xref: /freebsd/sys/vm/vm_page.c (revision 6370bbfe57469963f4831074f27638716b61400a)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD$
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 
67 /*
68  *			GENERAL RULES ON VM_PAGE MANIPULATION
69  *
70  *	- a pageq mutex is required when adding or removing a page from a
71  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72  *	  busy state of a page.
73  *
74  *	- a hash chain mutex is required when associating or disassociating
75  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76  *	  regardless of other mutexes or the busy state of a page.
77  *
78  *	- either a hash chain mutex OR a busied page is required in order
79  *	  to modify the page flags.  A hash chain mutex must be obtained in
80  *	  order to busy a page.  A page's flags cannot be modified by a
81  *	  hash chain mutex if the page is marked busy.
82  *
83  *	- The object memq mutex is held when inserting or removing
84  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85  *	  is different from the object's main mutex.
86  *
87  *	Generally speaking, you have to be aware of side effects when running
88  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90  *	vm_page_cache(), vm_page_activate(), and a number of other routines
91  *	will release the hash chain mutex for you.  Intermediate manipulation
92  *	routines such as vm_page_flag_set() expect the hash chain to be held
93  *	on entry and the hash chain will remain held on return.
94  *
95  *	pageq scanning can only occur with the pageq in question locked.
96  *	We have a known bottleneck with the active queue, but the cache
97  *	and free queues are actually arrays already.
98  */
99 
100 /*
101  *	Resident memory management module.
102  */
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/lock.h>
107 #include <sys/malloc.h>
108 #include <sys/mutex.h>
109 #include <sys/proc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 #include <vm/uma_int.h>
123 
124 /*
125  *	Associated with page of user-allocatable memory is a
126  *	page structure.
127  */
128 static struct vm_page **vm_page_buckets; /* Array of buckets */
129 static int vm_page_bucket_count;	/* How big is array? */
130 static int vm_page_hash_mask;		/* Mask for hash function */
131 static volatile int vm_page_bucket_generation;
132 static struct mtx vm_buckets_mtx[BUCKET_HASH_SIZE];
133 
134 vm_page_t vm_page_array = 0;
135 int vm_page_array_size = 0;
136 long first_page = 0;
137 int vm_page_zero_count = 0;
138 
139 /*
140  *	vm_set_page_size:
141  *
142  *	Sets the page size, perhaps based upon the memory
143  *	size.  Must be called before any use of page-size
144  *	dependent functions.
145  */
146 void
147 vm_set_page_size(void)
148 {
149 	if (cnt.v_page_size == 0)
150 		cnt.v_page_size = PAGE_SIZE;
151 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
152 		panic("vm_set_page_size: page size not a power of two");
153 }
154 
155 /*
156  *	vm_page_startup:
157  *
158  *	Initializes the resident memory module.
159  *
160  *	Allocates memory for the page cells, and
161  *	for the object/offset-to-page hash table headers.
162  *	Each page cell is initialized and placed on the free list.
163  */
164 vm_offset_t
165 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
166 {
167 	vm_offset_t mapped;
168 	struct vm_page **bucket;
169 	vm_size_t npages, page_range;
170 	vm_offset_t new_end;
171 	int i;
172 	vm_offset_t pa;
173 	int nblocks;
174 	vm_offset_t last_pa;
175 
176 	/* the biggest memory array is the second group of pages */
177 	vm_offset_t end;
178 	vm_offset_t biggestone, biggestsize;
179 
180 	vm_offset_t total;
181 	vm_size_t bootpages;
182 
183 	total = 0;
184 	biggestsize = 0;
185 	biggestone = 0;
186 	nblocks = 0;
187 	vaddr = round_page(vaddr);
188 
189 	for (i = 0; phys_avail[i + 1]; i += 2) {
190 		phys_avail[i] = round_page(phys_avail[i]);
191 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
192 	}
193 
194 	for (i = 0; phys_avail[i + 1]; i += 2) {
195 		vm_size_t size = phys_avail[i + 1] - phys_avail[i];
196 
197 		if (size > biggestsize) {
198 			biggestone = i;
199 			biggestsize = size;
200 		}
201 		++nblocks;
202 		total += size;
203 	}
204 
205 	end = phys_avail[biggestone+1];
206 
207 	/*
208 	 * Initialize the queue headers for the free queue, the active queue
209 	 * and the inactive queue.
210 	 */
211 	vm_pageq_init();
212 
213 	/*
214 	 * Allocate memory for use when boot strapping the kernel memory allocator
215 	 */
216 	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
217 	new_end = end - bootpages;
218 	new_end = trunc_page(new_end);
219 	mapped = pmap_map(&vaddr, new_end, end,
220 	    VM_PROT_READ | VM_PROT_WRITE);
221 	bzero((caddr_t) mapped, end - new_end);
222 	uma_startup((caddr_t)mapped);
223 
224 	end = new_end;
225 
226 	/*
227 	 * Allocate (and initialize) the hash table buckets.
228 	 *
229 	 * The number of buckets MUST BE a power of 2, and the actual value is
230 	 * the next power of 2 greater than the number of physical pages in
231 	 * the system.
232 	 *
233 	 * We make the hash table approximately 2x the number of pages to
234 	 * reduce the chain length.  This is about the same size using the
235 	 * singly-linked list as the 1x hash table we were using before
236 	 * using TAILQ but the chain length will be smaller.
237 	 *
238 	 * Note: This computation can be tweaked if desired.
239 	 */
240 	if (vm_page_bucket_count == 0) {
241 		vm_page_bucket_count = 1;
242 		while (vm_page_bucket_count < atop(total))
243 			vm_page_bucket_count <<= 1;
244 	}
245 	vm_page_bucket_count <<= 1;
246 	vm_page_hash_mask = vm_page_bucket_count - 1;
247 
248 	/*
249 	 * Validate these addresses.
250 	 */
251 	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
252 	new_end = trunc_page(new_end);
253 	mapped = pmap_map(&vaddr, new_end, end,
254 	    VM_PROT_READ | VM_PROT_WRITE);
255 	bzero((caddr_t) mapped, end - new_end);
256 
257 	vm_page_buckets = (struct vm_page **)mapped;
258 	bucket = vm_page_buckets;
259 	for (i = 0; i < vm_page_bucket_count; i++) {
260 		*bucket = NULL;
261 		bucket++;
262 	}
263 	for (i = 0; i < BUCKET_HASH_SIZE; ++i)
264 		mtx_init(&vm_buckets_mtx[i],  "vm buckets hash mutexes", NULL,
265 		    MTX_DEF);
266 
267 	/*
268 	 * Compute the number of pages of memory that will be available for
269 	 * use (taking into account the overhead of a page structure per
270 	 * page).
271 	 */
272 	first_page = phys_avail[0] / PAGE_SIZE;
273 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
274 	npages = (total - (page_range * sizeof(struct vm_page)) -
275 	    (end - new_end)) / PAGE_SIZE;
276 	end = new_end;
277 
278 	/*
279 	 * Initialize the mem entry structures now, and put them in the free
280 	 * queue.
281 	 */
282 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
283 	mapped = pmap_map(&vaddr, new_end, end,
284 	    VM_PROT_READ | VM_PROT_WRITE);
285 	vm_page_array = (vm_page_t) mapped;
286 
287 	/*
288 	 * Clear all of the page structures
289 	 */
290 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
291 	vm_page_array_size = page_range;
292 
293 	/*
294 	 * Construct the free queue(s) in descending order (by physical
295 	 * address) so that the first 16MB of physical memory is allocated
296 	 * last rather than first.  On large-memory machines, this avoids
297 	 * the exhaustion of low physical memory before isa_dmainit has run.
298 	 */
299 	cnt.v_page_count = 0;
300 	cnt.v_free_count = 0;
301 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
302 		pa = phys_avail[i];
303 		if (i == biggestone)
304 			last_pa = new_end;
305 		else
306 			last_pa = phys_avail[i + 1];
307 		while (pa < last_pa && npages-- > 0) {
308 			vm_pageq_add_new_page(pa);
309 			pa += PAGE_SIZE;
310 		}
311 	}
312 	return (vaddr);
313 }
314 
315 /*
316  *	vm_page_hash:
317  *
318  *	Distributes the object/offset key pair among hash buckets.
319  *
320  *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
321  *	This routine may not block.
322  *
323  *	We try to randomize the hash based on the object to spread the pages
324  *	out in the hash table without it costing us too much.
325  */
326 static __inline int
327 vm_page_hash(vm_object_t object, vm_pindex_t pindex)
328 {
329 	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
330 
331 	return (i & vm_page_hash_mask);
332 }
333 
334 void
335 vm_page_flag_set(vm_page_t m, unsigned short bits)
336 {
337 	GIANT_REQUIRED;
338 	m->flags |= bits;
339 }
340 
341 void
342 vm_page_flag_clear(vm_page_t m, unsigned short bits)
343 {
344 	GIANT_REQUIRED;
345 	m->flags &= ~bits;
346 }
347 
348 void
349 vm_page_busy(vm_page_t m)
350 {
351 	KASSERT((m->flags & PG_BUSY) == 0,
352 	    ("vm_page_busy: page already busy!!!"));
353 	vm_page_flag_set(m, PG_BUSY);
354 }
355 
356 /*
357  *      vm_page_flash:
358  *
359  *      wakeup anyone waiting for the page.
360  */
361 void
362 vm_page_flash(vm_page_t m)
363 {
364 	if (m->flags & PG_WANTED) {
365 		vm_page_flag_clear(m, PG_WANTED);
366 		wakeup(m);
367 	}
368 }
369 
370 /*
371  *      vm_page_wakeup:
372  *
373  *      clear the PG_BUSY flag and wakeup anyone waiting for the
374  *      page.
375  *
376  */
377 void
378 vm_page_wakeup(vm_page_t m)
379 {
380 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
381 	vm_page_flag_clear(m, PG_BUSY);
382 	vm_page_flash(m);
383 }
384 
385 /*
386  *
387  *
388  */
389 void
390 vm_page_io_start(vm_page_t m)
391 {
392 	GIANT_REQUIRED;
393 	m->busy++;
394 }
395 
396 void
397 vm_page_io_finish(vm_page_t m)
398 {
399 	GIANT_REQUIRED;
400 	m->busy--;
401 	if (m->busy == 0)
402 		vm_page_flash(m);
403 }
404 
405 /*
406  * Keep page from being freed by the page daemon
407  * much of the same effect as wiring, except much lower
408  * overhead and should be used only for *very* temporary
409  * holding ("wiring").
410  */
411 void
412 vm_page_hold(vm_page_t mem)
413 {
414         GIANT_REQUIRED;
415         mem->hold_count++;
416 }
417 
418 void
419 vm_page_unhold(vm_page_t mem)
420 {
421 	GIANT_REQUIRED;
422 	--mem->hold_count;
423 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
424 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
425 		vm_page_free_toq(mem);
426 }
427 
428 /*
429  *	vm_page_protect:
430  *
431  *	Reduce the protection of a page.  This routine never raises the
432  *	protection and therefore can be safely called if the page is already
433  *	at VM_PROT_NONE (it will be a NOP effectively ).
434  */
435 void
436 vm_page_protect(vm_page_t mem, int prot)
437 {
438 	if (prot == VM_PROT_NONE) {
439 		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
440 			pmap_page_protect(mem, VM_PROT_NONE);
441 			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
442 		}
443 	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
444 		pmap_page_protect(mem, VM_PROT_READ);
445 		vm_page_flag_clear(mem, PG_WRITEABLE);
446 	}
447 }
448 /*
449  *	vm_page_zero_fill:
450  *
451  *	Zero-fill the specified page.
452  *	Written as a standard pagein routine, to
453  *	be used by the zero-fill object.
454  */
455 boolean_t
456 vm_page_zero_fill(vm_page_t m)
457 {
458 	pmap_zero_page(VM_PAGE_TO_PHYS(m));
459 	return (TRUE);
460 }
461 
462 /*
463  *	vm_page_copy:
464  *
465  *	Copy one page to another
466  */
467 void
468 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
469 {
470 	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
471 	dest_m->valid = VM_PAGE_BITS_ALL;
472 }
473 
474 /*
475  *	vm_page_free:
476  *
477  *	Free a page
478  *
479  *	The clearing of PG_ZERO is a temporary safety until the code can be
480  *	reviewed to determine that PG_ZERO is being properly cleared on
481  *	write faults or maps.  PG_ZERO was previously cleared in
482  *	vm_page_alloc().
483  */
484 void
485 vm_page_free(vm_page_t m)
486 {
487 	vm_page_flag_clear(m, PG_ZERO);
488 	vm_page_free_toq(m);
489 	vm_page_zero_idle_wakeup();
490 }
491 
492 /*
493  *	vm_page_free_zero:
494  *
495  *	Free a page to the zerod-pages queue
496  */
497 void
498 vm_page_free_zero(vm_page_t m)
499 {
500 	vm_page_flag_set(m, PG_ZERO);
501 	vm_page_free_toq(m);
502 }
503 
504 /*
505  *	vm_page_sleep_busy:
506  *
507  *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
508  *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
509  *	it almost had to sleep and made temporary spl*() mods), FALSE
510  *	otherwise.
511  *
512  *	This routine assumes that interrupts can only remove the busy
513  *	status from a page, not set the busy status or change it from
514  *	PG_BUSY to m->busy or vise versa (which would create a timing
515  *	window).
516  */
517 int
518 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
519 {
520 	GIANT_REQUIRED;
521 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
522 		int s = splvm();
523 		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
524 			/*
525 			 * Page is busy. Wait and retry.
526 			 */
527 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
528 			tsleep(m, PVM, msg, 0);
529 		}
530 		splx(s);
531 		return (TRUE);
532 		/* not reached */
533 	}
534 	return (FALSE);
535 }
536 /*
537  *	vm_page_dirty:
538  *
539  *	make page all dirty
540  */
541 void
542 vm_page_dirty(vm_page_t m)
543 {
544 	KASSERT(m->queue - m->pc != PQ_CACHE,
545 	    ("vm_page_dirty: page in cache!"));
546 	m->dirty = VM_PAGE_BITS_ALL;
547 }
548 
549 /*
550  *	vm_page_undirty:
551  *
552  *	Set page to not be dirty.  Note: does not clear pmap modify bits
553  */
554 void
555 vm_page_undirty(vm_page_t m)
556 {
557 	m->dirty = 0;
558 }
559 
560 /*
561  *	vm_page_insert:		[ internal use only ]
562  *
563  *	Inserts the given mem entry into the object and object list.
564  *
565  *	The pagetables are not updated but will presumably fault the page
566  *	in if necessary, or if a kernel page the caller will at some point
567  *	enter the page into the kernel's pmap.  We are not allowed to block
568  *	here so we *can't* do this anyway.
569  *
570  *	The object and page must be locked, and must be splhigh.
571  *	This routine may not block.
572  */
573 void
574 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
575 {
576 	struct vm_page **bucket;
577 
578 	GIANT_REQUIRED;
579 
580 	if (m->object != NULL)
581 		panic("vm_page_insert: already inserted");
582 
583 	/*
584 	 * Record the object/offset pair in this page
585 	 */
586 	m->object = object;
587 	m->pindex = pindex;
588 
589 	/*
590 	 * Insert it into the object_object/offset hash table
591 	 */
592 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
593 	m->hnext = *bucket;
594 	*bucket = m;
595 	vm_page_bucket_generation++;
596 
597 	/*
598 	 * Now link into the object's list of backed pages.
599 	 */
600 	TAILQ_INSERT_TAIL(&object->memq, m, listq);
601 	object->generation++;
602 
603 	/*
604 	 * show that the object has one more resident page.
605 	 */
606 	object->resident_page_count++;
607 
608 	/*
609 	 * Since we are inserting a new and possibly dirty page,
610 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
611 	 */
612 	if (m->flags & PG_WRITEABLE)
613 		vm_object_set_writeable_dirty(object);
614 }
615 
616 /*
617  *	vm_page_remove:
618  *				NOTE: used by device pager as well -wfj
619  *
620  *	Removes the given mem entry from the object/offset-page
621  *	table and the object page list, but do not invalidate/terminate
622  *	the backing store.
623  *
624  *	The object and page must be locked, and at splhigh.
625  *	The underlying pmap entry (if any) is NOT removed here.
626  *	This routine may not block.
627  */
628 void
629 vm_page_remove(vm_page_t m)
630 {
631 	vm_object_t object;
632 
633 	GIANT_REQUIRED;
634 
635 	if (m->object == NULL)
636 		return;
637 
638 	if ((m->flags & PG_BUSY) == 0) {
639 		panic("vm_page_remove: page not busy");
640 	}
641 
642 	/*
643 	 * Basically destroy the page.
644 	 */
645 	vm_page_wakeup(m);
646 
647 	object = m->object;
648 
649 	/*
650 	 * Remove from the object_object/offset hash table.  The object
651 	 * must be on the hash queue, we will panic if it isn't
652 	 *
653 	 * Note: we must NULL-out m->hnext to prevent loops in detached
654 	 * buffers with vm_page_lookup().
655 	 */
656 	{
657 		struct vm_page **bucket;
658 
659 		bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
660 		while (*bucket != m) {
661 			if (*bucket == NULL)
662 				panic("vm_page_remove(): page not found in hash");
663 			bucket = &(*bucket)->hnext;
664 		}
665 		*bucket = m->hnext;
666 		m->hnext = NULL;
667 		vm_page_bucket_generation++;
668 	}
669 
670 	/*
671 	 * Now remove from the object's list of backed pages.
672 	 */
673 	TAILQ_REMOVE(&object->memq, m, listq);
674 
675 	/*
676 	 * And show that the object has one fewer resident page.
677 	 */
678 	object->resident_page_count--;
679 	object->generation++;
680 
681 	m->object = NULL;
682 }
683 
684 /*
685  *	vm_page_lookup:
686  *
687  *	Returns the page associated with the object/offset
688  *	pair specified; if none is found, NULL is returned.
689  *
690  *	NOTE: the code below does not lock.  It will operate properly if
691  *	an interrupt makes a change, but the generation algorithm will not
692  *	operate properly in an SMP environment where both cpu's are able to run
693  *	kernel code simultaneously.
694  *
695  *	The object must be locked.  No side effects.
696  *	This routine may not block.
697  *	This is a critical path routine
698  */
699 vm_page_t
700 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
701 {
702 	vm_page_t m;
703 	struct vm_page **bucket;
704 	int generation;
705 
706 	/*
707 	 * Search the hash table for this object/offset pair
708 	 */
709 retry:
710 	generation = vm_page_bucket_generation;
711 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
712 	for (m = *bucket; m != NULL; m = m->hnext) {
713 		if ((m->object == object) && (m->pindex == pindex)) {
714 			if (vm_page_bucket_generation != generation)
715 				goto retry;
716 			return (m);
717 		}
718 	}
719 	if (vm_page_bucket_generation != generation)
720 		goto retry;
721 	return (NULL);
722 }
723 
724 /*
725  *	vm_page_rename:
726  *
727  *	Move the given memory entry from its
728  *	current object to the specified target object/offset.
729  *
730  *	The object must be locked.
731  *	This routine may not block.
732  *
733  *	Note: this routine will raise itself to splvm(), the caller need not.
734  *
735  *	Note: swap associated with the page must be invalidated by the move.  We
736  *	      have to do this for several reasons:  (1) we aren't freeing the
737  *	      page, (2) we are dirtying the page, (3) the VM system is probably
738  *	      moving the page from object A to B, and will then later move
739  *	      the backing store from A to B and we can't have a conflict.
740  *
741  *	Note: we *always* dirty the page.  It is necessary both for the
742  *	      fact that we moved it, and because we may be invalidating
743  *	      swap.  If the page is on the cache, we have to deactivate it
744  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
745  *	      on the cache.
746  */
747 void
748 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
749 {
750 	int s;
751 
752 	s = splvm();
753 	vm_page_remove(m);
754 	vm_page_insert(m, new_object, new_pindex);
755 	if (m->queue - m->pc == PQ_CACHE)
756 		vm_page_deactivate(m);
757 	vm_page_dirty(m);
758 	splx(s);
759 }
760 
761 /*
762  *	vm_page_select_cache:
763  *
764  *	Find a page on the cache queue with color optimization.  As pages
765  *	might be found, but not applicable, they are deactivated.  This
766  *	keeps us from using potentially busy cached pages.
767  *
768  *	This routine must be called at splvm().
769  *	This routine may not block.
770  */
771 static vm_page_t
772 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
773 {
774 	vm_page_t m;
775 
776 	GIANT_REQUIRED;
777 	while (TRUE) {
778 		m = vm_pageq_find(
779 		    PQ_CACHE,
780 		    (pindex + object->pg_color) & PQ_L2_MASK,
781 		    FALSE
782 		);
783 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
784 			       m->hold_count || m->wire_count)) {
785 			vm_page_deactivate(m);
786 			continue;
787 		}
788 		return m;
789 	}
790 }
791 
792 /*
793  *	vm_page_select_free:
794  *
795  *	Find a free or zero page, with specified preference.
796  *
797  *	This routine must be called at splvm().
798  *	This routine may not block.
799  */
800 static __inline vm_page_t
801 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
802 {
803 	vm_page_t m;
804 
805 	m = vm_pageq_find(
806 		PQ_FREE,
807 		(pindex + object->pg_color) & PQ_L2_MASK,
808 		prefer_zero
809 	);
810 	return (m);
811 }
812 
813 /*
814  *	vm_page_alloc:
815  *
816  *	Allocate and return a memory cell associated
817  *	with this VM object/offset pair.
818  *
819  *	page_req classes:
820  *	VM_ALLOC_NORMAL		normal process request
821  *	VM_ALLOC_SYSTEM		system *really* needs a page
822  *	VM_ALLOC_INTERRUPT	interrupt time request
823  *	VM_ALLOC_ZERO		zero page
824  *
825  *	This routine may not block.
826  *
827  *	Additional special handling is required when called from an
828  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
829  *	the page cache in this case.
830  */
831 vm_page_t
832 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
833 {
834 	vm_page_t m = NULL;
835 	int s;
836 
837 	GIANT_REQUIRED;
838 
839 	KASSERT(!vm_page_lookup(object, pindex),
840 		("vm_page_alloc: page already allocated"));
841 
842 	/*
843 	 * The pager is allowed to eat deeper into the free page list.
844 	 */
845 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
846 		page_req = VM_ALLOC_SYSTEM;
847 	};
848 
849 	s = splvm();
850 
851 loop:
852 	if (cnt.v_free_count > cnt.v_free_reserved) {
853 		/*
854 		 * Allocate from the free queue if there are plenty of pages
855 		 * in it.
856 		 */
857 		if (page_req == VM_ALLOC_ZERO)
858 			m = vm_page_select_free(object, pindex, TRUE);
859 		else
860 			m = vm_page_select_free(object, pindex, FALSE);
861 	} else if (
862 	    (page_req == VM_ALLOC_SYSTEM &&
863 	     cnt.v_cache_count == 0 &&
864 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
865 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
866 	) {
867 		/*
868 		 * Interrupt or system, dig deeper into the free list.
869 		 */
870 		m = vm_page_select_free(object, pindex, FALSE);
871 	} else if (page_req != VM_ALLOC_INTERRUPT) {
872 		/*
873 		 * Allocatable from cache (non-interrupt only).  On success,
874 		 * we must free the page and try again, thus ensuring that
875 		 * cnt.v_*_free_min counters are replenished.
876 		 */
877 		m = vm_page_select_cache(object, pindex);
878 		if (m == NULL) {
879 			splx(s);
880 #if defined(DIAGNOSTIC)
881 			if (cnt.v_cache_count > 0)
882 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
883 #endif
884 			vm_pageout_deficit++;
885 			pagedaemon_wakeup();
886 			return (NULL);
887 		}
888 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
889 		vm_page_busy(m);
890 		vm_page_protect(m, VM_PROT_NONE);
891 		vm_page_free(m);
892 		goto loop;
893 	} else {
894 		/*
895 		 * Not allocatable from cache from interrupt, give up.
896 		 */
897 		splx(s);
898 		vm_pageout_deficit++;
899 		pagedaemon_wakeup();
900 		return (NULL);
901 	}
902 
903 	/*
904 	 *  At this point we had better have found a good page.
905 	 */
906 
907 	KASSERT(
908 	    m != NULL,
909 	    ("vm_page_alloc(): missing page on free queue\n")
910 	);
911 
912 	/*
913 	 * Remove from free queue
914 	 */
915 
916 	vm_pageq_remove_nowakeup(m);
917 
918 	/*
919 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
920 	 */
921 	if (m->flags & PG_ZERO) {
922 		vm_page_zero_count--;
923 		m->flags = PG_ZERO | PG_BUSY;
924 	} else {
925 		m->flags = PG_BUSY;
926 	}
927 	m->wire_count = 0;
928 	m->hold_count = 0;
929 	m->act_count = 0;
930 	m->busy = 0;
931 	m->valid = 0;
932 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
933 
934 	/*
935 	 * vm_page_insert() is safe prior to the splx().  Note also that
936 	 * inserting a page here does not insert it into the pmap (which
937 	 * could cause us to block allocating memory).  We cannot block
938 	 * anywhere.
939 	 */
940 	vm_page_insert(m, object, pindex);
941 
942 	/*
943 	 * Don't wakeup too often - wakeup the pageout daemon when
944 	 * we would be nearly out of memory.
945 	 */
946 	if (vm_paging_needed())
947 		pagedaemon_wakeup();
948 
949 	splx(s);
950 	return (m);
951 }
952 
953 /*
954  *	vm_wait:	(also see VM_WAIT macro)
955  *
956  *	Block until free pages are available for allocation
957  *	- Called in various places before memory allocations.
958  */
959 void
960 vm_wait(void)
961 {
962 	int s;
963 
964 	s = splvm();
965 	if (curproc == pageproc) {
966 		vm_pageout_pages_needed = 1;
967 		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
968 	} else {
969 		if (!vm_pages_needed) {
970 			vm_pages_needed = 1;
971 			wakeup(&vm_pages_needed);
972 		}
973 		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
974 	}
975 	splx(s);
976 }
977 
978 /*
979  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
980  *
981  *	Block until free pages are available for allocation
982  *	- Called only in vm_fault so that processes page faulting
983  *	  can be easily tracked.
984  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
985  *	  processes will be able to grab memory first.  Do not change
986  *	  this balance without careful testing first.
987  */
988 void
989 vm_waitpfault(void)
990 {
991 	int s;
992 
993 	s = splvm();
994 	if (!vm_pages_needed) {
995 		vm_pages_needed = 1;
996 		wakeup(&vm_pages_needed);
997 	}
998 	tsleep(&cnt.v_free_count, PUSER, "pfault", 0);
999 	splx(s);
1000 }
1001 
1002 /*
1003  *	vm_page_activate:
1004  *
1005  *	Put the specified page on the active list (if appropriate).
1006  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1007  *	mess with it.
1008  *
1009  *	The page queues must be locked.
1010  *	This routine may not block.
1011  */
1012 void
1013 vm_page_activate(vm_page_t m)
1014 {
1015 	int s;
1016 
1017 	GIANT_REQUIRED;
1018 	s = splvm();
1019 	if (m->queue != PQ_ACTIVE) {
1020 		if ((m->queue - m->pc) == PQ_CACHE)
1021 			cnt.v_reactivated++;
1022 		vm_pageq_remove(m);
1023 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1024 			if (m->act_count < ACT_INIT)
1025 				m->act_count = ACT_INIT;
1026 			vm_pageq_enqueue(PQ_ACTIVE, m);
1027 		}
1028 	} else {
1029 		if (m->act_count < ACT_INIT)
1030 			m->act_count = ACT_INIT;
1031 	}
1032 	splx(s);
1033 }
1034 
1035 /*
1036  *	vm_page_free_wakeup:
1037  *
1038  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1039  *	routine is called when a page has been added to the cache or free
1040  *	queues.
1041  *
1042  *	This routine may not block.
1043  *	This routine must be called at splvm()
1044  */
1045 static __inline void
1046 vm_page_free_wakeup(void)
1047 {
1048 	/*
1049 	 * if pageout daemon needs pages, then tell it that there are
1050 	 * some free.
1051 	 */
1052 	if (vm_pageout_pages_needed &&
1053 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1054 		wakeup(&vm_pageout_pages_needed);
1055 		vm_pageout_pages_needed = 0;
1056 	}
1057 	/*
1058 	 * wakeup processes that are waiting on memory if we hit a
1059 	 * high water mark. And wakeup scheduler process if we have
1060 	 * lots of memory. this process will swapin processes.
1061 	 */
1062 	if (vm_pages_needed && !vm_page_count_min()) {
1063 		vm_pages_needed = 0;
1064 		wakeup(&cnt.v_free_count);
1065 	}
1066 }
1067 
1068 /*
1069  *	vm_page_free_toq:
1070  *
1071  *	Returns the given page to the PQ_FREE list,
1072  *	disassociating it with any VM object.
1073  *
1074  *	Object and page must be locked prior to entry.
1075  *	This routine may not block.
1076  */
1077 
1078 void
1079 vm_page_free_toq(vm_page_t m)
1080 {
1081 	int s;
1082 	struct vpgqueues *pq;
1083 	vm_object_t object = m->object;
1084 
1085 	GIANT_REQUIRED;
1086 	s = splvm();
1087 	cnt.v_tfree++;
1088 
1089 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1090 		printf(
1091 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1092 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1093 		    m->hold_count);
1094 		if ((m->queue - m->pc) == PQ_FREE)
1095 			panic("vm_page_free: freeing free page");
1096 		else
1097 			panic("vm_page_free: freeing busy page");
1098 	}
1099 
1100 	/*
1101 	 * unqueue, then remove page.  Note that we cannot destroy
1102 	 * the page here because we do not want to call the pager's
1103 	 * callback routine until after we've put the page on the
1104 	 * appropriate free queue.
1105 	 */
1106 	vm_pageq_remove_nowakeup(m);
1107 	vm_page_remove(m);
1108 
1109 	/*
1110 	 * If fictitious remove object association and
1111 	 * return, otherwise delay object association removal.
1112 	 */
1113 	if ((m->flags & PG_FICTITIOUS) != 0) {
1114 		splx(s);
1115 		return;
1116 	}
1117 
1118 	m->valid = 0;
1119 	vm_page_undirty(m);
1120 
1121 	if (m->wire_count != 0) {
1122 		if (m->wire_count > 1) {
1123 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1124 				m->wire_count, (long)m->pindex);
1125 		}
1126 		panic("vm_page_free: freeing wired page\n");
1127 	}
1128 
1129 	/*
1130 	 * If we've exhausted the object's resident pages we want to free
1131 	 * it up.
1132 	 */
1133 	if (object &&
1134 	    (object->type == OBJT_VNODE) &&
1135 	    ((object->flags & OBJ_DEAD) == 0)
1136 	) {
1137 		struct vnode *vp = (struct vnode *)object->handle;
1138 
1139 		if (vp && VSHOULDFREE(vp))
1140 			vfree(vp);
1141 	}
1142 
1143 	/*
1144 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1145 	 */
1146 	if (m->flags & PG_UNMANAGED) {
1147 		m->flags &= ~PG_UNMANAGED;
1148 	} else {
1149 #ifdef __alpha__
1150 		pmap_page_is_free(m);
1151 #endif
1152 	}
1153 
1154 	if (m->hold_count != 0) {
1155 		m->flags &= ~PG_ZERO;
1156 		m->queue = PQ_HOLD;
1157 	} else
1158 		m->queue = PQ_FREE + m->pc;
1159 	pq = &vm_page_queues[m->queue];
1160 	pq->lcnt++;
1161 	++(*pq->cnt);
1162 
1163 	/*
1164 	 * Put zero'd pages on the end ( where we look for zero'd pages
1165 	 * first ) and non-zerod pages at the head.
1166 	 */
1167 	if (m->flags & PG_ZERO) {
1168 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1169 		++vm_page_zero_count;
1170 	} else {
1171 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1172 	}
1173 	vm_page_free_wakeup();
1174 	splx(s);
1175 }
1176 
1177 /*
1178  *	vm_page_unmanage:
1179  *
1180  * 	Prevent PV management from being done on the page.  The page is
1181  *	removed from the paging queues as if it were wired, and as a
1182  *	consequence of no longer being managed the pageout daemon will not
1183  *	touch it (since there is no way to locate the pte mappings for the
1184  *	page).  madvise() calls that mess with the pmap will also no longer
1185  *	operate on the page.
1186  *
1187  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1188  *	will clear the flag.
1189  *
1190  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1191  *	physical memory as backing store rather then swap-backed memory and
1192  *	will eventually be extended to support 4MB unmanaged physical
1193  *	mappings.
1194  */
1195 void
1196 vm_page_unmanage(vm_page_t m)
1197 {
1198 	int s;
1199 
1200 	s = splvm();
1201 	if ((m->flags & PG_UNMANAGED) == 0) {
1202 		if (m->wire_count == 0)
1203 			vm_pageq_remove(m);
1204 	}
1205 	vm_page_flag_set(m, PG_UNMANAGED);
1206 	splx(s);
1207 }
1208 
1209 /*
1210  *	vm_page_wire:
1211  *
1212  *	Mark this page as wired down by yet
1213  *	another map, removing it from paging queues
1214  *	as necessary.
1215  *
1216  *	The page queues must be locked.
1217  *	This routine may not block.
1218  */
1219 void
1220 vm_page_wire(vm_page_t m)
1221 {
1222 	int s;
1223 
1224 	/*
1225 	 * Only bump the wire statistics if the page is not already wired,
1226 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1227 	 * it is already off the queues).
1228 	 */
1229 	s = splvm();
1230 	if (m->wire_count == 0) {
1231 		if ((m->flags & PG_UNMANAGED) == 0)
1232 			vm_pageq_remove(m);
1233 		cnt.v_wire_count++;
1234 	}
1235 	m->wire_count++;
1236 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1237 	splx(s);
1238 	vm_page_flag_set(m, PG_MAPPED);
1239 }
1240 
1241 /*
1242  *	vm_page_unwire:
1243  *
1244  *	Release one wiring of this page, potentially
1245  *	enabling it to be paged again.
1246  *
1247  *	Many pages placed on the inactive queue should actually go
1248  *	into the cache, but it is difficult to figure out which.  What
1249  *	we do instead, if the inactive target is well met, is to put
1250  *	clean pages at the head of the inactive queue instead of the tail.
1251  *	This will cause them to be moved to the cache more quickly and
1252  *	if not actively re-referenced, freed more quickly.  If we just
1253  *	stick these pages at the end of the inactive queue, heavy filesystem
1254  *	meta-data accesses can cause an unnecessary paging load on memory bound
1255  *	processes.  This optimization causes one-time-use metadata to be
1256  *	reused more quickly.
1257  *
1258  *	BUT, if we are in a low-memory situation we have no choice but to
1259  *	put clean pages on the cache queue.
1260  *
1261  *	A number of routines use vm_page_unwire() to guarantee that the page
1262  *	will go into either the inactive or active queues, and will NEVER
1263  *	be placed in the cache - for example, just after dirtying a page.
1264  *	dirty pages in the cache are not allowed.
1265  *
1266  *	The page queues must be locked.
1267  *	This routine may not block.
1268  */
1269 void
1270 vm_page_unwire(vm_page_t m, int activate)
1271 {
1272 	int s;
1273 
1274 	s = splvm();
1275 
1276 	if (m->wire_count > 0) {
1277 		m->wire_count--;
1278 		if (m->wire_count == 0) {
1279 			cnt.v_wire_count--;
1280 			if (m->flags & PG_UNMANAGED) {
1281 				;
1282 			} else if (activate)
1283 				vm_pageq_enqueue(PQ_ACTIVE, m);
1284 			else {
1285 				vm_page_flag_clear(m, PG_WINATCFLS);
1286 				vm_pageq_enqueue(PQ_INACTIVE, m);
1287 			}
1288 		}
1289 	} else {
1290 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1291 	}
1292 	splx(s);
1293 }
1294 
1295 
1296 /*
1297  * Move the specified page to the inactive queue.  If the page has
1298  * any associated swap, the swap is deallocated.
1299  *
1300  * Normally athead is 0 resulting in LRU operation.  athead is set
1301  * to 1 if we want this page to be 'as if it were placed in the cache',
1302  * except without unmapping it from the process address space.
1303  *
1304  * This routine may not block.
1305  */
1306 static __inline void
1307 _vm_page_deactivate(vm_page_t m, int athead)
1308 {
1309 	int s;
1310 
1311 	GIANT_REQUIRED;
1312 	/*
1313 	 * Ignore if already inactive.
1314 	 */
1315 	if (m->queue == PQ_INACTIVE)
1316 		return;
1317 
1318 	s = splvm();
1319 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1320 		if ((m->queue - m->pc) == PQ_CACHE)
1321 			cnt.v_reactivated++;
1322 		vm_page_flag_clear(m, PG_WINATCFLS);
1323 		vm_pageq_remove(m);
1324 		if (athead)
1325 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1326 		else
1327 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1328 		m->queue = PQ_INACTIVE;
1329 		vm_page_queues[PQ_INACTIVE].lcnt++;
1330 		cnt.v_inactive_count++;
1331 	}
1332 	splx(s);
1333 }
1334 
1335 void
1336 vm_page_deactivate(vm_page_t m)
1337 {
1338     _vm_page_deactivate(m, 0);
1339 }
1340 
1341 /*
1342  * vm_page_try_to_cache:
1343  *
1344  * Returns 0 on failure, 1 on success
1345  */
1346 int
1347 vm_page_try_to_cache(vm_page_t m)
1348 {
1349 	GIANT_REQUIRED;
1350 
1351 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1352 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1353 		return (0);
1354 	}
1355 	vm_page_test_dirty(m);
1356 	if (m->dirty)
1357 		return (0);
1358 	vm_page_cache(m);
1359 	return (1);
1360 }
1361 
1362 /*
1363  * vm_page_try_to_free()
1364  *
1365  *	Attempt to free the page.  If we cannot free it, we do nothing.
1366  *	1 is returned on success, 0 on failure.
1367  */
1368 int
1369 vm_page_try_to_free(vm_page_t m)
1370 {
1371 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1372 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1373 		return (0);
1374 	}
1375 	vm_page_test_dirty(m);
1376 	if (m->dirty)
1377 		return (0);
1378 	vm_page_busy(m);
1379 	vm_page_protect(m, VM_PROT_NONE);
1380 	vm_page_free(m);
1381 	return (1);
1382 }
1383 
1384 /*
1385  * vm_page_cache
1386  *
1387  * Put the specified page onto the page cache queue (if appropriate).
1388  *
1389  * This routine may not block.
1390  */
1391 void
1392 vm_page_cache(vm_page_t m)
1393 {
1394 	int s;
1395 
1396 	GIANT_REQUIRED;
1397 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1398 		printf("vm_page_cache: attempting to cache busy page\n");
1399 		return;
1400 	}
1401 	if ((m->queue - m->pc) == PQ_CACHE)
1402 		return;
1403 
1404 	/*
1405 	 * Remove all pmaps and indicate that the page is not
1406 	 * writeable or mapped.
1407 	 */
1408 	vm_page_protect(m, VM_PROT_NONE);
1409 	if (m->dirty != 0) {
1410 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1411 			(long)m->pindex);
1412 	}
1413 	s = splvm();
1414 	vm_pageq_remove_nowakeup(m);
1415 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1416 	vm_page_free_wakeup();
1417 	splx(s);
1418 }
1419 
1420 /*
1421  * vm_page_dontneed
1422  *
1423  *	Cache, deactivate, or do nothing as appropriate.  This routine
1424  *	is typically used by madvise() MADV_DONTNEED.
1425  *
1426  *	Generally speaking we want to move the page into the cache so
1427  *	it gets reused quickly.  However, this can result in a silly syndrome
1428  *	due to the page recycling too quickly.  Small objects will not be
1429  *	fully cached.  On the otherhand, if we move the page to the inactive
1430  *	queue we wind up with a problem whereby very large objects
1431  *	unnecessarily blow away our inactive and cache queues.
1432  *
1433  *	The solution is to move the pages based on a fixed weighting.  We
1434  *	either leave them alone, deactivate them, or move them to the cache,
1435  *	where moving them to the cache has the highest weighting.
1436  *	By forcing some pages into other queues we eventually force the
1437  *	system to balance the queues, potentially recovering other unrelated
1438  *	space from active.  The idea is to not force this to happen too
1439  *	often.
1440  */
1441 void
1442 vm_page_dontneed(vm_page_t m)
1443 {
1444 	static int dnweight;
1445 	int dnw;
1446 	int head;
1447 
1448 	GIANT_REQUIRED;
1449 	dnw = ++dnweight;
1450 
1451 	/*
1452 	 * occassionally leave the page alone
1453 	 */
1454 	if ((dnw & 0x01F0) == 0 ||
1455 	    m->queue == PQ_INACTIVE ||
1456 	    m->queue - m->pc == PQ_CACHE
1457 	) {
1458 		if (m->act_count >= ACT_INIT)
1459 			--m->act_count;
1460 		return;
1461 	}
1462 
1463 	if (m->dirty == 0)
1464 		vm_page_test_dirty(m);
1465 
1466 	if (m->dirty || (dnw & 0x0070) == 0) {
1467 		/*
1468 		 * Deactivate the page 3 times out of 32.
1469 		 */
1470 		head = 0;
1471 	} else {
1472 		/*
1473 		 * Cache the page 28 times out of every 32.  Note that
1474 		 * the page is deactivated instead of cached, but placed
1475 		 * at the head of the queue instead of the tail.
1476 		 */
1477 		head = 1;
1478 	}
1479 	_vm_page_deactivate(m, head);
1480 }
1481 
1482 /*
1483  * Grab a page, waiting until we are waken up due to the page
1484  * changing state.  We keep on waiting, if the page continues
1485  * to be in the object.  If the page doesn't exist, allocate it.
1486  *
1487  * This routine may block.
1488  */
1489 vm_page_t
1490 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1491 {
1492 	vm_page_t m;
1493 	int s, generation;
1494 
1495 	GIANT_REQUIRED;
1496 retrylookup:
1497 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1498 		if (m->busy || (m->flags & PG_BUSY)) {
1499 			generation = object->generation;
1500 
1501 			s = splvm();
1502 			while ((object->generation == generation) &&
1503 					(m->busy || (m->flags & PG_BUSY))) {
1504 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1505 				tsleep(m, PVM, "pgrbwt", 0);
1506 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1507 					splx(s);
1508 					return NULL;
1509 				}
1510 			}
1511 			splx(s);
1512 			goto retrylookup;
1513 		} else {
1514 			vm_page_busy(m);
1515 			return m;
1516 		}
1517 	}
1518 
1519 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1520 	if (m == NULL) {
1521 		VM_WAIT;
1522 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1523 			return NULL;
1524 		goto retrylookup;
1525 	}
1526 
1527 	return m;
1528 }
1529 
1530 /*
1531  * Mapping function for valid bits or for dirty bits in
1532  * a page.  May not block.
1533  *
1534  * Inputs are required to range within a page.
1535  */
1536 __inline int
1537 vm_page_bits(int base, int size)
1538 {
1539 	int first_bit;
1540 	int last_bit;
1541 
1542 	KASSERT(
1543 	    base + size <= PAGE_SIZE,
1544 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1545 	);
1546 
1547 	if (size == 0)		/* handle degenerate case */
1548 		return (0);
1549 
1550 	first_bit = base >> DEV_BSHIFT;
1551 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1552 
1553 	return ((2 << last_bit) - (1 << first_bit));
1554 }
1555 
1556 /*
1557  *	vm_page_set_validclean:
1558  *
1559  *	Sets portions of a page valid and clean.  The arguments are expected
1560  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1561  *	of any partial chunks touched by the range.  The invalid portion of
1562  *	such chunks will be zero'd.
1563  *
1564  *	This routine may not block.
1565  *
1566  *	(base + size) must be less then or equal to PAGE_SIZE.
1567  */
1568 void
1569 vm_page_set_validclean(vm_page_t m, int base, int size)
1570 {
1571 	int pagebits;
1572 	int frag;
1573 	int endoff;
1574 
1575 	GIANT_REQUIRED;
1576 	if (size == 0)	/* handle degenerate case */
1577 		return;
1578 
1579 	/*
1580 	 * If the base is not DEV_BSIZE aligned and the valid
1581 	 * bit is clear, we have to zero out a portion of the
1582 	 * first block.
1583 	 */
1584 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1585 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1586 	) {
1587 		pmap_zero_page_area(
1588 		    VM_PAGE_TO_PHYS(m),
1589 		    frag,
1590 		    base - frag
1591 		);
1592 	}
1593 
1594 	/*
1595 	 * If the ending offset is not DEV_BSIZE aligned and the
1596 	 * valid bit is clear, we have to zero out a portion of
1597 	 * the last block.
1598 	 */
1599 	endoff = base + size;
1600 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1601 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1602 	) {
1603 		pmap_zero_page_area(
1604 		    VM_PAGE_TO_PHYS(m),
1605 		    endoff,
1606 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1607 		);
1608 	}
1609 
1610 	/*
1611 	 * Set valid, clear dirty bits.  If validating the entire
1612 	 * page we can safely clear the pmap modify bit.  We also
1613 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1614 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1615 	 * be set again.
1616 	 *
1617 	 * We set valid bits inclusive of any overlap, but we can only
1618 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1619 	 * the range.
1620 	 */
1621 	pagebits = vm_page_bits(base, size);
1622 	m->valid |= pagebits;
1623 #if 0	/* NOT YET */
1624 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1625 		frag = DEV_BSIZE - frag;
1626 		base += frag;
1627 		size -= frag;
1628 		if (size < 0)
1629 			size = 0;
1630 	}
1631 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1632 #endif
1633 	m->dirty &= ~pagebits;
1634 	if (base == 0 && size == PAGE_SIZE) {
1635 		pmap_clear_modify(m);
1636 		vm_page_flag_clear(m, PG_NOSYNC);
1637 	}
1638 }
1639 
1640 #if 0
1641 
1642 void
1643 vm_page_set_dirty(vm_page_t m, int base, int size)
1644 {
1645 	m->dirty |= vm_page_bits(base, size);
1646 }
1647 
1648 #endif
1649 
1650 void
1651 vm_page_clear_dirty(vm_page_t m, int base, int size)
1652 {
1653 	GIANT_REQUIRED;
1654 	m->dirty &= ~vm_page_bits(base, size);
1655 }
1656 
1657 /*
1658  *	vm_page_set_invalid:
1659  *
1660  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1661  *	valid and dirty bits for the effected areas are cleared.
1662  *
1663  *	May not block.
1664  */
1665 void
1666 vm_page_set_invalid(vm_page_t m, int base, int size)
1667 {
1668 	int bits;
1669 
1670 	GIANT_REQUIRED;
1671 	bits = vm_page_bits(base, size);
1672 	m->valid &= ~bits;
1673 	m->dirty &= ~bits;
1674 	m->object->generation++;
1675 }
1676 
1677 /*
1678  * vm_page_zero_invalid()
1679  *
1680  *	The kernel assumes that the invalid portions of a page contain
1681  *	garbage, but such pages can be mapped into memory by user code.
1682  *	When this occurs, we must zero out the non-valid portions of the
1683  *	page so user code sees what it expects.
1684  *
1685  *	Pages are most often semi-valid when the end of a file is mapped
1686  *	into memory and the file's size is not page aligned.
1687  */
1688 void
1689 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1690 {
1691 	int b;
1692 	int i;
1693 
1694 	/*
1695 	 * Scan the valid bits looking for invalid sections that
1696 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1697 	 * valid bit may be set ) have already been zerod by
1698 	 * vm_page_set_validclean().
1699 	 */
1700 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1701 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1702 		    (m->valid & (1 << i))
1703 		) {
1704 			if (i > b) {
1705 				pmap_zero_page_area(
1706 				    VM_PAGE_TO_PHYS(m),
1707 				    b << DEV_BSHIFT,
1708 				    (i - b) << DEV_BSHIFT
1709 				);
1710 			}
1711 			b = i + 1;
1712 		}
1713 	}
1714 
1715 	/*
1716 	 * setvalid is TRUE when we can safely set the zero'd areas
1717 	 * as being valid.  We can do this if there are no cache consistancy
1718 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1719 	 */
1720 	if (setvalid)
1721 		m->valid = VM_PAGE_BITS_ALL;
1722 }
1723 
1724 /*
1725  *	vm_page_is_valid:
1726  *
1727  *	Is (partial) page valid?  Note that the case where size == 0
1728  *	will return FALSE in the degenerate case where the page is
1729  *	entirely invalid, and TRUE otherwise.
1730  *
1731  *	May not block.
1732  */
1733 int
1734 vm_page_is_valid(vm_page_t m, int base, int size)
1735 {
1736 	int bits = vm_page_bits(base, size);
1737 
1738 	if (m->valid && ((m->valid & bits) == bits))
1739 		return 1;
1740 	else
1741 		return 0;
1742 }
1743 
1744 /*
1745  * update dirty bits from pmap/mmu.  May not block.
1746  */
1747 void
1748 vm_page_test_dirty(vm_page_t m)
1749 {
1750 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1751 		vm_page_dirty(m);
1752 	}
1753 }
1754 
1755 #include "opt_ddb.h"
1756 #ifdef DDB
1757 #include <sys/kernel.h>
1758 
1759 #include <ddb/ddb.h>
1760 
1761 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1762 {
1763 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1764 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1765 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1766 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1767 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1768 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1769 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1770 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1771 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1772 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1773 }
1774 
1775 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1776 {
1777 	int i;
1778 	db_printf("PQ_FREE:");
1779 	for (i = 0; i < PQ_L2_SIZE; i++) {
1780 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1781 	}
1782 	db_printf("\n");
1783 
1784 	db_printf("PQ_CACHE:");
1785 	for (i = 0; i < PQ_L2_SIZE; i++) {
1786 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1787 	}
1788 	db_printf("\n");
1789 
1790 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1791 		vm_page_queues[PQ_ACTIVE].lcnt,
1792 		vm_page_queues[PQ_INACTIVE].lcnt);
1793 }
1794 #endif /* DDB */
1795