xref: /freebsd/sys/vm/vm_page.c (revision 6adf353a56a161443406b44a45d00c688ca7b857)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD$
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 
67 /*
68  *			GENERAL RULES ON VM_PAGE MANIPULATION
69  *
70  *	- a pageq mutex is required when adding or removing a page from a
71  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72  *	  busy state of a page.
73  *
74  *	- a hash chain mutex is required when associating or disassociating
75  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76  *	  regardless of other mutexes or the busy state of a page.
77  *
78  *	- either a hash chain mutex OR a busied page is required in order
79  *	  to modify the page flags.  A hash chain mutex must be obtained in
80  *	  order to busy a page.  A page's flags cannot be modified by a
81  *	  hash chain mutex if the page is marked busy.
82  *
83  *	- The object memq mutex is held when inserting or removing
84  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85  *	  is different from the object's main mutex.
86  *
87  *	Generally speaking, you have to be aware of side effects when running
88  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90  *	vm_page_cache(), vm_page_activate(), and a number of other routines
91  *	will release the hash chain mutex for you.  Intermediate manipulation
92  *	routines such as vm_page_flag_set() expect the hash chain to be held
93  *	on entry and the hash chain will remain held on return.
94  *
95  *	pageq scanning can only occur with the pageq in question locked.
96  *	We have a known bottleneck with the active queue, but the cache
97  *	and free queues are actually arrays already.
98  */
99 
100 /*
101  *	Resident memory management module.
102  */
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/lock.h>
107 #include <sys/malloc.h>
108 #include <sys/mutex.h>
109 #include <sys/proc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 
122 /*
123  *	Associated with page of user-allocatable memory is a
124  *	page structure.
125  */
126 
127 static struct vm_page **vm_page_buckets; /* Array of buckets */
128 static int vm_page_bucket_count;	/* How big is array? */
129 static int vm_page_hash_mask;		/* Mask for hash function */
130 static volatile int vm_page_bucket_generation;
131 static struct mtx vm_buckets_mtx[BUCKET_HASH_SIZE];
132 
133 vm_page_t vm_page_array = 0;
134 int vm_page_array_size = 0;
135 long first_page = 0;
136 int vm_page_zero_count = 0;
137 
138 /*
139  *	vm_set_page_size:
140  *
141  *	Sets the page size, perhaps based upon the memory
142  *	size.  Must be called before any use of page-size
143  *	dependent functions.
144  */
145 void
146 vm_set_page_size(void)
147 {
148 	if (cnt.v_page_size == 0)
149 		cnt.v_page_size = PAGE_SIZE;
150 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
151 		panic("vm_set_page_size: page size not a power of two");
152 }
153 
154 /*
155  *	vm_page_startup:
156  *
157  *	Initializes the resident memory module.
158  *
159  *	Allocates memory for the page cells, and
160  *	for the object/offset-to-page hash table headers.
161  *	Each page cell is initialized and placed on the free list.
162  */
163 
164 vm_offset_t
165 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
166 {
167 	vm_offset_t mapped;
168 	struct vm_page **bucket;
169 	vm_size_t npages, page_range;
170 	vm_offset_t new_end;
171 	int i;
172 	vm_offset_t pa;
173 	int nblocks;
174 	vm_offset_t last_pa;
175 
176 	/* the biggest memory array is the second group of pages */
177 	vm_offset_t end;
178 	vm_offset_t biggestone, biggestsize;
179 
180 	vm_offset_t total;
181 
182 	total = 0;
183 	biggestsize = 0;
184 	biggestone = 0;
185 	nblocks = 0;
186 	vaddr = round_page(vaddr);
187 
188 	for (i = 0; phys_avail[i + 1]; i += 2) {
189 		phys_avail[i] = round_page(phys_avail[i]);
190 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
191 	}
192 
193 	for (i = 0; phys_avail[i + 1]; i += 2) {
194 		int size = phys_avail[i + 1] - phys_avail[i];
195 
196 		if (size > biggestsize) {
197 			biggestone = i;
198 			biggestsize = size;
199 		}
200 		++nblocks;
201 		total += size;
202 	}
203 
204 	end = phys_avail[biggestone+1];
205 
206 	/*
207 	 * Initialize the queue headers for the free queue, the active queue
208 	 * and the inactive queue.
209 	 */
210 
211 	vm_pageq_init();
212 
213 	/*
214 	 * Allocate (and initialize) the hash table buckets.
215 	 *
216 	 * The number of buckets MUST BE a power of 2, and the actual value is
217 	 * the next power of 2 greater than the number of physical pages in
218 	 * the system.
219 	 *
220 	 * We make the hash table approximately 2x the number of pages to
221 	 * reduce the chain length.  This is about the same size using the
222 	 * singly-linked list as the 1x hash table we were using before
223 	 * using TAILQ but the chain length will be smaller.
224 	 *
225 	 * Note: This computation can be tweaked if desired.
226 	 */
227 	if (vm_page_bucket_count == 0) {
228 		vm_page_bucket_count = 1;
229 		while (vm_page_bucket_count < atop(total))
230 			vm_page_bucket_count <<= 1;
231 	}
232 	vm_page_bucket_count <<= 1;
233 	vm_page_hash_mask = vm_page_bucket_count - 1;
234 
235 	/*
236 	 * Validate these addresses.
237 	 */
238 	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
239 	new_end = trunc_page(new_end);
240 	mapped = pmap_map(&vaddr, new_end, end,
241 	    VM_PROT_READ | VM_PROT_WRITE);
242 	bzero((caddr_t) mapped, end - new_end);
243 
244 	vm_page_buckets = (struct vm_page **)mapped;
245 	bucket = vm_page_buckets;
246 	for (i = 0; i < vm_page_bucket_count; i++) {
247 		*bucket = NULL;
248 		bucket++;
249 	}
250 	for (i = 0; i < BUCKET_HASH_SIZE; ++i)
251 		mtx_init(&vm_buckets_mtx[i],  "vm buckets hash mutexes", MTX_DEF);
252 
253 	/*
254 	 * Compute the number of pages of memory that will be available for
255 	 * use (taking into account the overhead of a page structure per
256 	 * page).
257 	 */
258 
259 	first_page = phys_avail[0] / PAGE_SIZE;
260 
261 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
262 	npages = (total - (page_range * sizeof(struct vm_page)) -
263 	    (end - new_end)) / PAGE_SIZE;
264 
265 	end = new_end;
266 
267 	/*
268 	 * Initialize the mem entry structures now, and put them in the free
269 	 * queue.
270 	 */
271 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
272 	mapped = pmap_map(&vaddr, new_end, end,
273 	    VM_PROT_READ | VM_PROT_WRITE);
274 	vm_page_array = (vm_page_t) mapped;
275 
276 	/*
277 	 * Clear all of the page structures
278 	 */
279 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
280 	vm_page_array_size = page_range;
281 
282 	/*
283 	 * Construct the free queue(s) in descending order (by physical
284 	 * address) so that the first 16MB of physical memory is allocated
285 	 * last rather than first.  On large-memory machines, this avoids
286 	 * the exhaustion of low physical memory before isa_dmainit has run.
287 	 */
288 	cnt.v_page_count = 0;
289 	cnt.v_free_count = 0;
290 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
291 		pa = phys_avail[i];
292 		if (i == biggestone)
293 			last_pa = new_end;
294 		else
295 			last_pa = phys_avail[i + 1];
296 		while (pa < last_pa && npages-- > 0) {
297 			vm_pageq_add_new_page(pa);
298 			pa += PAGE_SIZE;
299 		}
300 	}
301 	return (vaddr);
302 }
303 
304 /*
305  *	vm_page_hash:
306  *
307  *	Distributes the object/offset key pair among hash buckets.
308  *
309  *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
310  *	This routine may not block.
311  *
312  *	We try to randomize the hash based on the object to spread the pages
313  *	out in the hash table without it costing us too much.
314  */
315 static __inline int
316 vm_page_hash(vm_object_t object, vm_pindex_t pindex)
317 {
318 	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
319 
320 	return(i & vm_page_hash_mask);
321 }
322 
323 void
324 vm_page_flag_set(vm_page_t m, unsigned short bits)
325 {
326 	GIANT_REQUIRED;
327 	m->flags |= bits;
328 }
329 
330 void
331 vm_page_flag_clear(vm_page_t m, unsigned short bits)
332 {
333 	GIANT_REQUIRED;
334 	m->flags &= ~bits;
335 }
336 
337 void
338 vm_page_busy(vm_page_t m)
339 {
340 	KASSERT((m->flags & PG_BUSY) == 0,
341 	    ("vm_page_busy: page already busy!!!"));
342 	vm_page_flag_set(m, PG_BUSY);
343 }
344 
345 /*
346  *      vm_page_flash:
347  *
348  *      wakeup anyone waiting for the page.
349  */
350 
351 void
352 vm_page_flash(vm_page_t m)
353 {
354 	if (m->flags & PG_WANTED) {
355 		vm_page_flag_clear(m, PG_WANTED);
356 		wakeup(m);
357 	}
358 }
359 
360 /*
361  *      vm_page_wakeup:
362  *
363  *      clear the PG_BUSY flag and wakeup anyone waiting for the
364  *      page.
365  *
366  */
367 
368 void
369 vm_page_wakeup(vm_page_t m)
370 {
371 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
372 	vm_page_flag_clear(m, PG_BUSY);
373 	vm_page_flash(m);
374 }
375 
376 /*
377  *
378  *
379  */
380 
381 void
382 vm_page_io_start(vm_page_t m)
383 {
384 	GIANT_REQUIRED;
385 	m->busy++;
386 }
387 
388 void
389 vm_page_io_finish(vm_page_t m)
390 {
391 	GIANT_REQUIRED;
392 	m->busy--;
393 	if (m->busy == 0)
394 		vm_page_flash(m);
395 }
396 
397 /*
398  * Keep page from being freed by the page daemon
399  * much of the same effect as wiring, except much lower
400  * overhead and should be used only for *very* temporary
401  * holding ("wiring").
402  */
403 void
404 vm_page_hold(vm_page_t mem)
405 {
406         GIANT_REQUIRED;
407         mem->hold_count++;
408 }
409 
410 void
411 vm_page_unhold(vm_page_t mem)
412 {
413 	GIANT_REQUIRED;
414 	--mem->hold_count;
415 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
416 }
417 
418 /*
419  *	vm_page_protect:
420  *
421  *	Reduce the protection of a page.  This routine never raises the
422  *	protection and therefore can be safely called if the page is already
423  *	at VM_PROT_NONE (it will be a NOP effectively ).
424  */
425 
426 void
427 vm_page_protect(vm_page_t mem, int prot)
428 {
429 	if (prot == VM_PROT_NONE) {
430 		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
431 			pmap_page_protect(mem, VM_PROT_NONE);
432 			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
433 		}
434 	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
435 		pmap_page_protect(mem, VM_PROT_READ);
436 		vm_page_flag_clear(mem, PG_WRITEABLE);
437 	}
438 }
439 /*
440  *	vm_page_zero_fill:
441  *
442  *	Zero-fill the specified page.
443  *	Written as a standard pagein routine, to
444  *	be used by the zero-fill object.
445  */
446 boolean_t
447 vm_page_zero_fill(vm_page_t m)
448 {
449 	pmap_zero_page(VM_PAGE_TO_PHYS(m));
450 	return (TRUE);
451 }
452 
453 /*
454  *	vm_page_copy:
455  *
456  *	Copy one page to another
457  */
458 void
459 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
460 {
461 	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
462 	dest_m->valid = VM_PAGE_BITS_ALL;
463 }
464 
465 /*
466  *	vm_page_free:
467  *
468  *	Free a page
469  *
470  *	The clearing of PG_ZERO is a temporary safety until the code can be
471  *	reviewed to determine that PG_ZERO is being properly cleared on
472  *	write faults or maps.  PG_ZERO was previously cleared in
473  *	vm_page_alloc().
474  */
475 void
476 vm_page_free(vm_page_t m)
477 {
478 	vm_page_flag_clear(m, PG_ZERO);
479 	vm_page_free_toq(m);
480 }
481 
482 /*
483  *	vm_page_free_zero:
484  *
485  *	Free a page to the zerod-pages queue
486  */
487 void
488 vm_page_free_zero(vm_page_t m)
489 {
490 	vm_page_flag_set(m, PG_ZERO);
491 	vm_page_free_toq(m);
492 }
493 
494 /*
495  *	vm_page_sleep_busy:
496  *
497  *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
498  *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
499  *	it almost had to sleep and made temporary spl*() mods), FALSE
500  *	otherwise.
501  *
502  *	This routine assumes that interrupts can only remove the busy
503  *	status from a page, not set the busy status or change it from
504  *	PG_BUSY to m->busy or vise versa (which would create a timing
505  *	window).
506  */
507 
508 int
509 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
510 {
511 	GIANT_REQUIRED;
512 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
513 		int s = splvm();
514 		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
515 			/*
516 			 * Page is busy. Wait and retry.
517 			 */
518 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
519 			tsleep(m, PVM, msg, 0);
520 		}
521 		splx(s);
522 		return(TRUE);
523 		/* not reached */
524 	}
525 	return(FALSE);
526 }
527 /*
528  *	vm_page_dirty:
529  *
530  *	make page all dirty
531  */
532 
533 void
534 vm_page_dirty(vm_page_t m)
535 {
536 	KASSERT(m->queue - m->pc != PQ_CACHE,
537 	    ("vm_page_dirty: page in cache!"));
538 	m->dirty = VM_PAGE_BITS_ALL;
539 }
540 
541 /*
542  *	vm_page_undirty:
543  *
544  *	Set page to not be dirty.  Note: does not clear pmap modify bits
545  */
546 
547 void
548 vm_page_undirty(vm_page_t m)
549 {
550 	m->dirty = 0;
551 }
552 
553 /*
554  *	vm_page_insert:		[ internal use only ]
555  *
556  *	Inserts the given mem entry into the object and object list.
557  *
558  *	The pagetables are not updated but will presumably fault the page
559  *	in if necessary, or if a kernel page the caller will at some point
560  *	enter the page into the kernel's pmap.  We are not allowed to block
561  *	here so we *can't* do this anyway.
562  *
563  *	The object and page must be locked, and must be splhigh.
564  *	This routine may not block.
565  */
566 
567 void
568 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
569 {
570 	struct vm_page **bucket;
571 
572 	GIANT_REQUIRED;
573 
574 	if (m->object != NULL)
575 		panic("vm_page_insert: already inserted");
576 
577 	/*
578 	 * Record the object/offset pair in this page
579 	 */
580 
581 	m->object = object;
582 	m->pindex = pindex;
583 
584 	/*
585 	 * Insert it into the object_object/offset hash table
586 	 */
587 
588 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
589 	m->hnext = *bucket;
590 	*bucket = m;
591 	vm_page_bucket_generation++;
592 
593 	/*
594 	 * Now link into the object's list of backed pages.
595 	 */
596 
597 	TAILQ_INSERT_TAIL(&object->memq, m, listq);
598 	object->generation++;
599 
600 	/*
601 	 * show that the object has one more resident page.
602 	 */
603 
604 	object->resident_page_count++;
605 
606 	/*
607 	 * Since we are inserting a new and possibly dirty page,
608 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
609 	 */
610 	if (m->flags & PG_WRITEABLE)
611 	    vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
612 }
613 
614 /*
615  *	vm_page_remove:
616  *				NOTE: used by device pager as well -wfj
617  *
618  *	Removes the given mem entry from the object/offset-page
619  *	table and the object page list, but do not invalidate/terminate
620  *	the backing store.
621  *
622  *	The object and page must be locked, and at splhigh.
623  *	The underlying pmap entry (if any) is NOT removed here.
624  *	This routine may not block.
625  */
626 
627 void
628 vm_page_remove(vm_page_t m)
629 {
630 	vm_object_t object;
631 
632 	GIANT_REQUIRED;
633 
634 	if (m->object == NULL)
635 		return;
636 
637 	if ((m->flags & PG_BUSY) == 0) {
638 		panic("vm_page_remove: page not busy");
639 	}
640 
641 	/*
642 	 * Basically destroy the page.
643 	 */
644 
645 	vm_page_wakeup(m);
646 
647 	object = m->object;
648 
649 	/*
650 	 * Remove from the object_object/offset hash table.  The object
651 	 * must be on the hash queue, we will panic if it isn't
652 	 *
653 	 * Note: we must NULL-out m->hnext to prevent loops in detached
654 	 * buffers with vm_page_lookup().
655 	 */
656 
657 	{
658 		struct vm_page **bucket;
659 
660 		bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
661 		while (*bucket != m) {
662 			if (*bucket == NULL)
663 				panic("vm_page_remove(): page not found in hash");
664 			bucket = &(*bucket)->hnext;
665 		}
666 		*bucket = m->hnext;
667 		m->hnext = NULL;
668 		vm_page_bucket_generation++;
669 	}
670 
671 	/*
672 	 * Now remove from the object's list of backed pages.
673 	 */
674 
675 	TAILQ_REMOVE(&object->memq, m, listq);
676 
677 	/*
678 	 * And show that the object has one fewer resident page.
679 	 */
680 
681 	object->resident_page_count--;
682 	object->generation++;
683 
684 	m->object = NULL;
685 }
686 
687 /*
688  *	vm_page_lookup:
689  *
690  *	Returns the page associated with the object/offset
691  *	pair specified; if none is found, NULL is returned.
692  *
693  *	NOTE: the code below does not lock.  It will operate properly if
694  *	an interrupt makes a change, but the generation algorithm will not
695  *	operate properly in an SMP environment where both cpu's are able to run
696  *	kernel code simultaneously.
697  *
698  *	The object must be locked.  No side effects.
699  *	This routine may not block.
700  *	This is a critical path routine
701  */
702 
703 vm_page_t
704 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
705 {
706 	vm_page_t m;
707 	struct vm_page **bucket;
708 	int generation;
709 
710 	/*
711 	 * Search the hash table for this object/offset pair
712 	 */
713 
714 retry:
715 	generation = vm_page_bucket_generation;
716 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
717 	for (m = *bucket; m != NULL; m = m->hnext) {
718 		if ((m->object == object) && (m->pindex == pindex)) {
719 			if (vm_page_bucket_generation != generation)
720 				goto retry;
721 			return (m);
722 		}
723 	}
724 	if (vm_page_bucket_generation != generation)
725 		goto retry;
726 	return (NULL);
727 }
728 
729 /*
730  *	vm_page_rename:
731  *
732  *	Move the given memory entry from its
733  *	current object to the specified target object/offset.
734  *
735  *	The object must be locked.
736  *	This routine may not block.
737  *
738  *	Note: this routine will raise itself to splvm(), the caller need not.
739  *
740  *	Note: swap associated with the page must be invalidated by the move.  We
741  *	      have to do this for several reasons:  (1) we aren't freeing the
742  *	      page, (2) we are dirtying the page, (3) the VM system is probably
743  *	      moving the page from object A to B, and will then later move
744  *	      the backing store from A to B and we can't have a conflict.
745  *
746  *	Note: we *always* dirty the page.  It is necessary both for the
747  *	      fact that we moved it, and because we may be invalidating
748  *	      swap.  If the page is on the cache, we have to deactivate it
749  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
750  *	      on the cache.
751  */
752 
753 void
754 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
755 {
756 	int s;
757 
758 	s = splvm();
759 	vm_page_remove(m);
760 	vm_page_insert(m, new_object, new_pindex);
761 	if (m->queue - m->pc == PQ_CACHE)
762 		vm_page_deactivate(m);
763 	vm_page_dirty(m);
764 	splx(s);
765 }
766 
767 /*
768  *	vm_page_select_cache:
769  *
770  *	Find a page on the cache queue with color optimization.  As pages
771  *	might be found, but not applicable, they are deactivated.  This
772  *	keeps us from using potentially busy cached pages.
773  *
774  *	This routine must be called at splvm().
775  *	This routine may not block.
776  */
777 static vm_page_t
778 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
779 {
780 	vm_page_t m;
781 
782 	GIANT_REQUIRED;
783 	while (TRUE) {
784 		m = vm_pageq_find(
785 		    PQ_CACHE,
786 		    (pindex + object->pg_color) & PQ_L2_MASK,
787 		    FALSE
788 		);
789 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
790 			       m->hold_count || m->wire_count)) {
791 			vm_page_deactivate(m);
792 			continue;
793 		}
794 		return m;
795 	}
796 }
797 
798 /*
799  *	vm_page_select_free:
800  *
801  *	Find a free or zero page, with specified preference.
802  *
803  *	This routine must be called at splvm().
804  *	This routine may not block.
805  */
806 
807 static __inline vm_page_t
808 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
809 {
810 	vm_page_t m;
811 
812 	m = vm_pageq_find(
813 		PQ_FREE,
814 		(pindex + object->pg_color) & PQ_L2_MASK,
815 		prefer_zero
816 	);
817 	return(m);
818 }
819 
820 /*
821  *	vm_page_alloc:
822  *
823  *	Allocate and return a memory cell associated
824  *	with this VM object/offset pair.
825  *
826  *	page_req classes:
827  *	VM_ALLOC_NORMAL		normal process request
828  *	VM_ALLOC_SYSTEM		system *really* needs a page
829  *	VM_ALLOC_INTERRUPT	interrupt time request
830  *	VM_ALLOC_ZERO		zero page
831  *
832  *	This routine may not block.
833  *
834  *	Additional special handling is required when called from an
835  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
836  *	the page cache in this case.
837  */
838 
839 vm_page_t
840 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
841 {
842 	vm_page_t m = NULL;
843 	int s;
844 
845 	GIANT_REQUIRED;
846 
847 	KASSERT(!vm_page_lookup(object, pindex),
848 		("vm_page_alloc: page already allocated"));
849 
850 	/*
851 	 * The pager is allowed to eat deeper into the free page list.
852 	 */
853 
854 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
855 		page_req = VM_ALLOC_SYSTEM;
856 	};
857 
858 	s = splvm();
859 
860 loop:
861 	if (cnt.v_free_count > cnt.v_free_reserved) {
862 		/*
863 		 * Allocate from the free queue if there are plenty of pages
864 		 * in it.
865 		 */
866 		if (page_req == VM_ALLOC_ZERO)
867 			m = vm_page_select_free(object, pindex, TRUE);
868 		else
869 			m = vm_page_select_free(object, pindex, FALSE);
870 	} else if (
871 	    (page_req == VM_ALLOC_SYSTEM &&
872 	     cnt.v_cache_count == 0 &&
873 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
874 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
875 	) {
876 		/*
877 		 * Interrupt or system, dig deeper into the free list.
878 		 */
879 		m = vm_page_select_free(object, pindex, FALSE);
880 	} else if (page_req != VM_ALLOC_INTERRUPT) {
881 		/*
882 		 * Allocatable from cache (non-interrupt only).  On success,
883 		 * we must free the page and try again, thus ensuring that
884 		 * cnt.v_*_free_min counters are replenished.
885 		 */
886 		m = vm_page_select_cache(object, pindex);
887 		if (m == NULL) {
888 			splx(s);
889 #if defined(DIAGNOSTIC)
890 			if (cnt.v_cache_count > 0)
891 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
892 #endif
893 			vm_pageout_deficit++;
894 			pagedaemon_wakeup();
895 			return (NULL);
896 		}
897 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
898 		vm_page_busy(m);
899 		vm_page_protect(m, VM_PROT_NONE);
900 		vm_page_free(m);
901 		goto loop;
902 	} else {
903 		/*
904 		 * Not allocatable from cache from interrupt, give up.
905 		 */
906 		splx(s);
907 		vm_pageout_deficit++;
908 		pagedaemon_wakeup();
909 		return (NULL);
910 	}
911 
912 	/*
913 	 *  At this point we had better have found a good page.
914 	 */
915 
916 	KASSERT(
917 	    m != NULL,
918 	    ("vm_page_alloc(): missing page on free queue\n")
919 	);
920 
921 	/*
922 	 * Remove from free queue
923 	 */
924 
925 	vm_pageq_remove_nowakeup(m);
926 
927 	/*
928 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
929 	 */
930 
931 	if (m->flags & PG_ZERO) {
932 		vm_page_zero_count--;
933 		m->flags = PG_ZERO | PG_BUSY;
934 	} else {
935 		m->flags = PG_BUSY;
936 	}
937 	m->wire_count = 0;
938 	m->hold_count = 0;
939 	m->act_count = 0;
940 	m->busy = 0;
941 	m->valid = 0;
942 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
943 
944 	/*
945 	 * vm_page_insert() is safe prior to the splx().  Note also that
946 	 * inserting a page here does not insert it into the pmap (which
947 	 * could cause us to block allocating memory).  We cannot block
948 	 * anywhere.
949 	 */
950 
951 	vm_page_insert(m, object, pindex);
952 
953 	/*
954 	 * Don't wakeup too often - wakeup the pageout daemon when
955 	 * we would be nearly out of memory.
956 	 */
957 	if (vm_paging_needed())
958 		pagedaemon_wakeup();
959 
960 	splx(s);
961 
962 	return (m);
963 }
964 
965 /*
966  *	vm_wait:	(also see VM_WAIT macro)
967  *
968  *	Block until free pages are available for allocation
969  */
970 
971 void
972 vm_wait(void)
973 {
974 	int s;
975 
976 	s = splvm();
977 	if (curproc == pageproc) {
978 		vm_pageout_pages_needed = 1;
979 		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
980 	} else {
981 		if (!vm_pages_needed) {
982 			vm_pages_needed = 1;
983 			wakeup(&vm_pages_needed);
984 		}
985 		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
986 	}
987 	splx(s);
988 }
989 
990 /*
991  *	vm_await:	(also see VM_AWAIT macro)
992  *
993  *	asleep on an event that will signal when free pages are available
994  *	for allocation.
995  */
996 
997 void
998 vm_await(void)
999 {
1000 	int s;
1001 
1002 	s = splvm();
1003 	if (curproc == pageproc) {
1004 		vm_pageout_pages_needed = 1;
1005 		asleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
1006 	} else {
1007 		if (!vm_pages_needed) {
1008 			vm_pages_needed++;
1009 			wakeup(&vm_pages_needed);
1010 		}
1011 		asleep(&cnt.v_free_count, PVM, "vmwait", 0);
1012 	}
1013 	splx(s);
1014 }
1015 
1016 /*
1017  *	vm_page_activate:
1018  *
1019  *	Put the specified page on the active list (if appropriate).
1020  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1021  *	mess with it.
1022  *
1023  *	The page queues must be locked.
1024  *	This routine may not block.
1025  */
1026 void
1027 vm_page_activate(vm_page_t m)
1028 {
1029 	int s;
1030 
1031 	GIANT_REQUIRED;
1032 	s = splvm();
1033 
1034 	if (m->queue != PQ_ACTIVE) {
1035 		if ((m->queue - m->pc) == PQ_CACHE)
1036 			cnt.v_reactivated++;
1037 
1038 		vm_pageq_remove(m);
1039 
1040 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1041 			m->queue = PQ_ACTIVE;
1042 			vm_page_queues[PQ_ACTIVE].lcnt++;
1043 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1044 			if (m->act_count < ACT_INIT)
1045 				m->act_count = ACT_INIT;
1046 			cnt.v_active_count++;
1047 		}
1048 	} else {
1049 		if (m->act_count < ACT_INIT)
1050 			m->act_count = ACT_INIT;
1051 	}
1052 
1053 	splx(s);
1054 }
1055 
1056 /*
1057  *	vm_page_free_wakeup:
1058  *
1059  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1060  *	routine is called when a page has been added to the cache or free
1061  *	queues.
1062  *
1063  *	This routine may not block.
1064  *	This routine must be called at splvm()
1065  */
1066 static __inline void
1067 vm_page_free_wakeup(void)
1068 {
1069 	/*
1070 	 * if pageout daemon needs pages, then tell it that there are
1071 	 * some free.
1072 	 */
1073 	if (vm_pageout_pages_needed &&
1074 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1075 		wakeup(&vm_pageout_pages_needed);
1076 		vm_pageout_pages_needed = 0;
1077 	}
1078 	/*
1079 	 * wakeup processes that are waiting on memory if we hit a
1080 	 * high water mark. And wakeup scheduler process if we have
1081 	 * lots of memory. this process will swapin processes.
1082 	 */
1083 	if (vm_pages_needed && !vm_page_count_min()) {
1084 		vm_pages_needed = 0;
1085 		wakeup(&cnt.v_free_count);
1086 	}
1087 }
1088 
1089 /*
1090  *	vm_page_free_toq:
1091  *
1092  *	Returns the given page to the PQ_FREE list,
1093  *	disassociating it with any VM object.
1094  *
1095  *	Object and page must be locked prior to entry.
1096  *	This routine may not block.
1097  */
1098 
1099 void
1100 vm_page_free_toq(vm_page_t m)
1101 {
1102 	int s;
1103 	struct vpgqueues *pq;
1104 	vm_object_t object = m->object;
1105 
1106 	GIANT_REQUIRED;
1107 	s = splvm();
1108 	cnt.v_tfree++;
1109 
1110 	if (m->busy || ((m->queue - m->pc) == PQ_FREE) ||
1111 		(m->hold_count != 0)) {
1112 		printf(
1113 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1114 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1115 		    m->hold_count);
1116 		if ((m->queue - m->pc) == PQ_FREE)
1117 			panic("vm_page_free: freeing free page");
1118 		else
1119 			panic("vm_page_free: freeing busy page");
1120 	}
1121 
1122 	/*
1123 	 * unqueue, then remove page.  Note that we cannot destroy
1124 	 * the page here because we do not want to call the pager's
1125 	 * callback routine until after we've put the page on the
1126 	 * appropriate free queue.
1127 	 */
1128 
1129 	vm_pageq_remove_nowakeup(m);
1130 	vm_page_remove(m);
1131 
1132 	/*
1133 	 * If fictitious remove object association and
1134 	 * return, otherwise delay object association removal.
1135 	 */
1136 
1137 	if ((m->flags & PG_FICTITIOUS) != 0) {
1138 		splx(s);
1139 		return;
1140 	}
1141 
1142 	m->valid = 0;
1143 	vm_page_undirty(m);
1144 
1145 	if (m->wire_count != 0) {
1146 		if (m->wire_count > 1) {
1147 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1148 				m->wire_count, (long)m->pindex);
1149 		}
1150 		panic("vm_page_free: freeing wired page\n");
1151 	}
1152 
1153 	/*
1154 	 * If we've exhausted the object's resident pages we want to free
1155 	 * it up.
1156 	 */
1157 
1158 	if (object &&
1159 	    (object->type == OBJT_VNODE) &&
1160 	    ((object->flags & OBJ_DEAD) == 0)
1161 	) {
1162 		struct vnode *vp = (struct vnode *)object->handle;
1163 
1164 		if (vp && VSHOULDFREE(vp))
1165 			vfree(vp);
1166 	}
1167 
1168 	/*
1169 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1170 	 */
1171 
1172 	if (m->flags & PG_UNMANAGED) {
1173 	    m->flags &= ~PG_UNMANAGED;
1174 	} else {
1175 #ifdef __alpha__
1176 	    pmap_page_is_free(m);
1177 #endif
1178 	}
1179 
1180 	m->queue = PQ_FREE + m->pc;
1181 	pq = &vm_page_queues[m->queue];
1182 	pq->lcnt++;
1183 	++(*pq->cnt);
1184 
1185 	/*
1186 	 * Put zero'd pages on the end ( where we look for zero'd pages
1187 	 * first ) and non-zerod pages at the head.
1188 	 */
1189 
1190 	if (m->flags & PG_ZERO) {
1191 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1192 		++vm_page_zero_count;
1193 	} else {
1194 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1195 	}
1196 
1197 	vm_page_free_wakeup();
1198 
1199 	splx(s);
1200 }
1201 
1202 /*
1203  *	vm_page_unmanage:
1204  *
1205  * 	Prevent PV management from being done on the page.  The page is
1206  *	removed from the paging queues as if it were wired, and as a
1207  *	consequence of no longer being managed the pageout daemon will not
1208  *	touch it (since there is no way to locate the pte mappings for the
1209  *	page).  madvise() calls that mess with the pmap will also no longer
1210  *	operate on the page.
1211  *
1212  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1213  *	will clear the flag.
1214  *
1215  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1216  *	physical memory as backing store rather then swap-backed memory and
1217  *	will eventually be extended to support 4MB unmanaged physical
1218  *	mappings.
1219  */
1220 
1221 void
1222 vm_page_unmanage(vm_page_t m)
1223 {
1224 	int s;
1225 
1226 	s = splvm();
1227 	if ((m->flags & PG_UNMANAGED) == 0) {
1228 		if (m->wire_count == 0)
1229 			vm_pageq_remove(m);
1230 	}
1231 	vm_page_flag_set(m, PG_UNMANAGED);
1232 	splx(s);
1233 }
1234 
1235 /*
1236  *	vm_page_wire:
1237  *
1238  *	Mark this page as wired down by yet
1239  *	another map, removing it from paging queues
1240  *	as necessary.
1241  *
1242  *	The page queues must be locked.
1243  *	This routine may not block.
1244  */
1245 void
1246 vm_page_wire(vm_page_t m)
1247 {
1248 	int s;
1249 
1250 	/*
1251 	 * Only bump the wire statistics if the page is not already wired,
1252 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1253 	 * it is already off the queues).
1254 	 */
1255 	s = splvm();
1256 	if (m->wire_count == 0) {
1257 		if ((m->flags & PG_UNMANAGED) == 0)
1258 			vm_pageq_remove(m);
1259 		cnt.v_wire_count++;
1260 	}
1261 	m->wire_count++;
1262 	splx(s);
1263 	vm_page_flag_set(m, PG_MAPPED);
1264 }
1265 
1266 /*
1267  *	vm_page_unwire:
1268  *
1269  *	Release one wiring of this page, potentially
1270  *	enabling it to be paged again.
1271  *
1272  *	Many pages placed on the inactive queue should actually go
1273  *	into the cache, but it is difficult to figure out which.  What
1274  *	we do instead, if the inactive target is well met, is to put
1275  *	clean pages at the head of the inactive queue instead of the tail.
1276  *	This will cause them to be moved to the cache more quickly and
1277  *	if not actively re-referenced, freed more quickly.  If we just
1278  *	stick these pages at the end of the inactive queue, heavy filesystem
1279  *	meta-data accesses can cause an unnecessary paging load on memory bound
1280  *	processes.  This optimization causes one-time-use metadata to be
1281  *	reused more quickly.
1282  *
1283  *	BUT, if we are in a low-memory situation we have no choice but to
1284  *	put clean pages on the cache queue.
1285  *
1286  *	A number of routines use vm_page_unwire() to guarantee that the page
1287  *	will go into either the inactive or active queues, and will NEVER
1288  *	be placed in the cache - for example, just after dirtying a page.
1289  *	dirty pages in the cache are not allowed.
1290  *
1291  *	The page queues must be locked.
1292  *	This routine may not block.
1293  */
1294 void
1295 vm_page_unwire(vm_page_t m, int activate)
1296 {
1297 	int s;
1298 
1299 	s = splvm();
1300 
1301 	if (m->wire_count > 0) {
1302 		m->wire_count--;
1303 		if (m->wire_count == 0) {
1304 			cnt.v_wire_count--;
1305 			if (m->flags & PG_UNMANAGED) {
1306 				;
1307 			} else if (activate) {
1308 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1309 				m->queue = PQ_ACTIVE;
1310 				vm_page_queues[PQ_ACTIVE].lcnt++;
1311 				cnt.v_active_count++;
1312 			} else {
1313 				vm_page_flag_clear(m, PG_WINATCFLS);
1314 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1315 				m->queue = PQ_INACTIVE;
1316 				vm_page_queues[PQ_INACTIVE].lcnt++;
1317 				cnt.v_inactive_count++;
1318 			}
1319 		}
1320 	} else {
1321 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1322 	}
1323 	splx(s);
1324 }
1325 
1326 
1327 /*
1328  * Move the specified page to the inactive queue.  If the page has
1329  * any associated swap, the swap is deallocated.
1330  *
1331  * Normally athead is 0 resulting in LRU operation.  athead is set
1332  * to 1 if we want this page to be 'as if it were placed in the cache',
1333  * except without unmapping it from the process address space.
1334  *
1335  * This routine may not block.
1336  */
1337 static __inline void
1338 _vm_page_deactivate(vm_page_t m, int athead)
1339 {
1340 	int s;
1341 
1342 	GIANT_REQUIRED;
1343 	/*
1344 	 * Ignore if already inactive.
1345 	 */
1346 	if (m->queue == PQ_INACTIVE)
1347 		return;
1348 
1349 	s = splvm();
1350 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1351 		if ((m->queue - m->pc) == PQ_CACHE)
1352 			cnt.v_reactivated++;
1353 		vm_page_flag_clear(m, PG_WINATCFLS);
1354 		vm_pageq_remove(m);
1355 		if (athead)
1356 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1357 		else
1358 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1359 		m->queue = PQ_INACTIVE;
1360 		vm_page_queues[PQ_INACTIVE].lcnt++;
1361 		cnt.v_inactive_count++;
1362 	}
1363 	splx(s);
1364 }
1365 
1366 void
1367 vm_page_deactivate(vm_page_t m)
1368 {
1369     _vm_page_deactivate(m, 0);
1370 }
1371 
1372 /*
1373  * vm_page_try_to_cache:
1374  *
1375  * Returns 0 on failure, 1 on success
1376  */
1377 int
1378 vm_page_try_to_cache(vm_page_t m)
1379 {
1380 	GIANT_REQUIRED;
1381 
1382 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1383 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1384 		return(0);
1385 	}
1386 	vm_page_test_dirty(m);
1387 	if (m->dirty)
1388 		return(0);
1389 	vm_page_cache(m);
1390 	return(1);
1391 }
1392 
1393 /*
1394  * vm_page_try_to_free()
1395  *
1396  *	Attempt to free the page.  If we cannot free it, we do nothing.
1397  *	1 is returned on success, 0 on failure.
1398  */
1399 int
1400 vm_page_try_to_free(vm_page_t m)
1401 {
1402 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1403 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1404 		return(0);
1405 	}
1406 	vm_page_test_dirty(m);
1407 	if (m->dirty)
1408 		return(0);
1409 	vm_page_busy(m);
1410 	vm_page_protect(m, VM_PROT_NONE);
1411 	vm_page_free(m);
1412 	return(1);
1413 }
1414 
1415 /*
1416  * vm_page_cache
1417  *
1418  * Put the specified page onto the page cache queue (if appropriate).
1419  *
1420  * This routine may not block.
1421  */
1422 void
1423 vm_page_cache(vm_page_t m)
1424 {
1425 	int s;
1426 
1427 	GIANT_REQUIRED;
1428 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1429 		printf("vm_page_cache: attempting to cache busy page\n");
1430 		return;
1431 	}
1432 	if ((m->queue - m->pc) == PQ_CACHE)
1433 		return;
1434 
1435 	/*
1436 	 * Remove all pmaps and indicate that the page is not
1437 	 * writeable or mapped.
1438 	 */
1439 
1440 	vm_page_protect(m, VM_PROT_NONE);
1441 	if (m->dirty != 0) {
1442 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1443 			(long)m->pindex);
1444 	}
1445 	s = splvm();
1446 	vm_pageq_remove_nowakeup(m);
1447 	m->queue = PQ_CACHE + m->pc;
1448 	vm_page_queues[m->queue].lcnt++;
1449 	TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1450 	cnt.v_cache_count++;
1451 	vm_page_free_wakeup();
1452 	splx(s);
1453 }
1454 
1455 /*
1456  * vm_page_dontneed
1457  *
1458  *	Cache, deactivate, or do nothing as appropriate.  This routine
1459  *	is typically used by madvise() MADV_DONTNEED.
1460  *
1461  *	Generally speaking we want to move the page into the cache so
1462  *	it gets reused quickly.  However, this can result in a silly syndrome
1463  *	due to the page recycling too quickly.  Small objects will not be
1464  *	fully cached.  On the otherhand, if we move the page to the inactive
1465  *	queue we wind up with a problem whereby very large objects
1466  *	unnecessarily blow away our inactive and cache queues.
1467  *
1468  *	The solution is to move the pages based on a fixed weighting.  We
1469  *	either leave them alone, deactivate them, or move them to the cache,
1470  *	where moving them to the cache has the highest weighting.
1471  *	By forcing some pages into other queues we eventually force the
1472  *	system to balance the queues, potentially recovering other unrelated
1473  *	space from active.  The idea is to not force this to happen too
1474  *	often.
1475  */
1476 
1477 void
1478 vm_page_dontneed(vm_page_t m)
1479 {
1480 	static int dnweight;
1481 	int dnw;
1482 	int head;
1483 
1484 	GIANT_REQUIRED;
1485 	dnw = ++dnweight;
1486 
1487 	/*
1488 	 * occassionally leave the page alone
1489 	 */
1490 
1491 	if ((dnw & 0x01F0) == 0 ||
1492 	    m->queue == PQ_INACTIVE ||
1493 	    m->queue - m->pc == PQ_CACHE
1494 	) {
1495 		if (m->act_count >= ACT_INIT)
1496 			--m->act_count;
1497 		return;
1498 	}
1499 
1500 	if (m->dirty == 0)
1501 		vm_page_test_dirty(m);
1502 
1503 	if (m->dirty || (dnw & 0x0070) == 0) {
1504 		/*
1505 		 * Deactivate the page 3 times out of 32.
1506 		 */
1507 		head = 0;
1508 	} else {
1509 		/*
1510 		 * Cache the page 28 times out of every 32.  Note that
1511 		 * the page is deactivated instead of cached, but placed
1512 		 * at the head of the queue instead of the tail.
1513 		 */
1514 		head = 1;
1515 	}
1516 	_vm_page_deactivate(m, head);
1517 }
1518 
1519 /*
1520  * Grab a page, waiting until we are waken up due to the page
1521  * changing state.  We keep on waiting, if the page continues
1522  * to be in the object.  If the page doesn't exist, allocate it.
1523  *
1524  * This routine may block.
1525  */
1526 vm_page_t
1527 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1528 {
1529 	vm_page_t m;
1530 	int s, generation;
1531 
1532 	GIANT_REQUIRED;
1533 retrylookup:
1534 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1535 		if (m->busy || (m->flags & PG_BUSY)) {
1536 			generation = object->generation;
1537 
1538 			s = splvm();
1539 			while ((object->generation == generation) &&
1540 					(m->busy || (m->flags & PG_BUSY))) {
1541 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1542 				tsleep(m, PVM, "pgrbwt", 0);
1543 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1544 					splx(s);
1545 					return NULL;
1546 				}
1547 			}
1548 			splx(s);
1549 			goto retrylookup;
1550 		} else {
1551 			vm_page_busy(m);
1552 			return m;
1553 		}
1554 	}
1555 
1556 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1557 	if (m == NULL) {
1558 		VM_WAIT;
1559 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1560 			return NULL;
1561 		goto retrylookup;
1562 	}
1563 
1564 	return m;
1565 }
1566 
1567 /*
1568  * Mapping function for valid bits or for dirty bits in
1569  * a page.  May not block.
1570  *
1571  * Inputs are required to range within a page.
1572  */
1573 
1574 __inline int
1575 vm_page_bits(int base, int size)
1576 {
1577 	int first_bit;
1578 	int last_bit;
1579 
1580 	KASSERT(
1581 	    base + size <= PAGE_SIZE,
1582 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1583 	);
1584 
1585 	if (size == 0)		/* handle degenerate case */
1586 		return(0);
1587 
1588 	first_bit = base >> DEV_BSHIFT;
1589 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1590 
1591 	return ((2 << last_bit) - (1 << first_bit));
1592 }
1593 
1594 /*
1595  *	vm_page_set_validclean:
1596  *
1597  *	Sets portions of a page valid and clean.  The arguments are expected
1598  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1599  *	of any partial chunks touched by the range.  The invalid portion of
1600  *	such chunks will be zero'd.
1601  *
1602  *	This routine may not block.
1603  *
1604  *	(base + size) must be less then or equal to PAGE_SIZE.
1605  */
1606 void
1607 vm_page_set_validclean(vm_page_t m, int base, int size)
1608 {
1609 	int pagebits;
1610 	int frag;
1611 	int endoff;
1612 
1613 	GIANT_REQUIRED;
1614 	if (size == 0)	/* handle degenerate case */
1615 		return;
1616 
1617 	/*
1618 	 * If the base is not DEV_BSIZE aligned and the valid
1619 	 * bit is clear, we have to zero out a portion of the
1620 	 * first block.
1621 	 */
1622 
1623 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1624 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1625 	) {
1626 		pmap_zero_page_area(
1627 		    VM_PAGE_TO_PHYS(m),
1628 		    frag,
1629 		    base - frag
1630 		);
1631 	}
1632 
1633 	/*
1634 	 * If the ending offset is not DEV_BSIZE aligned and the
1635 	 * valid bit is clear, we have to zero out a portion of
1636 	 * the last block.
1637 	 */
1638 
1639 	endoff = base + size;
1640 
1641 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1642 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1643 	) {
1644 		pmap_zero_page_area(
1645 		    VM_PAGE_TO_PHYS(m),
1646 		    endoff,
1647 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1648 		);
1649 	}
1650 
1651 	/*
1652 	 * Set valid, clear dirty bits.  If validating the entire
1653 	 * page we can safely clear the pmap modify bit.  We also
1654 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1655 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1656 	 * be set again.
1657 	 */
1658 
1659 	pagebits = vm_page_bits(base, size);
1660 	m->valid |= pagebits;
1661 	m->dirty &= ~pagebits;
1662 	if (base == 0 && size == PAGE_SIZE) {
1663 		pmap_clear_modify(m);
1664 		vm_page_flag_clear(m, PG_NOSYNC);
1665 	}
1666 }
1667 
1668 #if 0
1669 
1670 void
1671 vm_page_set_dirty(vm_page_t m, int base, int size)
1672 {
1673 	m->dirty |= vm_page_bits(base, size);
1674 }
1675 
1676 #endif
1677 
1678 void
1679 vm_page_clear_dirty(vm_page_t m, int base, int size)
1680 {
1681 	GIANT_REQUIRED;
1682 	m->dirty &= ~vm_page_bits(base, size);
1683 }
1684 
1685 /*
1686  *	vm_page_set_invalid:
1687  *
1688  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1689  *	valid and dirty bits for the effected areas are cleared.
1690  *
1691  *	May not block.
1692  */
1693 void
1694 vm_page_set_invalid(vm_page_t m, int base, int size)
1695 {
1696 	int bits;
1697 
1698 	GIANT_REQUIRED;
1699 	bits = vm_page_bits(base, size);
1700 	m->valid &= ~bits;
1701 	m->dirty &= ~bits;
1702 	m->object->generation++;
1703 }
1704 
1705 /*
1706  * vm_page_zero_invalid()
1707  *
1708  *	The kernel assumes that the invalid portions of a page contain
1709  *	garbage, but such pages can be mapped into memory by user code.
1710  *	When this occurs, we must zero out the non-valid portions of the
1711  *	page so user code sees what it expects.
1712  *
1713  *	Pages are most often semi-valid when the end of a file is mapped
1714  *	into memory and the file's size is not page aligned.
1715  */
1716 
1717 void
1718 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1719 {
1720 	int b;
1721 	int i;
1722 
1723 	/*
1724 	 * Scan the valid bits looking for invalid sections that
1725 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1726 	 * valid bit may be set ) have already been zerod by
1727 	 * vm_page_set_validclean().
1728 	 */
1729 
1730 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1731 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1732 		    (m->valid & (1 << i))
1733 		) {
1734 			if (i > b) {
1735 				pmap_zero_page_area(
1736 				    VM_PAGE_TO_PHYS(m),
1737 				    b << DEV_BSHIFT,
1738 				    (i - b) << DEV_BSHIFT
1739 				);
1740 			}
1741 			b = i + 1;
1742 		}
1743 	}
1744 
1745 	/*
1746 	 * setvalid is TRUE when we can safely set the zero'd areas
1747 	 * as being valid.  We can do this if there are no cache consistancy
1748 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1749 	 */
1750 
1751 	if (setvalid)
1752 		m->valid = VM_PAGE_BITS_ALL;
1753 }
1754 
1755 /*
1756  *	vm_page_is_valid:
1757  *
1758  *	Is (partial) page valid?  Note that the case where size == 0
1759  *	will return FALSE in the degenerate case where the page is
1760  *	entirely invalid, and TRUE otherwise.
1761  *
1762  *	May not block.
1763  */
1764 
1765 int
1766 vm_page_is_valid(vm_page_t m, int base, int size)
1767 {
1768 	int bits = vm_page_bits(base, size);
1769 
1770 	if (m->valid && ((m->valid & bits) == bits))
1771 		return 1;
1772 	else
1773 		return 0;
1774 }
1775 
1776 /*
1777  * update dirty bits from pmap/mmu.  May not block.
1778  */
1779 
1780 void
1781 vm_page_test_dirty(vm_page_t m)
1782 {
1783 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1784 		vm_page_dirty(m);
1785 	}
1786 }
1787 
1788 #include "opt_ddb.h"
1789 #ifdef DDB
1790 #include <sys/kernel.h>
1791 
1792 #include <ddb/ddb.h>
1793 
1794 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1795 {
1796 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1797 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1798 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1799 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1800 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1801 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1802 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1803 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1804 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1805 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1806 }
1807 
1808 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1809 {
1810 	int i;
1811 	db_printf("PQ_FREE:");
1812 	for (i = 0; i < PQ_L2_SIZE; i++) {
1813 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1814 	}
1815 	db_printf("\n");
1816 
1817 	db_printf("PQ_CACHE:");
1818 	for (i = 0; i < PQ_L2_SIZE; i++) {
1819 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1820 	}
1821 	db_printf("\n");
1822 
1823 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1824 		vm_page_queues[PQ_ACTIVE].lcnt,
1825 		vm_page_queues[PQ_INACTIVE].lcnt);
1826 }
1827 #endif /* DDB */
1828