1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 33 */ 34 35 /*- 36 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 37 * All rights reserved. 38 * 39 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 40 * 41 * Permission to use, copy, modify and distribute this software and 42 * its documentation is hereby granted, provided that both the copyright 43 * notice and this permission notice appear in all copies of the 44 * software, derivative works or modified versions, and any portions 45 * thereof, and that both notices appear in supporting documentation. 46 * 47 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 48 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 49 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 50 * 51 * Carnegie Mellon requests users of this software to return to 52 * 53 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 54 * School of Computer Science 55 * Carnegie Mellon University 56 * Pittsburgh PA 15213-3890 57 * 58 * any improvements or extensions that they make and grant Carnegie the 59 * rights to redistribute these changes. 60 */ 61 62 /* 63 * GENERAL RULES ON VM_PAGE MANIPULATION 64 * 65 * - a pageq mutex is required when adding or removing a page from a 66 * page queue (vm_page_queue[]), regardless of other mutexes or the 67 * busy state of a page. 68 * 69 * - a hash chain mutex is required when associating or disassociating 70 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 71 * regardless of other mutexes or the busy state of a page. 72 * 73 * - either a hash chain mutex OR a busied page is required in order 74 * to modify the page flags. A hash chain mutex must be obtained in 75 * order to busy a page. A page's flags cannot be modified by a 76 * hash chain mutex if the page is marked busy. 77 * 78 * - The object memq mutex is held when inserting or removing 79 * pages from an object (vm_page_insert() or vm_page_remove()). This 80 * is different from the object's main mutex. 81 * 82 * Generally speaking, you have to be aware of side effects when running 83 * vm_page ops. A vm_page_lookup() will return with the hash chain 84 * locked, whether it was able to lookup the page or not. vm_page_free(), 85 * vm_page_cache(), vm_page_activate(), and a number of other routines 86 * will release the hash chain mutex for you. Intermediate manipulation 87 * routines such as vm_page_flag_set() expect the hash chain to be held 88 * on entry and the hash chain will remain held on return. 89 * 90 * pageq scanning can only occur with the pageq in question locked. 91 * We have a known bottleneck with the active queue, but the cache 92 * and free queues are actually arrays already. 93 */ 94 95 /* 96 * Resident memory management module. 97 */ 98 99 #include <sys/cdefs.h> 100 __FBSDID("$FreeBSD$"); 101 102 #include <sys/param.h> 103 #include <sys/systm.h> 104 #include <sys/lock.h> 105 #include <sys/malloc.h> 106 #include <sys/mutex.h> 107 #include <sys/proc.h> 108 #include <sys/vmmeter.h> 109 #include <sys/vnode.h> 110 111 #include <vm/vm.h> 112 #include <vm/vm_param.h> 113 #include <vm/vm_kern.h> 114 #include <vm/vm_object.h> 115 #include <vm/vm_page.h> 116 #include <vm/vm_pageout.h> 117 #include <vm/vm_pager.h> 118 #include <vm/vm_extern.h> 119 #include <vm/uma.h> 120 #include <vm/uma_int.h> 121 122 /* 123 * Associated with page of user-allocatable memory is a 124 * page structure. 125 */ 126 127 struct mtx vm_page_queue_mtx; 128 struct mtx vm_page_queue_free_mtx; 129 130 vm_page_t vm_page_array = 0; 131 int vm_page_array_size = 0; 132 long first_page = 0; 133 int vm_page_zero_count = 0; 134 135 /* 136 * vm_set_page_size: 137 * 138 * Sets the page size, perhaps based upon the memory 139 * size. Must be called before any use of page-size 140 * dependent functions. 141 */ 142 void 143 vm_set_page_size(void) 144 { 145 if (cnt.v_page_size == 0) 146 cnt.v_page_size = PAGE_SIZE; 147 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 148 panic("vm_set_page_size: page size not a power of two"); 149 } 150 151 /* 152 * vm_page_startup: 153 * 154 * Initializes the resident memory module. 155 * 156 * Allocates memory for the page cells, and 157 * for the object/offset-to-page hash table headers. 158 * Each page cell is initialized and placed on the free list. 159 */ 160 vm_offset_t 161 vm_page_startup(vm_offset_t vaddr) 162 { 163 vm_offset_t mapped; 164 vm_size_t npages; 165 vm_paddr_t page_range; 166 vm_paddr_t new_end; 167 int i; 168 vm_paddr_t pa; 169 int nblocks; 170 vm_paddr_t last_pa; 171 172 /* the biggest memory array is the second group of pages */ 173 vm_paddr_t end; 174 vm_paddr_t biggestsize; 175 int biggestone; 176 177 vm_paddr_t total; 178 vm_size_t bootpages; 179 180 total = 0; 181 biggestsize = 0; 182 biggestone = 0; 183 nblocks = 0; 184 vaddr = round_page(vaddr); 185 186 for (i = 0; phys_avail[i + 1]; i += 2) { 187 phys_avail[i] = round_page(phys_avail[i]); 188 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 189 } 190 191 for (i = 0; phys_avail[i + 1]; i += 2) { 192 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 193 194 if (size > biggestsize) { 195 biggestone = i; 196 biggestsize = size; 197 } 198 ++nblocks; 199 total += size; 200 } 201 202 end = phys_avail[biggestone+1]; 203 204 /* 205 * Initialize the locks. 206 */ 207 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF | 208 MTX_RECURSE); 209 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 210 MTX_SPIN); 211 212 /* 213 * Initialize the queue headers for the free queue, the active queue 214 * and the inactive queue. 215 */ 216 vm_pageq_init(); 217 218 /* 219 * Allocate memory for use when boot strapping the kernel memory 220 * allocator. 221 */ 222 bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE; 223 new_end = end - bootpages; 224 new_end = trunc_page(new_end); 225 mapped = pmap_map(&vaddr, new_end, end, 226 VM_PROT_READ | VM_PROT_WRITE); 227 bzero((caddr_t) mapped, end - new_end); 228 uma_startup((caddr_t)mapped); 229 230 /* 231 * Compute the number of pages of memory that will be available for 232 * use (taking into account the overhead of a page structure per 233 * page). 234 */ 235 first_page = phys_avail[0] / PAGE_SIZE; 236 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 237 npages = (total - (page_range * sizeof(struct vm_page)) - 238 (end - new_end)) / PAGE_SIZE; 239 end = new_end; 240 241 /* 242 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 243 */ 244 vaddr += PAGE_SIZE; 245 246 /* 247 * Initialize the mem entry structures now, and put them in the free 248 * queue. 249 */ 250 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 251 mapped = pmap_map(&vaddr, new_end, end, 252 VM_PROT_READ | VM_PROT_WRITE); 253 vm_page_array = (vm_page_t) mapped; 254 phys_avail[biggestone + 1] = new_end; 255 256 /* 257 * Clear all of the page structures 258 */ 259 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 260 vm_page_array_size = page_range; 261 262 /* 263 * Construct the free queue(s) in descending order (by physical 264 * address) so that the first 16MB of physical memory is allocated 265 * last rather than first. On large-memory machines, this avoids 266 * the exhaustion of low physical memory before isa_dma_init has run. 267 */ 268 cnt.v_page_count = 0; 269 cnt.v_free_count = 0; 270 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 271 pa = phys_avail[i]; 272 last_pa = phys_avail[i + 1]; 273 while (pa < last_pa && npages-- > 0) { 274 vm_pageq_add_new_page(pa); 275 pa += PAGE_SIZE; 276 } 277 } 278 return (vaddr); 279 } 280 281 void 282 vm_page_flag_set(vm_page_t m, unsigned short bits) 283 { 284 285 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 286 m->flags |= bits; 287 } 288 289 void 290 vm_page_flag_clear(vm_page_t m, unsigned short bits) 291 { 292 293 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 294 m->flags &= ~bits; 295 } 296 297 void 298 vm_page_busy(vm_page_t m) 299 { 300 301 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 302 KASSERT((m->flags & PG_BUSY) == 0, 303 ("vm_page_busy: page already busy!!!")); 304 vm_page_flag_set(m, PG_BUSY); 305 } 306 307 /* 308 * vm_page_flash: 309 * 310 * wakeup anyone waiting for the page. 311 */ 312 void 313 vm_page_flash(vm_page_t m) 314 { 315 316 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 317 if (m->flags & PG_WANTED) { 318 vm_page_flag_clear(m, PG_WANTED); 319 wakeup(m); 320 } 321 } 322 323 /* 324 * vm_page_wakeup: 325 * 326 * clear the PG_BUSY flag and wakeup anyone waiting for the 327 * page. 328 * 329 */ 330 void 331 vm_page_wakeup(vm_page_t m) 332 { 333 334 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 335 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 336 vm_page_flag_clear(m, PG_BUSY); 337 vm_page_flash(m); 338 } 339 340 void 341 vm_page_io_start(vm_page_t m) 342 { 343 344 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 345 m->busy++; 346 } 347 348 void 349 vm_page_io_finish(vm_page_t m) 350 { 351 352 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 353 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 354 m->busy--; 355 if (m->busy == 0) 356 vm_page_flash(m); 357 } 358 359 /* 360 * Keep page from being freed by the page daemon 361 * much of the same effect as wiring, except much lower 362 * overhead and should be used only for *very* temporary 363 * holding ("wiring"). 364 */ 365 void 366 vm_page_hold(vm_page_t mem) 367 { 368 369 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 370 mem->hold_count++; 371 } 372 373 void 374 vm_page_unhold(vm_page_t mem) 375 { 376 377 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 378 --mem->hold_count; 379 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 380 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) 381 vm_page_free_toq(mem); 382 } 383 384 /* 385 * vm_page_free: 386 * 387 * Free a page 388 * 389 * The clearing of PG_ZERO is a temporary safety until the code can be 390 * reviewed to determine that PG_ZERO is being properly cleared on 391 * write faults or maps. PG_ZERO was previously cleared in 392 * vm_page_alloc(). 393 */ 394 void 395 vm_page_free(vm_page_t m) 396 { 397 vm_page_flag_clear(m, PG_ZERO); 398 vm_page_free_toq(m); 399 vm_page_zero_idle_wakeup(); 400 } 401 402 /* 403 * vm_page_free_zero: 404 * 405 * Free a page to the zerod-pages queue 406 */ 407 void 408 vm_page_free_zero(vm_page_t m) 409 { 410 vm_page_flag_set(m, PG_ZERO); 411 vm_page_free_toq(m); 412 } 413 414 /* 415 * vm_page_sleep_if_busy: 416 * 417 * Sleep and release the page queues lock if PG_BUSY is set or, 418 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the 419 * thread slept and the page queues lock was released. 420 * Otherwise, retains the page queues lock and returns FALSE. 421 */ 422 int 423 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg) 424 { 425 vm_object_t object; 426 427 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 428 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 429 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 430 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 431 /* 432 * It's possible that while we sleep, the page will get 433 * unbusied and freed. If we are holding the object 434 * lock, we will assume we hold a reference to the object 435 * such that even if m->object changes, we can re-lock 436 * it. 437 */ 438 object = m->object; 439 VM_OBJECT_UNLOCK(object); 440 msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0); 441 VM_OBJECT_LOCK(object); 442 return (TRUE); 443 } 444 return (FALSE); 445 } 446 447 /* 448 * vm_page_dirty: 449 * 450 * make page all dirty 451 */ 452 void 453 vm_page_dirty(vm_page_t m) 454 { 455 KASSERT(m->queue - m->pc != PQ_CACHE, 456 ("vm_page_dirty: page in cache!")); 457 KASSERT(m->queue - m->pc != PQ_FREE, 458 ("vm_page_dirty: page is free!")); 459 m->dirty = VM_PAGE_BITS_ALL; 460 } 461 462 /* 463 * vm_page_splay: 464 * 465 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 466 * the vm_page containing the given pindex. If, however, that 467 * pindex is not found in the vm_object, returns a vm_page that is 468 * adjacent to the pindex, coming before or after it. 469 */ 470 vm_page_t 471 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 472 { 473 struct vm_page dummy; 474 vm_page_t lefttreemax, righttreemin, y; 475 476 if (root == NULL) 477 return (root); 478 lefttreemax = righttreemin = &dummy; 479 for (;; root = y) { 480 if (pindex < root->pindex) { 481 if ((y = root->left) == NULL) 482 break; 483 if (pindex < y->pindex) { 484 /* Rotate right. */ 485 root->left = y->right; 486 y->right = root; 487 root = y; 488 if ((y = root->left) == NULL) 489 break; 490 } 491 /* Link into the new root's right tree. */ 492 righttreemin->left = root; 493 righttreemin = root; 494 } else if (pindex > root->pindex) { 495 if ((y = root->right) == NULL) 496 break; 497 if (pindex > y->pindex) { 498 /* Rotate left. */ 499 root->right = y->left; 500 y->left = root; 501 root = y; 502 if ((y = root->right) == NULL) 503 break; 504 } 505 /* Link into the new root's left tree. */ 506 lefttreemax->right = root; 507 lefttreemax = root; 508 } else 509 break; 510 } 511 /* Assemble the new root. */ 512 lefttreemax->right = root->left; 513 righttreemin->left = root->right; 514 root->left = dummy.right; 515 root->right = dummy.left; 516 return (root); 517 } 518 519 /* 520 * vm_page_insert: [ internal use only ] 521 * 522 * Inserts the given mem entry into the object and object list. 523 * 524 * The pagetables are not updated but will presumably fault the page 525 * in if necessary, or if a kernel page the caller will at some point 526 * enter the page into the kernel's pmap. We are not allowed to block 527 * here so we *can't* do this anyway. 528 * 529 * The object and page must be locked. 530 * This routine may not block. 531 */ 532 void 533 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 534 { 535 vm_page_t root; 536 537 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 538 if (m->object != NULL) 539 panic("vm_page_insert: page already inserted"); 540 541 /* 542 * Record the object/offset pair in this page 543 */ 544 m->object = object; 545 m->pindex = pindex; 546 547 /* 548 * Now link into the object's ordered list of backed pages. 549 */ 550 root = object->root; 551 if (root == NULL) { 552 m->left = NULL; 553 m->right = NULL; 554 TAILQ_INSERT_TAIL(&object->memq, m, listq); 555 } else { 556 root = vm_page_splay(pindex, root); 557 if (pindex < root->pindex) { 558 m->left = root->left; 559 m->right = root; 560 root->left = NULL; 561 TAILQ_INSERT_BEFORE(root, m, listq); 562 } else if (pindex == root->pindex) 563 panic("vm_page_insert: offset already allocated"); 564 else { 565 m->right = root->right; 566 m->left = root; 567 root->right = NULL; 568 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 569 } 570 } 571 object->root = m; 572 object->generation++; 573 574 /* 575 * show that the object has one more resident page. 576 */ 577 object->resident_page_count++; 578 579 /* 580 * Since we are inserting a new and possibly dirty page, 581 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 582 */ 583 if (m->flags & PG_WRITEABLE) 584 vm_object_set_writeable_dirty(object); 585 } 586 587 /* 588 * vm_page_remove: 589 * NOTE: used by device pager as well -wfj 590 * 591 * Removes the given mem entry from the object/offset-page 592 * table and the object page list, but do not invalidate/terminate 593 * the backing store. 594 * 595 * The object and page must be locked. 596 * The underlying pmap entry (if any) is NOT removed here. 597 * This routine may not block. 598 */ 599 void 600 vm_page_remove(vm_page_t m) 601 { 602 vm_object_t object; 603 vm_page_t root; 604 605 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 606 if ((object = m->object) == NULL) 607 return; 608 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 609 if (m->flags & PG_BUSY) { 610 vm_page_flag_clear(m, PG_BUSY); 611 vm_page_flash(m); 612 } 613 614 /* 615 * Now remove from the object's list of backed pages. 616 */ 617 if (m != object->root) 618 vm_page_splay(m->pindex, object->root); 619 if (m->left == NULL) 620 root = m->right; 621 else { 622 root = vm_page_splay(m->pindex, m->left); 623 root->right = m->right; 624 } 625 object->root = root; 626 TAILQ_REMOVE(&object->memq, m, listq); 627 628 /* 629 * And show that the object has one fewer resident page. 630 */ 631 object->resident_page_count--; 632 object->generation++; 633 634 m->object = NULL; 635 } 636 637 /* 638 * vm_page_lookup: 639 * 640 * Returns the page associated with the object/offset 641 * pair specified; if none is found, NULL is returned. 642 * 643 * The object must be locked. 644 * This routine may not block. 645 * This is a critical path routine 646 */ 647 vm_page_t 648 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 649 { 650 vm_page_t m; 651 652 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 653 if ((m = object->root) != NULL && m->pindex != pindex) { 654 m = vm_page_splay(pindex, m); 655 if ((object->root = m)->pindex != pindex) 656 m = NULL; 657 } 658 return (m); 659 } 660 661 /* 662 * vm_page_rename: 663 * 664 * Move the given memory entry from its 665 * current object to the specified target object/offset. 666 * 667 * The object must be locked. 668 * This routine may not block. 669 * 670 * Note: swap associated with the page must be invalidated by the move. We 671 * have to do this for several reasons: (1) we aren't freeing the 672 * page, (2) we are dirtying the page, (3) the VM system is probably 673 * moving the page from object A to B, and will then later move 674 * the backing store from A to B and we can't have a conflict. 675 * 676 * Note: we *always* dirty the page. It is necessary both for the 677 * fact that we moved it, and because we may be invalidating 678 * swap. If the page is on the cache, we have to deactivate it 679 * or vm_page_dirty() will panic. Dirty pages are not allowed 680 * on the cache. 681 */ 682 void 683 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 684 { 685 686 vm_page_remove(m); 687 vm_page_insert(m, new_object, new_pindex); 688 if (m->queue - m->pc == PQ_CACHE) 689 vm_page_deactivate(m); 690 vm_page_dirty(m); 691 } 692 693 /* 694 * vm_page_select_cache: 695 * 696 * Move a page of the given color from the cache queue to the free 697 * queue. As pages might be found, but are not applicable, they are 698 * deactivated. 699 * 700 * This routine may not block. 701 */ 702 vm_page_t 703 vm_page_select_cache(int color) 704 { 705 vm_object_t object; 706 vm_page_t m; 707 boolean_t was_trylocked; 708 709 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 710 while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) { 711 KASSERT(m->dirty == 0, ("Found dirty cache page %p", m)); 712 KASSERT(!pmap_page_is_mapped(m), 713 ("Found mapped cache page %p", m)); 714 KASSERT((m->flags & PG_UNMANAGED) == 0, 715 ("Found unmanaged cache page %p", m)); 716 KASSERT(m->wire_count == 0, ("Found wired cache page %p", m)); 717 if (m->hold_count == 0 && (object = m->object, 718 (was_trylocked = VM_OBJECT_TRYLOCK(object)) || 719 VM_OBJECT_LOCKED(object))) { 720 KASSERT((m->flags & PG_BUSY) == 0 && m->busy == 0, 721 ("Found busy cache page %p", m)); 722 vm_page_free(m); 723 if (was_trylocked) 724 VM_OBJECT_UNLOCK(object); 725 break; 726 } 727 vm_page_deactivate(m); 728 } 729 return (m); 730 } 731 732 /* 733 * vm_page_alloc: 734 * 735 * Allocate and return a memory cell associated 736 * with this VM object/offset pair. 737 * 738 * page_req classes: 739 * VM_ALLOC_NORMAL normal process request 740 * VM_ALLOC_SYSTEM system *really* needs a page 741 * VM_ALLOC_INTERRUPT interrupt time request 742 * VM_ALLOC_ZERO zero page 743 * 744 * This routine may not block. 745 * 746 * Additional special handling is required when called from an 747 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with 748 * the page cache in this case. 749 */ 750 vm_page_t 751 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 752 { 753 vm_page_t m = NULL; 754 int color, flags, page_req; 755 756 page_req = req & VM_ALLOC_CLASS_MASK; 757 KASSERT(curthread->td_intr_nesting_level == 0 || 758 page_req == VM_ALLOC_INTERRUPT, 759 ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context")); 760 761 if ((req & VM_ALLOC_NOOBJ) == 0) { 762 KASSERT(object != NULL, 763 ("vm_page_alloc: NULL object.")); 764 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 765 color = (pindex + object->pg_color) & PQ_L2_MASK; 766 } else 767 color = pindex & PQ_L2_MASK; 768 769 /* 770 * The pager is allowed to eat deeper into the free page list. 771 */ 772 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 773 page_req = VM_ALLOC_SYSTEM; 774 }; 775 776 loop: 777 mtx_lock_spin(&vm_page_queue_free_mtx); 778 if (cnt.v_free_count > cnt.v_free_reserved || 779 (page_req == VM_ALLOC_SYSTEM && 780 cnt.v_cache_count == 0 && 781 cnt.v_free_count > cnt.v_interrupt_free_min) || 782 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) { 783 /* 784 * Allocate from the free queue if the number of free pages 785 * exceeds the minimum for the request class. 786 */ 787 m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0); 788 } else if (page_req != VM_ALLOC_INTERRUPT) { 789 mtx_unlock_spin(&vm_page_queue_free_mtx); 790 /* 791 * Allocatable from cache (non-interrupt only). On success, 792 * we must free the page and try again, thus ensuring that 793 * cnt.v_*_free_min counters are replenished. 794 */ 795 vm_page_lock_queues(); 796 if ((m = vm_page_select_cache(color)) == NULL) { 797 #if defined(DIAGNOSTIC) 798 if (cnt.v_cache_count > 0) 799 printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count); 800 #endif 801 vm_page_unlock_queues(); 802 atomic_add_int(&vm_pageout_deficit, 1); 803 pagedaemon_wakeup(); 804 return (NULL); 805 } 806 vm_page_unlock_queues(); 807 goto loop; 808 } else { 809 /* 810 * Not allocatable from cache from interrupt, give up. 811 */ 812 mtx_unlock_spin(&vm_page_queue_free_mtx); 813 atomic_add_int(&vm_pageout_deficit, 1); 814 pagedaemon_wakeup(); 815 return (NULL); 816 } 817 818 /* 819 * At this point we had better have found a good page. 820 */ 821 822 KASSERT( 823 m != NULL, 824 ("vm_page_alloc(): missing page on free queue") 825 ); 826 827 /* 828 * Remove from free queue 829 */ 830 vm_pageq_remove_nowakeup(m); 831 832 /* 833 * Initialize structure. Only the PG_ZERO flag is inherited. 834 */ 835 flags = PG_BUSY; 836 if (m->flags & PG_ZERO) { 837 vm_page_zero_count--; 838 if (req & VM_ALLOC_ZERO) 839 flags = PG_ZERO | PG_BUSY; 840 } 841 if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) 842 flags &= ~PG_BUSY; 843 m->flags = flags; 844 if (req & VM_ALLOC_WIRED) { 845 atomic_add_int(&cnt.v_wire_count, 1); 846 m->wire_count = 1; 847 } else 848 m->wire_count = 0; 849 m->hold_count = 0; 850 m->act_count = 0; 851 m->busy = 0; 852 m->valid = 0; 853 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 854 mtx_unlock_spin(&vm_page_queue_free_mtx); 855 856 if ((req & VM_ALLOC_NOOBJ) == 0) 857 vm_page_insert(m, object, pindex); 858 else 859 m->pindex = pindex; 860 861 /* 862 * Don't wakeup too often - wakeup the pageout daemon when 863 * we would be nearly out of memory. 864 */ 865 if (vm_paging_needed()) 866 pagedaemon_wakeup(); 867 868 return (m); 869 } 870 871 /* 872 * vm_wait: (also see VM_WAIT macro) 873 * 874 * Block until free pages are available for allocation 875 * - Called in various places before memory allocations. 876 */ 877 void 878 vm_wait(void) 879 { 880 881 vm_page_lock_queues(); 882 if (curproc == pageproc) { 883 vm_pageout_pages_needed = 1; 884 msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx, 885 PDROP | PSWP, "VMWait", 0); 886 } else { 887 if (!vm_pages_needed) { 888 vm_pages_needed = 1; 889 wakeup(&vm_pages_needed); 890 } 891 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM, 892 "vmwait", 0); 893 } 894 } 895 896 /* 897 * vm_waitpfault: (also see VM_WAITPFAULT macro) 898 * 899 * Block until free pages are available for allocation 900 * - Called only in vm_fault so that processes page faulting 901 * can be easily tracked. 902 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 903 * processes will be able to grab memory first. Do not change 904 * this balance without careful testing first. 905 */ 906 void 907 vm_waitpfault(void) 908 { 909 910 vm_page_lock_queues(); 911 if (!vm_pages_needed) { 912 vm_pages_needed = 1; 913 wakeup(&vm_pages_needed); 914 } 915 msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER, 916 "pfault", 0); 917 } 918 919 /* 920 * vm_page_activate: 921 * 922 * Put the specified page on the active list (if appropriate). 923 * Ensure that act_count is at least ACT_INIT but do not otherwise 924 * mess with it. 925 * 926 * The page queues must be locked. 927 * This routine may not block. 928 */ 929 void 930 vm_page_activate(vm_page_t m) 931 { 932 933 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 934 if (m->queue != PQ_ACTIVE) { 935 if ((m->queue - m->pc) == PQ_CACHE) 936 cnt.v_reactivated++; 937 vm_pageq_remove(m); 938 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 939 if (m->act_count < ACT_INIT) 940 m->act_count = ACT_INIT; 941 vm_pageq_enqueue(PQ_ACTIVE, m); 942 } 943 } else { 944 if (m->act_count < ACT_INIT) 945 m->act_count = ACT_INIT; 946 } 947 } 948 949 /* 950 * vm_page_free_wakeup: 951 * 952 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 953 * routine is called when a page has been added to the cache or free 954 * queues. 955 * 956 * The page queues must be locked. 957 * This routine may not block. 958 */ 959 static __inline void 960 vm_page_free_wakeup(void) 961 { 962 963 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 964 /* 965 * if pageout daemon needs pages, then tell it that there are 966 * some free. 967 */ 968 if (vm_pageout_pages_needed && 969 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 970 wakeup(&vm_pageout_pages_needed); 971 vm_pageout_pages_needed = 0; 972 } 973 /* 974 * wakeup processes that are waiting on memory if we hit a 975 * high water mark. And wakeup scheduler process if we have 976 * lots of memory. this process will swapin processes. 977 */ 978 if (vm_pages_needed && !vm_page_count_min()) { 979 vm_pages_needed = 0; 980 wakeup(&cnt.v_free_count); 981 } 982 } 983 984 /* 985 * vm_page_free_toq: 986 * 987 * Returns the given page to the PQ_FREE list, 988 * disassociating it with any VM object. 989 * 990 * Object and page must be locked prior to entry. 991 * This routine may not block. 992 */ 993 994 void 995 vm_page_free_toq(vm_page_t m) 996 { 997 struct vpgqueues *pq; 998 vm_object_t object = m->object; 999 1000 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1001 cnt.v_tfree++; 1002 1003 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1004 printf( 1005 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 1006 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 1007 m->hold_count); 1008 if ((m->queue - m->pc) == PQ_FREE) 1009 panic("vm_page_free: freeing free page"); 1010 else 1011 panic("vm_page_free: freeing busy page"); 1012 } 1013 1014 /* 1015 * unqueue, then remove page. Note that we cannot destroy 1016 * the page here because we do not want to call the pager's 1017 * callback routine until after we've put the page on the 1018 * appropriate free queue. 1019 */ 1020 vm_pageq_remove_nowakeup(m); 1021 vm_page_remove(m); 1022 1023 /* 1024 * If fictitious remove object association and 1025 * return, otherwise delay object association removal. 1026 */ 1027 if ((m->flags & PG_FICTITIOUS) != 0) { 1028 return; 1029 } 1030 1031 m->valid = 0; 1032 vm_page_undirty(m); 1033 1034 if (m->wire_count != 0) { 1035 if (m->wire_count > 1) { 1036 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1037 m->wire_count, (long)m->pindex); 1038 } 1039 panic("vm_page_free: freeing wired page"); 1040 } 1041 1042 /* 1043 * If we've exhausted the object's resident pages we want to free 1044 * it up. 1045 */ 1046 if (object && 1047 (object->type == OBJT_VNODE) && 1048 ((object->flags & OBJ_DEAD) == 0) 1049 ) { 1050 struct vnode *vp = (struct vnode *)object->handle; 1051 1052 if (vp) { 1053 VI_LOCK(vp); 1054 if (VSHOULDFREE(vp)) 1055 vfree(vp); 1056 VI_UNLOCK(vp); 1057 } 1058 } 1059 1060 /* 1061 * Clear the UNMANAGED flag when freeing an unmanaged page. 1062 */ 1063 if (m->flags & PG_UNMANAGED) { 1064 m->flags &= ~PG_UNMANAGED; 1065 } 1066 1067 if (m->hold_count != 0) { 1068 m->flags &= ~PG_ZERO; 1069 m->queue = PQ_HOLD; 1070 } else 1071 m->queue = PQ_FREE + m->pc; 1072 pq = &vm_page_queues[m->queue]; 1073 mtx_lock_spin(&vm_page_queue_free_mtx); 1074 pq->lcnt++; 1075 ++(*pq->cnt); 1076 1077 /* 1078 * Put zero'd pages on the end ( where we look for zero'd pages 1079 * first ) and non-zerod pages at the head. 1080 */ 1081 if (m->flags & PG_ZERO) { 1082 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1083 ++vm_page_zero_count; 1084 } else { 1085 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1086 } 1087 mtx_unlock_spin(&vm_page_queue_free_mtx); 1088 vm_page_free_wakeup(); 1089 } 1090 1091 /* 1092 * vm_page_unmanage: 1093 * 1094 * Prevent PV management from being done on the page. The page is 1095 * removed from the paging queues as if it were wired, and as a 1096 * consequence of no longer being managed the pageout daemon will not 1097 * touch it (since there is no way to locate the pte mappings for the 1098 * page). madvise() calls that mess with the pmap will also no longer 1099 * operate on the page. 1100 * 1101 * Beyond that the page is still reasonably 'normal'. Freeing the page 1102 * will clear the flag. 1103 * 1104 * This routine is used by OBJT_PHYS objects - objects using unswappable 1105 * physical memory as backing store rather then swap-backed memory and 1106 * will eventually be extended to support 4MB unmanaged physical 1107 * mappings. 1108 */ 1109 void 1110 vm_page_unmanage(vm_page_t m) 1111 { 1112 1113 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1114 if ((m->flags & PG_UNMANAGED) == 0) { 1115 if (m->wire_count == 0) 1116 vm_pageq_remove(m); 1117 } 1118 vm_page_flag_set(m, PG_UNMANAGED); 1119 } 1120 1121 /* 1122 * vm_page_wire: 1123 * 1124 * Mark this page as wired down by yet 1125 * another map, removing it from paging queues 1126 * as necessary. 1127 * 1128 * The page queues must be locked. 1129 * This routine may not block. 1130 */ 1131 void 1132 vm_page_wire(vm_page_t m) 1133 { 1134 1135 /* 1136 * Only bump the wire statistics if the page is not already wired, 1137 * and only unqueue the page if it is on some queue (if it is unmanaged 1138 * it is already off the queues). 1139 */ 1140 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1141 if (m->flags & PG_FICTITIOUS) 1142 return; 1143 if (m->wire_count == 0) { 1144 if ((m->flags & PG_UNMANAGED) == 0) 1145 vm_pageq_remove(m); 1146 atomic_add_int(&cnt.v_wire_count, 1); 1147 } 1148 m->wire_count++; 1149 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1150 } 1151 1152 /* 1153 * vm_page_unwire: 1154 * 1155 * Release one wiring of this page, potentially 1156 * enabling it to be paged again. 1157 * 1158 * Many pages placed on the inactive queue should actually go 1159 * into the cache, but it is difficult to figure out which. What 1160 * we do instead, if the inactive target is well met, is to put 1161 * clean pages at the head of the inactive queue instead of the tail. 1162 * This will cause them to be moved to the cache more quickly and 1163 * if not actively re-referenced, freed more quickly. If we just 1164 * stick these pages at the end of the inactive queue, heavy filesystem 1165 * meta-data accesses can cause an unnecessary paging load on memory bound 1166 * processes. This optimization causes one-time-use metadata to be 1167 * reused more quickly. 1168 * 1169 * BUT, if we are in a low-memory situation we have no choice but to 1170 * put clean pages on the cache queue. 1171 * 1172 * A number of routines use vm_page_unwire() to guarantee that the page 1173 * will go into either the inactive or active queues, and will NEVER 1174 * be placed in the cache - for example, just after dirtying a page. 1175 * dirty pages in the cache are not allowed. 1176 * 1177 * The page queues must be locked. 1178 * This routine may not block. 1179 */ 1180 void 1181 vm_page_unwire(vm_page_t m, int activate) 1182 { 1183 1184 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1185 if (m->flags & PG_FICTITIOUS) 1186 return; 1187 if (m->wire_count > 0) { 1188 m->wire_count--; 1189 if (m->wire_count == 0) { 1190 atomic_subtract_int(&cnt.v_wire_count, 1); 1191 if (m->flags & PG_UNMANAGED) { 1192 ; 1193 } else if (activate) 1194 vm_pageq_enqueue(PQ_ACTIVE, m); 1195 else { 1196 vm_page_flag_clear(m, PG_WINATCFLS); 1197 vm_pageq_enqueue(PQ_INACTIVE, m); 1198 } 1199 } 1200 } else { 1201 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 1202 } 1203 } 1204 1205 1206 /* 1207 * Move the specified page to the inactive queue. If the page has 1208 * any associated swap, the swap is deallocated. 1209 * 1210 * Normally athead is 0 resulting in LRU operation. athead is set 1211 * to 1 if we want this page to be 'as if it were placed in the cache', 1212 * except without unmapping it from the process address space. 1213 * 1214 * This routine may not block. 1215 */ 1216 static __inline void 1217 _vm_page_deactivate(vm_page_t m, int athead) 1218 { 1219 1220 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1221 1222 /* 1223 * Ignore if already inactive. 1224 */ 1225 if (m->queue == PQ_INACTIVE) 1226 return; 1227 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1228 if ((m->queue - m->pc) == PQ_CACHE) 1229 cnt.v_reactivated++; 1230 vm_page_flag_clear(m, PG_WINATCFLS); 1231 vm_pageq_remove(m); 1232 if (athead) 1233 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1234 else 1235 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1236 m->queue = PQ_INACTIVE; 1237 vm_page_queues[PQ_INACTIVE].lcnt++; 1238 cnt.v_inactive_count++; 1239 } 1240 } 1241 1242 void 1243 vm_page_deactivate(vm_page_t m) 1244 { 1245 _vm_page_deactivate(m, 0); 1246 } 1247 1248 /* 1249 * vm_page_try_to_cache: 1250 * 1251 * Returns 0 on failure, 1 on success 1252 */ 1253 int 1254 vm_page_try_to_cache(vm_page_t m) 1255 { 1256 1257 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1258 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1259 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1260 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1261 return (0); 1262 } 1263 pmap_remove_all(m); 1264 if (m->dirty) 1265 return (0); 1266 vm_page_cache(m); 1267 return (1); 1268 } 1269 1270 /* 1271 * vm_page_try_to_free() 1272 * 1273 * Attempt to free the page. If we cannot free it, we do nothing. 1274 * 1 is returned on success, 0 on failure. 1275 */ 1276 int 1277 vm_page_try_to_free(vm_page_t m) 1278 { 1279 1280 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1281 if (m->object != NULL) 1282 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1283 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1284 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1285 return (0); 1286 } 1287 pmap_remove_all(m); 1288 if (m->dirty) 1289 return (0); 1290 vm_page_free(m); 1291 return (1); 1292 } 1293 1294 /* 1295 * vm_page_cache 1296 * 1297 * Put the specified page onto the page cache queue (if appropriate). 1298 * 1299 * This routine may not block. 1300 */ 1301 void 1302 vm_page_cache(vm_page_t m) 1303 { 1304 1305 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1306 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1307 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 1308 m->hold_count || m->wire_count) { 1309 printf("vm_page_cache: attempting to cache busy page\n"); 1310 return; 1311 } 1312 if ((m->queue - m->pc) == PQ_CACHE) 1313 return; 1314 1315 /* 1316 * Remove all pmaps and indicate that the page is not 1317 * writeable or mapped. 1318 */ 1319 pmap_remove_all(m); 1320 if (m->dirty != 0) { 1321 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1322 (long)m->pindex); 1323 } 1324 vm_pageq_remove_nowakeup(m); 1325 vm_pageq_enqueue(PQ_CACHE + m->pc, m); 1326 vm_page_free_wakeup(); 1327 } 1328 1329 /* 1330 * vm_page_dontneed 1331 * 1332 * Cache, deactivate, or do nothing as appropriate. This routine 1333 * is typically used by madvise() MADV_DONTNEED. 1334 * 1335 * Generally speaking we want to move the page into the cache so 1336 * it gets reused quickly. However, this can result in a silly syndrome 1337 * due to the page recycling too quickly. Small objects will not be 1338 * fully cached. On the otherhand, if we move the page to the inactive 1339 * queue we wind up with a problem whereby very large objects 1340 * unnecessarily blow away our inactive and cache queues. 1341 * 1342 * The solution is to move the pages based on a fixed weighting. We 1343 * either leave them alone, deactivate them, or move them to the cache, 1344 * where moving them to the cache has the highest weighting. 1345 * By forcing some pages into other queues we eventually force the 1346 * system to balance the queues, potentially recovering other unrelated 1347 * space from active. The idea is to not force this to happen too 1348 * often. 1349 */ 1350 void 1351 vm_page_dontneed(vm_page_t m) 1352 { 1353 static int dnweight; 1354 int dnw; 1355 int head; 1356 1357 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1358 dnw = ++dnweight; 1359 1360 /* 1361 * occassionally leave the page alone 1362 */ 1363 if ((dnw & 0x01F0) == 0 || 1364 m->queue == PQ_INACTIVE || 1365 m->queue - m->pc == PQ_CACHE 1366 ) { 1367 if (m->act_count >= ACT_INIT) 1368 --m->act_count; 1369 return; 1370 } 1371 1372 if (m->dirty == 0 && pmap_is_modified(m)) 1373 vm_page_dirty(m); 1374 1375 if (m->dirty || (dnw & 0x0070) == 0) { 1376 /* 1377 * Deactivate the page 3 times out of 32. 1378 */ 1379 head = 0; 1380 } else { 1381 /* 1382 * Cache the page 28 times out of every 32. Note that 1383 * the page is deactivated instead of cached, but placed 1384 * at the head of the queue instead of the tail. 1385 */ 1386 head = 1; 1387 } 1388 _vm_page_deactivate(m, head); 1389 } 1390 1391 /* 1392 * Grab a page, waiting until we are waken up due to the page 1393 * changing state. We keep on waiting, if the page continues 1394 * to be in the object. If the page doesn't exist, first allocate it 1395 * and then conditionally zero it. 1396 * 1397 * This routine may block. 1398 */ 1399 vm_page_t 1400 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1401 { 1402 vm_page_t m; 1403 1404 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1405 retrylookup: 1406 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1407 vm_page_lock_queues(); 1408 if (m->busy || (m->flags & PG_BUSY)) { 1409 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1410 VM_OBJECT_UNLOCK(object); 1411 msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0); 1412 VM_OBJECT_LOCK(object); 1413 if ((allocflags & VM_ALLOC_RETRY) == 0) 1414 return (NULL); 1415 goto retrylookup; 1416 } else { 1417 if (allocflags & VM_ALLOC_WIRED) 1418 vm_page_wire(m); 1419 if ((allocflags & VM_ALLOC_NOBUSY) == 0) 1420 vm_page_busy(m); 1421 vm_page_unlock_queues(); 1422 return (m); 1423 } 1424 } 1425 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1426 if (m == NULL) { 1427 VM_OBJECT_UNLOCK(object); 1428 VM_WAIT; 1429 VM_OBJECT_LOCK(object); 1430 if ((allocflags & VM_ALLOC_RETRY) == 0) 1431 return (NULL); 1432 goto retrylookup; 1433 } 1434 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 1435 pmap_zero_page(m); 1436 return (m); 1437 } 1438 1439 /* 1440 * Mapping function for valid bits or for dirty bits in 1441 * a page. May not block. 1442 * 1443 * Inputs are required to range within a page. 1444 */ 1445 __inline int 1446 vm_page_bits(int base, int size) 1447 { 1448 int first_bit; 1449 int last_bit; 1450 1451 KASSERT( 1452 base + size <= PAGE_SIZE, 1453 ("vm_page_bits: illegal base/size %d/%d", base, size) 1454 ); 1455 1456 if (size == 0) /* handle degenerate case */ 1457 return (0); 1458 1459 first_bit = base >> DEV_BSHIFT; 1460 last_bit = (base + size - 1) >> DEV_BSHIFT; 1461 1462 return ((2 << last_bit) - (1 << first_bit)); 1463 } 1464 1465 /* 1466 * vm_page_set_validclean: 1467 * 1468 * Sets portions of a page valid and clean. The arguments are expected 1469 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1470 * of any partial chunks touched by the range. The invalid portion of 1471 * such chunks will be zero'd. 1472 * 1473 * This routine may not block. 1474 * 1475 * (base + size) must be less then or equal to PAGE_SIZE. 1476 */ 1477 void 1478 vm_page_set_validclean(vm_page_t m, int base, int size) 1479 { 1480 int pagebits; 1481 int frag; 1482 int endoff; 1483 1484 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1485 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1486 if (size == 0) /* handle degenerate case */ 1487 return; 1488 1489 /* 1490 * If the base is not DEV_BSIZE aligned and the valid 1491 * bit is clear, we have to zero out a portion of the 1492 * first block. 1493 */ 1494 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1495 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1496 pmap_zero_page_area(m, frag, base - frag); 1497 1498 /* 1499 * If the ending offset is not DEV_BSIZE aligned and the 1500 * valid bit is clear, we have to zero out a portion of 1501 * the last block. 1502 */ 1503 endoff = base + size; 1504 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1505 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1506 pmap_zero_page_area(m, endoff, 1507 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1508 1509 /* 1510 * Set valid, clear dirty bits. If validating the entire 1511 * page we can safely clear the pmap modify bit. We also 1512 * use this opportunity to clear the PG_NOSYNC flag. If a process 1513 * takes a write fault on a MAP_NOSYNC memory area the flag will 1514 * be set again. 1515 * 1516 * We set valid bits inclusive of any overlap, but we can only 1517 * clear dirty bits for DEV_BSIZE chunks that are fully within 1518 * the range. 1519 */ 1520 pagebits = vm_page_bits(base, size); 1521 m->valid |= pagebits; 1522 #if 0 /* NOT YET */ 1523 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1524 frag = DEV_BSIZE - frag; 1525 base += frag; 1526 size -= frag; 1527 if (size < 0) 1528 size = 0; 1529 } 1530 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1531 #endif 1532 m->dirty &= ~pagebits; 1533 if (base == 0 && size == PAGE_SIZE) { 1534 pmap_clear_modify(m); 1535 vm_page_flag_clear(m, PG_NOSYNC); 1536 } 1537 } 1538 1539 void 1540 vm_page_clear_dirty(vm_page_t m, int base, int size) 1541 { 1542 1543 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1544 m->dirty &= ~vm_page_bits(base, size); 1545 } 1546 1547 /* 1548 * vm_page_set_invalid: 1549 * 1550 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1551 * valid and dirty bits for the effected areas are cleared. 1552 * 1553 * May not block. 1554 */ 1555 void 1556 vm_page_set_invalid(vm_page_t m, int base, int size) 1557 { 1558 int bits; 1559 1560 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1561 bits = vm_page_bits(base, size); 1562 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1563 m->valid &= ~bits; 1564 m->dirty &= ~bits; 1565 m->object->generation++; 1566 } 1567 1568 /* 1569 * vm_page_zero_invalid() 1570 * 1571 * The kernel assumes that the invalid portions of a page contain 1572 * garbage, but such pages can be mapped into memory by user code. 1573 * When this occurs, we must zero out the non-valid portions of the 1574 * page so user code sees what it expects. 1575 * 1576 * Pages are most often semi-valid when the end of a file is mapped 1577 * into memory and the file's size is not page aligned. 1578 */ 1579 void 1580 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1581 { 1582 int b; 1583 int i; 1584 1585 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1586 /* 1587 * Scan the valid bits looking for invalid sections that 1588 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1589 * valid bit may be set ) have already been zerod by 1590 * vm_page_set_validclean(). 1591 */ 1592 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1593 if (i == (PAGE_SIZE / DEV_BSIZE) || 1594 (m->valid & (1 << i)) 1595 ) { 1596 if (i > b) { 1597 pmap_zero_page_area(m, 1598 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1599 } 1600 b = i + 1; 1601 } 1602 } 1603 1604 /* 1605 * setvalid is TRUE when we can safely set the zero'd areas 1606 * as being valid. We can do this if there are no cache consistancy 1607 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1608 */ 1609 if (setvalid) 1610 m->valid = VM_PAGE_BITS_ALL; 1611 } 1612 1613 /* 1614 * vm_page_is_valid: 1615 * 1616 * Is (partial) page valid? Note that the case where size == 0 1617 * will return FALSE in the degenerate case where the page is 1618 * entirely invalid, and TRUE otherwise. 1619 * 1620 * May not block. 1621 */ 1622 int 1623 vm_page_is_valid(vm_page_t m, int base, int size) 1624 { 1625 int bits = vm_page_bits(base, size); 1626 1627 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1628 if (m->valid && ((m->valid & bits) == bits)) 1629 return 1; 1630 else 1631 return 0; 1632 } 1633 1634 /* 1635 * update dirty bits from pmap/mmu. May not block. 1636 */ 1637 void 1638 vm_page_test_dirty(vm_page_t m) 1639 { 1640 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1641 vm_page_dirty(m); 1642 } 1643 } 1644 1645 int so_zerocp_fullpage = 0; 1646 1647 void 1648 vm_page_cowfault(vm_page_t m) 1649 { 1650 vm_page_t mnew; 1651 vm_object_t object; 1652 vm_pindex_t pindex; 1653 1654 object = m->object; 1655 pindex = m->pindex; 1656 1657 retry_alloc: 1658 vm_page_remove(m); 1659 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL); 1660 if (mnew == NULL) { 1661 vm_page_insert(m, object, pindex); 1662 vm_page_unlock_queues(); 1663 VM_OBJECT_UNLOCK(object); 1664 VM_WAIT; 1665 VM_OBJECT_LOCK(object); 1666 vm_page_lock_queues(); 1667 goto retry_alloc; 1668 } 1669 1670 if (m->cow == 0) { 1671 /* 1672 * check to see if we raced with an xmit complete when 1673 * waiting to allocate a page. If so, put things back 1674 * the way they were 1675 */ 1676 vm_page_free(mnew); 1677 vm_page_insert(m, object, pindex); 1678 } else { /* clear COW & copy page */ 1679 if (!so_zerocp_fullpage) 1680 pmap_copy_page(m, mnew); 1681 mnew->valid = VM_PAGE_BITS_ALL; 1682 vm_page_dirty(mnew); 1683 vm_page_flag_clear(mnew, PG_BUSY); 1684 } 1685 } 1686 1687 void 1688 vm_page_cowclear(vm_page_t m) 1689 { 1690 1691 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1692 if (m->cow) { 1693 m->cow--; 1694 /* 1695 * let vm_fault add back write permission lazily 1696 */ 1697 } 1698 /* 1699 * sf_buf_free() will free the page, so we needn't do it here 1700 */ 1701 } 1702 1703 void 1704 vm_page_cowsetup(vm_page_t m) 1705 { 1706 1707 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1708 m->cow++; 1709 pmap_page_protect(m, VM_PROT_READ); 1710 } 1711 1712 #include "opt_ddb.h" 1713 #ifdef DDB 1714 #include <sys/kernel.h> 1715 1716 #include <ddb/ddb.h> 1717 1718 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1719 { 1720 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 1721 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 1722 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 1723 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 1724 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 1725 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 1726 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 1727 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 1728 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 1729 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 1730 } 1731 1732 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1733 { 1734 int i; 1735 db_printf("PQ_FREE:"); 1736 for (i = 0; i < PQ_L2_SIZE; i++) { 1737 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 1738 } 1739 db_printf("\n"); 1740 1741 db_printf("PQ_CACHE:"); 1742 for (i = 0; i < PQ_L2_SIZE; i++) { 1743 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 1744 } 1745 db_printf("\n"); 1746 1747 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1748 vm_page_queues[PQ_ACTIVE].lcnt, 1749 vm_page_queues[PQ_INACTIVE].lcnt); 1750 } 1751 #endif /* DDB */ 1752