1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * The Mach Operating System project at Carnegie-Mellon University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 34 */ 35 36 /*- 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * GENERAL RULES ON VM_PAGE MANIPULATION 65 * 66 * - a pageq mutex is required when adding or removing a page from a 67 * page queue (vm_page_queue[]), regardless of other mutexes or the 68 * busy state of a page. 69 * 70 * - The object mutex is held when inserting or removing 71 * pages from an object (vm_page_insert() or vm_page_remove()). 72 * 73 */ 74 75 /* 76 * Resident memory management module. 77 */ 78 79 #include <sys/cdefs.h> 80 __FBSDID("$FreeBSD$"); 81 82 #include "opt_vm.h" 83 84 #include <sys/param.h> 85 #include <sys/systm.h> 86 #include <sys/lock.h> 87 #include <sys/kernel.h> 88 #include <sys/limits.h> 89 #include <sys/malloc.h> 90 #include <sys/msgbuf.h> 91 #include <sys/mutex.h> 92 #include <sys/proc.h> 93 #include <sys/sysctl.h> 94 #include <sys/vmmeter.h> 95 #include <sys/vnode.h> 96 97 #include <vm/vm.h> 98 #include <vm/pmap.h> 99 #include <vm/vm_param.h> 100 #include <vm/vm_kern.h> 101 #include <vm/vm_object.h> 102 #include <vm/vm_page.h> 103 #include <vm/vm_pageout.h> 104 #include <vm/vm_pager.h> 105 #include <vm/vm_phys.h> 106 #include <vm/vm_reserv.h> 107 #include <vm/vm_extern.h> 108 #include <vm/uma.h> 109 #include <vm/uma_int.h> 110 111 #include <machine/md_var.h> 112 113 /* 114 * Associated with page of user-allocatable memory is a 115 * page structure. 116 */ 117 118 struct vpgqueues vm_page_queues[PQ_COUNT]; 119 struct vpglocks vm_page_queue_lock; 120 struct vpglocks vm_page_queue_free_lock; 121 122 struct vpglocks pa_lock[PA_LOCK_COUNT]; 123 124 vm_page_t vm_page_array = 0; 125 int vm_page_array_size = 0; 126 long first_page = 0; 127 int vm_page_zero_count = 0; 128 129 static int boot_pages = UMA_BOOT_PAGES; 130 TUNABLE_INT("vm.boot_pages", &boot_pages); 131 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0, 132 "number of pages allocated for bootstrapping the VM system"); 133 134 static int pa_tryrelock_restart; 135 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD, 136 &pa_tryrelock_restart, 0, "Number of tryrelock restarts"); 137 138 static uma_zone_t fakepg_zone; 139 140 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 141 static void vm_page_queue_remove(int queue, vm_page_t m); 142 static void vm_page_enqueue(int queue, vm_page_t m); 143 static void vm_page_init_fakepg(void *dummy); 144 145 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL); 146 147 static void 148 vm_page_init_fakepg(void *dummy) 149 { 150 151 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 152 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 153 } 154 155 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 156 #if PAGE_SIZE == 32768 157 #ifdef CTASSERT 158 CTASSERT(sizeof(u_long) >= 8); 159 #endif 160 #endif 161 162 /* 163 * Try to acquire a physical address lock while a pmap is locked. If we 164 * fail to trylock we unlock and lock the pmap directly and cache the 165 * locked pa in *locked. The caller should then restart their loop in case 166 * the virtual to physical mapping has changed. 167 */ 168 int 169 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked) 170 { 171 vm_paddr_t lockpa; 172 173 lockpa = *locked; 174 *locked = pa; 175 if (lockpa) { 176 PA_LOCK_ASSERT(lockpa, MA_OWNED); 177 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa)) 178 return (0); 179 PA_UNLOCK(lockpa); 180 } 181 if (PA_TRYLOCK(pa)) 182 return (0); 183 PMAP_UNLOCK(pmap); 184 atomic_add_int(&pa_tryrelock_restart, 1); 185 PA_LOCK(pa); 186 PMAP_LOCK(pmap); 187 return (EAGAIN); 188 } 189 190 /* 191 * vm_set_page_size: 192 * 193 * Sets the page size, perhaps based upon the memory 194 * size. Must be called before any use of page-size 195 * dependent functions. 196 */ 197 void 198 vm_set_page_size(void) 199 { 200 if (cnt.v_page_size == 0) 201 cnt.v_page_size = PAGE_SIZE; 202 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 203 panic("vm_set_page_size: page size not a power of two"); 204 } 205 206 /* 207 * vm_page_blacklist_lookup: 208 * 209 * See if a physical address in this page has been listed 210 * in the blacklist tunable. Entries in the tunable are 211 * separated by spaces or commas. If an invalid integer is 212 * encountered then the rest of the string is skipped. 213 */ 214 static int 215 vm_page_blacklist_lookup(char *list, vm_paddr_t pa) 216 { 217 vm_paddr_t bad; 218 char *cp, *pos; 219 220 for (pos = list; *pos != '\0'; pos = cp) { 221 bad = strtoq(pos, &cp, 0); 222 if (*cp != '\0') { 223 if (*cp == ' ' || *cp == ',') { 224 cp++; 225 if (cp == pos) 226 continue; 227 } else 228 break; 229 } 230 if (pa == trunc_page(bad)) 231 return (1); 232 } 233 return (0); 234 } 235 236 /* 237 * vm_page_startup: 238 * 239 * Initializes the resident memory module. 240 * 241 * Allocates memory for the page cells, and 242 * for the object/offset-to-page hash table headers. 243 * Each page cell is initialized and placed on the free list. 244 */ 245 vm_offset_t 246 vm_page_startup(vm_offset_t vaddr) 247 { 248 vm_offset_t mapped; 249 vm_paddr_t page_range; 250 vm_paddr_t new_end; 251 int i; 252 vm_paddr_t pa; 253 vm_paddr_t last_pa; 254 char *list; 255 256 /* the biggest memory array is the second group of pages */ 257 vm_paddr_t end; 258 vm_paddr_t biggestsize; 259 vm_paddr_t low_water, high_water; 260 int biggestone; 261 262 biggestsize = 0; 263 biggestone = 0; 264 vaddr = round_page(vaddr); 265 266 for (i = 0; phys_avail[i + 1]; i += 2) { 267 phys_avail[i] = round_page(phys_avail[i]); 268 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 269 } 270 271 low_water = phys_avail[0]; 272 high_water = phys_avail[1]; 273 274 for (i = 0; phys_avail[i + 1]; i += 2) { 275 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 276 277 if (size > biggestsize) { 278 biggestone = i; 279 biggestsize = size; 280 } 281 if (phys_avail[i] < low_water) 282 low_water = phys_avail[i]; 283 if (phys_avail[i + 1] > high_water) 284 high_water = phys_avail[i + 1]; 285 } 286 287 #ifdef XEN 288 low_water = 0; 289 #endif 290 291 end = phys_avail[biggestone+1]; 292 293 /* 294 * Initialize the locks. 295 */ 296 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF | 297 MTX_RECURSE); 298 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 299 MTX_DEF); 300 301 /* Setup page locks. */ 302 for (i = 0; i < PA_LOCK_COUNT; i++) 303 mtx_init(&pa_lock[i].data, "page lock", NULL, MTX_DEF); 304 305 /* 306 * Initialize the queue headers for the hold queue, the active queue, 307 * and the inactive queue. 308 */ 309 for (i = 0; i < PQ_COUNT; i++) 310 TAILQ_INIT(&vm_page_queues[i].pl); 311 vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count; 312 vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count; 313 vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count; 314 315 /* 316 * Allocate memory for use when boot strapping the kernel memory 317 * allocator. 318 */ 319 new_end = end - (boot_pages * UMA_SLAB_SIZE); 320 new_end = trunc_page(new_end); 321 mapped = pmap_map(&vaddr, new_end, end, 322 VM_PROT_READ | VM_PROT_WRITE); 323 bzero((void *)mapped, end - new_end); 324 uma_startup((void *)mapped, boot_pages); 325 326 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \ 327 defined(__mips__) 328 /* 329 * Allocate a bitmap to indicate that a random physical page 330 * needs to be included in a minidump. 331 * 332 * The amd64 port needs this to indicate which direct map pages 333 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 334 * 335 * However, i386 still needs this workspace internally within the 336 * minidump code. In theory, they are not needed on i386, but are 337 * included should the sf_buf code decide to use them. 338 */ 339 last_pa = 0; 340 for (i = 0; dump_avail[i + 1] != 0; i += 2) 341 if (dump_avail[i + 1] > last_pa) 342 last_pa = dump_avail[i + 1]; 343 page_range = last_pa / PAGE_SIZE; 344 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 345 new_end -= vm_page_dump_size; 346 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 347 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 348 bzero((void *)vm_page_dump, vm_page_dump_size); 349 #endif 350 #ifdef __amd64__ 351 /* 352 * Request that the physical pages underlying the message buffer be 353 * included in a crash dump. Since the message buffer is accessed 354 * through the direct map, they are not automatically included. 355 */ 356 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 357 last_pa = pa + round_page(msgbufsize); 358 while (pa < last_pa) { 359 dump_add_page(pa); 360 pa += PAGE_SIZE; 361 } 362 #endif 363 /* 364 * Compute the number of pages of memory that will be available for 365 * use (taking into account the overhead of a page structure per 366 * page). 367 */ 368 first_page = low_water / PAGE_SIZE; 369 #ifdef VM_PHYSSEG_SPARSE 370 page_range = 0; 371 for (i = 0; phys_avail[i + 1] != 0; i += 2) 372 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 373 #elif defined(VM_PHYSSEG_DENSE) 374 page_range = high_water / PAGE_SIZE - first_page; 375 #else 376 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 377 #endif 378 end = new_end; 379 380 /* 381 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 382 */ 383 vaddr += PAGE_SIZE; 384 385 /* 386 * Initialize the mem entry structures now, and put them in the free 387 * queue. 388 */ 389 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 390 mapped = pmap_map(&vaddr, new_end, end, 391 VM_PROT_READ | VM_PROT_WRITE); 392 vm_page_array = (vm_page_t) mapped; 393 #if VM_NRESERVLEVEL > 0 394 /* 395 * Allocate memory for the reservation management system's data 396 * structures. 397 */ 398 new_end = vm_reserv_startup(&vaddr, new_end, high_water); 399 #endif 400 #if defined(__amd64__) || defined(__mips__) 401 /* 402 * pmap_map on amd64 and mips can come out of the direct-map, not kvm 403 * like i386, so the pages must be tracked for a crashdump to include 404 * this data. This includes the vm_page_array and the early UMA 405 * bootstrap pages. 406 */ 407 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 408 dump_add_page(pa); 409 #endif 410 phys_avail[biggestone + 1] = new_end; 411 412 /* 413 * Clear all of the page structures 414 */ 415 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 416 for (i = 0; i < page_range; i++) 417 vm_page_array[i].order = VM_NFREEORDER; 418 vm_page_array_size = page_range; 419 420 /* 421 * Initialize the physical memory allocator. 422 */ 423 vm_phys_init(); 424 425 /* 426 * Add every available physical page that is not blacklisted to 427 * the free lists. 428 */ 429 cnt.v_page_count = 0; 430 cnt.v_free_count = 0; 431 list = getenv("vm.blacklist"); 432 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 433 pa = phys_avail[i]; 434 last_pa = phys_avail[i + 1]; 435 while (pa < last_pa) { 436 if (list != NULL && 437 vm_page_blacklist_lookup(list, pa)) 438 printf("Skipping page with pa 0x%jx\n", 439 (uintmax_t)pa); 440 else 441 vm_phys_add_page(pa); 442 pa += PAGE_SIZE; 443 } 444 } 445 freeenv(list); 446 #if VM_NRESERVLEVEL > 0 447 /* 448 * Initialize the reservation management system. 449 */ 450 vm_reserv_init(); 451 #endif 452 return (vaddr); 453 } 454 455 456 CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0); 457 458 void 459 vm_page_aflag_set(vm_page_t m, uint8_t bits) 460 { 461 uint32_t *addr, val; 462 463 /* 464 * The PGA_WRITEABLE flag can only be set if the page is managed and 465 * VPO_BUSY. Currently, this flag is only set by pmap_enter(). 466 */ 467 KASSERT((bits & PGA_WRITEABLE) == 0 || 468 (m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == VPO_BUSY, 469 ("PGA_WRITEABLE and !VPO_BUSY")); 470 471 /* 472 * We want to use atomic updates for m->aflags, which is a 473 * byte wide. Not all architectures provide atomic operations 474 * on the single-byte destination. Punt and access the whole 475 * 4-byte word with an atomic update. Parallel non-atomic 476 * updates to the fields included in the update by proximity 477 * are handled properly by atomics. 478 */ 479 addr = (void *)&m->aflags; 480 MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0); 481 val = bits; 482 #if BYTE_ORDER == BIG_ENDIAN 483 val <<= 24; 484 #endif 485 atomic_set_32(addr, val); 486 } 487 488 void 489 vm_page_aflag_clear(vm_page_t m, uint8_t bits) 490 { 491 uint32_t *addr, val; 492 493 /* 494 * The PGA_REFERENCED flag can only be cleared if the object 495 * containing the page is locked. 496 */ 497 KASSERT((bits & PGA_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object), 498 ("PGA_REFERENCED and !VM_OBJECT_LOCKED")); 499 500 /* 501 * See the comment in vm_page_aflag_set(). 502 */ 503 addr = (void *)&m->aflags; 504 MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0); 505 val = bits; 506 #if BYTE_ORDER == BIG_ENDIAN 507 val <<= 24; 508 #endif 509 atomic_clear_32(addr, val); 510 } 511 512 void 513 vm_page_reference(vm_page_t m) 514 { 515 516 vm_page_aflag_set(m, PGA_REFERENCED); 517 } 518 519 void 520 vm_page_busy(vm_page_t m) 521 { 522 523 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 524 KASSERT((m->oflags & VPO_BUSY) == 0, 525 ("vm_page_busy: page already busy!!!")); 526 m->oflags |= VPO_BUSY; 527 } 528 529 /* 530 * vm_page_flash: 531 * 532 * wakeup anyone waiting for the page. 533 */ 534 void 535 vm_page_flash(vm_page_t m) 536 { 537 538 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 539 if (m->oflags & VPO_WANTED) { 540 m->oflags &= ~VPO_WANTED; 541 wakeup(m); 542 } 543 } 544 545 /* 546 * vm_page_wakeup: 547 * 548 * clear the VPO_BUSY flag and wakeup anyone waiting for the 549 * page. 550 * 551 */ 552 void 553 vm_page_wakeup(vm_page_t m) 554 { 555 556 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 557 KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!")); 558 m->oflags &= ~VPO_BUSY; 559 vm_page_flash(m); 560 } 561 562 void 563 vm_page_io_start(vm_page_t m) 564 { 565 566 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 567 m->busy++; 568 } 569 570 void 571 vm_page_io_finish(vm_page_t m) 572 { 573 574 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 575 KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m)); 576 m->busy--; 577 if (m->busy == 0) 578 vm_page_flash(m); 579 } 580 581 /* 582 * Keep page from being freed by the page daemon 583 * much of the same effect as wiring, except much lower 584 * overhead and should be used only for *very* temporary 585 * holding ("wiring"). 586 */ 587 void 588 vm_page_hold(vm_page_t mem) 589 { 590 591 vm_page_lock_assert(mem, MA_OWNED); 592 mem->hold_count++; 593 } 594 595 void 596 vm_page_unhold(vm_page_t mem) 597 { 598 599 vm_page_lock_assert(mem, MA_OWNED); 600 --mem->hold_count; 601 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 602 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) 603 vm_page_free_toq(mem); 604 } 605 606 /* 607 * vm_page_unhold_pages: 608 * 609 * Unhold each of the pages that is referenced by the given array. 610 */ 611 void 612 vm_page_unhold_pages(vm_page_t *ma, int count) 613 { 614 struct mtx *mtx, *new_mtx; 615 616 mtx = NULL; 617 for (; count != 0; count--) { 618 /* 619 * Avoid releasing and reacquiring the same page lock. 620 */ 621 new_mtx = vm_page_lockptr(*ma); 622 if (mtx != new_mtx) { 623 if (mtx != NULL) 624 mtx_unlock(mtx); 625 mtx = new_mtx; 626 mtx_lock(mtx); 627 } 628 vm_page_unhold(*ma); 629 ma++; 630 } 631 if (mtx != NULL) 632 mtx_unlock(mtx); 633 } 634 635 /* 636 * vm_page_getfake: 637 * 638 * Create a fictitious page with the specified physical address and 639 * memory attribute. The memory attribute is the only the machine- 640 * dependent aspect of a fictitious page that must be initialized. 641 */ 642 vm_page_t 643 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 644 { 645 vm_page_t m; 646 647 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 648 m->phys_addr = paddr; 649 m->queue = PQ_NONE; 650 /* Fictitious pages don't use "segind". */ 651 m->flags = PG_FICTITIOUS; 652 /* Fictitious pages don't use "order" or "pool". */ 653 m->oflags = VPO_BUSY | VPO_UNMANAGED; 654 m->wire_count = 1; 655 pmap_page_set_memattr(m, memattr); 656 return (m); 657 } 658 659 /* 660 * vm_page_putfake: 661 * 662 * Release a fictitious page. 663 */ 664 void 665 vm_page_putfake(vm_page_t m) 666 { 667 668 KASSERT((m->flags & PG_FICTITIOUS) != 0, 669 ("vm_page_putfake: bad page %p", m)); 670 uma_zfree(fakepg_zone, m); 671 } 672 673 /* 674 * vm_page_updatefake: 675 * 676 * Update the given fictitious page to the specified physical address and 677 * memory attribute. 678 */ 679 void 680 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 681 { 682 683 KASSERT((m->flags & PG_FICTITIOUS) != 0, 684 ("vm_page_updatefake: bad page %p", m)); 685 m->phys_addr = paddr; 686 pmap_page_set_memattr(m, memattr); 687 } 688 689 /* 690 * vm_page_free: 691 * 692 * Free a page. 693 */ 694 void 695 vm_page_free(vm_page_t m) 696 { 697 698 m->flags &= ~PG_ZERO; 699 vm_page_free_toq(m); 700 } 701 702 /* 703 * vm_page_free_zero: 704 * 705 * Free a page to the zerod-pages queue 706 */ 707 void 708 vm_page_free_zero(vm_page_t m) 709 { 710 711 m->flags |= PG_ZERO; 712 vm_page_free_toq(m); 713 } 714 715 /* 716 * vm_page_sleep: 717 * 718 * Sleep and release the page and page queues locks. 719 * 720 * The object containing the given page must be locked. 721 */ 722 void 723 vm_page_sleep(vm_page_t m, const char *msg) 724 { 725 726 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 727 if (mtx_owned(&vm_page_queue_mtx)) 728 vm_page_unlock_queues(); 729 if (mtx_owned(vm_page_lockptr(m))) 730 vm_page_unlock(m); 731 732 /* 733 * It's possible that while we sleep, the page will get 734 * unbusied and freed. If we are holding the object 735 * lock, we will assume we hold a reference to the object 736 * such that even if m->object changes, we can re-lock 737 * it. 738 */ 739 m->oflags |= VPO_WANTED; 740 msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0); 741 } 742 743 /* 744 * vm_page_dirty: 745 * 746 * Set all bits in the page's dirty field. 747 * 748 * The object containing the specified page must be locked if the 749 * call is made from the machine-independent layer. 750 * 751 * See vm_page_clear_dirty_mask(). 752 */ 753 void 754 vm_page_dirty(vm_page_t m) 755 { 756 757 KASSERT((m->flags & PG_CACHED) == 0, 758 ("vm_page_dirty: page in cache!")); 759 KASSERT(!VM_PAGE_IS_FREE(m), 760 ("vm_page_dirty: page is free!")); 761 KASSERT(m->valid == VM_PAGE_BITS_ALL, 762 ("vm_page_dirty: page is invalid!")); 763 m->dirty = VM_PAGE_BITS_ALL; 764 } 765 766 /* 767 * vm_page_splay: 768 * 769 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 770 * the vm_page containing the given pindex. If, however, that 771 * pindex is not found in the vm_object, returns a vm_page that is 772 * adjacent to the pindex, coming before or after it. 773 */ 774 vm_page_t 775 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 776 { 777 struct vm_page dummy; 778 vm_page_t lefttreemax, righttreemin, y; 779 780 if (root == NULL) 781 return (root); 782 lefttreemax = righttreemin = &dummy; 783 for (;; root = y) { 784 if (pindex < root->pindex) { 785 if ((y = root->left) == NULL) 786 break; 787 if (pindex < y->pindex) { 788 /* Rotate right. */ 789 root->left = y->right; 790 y->right = root; 791 root = y; 792 if ((y = root->left) == NULL) 793 break; 794 } 795 /* Link into the new root's right tree. */ 796 righttreemin->left = root; 797 righttreemin = root; 798 } else if (pindex > root->pindex) { 799 if ((y = root->right) == NULL) 800 break; 801 if (pindex > y->pindex) { 802 /* Rotate left. */ 803 root->right = y->left; 804 y->left = root; 805 root = y; 806 if ((y = root->right) == NULL) 807 break; 808 } 809 /* Link into the new root's left tree. */ 810 lefttreemax->right = root; 811 lefttreemax = root; 812 } else 813 break; 814 } 815 /* Assemble the new root. */ 816 lefttreemax->right = root->left; 817 righttreemin->left = root->right; 818 root->left = dummy.right; 819 root->right = dummy.left; 820 return (root); 821 } 822 823 /* 824 * vm_page_insert: [ internal use only ] 825 * 826 * Inserts the given mem entry into the object and object list. 827 * 828 * The pagetables are not updated but will presumably fault the page 829 * in if necessary, or if a kernel page the caller will at some point 830 * enter the page into the kernel's pmap. We are not allowed to block 831 * here so we *can't* do this anyway. 832 * 833 * The object and page must be locked. 834 * This routine may not block. 835 */ 836 void 837 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 838 { 839 vm_page_t root; 840 841 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 842 if (m->object != NULL) 843 panic("vm_page_insert: page already inserted"); 844 845 /* 846 * Record the object/offset pair in this page 847 */ 848 m->object = object; 849 m->pindex = pindex; 850 851 /* 852 * Now link into the object's ordered list of backed pages. 853 */ 854 root = object->root; 855 if (root == NULL) { 856 m->left = NULL; 857 m->right = NULL; 858 TAILQ_INSERT_TAIL(&object->memq, m, listq); 859 } else { 860 root = vm_page_splay(pindex, root); 861 if (pindex < root->pindex) { 862 m->left = root->left; 863 m->right = root; 864 root->left = NULL; 865 TAILQ_INSERT_BEFORE(root, m, listq); 866 } else if (pindex == root->pindex) 867 panic("vm_page_insert: offset already allocated"); 868 else { 869 m->right = root->right; 870 m->left = root; 871 root->right = NULL; 872 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 873 } 874 } 875 object->root = m; 876 877 /* 878 * show that the object has one more resident page. 879 */ 880 object->resident_page_count++; 881 /* 882 * Hold the vnode until the last page is released. 883 */ 884 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 885 vhold((struct vnode *)object->handle); 886 887 /* 888 * Since we are inserting a new and possibly dirty page, 889 * update the object's OBJ_MIGHTBEDIRTY flag. 890 */ 891 if (m->aflags & PGA_WRITEABLE) 892 vm_object_set_writeable_dirty(object); 893 } 894 895 /* 896 * vm_page_remove: 897 * NOTE: used by device pager as well -wfj 898 * 899 * Removes the given mem entry from the object/offset-page 900 * table and the object page list, but do not invalidate/terminate 901 * the backing store. 902 * 903 * The object and page must be locked. 904 * The underlying pmap entry (if any) is NOT removed here. 905 * This routine may not block. 906 */ 907 void 908 vm_page_remove(vm_page_t m) 909 { 910 vm_object_t object; 911 vm_page_t next, prev, root; 912 913 if ((m->oflags & VPO_UNMANAGED) == 0) 914 vm_page_lock_assert(m, MA_OWNED); 915 if ((object = m->object) == NULL) 916 return; 917 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 918 if (m->oflags & VPO_BUSY) { 919 m->oflags &= ~VPO_BUSY; 920 vm_page_flash(m); 921 } 922 923 /* 924 * Now remove from the object's list of backed pages. 925 */ 926 if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) { 927 /* 928 * Since the page's successor in the list is also its parent 929 * in the tree, its right subtree must be empty. 930 */ 931 next->left = m->left; 932 KASSERT(m->right == NULL, 933 ("vm_page_remove: page %p has right child", m)); 934 } else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL && 935 prev->right == m) { 936 /* 937 * Since the page's predecessor in the list is also its parent 938 * in the tree, its left subtree must be empty. 939 */ 940 KASSERT(m->left == NULL, 941 ("vm_page_remove: page %p has left child", m)); 942 prev->right = m->right; 943 } else { 944 if (m != object->root) 945 vm_page_splay(m->pindex, object->root); 946 if (m->left == NULL) 947 root = m->right; 948 else if (m->right == NULL) 949 root = m->left; 950 else { 951 /* 952 * Move the page's successor to the root, because 953 * pages are usually removed in ascending order. 954 */ 955 if (m->right != next) 956 vm_page_splay(m->pindex, m->right); 957 next->left = m->left; 958 root = next; 959 } 960 object->root = root; 961 } 962 TAILQ_REMOVE(&object->memq, m, listq); 963 964 /* 965 * And show that the object has one fewer resident page. 966 */ 967 object->resident_page_count--; 968 /* 969 * The vnode may now be recycled. 970 */ 971 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 972 vdrop((struct vnode *)object->handle); 973 974 m->object = NULL; 975 } 976 977 /* 978 * vm_page_lookup: 979 * 980 * Returns the page associated with the object/offset 981 * pair specified; if none is found, NULL is returned. 982 * 983 * The object must be locked. 984 * This routine may not block. 985 * This is a critical path routine 986 */ 987 vm_page_t 988 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 989 { 990 vm_page_t m; 991 992 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 993 if ((m = object->root) != NULL && m->pindex != pindex) { 994 m = vm_page_splay(pindex, m); 995 if ((object->root = m)->pindex != pindex) 996 m = NULL; 997 } 998 return (m); 999 } 1000 1001 /* 1002 * vm_page_find_least: 1003 * 1004 * Returns the page associated with the object with least pindex 1005 * greater than or equal to the parameter pindex, or NULL. 1006 * 1007 * The object must be locked. 1008 * The routine may not block. 1009 */ 1010 vm_page_t 1011 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1012 { 1013 vm_page_t m; 1014 1015 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1016 if ((m = TAILQ_FIRST(&object->memq)) != NULL) { 1017 if (m->pindex < pindex) { 1018 m = vm_page_splay(pindex, object->root); 1019 if ((object->root = m)->pindex < pindex) 1020 m = TAILQ_NEXT(m, listq); 1021 } 1022 } 1023 return (m); 1024 } 1025 1026 /* 1027 * Returns the given page's successor (by pindex) within the object if it is 1028 * resident; if none is found, NULL is returned. 1029 * 1030 * The object must be locked. 1031 */ 1032 vm_page_t 1033 vm_page_next(vm_page_t m) 1034 { 1035 vm_page_t next; 1036 1037 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1038 if ((next = TAILQ_NEXT(m, listq)) != NULL && 1039 next->pindex != m->pindex + 1) 1040 next = NULL; 1041 return (next); 1042 } 1043 1044 /* 1045 * Returns the given page's predecessor (by pindex) within the object if it is 1046 * resident; if none is found, NULL is returned. 1047 * 1048 * The object must be locked. 1049 */ 1050 vm_page_t 1051 vm_page_prev(vm_page_t m) 1052 { 1053 vm_page_t prev; 1054 1055 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1056 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL && 1057 prev->pindex != m->pindex - 1) 1058 prev = NULL; 1059 return (prev); 1060 } 1061 1062 /* 1063 * vm_page_rename: 1064 * 1065 * Move the given memory entry from its 1066 * current object to the specified target object/offset. 1067 * 1068 * The object must be locked. 1069 * This routine may not block. 1070 * 1071 * Note: swap associated with the page must be invalidated by the move. We 1072 * have to do this for several reasons: (1) we aren't freeing the 1073 * page, (2) we are dirtying the page, (3) the VM system is probably 1074 * moving the page from object A to B, and will then later move 1075 * the backing store from A to B and we can't have a conflict. 1076 * 1077 * Note: we *always* dirty the page. It is necessary both for the 1078 * fact that we moved it, and because we may be invalidating 1079 * swap. If the page is on the cache, we have to deactivate it 1080 * or vm_page_dirty() will panic. Dirty pages are not allowed 1081 * on the cache. 1082 */ 1083 void 1084 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1085 { 1086 1087 vm_page_remove(m); 1088 vm_page_insert(m, new_object, new_pindex); 1089 vm_page_dirty(m); 1090 } 1091 1092 /* 1093 * Convert all of the given object's cached pages that have a 1094 * pindex within the given range into free pages. If the value 1095 * zero is given for "end", then the range's upper bound is 1096 * infinity. If the given object is backed by a vnode and it 1097 * transitions from having one or more cached pages to none, the 1098 * vnode's hold count is reduced. 1099 */ 1100 void 1101 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1102 { 1103 vm_page_t m, m_next; 1104 boolean_t empty; 1105 1106 mtx_lock(&vm_page_queue_free_mtx); 1107 if (__predict_false(object->cache == NULL)) { 1108 mtx_unlock(&vm_page_queue_free_mtx); 1109 return; 1110 } 1111 m = object->cache = vm_page_splay(start, object->cache); 1112 if (m->pindex < start) { 1113 if (m->right == NULL) 1114 m = NULL; 1115 else { 1116 m_next = vm_page_splay(start, m->right); 1117 m_next->left = m; 1118 m->right = NULL; 1119 m = object->cache = m_next; 1120 } 1121 } 1122 1123 /* 1124 * At this point, "m" is either (1) a reference to the page 1125 * with the least pindex that is greater than or equal to 1126 * "start" or (2) NULL. 1127 */ 1128 for (; m != NULL && (m->pindex < end || end == 0); m = m_next) { 1129 /* 1130 * Find "m"'s successor and remove "m" from the 1131 * object's cache. 1132 */ 1133 if (m->right == NULL) { 1134 object->cache = m->left; 1135 m_next = NULL; 1136 } else { 1137 m_next = vm_page_splay(start, m->right); 1138 m_next->left = m->left; 1139 object->cache = m_next; 1140 } 1141 /* Convert "m" to a free page. */ 1142 m->object = NULL; 1143 m->valid = 0; 1144 /* Clear PG_CACHED and set PG_FREE. */ 1145 m->flags ^= PG_CACHED | PG_FREE; 1146 KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE, 1147 ("vm_page_cache_free: page %p has inconsistent flags", m)); 1148 cnt.v_cache_count--; 1149 cnt.v_free_count++; 1150 } 1151 empty = object->cache == NULL; 1152 mtx_unlock(&vm_page_queue_free_mtx); 1153 if (object->type == OBJT_VNODE && empty) 1154 vdrop(object->handle); 1155 } 1156 1157 /* 1158 * Returns the cached page that is associated with the given 1159 * object and offset. If, however, none exists, returns NULL. 1160 * 1161 * The free page queue must be locked. 1162 */ 1163 static inline vm_page_t 1164 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex) 1165 { 1166 vm_page_t m; 1167 1168 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1169 if ((m = object->cache) != NULL && m->pindex != pindex) { 1170 m = vm_page_splay(pindex, m); 1171 if ((object->cache = m)->pindex != pindex) 1172 m = NULL; 1173 } 1174 return (m); 1175 } 1176 1177 /* 1178 * Remove the given cached page from its containing object's 1179 * collection of cached pages. 1180 * 1181 * The free page queue must be locked. 1182 */ 1183 void 1184 vm_page_cache_remove(vm_page_t m) 1185 { 1186 vm_object_t object; 1187 vm_page_t root; 1188 1189 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1190 KASSERT((m->flags & PG_CACHED) != 0, 1191 ("vm_page_cache_remove: page %p is not cached", m)); 1192 object = m->object; 1193 if (m != object->cache) { 1194 root = vm_page_splay(m->pindex, object->cache); 1195 KASSERT(root == m, 1196 ("vm_page_cache_remove: page %p is not cached in object %p", 1197 m, object)); 1198 } 1199 if (m->left == NULL) 1200 root = m->right; 1201 else if (m->right == NULL) 1202 root = m->left; 1203 else { 1204 root = vm_page_splay(m->pindex, m->left); 1205 root->right = m->right; 1206 } 1207 object->cache = root; 1208 m->object = NULL; 1209 cnt.v_cache_count--; 1210 } 1211 1212 /* 1213 * Transfer all of the cached pages with offset greater than or 1214 * equal to 'offidxstart' from the original object's cache to the 1215 * new object's cache. However, any cached pages with offset 1216 * greater than or equal to the new object's size are kept in the 1217 * original object. Initially, the new object's cache must be 1218 * empty. Offset 'offidxstart' in the original object must 1219 * correspond to offset zero in the new object. 1220 * 1221 * The new object must be locked. 1222 */ 1223 void 1224 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart, 1225 vm_object_t new_object) 1226 { 1227 vm_page_t m, m_next; 1228 1229 /* 1230 * Insertion into an object's collection of cached pages 1231 * requires the object to be locked. In contrast, removal does 1232 * not. 1233 */ 1234 VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED); 1235 KASSERT(new_object->cache == NULL, 1236 ("vm_page_cache_transfer: object %p has cached pages", 1237 new_object)); 1238 mtx_lock(&vm_page_queue_free_mtx); 1239 if ((m = orig_object->cache) != NULL) { 1240 /* 1241 * Transfer all of the pages with offset greater than or 1242 * equal to 'offidxstart' from the original object's 1243 * cache to the new object's cache. 1244 */ 1245 m = vm_page_splay(offidxstart, m); 1246 if (m->pindex < offidxstart) { 1247 orig_object->cache = m; 1248 new_object->cache = m->right; 1249 m->right = NULL; 1250 } else { 1251 orig_object->cache = m->left; 1252 new_object->cache = m; 1253 m->left = NULL; 1254 } 1255 while ((m = new_object->cache) != NULL) { 1256 if ((m->pindex - offidxstart) >= new_object->size) { 1257 /* 1258 * Return all of the cached pages with 1259 * offset greater than or equal to the 1260 * new object's size to the original 1261 * object's cache. 1262 */ 1263 new_object->cache = m->left; 1264 m->left = orig_object->cache; 1265 orig_object->cache = m; 1266 break; 1267 } 1268 m_next = vm_page_splay(m->pindex, m->right); 1269 /* Update the page's object and offset. */ 1270 m->object = new_object; 1271 m->pindex -= offidxstart; 1272 if (m_next == NULL) 1273 break; 1274 m->right = NULL; 1275 m_next->left = m; 1276 new_object->cache = m_next; 1277 } 1278 KASSERT(new_object->cache == NULL || 1279 new_object->type == OBJT_SWAP, 1280 ("vm_page_cache_transfer: object %p's type is incompatible" 1281 " with cached pages", new_object)); 1282 } 1283 mtx_unlock(&vm_page_queue_free_mtx); 1284 } 1285 1286 /* 1287 * vm_page_alloc: 1288 * 1289 * Allocate and return a page that is associated with the specified 1290 * object and offset pair. By default, this page has the flag VPO_BUSY 1291 * set. 1292 * 1293 * The caller must always specify an allocation class. 1294 * 1295 * allocation classes: 1296 * VM_ALLOC_NORMAL normal process request 1297 * VM_ALLOC_SYSTEM system *really* needs a page 1298 * VM_ALLOC_INTERRUPT interrupt time request 1299 * 1300 * optional allocation flags: 1301 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1302 * intends to allocate 1303 * VM_ALLOC_IFCACHED return page only if it is cached 1304 * VM_ALLOC_IFNOTCACHED return NULL, do not reactivate if the page 1305 * is cached 1306 * VM_ALLOC_NOBUSY do not set the flag VPO_BUSY on the page 1307 * VM_ALLOC_NOOBJ page is not associated with an object and 1308 * should not have the flag VPO_BUSY set 1309 * VM_ALLOC_WIRED wire the allocated page 1310 * VM_ALLOC_ZERO prefer a zeroed page 1311 * 1312 * This routine may not sleep. 1313 */ 1314 vm_page_t 1315 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1316 { 1317 struct vnode *vp = NULL; 1318 vm_object_t m_object; 1319 vm_page_t m; 1320 int flags, req_class; 1321 1322 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0), 1323 ("vm_page_alloc: inconsistent object/req")); 1324 if (object != NULL) 1325 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1326 1327 req_class = req & VM_ALLOC_CLASS_MASK; 1328 1329 /* 1330 * The page daemon is allowed to dig deeper into the free page list. 1331 */ 1332 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1333 req_class = VM_ALLOC_SYSTEM; 1334 1335 mtx_lock(&vm_page_queue_free_mtx); 1336 if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved || 1337 (req_class == VM_ALLOC_SYSTEM && 1338 cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) || 1339 (req_class == VM_ALLOC_INTERRUPT && 1340 cnt.v_free_count + cnt.v_cache_count > 0)) { 1341 /* 1342 * Allocate from the free queue if the number of free pages 1343 * exceeds the minimum for the request class. 1344 */ 1345 if (object != NULL && 1346 (m = vm_page_cache_lookup(object, pindex)) != NULL) { 1347 if ((req & VM_ALLOC_IFNOTCACHED) != 0) { 1348 mtx_unlock(&vm_page_queue_free_mtx); 1349 return (NULL); 1350 } 1351 if (vm_phys_unfree_page(m)) 1352 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0); 1353 #if VM_NRESERVLEVEL > 0 1354 else if (!vm_reserv_reactivate_page(m)) 1355 #else 1356 else 1357 #endif 1358 panic("vm_page_alloc: cache page %p is missing" 1359 " from the free queue", m); 1360 } else if ((req & VM_ALLOC_IFCACHED) != 0) { 1361 mtx_unlock(&vm_page_queue_free_mtx); 1362 return (NULL); 1363 #if VM_NRESERVLEVEL > 0 1364 } else if (object == NULL || object->type == OBJT_DEVICE || 1365 object->type == OBJT_SG || 1366 (object->flags & OBJ_COLORED) == 0 || 1367 (m = vm_reserv_alloc_page(object, pindex)) == NULL) { 1368 #else 1369 } else { 1370 #endif 1371 m = vm_phys_alloc_pages(object != NULL ? 1372 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 1373 #if VM_NRESERVLEVEL > 0 1374 if (m == NULL && vm_reserv_reclaim_inactive()) { 1375 m = vm_phys_alloc_pages(object != NULL ? 1376 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 1377 0); 1378 } 1379 #endif 1380 } 1381 } else { 1382 /* 1383 * Not allocatable, give up. 1384 */ 1385 mtx_unlock(&vm_page_queue_free_mtx); 1386 atomic_add_int(&vm_pageout_deficit, 1387 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 1388 pagedaemon_wakeup(); 1389 return (NULL); 1390 } 1391 1392 /* 1393 * At this point we had better have found a good page. 1394 */ 1395 KASSERT(m != NULL, ("vm_page_alloc: missing page")); 1396 KASSERT(m->queue == PQ_NONE, 1397 ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue)); 1398 KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m)); 1399 KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m)); 1400 KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m)); 1401 KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m)); 1402 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1403 ("vm_page_alloc: page %p has unexpected memattr %d", m, 1404 pmap_page_get_memattr(m))); 1405 if ((m->flags & PG_CACHED) != 0) { 1406 KASSERT((m->flags & PG_ZERO) == 0, 1407 ("vm_page_alloc: cached page %p is PG_ZERO", m)); 1408 KASSERT(m->valid != 0, 1409 ("vm_page_alloc: cached page %p is invalid", m)); 1410 if (m->object == object && m->pindex == pindex) 1411 cnt.v_reactivated++; 1412 else 1413 m->valid = 0; 1414 m_object = m->object; 1415 vm_page_cache_remove(m); 1416 if (m_object->type == OBJT_VNODE && m_object->cache == NULL) 1417 vp = m_object->handle; 1418 } else { 1419 KASSERT(VM_PAGE_IS_FREE(m), 1420 ("vm_page_alloc: page %p is not free", m)); 1421 KASSERT(m->valid == 0, 1422 ("vm_page_alloc: free page %p is valid", m)); 1423 cnt.v_free_count--; 1424 } 1425 1426 /* 1427 * Only the PG_ZERO flag is inherited. The PG_CACHED or PG_FREE flag 1428 * must be cleared before the free page queues lock is released. 1429 */ 1430 flags = 0; 1431 if (m->flags & PG_ZERO) { 1432 vm_page_zero_count--; 1433 if (req & VM_ALLOC_ZERO) 1434 flags = PG_ZERO; 1435 } 1436 m->flags = flags; 1437 mtx_unlock(&vm_page_queue_free_mtx); 1438 m->aflags = 0; 1439 if (object == NULL || object->type == OBJT_PHYS) 1440 m->oflags = VPO_UNMANAGED; 1441 else 1442 m->oflags = 0; 1443 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0) 1444 m->oflags |= VPO_BUSY; 1445 if (req & VM_ALLOC_WIRED) { 1446 /* 1447 * The page lock is not required for wiring a page until that 1448 * page is inserted into the object. 1449 */ 1450 atomic_add_int(&cnt.v_wire_count, 1); 1451 m->wire_count = 1; 1452 } 1453 m->act_count = 0; 1454 1455 if (object != NULL) { 1456 /* Ignore device objects; the pager sets "memattr" for them. */ 1457 if (object->memattr != VM_MEMATTR_DEFAULT && 1458 object->type != OBJT_DEVICE && object->type != OBJT_SG) 1459 pmap_page_set_memattr(m, object->memattr); 1460 vm_page_insert(m, object, pindex); 1461 } else 1462 m->pindex = pindex; 1463 1464 /* 1465 * The following call to vdrop() must come after the above call 1466 * to vm_page_insert() in case both affect the same object and 1467 * vnode. Otherwise, the affected vnode's hold count could 1468 * temporarily become zero. 1469 */ 1470 if (vp != NULL) 1471 vdrop(vp); 1472 1473 /* 1474 * Don't wakeup too often - wakeup the pageout daemon when 1475 * we would be nearly out of memory. 1476 */ 1477 if (vm_paging_needed()) 1478 pagedaemon_wakeup(); 1479 1480 return (m); 1481 } 1482 1483 /* 1484 * Initialize a page that has been freshly dequeued from a freelist. 1485 * The caller has to drop the vnode returned, if it is not NULL. 1486 * 1487 * This function may only be used to initialize unmanaged pages. 1488 * 1489 * To be called with vm_page_queue_free_mtx held. 1490 */ 1491 struct vnode * 1492 vm_page_alloc_init(vm_page_t m) 1493 { 1494 struct vnode *drop; 1495 vm_object_t m_object; 1496 1497 KASSERT(m->queue == PQ_NONE, 1498 ("vm_page_alloc_init: page %p has unexpected queue %d", 1499 m, m->queue)); 1500 KASSERT(m->wire_count == 0, 1501 ("vm_page_alloc_init: page %p is wired", m)); 1502 KASSERT(m->hold_count == 0, 1503 ("vm_page_alloc_init: page %p is held", m)); 1504 KASSERT(m->busy == 0, 1505 ("vm_page_alloc_init: page %p is busy", m)); 1506 KASSERT(m->dirty == 0, 1507 ("vm_page_alloc_init: page %p is dirty", m)); 1508 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1509 ("vm_page_alloc_init: page %p has unexpected memattr %d", 1510 m, pmap_page_get_memattr(m))); 1511 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1512 drop = NULL; 1513 if ((m->flags & PG_CACHED) != 0) { 1514 KASSERT((m->flags & PG_ZERO) == 0, 1515 ("vm_page_alloc_init: cached page %p is PG_ZERO", m)); 1516 m->valid = 0; 1517 m_object = m->object; 1518 vm_page_cache_remove(m); 1519 if (m_object->type == OBJT_VNODE && m_object->cache == NULL) 1520 drop = m_object->handle; 1521 } else { 1522 KASSERT(VM_PAGE_IS_FREE(m), 1523 ("vm_page_alloc_init: page %p is not free", m)); 1524 KASSERT(m->valid == 0, 1525 ("vm_page_alloc_init: free page %p is valid", m)); 1526 cnt.v_free_count--; 1527 if ((m->flags & PG_ZERO) != 0) 1528 vm_page_zero_count--; 1529 } 1530 /* Don't clear the PG_ZERO flag; we'll need it later. */ 1531 m->flags &= PG_ZERO; 1532 m->aflags = 0; 1533 m->oflags = VPO_UNMANAGED; 1534 /* Unmanaged pages don't use "act_count". */ 1535 return (drop); 1536 } 1537 1538 /* 1539 * vm_page_alloc_freelist: 1540 * 1541 * Allocate a physical page from the specified free page list. 1542 * 1543 * The caller must always specify an allocation class. 1544 * 1545 * allocation classes: 1546 * VM_ALLOC_NORMAL normal process request 1547 * VM_ALLOC_SYSTEM system *really* needs a page 1548 * VM_ALLOC_INTERRUPT interrupt time request 1549 * 1550 * optional allocation flags: 1551 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1552 * intends to allocate 1553 * VM_ALLOC_WIRED wire the allocated page 1554 * VM_ALLOC_ZERO prefer a zeroed page 1555 * 1556 * This routine may not sleep. 1557 */ 1558 vm_page_t 1559 vm_page_alloc_freelist(int flind, int req) 1560 { 1561 struct vnode *drop; 1562 vm_page_t m; 1563 u_int flags; 1564 int req_class; 1565 1566 req_class = req & VM_ALLOC_CLASS_MASK; 1567 1568 /* 1569 * The page daemon is allowed to dig deeper into the free page list. 1570 */ 1571 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1572 req_class = VM_ALLOC_SYSTEM; 1573 1574 /* 1575 * Do not allocate reserved pages unless the req has asked for it. 1576 */ 1577 mtx_lock(&vm_page_queue_free_mtx); 1578 if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved || 1579 (req_class == VM_ALLOC_SYSTEM && 1580 cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) || 1581 (req_class == VM_ALLOC_INTERRUPT && 1582 cnt.v_free_count + cnt.v_cache_count > 0)) 1583 m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0); 1584 else { 1585 mtx_unlock(&vm_page_queue_free_mtx); 1586 atomic_add_int(&vm_pageout_deficit, 1587 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 1588 pagedaemon_wakeup(); 1589 return (NULL); 1590 } 1591 if (m == NULL) { 1592 mtx_unlock(&vm_page_queue_free_mtx); 1593 return (NULL); 1594 } 1595 drop = vm_page_alloc_init(m); 1596 mtx_unlock(&vm_page_queue_free_mtx); 1597 1598 /* 1599 * Initialize the page. Only the PG_ZERO flag is inherited. 1600 */ 1601 flags = 0; 1602 if ((req & VM_ALLOC_ZERO) != 0) 1603 flags = PG_ZERO; 1604 m->flags &= flags; 1605 if ((req & VM_ALLOC_WIRED) != 0) { 1606 /* 1607 * The page lock is not required for wiring a page that does 1608 * not belong to an object. 1609 */ 1610 atomic_add_int(&cnt.v_wire_count, 1); 1611 m->wire_count = 1; 1612 } 1613 if (drop != NULL) 1614 vdrop(drop); 1615 if (vm_paging_needed()) 1616 pagedaemon_wakeup(); 1617 return (m); 1618 } 1619 1620 /* 1621 * vm_wait: (also see VM_WAIT macro) 1622 * 1623 * Block until free pages are available for allocation 1624 * - Called in various places before memory allocations. 1625 */ 1626 void 1627 vm_wait(void) 1628 { 1629 1630 mtx_lock(&vm_page_queue_free_mtx); 1631 if (curproc == pageproc) { 1632 vm_pageout_pages_needed = 1; 1633 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, 1634 PDROP | PSWP, "VMWait", 0); 1635 } else { 1636 if (!vm_pages_needed) { 1637 vm_pages_needed = 1; 1638 wakeup(&vm_pages_needed); 1639 } 1640 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, 1641 "vmwait", 0); 1642 } 1643 } 1644 1645 /* 1646 * vm_waitpfault: (also see VM_WAITPFAULT macro) 1647 * 1648 * Block until free pages are available for allocation 1649 * - Called only in vm_fault so that processes page faulting 1650 * can be easily tracked. 1651 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 1652 * processes will be able to grab memory first. Do not change 1653 * this balance without careful testing first. 1654 */ 1655 void 1656 vm_waitpfault(void) 1657 { 1658 1659 mtx_lock(&vm_page_queue_free_mtx); 1660 if (!vm_pages_needed) { 1661 vm_pages_needed = 1; 1662 wakeup(&vm_pages_needed); 1663 } 1664 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, 1665 "pfault", 0); 1666 } 1667 1668 /* 1669 * vm_page_requeue: 1670 * 1671 * Move the given page to the tail of its present page queue. 1672 * 1673 * The page queues must be locked. 1674 */ 1675 void 1676 vm_page_requeue(vm_page_t m) 1677 { 1678 struct vpgqueues *vpq; 1679 int queue; 1680 1681 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1682 queue = m->queue; 1683 KASSERT(queue != PQ_NONE, 1684 ("vm_page_requeue: page %p is not queued", m)); 1685 vpq = &vm_page_queues[queue]; 1686 TAILQ_REMOVE(&vpq->pl, m, pageq); 1687 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq); 1688 } 1689 1690 /* 1691 * vm_page_queue_remove: 1692 * 1693 * Remove the given page from the specified queue. 1694 * 1695 * The page and page queues must be locked. 1696 */ 1697 static __inline void 1698 vm_page_queue_remove(int queue, vm_page_t m) 1699 { 1700 struct vpgqueues *pq; 1701 1702 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1703 vm_page_lock_assert(m, MA_OWNED); 1704 pq = &vm_page_queues[queue]; 1705 TAILQ_REMOVE(&pq->pl, m, pageq); 1706 (*pq->cnt)--; 1707 } 1708 1709 /* 1710 * vm_pageq_remove: 1711 * 1712 * Remove a page from its queue. 1713 * 1714 * The given page must be locked. 1715 * This routine may not block. 1716 */ 1717 void 1718 vm_pageq_remove(vm_page_t m) 1719 { 1720 int queue; 1721 1722 vm_page_lock_assert(m, MA_OWNED); 1723 if ((queue = m->queue) != PQ_NONE) { 1724 vm_page_lock_queues(); 1725 m->queue = PQ_NONE; 1726 vm_page_queue_remove(queue, m); 1727 vm_page_unlock_queues(); 1728 } 1729 } 1730 1731 /* 1732 * vm_page_enqueue: 1733 * 1734 * Add the given page to the specified queue. 1735 * 1736 * The page queues must be locked. 1737 */ 1738 static void 1739 vm_page_enqueue(int queue, vm_page_t m) 1740 { 1741 struct vpgqueues *vpq; 1742 1743 vpq = &vm_page_queues[queue]; 1744 m->queue = queue; 1745 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq); 1746 ++*vpq->cnt; 1747 } 1748 1749 /* 1750 * vm_page_activate: 1751 * 1752 * Put the specified page on the active list (if appropriate). 1753 * Ensure that act_count is at least ACT_INIT but do not otherwise 1754 * mess with it. 1755 * 1756 * The page must be locked. 1757 * This routine may not block. 1758 */ 1759 void 1760 vm_page_activate(vm_page_t m) 1761 { 1762 int queue; 1763 1764 vm_page_lock_assert(m, MA_OWNED); 1765 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1766 if ((queue = m->queue) != PQ_ACTIVE) { 1767 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 1768 if (m->act_count < ACT_INIT) 1769 m->act_count = ACT_INIT; 1770 vm_page_lock_queues(); 1771 if (queue != PQ_NONE) 1772 vm_page_queue_remove(queue, m); 1773 vm_page_enqueue(PQ_ACTIVE, m); 1774 vm_page_unlock_queues(); 1775 } else 1776 KASSERT(queue == PQ_NONE, 1777 ("vm_page_activate: wired page %p is queued", m)); 1778 } else { 1779 if (m->act_count < ACT_INIT) 1780 m->act_count = ACT_INIT; 1781 } 1782 } 1783 1784 /* 1785 * vm_page_free_wakeup: 1786 * 1787 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1788 * routine is called when a page has been added to the cache or free 1789 * queues. 1790 * 1791 * The page queues must be locked. 1792 * This routine may not block. 1793 */ 1794 static inline void 1795 vm_page_free_wakeup(void) 1796 { 1797 1798 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1799 /* 1800 * if pageout daemon needs pages, then tell it that there are 1801 * some free. 1802 */ 1803 if (vm_pageout_pages_needed && 1804 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1805 wakeup(&vm_pageout_pages_needed); 1806 vm_pageout_pages_needed = 0; 1807 } 1808 /* 1809 * wakeup processes that are waiting on memory if we hit a 1810 * high water mark. And wakeup scheduler process if we have 1811 * lots of memory. this process will swapin processes. 1812 */ 1813 if (vm_pages_needed && !vm_page_count_min()) { 1814 vm_pages_needed = 0; 1815 wakeup(&cnt.v_free_count); 1816 } 1817 } 1818 1819 /* 1820 * vm_page_free_toq: 1821 * 1822 * Returns the given page to the free list, 1823 * disassociating it with any VM object. 1824 * 1825 * Object and page must be locked prior to entry. 1826 * This routine may not block. 1827 */ 1828 1829 void 1830 vm_page_free_toq(vm_page_t m) 1831 { 1832 1833 if ((m->oflags & VPO_UNMANAGED) == 0) { 1834 vm_page_lock_assert(m, MA_OWNED); 1835 KASSERT(!pmap_page_is_mapped(m), 1836 ("vm_page_free_toq: freeing mapped page %p", m)); 1837 } 1838 PCPU_INC(cnt.v_tfree); 1839 1840 if (VM_PAGE_IS_FREE(m)) 1841 panic("vm_page_free: freeing free page %p", m); 1842 else if (m->busy != 0) 1843 panic("vm_page_free: freeing busy page %p", m); 1844 1845 /* 1846 * unqueue, then remove page. Note that we cannot destroy 1847 * the page here because we do not want to call the pager's 1848 * callback routine until after we've put the page on the 1849 * appropriate free queue. 1850 */ 1851 if ((m->oflags & VPO_UNMANAGED) == 0) 1852 vm_pageq_remove(m); 1853 vm_page_remove(m); 1854 1855 /* 1856 * If fictitious remove object association and 1857 * return, otherwise delay object association removal. 1858 */ 1859 if ((m->flags & PG_FICTITIOUS) != 0) { 1860 return; 1861 } 1862 1863 m->valid = 0; 1864 vm_page_undirty(m); 1865 1866 if (m->wire_count != 0) 1867 panic("vm_page_free: freeing wired page %p", m); 1868 if (m->hold_count != 0) { 1869 m->flags &= ~PG_ZERO; 1870 vm_page_lock_queues(); 1871 vm_page_enqueue(PQ_HOLD, m); 1872 vm_page_unlock_queues(); 1873 } else { 1874 /* 1875 * Restore the default memory attribute to the page. 1876 */ 1877 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 1878 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 1879 1880 /* 1881 * Insert the page into the physical memory allocator's 1882 * cache/free page queues. 1883 */ 1884 mtx_lock(&vm_page_queue_free_mtx); 1885 m->flags |= PG_FREE; 1886 cnt.v_free_count++; 1887 #if VM_NRESERVLEVEL > 0 1888 if (!vm_reserv_free_page(m)) 1889 #else 1890 if (TRUE) 1891 #endif 1892 vm_phys_free_pages(m, 0); 1893 if ((m->flags & PG_ZERO) != 0) 1894 ++vm_page_zero_count; 1895 else 1896 vm_page_zero_idle_wakeup(); 1897 vm_page_free_wakeup(); 1898 mtx_unlock(&vm_page_queue_free_mtx); 1899 } 1900 } 1901 1902 /* 1903 * vm_page_wire: 1904 * 1905 * Mark this page as wired down by yet 1906 * another map, removing it from paging queues 1907 * as necessary. 1908 * 1909 * If the page is fictitious, then its wire count must remain one. 1910 * 1911 * The page must be locked. 1912 * This routine may not block. 1913 */ 1914 void 1915 vm_page_wire(vm_page_t m) 1916 { 1917 1918 /* 1919 * Only bump the wire statistics if the page is not already wired, 1920 * and only unqueue the page if it is on some queue (if it is unmanaged 1921 * it is already off the queues). 1922 */ 1923 vm_page_lock_assert(m, MA_OWNED); 1924 if ((m->flags & PG_FICTITIOUS) != 0) { 1925 KASSERT(m->wire_count == 1, 1926 ("vm_page_wire: fictitious page %p's wire count isn't one", 1927 m)); 1928 return; 1929 } 1930 if (m->wire_count == 0) { 1931 if ((m->oflags & VPO_UNMANAGED) == 0) 1932 vm_pageq_remove(m); 1933 atomic_add_int(&cnt.v_wire_count, 1); 1934 } 1935 m->wire_count++; 1936 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1937 } 1938 1939 /* 1940 * vm_page_unwire: 1941 * 1942 * Release one wiring of the specified page, potentially enabling it to be 1943 * paged again. If paging is enabled, then the value of the parameter 1944 * "activate" determines to which queue the page is added. If "activate" is 1945 * non-zero, then the page is added to the active queue. Otherwise, it is 1946 * added to the inactive queue. 1947 * 1948 * However, unless the page belongs to an object, it is not enqueued because 1949 * it cannot be paged out. 1950 * 1951 * If a page is fictitious, then its wire count must alway be one. 1952 * 1953 * A managed page must be locked. 1954 */ 1955 void 1956 vm_page_unwire(vm_page_t m, int activate) 1957 { 1958 1959 if ((m->oflags & VPO_UNMANAGED) == 0) 1960 vm_page_lock_assert(m, MA_OWNED); 1961 if ((m->flags & PG_FICTITIOUS) != 0) { 1962 KASSERT(m->wire_count == 1, 1963 ("vm_page_unwire: fictitious page %p's wire count isn't one", m)); 1964 return; 1965 } 1966 if (m->wire_count > 0) { 1967 m->wire_count--; 1968 if (m->wire_count == 0) { 1969 atomic_subtract_int(&cnt.v_wire_count, 1); 1970 if ((m->oflags & VPO_UNMANAGED) != 0 || 1971 m->object == NULL) 1972 return; 1973 vm_page_lock_queues(); 1974 if (activate) 1975 vm_page_enqueue(PQ_ACTIVE, m); 1976 else { 1977 m->flags &= ~PG_WINATCFLS; 1978 vm_page_enqueue(PQ_INACTIVE, m); 1979 } 1980 vm_page_unlock_queues(); 1981 } 1982 } else 1983 panic("vm_page_unwire: page %p's wire count is zero", m); 1984 } 1985 1986 /* 1987 * Move the specified page to the inactive queue. 1988 * 1989 * Many pages placed on the inactive queue should actually go 1990 * into the cache, but it is difficult to figure out which. What 1991 * we do instead, if the inactive target is well met, is to put 1992 * clean pages at the head of the inactive queue instead of the tail. 1993 * This will cause them to be moved to the cache more quickly and 1994 * if not actively re-referenced, reclaimed more quickly. If we just 1995 * stick these pages at the end of the inactive queue, heavy filesystem 1996 * meta-data accesses can cause an unnecessary paging load on memory bound 1997 * processes. This optimization causes one-time-use metadata to be 1998 * reused more quickly. 1999 * 2000 * Normally athead is 0 resulting in LRU operation. athead is set 2001 * to 1 if we want this page to be 'as if it were placed in the cache', 2002 * except without unmapping it from the process address space. 2003 * 2004 * This routine may not block. 2005 */ 2006 static inline void 2007 _vm_page_deactivate(vm_page_t m, int athead) 2008 { 2009 int queue; 2010 2011 vm_page_lock_assert(m, MA_OWNED); 2012 2013 /* 2014 * Ignore if already inactive. 2015 */ 2016 if ((queue = m->queue) == PQ_INACTIVE) 2017 return; 2018 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 2019 vm_page_lock_queues(); 2020 m->flags &= ~PG_WINATCFLS; 2021 if (queue != PQ_NONE) 2022 vm_page_queue_remove(queue, m); 2023 if (athead) 2024 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, 2025 pageq); 2026 else 2027 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, 2028 pageq); 2029 m->queue = PQ_INACTIVE; 2030 cnt.v_inactive_count++; 2031 vm_page_unlock_queues(); 2032 } 2033 } 2034 2035 /* 2036 * Move the specified page to the inactive queue. 2037 * 2038 * The page must be locked. 2039 */ 2040 void 2041 vm_page_deactivate(vm_page_t m) 2042 { 2043 2044 _vm_page_deactivate(m, 0); 2045 } 2046 2047 /* 2048 * vm_page_try_to_cache: 2049 * 2050 * Returns 0 on failure, 1 on success 2051 */ 2052 int 2053 vm_page_try_to_cache(vm_page_t m) 2054 { 2055 2056 vm_page_lock_assert(m, MA_OWNED); 2057 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2058 if (m->dirty || m->hold_count || m->busy || m->wire_count || 2059 (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0) 2060 return (0); 2061 pmap_remove_all(m); 2062 if (m->dirty) 2063 return (0); 2064 vm_page_cache(m); 2065 return (1); 2066 } 2067 2068 /* 2069 * vm_page_try_to_free() 2070 * 2071 * Attempt to free the page. If we cannot free it, we do nothing. 2072 * 1 is returned on success, 0 on failure. 2073 */ 2074 int 2075 vm_page_try_to_free(vm_page_t m) 2076 { 2077 2078 vm_page_lock_assert(m, MA_OWNED); 2079 if (m->object != NULL) 2080 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2081 if (m->dirty || m->hold_count || m->busy || m->wire_count || 2082 (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0) 2083 return (0); 2084 pmap_remove_all(m); 2085 if (m->dirty) 2086 return (0); 2087 vm_page_free(m); 2088 return (1); 2089 } 2090 2091 /* 2092 * vm_page_cache 2093 * 2094 * Put the specified page onto the page cache queue (if appropriate). 2095 * 2096 * This routine may not block. 2097 */ 2098 void 2099 vm_page_cache(vm_page_t m) 2100 { 2101 vm_object_t object; 2102 vm_page_t next, prev, root; 2103 2104 vm_page_lock_assert(m, MA_OWNED); 2105 object = m->object; 2106 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2107 if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy || 2108 m->hold_count || m->wire_count) 2109 panic("vm_page_cache: attempting to cache busy page"); 2110 pmap_remove_all(m); 2111 if (m->dirty != 0) 2112 panic("vm_page_cache: page %p is dirty", m); 2113 if (m->valid == 0 || object->type == OBJT_DEFAULT || 2114 (object->type == OBJT_SWAP && 2115 !vm_pager_has_page(object, m->pindex, NULL, NULL))) { 2116 /* 2117 * Hypothesis: A cache-elgible page belonging to a 2118 * default object or swap object but without a backing 2119 * store must be zero filled. 2120 */ 2121 vm_page_free(m); 2122 return; 2123 } 2124 KASSERT((m->flags & PG_CACHED) == 0, 2125 ("vm_page_cache: page %p is already cached", m)); 2126 PCPU_INC(cnt.v_tcached); 2127 2128 /* 2129 * Remove the page from the paging queues. 2130 */ 2131 vm_pageq_remove(m); 2132 2133 /* 2134 * Remove the page from the object's collection of resident 2135 * pages. 2136 */ 2137 if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) { 2138 /* 2139 * Since the page's successor in the list is also its parent 2140 * in the tree, its right subtree must be empty. 2141 */ 2142 next->left = m->left; 2143 KASSERT(m->right == NULL, 2144 ("vm_page_cache: page %p has right child", m)); 2145 } else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL && 2146 prev->right == m) { 2147 /* 2148 * Since the page's predecessor in the list is also its parent 2149 * in the tree, its left subtree must be empty. 2150 */ 2151 KASSERT(m->left == NULL, 2152 ("vm_page_cache: page %p has left child", m)); 2153 prev->right = m->right; 2154 } else { 2155 if (m != object->root) 2156 vm_page_splay(m->pindex, object->root); 2157 if (m->left == NULL) 2158 root = m->right; 2159 else if (m->right == NULL) 2160 root = m->left; 2161 else { 2162 /* 2163 * Move the page's successor to the root, because 2164 * pages are usually removed in ascending order. 2165 */ 2166 if (m->right != next) 2167 vm_page_splay(m->pindex, m->right); 2168 next->left = m->left; 2169 root = next; 2170 } 2171 object->root = root; 2172 } 2173 TAILQ_REMOVE(&object->memq, m, listq); 2174 object->resident_page_count--; 2175 2176 /* 2177 * Restore the default memory attribute to the page. 2178 */ 2179 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 2180 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 2181 2182 /* 2183 * Insert the page into the object's collection of cached pages 2184 * and the physical memory allocator's cache/free page queues. 2185 */ 2186 m->flags &= ~PG_ZERO; 2187 mtx_lock(&vm_page_queue_free_mtx); 2188 m->flags |= PG_CACHED; 2189 cnt.v_cache_count++; 2190 root = object->cache; 2191 if (root == NULL) { 2192 m->left = NULL; 2193 m->right = NULL; 2194 } else { 2195 root = vm_page_splay(m->pindex, root); 2196 if (m->pindex < root->pindex) { 2197 m->left = root->left; 2198 m->right = root; 2199 root->left = NULL; 2200 } else if (__predict_false(m->pindex == root->pindex)) 2201 panic("vm_page_cache: offset already cached"); 2202 else { 2203 m->right = root->right; 2204 m->left = root; 2205 root->right = NULL; 2206 } 2207 } 2208 object->cache = m; 2209 #if VM_NRESERVLEVEL > 0 2210 if (!vm_reserv_free_page(m)) { 2211 #else 2212 if (TRUE) { 2213 #endif 2214 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0); 2215 vm_phys_free_pages(m, 0); 2216 } 2217 vm_page_free_wakeup(); 2218 mtx_unlock(&vm_page_queue_free_mtx); 2219 2220 /* 2221 * Increment the vnode's hold count if this is the object's only 2222 * cached page. Decrement the vnode's hold count if this was 2223 * the object's only resident page. 2224 */ 2225 if (object->type == OBJT_VNODE) { 2226 if (root == NULL && object->resident_page_count != 0) 2227 vhold(object->handle); 2228 else if (root != NULL && object->resident_page_count == 0) 2229 vdrop(object->handle); 2230 } 2231 } 2232 2233 /* 2234 * vm_page_dontneed 2235 * 2236 * Cache, deactivate, or do nothing as appropriate. This routine 2237 * is typically used by madvise() MADV_DONTNEED. 2238 * 2239 * Generally speaking we want to move the page into the cache so 2240 * it gets reused quickly. However, this can result in a silly syndrome 2241 * due to the page recycling too quickly. Small objects will not be 2242 * fully cached. On the otherhand, if we move the page to the inactive 2243 * queue we wind up with a problem whereby very large objects 2244 * unnecessarily blow away our inactive and cache queues. 2245 * 2246 * The solution is to move the pages based on a fixed weighting. We 2247 * either leave them alone, deactivate them, or move them to the cache, 2248 * where moving them to the cache has the highest weighting. 2249 * By forcing some pages into other queues we eventually force the 2250 * system to balance the queues, potentially recovering other unrelated 2251 * space from active. The idea is to not force this to happen too 2252 * often. 2253 */ 2254 void 2255 vm_page_dontneed(vm_page_t m) 2256 { 2257 int dnw; 2258 int head; 2259 2260 vm_page_lock_assert(m, MA_OWNED); 2261 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2262 dnw = PCPU_GET(dnweight); 2263 PCPU_INC(dnweight); 2264 2265 /* 2266 * Occasionally leave the page alone. 2267 */ 2268 if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) { 2269 if (m->act_count >= ACT_INIT) 2270 --m->act_count; 2271 return; 2272 } 2273 2274 /* 2275 * Clear any references to the page. Otherwise, the page daemon will 2276 * immediately reactivate the page. 2277 * 2278 * Perform the pmap_clear_reference() first. Otherwise, a concurrent 2279 * pmap operation, such as pmap_remove(), could clear a reference in 2280 * the pmap and set PGA_REFERENCED on the page before the 2281 * pmap_clear_reference() had completed. Consequently, the page would 2282 * appear referenced based upon an old reference that occurred before 2283 * this function ran. 2284 */ 2285 pmap_clear_reference(m); 2286 vm_page_aflag_clear(m, PGA_REFERENCED); 2287 2288 if (m->dirty == 0 && pmap_is_modified(m)) 2289 vm_page_dirty(m); 2290 2291 if (m->dirty || (dnw & 0x0070) == 0) { 2292 /* 2293 * Deactivate the page 3 times out of 32. 2294 */ 2295 head = 0; 2296 } else { 2297 /* 2298 * Cache the page 28 times out of every 32. Note that 2299 * the page is deactivated instead of cached, but placed 2300 * at the head of the queue instead of the tail. 2301 */ 2302 head = 1; 2303 } 2304 _vm_page_deactivate(m, head); 2305 } 2306 2307 /* 2308 * Grab a page, waiting until we are waken up due to the page 2309 * changing state. We keep on waiting, if the page continues 2310 * to be in the object. If the page doesn't exist, first allocate it 2311 * and then conditionally zero it. 2312 * 2313 * The caller must always specify the VM_ALLOC_RETRY flag. This is intended 2314 * to facilitate its eventual removal. 2315 * 2316 * This routine may block. 2317 */ 2318 vm_page_t 2319 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2320 { 2321 vm_page_t m; 2322 2323 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2324 KASSERT((allocflags & VM_ALLOC_RETRY) != 0, 2325 ("vm_page_grab: VM_ALLOC_RETRY is required")); 2326 retrylookup: 2327 if ((m = vm_page_lookup(object, pindex)) != NULL) { 2328 if ((m->oflags & VPO_BUSY) != 0 || 2329 ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) { 2330 /* 2331 * Reference the page before unlocking and 2332 * sleeping so that the page daemon is less 2333 * likely to reclaim it. 2334 */ 2335 vm_page_aflag_set(m, PGA_REFERENCED); 2336 vm_page_sleep(m, "pgrbwt"); 2337 goto retrylookup; 2338 } else { 2339 if ((allocflags & VM_ALLOC_WIRED) != 0) { 2340 vm_page_lock(m); 2341 vm_page_wire(m); 2342 vm_page_unlock(m); 2343 } 2344 if ((allocflags & VM_ALLOC_NOBUSY) == 0) 2345 vm_page_busy(m); 2346 return (m); 2347 } 2348 } 2349 m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY | 2350 VM_ALLOC_IGN_SBUSY)); 2351 if (m == NULL) { 2352 VM_OBJECT_UNLOCK(object); 2353 VM_WAIT; 2354 VM_OBJECT_LOCK(object); 2355 goto retrylookup; 2356 } else if (m->valid != 0) 2357 return (m); 2358 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 2359 pmap_zero_page(m); 2360 return (m); 2361 } 2362 2363 /* 2364 * Mapping function for valid bits or for dirty bits in 2365 * a page. May not block. 2366 * 2367 * Inputs are required to range within a page. 2368 */ 2369 vm_page_bits_t 2370 vm_page_bits(int base, int size) 2371 { 2372 int first_bit; 2373 int last_bit; 2374 2375 KASSERT( 2376 base + size <= PAGE_SIZE, 2377 ("vm_page_bits: illegal base/size %d/%d", base, size) 2378 ); 2379 2380 if (size == 0) /* handle degenerate case */ 2381 return (0); 2382 2383 first_bit = base >> DEV_BSHIFT; 2384 last_bit = (base + size - 1) >> DEV_BSHIFT; 2385 2386 return (((vm_page_bits_t)2 << last_bit) - 2387 ((vm_page_bits_t)1 << first_bit)); 2388 } 2389 2390 /* 2391 * vm_page_set_valid: 2392 * 2393 * Sets portions of a page valid. The arguments are expected 2394 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2395 * of any partial chunks touched by the range. The invalid portion of 2396 * such chunks will be zeroed. 2397 * 2398 * (base + size) must be less then or equal to PAGE_SIZE. 2399 */ 2400 void 2401 vm_page_set_valid(vm_page_t m, int base, int size) 2402 { 2403 int endoff, frag; 2404 2405 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2406 if (size == 0) /* handle degenerate case */ 2407 return; 2408 2409 /* 2410 * If the base is not DEV_BSIZE aligned and the valid 2411 * bit is clear, we have to zero out a portion of the 2412 * first block. 2413 */ 2414 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2415 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 2416 pmap_zero_page_area(m, frag, base - frag); 2417 2418 /* 2419 * If the ending offset is not DEV_BSIZE aligned and the 2420 * valid bit is clear, we have to zero out a portion of 2421 * the last block. 2422 */ 2423 endoff = base + size; 2424 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2425 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 2426 pmap_zero_page_area(m, endoff, 2427 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 2428 2429 /* 2430 * Assert that no previously invalid block that is now being validated 2431 * is already dirty. 2432 */ 2433 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 2434 ("vm_page_set_valid: page %p is dirty", m)); 2435 2436 /* 2437 * Set valid bits inclusive of any overlap. 2438 */ 2439 m->valid |= vm_page_bits(base, size); 2440 } 2441 2442 /* 2443 * Clear the given bits from the specified page's dirty field. 2444 */ 2445 static __inline void 2446 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 2447 { 2448 uintptr_t addr; 2449 #if PAGE_SIZE < 16384 2450 int shift; 2451 #endif 2452 2453 /* 2454 * If the object is locked and the page is neither VPO_BUSY nor 2455 * PGA_WRITEABLE, then the page's dirty field cannot possibly be 2456 * set by a concurrent pmap operation. 2457 */ 2458 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2459 if ((m->oflags & VPO_BUSY) == 0 && (m->aflags & PGA_WRITEABLE) == 0) 2460 m->dirty &= ~pagebits; 2461 else { 2462 /* 2463 * The pmap layer can call vm_page_dirty() without 2464 * holding a distinguished lock. The combination of 2465 * the object's lock and an atomic operation suffice 2466 * to guarantee consistency of the page dirty field. 2467 * 2468 * For PAGE_SIZE == 32768 case, compiler already 2469 * properly aligns the dirty field, so no forcible 2470 * alignment is needed. Only require existence of 2471 * atomic_clear_64 when page size is 32768. 2472 */ 2473 addr = (uintptr_t)&m->dirty; 2474 #if PAGE_SIZE == 32768 2475 atomic_clear_64((uint64_t *)addr, pagebits); 2476 #elif PAGE_SIZE == 16384 2477 atomic_clear_32((uint32_t *)addr, pagebits); 2478 #else /* PAGE_SIZE <= 8192 */ 2479 /* 2480 * Use a trick to perform a 32-bit atomic on the 2481 * containing aligned word, to not depend on the existence 2482 * of atomic_clear_{8, 16}. 2483 */ 2484 shift = addr & (sizeof(uint32_t) - 1); 2485 #if BYTE_ORDER == BIG_ENDIAN 2486 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY; 2487 #else 2488 shift *= NBBY; 2489 #endif 2490 addr &= ~(sizeof(uint32_t) - 1); 2491 atomic_clear_32((uint32_t *)addr, pagebits << shift); 2492 #endif /* PAGE_SIZE */ 2493 } 2494 } 2495 2496 /* 2497 * vm_page_set_validclean: 2498 * 2499 * Sets portions of a page valid and clean. The arguments are expected 2500 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2501 * of any partial chunks touched by the range. The invalid portion of 2502 * such chunks will be zero'd. 2503 * 2504 * This routine may not block. 2505 * 2506 * (base + size) must be less then or equal to PAGE_SIZE. 2507 */ 2508 void 2509 vm_page_set_validclean(vm_page_t m, int base, int size) 2510 { 2511 vm_page_bits_t oldvalid, pagebits; 2512 int endoff, frag; 2513 2514 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2515 if (size == 0) /* handle degenerate case */ 2516 return; 2517 2518 /* 2519 * If the base is not DEV_BSIZE aligned and the valid 2520 * bit is clear, we have to zero out a portion of the 2521 * first block. 2522 */ 2523 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2524 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 2525 pmap_zero_page_area(m, frag, base - frag); 2526 2527 /* 2528 * If the ending offset is not DEV_BSIZE aligned and the 2529 * valid bit is clear, we have to zero out a portion of 2530 * the last block. 2531 */ 2532 endoff = base + size; 2533 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2534 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 2535 pmap_zero_page_area(m, endoff, 2536 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 2537 2538 /* 2539 * Set valid, clear dirty bits. If validating the entire 2540 * page we can safely clear the pmap modify bit. We also 2541 * use this opportunity to clear the VPO_NOSYNC flag. If a process 2542 * takes a write fault on a MAP_NOSYNC memory area the flag will 2543 * be set again. 2544 * 2545 * We set valid bits inclusive of any overlap, but we can only 2546 * clear dirty bits for DEV_BSIZE chunks that are fully within 2547 * the range. 2548 */ 2549 oldvalid = m->valid; 2550 pagebits = vm_page_bits(base, size); 2551 m->valid |= pagebits; 2552 #if 0 /* NOT YET */ 2553 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 2554 frag = DEV_BSIZE - frag; 2555 base += frag; 2556 size -= frag; 2557 if (size < 0) 2558 size = 0; 2559 } 2560 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 2561 #endif 2562 if (base == 0 && size == PAGE_SIZE) { 2563 /* 2564 * The page can only be modified within the pmap if it is 2565 * mapped, and it can only be mapped if it was previously 2566 * fully valid. 2567 */ 2568 if (oldvalid == VM_PAGE_BITS_ALL) 2569 /* 2570 * Perform the pmap_clear_modify() first. Otherwise, 2571 * a concurrent pmap operation, such as 2572 * pmap_protect(), could clear a modification in the 2573 * pmap and set the dirty field on the page before 2574 * pmap_clear_modify() had begun and after the dirty 2575 * field was cleared here. 2576 */ 2577 pmap_clear_modify(m); 2578 m->dirty = 0; 2579 m->oflags &= ~VPO_NOSYNC; 2580 } else if (oldvalid != VM_PAGE_BITS_ALL) 2581 m->dirty &= ~pagebits; 2582 else 2583 vm_page_clear_dirty_mask(m, pagebits); 2584 } 2585 2586 void 2587 vm_page_clear_dirty(vm_page_t m, int base, int size) 2588 { 2589 2590 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 2591 } 2592 2593 /* 2594 * vm_page_set_invalid: 2595 * 2596 * Invalidates DEV_BSIZE'd chunks within a page. Both the 2597 * valid and dirty bits for the effected areas are cleared. 2598 * 2599 * May not block. 2600 */ 2601 void 2602 vm_page_set_invalid(vm_page_t m, int base, int size) 2603 { 2604 vm_page_bits_t bits; 2605 2606 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2607 KASSERT((m->oflags & VPO_BUSY) == 0, 2608 ("vm_page_set_invalid: page %p is busy", m)); 2609 bits = vm_page_bits(base, size); 2610 if (m->valid == VM_PAGE_BITS_ALL && bits != 0) 2611 pmap_remove_all(m); 2612 KASSERT(!pmap_page_is_mapped(m), 2613 ("vm_page_set_invalid: page %p is mapped", m)); 2614 m->valid &= ~bits; 2615 m->dirty &= ~bits; 2616 } 2617 2618 /* 2619 * vm_page_zero_invalid() 2620 * 2621 * The kernel assumes that the invalid portions of a page contain 2622 * garbage, but such pages can be mapped into memory by user code. 2623 * When this occurs, we must zero out the non-valid portions of the 2624 * page so user code sees what it expects. 2625 * 2626 * Pages are most often semi-valid when the end of a file is mapped 2627 * into memory and the file's size is not page aligned. 2628 */ 2629 void 2630 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 2631 { 2632 int b; 2633 int i; 2634 2635 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2636 /* 2637 * Scan the valid bits looking for invalid sections that 2638 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 2639 * valid bit may be set ) have already been zerod by 2640 * vm_page_set_validclean(). 2641 */ 2642 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 2643 if (i == (PAGE_SIZE / DEV_BSIZE) || 2644 (m->valid & ((vm_page_bits_t)1 << i))) { 2645 if (i > b) { 2646 pmap_zero_page_area(m, 2647 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 2648 } 2649 b = i + 1; 2650 } 2651 } 2652 2653 /* 2654 * setvalid is TRUE when we can safely set the zero'd areas 2655 * as being valid. We can do this if there are no cache consistancy 2656 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 2657 */ 2658 if (setvalid) 2659 m->valid = VM_PAGE_BITS_ALL; 2660 } 2661 2662 /* 2663 * vm_page_is_valid: 2664 * 2665 * Is (partial) page valid? Note that the case where size == 0 2666 * will return FALSE in the degenerate case where the page is 2667 * entirely invalid, and TRUE otherwise. 2668 * 2669 * May not block. 2670 */ 2671 int 2672 vm_page_is_valid(vm_page_t m, int base, int size) 2673 { 2674 vm_page_bits_t bits; 2675 2676 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2677 bits = vm_page_bits(base, size); 2678 if (m->valid && ((m->valid & bits) == bits)) 2679 return 1; 2680 else 2681 return 0; 2682 } 2683 2684 /* 2685 * update dirty bits from pmap/mmu. May not block. 2686 */ 2687 void 2688 vm_page_test_dirty(vm_page_t m) 2689 { 2690 2691 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2692 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 2693 vm_page_dirty(m); 2694 } 2695 2696 int so_zerocp_fullpage = 0; 2697 2698 /* 2699 * Replace the given page with a copy. The copied page assumes 2700 * the portion of the given page's "wire_count" that is not the 2701 * responsibility of this copy-on-write mechanism. 2702 * 2703 * The object containing the given page must have a non-zero 2704 * paging-in-progress count and be locked. 2705 */ 2706 void 2707 vm_page_cowfault(vm_page_t m) 2708 { 2709 vm_page_t mnew; 2710 vm_object_t object; 2711 vm_pindex_t pindex; 2712 2713 mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED); 2714 vm_page_lock_assert(m, MA_OWNED); 2715 object = m->object; 2716 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2717 KASSERT(object->paging_in_progress != 0, 2718 ("vm_page_cowfault: object %p's paging-in-progress count is zero.", 2719 object)); 2720 pindex = m->pindex; 2721 2722 retry_alloc: 2723 pmap_remove_all(m); 2724 vm_page_remove(m); 2725 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY); 2726 if (mnew == NULL) { 2727 vm_page_insert(m, object, pindex); 2728 vm_page_unlock(m); 2729 VM_OBJECT_UNLOCK(object); 2730 VM_WAIT; 2731 VM_OBJECT_LOCK(object); 2732 if (m == vm_page_lookup(object, pindex)) { 2733 vm_page_lock(m); 2734 goto retry_alloc; 2735 } else { 2736 /* 2737 * Page disappeared during the wait. 2738 */ 2739 return; 2740 } 2741 } 2742 2743 if (m->cow == 0) { 2744 /* 2745 * check to see if we raced with an xmit complete when 2746 * waiting to allocate a page. If so, put things back 2747 * the way they were 2748 */ 2749 vm_page_unlock(m); 2750 vm_page_lock(mnew); 2751 vm_page_free(mnew); 2752 vm_page_unlock(mnew); 2753 vm_page_insert(m, object, pindex); 2754 } else { /* clear COW & copy page */ 2755 if (!so_zerocp_fullpage) 2756 pmap_copy_page(m, mnew); 2757 mnew->valid = VM_PAGE_BITS_ALL; 2758 vm_page_dirty(mnew); 2759 mnew->wire_count = m->wire_count - m->cow; 2760 m->wire_count = m->cow; 2761 vm_page_unlock(m); 2762 } 2763 } 2764 2765 void 2766 vm_page_cowclear(vm_page_t m) 2767 { 2768 2769 vm_page_lock_assert(m, MA_OWNED); 2770 if (m->cow) { 2771 m->cow--; 2772 /* 2773 * let vm_fault add back write permission lazily 2774 */ 2775 } 2776 /* 2777 * sf_buf_free() will free the page, so we needn't do it here 2778 */ 2779 } 2780 2781 int 2782 vm_page_cowsetup(vm_page_t m) 2783 { 2784 2785 vm_page_lock_assert(m, MA_OWNED); 2786 if ((m->flags & PG_FICTITIOUS) != 0 || 2787 (m->oflags & VPO_UNMANAGED) != 0 || 2788 m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object)) 2789 return (EBUSY); 2790 m->cow++; 2791 pmap_remove_write(m); 2792 VM_OBJECT_UNLOCK(m->object); 2793 return (0); 2794 } 2795 2796 #ifdef INVARIANTS 2797 void 2798 vm_page_object_lock_assert(vm_page_t m) 2799 { 2800 2801 /* 2802 * Certain of the page's fields may only be modified by the 2803 * holder of the containing object's lock or the setter of the 2804 * page's VPO_BUSY flag. Unfortunately, the setter of the 2805 * VPO_BUSY flag is not recorded, and thus cannot be checked 2806 * here. 2807 */ 2808 if (m->object != NULL && (m->oflags & VPO_BUSY) == 0) 2809 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2810 } 2811 #endif 2812 2813 #include "opt_ddb.h" 2814 #ifdef DDB 2815 #include <sys/kernel.h> 2816 2817 #include <ddb/ddb.h> 2818 2819 DB_SHOW_COMMAND(page, vm_page_print_page_info) 2820 { 2821 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 2822 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 2823 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 2824 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 2825 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 2826 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 2827 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 2828 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 2829 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 2830 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 2831 } 2832 2833 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 2834 { 2835 2836 db_printf("PQ_FREE:"); 2837 db_printf(" %d", cnt.v_free_count); 2838 db_printf("\n"); 2839 2840 db_printf("PQ_CACHE:"); 2841 db_printf(" %d", cnt.v_cache_count); 2842 db_printf("\n"); 2843 2844 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 2845 *vm_page_queues[PQ_ACTIVE].cnt, 2846 *vm_page_queues[PQ_INACTIVE].cnt); 2847 } 2848 #endif /* DDB */ 2849