xref: /freebsd/sys/vm/vm_page.c (revision 6472ac3d8a86336899b6cfb789a4cd9897e3fab5)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- a pageq mutex is required when adding or removing a page from a
67  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68  *	  busy state of a page.
69  *
70  *	- The object mutex is held when inserting or removing
71  *	  pages from an object (vm_page_insert() or vm_page_remove()).
72  *
73  */
74 
75 /*
76  *	Resident memory management module.
77  */
78 
79 #include <sys/cdefs.h>
80 __FBSDID("$FreeBSD$");
81 
82 #include "opt_vm.h"
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/lock.h>
87 #include <sys/kernel.h>
88 #include <sys/limits.h>
89 #include <sys/malloc.h>
90 #include <sys/msgbuf.h>
91 #include <sys/mutex.h>
92 #include <sys/proc.h>
93 #include <sys/sysctl.h>
94 #include <sys/vmmeter.h>
95 #include <sys/vnode.h>
96 
97 #include <vm/vm.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_param.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_object.h>
102 #include <vm/vm_page.h>
103 #include <vm/vm_pageout.h>
104 #include <vm/vm_pager.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_reserv.h>
107 #include <vm/vm_extern.h>
108 #include <vm/uma.h>
109 #include <vm/uma_int.h>
110 
111 #include <machine/md_var.h>
112 
113 /*
114  *	Associated with page of user-allocatable memory is a
115  *	page structure.
116  */
117 
118 struct vpgqueues vm_page_queues[PQ_COUNT];
119 struct vpglocks vm_page_queue_lock;
120 struct vpglocks vm_page_queue_free_lock;
121 
122 struct vpglocks	pa_lock[PA_LOCK_COUNT];
123 
124 vm_page_t vm_page_array = 0;
125 int vm_page_array_size = 0;
126 long first_page = 0;
127 int vm_page_zero_count = 0;
128 
129 static int boot_pages = UMA_BOOT_PAGES;
130 TUNABLE_INT("vm.boot_pages", &boot_pages);
131 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
132 	"number of pages allocated for bootstrapping the VM system");
133 
134 static int pa_tryrelock_restart;
135 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
136     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
137 
138 static uma_zone_t fakepg_zone;
139 
140 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
141 static void vm_page_queue_remove(int queue, vm_page_t m);
142 static void vm_page_enqueue(int queue, vm_page_t m);
143 static void vm_page_init_fakepg(void *dummy);
144 
145 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
146 
147 static void
148 vm_page_init_fakepg(void *dummy)
149 {
150 
151 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
152 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
153 }
154 
155 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
156 #if PAGE_SIZE == 32768
157 #ifdef CTASSERT
158 CTASSERT(sizeof(u_long) >= 8);
159 #endif
160 #endif
161 
162 /*
163  * Try to acquire a physical address lock while a pmap is locked.  If we
164  * fail to trylock we unlock and lock the pmap directly and cache the
165  * locked pa in *locked.  The caller should then restart their loop in case
166  * the virtual to physical mapping has changed.
167  */
168 int
169 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
170 {
171 	vm_paddr_t lockpa;
172 
173 	lockpa = *locked;
174 	*locked = pa;
175 	if (lockpa) {
176 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
177 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
178 			return (0);
179 		PA_UNLOCK(lockpa);
180 	}
181 	if (PA_TRYLOCK(pa))
182 		return (0);
183 	PMAP_UNLOCK(pmap);
184 	atomic_add_int(&pa_tryrelock_restart, 1);
185 	PA_LOCK(pa);
186 	PMAP_LOCK(pmap);
187 	return (EAGAIN);
188 }
189 
190 /*
191  *	vm_set_page_size:
192  *
193  *	Sets the page size, perhaps based upon the memory
194  *	size.  Must be called before any use of page-size
195  *	dependent functions.
196  */
197 void
198 vm_set_page_size(void)
199 {
200 	if (cnt.v_page_size == 0)
201 		cnt.v_page_size = PAGE_SIZE;
202 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
203 		panic("vm_set_page_size: page size not a power of two");
204 }
205 
206 /*
207  *	vm_page_blacklist_lookup:
208  *
209  *	See if a physical address in this page has been listed
210  *	in the blacklist tunable.  Entries in the tunable are
211  *	separated by spaces or commas.  If an invalid integer is
212  *	encountered then the rest of the string is skipped.
213  */
214 static int
215 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
216 {
217 	vm_paddr_t bad;
218 	char *cp, *pos;
219 
220 	for (pos = list; *pos != '\0'; pos = cp) {
221 		bad = strtoq(pos, &cp, 0);
222 		if (*cp != '\0') {
223 			if (*cp == ' ' || *cp == ',') {
224 				cp++;
225 				if (cp == pos)
226 					continue;
227 			} else
228 				break;
229 		}
230 		if (pa == trunc_page(bad))
231 			return (1);
232 	}
233 	return (0);
234 }
235 
236 /*
237  *	vm_page_startup:
238  *
239  *	Initializes the resident memory module.
240  *
241  *	Allocates memory for the page cells, and
242  *	for the object/offset-to-page hash table headers.
243  *	Each page cell is initialized and placed on the free list.
244  */
245 vm_offset_t
246 vm_page_startup(vm_offset_t vaddr)
247 {
248 	vm_offset_t mapped;
249 	vm_paddr_t page_range;
250 	vm_paddr_t new_end;
251 	int i;
252 	vm_paddr_t pa;
253 	vm_paddr_t last_pa;
254 	char *list;
255 
256 	/* the biggest memory array is the second group of pages */
257 	vm_paddr_t end;
258 	vm_paddr_t biggestsize;
259 	vm_paddr_t low_water, high_water;
260 	int biggestone;
261 
262 	biggestsize = 0;
263 	biggestone = 0;
264 	vaddr = round_page(vaddr);
265 
266 	for (i = 0; phys_avail[i + 1]; i += 2) {
267 		phys_avail[i] = round_page(phys_avail[i]);
268 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
269 	}
270 
271 	low_water = phys_avail[0];
272 	high_water = phys_avail[1];
273 
274 	for (i = 0; phys_avail[i + 1]; i += 2) {
275 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
276 
277 		if (size > biggestsize) {
278 			biggestone = i;
279 			biggestsize = size;
280 		}
281 		if (phys_avail[i] < low_water)
282 			low_water = phys_avail[i];
283 		if (phys_avail[i + 1] > high_water)
284 			high_water = phys_avail[i + 1];
285 	}
286 
287 #ifdef XEN
288 	low_water = 0;
289 #endif
290 
291 	end = phys_avail[biggestone+1];
292 
293 	/*
294 	 * Initialize the locks.
295 	 */
296 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
297 	    MTX_RECURSE);
298 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
299 	    MTX_DEF);
300 
301 	/* Setup page locks. */
302 	for (i = 0; i < PA_LOCK_COUNT; i++)
303 		mtx_init(&pa_lock[i].data, "page lock", NULL, MTX_DEF);
304 
305 	/*
306 	 * Initialize the queue headers for the hold queue, the active queue,
307 	 * and the inactive queue.
308 	 */
309 	for (i = 0; i < PQ_COUNT; i++)
310 		TAILQ_INIT(&vm_page_queues[i].pl);
311 	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
312 	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
313 	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
314 
315 	/*
316 	 * Allocate memory for use when boot strapping the kernel memory
317 	 * allocator.
318 	 */
319 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
320 	new_end = trunc_page(new_end);
321 	mapped = pmap_map(&vaddr, new_end, end,
322 	    VM_PROT_READ | VM_PROT_WRITE);
323 	bzero((void *)mapped, end - new_end);
324 	uma_startup((void *)mapped, boot_pages);
325 
326 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
327     defined(__mips__)
328 	/*
329 	 * Allocate a bitmap to indicate that a random physical page
330 	 * needs to be included in a minidump.
331 	 *
332 	 * The amd64 port needs this to indicate which direct map pages
333 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
334 	 *
335 	 * However, i386 still needs this workspace internally within the
336 	 * minidump code.  In theory, they are not needed on i386, but are
337 	 * included should the sf_buf code decide to use them.
338 	 */
339 	last_pa = 0;
340 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
341 		if (dump_avail[i + 1] > last_pa)
342 			last_pa = dump_avail[i + 1];
343 	page_range = last_pa / PAGE_SIZE;
344 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
345 	new_end -= vm_page_dump_size;
346 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
347 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
348 	bzero((void *)vm_page_dump, vm_page_dump_size);
349 #endif
350 #ifdef __amd64__
351 	/*
352 	 * Request that the physical pages underlying the message buffer be
353 	 * included in a crash dump.  Since the message buffer is accessed
354 	 * through the direct map, they are not automatically included.
355 	 */
356 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
357 	last_pa = pa + round_page(msgbufsize);
358 	while (pa < last_pa) {
359 		dump_add_page(pa);
360 		pa += PAGE_SIZE;
361 	}
362 #endif
363 	/*
364 	 * Compute the number of pages of memory that will be available for
365 	 * use (taking into account the overhead of a page structure per
366 	 * page).
367 	 */
368 	first_page = low_water / PAGE_SIZE;
369 #ifdef VM_PHYSSEG_SPARSE
370 	page_range = 0;
371 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
372 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
373 #elif defined(VM_PHYSSEG_DENSE)
374 	page_range = high_water / PAGE_SIZE - first_page;
375 #else
376 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
377 #endif
378 	end = new_end;
379 
380 	/*
381 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
382 	 */
383 	vaddr += PAGE_SIZE;
384 
385 	/*
386 	 * Initialize the mem entry structures now, and put them in the free
387 	 * queue.
388 	 */
389 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
390 	mapped = pmap_map(&vaddr, new_end, end,
391 	    VM_PROT_READ | VM_PROT_WRITE);
392 	vm_page_array = (vm_page_t) mapped;
393 #if VM_NRESERVLEVEL > 0
394 	/*
395 	 * Allocate memory for the reservation management system's data
396 	 * structures.
397 	 */
398 	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
399 #endif
400 #if defined(__amd64__) || defined(__mips__)
401 	/*
402 	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
403 	 * like i386, so the pages must be tracked for a crashdump to include
404 	 * this data.  This includes the vm_page_array and the early UMA
405 	 * bootstrap pages.
406 	 */
407 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
408 		dump_add_page(pa);
409 #endif
410 	phys_avail[biggestone + 1] = new_end;
411 
412 	/*
413 	 * Clear all of the page structures
414 	 */
415 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
416 	for (i = 0; i < page_range; i++)
417 		vm_page_array[i].order = VM_NFREEORDER;
418 	vm_page_array_size = page_range;
419 
420 	/*
421 	 * Initialize the physical memory allocator.
422 	 */
423 	vm_phys_init();
424 
425 	/*
426 	 * Add every available physical page that is not blacklisted to
427 	 * the free lists.
428 	 */
429 	cnt.v_page_count = 0;
430 	cnt.v_free_count = 0;
431 	list = getenv("vm.blacklist");
432 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
433 		pa = phys_avail[i];
434 		last_pa = phys_avail[i + 1];
435 		while (pa < last_pa) {
436 			if (list != NULL &&
437 			    vm_page_blacklist_lookup(list, pa))
438 				printf("Skipping page with pa 0x%jx\n",
439 				    (uintmax_t)pa);
440 			else
441 				vm_phys_add_page(pa);
442 			pa += PAGE_SIZE;
443 		}
444 	}
445 	freeenv(list);
446 #if VM_NRESERVLEVEL > 0
447 	/*
448 	 * Initialize the reservation management system.
449 	 */
450 	vm_reserv_init();
451 #endif
452 	return (vaddr);
453 }
454 
455 
456 CTASSERT(offsetof(struct vm_page, aflags) % sizeof(uint32_t) == 0);
457 
458 void
459 vm_page_aflag_set(vm_page_t m, uint8_t bits)
460 {
461 	uint32_t *addr, val;
462 
463 	/*
464 	 * The PGA_WRITEABLE flag can only be set if the page is managed and
465 	 * VPO_BUSY.  Currently, this flag is only set by pmap_enter().
466 	 */
467 	KASSERT((bits & PGA_WRITEABLE) == 0 ||
468 	    (m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == VPO_BUSY,
469 	    ("PGA_WRITEABLE and !VPO_BUSY"));
470 
471 	/*
472 	 * We want to use atomic updates for m->aflags, which is a
473 	 * byte wide.  Not all architectures provide atomic operations
474 	 * on the single-byte destination.  Punt and access the whole
475 	 * 4-byte word with an atomic update.  Parallel non-atomic
476 	 * updates to the fields included in the update by proximity
477 	 * are handled properly by atomics.
478 	 */
479 	addr = (void *)&m->aflags;
480 	MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0);
481 	val = bits;
482 #if BYTE_ORDER == BIG_ENDIAN
483 	val <<= 24;
484 #endif
485 	atomic_set_32(addr, val);
486 }
487 
488 void
489 vm_page_aflag_clear(vm_page_t m, uint8_t bits)
490 {
491 	uint32_t *addr, val;
492 
493 	/*
494 	 * The PGA_REFERENCED flag can only be cleared if the object
495 	 * containing the page is locked.
496 	 */
497 	KASSERT((bits & PGA_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
498 	    ("PGA_REFERENCED and !VM_OBJECT_LOCKED"));
499 
500 	/*
501 	 * See the comment in vm_page_aflag_set().
502 	 */
503 	addr = (void *)&m->aflags;
504 	MPASS(((uintptr_t)addr & (sizeof(uint32_t) - 1)) == 0);
505 	val = bits;
506 #if BYTE_ORDER == BIG_ENDIAN
507 	val <<= 24;
508 #endif
509 	atomic_clear_32(addr, val);
510 }
511 
512 void
513 vm_page_reference(vm_page_t m)
514 {
515 
516 	vm_page_aflag_set(m, PGA_REFERENCED);
517 }
518 
519 void
520 vm_page_busy(vm_page_t m)
521 {
522 
523 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
524 	KASSERT((m->oflags & VPO_BUSY) == 0,
525 	    ("vm_page_busy: page already busy!!!"));
526 	m->oflags |= VPO_BUSY;
527 }
528 
529 /*
530  *      vm_page_flash:
531  *
532  *      wakeup anyone waiting for the page.
533  */
534 void
535 vm_page_flash(vm_page_t m)
536 {
537 
538 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
539 	if (m->oflags & VPO_WANTED) {
540 		m->oflags &= ~VPO_WANTED;
541 		wakeup(m);
542 	}
543 }
544 
545 /*
546  *      vm_page_wakeup:
547  *
548  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
549  *      page.
550  *
551  */
552 void
553 vm_page_wakeup(vm_page_t m)
554 {
555 
556 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
557 	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
558 	m->oflags &= ~VPO_BUSY;
559 	vm_page_flash(m);
560 }
561 
562 void
563 vm_page_io_start(vm_page_t m)
564 {
565 
566 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
567 	m->busy++;
568 }
569 
570 void
571 vm_page_io_finish(vm_page_t m)
572 {
573 
574 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
575 	KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m));
576 	m->busy--;
577 	if (m->busy == 0)
578 		vm_page_flash(m);
579 }
580 
581 /*
582  * Keep page from being freed by the page daemon
583  * much of the same effect as wiring, except much lower
584  * overhead and should be used only for *very* temporary
585  * holding ("wiring").
586  */
587 void
588 vm_page_hold(vm_page_t mem)
589 {
590 
591 	vm_page_lock_assert(mem, MA_OWNED);
592         mem->hold_count++;
593 }
594 
595 void
596 vm_page_unhold(vm_page_t mem)
597 {
598 
599 	vm_page_lock_assert(mem, MA_OWNED);
600 	--mem->hold_count;
601 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
602 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
603 		vm_page_free_toq(mem);
604 }
605 
606 /*
607  *	vm_page_unhold_pages:
608  *
609  *	Unhold each of the pages that is referenced by the given array.
610  */
611 void
612 vm_page_unhold_pages(vm_page_t *ma, int count)
613 {
614 	struct mtx *mtx, *new_mtx;
615 
616 	mtx = NULL;
617 	for (; count != 0; count--) {
618 		/*
619 		 * Avoid releasing and reacquiring the same page lock.
620 		 */
621 		new_mtx = vm_page_lockptr(*ma);
622 		if (mtx != new_mtx) {
623 			if (mtx != NULL)
624 				mtx_unlock(mtx);
625 			mtx = new_mtx;
626 			mtx_lock(mtx);
627 		}
628 		vm_page_unhold(*ma);
629 		ma++;
630 	}
631 	if (mtx != NULL)
632 		mtx_unlock(mtx);
633 }
634 
635 /*
636  *	vm_page_getfake:
637  *
638  *	Create a fictitious page with the specified physical address and
639  *	memory attribute.  The memory attribute is the only the machine-
640  *	dependent aspect of a fictitious page that must be initialized.
641  */
642 vm_page_t
643 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
644 {
645 	vm_page_t m;
646 
647 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
648 	m->phys_addr = paddr;
649 	m->queue = PQ_NONE;
650 	/* Fictitious pages don't use "segind". */
651 	m->flags = PG_FICTITIOUS;
652 	/* Fictitious pages don't use "order" or "pool". */
653 	m->oflags = VPO_BUSY | VPO_UNMANAGED;
654 	m->wire_count = 1;
655 	pmap_page_set_memattr(m, memattr);
656 	return (m);
657 }
658 
659 /*
660  *	vm_page_putfake:
661  *
662  *	Release a fictitious page.
663  */
664 void
665 vm_page_putfake(vm_page_t m)
666 {
667 
668 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
669 	    ("vm_page_putfake: bad page %p", m));
670 	uma_zfree(fakepg_zone, m);
671 }
672 
673 /*
674  *	vm_page_updatefake:
675  *
676  *	Update the given fictitious page to the specified physical address and
677  *	memory attribute.
678  */
679 void
680 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
681 {
682 
683 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
684 	    ("vm_page_updatefake: bad page %p", m));
685 	m->phys_addr = paddr;
686 	pmap_page_set_memattr(m, memattr);
687 }
688 
689 /*
690  *	vm_page_free:
691  *
692  *	Free a page.
693  */
694 void
695 vm_page_free(vm_page_t m)
696 {
697 
698 	m->flags &= ~PG_ZERO;
699 	vm_page_free_toq(m);
700 }
701 
702 /*
703  *	vm_page_free_zero:
704  *
705  *	Free a page to the zerod-pages queue
706  */
707 void
708 vm_page_free_zero(vm_page_t m)
709 {
710 
711 	m->flags |= PG_ZERO;
712 	vm_page_free_toq(m);
713 }
714 
715 /*
716  *	vm_page_sleep:
717  *
718  *	Sleep and release the page and page queues locks.
719  *
720  *	The object containing the given page must be locked.
721  */
722 void
723 vm_page_sleep(vm_page_t m, const char *msg)
724 {
725 
726 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
727 	if (mtx_owned(&vm_page_queue_mtx))
728 		vm_page_unlock_queues();
729 	if (mtx_owned(vm_page_lockptr(m)))
730 		vm_page_unlock(m);
731 
732 	/*
733 	 * It's possible that while we sleep, the page will get
734 	 * unbusied and freed.  If we are holding the object
735 	 * lock, we will assume we hold a reference to the object
736 	 * such that even if m->object changes, we can re-lock
737 	 * it.
738 	 */
739 	m->oflags |= VPO_WANTED;
740 	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
741 }
742 
743 /*
744  *	vm_page_dirty:
745  *
746  *	Set all bits in the page's dirty field.
747  *
748  *	The object containing the specified page must be locked if the
749  *	call is made from the machine-independent layer.
750  *
751  *	See vm_page_clear_dirty_mask().
752  */
753 void
754 vm_page_dirty(vm_page_t m)
755 {
756 
757 	KASSERT((m->flags & PG_CACHED) == 0,
758 	    ("vm_page_dirty: page in cache!"));
759 	KASSERT(!VM_PAGE_IS_FREE(m),
760 	    ("vm_page_dirty: page is free!"));
761 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
762 	    ("vm_page_dirty: page is invalid!"));
763 	m->dirty = VM_PAGE_BITS_ALL;
764 }
765 
766 /*
767  *	vm_page_splay:
768  *
769  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
770  *	the vm_page containing the given pindex.  If, however, that
771  *	pindex is not found in the vm_object, returns a vm_page that is
772  *	adjacent to the pindex, coming before or after it.
773  */
774 vm_page_t
775 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
776 {
777 	struct vm_page dummy;
778 	vm_page_t lefttreemax, righttreemin, y;
779 
780 	if (root == NULL)
781 		return (root);
782 	lefttreemax = righttreemin = &dummy;
783 	for (;; root = y) {
784 		if (pindex < root->pindex) {
785 			if ((y = root->left) == NULL)
786 				break;
787 			if (pindex < y->pindex) {
788 				/* Rotate right. */
789 				root->left = y->right;
790 				y->right = root;
791 				root = y;
792 				if ((y = root->left) == NULL)
793 					break;
794 			}
795 			/* Link into the new root's right tree. */
796 			righttreemin->left = root;
797 			righttreemin = root;
798 		} else if (pindex > root->pindex) {
799 			if ((y = root->right) == NULL)
800 				break;
801 			if (pindex > y->pindex) {
802 				/* Rotate left. */
803 				root->right = y->left;
804 				y->left = root;
805 				root = y;
806 				if ((y = root->right) == NULL)
807 					break;
808 			}
809 			/* Link into the new root's left tree. */
810 			lefttreemax->right = root;
811 			lefttreemax = root;
812 		} else
813 			break;
814 	}
815 	/* Assemble the new root. */
816 	lefttreemax->right = root->left;
817 	righttreemin->left = root->right;
818 	root->left = dummy.right;
819 	root->right = dummy.left;
820 	return (root);
821 }
822 
823 /*
824  *	vm_page_insert:		[ internal use only ]
825  *
826  *	Inserts the given mem entry into the object and object list.
827  *
828  *	The pagetables are not updated but will presumably fault the page
829  *	in if necessary, or if a kernel page the caller will at some point
830  *	enter the page into the kernel's pmap.  We are not allowed to block
831  *	here so we *can't* do this anyway.
832  *
833  *	The object and page must be locked.
834  *	This routine may not block.
835  */
836 void
837 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
838 {
839 	vm_page_t root;
840 
841 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
842 	if (m->object != NULL)
843 		panic("vm_page_insert: page already inserted");
844 
845 	/*
846 	 * Record the object/offset pair in this page
847 	 */
848 	m->object = object;
849 	m->pindex = pindex;
850 
851 	/*
852 	 * Now link into the object's ordered list of backed pages.
853 	 */
854 	root = object->root;
855 	if (root == NULL) {
856 		m->left = NULL;
857 		m->right = NULL;
858 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
859 	} else {
860 		root = vm_page_splay(pindex, root);
861 		if (pindex < root->pindex) {
862 			m->left = root->left;
863 			m->right = root;
864 			root->left = NULL;
865 			TAILQ_INSERT_BEFORE(root, m, listq);
866 		} else if (pindex == root->pindex)
867 			panic("vm_page_insert: offset already allocated");
868 		else {
869 			m->right = root->right;
870 			m->left = root;
871 			root->right = NULL;
872 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
873 		}
874 	}
875 	object->root = m;
876 
877 	/*
878 	 * show that the object has one more resident page.
879 	 */
880 	object->resident_page_count++;
881 	/*
882 	 * Hold the vnode until the last page is released.
883 	 */
884 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
885 		vhold((struct vnode *)object->handle);
886 
887 	/*
888 	 * Since we are inserting a new and possibly dirty page,
889 	 * update the object's OBJ_MIGHTBEDIRTY flag.
890 	 */
891 	if (m->aflags & PGA_WRITEABLE)
892 		vm_object_set_writeable_dirty(object);
893 }
894 
895 /*
896  *	vm_page_remove:
897  *				NOTE: used by device pager as well -wfj
898  *
899  *	Removes the given mem entry from the object/offset-page
900  *	table and the object page list, but do not invalidate/terminate
901  *	the backing store.
902  *
903  *	The object and page must be locked.
904  *	The underlying pmap entry (if any) is NOT removed here.
905  *	This routine may not block.
906  */
907 void
908 vm_page_remove(vm_page_t m)
909 {
910 	vm_object_t object;
911 	vm_page_t next, prev, root;
912 
913 	if ((m->oflags & VPO_UNMANAGED) == 0)
914 		vm_page_lock_assert(m, MA_OWNED);
915 	if ((object = m->object) == NULL)
916 		return;
917 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
918 	if (m->oflags & VPO_BUSY) {
919 		m->oflags &= ~VPO_BUSY;
920 		vm_page_flash(m);
921 	}
922 
923 	/*
924 	 * Now remove from the object's list of backed pages.
925 	 */
926 	if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
927 		/*
928 		 * Since the page's successor in the list is also its parent
929 		 * in the tree, its right subtree must be empty.
930 		 */
931 		next->left = m->left;
932 		KASSERT(m->right == NULL,
933 		    ("vm_page_remove: page %p has right child", m));
934 	} else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
935 	    prev->right == m) {
936 		/*
937 		 * Since the page's predecessor in the list is also its parent
938 		 * in the tree, its left subtree must be empty.
939 		 */
940 		KASSERT(m->left == NULL,
941 		    ("vm_page_remove: page %p has left child", m));
942 		prev->right = m->right;
943 	} else {
944 		if (m != object->root)
945 			vm_page_splay(m->pindex, object->root);
946 		if (m->left == NULL)
947 			root = m->right;
948 		else if (m->right == NULL)
949 			root = m->left;
950 		else {
951 			/*
952 			 * Move the page's successor to the root, because
953 			 * pages are usually removed in ascending order.
954 			 */
955 			if (m->right != next)
956 				vm_page_splay(m->pindex, m->right);
957 			next->left = m->left;
958 			root = next;
959 		}
960 		object->root = root;
961 	}
962 	TAILQ_REMOVE(&object->memq, m, listq);
963 
964 	/*
965 	 * And show that the object has one fewer resident page.
966 	 */
967 	object->resident_page_count--;
968 	/*
969 	 * The vnode may now be recycled.
970 	 */
971 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
972 		vdrop((struct vnode *)object->handle);
973 
974 	m->object = NULL;
975 }
976 
977 /*
978  *	vm_page_lookup:
979  *
980  *	Returns the page associated with the object/offset
981  *	pair specified; if none is found, NULL is returned.
982  *
983  *	The object must be locked.
984  *	This routine may not block.
985  *	This is a critical path routine
986  */
987 vm_page_t
988 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
989 {
990 	vm_page_t m;
991 
992 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
993 	if ((m = object->root) != NULL && m->pindex != pindex) {
994 		m = vm_page_splay(pindex, m);
995 		if ((object->root = m)->pindex != pindex)
996 			m = NULL;
997 	}
998 	return (m);
999 }
1000 
1001 /*
1002  *	vm_page_find_least:
1003  *
1004  *	Returns the page associated with the object with least pindex
1005  *	greater than or equal to the parameter pindex, or NULL.
1006  *
1007  *	The object must be locked.
1008  *	The routine may not block.
1009  */
1010 vm_page_t
1011 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1012 {
1013 	vm_page_t m;
1014 
1015 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1016 	if ((m = TAILQ_FIRST(&object->memq)) != NULL) {
1017 		if (m->pindex < pindex) {
1018 			m = vm_page_splay(pindex, object->root);
1019 			if ((object->root = m)->pindex < pindex)
1020 				m = TAILQ_NEXT(m, listq);
1021 		}
1022 	}
1023 	return (m);
1024 }
1025 
1026 /*
1027  * Returns the given page's successor (by pindex) within the object if it is
1028  * resident; if none is found, NULL is returned.
1029  *
1030  * The object must be locked.
1031  */
1032 vm_page_t
1033 vm_page_next(vm_page_t m)
1034 {
1035 	vm_page_t next;
1036 
1037 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1038 	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1039 	    next->pindex != m->pindex + 1)
1040 		next = NULL;
1041 	return (next);
1042 }
1043 
1044 /*
1045  * Returns the given page's predecessor (by pindex) within the object if it is
1046  * resident; if none is found, NULL is returned.
1047  *
1048  * The object must be locked.
1049  */
1050 vm_page_t
1051 vm_page_prev(vm_page_t m)
1052 {
1053 	vm_page_t prev;
1054 
1055 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1056 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1057 	    prev->pindex != m->pindex - 1)
1058 		prev = NULL;
1059 	return (prev);
1060 }
1061 
1062 /*
1063  *	vm_page_rename:
1064  *
1065  *	Move the given memory entry from its
1066  *	current object to the specified target object/offset.
1067  *
1068  *	The object must be locked.
1069  *	This routine may not block.
1070  *
1071  *	Note: swap associated with the page must be invalidated by the move.  We
1072  *	      have to do this for several reasons:  (1) we aren't freeing the
1073  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1074  *	      moving the page from object A to B, and will then later move
1075  *	      the backing store from A to B and we can't have a conflict.
1076  *
1077  *	Note: we *always* dirty the page.  It is necessary both for the
1078  *	      fact that we moved it, and because we may be invalidating
1079  *	      swap.  If the page is on the cache, we have to deactivate it
1080  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1081  *	      on the cache.
1082  */
1083 void
1084 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1085 {
1086 
1087 	vm_page_remove(m);
1088 	vm_page_insert(m, new_object, new_pindex);
1089 	vm_page_dirty(m);
1090 }
1091 
1092 /*
1093  *	Convert all of the given object's cached pages that have a
1094  *	pindex within the given range into free pages.  If the value
1095  *	zero is given for "end", then the range's upper bound is
1096  *	infinity.  If the given object is backed by a vnode and it
1097  *	transitions from having one or more cached pages to none, the
1098  *	vnode's hold count is reduced.
1099  */
1100 void
1101 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1102 {
1103 	vm_page_t m, m_next;
1104 	boolean_t empty;
1105 
1106 	mtx_lock(&vm_page_queue_free_mtx);
1107 	if (__predict_false(object->cache == NULL)) {
1108 		mtx_unlock(&vm_page_queue_free_mtx);
1109 		return;
1110 	}
1111 	m = object->cache = vm_page_splay(start, object->cache);
1112 	if (m->pindex < start) {
1113 		if (m->right == NULL)
1114 			m = NULL;
1115 		else {
1116 			m_next = vm_page_splay(start, m->right);
1117 			m_next->left = m;
1118 			m->right = NULL;
1119 			m = object->cache = m_next;
1120 		}
1121 	}
1122 
1123 	/*
1124 	 * At this point, "m" is either (1) a reference to the page
1125 	 * with the least pindex that is greater than or equal to
1126 	 * "start" or (2) NULL.
1127 	 */
1128 	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
1129 		/*
1130 		 * Find "m"'s successor and remove "m" from the
1131 		 * object's cache.
1132 		 */
1133 		if (m->right == NULL) {
1134 			object->cache = m->left;
1135 			m_next = NULL;
1136 		} else {
1137 			m_next = vm_page_splay(start, m->right);
1138 			m_next->left = m->left;
1139 			object->cache = m_next;
1140 		}
1141 		/* Convert "m" to a free page. */
1142 		m->object = NULL;
1143 		m->valid = 0;
1144 		/* Clear PG_CACHED and set PG_FREE. */
1145 		m->flags ^= PG_CACHED | PG_FREE;
1146 		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1147 		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1148 		cnt.v_cache_count--;
1149 		cnt.v_free_count++;
1150 	}
1151 	empty = object->cache == NULL;
1152 	mtx_unlock(&vm_page_queue_free_mtx);
1153 	if (object->type == OBJT_VNODE && empty)
1154 		vdrop(object->handle);
1155 }
1156 
1157 /*
1158  *	Returns the cached page that is associated with the given
1159  *	object and offset.  If, however, none exists, returns NULL.
1160  *
1161  *	The free page queue must be locked.
1162  */
1163 static inline vm_page_t
1164 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1165 {
1166 	vm_page_t m;
1167 
1168 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1169 	if ((m = object->cache) != NULL && m->pindex != pindex) {
1170 		m = vm_page_splay(pindex, m);
1171 		if ((object->cache = m)->pindex != pindex)
1172 			m = NULL;
1173 	}
1174 	return (m);
1175 }
1176 
1177 /*
1178  *	Remove the given cached page from its containing object's
1179  *	collection of cached pages.
1180  *
1181  *	The free page queue must be locked.
1182  */
1183 void
1184 vm_page_cache_remove(vm_page_t m)
1185 {
1186 	vm_object_t object;
1187 	vm_page_t root;
1188 
1189 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1190 	KASSERT((m->flags & PG_CACHED) != 0,
1191 	    ("vm_page_cache_remove: page %p is not cached", m));
1192 	object = m->object;
1193 	if (m != object->cache) {
1194 		root = vm_page_splay(m->pindex, object->cache);
1195 		KASSERT(root == m,
1196 		    ("vm_page_cache_remove: page %p is not cached in object %p",
1197 		    m, object));
1198 	}
1199 	if (m->left == NULL)
1200 		root = m->right;
1201 	else if (m->right == NULL)
1202 		root = m->left;
1203 	else {
1204 		root = vm_page_splay(m->pindex, m->left);
1205 		root->right = m->right;
1206 	}
1207 	object->cache = root;
1208 	m->object = NULL;
1209 	cnt.v_cache_count--;
1210 }
1211 
1212 /*
1213  *	Transfer all of the cached pages with offset greater than or
1214  *	equal to 'offidxstart' from the original object's cache to the
1215  *	new object's cache.  However, any cached pages with offset
1216  *	greater than or equal to the new object's size are kept in the
1217  *	original object.  Initially, the new object's cache must be
1218  *	empty.  Offset 'offidxstart' in the original object must
1219  *	correspond to offset zero in the new object.
1220  *
1221  *	The new object must be locked.
1222  */
1223 void
1224 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1225     vm_object_t new_object)
1226 {
1227 	vm_page_t m, m_next;
1228 
1229 	/*
1230 	 * Insertion into an object's collection of cached pages
1231 	 * requires the object to be locked.  In contrast, removal does
1232 	 * not.
1233 	 */
1234 	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1235 	KASSERT(new_object->cache == NULL,
1236 	    ("vm_page_cache_transfer: object %p has cached pages",
1237 	    new_object));
1238 	mtx_lock(&vm_page_queue_free_mtx);
1239 	if ((m = orig_object->cache) != NULL) {
1240 		/*
1241 		 * Transfer all of the pages with offset greater than or
1242 		 * equal to 'offidxstart' from the original object's
1243 		 * cache to the new object's cache.
1244 		 */
1245 		m = vm_page_splay(offidxstart, m);
1246 		if (m->pindex < offidxstart) {
1247 			orig_object->cache = m;
1248 			new_object->cache = m->right;
1249 			m->right = NULL;
1250 		} else {
1251 			orig_object->cache = m->left;
1252 			new_object->cache = m;
1253 			m->left = NULL;
1254 		}
1255 		while ((m = new_object->cache) != NULL) {
1256 			if ((m->pindex - offidxstart) >= new_object->size) {
1257 				/*
1258 				 * Return all of the cached pages with
1259 				 * offset greater than or equal to the
1260 				 * new object's size to the original
1261 				 * object's cache.
1262 				 */
1263 				new_object->cache = m->left;
1264 				m->left = orig_object->cache;
1265 				orig_object->cache = m;
1266 				break;
1267 			}
1268 			m_next = vm_page_splay(m->pindex, m->right);
1269 			/* Update the page's object and offset. */
1270 			m->object = new_object;
1271 			m->pindex -= offidxstart;
1272 			if (m_next == NULL)
1273 				break;
1274 			m->right = NULL;
1275 			m_next->left = m;
1276 			new_object->cache = m_next;
1277 		}
1278 		KASSERT(new_object->cache == NULL ||
1279 		    new_object->type == OBJT_SWAP,
1280 		    ("vm_page_cache_transfer: object %p's type is incompatible"
1281 		    " with cached pages", new_object));
1282 	}
1283 	mtx_unlock(&vm_page_queue_free_mtx);
1284 }
1285 
1286 /*
1287  *	vm_page_alloc:
1288  *
1289  *	Allocate and return a page that is associated with the specified
1290  *	object and offset pair.  By default, this page has the flag VPO_BUSY
1291  *	set.
1292  *
1293  *	The caller must always specify an allocation class.
1294  *
1295  *	allocation classes:
1296  *	VM_ALLOC_NORMAL		normal process request
1297  *	VM_ALLOC_SYSTEM		system *really* needs a page
1298  *	VM_ALLOC_INTERRUPT	interrupt time request
1299  *
1300  *	optional allocation flags:
1301  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1302  *				intends to allocate
1303  *	VM_ALLOC_IFCACHED	return page only if it is cached
1304  *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1305  *				is cached
1306  *	VM_ALLOC_NOBUSY		do not set the flag VPO_BUSY on the page
1307  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1308  *				should not have the flag VPO_BUSY set
1309  *	VM_ALLOC_WIRED		wire the allocated page
1310  *	VM_ALLOC_ZERO		prefer a zeroed page
1311  *
1312  *	This routine may not sleep.
1313  */
1314 vm_page_t
1315 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1316 {
1317 	struct vnode *vp = NULL;
1318 	vm_object_t m_object;
1319 	vm_page_t m;
1320 	int flags, req_class;
1321 
1322 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0),
1323 	    ("vm_page_alloc: inconsistent object/req"));
1324 	if (object != NULL)
1325 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1326 
1327 	req_class = req & VM_ALLOC_CLASS_MASK;
1328 
1329 	/*
1330 	 * The page daemon is allowed to dig deeper into the free page list.
1331 	 */
1332 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1333 		req_class = VM_ALLOC_SYSTEM;
1334 
1335 	mtx_lock(&vm_page_queue_free_mtx);
1336 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1337 	    (req_class == VM_ALLOC_SYSTEM &&
1338 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1339 	    (req_class == VM_ALLOC_INTERRUPT &&
1340 	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1341 		/*
1342 		 * Allocate from the free queue if the number of free pages
1343 		 * exceeds the minimum for the request class.
1344 		 */
1345 		if (object != NULL &&
1346 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1347 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1348 				mtx_unlock(&vm_page_queue_free_mtx);
1349 				return (NULL);
1350 			}
1351 			if (vm_phys_unfree_page(m))
1352 				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1353 #if VM_NRESERVLEVEL > 0
1354 			else if (!vm_reserv_reactivate_page(m))
1355 #else
1356 			else
1357 #endif
1358 				panic("vm_page_alloc: cache page %p is missing"
1359 				    " from the free queue", m);
1360 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1361 			mtx_unlock(&vm_page_queue_free_mtx);
1362 			return (NULL);
1363 #if VM_NRESERVLEVEL > 0
1364 		} else if (object == NULL || object->type == OBJT_DEVICE ||
1365 		    object->type == OBJT_SG ||
1366 		    (object->flags & OBJ_COLORED) == 0 ||
1367 		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1368 #else
1369 		} else {
1370 #endif
1371 			m = vm_phys_alloc_pages(object != NULL ?
1372 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1373 #if VM_NRESERVLEVEL > 0
1374 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1375 				m = vm_phys_alloc_pages(object != NULL ?
1376 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1377 				    0);
1378 			}
1379 #endif
1380 		}
1381 	} else {
1382 		/*
1383 		 * Not allocatable, give up.
1384 		 */
1385 		mtx_unlock(&vm_page_queue_free_mtx);
1386 		atomic_add_int(&vm_pageout_deficit,
1387 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1388 		pagedaemon_wakeup();
1389 		return (NULL);
1390 	}
1391 
1392 	/*
1393 	 *  At this point we had better have found a good page.
1394 	 */
1395 	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1396 	KASSERT(m->queue == PQ_NONE,
1397 	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1398 	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1399 	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1400 	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1401 	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1402 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1403 	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1404 	    pmap_page_get_memattr(m)));
1405 	if ((m->flags & PG_CACHED) != 0) {
1406 		KASSERT((m->flags & PG_ZERO) == 0,
1407 		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1408 		KASSERT(m->valid != 0,
1409 		    ("vm_page_alloc: cached page %p is invalid", m));
1410 		if (m->object == object && m->pindex == pindex)
1411 	  		cnt.v_reactivated++;
1412 		else
1413 			m->valid = 0;
1414 		m_object = m->object;
1415 		vm_page_cache_remove(m);
1416 		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1417 			vp = m_object->handle;
1418 	} else {
1419 		KASSERT(VM_PAGE_IS_FREE(m),
1420 		    ("vm_page_alloc: page %p is not free", m));
1421 		KASSERT(m->valid == 0,
1422 		    ("vm_page_alloc: free page %p is valid", m));
1423 		cnt.v_free_count--;
1424 	}
1425 
1426 	/*
1427 	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1428 	 * must be cleared before the free page queues lock is released.
1429 	 */
1430 	flags = 0;
1431 	if (m->flags & PG_ZERO) {
1432 		vm_page_zero_count--;
1433 		if (req & VM_ALLOC_ZERO)
1434 			flags = PG_ZERO;
1435 	}
1436 	m->flags = flags;
1437 	mtx_unlock(&vm_page_queue_free_mtx);
1438 	m->aflags = 0;
1439 	if (object == NULL || object->type == OBJT_PHYS)
1440 		m->oflags = VPO_UNMANAGED;
1441 	else
1442 		m->oflags = 0;
1443 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0)
1444 		m->oflags |= VPO_BUSY;
1445 	if (req & VM_ALLOC_WIRED) {
1446 		/*
1447 		 * The page lock is not required for wiring a page until that
1448 		 * page is inserted into the object.
1449 		 */
1450 		atomic_add_int(&cnt.v_wire_count, 1);
1451 		m->wire_count = 1;
1452 	}
1453 	m->act_count = 0;
1454 
1455 	if (object != NULL) {
1456 		/* Ignore device objects; the pager sets "memattr" for them. */
1457 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1458 		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1459 			pmap_page_set_memattr(m, object->memattr);
1460 		vm_page_insert(m, object, pindex);
1461 	} else
1462 		m->pindex = pindex;
1463 
1464 	/*
1465 	 * The following call to vdrop() must come after the above call
1466 	 * to vm_page_insert() in case both affect the same object and
1467 	 * vnode.  Otherwise, the affected vnode's hold count could
1468 	 * temporarily become zero.
1469 	 */
1470 	if (vp != NULL)
1471 		vdrop(vp);
1472 
1473 	/*
1474 	 * Don't wakeup too often - wakeup the pageout daemon when
1475 	 * we would be nearly out of memory.
1476 	 */
1477 	if (vm_paging_needed())
1478 		pagedaemon_wakeup();
1479 
1480 	return (m);
1481 }
1482 
1483 /*
1484  * Initialize a page that has been freshly dequeued from a freelist.
1485  * The caller has to drop the vnode returned, if it is not NULL.
1486  *
1487  * This function may only be used to initialize unmanaged pages.
1488  *
1489  * To be called with vm_page_queue_free_mtx held.
1490  */
1491 struct vnode *
1492 vm_page_alloc_init(vm_page_t m)
1493 {
1494 	struct vnode *drop;
1495 	vm_object_t m_object;
1496 
1497 	KASSERT(m->queue == PQ_NONE,
1498 	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1499 	    m, m->queue));
1500 	KASSERT(m->wire_count == 0,
1501 	    ("vm_page_alloc_init: page %p is wired", m));
1502 	KASSERT(m->hold_count == 0,
1503 	    ("vm_page_alloc_init: page %p is held", m));
1504 	KASSERT(m->busy == 0,
1505 	    ("vm_page_alloc_init: page %p is busy", m));
1506 	KASSERT(m->dirty == 0,
1507 	    ("vm_page_alloc_init: page %p is dirty", m));
1508 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1509 	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1510 	    m, pmap_page_get_memattr(m)));
1511 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1512 	drop = NULL;
1513 	if ((m->flags & PG_CACHED) != 0) {
1514 		KASSERT((m->flags & PG_ZERO) == 0,
1515 		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1516 		m->valid = 0;
1517 		m_object = m->object;
1518 		vm_page_cache_remove(m);
1519 		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1520 			drop = m_object->handle;
1521 	} else {
1522 		KASSERT(VM_PAGE_IS_FREE(m),
1523 		    ("vm_page_alloc_init: page %p is not free", m));
1524 		KASSERT(m->valid == 0,
1525 		    ("vm_page_alloc_init: free page %p is valid", m));
1526 		cnt.v_free_count--;
1527 		if ((m->flags & PG_ZERO) != 0)
1528 			vm_page_zero_count--;
1529 	}
1530 	/* Don't clear the PG_ZERO flag; we'll need it later. */
1531 	m->flags &= PG_ZERO;
1532 	m->aflags = 0;
1533 	m->oflags = VPO_UNMANAGED;
1534 	/* Unmanaged pages don't use "act_count". */
1535 	return (drop);
1536 }
1537 
1538 /*
1539  * 	vm_page_alloc_freelist:
1540  *
1541  *	Allocate a physical page from the specified free page list.
1542  *
1543  *	The caller must always specify an allocation class.
1544  *
1545  *	allocation classes:
1546  *	VM_ALLOC_NORMAL		normal process request
1547  *	VM_ALLOC_SYSTEM		system *really* needs a page
1548  *	VM_ALLOC_INTERRUPT	interrupt time request
1549  *
1550  *	optional allocation flags:
1551  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1552  *				intends to allocate
1553  *	VM_ALLOC_WIRED		wire the allocated page
1554  *	VM_ALLOC_ZERO		prefer a zeroed page
1555  *
1556  *	This routine may not sleep.
1557  */
1558 vm_page_t
1559 vm_page_alloc_freelist(int flind, int req)
1560 {
1561 	struct vnode *drop;
1562 	vm_page_t m;
1563 	u_int flags;
1564 	int req_class;
1565 
1566 	req_class = req & VM_ALLOC_CLASS_MASK;
1567 
1568 	/*
1569 	 * The page daemon is allowed to dig deeper into the free page list.
1570 	 */
1571 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1572 		req_class = VM_ALLOC_SYSTEM;
1573 
1574 	/*
1575 	 * Do not allocate reserved pages unless the req has asked for it.
1576 	 */
1577 	mtx_lock(&vm_page_queue_free_mtx);
1578 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1579 	    (req_class == VM_ALLOC_SYSTEM &&
1580 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1581 	    (req_class == VM_ALLOC_INTERRUPT &&
1582 	    cnt.v_free_count + cnt.v_cache_count > 0))
1583 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1584 	else {
1585 		mtx_unlock(&vm_page_queue_free_mtx);
1586 		atomic_add_int(&vm_pageout_deficit,
1587 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1588 		pagedaemon_wakeup();
1589 		return (NULL);
1590 	}
1591 	if (m == NULL) {
1592 		mtx_unlock(&vm_page_queue_free_mtx);
1593 		return (NULL);
1594 	}
1595 	drop = vm_page_alloc_init(m);
1596 	mtx_unlock(&vm_page_queue_free_mtx);
1597 
1598 	/*
1599 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1600 	 */
1601 	flags = 0;
1602 	if ((req & VM_ALLOC_ZERO) != 0)
1603 		flags = PG_ZERO;
1604 	m->flags &= flags;
1605 	if ((req & VM_ALLOC_WIRED) != 0) {
1606 		/*
1607 		 * The page lock is not required for wiring a page that does
1608 		 * not belong to an object.
1609 		 */
1610 		atomic_add_int(&cnt.v_wire_count, 1);
1611 		m->wire_count = 1;
1612 	}
1613 	if (drop != NULL)
1614 		vdrop(drop);
1615 	if (vm_paging_needed())
1616 		pagedaemon_wakeup();
1617 	return (m);
1618 }
1619 
1620 /*
1621  *	vm_wait:	(also see VM_WAIT macro)
1622  *
1623  *	Block until free pages are available for allocation
1624  *	- Called in various places before memory allocations.
1625  */
1626 void
1627 vm_wait(void)
1628 {
1629 
1630 	mtx_lock(&vm_page_queue_free_mtx);
1631 	if (curproc == pageproc) {
1632 		vm_pageout_pages_needed = 1;
1633 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1634 		    PDROP | PSWP, "VMWait", 0);
1635 	} else {
1636 		if (!vm_pages_needed) {
1637 			vm_pages_needed = 1;
1638 			wakeup(&vm_pages_needed);
1639 		}
1640 		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1641 		    "vmwait", 0);
1642 	}
1643 }
1644 
1645 /*
1646  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1647  *
1648  *	Block until free pages are available for allocation
1649  *	- Called only in vm_fault so that processes page faulting
1650  *	  can be easily tracked.
1651  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1652  *	  processes will be able to grab memory first.  Do not change
1653  *	  this balance without careful testing first.
1654  */
1655 void
1656 vm_waitpfault(void)
1657 {
1658 
1659 	mtx_lock(&vm_page_queue_free_mtx);
1660 	if (!vm_pages_needed) {
1661 		vm_pages_needed = 1;
1662 		wakeup(&vm_pages_needed);
1663 	}
1664 	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1665 	    "pfault", 0);
1666 }
1667 
1668 /*
1669  *	vm_page_requeue:
1670  *
1671  *	Move the given page to the tail of its present page queue.
1672  *
1673  *	The page queues must be locked.
1674  */
1675 void
1676 vm_page_requeue(vm_page_t m)
1677 {
1678 	struct vpgqueues *vpq;
1679 	int queue;
1680 
1681 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1682 	queue = m->queue;
1683 	KASSERT(queue != PQ_NONE,
1684 	    ("vm_page_requeue: page %p is not queued", m));
1685 	vpq = &vm_page_queues[queue];
1686 	TAILQ_REMOVE(&vpq->pl, m, pageq);
1687 	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1688 }
1689 
1690 /*
1691  *	vm_page_queue_remove:
1692  *
1693  *	Remove the given page from the specified queue.
1694  *
1695  *	The page and page queues must be locked.
1696  */
1697 static __inline void
1698 vm_page_queue_remove(int queue, vm_page_t m)
1699 {
1700 	struct vpgqueues *pq;
1701 
1702 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1703 	vm_page_lock_assert(m, MA_OWNED);
1704 	pq = &vm_page_queues[queue];
1705 	TAILQ_REMOVE(&pq->pl, m, pageq);
1706 	(*pq->cnt)--;
1707 }
1708 
1709 /*
1710  *	vm_pageq_remove:
1711  *
1712  *	Remove a page from its queue.
1713  *
1714  *	The given page must be locked.
1715  *	This routine may not block.
1716  */
1717 void
1718 vm_pageq_remove(vm_page_t m)
1719 {
1720 	int queue;
1721 
1722 	vm_page_lock_assert(m, MA_OWNED);
1723 	if ((queue = m->queue) != PQ_NONE) {
1724 		vm_page_lock_queues();
1725 		m->queue = PQ_NONE;
1726 		vm_page_queue_remove(queue, m);
1727 		vm_page_unlock_queues();
1728 	}
1729 }
1730 
1731 /*
1732  *	vm_page_enqueue:
1733  *
1734  *	Add the given page to the specified queue.
1735  *
1736  *	The page queues must be locked.
1737  */
1738 static void
1739 vm_page_enqueue(int queue, vm_page_t m)
1740 {
1741 	struct vpgqueues *vpq;
1742 
1743 	vpq = &vm_page_queues[queue];
1744 	m->queue = queue;
1745 	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1746 	++*vpq->cnt;
1747 }
1748 
1749 /*
1750  *	vm_page_activate:
1751  *
1752  *	Put the specified page on the active list (if appropriate).
1753  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1754  *	mess with it.
1755  *
1756  *	The page must be locked.
1757  *	This routine may not block.
1758  */
1759 void
1760 vm_page_activate(vm_page_t m)
1761 {
1762 	int queue;
1763 
1764 	vm_page_lock_assert(m, MA_OWNED);
1765 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1766 	if ((queue = m->queue) != PQ_ACTIVE) {
1767 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
1768 			if (m->act_count < ACT_INIT)
1769 				m->act_count = ACT_INIT;
1770 			vm_page_lock_queues();
1771 			if (queue != PQ_NONE)
1772 				vm_page_queue_remove(queue, m);
1773 			vm_page_enqueue(PQ_ACTIVE, m);
1774 			vm_page_unlock_queues();
1775 		} else
1776 			KASSERT(queue == PQ_NONE,
1777 			    ("vm_page_activate: wired page %p is queued", m));
1778 	} else {
1779 		if (m->act_count < ACT_INIT)
1780 			m->act_count = ACT_INIT;
1781 	}
1782 }
1783 
1784 /*
1785  *	vm_page_free_wakeup:
1786  *
1787  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1788  *	routine is called when a page has been added to the cache or free
1789  *	queues.
1790  *
1791  *	The page queues must be locked.
1792  *	This routine may not block.
1793  */
1794 static inline void
1795 vm_page_free_wakeup(void)
1796 {
1797 
1798 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1799 	/*
1800 	 * if pageout daemon needs pages, then tell it that there are
1801 	 * some free.
1802 	 */
1803 	if (vm_pageout_pages_needed &&
1804 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1805 		wakeup(&vm_pageout_pages_needed);
1806 		vm_pageout_pages_needed = 0;
1807 	}
1808 	/*
1809 	 * wakeup processes that are waiting on memory if we hit a
1810 	 * high water mark. And wakeup scheduler process if we have
1811 	 * lots of memory. this process will swapin processes.
1812 	 */
1813 	if (vm_pages_needed && !vm_page_count_min()) {
1814 		vm_pages_needed = 0;
1815 		wakeup(&cnt.v_free_count);
1816 	}
1817 }
1818 
1819 /*
1820  *	vm_page_free_toq:
1821  *
1822  *	Returns the given page to the free list,
1823  *	disassociating it with any VM object.
1824  *
1825  *	Object and page must be locked prior to entry.
1826  *	This routine may not block.
1827  */
1828 
1829 void
1830 vm_page_free_toq(vm_page_t m)
1831 {
1832 
1833 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1834 		vm_page_lock_assert(m, MA_OWNED);
1835 		KASSERT(!pmap_page_is_mapped(m),
1836 		    ("vm_page_free_toq: freeing mapped page %p", m));
1837 	}
1838 	PCPU_INC(cnt.v_tfree);
1839 
1840 	if (VM_PAGE_IS_FREE(m))
1841 		panic("vm_page_free: freeing free page %p", m);
1842 	else if (m->busy != 0)
1843 		panic("vm_page_free: freeing busy page %p", m);
1844 
1845 	/*
1846 	 * unqueue, then remove page.  Note that we cannot destroy
1847 	 * the page here because we do not want to call the pager's
1848 	 * callback routine until after we've put the page on the
1849 	 * appropriate free queue.
1850 	 */
1851 	if ((m->oflags & VPO_UNMANAGED) == 0)
1852 		vm_pageq_remove(m);
1853 	vm_page_remove(m);
1854 
1855 	/*
1856 	 * If fictitious remove object association and
1857 	 * return, otherwise delay object association removal.
1858 	 */
1859 	if ((m->flags & PG_FICTITIOUS) != 0) {
1860 		return;
1861 	}
1862 
1863 	m->valid = 0;
1864 	vm_page_undirty(m);
1865 
1866 	if (m->wire_count != 0)
1867 		panic("vm_page_free: freeing wired page %p", m);
1868 	if (m->hold_count != 0) {
1869 		m->flags &= ~PG_ZERO;
1870 		vm_page_lock_queues();
1871 		vm_page_enqueue(PQ_HOLD, m);
1872 		vm_page_unlock_queues();
1873 	} else {
1874 		/*
1875 		 * Restore the default memory attribute to the page.
1876 		 */
1877 		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1878 			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1879 
1880 		/*
1881 		 * Insert the page into the physical memory allocator's
1882 		 * cache/free page queues.
1883 		 */
1884 		mtx_lock(&vm_page_queue_free_mtx);
1885 		m->flags |= PG_FREE;
1886 		cnt.v_free_count++;
1887 #if VM_NRESERVLEVEL > 0
1888 		if (!vm_reserv_free_page(m))
1889 #else
1890 		if (TRUE)
1891 #endif
1892 			vm_phys_free_pages(m, 0);
1893 		if ((m->flags & PG_ZERO) != 0)
1894 			++vm_page_zero_count;
1895 		else
1896 			vm_page_zero_idle_wakeup();
1897 		vm_page_free_wakeup();
1898 		mtx_unlock(&vm_page_queue_free_mtx);
1899 	}
1900 }
1901 
1902 /*
1903  *	vm_page_wire:
1904  *
1905  *	Mark this page as wired down by yet
1906  *	another map, removing it from paging queues
1907  *	as necessary.
1908  *
1909  *	If the page is fictitious, then its wire count must remain one.
1910  *
1911  *	The page must be locked.
1912  *	This routine may not block.
1913  */
1914 void
1915 vm_page_wire(vm_page_t m)
1916 {
1917 
1918 	/*
1919 	 * Only bump the wire statistics if the page is not already wired,
1920 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1921 	 * it is already off the queues).
1922 	 */
1923 	vm_page_lock_assert(m, MA_OWNED);
1924 	if ((m->flags & PG_FICTITIOUS) != 0) {
1925 		KASSERT(m->wire_count == 1,
1926 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
1927 		    m));
1928 		return;
1929 	}
1930 	if (m->wire_count == 0) {
1931 		if ((m->oflags & VPO_UNMANAGED) == 0)
1932 			vm_pageq_remove(m);
1933 		atomic_add_int(&cnt.v_wire_count, 1);
1934 	}
1935 	m->wire_count++;
1936 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1937 }
1938 
1939 /*
1940  * vm_page_unwire:
1941  *
1942  * Release one wiring of the specified page, potentially enabling it to be
1943  * paged again.  If paging is enabled, then the value of the parameter
1944  * "activate" determines to which queue the page is added.  If "activate" is
1945  * non-zero, then the page is added to the active queue.  Otherwise, it is
1946  * added to the inactive queue.
1947  *
1948  * However, unless the page belongs to an object, it is not enqueued because
1949  * it cannot be paged out.
1950  *
1951  * If a page is fictitious, then its wire count must alway be one.
1952  *
1953  * A managed page must be locked.
1954  */
1955 void
1956 vm_page_unwire(vm_page_t m, int activate)
1957 {
1958 
1959 	if ((m->oflags & VPO_UNMANAGED) == 0)
1960 		vm_page_lock_assert(m, MA_OWNED);
1961 	if ((m->flags & PG_FICTITIOUS) != 0) {
1962 		KASSERT(m->wire_count == 1,
1963 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
1964 		return;
1965 	}
1966 	if (m->wire_count > 0) {
1967 		m->wire_count--;
1968 		if (m->wire_count == 0) {
1969 			atomic_subtract_int(&cnt.v_wire_count, 1);
1970 			if ((m->oflags & VPO_UNMANAGED) != 0 ||
1971 			    m->object == NULL)
1972 				return;
1973 			vm_page_lock_queues();
1974 			if (activate)
1975 				vm_page_enqueue(PQ_ACTIVE, m);
1976 			else {
1977 				m->flags &= ~PG_WINATCFLS;
1978 				vm_page_enqueue(PQ_INACTIVE, m);
1979 			}
1980 			vm_page_unlock_queues();
1981 		}
1982 	} else
1983 		panic("vm_page_unwire: page %p's wire count is zero", m);
1984 }
1985 
1986 /*
1987  * Move the specified page to the inactive queue.
1988  *
1989  * Many pages placed on the inactive queue should actually go
1990  * into the cache, but it is difficult to figure out which.  What
1991  * we do instead, if the inactive target is well met, is to put
1992  * clean pages at the head of the inactive queue instead of the tail.
1993  * This will cause them to be moved to the cache more quickly and
1994  * if not actively re-referenced, reclaimed more quickly.  If we just
1995  * stick these pages at the end of the inactive queue, heavy filesystem
1996  * meta-data accesses can cause an unnecessary paging load on memory bound
1997  * processes.  This optimization causes one-time-use metadata to be
1998  * reused more quickly.
1999  *
2000  * Normally athead is 0 resulting in LRU operation.  athead is set
2001  * to 1 if we want this page to be 'as if it were placed in the cache',
2002  * except without unmapping it from the process address space.
2003  *
2004  * This routine may not block.
2005  */
2006 static inline void
2007 _vm_page_deactivate(vm_page_t m, int athead)
2008 {
2009 	int queue;
2010 
2011 	vm_page_lock_assert(m, MA_OWNED);
2012 
2013 	/*
2014 	 * Ignore if already inactive.
2015 	 */
2016 	if ((queue = m->queue) == PQ_INACTIVE)
2017 		return;
2018 	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2019 		vm_page_lock_queues();
2020 		m->flags &= ~PG_WINATCFLS;
2021 		if (queue != PQ_NONE)
2022 			vm_page_queue_remove(queue, m);
2023 		if (athead)
2024 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
2025 			    pageq);
2026 		else
2027 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
2028 			    pageq);
2029 		m->queue = PQ_INACTIVE;
2030 		cnt.v_inactive_count++;
2031 		vm_page_unlock_queues();
2032 	}
2033 }
2034 
2035 /*
2036  * Move the specified page to the inactive queue.
2037  *
2038  * The page must be locked.
2039  */
2040 void
2041 vm_page_deactivate(vm_page_t m)
2042 {
2043 
2044 	_vm_page_deactivate(m, 0);
2045 }
2046 
2047 /*
2048  * vm_page_try_to_cache:
2049  *
2050  * Returns 0 on failure, 1 on success
2051  */
2052 int
2053 vm_page_try_to_cache(vm_page_t m)
2054 {
2055 
2056 	vm_page_lock_assert(m, MA_OWNED);
2057 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2058 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2059 	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2060 		return (0);
2061 	pmap_remove_all(m);
2062 	if (m->dirty)
2063 		return (0);
2064 	vm_page_cache(m);
2065 	return (1);
2066 }
2067 
2068 /*
2069  * vm_page_try_to_free()
2070  *
2071  *	Attempt to free the page.  If we cannot free it, we do nothing.
2072  *	1 is returned on success, 0 on failure.
2073  */
2074 int
2075 vm_page_try_to_free(vm_page_t m)
2076 {
2077 
2078 	vm_page_lock_assert(m, MA_OWNED);
2079 	if (m->object != NULL)
2080 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2081 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2082 	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2083 		return (0);
2084 	pmap_remove_all(m);
2085 	if (m->dirty)
2086 		return (0);
2087 	vm_page_free(m);
2088 	return (1);
2089 }
2090 
2091 /*
2092  * vm_page_cache
2093  *
2094  * Put the specified page onto the page cache queue (if appropriate).
2095  *
2096  * This routine may not block.
2097  */
2098 void
2099 vm_page_cache(vm_page_t m)
2100 {
2101 	vm_object_t object;
2102 	vm_page_t next, prev, root;
2103 
2104 	vm_page_lock_assert(m, MA_OWNED);
2105 	object = m->object;
2106 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2107 	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy ||
2108 	    m->hold_count || m->wire_count)
2109 		panic("vm_page_cache: attempting to cache busy page");
2110 	pmap_remove_all(m);
2111 	if (m->dirty != 0)
2112 		panic("vm_page_cache: page %p is dirty", m);
2113 	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2114 	    (object->type == OBJT_SWAP &&
2115 	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2116 		/*
2117 		 * Hypothesis: A cache-elgible page belonging to a
2118 		 * default object or swap object but without a backing
2119 		 * store must be zero filled.
2120 		 */
2121 		vm_page_free(m);
2122 		return;
2123 	}
2124 	KASSERT((m->flags & PG_CACHED) == 0,
2125 	    ("vm_page_cache: page %p is already cached", m));
2126 	PCPU_INC(cnt.v_tcached);
2127 
2128 	/*
2129 	 * Remove the page from the paging queues.
2130 	 */
2131 	vm_pageq_remove(m);
2132 
2133 	/*
2134 	 * Remove the page from the object's collection of resident
2135 	 * pages.
2136 	 */
2137 	if ((next = TAILQ_NEXT(m, listq)) != NULL && next->left == m) {
2138 		/*
2139 		 * Since the page's successor in the list is also its parent
2140 		 * in the tree, its right subtree must be empty.
2141 		 */
2142 		next->left = m->left;
2143 		KASSERT(m->right == NULL,
2144 		    ("vm_page_cache: page %p has right child", m));
2145 	} else if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
2146 	    prev->right == m) {
2147 		/*
2148 		 * Since the page's predecessor in the list is also its parent
2149 		 * in the tree, its left subtree must be empty.
2150 		 */
2151 		KASSERT(m->left == NULL,
2152 		    ("vm_page_cache: page %p has left child", m));
2153 		prev->right = m->right;
2154 	} else {
2155 		if (m != object->root)
2156 			vm_page_splay(m->pindex, object->root);
2157 		if (m->left == NULL)
2158 			root = m->right;
2159 		else if (m->right == NULL)
2160 			root = m->left;
2161 		else {
2162 			/*
2163 			 * Move the page's successor to the root, because
2164 			 * pages are usually removed in ascending order.
2165 			 */
2166 			if (m->right != next)
2167 				vm_page_splay(m->pindex, m->right);
2168 			next->left = m->left;
2169 			root = next;
2170 		}
2171 		object->root = root;
2172 	}
2173 	TAILQ_REMOVE(&object->memq, m, listq);
2174 	object->resident_page_count--;
2175 
2176 	/*
2177 	 * Restore the default memory attribute to the page.
2178 	 */
2179 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2180 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2181 
2182 	/*
2183 	 * Insert the page into the object's collection of cached pages
2184 	 * and the physical memory allocator's cache/free page queues.
2185 	 */
2186 	m->flags &= ~PG_ZERO;
2187 	mtx_lock(&vm_page_queue_free_mtx);
2188 	m->flags |= PG_CACHED;
2189 	cnt.v_cache_count++;
2190 	root = object->cache;
2191 	if (root == NULL) {
2192 		m->left = NULL;
2193 		m->right = NULL;
2194 	} else {
2195 		root = vm_page_splay(m->pindex, root);
2196 		if (m->pindex < root->pindex) {
2197 			m->left = root->left;
2198 			m->right = root;
2199 			root->left = NULL;
2200 		} else if (__predict_false(m->pindex == root->pindex))
2201 			panic("vm_page_cache: offset already cached");
2202 		else {
2203 			m->right = root->right;
2204 			m->left = root;
2205 			root->right = NULL;
2206 		}
2207 	}
2208 	object->cache = m;
2209 #if VM_NRESERVLEVEL > 0
2210 	if (!vm_reserv_free_page(m)) {
2211 #else
2212 	if (TRUE) {
2213 #endif
2214 		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2215 		vm_phys_free_pages(m, 0);
2216 	}
2217 	vm_page_free_wakeup();
2218 	mtx_unlock(&vm_page_queue_free_mtx);
2219 
2220 	/*
2221 	 * Increment the vnode's hold count if this is the object's only
2222 	 * cached page.  Decrement the vnode's hold count if this was
2223 	 * the object's only resident page.
2224 	 */
2225 	if (object->type == OBJT_VNODE) {
2226 		if (root == NULL && object->resident_page_count != 0)
2227 			vhold(object->handle);
2228 		else if (root != NULL && object->resident_page_count == 0)
2229 			vdrop(object->handle);
2230 	}
2231 }
2232 
2233 /*
2234  * vm_page_dontneed
2235  *
2236  *	Cache, deactivate, or do nothing as appropriate.  This routine
2237  *	is typically used by madvise() MADV_DONTNEED.
2238  *
2239  *	Generally speaking we want to move the page into the cache so
2240  *	it gets reused quickly.  However, this can result in a silly syndrome
2241  *	due to the page recycling too quickly.  Small objects will not be
2242  *	fully cached.  On the otherhand, if we move the page to the inactive
2243  *	queue we wind up with a problem whereby very large objects
2244  *	unnecessarily blow away our inactive and cache queues.
2245  *
2246  *	The solution is to move the pages based on a fixed weighting.  We
2247  *	either leave them alone, deactivate them, or move them to the cache,
2248  *	where moving them to the cache has the highest weighting.
2249  *	By forcing some pages into other queues we eventually force the
2250  *	system to balance the queues, potentially recovering other unrelated
2251  *	space from active.  The idea is to not force this to happen too
2252  *	often.
2253  */
2254 void
2255 vm_page_dontneed(vm_page_t m)
2256 {
2257 	int dnw;
2258 	int head;
2259 
2260 	vm_page_lock_assert(m, MA_OWNED);
2261 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2262 	dnw = PCPU_GET(dnweight);
2263 	PCPU_INC(dnweight);
2264 
2265 	/*
2266 	 * Occasionally leave the page alone.
2267 	 */
2268 	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2269 		if (m->act_count >= ACT_INIT)
2270 			--m->act_count;
2271 		return;
2272 	}
2273 
2274 	/*
2275 	 * Clear any references to the page.  Otherwise, the page daemon will
2276 	 * immediately reactivate the page.
2277 	 *
2278 	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2279 	 * pmap operation, such as pmap_remove(), could clear a reference in
2280 	 * the pmap and set PGA_REFERENCED on the page before the
2281 	 * pmap_clear_reference() had completed.  Consequently, the page would
2282 	 * appear referenced based upon an old reference that occurred before
2283 	 * this function ran.
2284 	 */
2285 	pmap_clear_reference(m);
2286 	vm_page_aflag_clear(m, PGA_REFERENCED);
2287 
2288 	if (m->dirty == 0 && pmap_is_modified(m))
2289 		vm_page_dirty(m);
2290 
2291 	if (m->dirty || (dnw & 0x0070) == 0) {
2292 		/*
2293 		 * Deactivate the page 3 times out of 32.
2294 		 */
2295 		head = 0;
2296 	} else {
2297 		/*
2298 		 * Cache the page 28 times out of every 32.  Note that
2299 		 * the page is deactivated instead of cached, but placed
2300 		 * at the head of the queue instead of the tail.
2301 		 */
2302 		head = 1;
2303 	}
2304 	_vm_page_deactivate(m, head);
2305 }
2306 
2307 /*
2308  * Grab a page, waiting until we are waken up due to the page
2309  * changing state.  We keep on waiting, if the page continues
2310  * to be in the object.  If the page doesn't exist, first allocate it
2311  * and then conditionally zero it.
2312  *
2313  * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2314  * to facilitate its eventual removal.
2315  *
2316  * This routine may block.
2317  */
2318 vm_page_t
2319 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2320 {
2321 	vm_page_t m;
2322 
2323 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2324 	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2325 	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2326 retrylookup:
2327 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2328 		if ((m->oflags & VPO_BUSY) != 0 ||
2329 		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2330 			/*
2331 			 * Reference the page before unlocking and
2332 			 * sleeping so that the page daemon is less
2333 			 * likely to reclaim it.
2334 			 */
2335 			vm_page_aflag_set(m, PGA_REFERENCED);
2336 			vm_page_sleep(m, "pgrbwt");
2337 			goto retrylookup;
2338 		} else {
2339 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2340 				vm_page_lock(m);
2341 				vm_page_wire(m);
2342 				vm_page_unlock(m);
2343 			}
2344 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2345 				vm_page_busy(m);
2346 			return (m);
2347 		}
2348 	}
2349 	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2350 	    VM_ALLOC_IGN_SBUSY));
2351 	if (m == NULL) {
2352 		VM_OBJECT_UNLOCK(object);
2353 		VM_WAIT;
2354 		VM_OBJECT_LOCK(object);
2355 		goto retrylookup;
2356 	} else if (m->valid != 0)
2357 		return (m);
2358 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2359 		pmap_zero_page(m);
2360 	return (m);
2361 }
2362 
2363 /*
2364  * Mapping function for valid bits or for dirty bits in
2365  * a page.  May not block.
2366  *
2367  * Inputs are required to range within a page.
2368  */
2369 vm_page_bits_t
2370 vm_page_bits(int base, int size)
2371 {
2372 	int first_bit;
2373 	int last_bit;
2374 
2375 	KASSERT(
2376 	    base + size <= PAGE_SIZE,
2377 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2378 	);
2379 
2380 	if (size == 0)		/* handle degenerate case */
2381 		return (0);
2382 
2383 	first_bit = base >> DEV_BSHIFT;
2384 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2385 
2386 	return (((vm_page_bits_t)2 << last_bit) -
2387 	    ((vm_page_bits_t)1 << first_bit));
2388 }
2389 
2390 /*
2391  *	vm_page_set_valid:
2392  *
2393  *	Sets portions of a page valid.  The arguments are expected
2394  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2395  *	of any partial chunks touched by the range.  The invalid portion of
2396  *	such chunks will be zeroed.
2397  *
2398  *	(base + size) must be less then or equal to PAGE_SIZE.
2399  */
2400 void
2401 vm_page_set_valid(vm_page_t m, int base, int size)
2402 {
2403 	int endoff, frag;
2404 
2405 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2406 	if (size == 0)	/* handle degenerate case */
2407 		return;
2408 
2409 	/*
2410 	 * If the base is not DEV_BSIZE aligned and the valid
2411 	 * bit is clear, we have to zero out a portion of the
2412 	 * first block.
2413 	 */
2414 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2415 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2416 		pmap_zero_page_area(m, frag, base - frag);
2417 
2418 	/*
2419 	 * If the ending offset is not DEV_BSIZE aligned and the
2420 	 * valid bit is clear, we have to zero out a portion of
2421 	 * the last block.
2422 	 */
2423 	endoff = base + size;
2424 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2425 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2426 		pmap_zero_page_area(m, endoff,
2427 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2428 
2429 	/*
2430 	 * Assert that no previously invalid block that is now being validated
2431 	 * is already dirty.
2432 	 */
2433 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2434 	    ("vm_page_set_valid: page %p is dirty", m));
2435 
2436 	/*
2437 	 * Set valid bits inclusive of any overlap.
2438 	 */
2439 	m->valid |= vm_page_bits(base, size);
2440 }
2441 
2442 /*
2443  * Clear the given bits from the specified page's dirty field.
2444  */
2445 static __inline void
2446 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2447 {
2448 	uintptr_t addr;
2449 #if PAGE_SIZE < 16384
2450 	int shift;
2451 #endif
2452 
2453 	/*
2454 	 * If the object is locked and the page is neither VPO_BUSY nor
2455 	 * PGA_WRITEABLE, then the page's dirty field cannot possibly be
2456 	 * set by a concurrent pmap operation.
2457 	 */
2458 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2459 	if ((m->oflags & VPO_BUSY) == 0 && (m->aflags & PGA_WRITEABLE) == 0)
2460 		m->dirty &= ~pagebits;
2461 	else {
2462 		/*
2463 		 * The pmap layer can call vm_page_dirty() without
2464 		 * holding a distinguished lock.  The combination of
2465 		 * the object's lock and an atomic operation suffice
2466 		 * to guarantee consistency of the page dirty field.
2467 		 *
2468 		 * For PAGE_SIZE == 32768 case, compiler already
2469 		 * properly aligns the dirty field, so no forcible
2470 		 * alignment is needed. Only require existence of
2471 		 * atomic_clear_64 when page size is 32768.
2472 		 */
2473 		addr = (uintptr_t)&m->dirty;
2474 #if PAGE_SIZE == 32768
2475 		atomic_clear_64((uint64_t *)addr, pagebits);
2476 #elif PAGE_SIZE == 16384
2477 		atomic_clear_32((uint32_t *)addr, pagebits);
2478 #else		/* PAGE_SIZE <= 8192 */
2479 		/*
2480 		 * Use a trick to perform a 32-bit atomic on the
2481 		 * containing aligned word, to not depend on the existence
2482 		 * of atomic_clear_{8, 16}.
2483 		 */
2484 		shift = addr & (sizeof(uint32_t) - 1);
2485 #if BYTE_ORDER == BIG_ENDIAN
2486 		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2487 #else
2488 		shift *= NBBY;
2489 #endif
2490 		addr &= ~(sizeof(uint32_t) - 1);
2491 		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2492 #endif		/* PAGE_SIZE */
2493 	}
2494 }
2495 
2496 /*
2497  *	vm_page_set_validclean:
2498  *
2499  *	Sets portions of a page valid and clean.  The arguments are expected
2500  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2501  *	of any partial chunks touched by the range.  The invalid portion of
2502  *	such chunks will be zero'd.
2503  *
2504  *	This routine may not block.
2505  *
2506  *	(base + size) must be less then or equal to PAGE_SIZE.
2507  */
2508 void
2509 vm_page_set_validclean(vm_page_t m, int base, int size)
2510 {
2511 	vm_page_bits_t oldvalid, pagebits;
2512 	int endoff, frag;
2513 
2514 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2515 	if (size == 0)	/* handle degenerate case */
2516 		return;
2517 
2518 	/*
2519 	 * If the base is not DEV_BSIZE aligned and the valid
2520 	 * bit is clear, we have to zero out a portion of the
2521 	 * first block.
2522 	 */
2523 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2524 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2525 		pmap_zero_page_area(m, frag, base - frag);
2526 
2527 	/*
2528 	 * If the ending offset is not DEV_BSIZE aligned and the
2529 	 * valid bit is clear, we have to zero out a portion of
2530 	 * the last block.
2531 	 */
2532 	endoff = base + size;
2533 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2534 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2535 		pmap_zero_page_area(m, endoff,
2536 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2537 
2538 	/*
2539 	 * Set valid, clear dirty bits.  If validating the entire
2540 	 * page we can safely clear the pmap modify bit.  We also
2541 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2542 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2543 	 * be set again.
2544 	 *
2545 	 * We set valid bits inclusive of any overlap, but we can only
2546 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2547 	 * the range.
2548 	 */
2549 	oldvalid = m->valid;
2550 	pagebits = vm_page_bits(base, size);
2551 	m->valid |= pagebits;
2552 #if 0	/* NOT YET */
2553 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2554 		frag = DEV_BSIZE - frag;
2555 		base += frag;
2556 		size -= frag;
2557 		if (size < 0)
2558 			size = 0;
2559 	}
2560 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2561 #endif
2562 	if (base == 0 && size == PAGE_SIZE) {
2563 		/*
2564 		 * The page can only be modified within the pmap if it is
2565 		 * mapped, and it can only be mapped if it was previously
2566 		 * fully valid.
2567 		 */
2568 		if (oldvalid == VM_PAGE_BITS_ALL)
2569 			/*
2570 			 * Perform the pmap_clear_modify() first.  Otherwise,
2571 			 * a concurrent pmap operation, such as
2572 			 * pmap_protect(), could clear a modification in the
2573 			 * pmap and set the dirty field on the page before
2574 			 * pmap_clear_modify() had begun and after the dirty
2575 			 * field was cleared here.
2576 			 */
2577 			pmap_clear_modify(m);
2578 		m->dirty = 0;
2579 		m->oflags &= ~VPO_NOSYNC;
2580 	} else if (oldvalid != VM_PAGE_BITS_ALL)
2581 		m->dirty &= ~pagebits;
2582 	else
2583 		vm_page_clear_dirty_mask(m, pagebits);
2584 }
2585 
2586 void
2587 vm_page_clear_dirty(vm_page_t m, int base, int size)
2588 {
2589 
2590 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2591 }
2592 
2593 /*
2594  *	vm_page_set_invalid:
2595  *
2596  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2597  *	valid and dirty bits for the effected areas are cleared.
2598  *
2599  *	May not block.
2600  */
2601 void
2602 vm_page_set_invalid(vm_page_t m, int base, int size)
2603 {
2604 	vm_page_bits_t bits;
2605 
2606 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2607 	KASSERT((m->oflags & VPO_BUSY) == 0,
2608 	    ("vm_page_set_invalid: page %p is busy", m));
2609 	bits = vm_page_bits(base, size);
2610 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2611 		pmap_remove_all(m);
2612 	KASSERT(!pmap_page_is_mapped(m),
2613 	    ("vm_page_set_invalid: page %p is mapped", m));
2614 	m->valid &= ~bits;
2615 	m->dirty &= ~bits;
2616 }
2617 
2618 /*
2619  * vm_page_zero_invalid()
2620  *
2621  *	The kernel assumes that the invalid portions of a page contain
2622  *	garbage, but such pages can be mapped into memory by user code.
2623  *	When this occurs, we must zero out the non-valid portions of the
2624  *	page so user code sees what it expects.
2625  *
2626  *	Pages are most often semi-valid when the end of a file is mapped
2627  *	into memory and the file's size is not page aligned.
2628  */
2629 void
2630 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2631 {
2632 	int b;
2633 	int i;
2634 
2635 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2636 	/*
2637 	 * Scan the valid bits looking for invalid sections that
2638 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2639 	 * valid bit may be set ) have already been zerod by
2640 	 * vm_page_set_validclean().
2641 	 */
2642 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2643 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2644 		    (m->valid & ((vm_page_bits_t)1 << i))) {
2645 			if (i > b) {
2646 				pmap_zero_page_area(m,
2647 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2648 			}
2649 			b = i + 1;
2650 		}
2651 	}
2652 
2653 	/*
2654 	 * setvalid is TRUE when we can safely set the zero'd areas
2655 	 * as being valid.  We can do this if there are no cache consistancy
2656 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2657 	 */
2658 	if (setvalid)
2659 		m->valid = VM_PAGE_BITS_ALL;
2660 }
2661 
2662 /*
2663  *	vm_page_is_valid:
2664  *
2665  *	Is (partial) page valid?  Note that the case where size == 0
2666  *	will return FALSE in the degenerate case where the page is
2667  *	entirely invalid, and TRUE otherwise.
2668  *
2669  *	May not block.
2670  */
2671 int
2672 vm_page_is_valid(vm_page_t m, int base, int size)
2673 {
2674 	vm_page_bits_t bits;
2675 
2676 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2677 	bits = vm_page_bits(base, size);
2678 	if (m->valid && ((m->valid & bits) == bits))
2679 		return 1;
2680 	else
2681 		return 0;
2682 }
2683 
2684 /*
2685  * update dirty bits from pmap/mmu.  May not block.
2686  */
2687 void
2688 vm_page_test_dirty(vm_page_t m)
2689 {
2690 
2691 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2692 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2693 		vm_page_dirty(m);
2694 }
2695 
2696 int so_zerocp_fullpage = 0;
2697 
2698 /*
2699  *	Replace the given page with a copy.  The copied page assumes
2700  *	the portion of the given page's "wire_count" that is not the
2701  *	responsibility of this copy-on-write mechanism.
2702  *
2703  *	The object containing the given page must have a non-zero
2704  *	paging-in-progress count and be locked.
2705  */
2706 void
2707 vm_page_cowfault(vm_page_t m)
2708 {
2709 	vm_page_t mnew;
2710 	vm_object_t object;
2711 	vm_pindex_t pindex;
2712 
2713 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2714 	vm_page_lock_assert(m, MA_OWNED);
2715 	object = m->object;
2716 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2717 	KASSERT(object->paging_in_progress != 0,
2718 	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2719 	    object));
2720 	pindex = m->pindex;
2721 
2722  retry_alloc:
2723 	pmap_remove_all(m);
2724 	vm_page_remove(m);
2725 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2726 	if (mnew == NULL) {
2727 		vm_page_insert(m, object, pindex);
2728 		vm_page_unlock(m);
2729 		VM_OBJECT_UNLOCK(object);
2730 		VM_WAIT;
2731 		VM_OBJECT_LOCK(object);
2732 		if (m == vm_page_lookup(object, pindex)) {
2733 			vm_page_lock(m);
2734 			goto retry_alloc;
2735 		} else {
2736 			/*
2737 			 * Page disappeared during the wait.
2738 			 */
2739 			return;
2740 		}
2741 	}
2742 
2743 	if (m->cow == 0) {
2744 		/*
2745 		 * check to see if we raced with an xmit complete when
2746 		 * waiting to allocate a page.  If so, put things back
2747 		 * the way they were
2748 		 */
2749 		vm_page_unlock(m);
2750 		vm_page_lock(mnew);
2751 		vm_page_free(mnew);
2752 		vm_page_unlock(mnew);
2753 		vm_page_insert(m, object, pindex);
2754 	} else { /* clear COW & copy page */
2755 		if (!so_zerocp_fullpage)
2756 			pmap_copy_page(m, mnew);
2757 		mnew->valid = VM_PAGE_BITS_ALL;
2758 		vm_page_dirty(mnew);
2759 		mnew->wire_count = m->wire_count - m->cow;
2760 		m->wire_count = m->cow;
2761 		vm_page_unlock(m);
2762 	}
2763 }
2764 
2765 void
2766 vm_page_cowclear(vm_page_t m)
2767 {
2768 
2769 	vm_page_lock_assert(m, MA_OWNED);
2770 	if (m->cow) {
2771 		m->cow--;
2772 		/*
2773 		 * let vm_fault add back write permission  lazily
2774 		 */
2775 	}
2776 	/*
2777 	 *  sf_buf_free() will free the page, so we needn't do it here
2778 	 */
2779 }
2780 
2781 int
2782 vm_page_cowsetup(vm_page_t m)
2783 {
2784 
2785 	vm_page_lock_assert(m, MA_OWNED);
2786 	if ((m->flags & PG_FICTITIOUS) != 0 ||
2787 	    (m->oflags & VPO_UNMANAGED) != 0 ||
2788 	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
2789 		return (EBUSY);
2790 	m->cow++;
2791 	pmap_remove_write(m);
2792 	VM_OBJECT_UNLOCK(m->object);
2793 	return (0);
2794 }
2795 
2796 #ifdef INVARIANTS
2797 void
2798 vm_page_object_lock_assert(vm_page_t m)
2799 {
2800 
2801 	/*
2802 	 * Certain of the page's fields may only be modified by the
2803 	 * holder of the containing object's lock or the setter of the
2804 	 * page's VPO_BUSY flag.  Unfortunately, the setter of the
2805 	 * VPO_BUSY flag is not recorded, and thus cannot be checked
2806 	 * here.
2807 	 */
2808 	if (m->object != NULL && (m->oflags & VPO_BUSY) == 0)
2809 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2810 }
2811 #endif
2812 
2813 #include "opt_ddb.h"
2814 #ifdef DDB
2815 #include <sys/kernel.h>
2816 
2817 #include <ddb/ddb.h>
2818 
2819 DB_SHOW_COMMAND(page, vm_page_print_page_info)
2820 {
2821 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2822 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2823 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2824 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2825 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2826 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2827 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2828 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2829 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2830 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2831 }
2832 
2833 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2834 {
2835 
2836 	db_printf("PQ_FREE:");
2837 	db_printf(" %d", cnt.v_free_count);
2838 	db_printf("\n");
2839 
2840 	db_printf("PQ_CACHE:");
2841 	db_printf(" %d", cnt.v_cache_count);
2842 	db_printf("\n");
2843 
2844 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2845 		*vm_page_queues[PQ_ACTIVE].cnt,
2846 		*vm_page_queues[PQ_INACTIVE].cnt);
2847 }
2848 #endif /* DDB */
2849