xref: /freebsd/sys/vm/vm_page.c (revision 63f9a4cb2684a303e3eb2ffed39c03a2e2b28ae0)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33  */
34 
35 /*
36  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37  * All rights reserved.
38  *
39  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40  *
41  * Permission to use, copy, modify and distribute this software and
42  * its documentation is hereby granted, provided that both the copyright
43  * notice and this permission notice appear in all copies of the
44  * software, derivative works or modified versions, and any portions
45  * thereof, and that both notices appear in supporting documentation.
46  *
47  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50  *
51  * Carnegie Mellon requests users of this software to return to
52  *
53  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54  *  School of Computer Science
55  *  Carnegie Mellon University
56  *  Pittsburgh PA 15213-3890
57  *
58  * any improvements or extensions that they make and grant Carnegie the
59  * rights to redistribute these changes.
60  */
61 
62 /*
63  *			GENERAL RULES ON VM_PAGE MANIPULATION
64  *
65  *	- a pageq mutex is required when adding or removing a page from a
66  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67  *	  busy state of a page.
68  *
69  *	- a hash chain mutex is required when associating or disassociating
70  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71  *	  regardless of other mutexes or the busy state of a page.
72  *
73  *	- either a hash chain mutex OR a busied page is required in order
74  *	  to modify the page flags.  A hash chain mutex must be obtained in
75  *	  order to busy a page.  A page's flags cannot be modified by a
76  *	  hash chain mutex if the page is marked busy.
77  *
78  *	- The object memq mutex is held when inserting or removing
79  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80  *	  is different from the object's main mutex.
81  *
82  *	Generally speaking, you have to be aware of side effects when running
83  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85  *	vm_page_cache(), vm_page_activate(), and a number of other routines
86  *	will release the hash chain mutex for you.  Intermediate manipulation
87  *	routines such as vm_page_flag_set() expect the hash chain to be held
88  *	on entry and the hash chain will remain held on return.
89  *
90  *	pageq scanning can only occur with the pageq in question locked.
91  *	We have a known bottleneck with the active queue, but the cache
92  *	and free queues are actually arrays already.
93  */
94 
95 /*
96  *	Resident memory management module.
97  */
98 
99 #include <sys/cdefs.h>
100 __FBSDID("$FreeBSD$");
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/lock.h>
105 #include <sys/malloc.h>
106 #include <sys/mutex.h>
107 #include <sys/proc.h>
108 #include <sys/vmmeter.h>
109 #include <sys/vnode.h>
110 
111 #include <vm/vm.h>
112 #include <vm/vm_param.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/vm_pager.h>
118 #include <vm/vm_extern.h>
119 #include <vm/uma.h>
120 #include <vm/uma_int.h>
121 
122 /*
123  *	Associated with page of user-allocatable memory is a
124  *	page structure.
125  */
126 
127 struct mtx vm_page_queue_mtx;
128 struct mtx vm_page_queue_free_mtx;
129 
130 vm_page_t vm_page_array = 0;
131 int vm_page_array_size = 0;
132 long first_page = 0;
133 int vm_page_zero_count = 0;
134 
135 /*
136  *	vm_set_page_size:
137  *
138  *	Sets the page size, perhaps based upon the memory
139  *	size.  Must be called before any use of page-size
140  *	dependent functions.
141  */
142 void
143 vm_set_page_size(void)
144 {
145 	if (cnt.v_page_size == 0)
146 		cnt.v_page_size = PAGE_SIZE;
147 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
148 		panic("vm_set_page_size: page size not a power of two");
149 }
150 
151 /*
152  *	vm_page_startup:
153  *
154  *	Initializes the resident memory module.
155  *
156  *	Allocates memory for the page cells, and
157  *	for the object/offset-to-page hash table headers.
158  *	Each page cell is initialized and placed on the free list.
159  */
160 vm_offset_t
161 vm_page_startup(vm_offset_t vaddr)
162 {
163 	vm_offset_t mapped;
164 	vm_size_t npages;
165 	vm_paddr_t page_range;
166 	vm_paddr_t new_end;
167 	int i;
168 	vm_paddr_t pa;
169 	int nblocks;
170 	vm_paddr_t last_pa;
171 
172 	/* the biggest memory array is the second group of pages */
173 	vm_paddr_t end;
174 	vm_paddr_t biggestsize;
175 	int biggestone;
176 
177 	vm_paddr_t total;
178 	vm_size_t bootpages;
179 
180 	total = 0;
181 	biggestsize = 0;
182 	biggestone = 0;
183 	nblocks = 0;
184 	vaddr = round_page(vaddr);
185 
186 	for (i = 0; phys_avail[i + 1]; i += 2) {
187 		phys_avail[i] = round_page(phys_avail[i]);
188 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
189 	}
190 
191 	for (i = 0; phys_avail[i + 1]; i += 2) {
192 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
193 
194 		if (size > biggestsize) {
195 			biggestone = i;
196 			biggestsize = size;
197 		}
198 		++nblocks;
199 		total += size;
200 	}
201 
202 	end = phys_avail[biggestone+1];
203 
204 	/*
205 	 * Initialize the locks.
206 	 */
207 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
208 	    MTX_RECURSE);
209 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
210 	    MTX_SPIN);
211 
212 	/*
213 	 * Initialize the queue headers for the free queue, the active queue
214 	 * and the inactive queue.
215 	 */
216 	vm_pageq_init();
217 
218 	/*
219 	 * Allocate memory for use when boot strapping the kernel memory
220 	 * allocator.
221 	 */
222 	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
223 	new_end = end - bootpages;
224 	new_end = trunc_page(new_end);
225 	mapped = pmap_map(&vaddr, new_end, end,
226 	    VM_PROT_READ | VM_PROT_WRITE);
227 	bzero((caddr_t) mapped, end - new_end);
228 	uma_startup((caddr_t)mapped);
229 
230 	/*
231 	 * Compute the number of pages of memory that will be available for
232 	 * use (taking into account the overhead of a page structure per
233 	 * page).
234 	 */
235 	first_page = phys_avail[0] / PAGE_SIZE;
236 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
237 	npages = (total - (page_range * sizeof(struct vm_page)) -
238 	    (end - new_end)) / PAGE_SIZE;
239 	end = new_end;
240 
241 	/*
242 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
243 	 */
244 	vaddr += PAGE_SIZE;
245 
246 	/*
247 	 * Initialize the mem entry structures now, and put them in the free
248 	 * queue.
249 	 */
250 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
251 	mapped = pmap_map(&vaddr, new_end, end,
252 	    VM_PROT_READ | VM_PROT_WRITE);
253 	vm_page_array = (vm_page_t) mapped;
254 	phys_avail[biggestone + 1] = new_end;
255 
256 	/*
257 	 * Clear all of the page structures
258 	 */
259 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
260 	vm_page_array_size = page_range;
261 
262 	/*
263 	 * Construct the free queue(s) in descending order (by physical
264 	 * address) so that the first 16MB of physical memory is allocated
265 	 * last rather than first.  On large-memory machines, this avoids
266 	 * the exhaustion of low physical memory before isa_dma_init has run.
267 	 */
268 	cnt.v_page_count = 0;
269 	cnt.v_free_count = 0;
270 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
271 		pa = phys_avail[i];
272 		last_pa = phys_avail[i + 1];
273 		while (pa < last_pa && npages-- > 0) {
274 			vm_pageq_add_new_page(pa);
275 			pa += PAGE_SIZE;
276 		}
277 	}
278 	return (vaddr);
279 }
280 
281 void
282 vm_page_flag_set(vm_page_t m, unsigned short bits)
283 {
284 
285 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
286 	m->flags |= bits;
287 }
288 
289 void
290 vm_page_flag_clear(vm_page_t m, unsigned short bits)
291 {
292 
293 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
294 	m->flags &= ~bits;
295 }
296 
297 void
298 vm_page_busy(vm_page_t m)
299 {
300 
301 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
302 	KASSERT((m->flags & PG_BUSY) == 0,
303 	    ("vm_page_busy: page already busy!!!"));
304 	vm_page_flag_set(m, PG_BUSY);
305 }
306 
307 /*
308  *      vm_page_flash:
309  *
310  *      wakeup anyone waiting for the page.
311  */
312 void
313 vm_page_flash(vm_page_t m)
314 {
315 
316 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
317 	if (m->flags & PG_WANTED) {
318 		vm_page_flag_clear(m, PG_WANTED);
319 		wakeup(m);
320 	}
321 }
322 
323 /*
324  *      vm_page_wakeup:
325  *
326  *      clear the PG_BUSY flag and wakeup anyone waiting for the
327  *      page.
328  *
329  */
330 void
331 vm_page_wakeup(vm_page_t m)
332 {
333 
334 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
335 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
336 	vm_page_flag_clear(m, PG_BUSY);
337 	vm_page_flash(m);
338 }
339 
340 void
341 vm_page_io_start(vm_page_t m)
342 {
343 
344 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
345 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
346 	m->busy++;
347 }
348 
349 void
350 vm_page_io_finish(vm_page_t m)
351 {
352 
353 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
354 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
355 	m->busy--;
356 	if (m->busy == 0)
357 		vm_page_flash(m);
358 }
359 
360 /*
361  * Keep page from being freed by the page daemon
362  * much of the same effect as wiring, except much lower
363  * overhead and should be used only for *very* temporary
364  * holding ("wiring").
365  */
366 void
367 vm_page_hold(vm_page_t mem)
368 {
369 
370 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
371         mem->hold_count++;
372 }
373 
374 void
375 vm_page_unhold(vm_page_t mem)
376 {
377 
378 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
379 	--mem->hold_count;
380 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
381 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
382 		vm_page_free_toq(mem);
383 }
384 
385 /*
386  *	vm_page_free:
387  *
388  *	Free a page
389  *
390  *	The clearing of PG_ZERO is a temporary safety until the code can be
391  *	reviewed to determine that PG_ZERO is being properly cleared on
392  *	write faults or maps.  PG_ZERO was previously cleared in
393  *	vm_page_alloc().
394  */
395 void
396 vm_page_free(vm_page_t m)
397 {
398 	vm_page_flag_clear(m, PG_ZERO);
399 	vm_page_free_toq(m);
400 	vm_page_zero_idle_wakeup();
401 }
402 
403 /*
404  *	vm_page_free_zero:
405  *
406  *	Free a page to the zerod-pages queue
407  */
408 void
409 vm_page_free_zero(vm_page_t m)
410 {
411 	vm_page_flag_set(m, PG_ZERO);
412 	vm_page_free_toq(m);
413 }
414 
415 /*
416  *	vm_page_sleep_if_busy:
417  *
418  *	Sleep and release the page queues lock if PG_BUSY is set or,
419  *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
420  *	thread slept and the page queues lock was released.
421  *	Otherwise, retains the page queues lock and returns FALSE.
422  */
423 int
424 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
425 {
426 	vm_object_t object;
427 	int is_object_locked;
428 
429 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
430 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
431 		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
432 		/*
433 		 * It's possible that while we sleep, the page will get
434 		 * unbusied and freed.  If we are holding the object
435 		 * lock, we will assume we hold a reference to the object
436 		 * such that even if m->object changes, we can re-lock
437 		 * it.
438 		 *
439 		 * Remove mtx_owned() after vm_object locking is finished.
440 		 */
441 		object = m->object;
442 		if ((is_object_locked = object != NULL &&
443 		     mtx_owned(&object->mtx)))
444 			mtx_unlock(&object->mtx);
445 		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
446 		if (is_object_locked)
447 			mtx_lock(&object->mtx);
448 		return (TRUE);
449 	}
450 	return (FALSE);
451 }
452 
453 /*
454  *	vm_page_dirty:
455  *
456  *	make page all dirty
457  */
458 void
459 vm_page_dirty(vm_page_t m)
460 {
461 	KASSERT(m->queue - m->pc != PQ_CACHE,
462 	    ("vm_page_dirty: page in cache!"));
463 	KASSERT(m->queue - m->pc != PQ_FREE,
464 	    ("vm_page_dirty: page is free!"));
465 	m->dirty = VM_PAGE_BITS_ALL;
466 }
467 
468 /*
469  *	vm_page_splay:
470  *
471  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
472  *	the vm_page containing the given pindex.  If, however, that
473  *	pindex is not found in the vm_object, returns a vm_page that is
474  *	adjacent to the pindex, coming before or after it.
475  */
476 vm_page_t
477 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
478 {
479 	struct vm_page dummy;
480 	vm_page_t lefttreemax, righttreemin, y;
481 
482 	if (root == NULL)
483 		return (root);
484 	lefttreemax = righttreemin = &dummy;
485 	for (;; root = y) {
486 		if (pindex < root->pindex) {
487 			if ((y = root->left) == NULL)
488 				break;
489 			if (pindex < y->pindex) {
490 				/* Rotate right. */
491 				root->left = y->right;
492 				y->right = root;
493 				root = y;
494 				if ((y = root->left) == NULL)
495 					break;
496 			}
497 			/* Link into the new root's right tree. */
498 			righttreemin->left = root;
499 			righttreemin = root;
500 		} else if (pindex > root->pindex) {
501 			if ((y = root->right) == NULL)
502 				break;
503 			if (pindex > y->pindex) {
504 				/* Rotate left. */
505 				root->right = y->left;
506 				y->left = root;
507 				root = y;
508 				if ((y = root->right) == NULL)
509 					break;
510 			}
511 			/* Link into the new root's left tree. */
512 			lefttreemax->right = root;
513 			lefttreemax = root;
514 		} else
515 			break;
516 	}
517 	/* Assemble the new root. */
518 	lefttreemax->right = root->left;
519 	righttreemin->left = root->right;
520 	root->left = dummy.right;
521 	root->right = dummy.left;
522 	return (root);
523 }
524 
525 /*
526  *	vm_page_insert:		[ internal use only ]
527  *
528  *	Inserts the given mem entry into the object and object list.
529  *
530  *	The pagetables are not updated but will presumably fault the page
531  *	in if necessary, or if a kernel page the caller will at some point
532  *	enter the page into the kernel's pmap.  We are not allowed to block
533  *	here so we *can't* do this anyway.
534  *
535  *	The object and page must be locked.
536  *	This routine may not block.
537  */
538 void
539 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
540 {
541 	vm_page_t root;
542 
543 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
544 	if (m->object != NULL)
545 		panic("vm_page_insert: page already inserted");
546 
547 	/*
548 	 * Record the object/offset pair in this page
549 	 */
550 	m->object = object;
551 	m->pindex = pindex;
552 
553 	/*
554 	 * Now link into the object's ordered list of backed pages.
555 	 */
556 	root = object->root;
557 	if (root == NULL) {
558 		m->left = NULL;
559 		m->right = NULL;
560 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
561 	} else {
562 		root = vm_page_splay(pindex, root);
563 		if (pindex < root->pindex) {
564 			m->left = root->left;
565 			m->right = root;
566 			root->left = NULL;
567 			TAILQ_INSERT_BEFORE(root, m, listq);
568 		} else if (pindex == root->pindex)
569 			panic("vm_page_insert: offset already allocated");
570 		else {
571 			m->right = root->right;
572 			m->left = root;
573 			root->right = NULL;
574 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
575 		}
576 	}
577 	object->root = m;
578 	object->generation++;
579 
580 	/*
581 	 * show that the object has one more resident page.
582 	 */
583 	object->resident_page_count++;
584 
585 	/*
586 	 * Since we are inserting a new and possibly dirty page,
587 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
588 	 */
589 	if (m->flags & PG_WRITEABLE)
590 		vm_object_set_writeable_dirty(object);
591 }
592 
593 /*
594  *	vm_page_remove:
595  *				NOTE: used by device pager as well -wfj
596  *
597  *	Removes the given mem entry from the object/offset-page
598  *	table and the object page list, but do not invalidate/terminate
599  *	the backing store.
600  *
601  *	The object and page must be locked.
602  *	The underlying pmap entry (if any) is NOT removed here.
603  *	This routine may not block.
604  */
605 void
606 vm_page_remove(vm_page_t m)
607 {
608 	vm_object_t object;
609 	vm_page_t root;
610 
611 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
612 	if ((object = m->object) == NULL)
613 		return;
614 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
615 	if (m->flags & PG_BUSY) {
616 		vm_page_flag_clear(m, PG_BUSY);
617 		vm_page_flash(m);
618 	}
619 
620 	/*
621 	 * Now remove from the object's list of backed pages.
622 	 */
623 	if (m != object->root)
624 		vm_page_splay(m->pindex, object->root);
625 	if (m->left == NULL)
626 		root = m->right;
627 	else {
628 		root = vm_page_splay(m->pindex, m->left);
629 		root->right = m->right;
630 	}
631 	object->root = root;
632 	TAILQ_REMOVE(&object->memq, m, listq);
633 
634 	/*
635 	 * And show that the object has one fewer resident page.
636 	 */
637 	object->resident_page_count--;
638 	object->generation++;
639 
640 	m->object = NULL;
641 }
642 
643 /*
644  *	vm_page_lookup:
645  *
646  *	Returns the page associated with the object/offset
647  *	pair specified; if none is found, NULL is returned.
648  *
649  *	The object must be locked.
650  *	This routine may not block.
651  *	This is a critical path routine
652  */
653 vm_page_t
654 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
655 {
656 	vm_page_t m;
657 
658 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
659 	if ((m = object->root) != NULL && m->pindex != pindex) {
660 		m = vm_page_splay(pindex, m);
661 		if ((object->root = m)->pindex != pindex)
662 			m = NULL;
663 	}
664 	return (m);
665 }
666 
667 /*
668  *	vm_page_rename:
669  *
670  *	Move the given memory entry from its
671  *	current object to the specified target object/offset.
672  *
673  *	The object must be locked.
674  *	This routine may not block.
675  *
676  *	Note: swap associated with the page must be invalidated by the move.  We
677  *	      have to do this for several reasons:  (1) we aren't freeing the
678  *	      page, (2) we are dirtying the page, (3) the VM system is probably
679  *	      moving the page from object A to B, and will then later move
680  *	      the backing store from A to B and we can't have a conflict.
681  *
682  *	Note: we *always* dirty the page.  It is necessary both for the
683  *	      fact that we moved it, and because we may be invalidating
684  *	      swap.  If the page is on the cache, we have to deactivate it
685  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
686  *	      on the cache.
687  */
688 void
689 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
690 {
691 
692 	vm_page_remove(m);
693 	vm_page_insert(m, new_object, new_pindex);
694 	if (m->queue - m->pc == PQ_CACHE)
695 		vm_page_deactivate(m);
696 	vm_page_dirty(m);
697 }
698 
699 /*
700  *	vm_page_select_cache:
701  *
702  *	Find a page on the cache queue with color optimization.  As pages
703  *	might be found, but not applicable, they are deactivated.  This
704  *	keeps us from using potentially busy cached pages.
705  *
706  *	This routine may not block.
707  */
708 vm_page_t
709 vm_page_select_cache(int color)
710 {
711 	vm_page_t m;
712 
713 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
714 	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
715 		if ((m->flags & PG_BUSY) == 0 && m->busy == 0 &&
716 		    m->hold_count == 0 && (VM_OBJECT_TRYLOCK(m->object) ||
717 		    VM_OBJECT_LOCKED(m->object))) {
718 			KASSERT(m->dirty == 0,
719 			    ("Found dirty cache page %p", m));
720 			KASSERT(!pmap_page_is_mapped(m),
721 			    ("Found mapped cache page %p", m));
722 			KASSERT((m->flags & PG_UNMANAGED) == 0,
723 			    ("Found unmanaged cache page %p", m));
724 			KASSERT(m->wire_count == 0,
725 			    ("Found wired cache page %p", m));
726 			break;
727 		}
728 		vm_page_deactivate(m);
729 	}
730 	return (m);
731 }
732 
733 /*
734  *	vm_page_alloc:
735  *
736  *	Allocate and return a memory cell associated
737  *	with this VM object/offset pair.
738  *
739  *	page_req classes:
740  *	VM_ALLOC_NORMAL		normal process request
741  *	VM_ALLOC_SYSTEM		system *really* needs a page
742  *	VM_ALLOC_INTERRUPT	interrupt time request
743  *	VM_ALLOC_ZERO		zero page
744  *
745  *	This routine may not block.
746  *
747  *	Additional special handling is required when called from an
748  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
749  *	the page cache in this case.
750  */
751 vm_page_t
752 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
753 {
754 	vm_object_t m_object;
755 	vm_page_t m = NULL;
756 	int color, flags, page_req;
757 
758 	page_req = req & VM_ALLOC_CLASS_MASK;
759 
760 	if ((req & VM_ALLOC_NOOBJ) == 0) {
761 		KASSERT(object != NULL,
762 		    ("vm_page_alloc: NULL object."));
763 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
764 		color = (pindex + object->pg_color) & PQ_L2_MASK;
765 	} else
766 		color = pindex & PQ_L2_MASK;
767 
768 	/*
769 	 * The pager is allowed to eat deeper into the free page list.
770 	 */
771 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
772 		page_req = VM_ALLOC_SYSTEM;
773 	};
774 
775 loop:
776 	mtx_lock_spin(&vm_page_queue_free_mtx);
777 	if (cnt.v_free_count > cnt.v_free_reserved ||
778 	    (page_req == VM_ALLOC_SYSTEM &&
779 	     cnt.v_cache_count == 0 &&
780 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
781 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
782 		/*
783 		 * Allocate from the free queue if the number of free pages
784 		 * exceeds the minimum for the request class.
785 		 */
786 		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
787 	} else if (page_req != VM_ALLOC_INTERRUPT) {
788 		mtx_unlock_spin(&vm_page_queue_free_mtx);
789 		/*
790 		 * Allocatable from cache (non-interrupt only).  On success,
791 		 * we must free the page and try again, thus ensuring that
792 		 * cnt.v_*_free_min counters are replenished.
793 		 */
794 		vm_page_lock_queues();
795 		if ((m = vm_page_select_cache(color)) == NULL) {
796 #if defined(DIAGNOSTIC)
797 			if (cnt.v_cache_count > 0)
798 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
799 #endif
800 			vm_page_unlock_queues();
801 			atomic_add_int(&vm_pageout_deficit, 1);
802 			pagedaemon_wakeup();
803 			return (NULL);
804 		}
805 		m_object = m->object;
806 		VM_OBJECT_LOCK_ASSERT(m_object, MA_OWNED);
807 		vm_page_free(m);
808 		vm_page_unlock_queues();
809 		if (m_object != object)
810 			VM_OBJECT_UNLOCK(m_object);
811 		goto loop;
812 	} else {
813 		/*
814 		 * Not allocatable from cache from interrupt, give up.
815 		 */
816 		mtx_unlock_spin(&vm_page_queue_free_mtx);
817 		atomic_add_int(&vm_pageout_deficit, 1);
818 		pagedaemon_wakeup();
819 		return (NULL);
820 	}
821 
822 	/*
823 	 *  At this point we had better have found a good page.
824 	 */
825 
826 	KASSERT(
827 	    m != NULL,
828 	    ("vm_page_alloc(): missing page on free queue")
829 	);
830 
831 	/*
832 	 * Remove from free queue
833 	 */
834 	vm_pageq_remove_nowakeup(m);
835 
836 	/*
837 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
838 	 */
839 	flags = PG_BUSY;
840 	if (m->flags & PG_ZERO) {
841 		vm_page_zero_count--;
842 		if (req & VM_ALLOC_ZERO)
843 			flags = PG_ZERO | PG_BUSY;
844 	}
845 	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
846 		flags &= ~PG_BUSY;
847 	m->flags = flags;
848 	if (req & VM_ALLOC_WIRED) {
849 		atomic_add_int(&cnt.v_wire_count, 1);
850 		m->wire_count = 1;
851 	} else
852 		m->wire_count = 0;
853 	m->hold_count = 0;
854 	m->act_count = 0;
855 	m->busy = 0;
856 	m->valid = 0;
857 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
858 	mtx_unlock_spin(&vm_page_queue_free_mtx);
859 
860 	if ((req & VM_ALLOC_NOOBJ) == 0)
861 		vm_page_insert(m, object, pindex);
862 	else
863 		m->pindex = pindex;
864 
865 	/*
866 	 * Don't wakeup too often - wakeup the pageout daemon when
867 	 * we would be nearly out of memory.
868 	 */
869 	if (vm_paging_needed())
870 		pagedaemon_wakeup();
871 
872 	return (m);
873 }
874 
875 /*
876  *	vm_wait:	(also see VM_WAIT macro)
877  *
878  *	Block until free pages are available for allocation
879  *	- Called in various places before memory allocations.
880  */
881 void
882 vm_wait(void)
883 {
884 
885 	vm_page_lock_queues();
886 	if (curproc == pageproc) {
887 		vm_pageout_pages_needed = 1;
888 		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
889 		    PDROP | PSWP, "VMWait", 0);
890 	} else {
891 		if (!vm_pages_needed) {
892 			vm_pages_needed = 1;
893 			wakeup(&vm_pages_needed);
894 		}
895 		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
896 		    "vmwait", 0);
897 	}
898 }
899 
900 /*
901  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
902  *
903  *	Block until free pages are available for allocation
904  *	- Called only in vm_fault so that processes page faulting
905  *	  can be easily tracked.
906  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
907  *	  processes will be able to grab memory first.  Do not change
908  *	  this balance without careful testing first.
909  */
910 void
911 vm_waitpfault(void)
912 {
913 
914 	vm_page_lock_queues();
915 	if (!vm_pages_needed) {
916 		vm_pages_needed = 1;
917 		wakeup(&vm_pages_needed);
918 	}
919 	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
920 	    "pfault", 0);
921 }
922 
923 /*
924  *	vm_page_activate:
925  *
926  *	Put the specified page on the active list (if appropriate).
927  *	Ensure that act_count is at least ACT_INIT but do not otherwise
928  *	mess with it.
929  *
930  *	The page queues must be locked.
931  *	This routine may not block.
932  */
933 void
934 vm_page_activate(vm_page_t m)
935 {
936 
937 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
938 	if (m->queue != PQ_ACTIVE) {
939 		if ((m->queue - m->pc) == PQ_CACHE)
940 			cnt.v_reactivated++;
941 		vm_pageq_remove(m);
942 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
943 			if (m->act_count < ACT_INIT)
944 				m->act_count = ACT_INIT;
945 			vm_pageq_enqueue(PQ_ACTIVE, m);
946 		}
947 	} else {
948 		if (m->act_count < ACT_INIT)
949 			m->act_count = ACT_INIT;
950 	}
951 }
952 
953 /*
954  *	vm_page_free_wakeup:
955  *
956  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
957  *	routine is called when a page has been added to the cache or free
958  *	queues.
959  *
960  *	The page queues must be locked.
961  *	This routine may not block.
962  */
963 static __inline void
964 vm_page_free_wakeup(void)
965 {
966 
967 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
968 	/*
969 	 * if pageout daemon needs pages, then tell it that there are
970 	 * some free.
971 	 */
972 	if (vm_pageout_pages_needed &&
973 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
974 		wakeup(&vm_pageout_pages_needed);
975 		vm_pageout_pages_needed = 0;
976 	}
977 	/*
978 	 * wakeup processes that are waiting on memory if we hit a
979 	 * high water mark. And wakeup scheduler process if we have
980 	 * lots of memory. this process will swapin processes.
981 	 */
982 	if (vm_pages_needed && !vm_page_count_min()) {
983 		vm_pages_needed = 0;
984 		wakeup(&cnt.v_free_count);
985 	}
986 }
987 
988 /*
989  *	vm_page_free_toq:
990  *
991  *	Returns the given page to the PQ_FREE list,
992  *	disassociating it with any VM object.
993  *
994  *	Object and page must be locked prior to entry.
995  *	This routine may not block.
996  */
997 
998 void
999 vm_page_free_toq(vm_page_t m)
1000 {
1001 	struct vpgqueues *pq;
1002 	vm_object_t object = m->object;
1003 
1004 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1005 	cnt.v_tfree++;
1006 
1007 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1008 		printf(
1009 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1010 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1011 		    m->hold_count);
1012 		if ((m->queue - m->pc) == PQ_FREE)
1013 			panic("vm_page_free: freeing free page");
1014 		else
1015 			panic("vm_page_free: freeing busy page");
1016 	}
1017 
1018 	/*
1019 	 * unqueue, then remove page.  Note that we cannot destroy
1020 	 * the page here because we do not want to call the pager's
1021 	 * callback routine until after we've put the page on the
1022 	 * appropriate free queue.
1023 	 */
1024 	vm_pageq_remove_nowakeup(m);
1025 	vm_page_remove(m);
1026 
1027 	/*
1028 	 * If fictitious remove object association and
1029 	 * return, otherwise delay object association removal.
1030 	 */
1031 	if ((m->flags & PG_FICTITIOUS) != 0) {
1032 		return;
1033 	}
1034 
1035 	m->valid = 0;
1036 	vm_page_undirty(m);
1037 
1038 	if (m->wire_count != 0) {
1039 		if (m->wire_count > 1) {
1040 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1041 				m->wire_count, (long)m->pindex);
1042 		}
1043 		panic("vm_page_free: freeing wired page");
1044 	}
1045 
1046 	/*
1047 	 * If we've exhausted the object's resident pages we want to free
1048 	 * it up.
1049 	 */
1050 	if (object &&
1051 	    (object->type == OBJT_VNODE) &&
1052 	    ((object->flags & OBJ_DEAD) == 0)
1053 	) {
1054 		struct vnode *vp = (struct vnode *)object->handle;
1055 
1056 		if (vp) {
1057 			VI_LOCK(vp);
1058 			if (VSHOULDFREE(vp))
1059 				vfree(vp);
1060 			VI_UNLOCK(vp);
1061 		}
1062 	}
1063 
1064 	/*
1065 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1066 	 */
1067 	if (m->flags & PG_UNMANAGED) {
1068 		m->flags &= ~PG_UNMANAGED;
1069 	}
1070 
1071 	if (m->hold_count != 0) {
1072 		m->flags &= ~PG_ZERO;
1073 		m->queue = PQ_HOLD;
1074 	} else
1075 		m->queue = PQ_FREE + m->pc;
1076 	pq = &vm_page_queues[m->queue];
1077 	mtx_lock_spin(&vm_page_queue_free_mtx);
1078 	pq->lcnt++;
1079 	++(*pq->cnt);
1080 
1081 	/*
1082 	 * Put zero'd pages on the end ( where we look for zero'd pages
1083 	 * first ) and non-zerod pages at the head.
1084 	 */
1085 	if (m->flags & PG_ZERO) {
1086 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1087 		++vm_page_zero_count;
1088 	} else {
1089 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1090 	}
1091 	mtx_unlock_spin(&vm_page_queue_free_mtx);
1092 	vm_page_free_wakeup();
1093 }
1094 
1095 /*
1096  *	vm_page_unmanage:
1097  *
1098  * 	Prevent PV management from being done on the page.  The page is
1099  *	removed from the paging queues as if it were wired, and as a
1100  *	consequence of no longer being managed the pageout daemon will not
1101  *	touch it (since there is no way to locate the pte mappings for the
1102  *	page).  madvise() calls that mess with the pmap will also no longer
1103  *	operate on the page.
1104  *
1105  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1106  *	will clear the flag.
1107  *
1108  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1109  *	physical memory as backing store rather then swap-backed memory and
1110  *	will eventually be extended to support 4MB unmanaged physical
1111  *	mappings.
1112  */
1113 void
1114 vm_page_unmanage(vm_page_t m)
1115 {
1116 
1117 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1118 	if ((m->flags & PG_UNMANAGED) == 0) {
1119 		if (m->wire_count == 0)
1120 			vm_pageq_remove(m);
1121 	}
1122 	vm_page_flag_set(m, PG_UNMANAGED);
1123 }
1124 
1125 /*
1126  *	vm_page_wire:
1127  *
1128  *	Mark this page as wired down by yet
1129  *	another map, removing it from paging queues
1130  *	as necessary.
1131  *
1132  *	The page queues must be locked.
1133  *	This routine may not block.
1134  */
1135 void
1136 vm_page_wire(vm_page_t m)
1137 {
1138 
1139 	/*
1140 	 * Only bump the wire statistics if the page is not already wired,
1141 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1142 	 * it is already off the queues).
1143 	 */
1144 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1145 	if (m->flags & PG_FICTITIOUS)
1146 		return;
1147 	if (m->wire_count == 0) {
1148 		if ((m->flags & PG_UNMANAGED) == 0)
1149 			vm_pageq_remove(m);
1150 		atomic_add_int(&cnt.v_wire_count, 1);
1151 	}
1152 	m->wire_count++;
1153 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1154 }
1155 
1156 /*
1157  *	vm_page_unwire:
1158  *
1159  *	Release one wiring of this page, potentially
1160  *	enabling it to be paged again.
1161  *
1162  *	Many pages placed on the inactive queue should actually go
1163  *	into the cache, but it is difficult to figure out which.  What
1164  *	we do instead, if the inactive target is well met, is to put
1165  *	clean pages at the head of the inactive queue instead of the tail.
1166  *	This will cause them to be moved to the cache more quickly and
1167  *	if not actively re-referenced, freed more quickly.  If we just
1168  *	stick these pages at the end of the inactive queue, heavy filesystem
1169  *	meta-data accesses can cause an unnecessary paging load on memory bound
1170  *	processes.  This optimization causes one-time-use metadata to be
1171  *	reused more quickly.
1172  *
1173  *	BUT, if we are in a low-memory situation we have no choice but to
1174  *	put clean pages on the cache queue.
1175  *
1176  *	A number of routines use vm_page_unwire() to guarantee that the page
1177  *	will go into either the inactive or active queues, and will NEVER
1178  *	be placed in the cache - for example, just after dirtying a page.
1179  *	dirty pages in the cache are not allowed.
1180  *
1181  *	The page queues must be locked.
1182  *	This routine may not block.
1183  */
1184 void
1185 vm_page_unwire(vm_page_t m, int activate)
1186 {
1187 
1188 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1189 	if (m->flags & PG_FICTITIOUS)
1190 		return;
1191 	if (m->wire_count > 0) {
1192 		m->wire_count--;
1193 		if (m->wire_count == 0) {
1194 			atomic_subtract_int(&cnt.v_wire_count, 1);
1195 			if (m->flags & PG_UNMANAGED) {
1196 				;
1197 			} else if (activate)
1198 				vm_pageq_enqueue(PQ_ACTIVE, m);
1199 			else {
1200 				vm_page_flag_clear(m, PG_WINATCFLS);
1201 				vm_pageq_enqueue(PQ_INACTIVE, m);
1202 			}
1203 		}
1204 	} else {
1205 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1206 	}
1207 }
1208 
1209 
1210 /*
1211  * Move the specified page to the inactive queue.  If the page has
1212  * any associated swap, the swap is deallocated.
1213  *
1214  * Normally athead is 0 resulting in LRU operation.  athead is set
1215  * to 1 if we want this page to be 'as if it were placed in the cache',
1216  * except without unmapping it from the process address space.
1217  *
1218  * This routine may not block.
1219  */
1220 static __inline void
1221 _vm_page_deactivate(vm_page_t m, int athead)
1222 {
1223 
1224 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1225 
1226 	/*
1227 	 * Ignore if already inactive.
1228 	 */
1229 	if (m->queue == PQ_INACTIVE)
1230 		return;
1231 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1232 		if ((m->queue - m->pc) == PQ_CACHE)
1233 			cnt.v_reactivated++;
1234 		vm_page_flag_clear(m, PG_WINATCFLS);
1235 		vm_pageq_remove(m);
1236 		if (athead)
1237 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1238 		else
1239 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1240 		m->queue = PQ_INACTIVE;
1241 		vm_page_queues[PQ_INACTIVE].lcnt++;
1242 		cnt.v_inactive_count++;
1243 	}
1244 }
1245 
1246 void
1247 vm_page_deactivate(vm_page_t m)
1248 {
1249     _vm_page_deactivate(m, 0);
1250 }
1251 
1252 /*
1253  * vm_page_try_to_cache:
1254  *
1255  * Returns 0 on failure, 1 on success
1256  */
1257 int
1258 vm_page_try_to_cache(vm_page_t m)
1259 {
1260 
1261 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1262 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1263 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1264 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1265 		return (0);
1266 	}
1267 	pmap_remove_all(m);
1268 	if (m->dirty)
1269 		return (0);
1270 	vm_page_cache(m);
1271 	return (1);
1272 }
1273 
1274 /*
1275  * vm_page_try_to_free()
1276  *
1277  *	Attempt to free the page.  If we cannot free it, we do nothing.
1278  *	1 is returned on success, 0 on failure.
1279  */
1280 int
1281 vm_page_try_to_free(vm_page_t m)
1282 {
1283 
1284 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1285 	if (m->object != NULL)
1286 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1287 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1288 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1289 		return (0);
1290 	}
1291 	pmap_remove_all(m);
1292 	if (m->dirty)
1293 		return (0);
1294 	vm_page_free(m);
1295 	return (1);
1296 }
1297 
1298 /*
1299  * vm_page_cache
1300  *
1301  * Put the specified page onto the page cache queue (if appropriate).
1302  *
1303  * This routine may not block.
1304  */
1305 void
1306 vm_page_cache(vm_page_t m)
1307 {
1308 
1309 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1310 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1311 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1312 	    m->hold_count || m->wire_count) {
1313 		printf("vm_page_cache: attempting to cache busy page\n");
1314 		return;
1315 	}
1316 	if ((m->queue - m->pc) == PQ_CACHE)
1317 		return;
1318 
1319 	/*
1320 	 * Remove all pmaps and indicate that the page is not
1321 	 * writeable or mapped.
1322 	 */
1323 	pmap_remove_all(m);
1324 	if (m->dirty != 0) {
1325 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1326 			(long)m->pindex);
1327 	}
1328 	vm_pageq_remove_nowakeup(m);
1329 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1330 	vm_page_free_wakeup();
1331 }
1332 
1333 /*
1334  * vm_page_dontneed
1335  *
1336  *	Cache, deactivate, or do nothing as appropriate.  This routine
1337  *	is typically used by madvise() MADV_DONTNEED.
1338  *
1339  *	Generally speaking we want to move the page into the cache so
1340  *	it gets reused quickly.  However, this can result in a silly syndrome
1341  *	due to the page recycling too quickly.  Small objects will not be
1342  *	fully cached.  On the otherhand, if we move the page to the inactive
1343  *	queue we wind up with a problem whereby very large objects
1344  *	unnecessarily blow away our inactive and cache queues.
1345  *
1346  *	The solution is to move the pages based on a fixed weighting.  We
1347  *	either leave them alone, deactivate them, or move them to the cache,
1348  *	where moving them to the cache has the highest weighting.
1349  *	By forcing some pages into other queues we eventually force the
1350  *	system to balance the queues, potentially recovering other unrelated
1351  *	space from active.  The idea is to not force this to happen too
1352  *	often.
1353  */
1354 void
1355 vm_page_dontneed(vm_page_t m)
1356 {
1357 	static int dnweight;
1358 	int dnw;
1359 	int head;
1360 
1361 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1362 	dnw = ++dnweight;
1363 
1364 	/*
1365 	 * occassionally leave the page alone
1366 	 */
1367 	if ((dnw & 0x01F0) == 0 ||
1368 	    m->queue == PQ_INACTIVE ||
1369 	    m->queue - m->pc == PQ_CACHE
1370 	) {
1371 		if (m->act_count >= ACT_INIT)
1372 			--m->act_count;
1373 		return;
1374 	}
1375 
1376 	if (m->dirty == 0 && pmap_is_modified(m))
1377 		vm_page_dirty(m);
1378 
1379 	if (m->dirty || (dnw & 0x0070) == 0) {
1380 		/*
1381 		 * Deactivate the page 3 times out of 32.
1382 		 */
1383 		head = 0;
1384 	} else {
1385 		/*
1386 		 * Cache the page 28 times out of every 32.  Note that
1387 		 * the page is deactivated instead of cached, but placed
1388 		 * at the head of the queue instead of the tail.
1389 		 */
1390 		head = 1;
1391 	}
1392 	_vm_page_deactivate(m, head);
1393 }
1394 
1395 /*
1396  * Grab a page, waiting until we are waken up due to the page
1397  * changing state.  We keep on waiting, if the page continues
1398  * to be in the object.  If the page doesn't exist, first allocate it
1399  * and then conditionally zero it.
1400  *
1401  * This routine may block.
1402  */
1403 vm_page_t
1404 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1405 {
1406 	vm_page_t m;
1407 
1408 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1409 retrylookup:
1410 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1411 		vm_page_lock_queues();
1412 		if (m->busy || (m->flags & PG_BUSY)) {
1413 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1414 			VM_OBJECT_UNLOCK(object);
1415 			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1416 			VM_OBJECT_LOCK(object);
1417 			if ((allocflags & VM_ALLOC_RETRY) == 0)
1418 				return (NULL);
1419 			goto retrylookup;
1420 		} else {
1421 			if (allocflags & VM_ALLOC_WIRED)
1422 				vm_page_wire(m);
1423 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1424 				vm_page_busy(m);
1425 			vm_page_unlock_queues();
1426 			return (m);
1427 		}
1428 	}
1429 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1430 	if (m == NULL) {
1431 		VM_OBJECT_UNLOCK(object);
1432 		VM_WAIT;
1433 		VM_OBJECT_LOCK(object);
1434 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1435 			return (NULL);
1436 		goto retrylookup;
1437 	}
1438 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1439 		pmap_zero_page(m);
1440 	return (m);
1441 }
1442 
1443 /*
1444  * Mapping function for valid bits or for dirty bits in
1445  * a page.  May not block.
1446  *
1447  * Inputs are required to range within a page.
1448  */
1449 __inline int
1450 vm_page_bits(int base, int size)
1451 {
1452 	int first_bit;
1453 	int last_bit;
1454 
1455 	KASSERT(
1456 	    base + size <= PAGE_SIZE,
1457 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1458 	);
1459 
1460 	if (size == 0)		/* handle degenerate case */
1461 		return (0);
1462 
1463 	first_bit = base >> DEV_BSHIFT;
1464 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1465 
1466 	return ((2 << last_bit) - (1 << first_bit));
1467 }
1468 
1469 /*
1470  *	vm_page_set_validclean:
1471  *
1472  *	Sets portions of a page valid and clean.  The arguments are expected
1473  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1474  *	of any partial chunks touched by the range.  The invalid portion of
1475  *	such chunks will be zero'd.
1476  *
1477  *	This routine may not block.
1478  *
1479  *	(base + size) must be less then or equal to PAGE_SIZE.
1480  */
1481 void
1482 vm_page_set_validclean(vm_page_t m, int base, int size)
1483 {
1484 	int pagebits;
1485 	int frag;
1486 	int endoff;
1487 
1488 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1489 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1490 	if (size == 0)	/* handle degenerate case */
1491 		return;
1492 
1493 	/*
1494 	 * If the base is not DEV_BSIZE aligned and the valid
1495 	 * bit is clear, we have to zero out a portion of the
1496 	 * first block.
1497 	 */
1498 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1499 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1500 		pmap_zero_page_area(m, frag, base - frag);
1501 
1502 	/*
1503 	 * If the ending offset is not DEV_BSIZE aligned and the
1504 	 * valid bit is clear, we have to zero out a portion of
1505 	 * the last block.
1506 	 */
1507 	endoff = base + size;
1508 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1509 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1510 		pmap_zero_page_area(m, endoff,
1511 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1512 
1513 	/*
1514 	 * Set valid, clear dirty bits.  If validating the entire
1515 	 * page we can safely clear the pmap modify bit.  We also
1516 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1517 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1518 	 * be set again.
1519 	 *
1520 	 * We set valid bits inclusive of any overlap, but we can only
1521 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1522 	 * the range.
1523 	 */
1524 	pagebits = vm_page_bits(base, size);
1525 	m->valid |= pagebits;
1526 #if 0	/* NOT YET */
1527 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1528 		frag = DEV_BSIZE - frag;
1529 		base += frag;
1530 		size -= frag;
1531 		if (size < 0)
1532 			size = 0;
1533 	}
1534 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1535 #endif
1536 	m->dirty &= ~pagebits;
1537 	if (base == 0 && size == PAGE_SIZE) {
1538 		pmap_clear_modify(m);
1539 		vm_page_flag_clear(m, PG_NOSYNC);
1540 	}
1541 }
1542 
1543 void
1544 vm_page_clear_dirty(vm_page_t m, int base, int size)
1545 {
1546 
1547 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1548 	m->dirty &= ~vm_page_bits(base, size);
1549 }
1550 
1551 /*
1552  *	vm_page_set_invalid:
1553  *
1554  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1555  *	valid and dirty bits for the effected areas are cleared.
1556  *
1557  *	May not block.
1558  */
1559 void
1560 vm_page_set_invalid(vm_page_t m, int base, int size)
1561 {
1562 	int bits;
1563 
1564 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1565 	bits = vm_page_bits(base, size);
1566 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1567 	m->valid &= ~bits;
1568 	m->dirty &= ~bits;
1569 	m->object->generation++;
1570 }
1571 
1572 /*
1573  * vm_page_zero_invalid()
1574  *
1575  *	The kernel assumes that the invalid portions of a page contain
1576  *	garbage, but such pages can be mapped into memory by user code.
1577  *	When this occurs, we must zero out the non-valid portions of the
1578  *	page so user code sees what it expects.
1579  *
1580  *	Pages are most often semi-valid when the end of a file is mapped
1581  *	into memory and the file's size is not page aligned.
1582  */
1583 void
1584 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1585 {
1586 	int b;
1587 	int i;
1588 
1589 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1590 	/*
1591 	 * Scan the valid bits looking for invalid sections that
1592 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1593 	 * valid bit may be set ) have already been zerod by
1594 	 * vm_page_set_validclean().
1595 	 */
1596 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1597 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1598 		    (m->valid & (1 << i))
1599 		) {
1600 			if (i > b) {
1601 				pmap_zero_page_area(m,
1602 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1603 			}
1604 			b = i + 1;
1605 		}
1606 	}
1607 
1608 	/*
1609 	 * setvalid is TRUE when we can safely set the zero'd areas
1610 	 * as being valid.  We can do this if there are no cache consistancy
1611 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1612 	 */
1613 	if (setvalid)
1614 		m->valid = VM_PAGE_BITS_ALL;
1615 }
1616 
1617 /*
1618  *	vm_page_is_valid:
1619  *
1620  *	Is (partial) page valid?  Note that the case where size == 0
1621  *	will return FALSE in the degenerate case where the page is
1622  *	entirely invalid, and TRUE otherwise.
1623  *
1624  *	May not block.
1625  */
1626 int
1627 vm_page_is_valid(vm_page_t m, int base, int size)
1628 {
1629 	int bits = vm_page_bits(base, size);
1630 
1631 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1632 	if (m->valid && ((m->valid & bits) == bits))
1633 		return 1;
1634 	else
1635 		return 0;
1636 }
1637 
1638 /*
1639  * update dirty bits from pmap/mmu.  May not block.
1640  */
1641 void
1642 vm_page_test_dirty(vm_page_t m)
1643 {
1644 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1645 		vm_page_dirty(m);
1646 	}
1647 }
1648 
1649 int so_zerocp_fullpage = 0;
1650 
1651 void
1652 vm_page_cowfault(vm_page_t m)
1653 {
1654 	vm_page_t mnew;
1655 	vm_object_t object;
1656 	vm_pindex_t pindex;
1657 
1658 	object = m->object;
1659 	pindex = m->pindex;
1660 
1661  retry_alloc:
1662 	vm_page_remove(m);
1663 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1664 	if (mnew == NULL) {
1665 		vm_page_insert(m, object, pindex);
1666 		vm_page_unlock_queues();
1667 		VM_OBJECT_UNLOCK(object);
1668 		VM_WAIT;
1669 		VM_OBJECT_LOCK(object);
1670 		vm_page_lock_queues();
1671 		goto retry_alloc;
1672 	}
1673 
1674 	if (m->cow == 0) {
1675 		/*
1676 		 * check to see if we raced with an xmit complete when
1677 		 * waiting to allocate a page.  If so, put things back
1678 		 * the way they were
1679 		 */
1680 		vm_page_free(mnew);
1681 		vm_page_insert(m, object, pindex);
1682 	} else { /* clear COW & copy page */
1683 		if (!so_zerocp_fullpage)
1684 			pmap_copy_page(m, mnew);
1685 		mnew->valid = VM_PAGE_BITS_ALL;
1686 		vm_page_dirty(mnew);
1687 		vm_page_flag_clear(mnew, PG_BUSY);
1688 	}
1689 }
1690 
1691 void
1692 vm_page_cowclear(vm_page_t m)
1693 {
1694 
1695 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1696 	if (m->cow) {
1697 		m->cow--;
1698 		/*
1699 		 * let vm_fault add back write permission  lazily
1700 		 */
1701 	}
1702 	/*
1703 	 *  sf_buf_free() will free the page, so we needn't do it here
1704 	 */
1705 }
1706 
1707 void
1708 vm_page_cowsetup(vm_page_t m)
1709 {
1710 
1711 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1712 	m->cow++;
1713 	pmap_page_protect(m, VM_PROT_READ);
1714 }
1715 
1716 #include "opt_ddb.h"
1717 #ifdef DDB
1718 #include <sys/kernel.h>
1719 
1720 #include <ddb/ddb.h>
1721 
1722 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1723 {
1724 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1725 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1726 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1727 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1728 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1729 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1730 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1731 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1732 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1733 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1734 }
1735 
1736 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1737 {
1738 	int i;
1739 	db_printf("PQ_FREE:");
1740 	for (i = 0; i < PQ_L2_SIZE; i++) {
1741 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1742 	}
1743 	db_printf("\n");
1744 
1745 	db_printf("PQ_CACHE:");
1746 	for (i = 0; i < PQ_L2_SIZE; i++) {
1747 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1748 	}
1749 	db_printf("\n");
1750 
1751 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1752 		vm_page_queues[PQ_ACTIVE].lcnt,
1753 		vm_page_queues[PQ_INACTIVE].lcnt);
1754 }
1755 #endif /* DDB */
1756