and thus cannot be checked here.
3846 	 */
3847 	if (m->object != NULL && !vm_page_xbusied(m))
3848 		VM_OBJECT_ASSERT_WLOCKED(m->object);
3849 }
3850 
3851 void
3852 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3853 {
3854 
3855 	if ((bits & PGA_WRITEABLE) == 0)
3856 		return;
3857 
3858 	/*
3859 	 * The PGA_WRITEABLE flag can only be set if the page is
3860 	 * managed, is exclusively busied or the object is locked.
3861 	 * Currently, this flag is only set by pmap_enter().
3862 	 */
3863 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3864 	    ("PGA_WRITEABLE on unmanaged page"));
3865 	if (!vm_page_xbusied(m))
3866 		VM_OBJECT_ASSERT_LOCKED(m->object);
3867 }
3868 #endif
3869 
3870 #include "opt_ddb.h"
3871 #ifdef DDB
3872 #include <sys/kernel.h>
3873 
3874 #include <ddb/ddb.h>
3875 
3876 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3877 {
3878 
3879 	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3880 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3881 	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3882 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_cnt.v_laundry_count);
3883 	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3884 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3885 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3886 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3887 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3888 }
3889 
3890 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3891 {
3892 	int dom;
3893 
3894 	db_printf("pq_free %d\n", vm_cnt.v_free_count);
3895 	for (dom = 0; dom < vm_ndomains; dom++) {
3896 		db_printf(
3897     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
3898 		    dom,
3899 		    vm_dom[dom].vmd_page_count,
3900 		    vm_dom[dom].vmd_free_count,
3901 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3902 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3903 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
3904 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
3905 	}
3906 }
3907 
3908 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3909 {
3910 	vm_page_t m;
3911 	boolean_t phys;
3912 
3913 	if (!have_addr) {
3914 		db_printf("show pginfo addr\n");
3915 		return;
3916 	}
3917 
3918 	phys = strchr(modif, 'p') != NULL;
3919 	if (phys)
3920 		m = PHYS_TO_VM_PAGE(addr);
3921 	else
3922 		m = (vm_page_t)addr;
3923 	db_printf(
3924     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3925     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3926 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3927 	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3928 	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3929 }
3930 #endif /* DDB */
3931