xref: /freebsd/sys/vm/vm_page.c (revision 69c9999d0ca45b210e75706ab4952ad5a33ce6ec)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD$
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 
67 /*
68  *			GENERAL RULES ON VM_PAGE MANIPULATION
69  *
70  *	- a pageq mutex is required when adding or removing a page from a
71  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72  *	  busy state of a page.
73  *
74  *	- a hash chain mutex is required when associating or disassociating
75  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76  *	  regardless of other mutexes or the busy state of a page.
77  *
78  *	- either a hash chain mutex OR a busied page is required in order
79  *	  to modify the page flags.  A hash chain mutex must be obtained in
80  *	  order to busy a page.  A page's flags cannot be modified by a
81  *	  hash chain mutex if the page is marked busy.
82  *
83  *	- The object memq mutex is held when inserting or removing
84  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85  *	  is different from the object's main mutex.
86  *
87  *	Generally speaking, you have to be aware of side effects when running
88  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90  *	vm_page_cache(), vm_page_activate(), and a number of other routines
91  *	will release the hash chain mutex for you.  Intermediate manipulation
92  *	routines such as vm_page_flag_set() expect the hash chain to be held
93  *	on entry and the hash chain will remain held on return.
94  *
95  *	pageq scanning can only occur with the pageq in question locked.
96  *	We have a known bottleneck with the active queue, but the cache
97  *	and free queues are actually arrays already.
98  */
99 
100 /*
101  *	Resident memory management module.
102  */
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/lock.h>
107 #include <sys/malloc.h>
108 #include <sys/mutex.h>
109 #include <sys/proc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 #include <vm/uma_int.h>
123 
124 /*
125  *	Associated with page of user-allocatable memory is a
126  *	page structure.
127  */
128 
129 struct mtx vm_page_queue_mtx;
130 struct mtx vm_page_queue_free_mtx;
131 
132 vm_page_t vm_page_array = 0;
133 int vm_page_array_size = 0;
134 long first_page = 0;
135 int vm_page_zero_count = 0;
136 
137 /*
138  *	vm_set_page_size:
139  *
140  *	Sets the page size, perhaps based upon the memory
141  *	size.  Must be called before any use of page-size
142  *	dependent functions.
143  */
144 void
145 vm_set_page_size(void)
146 {
147 	if (cnt.v_page_size == 0)
148 		cnt.v_page_size = PAGE_SIZE;
149 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
150 		panic("vm_set_page_size: page size not a power of two");
151 }
152 
153 /*
154  *	vm_page_startup:
155  *
156  *	Initializes the resident memory module.
157  *
158  *	Allocates memory for the page cells, and
159  *	for the object/offset-to-page hash table headers.
160  *	Each page cell is initialized and placed on the free list.
161  */
162 vm_offset_t
163 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
164 {
165 	vm_offset_t mapped;
166 	vm_size_t npages, page_range;
167 	vm_offset_t new_end;
168 	int i;
169 	vm_offset_t pa;
170 	int nblocks;
171 	vm_offset_t last_pa;
172 
173 	/* the biggest memory array is the second group of pages */
174 	vm_offset_t end;
175 	vm_offset_t biggestone, biggestsize;
176 
177 	vm_offset_t total;
178 	vm_size_t bootpages;
179 
180 	total = 0;
181 	biggestsize = 0;
182 	biggestone = 0;
183 	nblocks = 0;
184 	vaddr = round_page(vaddr);
185 
186 	for (i = 0; phys_avail[i + 1]; i += 2) {
187 		phys_avail[i] = round_page(phys_avail[i]);
188 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
189 	}
190 
191 	for (i = 0; phys_avail[i + 1]; i += 2) {
192 		vm_size_t size = phys_avail[i + 1] - phys_avail[i];
193 
194 		if (size > biggestsize) {
195 			biggestone = i;
196 			biggestsize = size;
197 		}
198 		++nblocks;
199 		total += size;
200 	}
201 
202 	end = phys_avail[biggestone+1];
203 
204 	/*
205 	 * Initialize the locks.
206 	 */
207 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
208 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
209 	   MTX_SPIN);
210 
211 	/*
212 	 * Initialize the queue headers for the free queue, the active queue
213 	 * and the inactive queue.
214 	 */
215 	vm_pageq_init();
216 
217 	/*
218 	 * Allocate memory for use when boot strapping the kernel memory
219 	 * allocator.
220 	 */
221 	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
222 	new_end = end - bootpages;
223 	new_end = trunc_page(new_end);
224 	mapped = pmap_map(&vaddr, new_end, end,
225 	    VM_PROT_READ | VM_PROT_WRITE);
226 	bzero((caddr_t) mapped, end - new_end);
227 	uma_startup((caddr_t)mapped);
228 
229 	/*
230 	 * Compute the number of pages of memory that will be available for
231 	 * use (taking into account the overhead of a page structure per
232 	 * page).
233 	 */
234 	first_page = phys_avail[0] / PAGE_SIZE;
235 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
236 	npages = (total - (page_range * sizeof(struct vm_page)) -
237 	    (end - new_end)) / PAGE_SIZE;
238 	end = new_end;
239 
240 	/*
241 	 * Initialize the mem entry structures now, and put them in the free
242 	 * queue.
243 	 */
244 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
245 	mapped = pmap_map(&vaddr, new_end, end,
246 	    VM_PROT_READ | VM_PROT_WRITE);
247 	vm_page_array = (vm_page_t) mapped;
248 
249 	/*
250 	 * Clear all of the page structures
251 	 */
252 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
253 	vm_page_array_size = page_range;
254 
255 	/*
256 	 * Construct the free queue(s) in descending order (by physical
257 	 * address) so that the first 16MB of physical memory is allocated
258 	 * last rather than first.  On large-memory machines, this avoids
259 	 * the exhaustion of low physical memory before isa_dmainit has run.
260 	 */
261 	cnt.v_page_count = 0;
262 	cnt.v_free_count = 0;
263 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
264 		pa = phys_avail[i];
265 		if (i == biggestone)
266 			last_pa = new_end;
267 		else
268 			last_pa = phys_avail[i + 1];
269 		while (pa < last_pa && npages-- > 0) {
270 			vm_pageq_add_new_page(pa);
271 			pa += PAGE_SIZE;
272 		}
273 	}
274 	return (vaddr);
275 }
276 
277 void
278 vm_page_flag_set(vm_page_t m, unsigned short bits)
279 {
280 
281 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
282 	m->flags |= bits;
283 }
284 
285 void
286 vm_page_flag_clear(vm_page_t m, unsigned short bits)
287 {
288 
289 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
290 	m->flags &= ~bits;
291 }
292 
293 void
294 vm_page_busy(vm_page_t m)
295 {
296 	KASSERT((m->flags & PG_BUSY) == 0,
297 	    ("vm_page_busy: page already busy!!!"));
298 	vm_page_flag_set(m, PG_BUSY);
299 }
300 
301 /*
302  *      vm_page_flash:
303  *
304  *      wakeup anyone waiting for the page.
305  */
306 void
307 vm_page_flash(vm_page_t m)
308 {
309 	if (m->flags & PG_WANTED) {
310 		vm_page_flag_clear(m, PG_WANTED);
311 		wakeup(m);
312 	}
313 }
314 
315 /*
316  *      vm_page_wakeup:
317  *
318  *      clear the PG_BUSY flag and wakeup anyone waiting for the
319  *      page.
320  *
321  */
322 void
323 vm_page_wakeup(vm_page_t m)
324 {
325 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
326 	vm_page_flag_clear(m, PG_BUSY);
327 	vm_page_flash(m);
328 }
329 
330 /*
331  *
332  *
333  */
334 void
335 vm_page_io_start(vm_page_t m)
336 {
337 
338 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
339 	m->busy++;
340 }
341 
342 void
343 vm_page_io_finish(vm_page_t m)
344 {
345 
346 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
347 	m->busy--;
348 	if (m->busy == 0)
349 		vm_page_flash(m);
350 }
351 
352 /*
353  * Keep page from being freed by the page daemon
354  * much of the same effect as wiring, except much lower
355  * overhead and should be used only for *very* temporary
356  * holding ("wiring").
357  */
358 void
359 vm_page_hold(vm_page_t mem)
360 {
361         GIANT_REQUIRED;
362         mem->hold_count++;
363 }
364 
365 void
366 vm_page_unhold(vm_page_t mem)
367 {
368 
369 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
370 	--mem->hold_count;
371 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
372 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
373 		vm_page_free_toq(mem);
374 }
375 
376 /*
377  *	vm_page_copy:
378  *
379  *	Copy one page to another
380  */
381 void
382 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
383 {
384 	pmap_copy_page(src_m, dest_m);
385 	dest_m->valid = VM_PAGE_BITS_ALL;
386 }
387 
388 /*
389  *	vm_page_free:
390  *
391  *	Free a page
392  *
393  *	The clearing of PG_ZERO is a temporary safety until the code can be
394  *	reviewed to determine that PG_ZERO is being properly cleared on
395  *	write faults or maps.  PG_ZERO was previously cleared in
396  *	vm_page_alloc().
397  */
398 void
399 vm_page_free(vm_page_t m)
400 {
401 	vm_page_flag_clear(m, PG_ZERO);
402 	vm_page_free_toq(m);
403 	vm_page_zero_idle_wakeup();
404 }
405 
406 /*
407  *	vm_page_free_zero:
408  *
409  *	Free a page to the zerod-pages queue
410  */
411 void
412 vm_page_free_zero(vm_page_t m)
413 {
414 	vm_page_flag_set(m, PG_ZERO);
415 	vm_page_free_toq(m);
416 }
417 
418 /*
419  *	vm_page_sleep_if_busy:
420  *
421  *	Sleep and release the page queues lock if PG_BUSY is set or,
422  *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
423  *	thread slept and the page queues lock was released.
424  *	Otherwise, retains the page queues lock and returns FALSE.
425  */
426 int
427 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
428 {
429 
430 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
431 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
432 		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
433 		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
434 		return (TRUE);
435 	}
436 	return (FALSE);
437 }
438 
439 /*
440  *	vm_page_dirty:
441  *
442  *	make page all dirty
443  */
444 void
445 vm_page_dirty(vm_page_t m)
446 {
447 	KASSERT(m->queue - m->pc != PQ_CACHE,
448 	    ("vm_page_dirty: page in cache!"));
449 	m->dirty = VM_PAGE_BITS_ALL;
450 }
451 
452 /*
453  *	vm_page_splay:
454  *
455  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
456  *	the vm_page containing the given pindex.  If, however, that
457  *	pindex is not found in the vm_object, returns a vm_page that is
458  *	adjacent to the pindex, coming before or after it.
459  */
460 vm_page_t
461 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
462 {
463 	struct vm_page dummy;
464 	vm_page_t lefttreemax, righttreemin, y;
465 
466 	if (root == NULL)
467 		return (root);
468 	lefttreemax = righttreemin = &dummy;
469 	for (;; root = y) {
470 		if (pindex < root->pindex) {
471 			if ((y = root->left) == NULL)
472 				break;
473 			if (pindex < y->pindex) {
474 				/* Rotate right. */
475 				root->left = y->right;
476 				y->right = root;
477 				root = y;
478 				if ((y = root->left) == NULL)
479 					break;
480 			}
481 			/* Link into the new root's right tree. */
482 			righttreemin->left = root;
483 			righttreemin = root;
484 		} else if (pindex > root->pindex) {
485 			if ((y = root->right) == NULL)
486 				break;
487 			if (pindex > y->pindex) {
488 				/* Rotate left. */
489 				root->right = y->left;
490 				y->left = root;
491 				root = y;
492 				if ((y = root->right) == NULL)
493 					break;
494 			}
495 			/* Link into the new root's left tree. */
496 			lefttreemax->right = root;
497 			lefttreemax = root;
498 		} else
499 			break;
500 	}
501 	/* Assemble the new root. */
502 	lefttreemax->right = root->left;
503 	righttreemin->left = root->right;
504 	root->left = dummy.right;
505 	root->right = dummy.left;
506 	return (root);
507 }
508 
509 /*
510  *	vm_page_insert:		[ internal use only ]
511  *
512  *	Inserts the given mem entry into the object and object list.
513  *
514  *	The pagetables are not updated but will presumably fault the page
515  *	in if necessary, or if a kernel page the caller will at some point
516  *	enter the page into the kernel's pmap.  We are not allowed to block
517  *	here so we *can't* do this anyway.
518  *
519  *	The object and page must be locked, and must be splhigh.
520  *	This routine may not block.
521  */
522 void
523 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
524 {
525 	vm_page_t root;
526 
527 	if (m->object != NULL)
528 		panic("vm_page_insert: already inserted");
529 
530 	/*
531 	 * Record the object/offset pair in this page
532 	 */
533 	m->object = object;
534 	m->pindex = pindex;
535 
536 	mtx_assert(object == kmem_object ? &object->mtx : &Giant, MA_OWNED);
537 	/*
538 	 * Now link into the object's ordered list of backed pages.
539 	 */
540 	root = object->root;
541 	if (root == NULL) {
542 		m->left = NULL;
543 		m->right = NULL;
544 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
545 	} else {
546 		root = vm_page_splay(pindex, root);
547 		if (pindex < root->pindex) {
548 			m->left = root->left;
549 			m->right = root;
550 			root->left = NULL;
551 			TAILQ_INSERT_BEFORE(root, m, listq);
552 		} else {
553 			m->right = root->right;
554 			m->left = root;
555 			root->right = NULL;
556 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
557 		}
558 	}
559 	object->root = m;
560 	object->generation++;
561 
562 	/*
563 	 * show that the object has one more resident page.
564 	 */
565 	object->resident_page_count++;
566 
567 	/*
568 	 * Since we are inserting a new and possibly dirty page,
569 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
570 	 */
571 	if (m->flags & PG_WRITEABLE)
572 		vm_object_set_writeable_dirty(object);
573 }
574 
575 /*
576  *	vm_page_remove:
577  *				NOTE: used by device pager as well -wfj
578  *
579  *	Removes the given mem entry from the object/offset-page
580  *	table and the object page list, but do not invalidate/terminate
581  *	the backing store.
582  *
583  *	The object and page must be locked, and at splhigh.
584  *	The underlying pmap entry (if any) is NOT removed here.
585  *	This routine may not block.
586  */
587 void
588 vm_page_remove(vm_page_t m)
589 {
590 	vm_object_t object;
591 	vm_page_t root;
592 
593 	GIANT_REQUIRED;
594 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
595 	if (m->object == NULL)
596 		return;
597 
598 	if ((m->flags & PG_BUSY) == 0) {
599 		panic("vm_page_remove: page not busy");
600 	}
601 
602 	/*
603 	 * Basically destroy the page.
604 	 */
605 	vm_page_wakeup(m);
606 
607 	object = m->object;
608 
609 	/*
610 	 * Now remove from the object's list of backed pages.
611 	 */
612 	if (m != object->root)
613 		vm_page_splay(m->pindex, object->root);
614 	if (m->left == NULL)
615 		root = m->right;
616 	else {
617 		root = vm_page_splay(m->pindex, m->left);
618 		root->right = m->right;
619 	}
620 	object->root = root;
621 	TAILQ_REMOVE(&object->memq, m, listq);
622 
623 	/*
624 	 * And show that the object has one fewer resident page.
625 	 */
626 	object->resident_page_count--;
627 	object->generation++;
628 
629 	m->object = NULL;
630 }
631 
632 /*
633  *	vm_page_lookup:
634  *
635  *	Returns the page associated with the object/offset
636  *	pair specified; if none is found, NULL is returned.
637  *
638  *	The object must be locked.
639  *	This routine may not block.
640  *	This is a critical path routine
641  */
642 vm_page_t
643 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
644 {
645 	vm_page_t m;
646 
647 	mtx_assert(object == kmem_object ? &object->mtx : &Giant, MA_OWNED);
648 	m = vm_page_splay(pindex, object->root);
649 	if ((object->root = m) != NULL && m->pindex != pindex)
650 		m = NULL;
651 	return (m);
652 }
653 
654 /*
655  *	vm_page_rename:
656  *
657  *	Move the given memory entry from its
658  *	current object to the specified target object/offset.
659  *
660  *	The object must be locked.
661  *	This routine may not block.
662  *
663  *	Note: this routine will raise itself to splvm(), the caller need not.
664  *
665  *	Note: swap associated with the page must be invalidated by the move.  We
666  *	      have to do this for several reasons:  (1) we aren't freeing the
667  *	      page, (2) we are dirtying the page, (3) the VM system is probably
668  *	      moving the page from object A to B, and will then later move
669  *	      the backing store from A to B and we can't have a conflict.
670  *
671  *	Note: we *always* dirty the page.  It is necessary both for the
672  *	      fact that we moved it, and because we may be invalidating
673  *	      swap.  If the page is on the cache, we have to deactivate it
674  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
675  *	      on the cache.
676  */
677 void
678 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
679 {
680 	int s;
681 
682 	s = splvm();
683 	vm_page_remove(m);
684 	vm_page_insert(m, new_object, new_pindex);
685 	if (m->queue - m->pc == PQ_CACHE)
686 		vm_page_deactivate(m);
687 	vm_page_dirty(m);
688 	splx(s);
689 }
690 
691 /*
692  *	vm_page_select_cache:
693  *
694  *	Find a page on the cache queue with color optimization.  As pages
695  *	might be found, but not applicable, they are deactivated.  This
696  *	keeps us from using potentially busy cached pages.
697  *
698  *	This routine must be called at splvm().
699  *	This routine may not block.
700  */
701 static vm_page_t
702 vm_page_select_cache(vm_pindex_t color)
703 {
704 	vm_page_t m;
705 
706 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
707 	while (TRUE) {
708 		m = vm_pageq_find(PQ_CACHE, color & PQ_L2_MASK, FALSE);
709 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
710 			       m->hold_count || m->wire_count)) {
711 			vm_page_deactivate(m);
712 			continue;
713 		}
714 		return m;
715 	}
716 }
717 
718 /*
719  *	vm_page_select_free:
720  *
721  *	Find a free or zero page, with specified preference.
722  *
723  *	This routine must be called at splvm().
724  *	This routine may not block.
725  */
726 static __inline vm_page_t
727 vm_page_select_free(vm_pindex_t color, boolean_t prefer_zero)
728 {
729 	vm_page_t m;
730 
731 	m = vm_pageq_find(PQ_FREE, color & PQ_L2_MASK, prefer_zero);
732 	return (m);
733 }
734 
735 /*
736  *	vm_page_alloc:
737  *
738  *	Allocate and return a memory cell associated
739  *	with this VM object/offset pair.
740  *
741  *	page_req classes:
742  *	VM_ALLOC_NORMAL		normal process request
743  *	VM_ALLOC_SYSTEM		system *really* needs a page
744  *	VM_ALLOC_INTERRUPT	interrupt time request
745  *	VM_ALLOC_ZERO		zero page
746  *
747  *	This routine may not block.
748  *
749  *	Additional special handling is required when called from an
750  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
751  *	the page cache in this case.
752  */
753 vm_page_t
754 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
755 {
756 	vm_page_t m = NULL;
757 	vm_pindex_t color;
758 	int page_req, s;
759 
760 #ifdef INVARIANTS
761 	if ((req & VM_ALLOC_NOOBJ) == 0) {
762 		KASSERT(object != NULL,
763 		    ("vm_page_alloc: NULL object."));
764 		mtx_assert(object == kmem_object ? &object->mtx : &Giant,
765 		    MA_OWNED);
766 		KASSERT(!vm_page_lookup(object, pindex),
767 		    ("vm_page_alloc: page already allocated"));
768 	}
769 #endif
770 
771 	page_req = req & VM_ALLOC_CLASS_MASK;
772 
773 	if ((req & VM_ALLOC_NOOBJ) == 0)
774 		color = pindex + object->pg_color;
775 	else
776 		color = pindex;
777 
778 	/*
779 	 * The pager is allowed to eat deeper into the free page list.
780 	 */
781 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
782 		page_req = VM_ALLOC_SYSTEM;
783 	};
784 
785 	s = splvm();
786 loop:
787 	mtx_lock_spin(&vm_page_queue_free_mtx);
788 	if (cnt.v_free_count > cnt.v_free_reserved) {
789 		/*
790 		 * Allocate from the free queue if there are plenty of pages
791 		 * in it.
792 		 */
793 		m = vm_page_select_free(color, (req & VM_ALLOC_ZERO) != 0);
794 
795 	} else if (
796 	    (page_req == VM_ALLOC_SYSTEM &&
797 	     cnt.v_cache_count == 0 &&
798 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
799 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
800 	) {
801 		/*
802 		 * Interrupt or system, dig deeper into the free list.
803 		 */
804 		m = vm_page_select_free(color, FALSE);
805 	} else if (page_req != VM_ALLOC_INTERRUPT) {
806 		mtx_unlock_spin(&vm_page_queue_free_mtx);
807 		/*
808 		 * Allocatable from cache (non-interrupt only).  On success,
809 		 * we must free the page and try again, thus ensuring that
810 		 * cnt.v_*_free_min counters are replenished.
811 		 */
812 		vm_page_lock_queues();
813 		if ((m = vm_page_select_cache(color)) == NULL) {
814 			vm_page_unlock_queues();
815 			splx(s);
816 #if defined(DIAGNOSTIC)
817 			if (cnt.v_cache_count > 0)
818 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
819 #endif
820 			vm_pageout_deficit++;
821 			pagedaemon_wakeup();
822 			return (NULL);
823 		}
824 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
825 		vm_page_busy(m);
826 		pmap_remove_all(m);
827 		vm_page_free(m);
828 		vm_page_unlock_queues();
829 		goto loop;
830 	} else {
831 		/*
832 		 * Not allocatable from cache from interrupt, give up.
833 		 */
834 		mtx_unlock_spin(&vm_page_queue_free_mtx);
835 		splx(s);
836 		vm_pageout_deficit++;
837 		pagedaemon_wakeup();
838 		return (NULL);
839 	}
840 
841 	/*
842 	 *  At this point we had better have found a good page.
843 	 */
844 
845 	KASSERT(
846 	    m != NULL,
847 	    ("vm_page_alloc(): missing page on free queue\n")
848 	);
849 
850 	/*
851 	 * Remove from free queue
852 	 */
853 
854 	vm_pageq_remove_nowakeup(m);
855 
856 	/*
857 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
858 	 */
859 	if (m->flags & PG_ZERO) {
860 		vm_page_zero_count--;
861 		m->flags = PG_ZERO | PG_BUSY;
862 	} else {
863 		m->flags = PG_BUSY;
864 	}
865 	if (req & VM_ALLOC_WIRED) {
866 		atomic_add_int(&cnt.v_wire_count, 1);
867 		m->wire_count = 1;
868 	} else
869 		m->wire_count = 0;
870 	m->hold_count = 0;
871 	m->act_count = 0;
872 	m->busy = 0;
873 	m->valid = 0;
874 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
875 	mtx_unlock_spin(&vm_page_queue_free_mtx);
876 
877 	/*
878 	 * vm_page_insert() is safe prior to the splx().  Note also that
879 	 * inserting a page here does not insert it into the pmap (which
880 	 * could cause us to block allocating memory).  We cannot block
881 	 * anywhere.
882 	 */
883 	if ((req & VM_ALLOC_NOOBJ) == 0)
884 		vm_page_insert(m, object, pindex);
885 
886 	/*
887 	 * Don't wakeup too often - wakeup the pageout daemon when
888 	 * we would be nearly out of memory.
889 	 */
890 	if (vm_paging_needed())
891 		pagedaemon_wakeup();
892 
893 	splx(s);
894 	return (m);
895 }
896 
897 /*
898  *	vm_wait:	(also see VM_WAIT macro)
899  *
900  *	Block until free pages are available for allocation
901  *	- Called in various places before memory allocations.
902  */
903 void
904 vm_wait(void)
905 {
906 	int s;
907 
908 	s = splvm();
909 	if (curproc == pageproc) {
910 		vm_pageout_pages_needed = 1;
911 		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
912 	} else {
913 		if (!vm_pages_needed) {
914 			vm_pages_needed = 1;
915 			wakeup(&vm_pages_needed);
916 		}
917 		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
918 	}
919 	splx(s);
920 }
921 
922 /*
923  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
924  *
925  *	Block until free pages are available for allocation
926  *	- Called only in vm_fault so that processes page faulting
927  *	  can be easily tracked.
928  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
929  *	  processes will be able to grab memory first.  Do not change
930  *	  this balance without careful testing first.
931  */
932 void
933 vm_waitpfault(void)
934 {
935 	int s;
936 
937 	s = splvm();
938 	if (!vm_pages_needed) {
939 		vm_pages_needed = 1;
940 		wakeup(&vm_pages_needed);
941 	}
942 	tsleep(&cnt.v_free_count, PUSER, "pfault", 0);
943 	splx(s);
944 }
945 
946 /*
947  *	vm_page_activate:
948  *
949  *	Put the specified page on the active list (if appropriate).
950  *	Ensure that act_count is at least ACT_INIT but do not otherwise
951  *	mess with it.
952  *
953  *	The page queues must be locked.
954  *	This routine may not block.
955  */
956 void
957 vm_page_activate(vm_page_t m)
958 {
959 	int s;
960 
961 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
962 	s = splvm();
963 	if (m->queue != PQ_ACTIVE) {
964 		if ((m->queue - m->pc) == PQ_CACHE)
965 			cnt.v_reactivated++;
966 		vm_pageq_remove(m);
967 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
968 			if (m->act_count < ACT_INIT)
969 				m->act_count = ACT_INIT;
970 			vm_pageq_enqueue(PQ_ACTIVE, m);
971 		}
972 	} else {
973 		if (m->act_count < ACT_INIT)
974 			m->act_count = ACT_INIT;
975 	}
976 	splx(s);
977 }
978 
979 /*
980  *	vm_page_free_wakeup:
981  *
982  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
983  *	routine is called when a page has been added to the cache or free
984  *	queues.
985  *
986  *	This routine may not block.
987  *	This routine must be called at splvm()
988  */
989 static __inline void
990 vm_page_free_wakeup(void)
991 {
992 	/*
993 	 * if pageout daemon needs pages, then tell it that there are
994 	 * some free.
995 	 */
996 	if (vm_pageout_pages_needed &&
997 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
998 		wakeup(&vm_pageout_pages_needed);
999 		vm_pageout_pages_needed = 0;
1000 	}
1001 	/*
1002 	 * wakeup processes that are waiting on memory if we hit a
1003 	 * high water mark. And wakeup scheduler process if we have
1004 	 * lots of memory. this process will swapin processes.
1005 	 */
1006 	if (vm_pages_needed && !vm_page_count_min()) {
1007 		vm_pages_needed = 0;
1008 		wakeup(&cnt.v_free_count);
1009 	}
1010 }
1011 
1012 /*
1013  *	vm_page_free_toq:
1014  *
1015  *	Returns the given page to the PQ_FREE list,
1016  *	disassociating it with any VM object.
1017  *
1018  *	Object and page must be locked prior to entry.
1019  *	This routine may not block.
1020  */
1021 
1022 void
1023 vm_page_free_toq(vm_page_t m)
1024 {
1025 	int s;
1026 	struct vpgqueues *pq;
1027 	vm_object_t object = m->object;
1028 
1029 	GIANT_REQUIRED;
1030 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1031 	s = splvm();
1032 	cnt.v_tfree++;
1033 
1034 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1035 		printf(
1036 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1037 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1038 		    m->hold_count);
1039 		if ((m->queue - m->pc) == PQ_FREE)
1040 			panic("vm_page_free: freeing free page");
1041 		else
1042 			panic("vm_page_free: freeing busy page");
1043 	}
1044 
1045 	/*
1046 	 * unqueue, then remove page.  Note that we cannot destroy
1047 	 * the page here because we do not want to call the pager's
1048 	 * callback routine until after we've put the page on the
1049 	 * appropriate free queue.
1050 	 */
1051 	vm_pageq_remove_nowakeup(m);
1052 	vm_page_remove(m);
1053 
1054 	/*
1055 	 * If fictitious remove object association and
1056 	 * return, otherwise delay object association removal.
1057 	 */
1058 	if ((m->flags & PG_FICTITIOUS) != 0) {
1059 		splx(s);
1060 		return;
1061 	}
1062 
1063 	m->valid = 0;
1064 	vm_page_undirty(m);
1065 
1066 	if (m->wire_count != 0) {
1067 		if (m->wire_count > 1) {
1068 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1069 				m->wire_count, (long)m->pindex);
1070 		}
1071 		panic("vm_page_free: freeing wired page\n");
1072 	}
1073 
1074 	/*
1075 	 * If we've exhausted the object's resident pages we want to free
1076 	 * it up.
1077 	 */
1078 	if (object &&
1079 	    (object->type == OBJT_VNODE) &&
1080 	    ((object->flags & OBJ_DEAD) == 0)
1081 	) {
1082 		struct vnode *vp = (struct vnode *)object->handle;
1083 
1084 		if (vp) {
1085 			VI_LOCK(vp);
1086 			if (VSHOULDFREE(vp))
1087 				vfree(vp);
1088 			VI_UNLOCK(vp);
1089 		}
1090 	}
1091 
1092 	/*
1093 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1094 	 */
1095 	if (m->flags & PG_UNMANAGED) {
1096 		m->flags &= ~PG_UNMANAGED;
1097 	} else {
1098 #ifdef __alpha__
1099 		pmap_page_is_free(m);
1100 #endif
1101 	}
1102 
1103 	if (m->hold_count != 0) {
1104 		m->flags &= ~PG_ZERO;
1105 		m->queue = PQ_HOLD;
1106 	} else
1107 		m->queue = PQ_FREE + m->pc;
1108 	pq = &vm_page_queues[m->queue];
1109 	mtx_lock_spin(&vm_page_queue_free_mtx);
1110 	pq->lcnt++;
1111 	++(*pq->cnt);
1112 
1113 	/*
1114 	 * Put zero'd pages on the end ( where we look for zero'd pages
1115 	 * first ) and non-zerod pages at the head.
1116 	 */
1117 	if (m->flags & PG_ZERO) {
1118 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1119 		++vm_page_zero_count;
1120 	} else {
1121 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1122 	}
1123 	mtx_unlock_spin(&vm_page_queue_free_mtx);
1124 	vm_page_free_wakeup();
1125 	splx(s);
1126 }
1127 
1128 /*
1129  *	vm_page_unmanage:
1130  *
1131  * 	Prevent PV management from being done on the page.  The page is
1132  *	removed from the paging queues as if it were wired, and as a
1133  *	consequence of no longer being managed the pageout daemon will not
1134  *	touch it (since there is no way to locate the pte mappings for the
1135  *	page).  madvise() calls that mess with the pmap will also no longer
1136  *	operate on the page.
1137  *
1138  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1139  *	will clear the flag.
1140  *
1141  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1142  *	physical memory as backing store rather then swap-backed memory and
1143  *	will eventually be extended to support 4MB unmanaged physical
1144  *	mappings.
1145  */
1146 void
1147 vm_page_unmanage(vm_page_t m)
1148 {
1149 	int s;
1150 
1151 	s = splvm();
1152 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1153 	if ((m->flags & PG_UNMANAGED) == 0) {
1154 		if (m->wire_count == 0)
1155 			vm_pageq_remove(m);
1156 	}
1157 	vm_page_flag_set(m, PG_UNMANAGED);
1158 	splx(s);
1159 }
1160 
1161 /*
1162  *	vm_page_wire:
1163  *
1164  *	Mark this page as wired down by yet
1165  *	another map, removing it from paging queues
1166  *	as necessary.
1167  *
1168  *	The page queues must be locked.
1169  *	This routine may not block.
1170  */
1171 void
1172 vm_page_wire(vm_page_t m)
1173 {
1174 	int s;
1175 
1176 	/*
1177 	 * Only bump the wire statistics if the page is not already wired,
1178 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1179 	 * it is already off the queues).
1180 	 */
1181 	s = splvm();
1182 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1183 	if (m->wire_count == 0) {
1184 		if ((m->flags & PG_UNMANAGED) == 0)
1185 			vm_pageq_remove(m);
1186 		atomic_add_int(&cnt.v_wire_count, 1);
1187 	}
1188 	m->wire_count++;
1189 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1190 	splx(s);
1191 }
1192 
1193 /*
1194  *	vm_page_unwire:
1195  *
1196  *	Release one wiring of this page, potentially
1197  *	enabling it to be paged again.
1198  *
1199  *	Many pages placed on the inactive queue should actually go
1200  *	into the cache, but it is difficult to figure out which.  What
1201  *	we do instead, if the inactive target is well met, is to put
1202  *	clean pages at the head of the inactive queue instead of the tail.
1203  *	This will cause them to be moved to the cache more quickly and
1204  *	if not actively re-referenced, freed more quickly.  If we just
1205  *	stick these pages at the end of the inactive queue, heavy filesystem
1206  *	meta-data accesses can cause an unnecessary paging load on memory bound
1207  *	processes.  This optimization causes one-time-use metadata to be
1208  *	reused more quickly.
1209  *
1210  *	BUT, if we are in a low-memory situation we have no choice but to
1211  *	put clean pages on the cache queue.
1212  *
1213  *	A number of routines use vm_page_unwire() to guarantee that the page
1214  *	will go into either the inactive or active queues, and will NEVER
1215  *	be placed in the cache - for example, just after dirtying a page.
1216  *	dirty pages in the cache are not allowed.
1217  *
1218  *	The page queues must be locked.
1219  *	This routine may not block.
1220  */
1221 void
1222 vm_page_unwire(vm_page_t m, int activate)
1223 {
1224 	int s;
1225 
1226 	s = splvm();
1227 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1228 	if (m->wire_count > 0) {
1229 		m->wire_count--;
1230 		if (m->wire_count == 0) {
1231 			atomic_subtract_int(&cnt.v_wire_count, 1);
1232 			if (m->flags & PG_UNMANAGED) {
1233 				;
1234 			} else if (activate)
1235 				vm_pageq_enqueue(PQ_ACTIVE, m);
1236 			else {
1237 				vm_page_flag_clear(m, PG_WINATCFLS);
1238 				vm_pageq_enqueue(PQ_INACTIVE, m);
1239 			}
1240 		}
1241 	} else {
1242 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1243 	}
1244 	splx(s);
1245 }
1246 
1247 
1248 /*
1249  * Move the specified page to the inactive queue.  If the page has
1250  * any associated swap, the swap is deallocated.
1251  *
1252  * Normally athead is 0 resulting in LRU operation.  athead is set
1253  * to 1 if we want this page to be 'as if it were placed in the cache',
1254  * except without unmapping it from the process address space.
1255  *
1256  * This routine may not block.
1257  */
1258 static __inline void
1259 _vm_page_deactivate(vm_page_t m, int athead)
1260 {
1261 	int s;
1262 
1263 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1264 	/*
1265 	 * Ignore if already inactive.
1266 	 */
1267 	if (m->queue == PQ_INACTIVE)
1268 		return;
1269 
1270 	s = splvm();
1271 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1272 		if ((m->queue - m->pc) == PQ_CACHE)
1273 			cnt.v_reactivated++;
1274 		vm_page_flag_clear(m, PG_WINATCFLS);
1275 		vm_pageq_remove(m);
1276 		if (athead)
1277 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1278 		else
1279 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1280 		m->queue = PQ_INACTIVE;
1281 		vm_page_queues[PQ_INACTIVE].lcnt++;
1282 		cnt.v_inactive_count++;
1283 	}
1284 	splx(s);
1285 }
1286 
1287 void
1288 vm_page_deactivate(vm_page_t m)
1289 {
1290     _vm_page_deactivate(m, 0);
1291 }
1292 
1293 /*
1294  * vm_page_try_to_cache:
1295  *
1296  * Returns 0 on failure, 1 on success
1297  */
1298 int
1299 vm_page_try_to_cache(vm_page_t m)
1300 {
1301 
1302 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1303 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1304 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1305 		return (0);
1306 	}
1307 	vm_page_test_dirty(m);
1308 	if (m->dirty)
1309 		return (0);
1310 	vm_page_cache(m);
1311 	return (1);
1312 }
1313 
1314 /*
1315  * vm_page_try_to_free()
1316  *
1317  *	Attempt to free the page.  If we cannot free it, we do nothing.
1318  *	1 is returned on success, 0 on failure.
1319  */
1320 int
1321 vm_page_try_to_free(vm_page_t m)
1322 {
1323 
1324 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1325 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1326 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1327 		return (0);
1328 	}
1329 	vm_page_test_dirty(m);
1330 	if (m->dirty)
1331 		return (0);
1332 	vm_page_busy(m);
1333 	pmap_remove_all(m);
1334 	vm_page_free(m);
1335 	return (1);
1336 }
1337 
1338 /*
1339  * vm_page_cache
1340  *
1341  * Put the specified page onto the page cache queue (if appropriate).
1342  *
1343  * This routine may not block.
1344  */
1345 void
1346 vm_page_cache(vm_page_t m)
1347 {
1348 	int s;
1349 
1350 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1351 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1352 		printf("vm_page_cache: attempting to cache busy page\n");
1353 		return;
1354 	}
1355 	if ((m->queue - m->pc) == PQ_CACHE)
1356 		return;
1357 
1358 	/*
1359 	 * Remove all pmaps and indicate that the page is not
1360 	 * writeable or mapped.
1361 	 */
1362 	pmap_remove_all(m);
1363 	if (m->dirty != 0) {
1364 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1365 			(long)m->pindex);
1366 	}
1367 	s = splvm();
1368 	vm_pageq_remove_nowakeup(m);
1369 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1370 	vm_page_free_wakeup();
1371 	splx(s);
1372 }
1373 
1374 /*
1375  * vm_page_dontneed
1376  *
1377  *	Cache, deactivate, or do nothing as appropriate.  This routine
1378  *	is typically used by madvise() MADV_DONTNEED.
1379  *
1380  *	Generally speaking we want to move the page into the cache so
1381  *	it gets reused quickly.  However, this can result in a silly syndrome
1382  *	due to the page recycling too quickly.  Small objects will not be
1383  *	fully cached.  On the otherhand, if we move the page to the inactive
1384  *	queue we wind up with a problem whereby very large objects
1385  *	unnecessarily blow away our inactive and cache queues.
1386  *
1387  *	The solution is to move the pages based on a fixed weighting.  We
1388  *	either leave them alone, deactivate them, or move them to the cache,
1389  *	where moving them to the cache has the highest weighting.
1390  *	By forcing some pages into other queues we eventually force the
1391  *	system to balance the queues, potentially recovering other unrelated
1392  *	space from active.  The idea is to not force this to happen too
1393  *	often.
1394  */
1395 void
1396 vm_page_dontneed(vm_page_t m)
1397 {
1398 	static int dnweight;
1399 	int dnw;
1400 	int head;
1401 
1402 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1403 	dnw = ++dnweight;
1404 
1405 	/*
1406 	 * occassionally leave the page alone
1407 	 */
1408 	if ((dnw & 0x01F0) == 0 ||
1409 	    m->queue == PQ_INACTIVE ||
1410 	    m->queue - m->pc == PQ_CACHE
1411 	) {
1412 		if (m->act_count >= ACT_INIT)
1413 			--m->act_count;
1414 		return;
1415 	}
1416 
1417 	if (m->dirty == 0)
1418 		vm_page_test_dirty(m);
1419 
1420 	if (m->dirty || (dnw & 0x0070) == 0) {
1421 		/*
1422 		 * Deactivate the page 3 times out of 32.
1423 		 */
1424 		head = 0;
1425 	} else {
1426 		/*
1427 		 * Cache the page 28 times out of every 32.  Note that
1428 		 * the page is deactivated instead of cached, but placed
1429 		 * at the head of the queue instead of the tail.
1430 		 */
1431 		head = 1;
1432 	}
1433 	_vm_page_deactivate(m, head);
1434 }
1435 
1436 /*
1437  * Grab a page, waiting until we are waken up due to the page
1438  * changing state.  We keep on waiting, if the page continues
1439  * to be in the object.  If the page doesn't exist, allocate it.
1440  *
1441  * This routine may block.
1442  */
1443 vm_page_t
1444 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1445 {
1446 	vm_page_t m;
1447 	int s, generation;
1448 
1449 	GIANT_REQUIRED;
1450 retrylookup:
1451 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1452 		vm_page_lock_queues();
1453 		if (m->busy || (m->flags & PG_BUSY)) {
1454 			generation = object->generation;
1455 
1456 			s = splvm();
1457 			while ((object->generation == generation) &&
1458 					(m->busy || (m->flags & PG_BUSY))) {
1459 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1460 				msleep(m, &vm_page_queue_mtx, PVM, "pgrbwt", 0);
1461 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1462 					vm_page_unlock_queues();
1463 					splx(s);
1464 					return NULL;
1465 				}
1466 			}
1467 			vm_page_unlock_queues();
1468 			splx(s);
1469 			goto retrylookup;
1470 		} else {
1471 			if (allocflags & VM_ALLOC_WIRED)
1472 				vm_page_wire(m);
1473 			vm_page_busy(m);
1474 			vm_page_unlock_queues();
1475 			return m;
1476 		}
1477 	}
1478 
1479 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1480 	if (m == NULL) {
1481 		VM_WAIT;
1482 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1483 			return NULL;
1484 		goto retrylookup;
1485 	}
1486 
1487 	return m;
1488 }
1489 
1490 /*
1491  * Mapping function for valid bits or for dirty bits in
1492  * a page.  May not block.
1493  *
1494  * Inputs are required to range within a page.
1495  */
1496 __inline int
1497 vm_page_bits(int base, int size)
1498 {
1499 	int first_bit;
1500 	int last_bit;
1501 
1502 	KASSERT(
1503 	    base + size <= PAGE_SIZE,
1504 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1505 	);
1506 
1507 	if (size == 0)		/* handle degenerate case */
1508 		return (0);
1509 
1510 	first_bit = base >> DEV_BSHIFT;
1511 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1512 
1513 	return ((2 << last_bit) - (1 << first_bit));
1514 }
1515 
1516 /*
1517  *	vm_page_set_validclean:
1518  *
1519  *	Sets portions of a page valid and clean.  The arguments are expected
1520  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1521  *	of any partial chunks touched by the range.  The invalid portion of
1522  *	such chunks will be zero'd.
1523  *
1524  *	This routine may not block.
1525  *
1526  *	(base + size) must be less then or equal to PAGE_SIZE.
1527  */
1528 void
1529 vm_page_set_validclean(vm_page_t m, int base, int size)
1530 {
1531 	int pagebits;
1532 	int frag;
1533 	int endoff;
1534 
1535 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1536 	if (size == 0)	/* handle degenerate case */
1537 		return;
1538 
1539 	/*
1540 	 * If the base is not DEV_BSIZE aligned and the valid
1541 	 * bit is clear, we have to zero out a portion of the
1542 	 * first block.
1543 	 */
1544 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1545 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1546 		pmap_zero_page_area(m, frag, base - frag);
1547 
1548 	/*
1549 	 * If the ending offset is not DEV_BSIZE aligned and the
1550 	 * valid bit is clear, we have to zero out a portion of
1551 	 * the last block.
1552 	 */
1553 	endoff = base + size;
1554 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1555 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1556 		pmap_zero_page_area(m, endoff,
1557 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1558 
1559 	/*
1560 	 * Set valid, clear dirty bits.  If validating the entire
1561 	 * page we can safely clear the pmap modify bit.  We also
1562 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1563 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1564 	 * be set again.
1565 	 *
1566 	 * We set valid bits inclusive of any overlap, but we can only
1567 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1568 	 * the range.
1569 	 */
1570 	pagebits = vm_page_bits(base, size);
1571 	m->valid |= pagebits;
1572 #if 0	/* NOT YET */
1573 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1574 		frag = DEV_BSIZE - frag;
1575 		base += frag;
1576 		size -= frag;
1577 		if (size < 0)
1578 			size = 0;
1579 	}
1580 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1581 #endif
1582 	m->dirty &= ~pagebits;
1583 	if (base == 0 && size == PAGE_SIZE) {
1584 		pmap_clear_modify(m);
1585 		vm_page_flag_clear(m, PG_NOSYNC);
1586 	}
1587 }
1588 
1589 #if 0
1590 
1591 void
1592 vm_page_set_dirty(vm_page_t m, int base, int size)
1593 {
1594 	m->dirty |= vm_page_bits(base, size);
1595 }
1596 
1597 #endif
1598 
1599 void
1600 vm_page_clear_dirty(vm_page_t m, int base, int size)
1601 {
1602 	GIANT_REQUIRED;
1603 	m->dirty &= ~vm_page_bits(base, size);
1604 }
1605 
1606 /*
1607  *	vm_page_set_invalid:
1608  *
1609  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1610  *	valid and dirty bits for the effected areas are cleared.
1611  *
1612  *	May not block.
1613  */
1614 void
1615 vm_page_set_invalid(vm_page_t m, int base, int size)
1616 {
1617 	int bits;
1618 
1619 	GIANT_REQUIRED;
1620 	bits = vm_page_bits(base, size);
1621 	m->valid &= ~bits;
1622 	m->dirty &= ~bits;
1623 	m->object->generation++;
1624 }
1625 
1626 /*
1627  * vm_page_zero_invalid()
1628  *
1629  *	The kernel assumes that the invalid portions of a page contain
1630  *	garbage, but such pages can be mapped into memory by user code.
1631  *	When this occurs, we must zero out the non-valid portions of the
1632  *	page so user code sees what it expects.
1633  *
1634  *	Pages are most often semi-valid when the end of a file is mapped
1635  *	into memory and the file's size is not page aligned.
1636  */
1637 void
1638 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1639 {
1640 	int b;
1641 	int i;
1642 
1643 	/*
1644 	 * Scan the valid bits looking for invalid sections that
1645 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1646 	 * valid bit may be set ) have already been zerod by
1647 	 * vm_page_set_validclean().
1648 	 */
1649 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1650 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1651 		    (m->valid & (1 << i))
1652 		) {
1653 			if (i > b) {
1654 				pmap_zero_page_area(m,
1655 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1656 			}
1657 			b = i + 1;
1658 		}
1659 	}
1660 
1661 	/*
1662 	 * setvalid is TRUE when we can safely set the zero'd areas
1663 	 * as being valid.  We can do this if there are no cache consistancy
1664 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1665 	 */
1666 	if (setvalid)
1667 		m->valid = VM_PAGE_BITS_ALL;
1668 }
1669 
1670 /*
1671  *	vm_page_is_valid:
1672  *
1673  *	Is (partial) page valid?  Note that the case where size == 0
1674  *	will return FALSE in the degenerate case where the page is
1675  *	entirely invalid, and TRUE otherwise.
1676  *
1677  *	May not block.
1678  */
1679 int
1680 vm_page_is_valid(vm_page_t m, int base, int size)
1681 {
1682 	int bits = vm_page_bits(base, size);
1683 
1684 	if (m->valid && ((m->valid & bits) == bits))
1685 		return 1;
1686 	else
1687 		return 0;
1688 }
1689 
1690 /*
1691  * update dirty bits from pmap/mmu.  May not block.
1692  */
1693 void
1694 vm_page_test_dirty(vm_page_t m)
1695 {
1696 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1697 		vm_page_dirty(m);
1698 	}
1699 }
1700 
1701 int so_zerocp_fullpage = 0;
1702 
1703 void
1704 vm_page_cowfault(vm_page_t m)
1705 {
1706 	vm_page_t mnew;
1707 	vm_object_t object;
1708 	vm_pindex_t pindex;
1709 
1710 	object = m->object;
1711 	pindex = m->pindex;
1712 	vm_page_busy(m);
1713 
1714  retry_alloc:
1715 	vm_page_remove(m);
1716 	/*
1717 	 * An interrupt allocation is requested because the page
1718 	 * queues lock is held.
1719 	 */
1720 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1721 	if (mnew == NULL) {
1722 		vm_page_insert(m, object, pindex);
1723 		vm_page_unlock_queues();
1724 		VM_WAIT;
1725 		vm_page_lock_queues();
1726 		goto retry_alloc;
1727 	}
1728 
1729 	if (m->cow == 0) {
1730 		/*
1731 		 * check to see if we raced with an xmit complete when
1732 		 * waiting to allocate a page.  If so, put things back
1733 		 * the way they were
1734 		 */
1735 		vm_page_busy(mnew);
1736 		vm_page_free(mnew);
1737 		vm_page_insert(m, object, pindex);
1738 	} else { /* clear COW & copy page */
1739 		if (so_zerocp_fullpage) {
1740 			mnew->valid = VM_PAGE_BITS_ALL;
1741 		} else {
1742 			vm_page_copy(m, mnew);
1743 		}
1744 		vm_page_dirty(mnew);
1745 		vm_page_flag_clear(mnew, PG_BUSY);
1746 	}
1747 }
1748 
1749 void
1750 vm_page_cowclear(vm_page_t m)
1751 {
1752 
1753 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1754 	if (m->cow) {
1755 		m->cow--;
1756 		/*
1757 		 * let vm_fault add back write permission  lazily
1758 		 */
1759 	}
1760 	/*
1761 	 *  sf_buf_free() will free the page, so we needn't do it here
1762 	 */
1763 }
1764 
1765 void
1766 vm_page_cowsetup(vm_page_t m)
1767 {
1768 
1769 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1770 	m->cow++;
1771 	pmap_page_protect(m, VM_PROT_READ);
1772 }
1773 
1774 #include "opt_ddb.h"
1775 #ifdef DDB
1776 #include <sys/kernel.h>
1777 
1778 #include <ddb/ddb.h>
1779 
1780 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1781 {
1782 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1783 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1784 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1785 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1786 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1787 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1788 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1789 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1790 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1791 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1792 }
1793 
1794 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1795 {
1796 	int i;
1797 	db_printf("PQ_FREE:");
1798 	for (i = 0; i < PQ_L2_SIZE; i++) {
1799 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1800 	}
1801 	db_printf("\n");
1802 
1803 	db_printf("PQ_CACHE:");
1804 	for (i = 0; i < PQ_L2_SIZE; i++) {
1805 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1806 	}
1807 	db_printf("\n");
1808 
1809 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1810 		vm_page_queues[PQ_ACTIVE].lcnt,
1811 		vm_page_queues[PQ_INACTIVE].lcnt);
1812 }
1813 #endif /* DDB */
1814