1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * The Mach Operating System project at Carnegie-Mellon University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 34 */ 35 36 /*- 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * GENERAL RULES ON VM_PAGE MANIPULATION 65 * 66 * - a pageq mutex is required when adding or removing a page from a 67 * page queue (vm_page_queue[]), regardless of other mutexes or the 68 * busy state of a page. 69 * 70 * - a hash chain mutex is required when associating or disassociating 71 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 72 * regardless of other mutexes or the busy state of a page. 73 * 74 * - either a hash chain mutex OR a busied page is required in order 75 * to modify the page flags. A hash chain mutex must be obtained in 76 * order to busy a page. A page's flags cannot be modified by a 77 * hash chain mutex if the page is marked busy. 78 * 79 * - The object memq mutex is held when inserting or removing 80 * pages from an object (vm_page_insert() or vm_page_remove()). This 81 * is different from the object's main mutex. 82 * 83 * Generally speaking, you have to be aware of side effects when running 84 * vm_page ops. A vm_page_lookup() will return with the hash chain 85 * locked, whether it was able to lookup the page or not. vm_page_free(), 86 * vm_page_cache(), vm_page_activate(), and a number of other routines 87 * will release the hash chain mutex for you. Intermediate manipulation 88 * routines such as vm_page_flag_set() expect the hash chain to be held 89 * on entry and the hash chain will remain held on return. 90 * 91 * pageq scanning can only occur with the pageq in question locked. 92 * We have a known bottleneck with the active queue, but the cache 93 * and free queues are actually arrays already. 94 */ 95 96 /* 97 * Resident memory management module. 98 */ 99 100 #include <sys/cdefs.h> 101 __FBSDID("$FreeBSD$"); 102 103 #include "opt_vm.h" 104 105 #include <sys/param.h> 106 #include <sys/systm.h> 107 #include <sys/lock.h> 108 #include <sys/kernel.h> 109 #include <sys/malloc.h> 110 #include <sys/mutex.h> 111 #include <sys/proc.h> 112 #include <sys/sysctl.h> 113 #include <sys/vmmeter.h> 114 #include <sys/vnode.h> 115 116 #include <vm/vm.h> 117 #include <vm/vm_param.h> 118 #include <vm/vm_kern.h> 119 #include <vm/vm_object.h> 120 #include <vm/vm_page.h> 121 #include <vm/vm_pageout.h> 122 #include <vm/vm_pager.h> 123 #include <vm/vm_phys.h> 124 #include <vm/vm_reserv.h> 125 #include <vm/vm_extern.h> 126 #include <vm/uma.h> 127 #include <vm/uma_int.h> 128 129 #include <machine/md_var.h> 130 131 /* 132 * Associated with page of user-allocatable memory is a 133 * page structure. 134 */ 135 136 struct vpgqueues vm_page_queues[PQ_COUNT]; 137 struct mtx vm_page_queue_mtx; 138 struct mtx vm_page_queue_free_mtx; 139 140 vm_page_t vm_page_array = 0; 141 int vm_page_array_size = 0; 142 long first_page = 0; 143 int vm_page_zero_count = 0; 144 145 static int boot_pages = UMA_BOOT_PAGES; 146 TUNABLE_INT("vm.boot_pages", &boot_pages); 147 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0, 148 "number of pages allocated for bootstrapping the VM system"); 149 150 static void vm_page_enqueue(int queue, vm_page_t m); 151 152 /* 153 * vm_set_page_size: 154 * 155 * Sets the page size, perhaps based upon the memory 156 * size. Must be called before any use of page-size 157 * dependent functions. 158 */ 159 void 160 vm_set_page_size(void) 161 { 162 if (cnt.v_page_size == 0) 163 cnt.v_page_size = PAGE_SIZE; 164 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 165 panic("vm_set_page_size: page size not a power of two"); 166 } 167 168 /* 169 * vm_page_blacklist_lookup: 170 * 171 * See if a physical address in this page has been listed 172 * in the blacklist tunable. Entries in the tunable are 173 * separated by spaces or commas. If an invalid integer is 174 * encountered then the rest of the string is skipped. 175 */ 176 static int 177 vm_page_blacklist_lookup(char *list, vm_paddr_t pa) 178 { 179 vm_paddr_t bad; 180 char *cp, *pos; 181 182 for (pos = list; *pos != '\0'; pos = cp) { 183 bad = strtoq(pos, &cp, 0); 184 if (*cp != '\0') { 185 if (*cp == ' ' || *cp == ',') { 186 cp++; 187 if (cp == pos) 188 continue; 189 } else 190 break; 191 } 192 if (pa == trunc_page(bad)) 193 return (1); 194 } 195 return (0); 196 } 197 198 /* 199 * vm_page_startup: 200 * 201 * Initializes the resident memory module. 202 * 203 * Allocates memory for the page cells, and 204 * for the object/offset-to-page hash table headers. 205 * Each page cell is initialized and placed on the free list. 206 */ 207 vm_offset_t 208 vm_page_startup(vm_offset_t vaddr) 209 { 210 vm_offset_t mapped; 211 vm_paddr_t page_range; 212 vm_paddr_t new_end; 213 int i; 214 vm_paddr_t pa; 215 int nblocks; 216 vm_paddr_t last_pa; 217 char *list; 218 219 /* the biggest memory array is the second group of pages */ 220 vm_paddr_t end; 221 vm_paddr_t biggestsize; 222 vm_paddr_t low_water, high_water; 223 int biggestone; 224 225 biggestsize = 0; 226 biggestone = 0; 227 nblocks = 0; 228 vaddr = round_page(vaddr); 229 230 for (i = 0; phys_avail[i + 1]; i += 2) { 231 phys_avail[i] = round_page(phys_avail[i]); 232 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 233 } 234 235 low_water = phys_avail[0]; 236 high_water = phys_avail[1]; 237 238 for (i = 0; phys_avail[i + 1]; i += 2) { 239 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 240 241 if (size > biggestsize) { 242 biggestone = i; 243 biggestsize = size; 244 } 245 if (phys_avail[i] < low_water) 246 low_water = phys_avail[i]; 247 if (phys_avail[i + 1] > high_water) 248 high_water = phys_avail[i + 1]; 249 ++nblocks; 250 } 251 252 #ifdef XEN 253 low_water = 0; 254 #endif 255 256 end = phys_avail[biggestone+1]; 257 258 /* 259 * Initialize the locks. 260 */ 261 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF | 262 MTX_RECURSE); 263 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 264 MTX_DEF); 265 266 /* 267 * Initialize the queue headers for the hold queue, the active queue, 268 * and the inactive queue. 269 */ 270 for (i = 0; i < PQ_COUNT; i++) 271 TAILQ_INIT(&vm_page_queues[i].pl); 272 vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count; 273 vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count; 274 vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count; 275 276 /* 277 * Allocate memory for use when boot strapping the kernel memory 278 * allocator. 279 */ 280 new_end = end - (boot_pages * UMA_SLAB_SIZE); 281 new_end = trunc_page(new_end); 282 mapped = pmap_map(&vaddr, new_end, end, 283 VM_PROT_READ | VM_PROT_WRITE); 284 bzero((void *)mapped, end - new_end); 285 uma_startup((void *)mapped, boot_pages); 286 287 #if defined(__amd64__) || defined(__i386__) 288 /* 289 * Allocate a bitmap to indicate that a random physical page 290 * needs to be included in a minidump. 291 * 292 * The amd64 port needs this to indicate which direct map pages 293 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 294 * 295 * However, i386 still needs this workspace internally within the 296 * minidump code. In theory, they are not needed on i386, but are 297 * included should the sf_buf code decide to use them. 298 */ 299 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; 300 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 301 new_end -= vm_page_dump_size; 302 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 303 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 304 bzero((void *)vm_page_dump, vm_page_dump_size); 305 #endif 306 /* 307 * Compute the number of pages of memory that will be available for 308 * use (taking into account the overhead of a page structure per 309 * page). 310 */ 311 first_page = low_water / PAGE_SIZE; 312 #ifdef VM_PHYSSEG_SPARSE 313 page_range = 0; 314 for (i = 0; phys_avail[i + 1] != 0; i += 2) 315 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 316 #elif defined(VM_PHYSSEG_DENSE) 317 page_range = high_water / PAGE_SIZE - first_page; 318 #else 319 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 320 #endif 321 end = new_end; 322 323 /* 324 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 325 */ 326 vaddr += PAGE_SIZE; 327 328 /* 329 * Initialize the mem entry structures now, and put them in the free 330 * queue. 331 */ 332 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 333 mapped = pmap_map(&vaddr, new_end, end, 334 VM_PROT_READ | VM_PROT_WRITE); 335 vm_page_array = (vm_page_t) mapped; 336 #if VM_NRESERVLEVEL > 0 337 /* 338 * Allocate memory for the reservation management system's data 339 * structures. 340 */ 341 new_end = vm_reserv_startup(&vaddr, new_end, high_water); 342 #endif 343 #ifdef __amd64__ 344 /* 345 * pmap_map on amd64 comes out of the direct-map, not kvm like i386, 346 * so the pages must be tracked for a crashdump to include this data. 347 * This includes the vm_page_array and the early UMA bootstrap pages. 348 */ 349 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 350 dump_add_page(pa); 351 #endif 352 phys_avail[biggestone + 1] = new_end; 353 354 /* 355 * Clear all of the page structures 356 */ 357 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 358 for (i = 0; i < page_range; i++) 359 vm_page_array[i].order = VM_NFREEORDER; 360 vm_page_array_size = page_range; 361 362 /* 363 * Initialize the physical memory allocator. 364 */ 365 vm_phys_init(); 366 367 /* 368 * Add every available physical page that is not blacklisted to 369 * the free lists. 370 */ 371 cnt.v_page_count = 0; 372 cnt.v_free_count = 0; 373 list = getenv("vm.blacklist"); 374 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 375 pa = phys_avail[i]; 376 last_pa = phys_avail[i + 1]; 377 while (pa < last_pa) { 378 if (list != NULL && 379 vm_page_blacklist_lookup(list, pa)) 380 printf("Skipping page with pa 0x%jx\n", 381 (uintmax_t)pa); 382 else 383 vm_phys_add_page(pa); 384 pa += PAGE_SIZE; 385 } 386 } 387 freeenv(list); 388 #if VM_NRESERVLEVEL > 0 389 /* 390 * Initialize the reservation management system. 391 */ 392 vm_reserv_init(); 393 #endif 394 return (vaddr); 395 } 396 397 void 398 vm_page_flag_set(vm_page_t m, unsigned short bits) 399 { 400 401 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 402 m->flags |= bits; 403 } 404 405 void 406 vm_page_flag_clear(vm_page_t m, unsigned short bits) 407 { 408 409 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 410 m->flags &= ~bits; 411 } 412 413 void 414 vm_page_busy(vm_page_t m) 415 { 416 417 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 418 KASSERT((m->oflags & VPO_BUSY) == 0, 419 ("vm_page_busy: page already busy!!!")); 420 m->oflags |= VPO_BUSY; 421 } 422 423 /* 424 * vm_page_flash: 425 * 426 * wakeup anyone waiting for the page. 427 */ 428 void 429 vm_page_flash(vm_page_t m) 430 { 431 432 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 433 if (m->oflags & VPO_WANTED) { 434 m->oflags &= ~VPO_WANTED; 435 wakeup(m); 436 } 437 } 438 439 /* 440 * vm_page_wakeup: 441 * 442 * clear the VPO_BUSY flag and wakeup anyone waiting for the 443 * page. 444 * 445 */ 446 void 447 vm_page_wakeup(vm_page_t m) 448 { 449 450 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 451 KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!")); 452 m->oflags &= ~VPO_BUSY; 453 vm_page_flash(m); 454 } 455 456 void 457 vm_page_io_start(vm_page_t m) 458 { 459 460 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 461 m->busy++; 462 } 463 464 void 465 vm_page_io_finish(vm_page_t m) 466 { 467 468 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 469 m->busy--; 470 if (m->busy == 0) 471 vm_page_flash(m); 472 } 473 474 /* 475 * Keep page from being freed by the page daemon 476 * much of the same effect as wiring, except much lower 477 * overhead and should be used only for *very* temporary 478 * holding ("wiring"). 479 */ 480 void 481 vm_page_hold(vm_page_t mem) 482 { 483 484 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 485 mem->hold_count++; 486 } 487 488 void 489 vm_page_unhold(vm_page_t mem) 490 { 491 492 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 493 --mem->hold_count; 494 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 495 if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD)) 496 vm_page_free_toq(mem); 497 } 498 499 /* 500 * vm_page_free: 501 * 502 * Free a page. 503 */ 504 void 505 vm_page_free(vm_page_t m) 506 { 507 508 m->flags &= ~PG_ZERO; 509 vm_page_free_toq(m); 510 } 511 512 /* 513 * vm_page_free_zero: 514 * 515 * Free a page to the zerod-pages queue 516 */ 517 void 518 vm_page_free_zero(vm_page_t m) 519 { 520 521 m->flags |= PG_ZERO; 522 vm_page_free_toq(m); 523 } 524 525 /* 526 * vm_page_sleep: 527 * 528 * Sleep and release the page queues lock. 529 * 530 * The object containing the given page must be locked. 531 */ 532 void 533 vm_page_sleep(vm_page_t m, const char *msg) 534 { 535 536 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 537 if (!mtx_owned(&vm_page_queue_mtx)) 538 vm_page_lock_queues(); 539 vm_page_flag_set(m, PG_REFERENCED); 540 vm_page_unlock_queues(); 541 542 /* 543 * It's possible that while we sleep, the page will get 544 * unbusied and freed. If we are holding the object 545 * lock, we will assume we hold a reference to the object 546 * such that even if m->object changes, we can re-lock 547 * it. 548 */ 549 m->oflags |= VPO_WANTED; 550 msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0); 551 } 552 553 /* 554 * vm_page_dirty: 555 * 556 * make page all dirty 557 */ 558 void 559 vm_page_dirty(vm_page_t m) 560 { 561 KASSERT((m->flags & PG_CACHED) == 0, 562 ("vm_page_dirty: page in cache!")); 563 KASSERT(!VM_PAGE_IS_FREE(m), 564 ("vm_page_dirty: page is free!")); 565 m->dirty = VM_PAGE_BITS_ALL; 566 } 567 568 /* 569 * vm_page_splay: 570 * 571 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 572 * the vm_page containing the given pindex. If, however, that 573 * pindex is not found in the vm_object, returns a vm_page that is 574 * adjacent to the pindex, coming before or after it. 575 */ 576 vm_page_t 577 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 578 { 579 struct vm_page dummy; 580 vm_page_t lefttreemax, righttreemin, y; 581 582 if (root == NULL) 583 return (root); 584 lefttreemax = righttreemin = &dummy; 585 for (;; root = y) { 586 if (pindex < root->pindex) { 587 if ((y = root->left) == NULL) 588 break; 589 if (pindex < y->pindex) { 590 /* Rotate right. */ 591 root->left = y->right; 592 y->right = root; 593 root = y; 594 if ((y = root->left) == NULL) 595 break; 596 } 597 /* Link into the new root's right tree. */ 598 righttreemin->left = root; 599 righttreemin = root; 600 } else if (pindex > root->pindex) { 601 if ((y = root->right) == NULL) 602 break; 603 if (pindex > y->pindex) { 604 /* Rotate left. */ 605 root->right = y->left; 606 y->left = root; 607 root = y; 608 if ((y = root->right) == NULL) 609 break; 610 } 611 /* Link into the new root's left tree. */ 612 lefttreemax->right = root; 613 lefttreemax = root; 614 } else 615 break; 616 } 617 /* Assemble the new root. */ 618 lefttreemax->right = root->left; 619 righttreemin->left = root->right; 620 root->left = dummy.right; 621 root->right = dummy.left; 622 return (root); 623 } 624 625 /* 626 * vm_page_insert: [ internal use only ] 627 * 628 * Inserts the given mem entry into the object and object list. 629 * 630 * The pagetables are not updated but will presumably fault the page 631 * in if necessary, or if a kernel page the caller will at some point 632 * enter the page into the kernel's pmap. We are not allowed to block 633 * here so we *can't* do this anyway. 634 * 635 * The object and page must be locked. 636 * This routine may not block. 637 */ 638 void 639 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 640 { 641 vm_page_t root; 642 643 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 644 if (m->object != NULL) 645 panic("vm_page_insert: page already inserted"); 646 647 /* 648 * Record the object/offset pair in this page 649 */ 650 m->object = object; 651 m->pindex = pindex; 652 653 /* 654 * Now link into the object's ordered list of backed pages. 655 */ 656 root = object->root; 657 if (root == NULL) { 658 m->left = NULL; 659 m->right = NULL; 660 TAILQ_INSERT_TAIL(&object->memq, m, listq); 661 } else { 662 root = vm_page_splay(pindex, root); 663 if (pindex < root->pindex) { 664 m->left = root->left; 665 m->right = root; 666 root->left = NULL; 667 TAILQ_INSERT_BEFORE(root, m, listq); 668 } else if (pindex == root->pindex) 669 panic("vm_page_insert: offset already allocated"); 670 else { 671 m->right = root->right; 672 m->left = root; 673 root->right = NULL; 674 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 675 } 676 } 677 object->root = m; 678 object->generation++; 679 680 /* 681 * show that the object has one more resident page. 682 */ 683 object->resident_page_count++; 684 /* 685 * Hold the vnode until the last page is released. 686 */ 687 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 688 vhold((struct vnode *)object->handle); 689 690 /* 691 * Since we are inserting a new and possibly dirty page, 692 * update the object's OBJ_MIGHTBEDIRTY flag. 693 */ 694 if (m->flags & PG_WRITEABLE) 695 vm_object_set_writeable_dirty(object); 696 } 697 698 /* 699 * vm_page_remove: 700 * NOTE: used by device pager as well -wfj 701 * 702 * Removes the given mem entry from the object/offset-page 703 * table and the object page list, but do not invalidate/terminate 704 * the backing store. 705 * 706 * The object and page must be locked. 707 * The underlying pmap entry (if any) is NOT removed here. 708 * This routine may not block. 709 */ 710 void 711 vm_page_remove(vm_page_t m) 712 { 713 vm_object_t object; 714 vm_page_t root; 715 716 if ((object = m->object) == NULL) 717 return; 718 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 719 if (m->oflags & VPO_BUSY) { 720 m->oflags &= ~VPO_BUSY; 721 vm_page_flash(m); 722 } 723 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 724 725 /* 726 * Now remove from the object's list of backed pages. 727 */ 728 if (m != object->root) 729 vm_page_splay(m->pindex, object->root); 730 if (m->left == NULL) 731 root = m->right; 732 else { 733 root = vm_page_splay(m->pindex, m->left); 734 root->right = m->right; 735 } 736 object->root = root; 737 TAILQ_REMOVE(&object->memq, m, listq); 738 739 /* 740 * And show that the object has one fewer resident page. 741 */ 742 object->resident_page_count--; 743 object->generation++; 744 /* 745 * The vnode may now be recycled. 746 */ 747 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 748 vdrop((struct vnode *)object->handle); 749 750 m->object = NULL; 751 } 752 753 /* 754 * vm_page_lookup: 755 * 756 * Returns the page associated with the object/offset 757 * pair specified; if none is found, NULL is returned. 758 * 759 * The object must be locked. 760 * This routine may not block. 761 * This is a critical path routine 762 */ 763 vm_page_t 764 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 765 { 766 vm_page_t m; 767 768 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 769 if ((m = object->root) != NULL && m->pindex != pindex) { 770 m = vm_page_splay(pindex, m); 771 if ((object->root = m)->pindex != pindex) 772 m = NULL; 773 } 774 return (m); 775 } 776 777 /* 778 * vm_page_rename: 779 * 780 * Move the given memory entry from its 781 * current object to the specified target object/offset. 782 * 783 * The object must be locked. 784 * This routine may not block. 785 * 786 * Note: swap associated with the page must be invalidated by the move. We 787 * have to do this for several reasons: (1) we aren't freeing the 788 * page, (2) we are dirtying the page, (3) the VM system is probably 789 * moving the page from object A to B, and will then later move 790 * the backing store from A to B and we can't have a conflict. 791 * 792 * Note: we *always* dirty the page. It is necessary both for the 793 * fact that we moved it, and because we may be invalidating 794 * swap. If the page is on the cache, we have to deactivate it 795 * or vm_page_dirty() will panic. Dirty pages are not allowed 796 * on the cache. 797 */ 798 void 799 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 800 { 801 802 vm_page_remove(m); 803 vm_page_insert(m, new_object, new_pindex); 804 vm_page_dirty(m); 805 } 806 807 /* 808 * Convert all of the given object's cached pages that have a 809 * pindex within the given range into free pages. If the value 810 * zero is given for "end", then the range's upper bound is 811 * infinity. If the given object is backed by a vnode and it 812 * transitions from having one or more cached pages to none, the 813 * vnode's hold count is reduced. 814 */ 815 void 816 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 817 { 818 vm_page_t m, m_next; 819 boolean_t empty; 820 821 mtx_lock(&vm_page_queue_free_mtx); 822 if (__predict_false(object->cache == NULL)) { 823 mtx_unlock(&vm_page_queue_free_mtx); 824 return; 825 } 826 m = object->cache = vm_page_splay(start, object->cache); 827 if (m->pindex < start) { 828 if (m->right == NULL) 829 m = NULL; 830 else { 831 m_next = vm_page_splay(start, m->right); 832 m_next->left = m; 833 m->right = NULL; 834 m = object->cache = m_next; 835 } 836 } 837 838 /* 839 * At this point, "m" is either (1) a reference to the page 840 * with the least pindex that is greater than or equal to 841 * "start" or (2) NULL. 842 */ 843 for (; m != NULL && (m->pindex < end || end == 0); m = m_next) { 844 /* 845 * Find "m"'s successor and remove "m" from the 846 * object's cache. 847 */ 848 if (m->right == NULL) { 849 object->cache = m->left; 850 m_next = NULL; 851 } else { 852 m_next = vm_page_splay(start, m->right); 853 m_next->left = m->left; 854 object->cache = m_next; 855 } 856 /* Convert "m" to a free page. */ 857 m->object = NULL; 858 m->valid = 0; 859 /* Clear PG_CACHED and set PG_FREE. */ 860 m->flags ^= PG_CACHED | PG_FREE; 861 KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE, 862 ("vm_page_cache_free: page %p has inconsistent flags", m)); 863 cnt.v_cache_count--; 864 cnt.v_free_count++; 865 } 866 empty = object->cache == NULL; 867 mtx_unlock(&vm_page_queue_free_mtx); 868 if (object->type == OBJT_VNODE && empty) 869 vdrop(object->handle); 870 } 871 872 /* 873 * Returns the cached page that is associated with the given 874 * object and offset. If, however, none exists, returns NULL. 875 * 876 * The free page queue must be locked. 877 */ 878 static inline vm_page_t 879 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex) 880 { 881 vm_page_t m; 882 883 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 884 if ((m = object->cache) != NULL && m->pindex != pindex) { 885 m = vm_page_splay(pindex, m); 886 if ((object->cache = m)->pindex != pindex) 887 m = NULL; 888 } 889 return (m); 890 } 891 892 /* 893 * Remove the given cached page from its containing object's 894 * collection of cached pages. 895 * 896 * The free page queue must be locked. 897 */ 898 void 899 vm_page_cache_remove(vm_page_t m) 900 { 901 vm_object_t object; 902 vm_page_t root; 903 904 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 905 KASSERT((m->flags & PG_CACHED) != 0, 906 ("vm_page_cache_remove: page %p is not cached", m)); 907 object = m->object; 908 if (m != object->cache) { 909 root = vm_page_splay(m->pindex, object->cache); 910 KASSERT(root == m, 911 ("vm_page_cache_remove: page %p is not cached in object %p", 912 m, object)); 913 } 914 if (m->left == NULL) 915 root = m->right; 916 else if (m->right == NULL) 917 root = m->left; 918 else { 919 root = vm_page_splay(m->pindex, m->left); 920 root->right = m->right; 921 } 922 object->cache = root; 923 m->object = NULL; 924 cnt.v_cache_count--; 925 } 926 927 /* 928 * Transfer all of the cached pages with offset greater than or 929 * equal to 'offidxstart' from the original object's cache to the 930 * new object's cache. However, any cached pages with offset 931 * greater than or equal to the new object's size are kept in the 932 * original object. Initially, the new object's cache must be 933 * empty. Offset 'offidxstart' in the original object must 934 * correspond to offset zero in the new object. 935 * 936 * The new object must be locked. 937 */ 938 void 939 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart, 940 vm_object_t new_object) 941 { 942 vm_page_t m, m_next; 943 944 /* 945 * Insertion into an object's collection of cached pages 946 * requires the object to be locked. In contrast, removal does 947 * not. 948 */ 949 VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED); 950 KASSERT(new_object->cache == NULL, 951 ("vm_page_cache_transfer: object %p has cached pages", 952 new_object)); 953 mtx_lock(&vm_page_queue_free_mtx); 954 if ((m = orig_object->cache) != NULL) { 955 /* 956 * Transfer all of the pages with offset greater than or 957 * equal to 'offidxstart' from the original object's 958 * cache to the new object's cache. 959 */ 960 m = vm_page_splay(offidxstart, m); 961 if (m->pindex < offidxstart) { 962 orig_object->cache = m; 963 new_object->cache = m->right; 964 m->right = NULL; 965 } else { 966 orig_object->cache = m->left; 967 new_object->cache = m; 968 m->left = NULL; 969 } 970 while ((m = new_object->cache) != NULL) { 971 if ((m->pindex - offidxstart) >= new_object->size) { 972 /* 973 * Return all of the cached pages with 974 * offset greater than or equal to the 975 * new object's size to the original 976 * object's cache. 977 */ 978 new_object->cache = m->left; 979 m->left = orig_object->cache; 980 orig_object->cache = m; 981 break; 982 } 983 m_next = vm_page_splay(m->pindex, m->right); 984 /* Update the page's object and offset. */ 985 m->object = new_object; 986 m->pindex -= offidxstart; 987 if (m_next == NULL) 988 break; 989 m->right = NULL; 990 m_next->left = m; 991 new_object->cache = m_next; 992 } 993 KASSERT(new_object->cache == NULL || 994 new_object->type == OBJT_SWAP, 995 ("vm_page_cache_transfer: object %p's type is incompatible" 996 " with cached pages", new_object)); 997 } 998 mtx_unlock(&vm_page_queue_free_mtx); 999 } 1000 1001 /* 1002 * vm_page_alloc: 1003 * 1004 * Allocate and return a memory cell associated 1005 * with this VM object/offset pair. 1006 * 1007 * page_req classes: 1008 * VM_ALLOC_NORMAL normal process request 1009 * VM_ALLOC_SYSTEM system *really* needs a page 1010 * VM_ALLOC_INTERRUPT interrupt time request 1011 * VM_ALLOC_ZERO zero page 1012 * 1013 * This routine may not block. 1014 */ 1015 vm_page_t 1016 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1017 { 1018 struct vnode *vp = NULL; 1019 vm_object_t m_object; 1020 vm_page_t m; 1021 int flags, page_req; 1022 1023 page_req = req & VM_ALLOC_CLASS_MASK; 1024 KASSERT(curthread->td_intr_nesting_level == 0 || 1025 page_req == VM_ALLOC_INTERRUPT, 1026 ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context")); 1027 1028 if ((req & VM_ALLOC_NOOBJ) == 0) { 1029 KASSERT(object != NULL, 1030 ("vm_page_alloc: NULL object.")); 1031 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1032 } 1033 1034 /* 1035 * The pager is allowed to eat deeper into the free page list. 1036 */ 1037 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 1038 page_req = VM_ALLOC_SYSTEM; 1039 }; 1040 1041 mtx_lock(&vm_page_queue_free_mtx); 1042 if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved || 1043 (page_req == VM_ALLOC_SYSTEM && 1044 cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) || 1045 (page_req == VM_ALLOC_INTERRUPT && 1046 cnt.v_free_count + cnt.v_cache_count > 0)) { 1047 /* 1048 * Allocate from the free queue if the number of free pages 1049 * exceeds the minimum for the request class. 1050 */ 1051 if (object != NULL && 1052 (m = vm_page_cache_lookup(object, pindex)) != NULL) { 1053 if ((req & VM_ALLOC_IFNOTCACHED) != 0) { 1054 mtx_unlock(&vm_page_queue_free_mtx); 1055 return (NULL); 1056 } 1057 if (vm_phys_unfree_page(m)) 1058 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0); 1059 #if VM_NRESERVLEVEL > 0 1060 else if (!vm_reserv_reactivate_page(m)) 1061 #else 1062 else 1063 #endif 1064 panic("vm_page_alloc: cache page %p is missing" 1065 " from the free queue", m); 1066 } else if ((req & VM_ALLOC_IFCACHED) != 0) { 1067 mtx_unlock(&vm_page_queue_free_mtx); 1068 return (NULL); 1069 #if VM_NRESERVLEVEL > 0 1070 } else if (object == NULL || object->type == OBJT_DEVICE || 1071 (object->flags & OBJ_COLORED) == 0 || 1072 (m = vm_reserv_alloc_page(object, pindex)) == NULL) { 1073 #else 1074 } else { 1075 #endif 1076 m = vm_phys_alloc_pages(object != NULL ? 1077 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 1078 #if VM_NRESERVLEVEL > 0 1079 if (m == NULL && vm_reserv_reclaim_inactive()) { 1080 m = vm_phys_alloc_pages(object != NULL ? 1081 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 1082 0); 1083 } 1084 #endif 1085 } 1086 } else { 1087 /* 1088 * Not allocatable, give up. 1089 */ 1090 mtx_unlock(&vm_page_queue_free_mtx); 1091 atomic_add_int(&vm_pageout_deficit, 1); 1092 pagedaemon_wakeup(); 1093 return (NULL); 1094 } 1095 1096 /* 1097 * At this point we had better have found a good page. 1098 */ 1099 1100 KASSERT( 1101 m != NULL, 1102 ("vm_page_alloc(): missing page on free queue") 1103 ); 1104 if ((m->flags & PG_CACHED) != 0) { 1105 KASSERT(m->valid != 0, 1106 ("vm_page_alloc: cached page %p is invalid", m)); 1107 if (m->object == object && m->pindex == pindex) 1108 cnt.v_reactivated++; 1109 else 1110 m->valid = 0; 1111 m_object = m->object; 1112 vm_page_cache_remove(m); 1113 if (m_object->type == OBJT_VNODE && m_object->cache == NULL) 1114 vp = m_object->handle; 1115 } else { 1116 KASSERT(VM_PAGE_IS_FREE(m), 1117 ("vm_page_alloc: page %p is not free", m)); 1118 KASSERT(m->valid == 0, 1119 ("vm_page_alloc: free page %p is valid", m)); 1120 cnt.v_free_count--; 1121 } 1122 1123 /* 1124 * Initialize structure. Only the PG_ZERO flag is inherited. 1125 */ 1126 flags = 0; 1127 if (m->flags & PG_ZERO) { 1128 vm_page_zero_count--; 1129 if (req & VM_ALLOC_ZERO) 1130 flags = PG_ZERO; 1131 } 1132 if (object == NULL || object->type == OBJT_PHYS) 1133 flags |= PG_UNMANAGED; 1134 m->flags = flags; 1135 if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) 1136 m->oflags = 0; 1137 else 1138 m->oflags = VPO_BUSY; 1139 if (req & VM_ALLOC_WIRED) { 1140 atomic_add_int(&cnt.v_wire_count, 1); 1141 m->wire_count = 1; 1142 } else 1143 m->wire_count = 0; 1144 m->hold_count = 0; 1145 m->act_count = 0; 1146 m->busy = 0; 1147 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 1148 mtx_unlock(&vm_page_queue_free_mtx); 1149 1150 if ((req & VM_ALLOC_NOOBJ) == 0) 1151 vm_page_insert(m, object, pindex); 1152 else 1153 m->pindex = pindex; 1154 1155 /* 1156 * The following call to vdrop() must come after the above call 1157 * to vm_page_insert() in case both affect the same object and 1158 * vnode. Otherwise, the affected vnode's hold count could 1159 * temporarily become zero. 1160 */ 1161 if (vp != NULL) 1162 vdrop(vp); 1163 1164 /* 1165 * Don't wakeup too often - wakeup the pageout daemon when 1166 * we would be nearly out of memory. 1167 */ 1168 if (vm_paging_needed()) 1169 pagedaemon_wakeup(); 1170 1171 return (m); 1172 } 1173 1174 /* 1175 * vm_wait: (also see VM_WAIT macro) 1176 * 1177 * Block until free pages are available for allocation 1178 * - Called in various places before memory allocations. 1179 */ 1180 void 1181 vm_wait(void) 1182 { 1183 1184 mtx_lock(&vm_page_queue_free_mtx); 1185 if (curproc == pageproc) { 1186 vm_pageout_pages_needed = 1; 1187 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, 1188 PDROP | PSWP, "VMWait", 0); 1189 } else { 1190 if (!vm_pages_needed) { 1191 vm_pages_needed = 1; 1192 wakeup(&vm_pages_needed); 1193 } 1194 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, 1195 "vmwait", 0); 1196 } 1197 } 1198 1199 /* 1200 * vm_waitpfault: (also see VM_WAITPFAULT macro) 1201 * 1202 * Block until free pages are available for allocation 1203 * - Called only in vm_fault so that processes page faulting 1204 * can be easily tracked. 1205 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 1206 * processes will be able to grab memory first. Do not change 1207 * this balance without careful testing first. 1208 */ 1209 void 1210 vm_waitpfault(void) 1211 { 1212 1213 mtx_lock(&vm_page_queue_free_mtx); 1214 if (!vm_pages_needed) { 1215 vm_pages_needed = 1; 1216 wakeup(&vm_pages_needed); 1217 } 1218 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, 1219 "pfault", 0); 1220 } 1221 1222 /* 1223 * vm_page_requeue: 1224 * 1225 * If the given page is contained within a page queue, move it to the tail 1226 * of that queue. 1227 * 1228 * The page queues must be locked. 1229 */ 1230 void 1231 vm_page_requeue(vm_page_t m) 1232 { 1233 int queue = VM_PAGE_GETQUEUE(m); 1234 struct vpgqueues *vpq; 1235 1236 if (queue != PQ_NONE) { 1237 vpq = &vm_page_queues[queue]; 1238 TAILQ_REMOVE(&vpq->pl, m, pageq); 1239 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq); 1240 } 1241 } 1242 1243 /* 1244 * vm_pageq_remove: 1245 * 1246 * Remove a page from its queue. 1247 * 1248 * The queue containing the given page must be locked. 1249 * This routine may not block. 1250 */ 1251 void 1252 vm_pageq_remove(vm_page_t m) 1253 { 1254 int queue = VM_PAGE_GETQUEUE(m); 1255 struct vpgqueues *pq; 1256 1257 if (queue != PQ_NONE) { 1258 VM_PAGE_SETQUEUE2(m, PQ_NONE); 1259 pq = &vm_page_queues[queue]; 1260 TAILQ_REMOVE(&pq->pl, m, pageq); 1261 (*pq->cnt)--; 1262 } 1263 } 1264 1265 /* 1266 * vm_page_enqueue: 1267 * 1268 * Add the given page to the specified queue. 1269 * 1270 * The page queues must be locked. 1271 */ 1272 static void 1273 vm_page_enqueue(int queue, vm_page_t m) 1274 { 1275 struct vpgqueues *vpq; 1276 1277 vpq = &vm_page_queues[queue]; 1278 VM_PAGE_SETQUEUE2(m, queue); 1279 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq); 1280 ++*vpq->cnt; 1281 } 1282 1283 /* 1284 * vm_page_activate: 1285 * 1286 * Put the specified page on the active list (if appropriate). 1287 * Ensure that act_count is at least ACT_INIT but do not otherwise 1288 * mess with it. 1289 * 1290 * The page queues must be locked. 1291 * This routine may not block. 1292 */ 1293 void 1294 vm_page_activate(vm_page_t m) 1295 { 1296 1297 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1298 if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) { 1299 vm_pageq_remove(m); 1300 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1301 if (m->act_count < ACT_INIT) 1302 m->act_count = ACT_INIT; 1303 vm_page_enqueue(PQ_ACTIVE, m); 1304 } 1305 } else { 1306 if (m->act_count < ACT_INIT) 1307 m->act_count = ACT_INIT; 1308 } 1309 } 1310 1311 /* 1312 * vm_page_free_wakeup: 1313 * 1314 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1315 * routine is called when a page has been added to the cache or free 1316 * queues. 1317 * 1318 * The page queues must be locked. 1319 * This routine may not block. 1320 */ 1321 static inline void 1322 vm_page_free_wakeup(void) 1323 { 1324 1325 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1326 /* 1327 * if pageout daemon needs pages, then tell it that there are 1328 * some free. 1329 */ 1330 if (vm_pageout_pages_needed && 1331 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1332 wakeup(&vm_pageout_pages_needed); 1333 vm_pageout_pages_needed = 0; 1334 } 1335 /* 1336 * wakeup processes that are waiting on memory if we hit a 1337 * high water mark. And wakeup scheduler process if we have 1338 * lots of memory. this process will swapin processes. 1339 */ 1340 if (vm_pages_needed && !vm_page_count_min()) { 1341 vm_pages_needed = 0; 1342 wakeup(&cnt.v_free_count); 1343 } 1344 } 1345 1346 /* 1347 * vm_page_free_toq: 1348 * 1349 * Returns the given page to the free list, 1350 * disassociating it with any VM object. 1351 * 1352 * Object and page must be locked prior to entry. 1353 * This routine may not block. 1354 */ 1355 1356 void 1357 vm_page_free_toq(vm_page_t m) 1358 { 1359 1360 if (VM_PAGE_GETQUEUE(m) != PQ_NONE) 1361 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1362 KASSERT(!pmap_page_is_mapped(m), 1363 ("vm_page_free_toq: freeing mapped page %p", m)); 1364 PCPU_INC(cnt.v_tfree); 1365 1366 if (m->busy || VM_PAGE_IS_FREE(m)) { 1367 printf( 1368 "vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n", 1369 (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0, 1370 m->hold_count); 1371 if (VM_PAGE_IS_FREE(m)) 1372 panic("vm_page_free: freeing free page"); 1373 else 1374 panic("vm_page_free: freeing busy page"); 1375 } 1376 1377 /* 1378 * unqueue, then remove page. Note that we cannot destroy 1379 * the page here because we do not want to call the pager's 1380 * callback routine until after we've put the page on the 1381 * appropriate free queue. 1382 */ 1383 vm_pageq_remove(m); 1384 vm_page_remove(m); 1385 1386 /* 1387 * If fictitious remove object association and 1388 * return, otherwise delay object association removal. 1389 */ 1390 if ((m->flags & PG_FICTITIOUS) != 0) { 1391 return; 1392 } 1393 1394 m->valid = 0; 1395 vm_page_undirty(m); 1396 1397 if (m->wire_count != 0) { 1398 if (m->wire_count > 1) { 1399 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1400 m->wire_count, (long)m->pindex); 1401 } 1402 panic("vm_page_free: freeing wired page"); 1403 } 1404 if (m->hold_count != 0) { 1405 m->flags &= ~PG_ZERO; 1406 vm_page_enqueue(PQ_HOLD, m); 1407 } else { 1408 mtx_lock(&vm_page_queue_free_mtx); 1409 m->flags |= PG_FREE; 1410 cnt.v_free_count++; 1411 #if VM_NRESERVLEVEL > 0 1412 if (!vm_reserv_free_page(m)) 1413 #else 1414 if (TRUE) 1415 #endif 1416 vm_phys_free_pages(m, 0); 1417 if ((m->flags & PG_ZERO) != 0) 1418 ++vm_page_zero_count; 1419 else 1420 vm_page_zero_idle_wakeup(); 1421 vm_page_free_wakeup(); 1422 mtx_unlock(&vm_page_queue_free_mtx); 1423 } 1424 } 1425 1426 /* 1427 * vm_page_wire: 1428 * 1429 * Mark this page as wired down by yet 1430 * another map, removing it from paging queues 1431 * as necessary. 1432 * 1433 * The page queues must be locked. 1434 * This routine may not block. 1435 */ 1436 void 1437 vm_page_wire(vm_page_t m) 1438 { 1439 1440 /* 1441 * Only bump the wire statistics if the page is not already wired, 1442 * and only unqueue the page if it is on some queue (if it is unmanaged 1443 * it is already off the queues). 1444 */ 1445 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1446 if (m->flags & PG_FICTITIOUS) 1447 return; 1448 if (m->wire_count == 0) { 1449 if ((m->flags & PG_UNMANAGED) == 0) 1450 vm_pageq_remove(m); 1451 atomic_add_int(&cnt.v_wire_count, 1); 1452 } 1453 m->wire_count++; 1454 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1455 } 1456 1457 /* 1458 * vm_page_unwire: 1459 * 1460 * Release one wiring of this page, potentially 1461 * enabling it to be paged again. 1462 * 1463 * Many pages placed on the inactive queue should actually go 1464 * into the cache, but it is difficult to figure out which. What 1465 * we do instead, if the inactive target is well met, is to put 1466 * clean pages at the head of the inactive queue instead of the tail. 1467 * This will cause them to be moved to the cache more quickly and 1468 * if not actively re-referenced, freed more quickly. If we just 1469 * stick these pages at the end of the inactive queue, heavy filesystem 1470 * meta-data accesses can cause an unnecessary paging load on memory bound 1471 * processes. This optimization causes one-time-use metadata to be 1472 * reused more quickly. 1473 * 1474 * BUT, if we are in a low-memory situation we have no choice but to 1475 * put clean pages on the cache queue. 1476 * 1477 * A number of routines use vm_page_unwire() to guarantee that the page 1478 * will go into either the inactive or active queues, and will NEVER 1479 * be placed in the cache - for example, just after dirtying a page. 1480 * dirty pages in the cache are not allowed. 1481 * 1482 * The page queues must be locked. 1483 * This routine may not block. 1484 */ 1485 void 1486 vm_page_unwire(vm_page_t m, int activate) 1487 { 1488 1489 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1490 if (m->flags & PG_FICTITIOUS) 1491 return; 1492 if (m->wire_count > 0) { 1493 m->wire_count--; 1494 if (m->wire_count == 0) { 1495 atomic_subtract_int(&cnt.v_wire_count, 1); 1496 if (m->flags & PG_UNMANAGED) { 1497 ; 1498 } else if (activate) 1499 vm_page_enqueue(PQ_ACTIVE, m); 1500 else { 1501 vm_page_flag_clear(m, PG_WINATCFLS); 1502 vm_page_enqueue(PQ_INACTIVE, m); 1503 } 1504 } 1505 } else { 1506 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 1507 } 1508 } 1509 1510 1511 /* 1512 * Move the specified page to the inactive queue. If the page has 1513 * any associated swap, the swap is deallocated. 1514 * 1515 * Normally athead is 0 resulting in LRU operation. athead is set 1516 * to 1 if we want this page to be 'as if it were placed in the cache', 1517 * except without unmapping it from the process address space. 1518 * 1519 * This routine may not block. 1520 */ 1521 static inline void 1522 _vm_page_deactivate(vm_page_t m, int athead) 1523 { 1524 1525 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1526 1527 /* 1528 * Ignore if already inactive. 1529 */ 1530 if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) 1531 return; 1532 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1533 vm_page_flag_clear(m, PG_WINATCFLS); 1534 vm_pageq_remove(m); 1535 if (athead) 1536 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1537 else 1538 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1539 VM_PAGE_SETQUEUE2(m, PQ_INACTIVE); 1540 cnt.v_inactive_count++; 1541 } 1542 } 1543 1544 void 1545 vm_page_deactivate(vm_page_t m) 1546 { 1547 _vm_page_deactivate(m, 0); 1548 } 1549 1550 /* 1551 * vm_page_try_to_cache: 1552 * 1553 * Returns 0 on failure, 1 on success 1554 */ 1555 int 1556 vm_page_try_to_cache(vm_page_t m) 1557 { 1558 1559 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1560 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1561 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1562 (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) { 1563 return (0); 1564 } 1565 pmap_remove_all(m); 1566 if (m->dirty) 1567 return (0); 1568 vm_page_cache(m); 1569 return (1); 1570 } 1571 1572 /* 1573 * vm_page_try_to_free() 1574 * 1575 * Attempt to free the page. If we cannot free it, we do nothing. 1576 * 1 is returned on success, 0 on failure. 1577 */ 1578 int 1579 vm_page_try_to_free(vm_page_t m) 1580 { 1581 1582 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1583 if (m->object != NULL) 1584 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1585 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1586 (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) { 1587 return (0); 1588 } 1589 pmap_remove_all(m); 1590 if (m->dirty) 1591 return (0); 1592 vm_page_free(m); 1593 return (1); 1594 } 1595 1596 /* 1597 * vm_page_cache 1598 * 1599 * Put the specified page onto the page cache queue (if appropriate). 1600 * 1601 * This routine may not block. 1602 */ 1603 void 1604 vm_page_cache(vm_page_t m) 1605 { 1606 vm_object_t object; 1607 vm_page_t root; 1608 1609 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1610 object = m->object; 1611 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1612 if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy || 1613 m->hold_count || m->wire_count) { 1614 panic("vm_page_cache: attempting to cache busy page"); 1615 } 1616 pmap_remove_all(m); 1617 if (m->dirty != 0) 1618 panic("vm_page_cache: page %p is dirty", m); 1619 if (m->valid == 0 || object->type == OBJT_DEFAULT || 1620 (object->type == OBJT_SWAP && 1621 !vm_pager_has_page(object, m->pindex, NULL, NULL))) { 1622 /* 1623 * Hypothesis: A cache-elgible page belonging to a 1624 * default object or swap object but without a backing 1625 * store must be zero filled. 1626 */ 1627 vm_page_free(m); 1628 return; 1629 } 1630 KASSERT((m->flags & PG_CACHED) == 0, 1631 ("vm_page_cache: page %p is already cached", m)); 1632 cnt.v_tcached++; 1633 1634 /* 1635 * Remove the page from the paging queues. 1636 */ 1637 vm_pageq_remove(m); 1638 1639 /* 1640 * Remove the page from the object's collection of resident 1641 * pages. 1642 */ 1643 if (m != object->root) 1644 vm_page_splay(m->pindex, object->root); 1645 if (m->left == NULL) 1646 root = m->right; 1647 else { 1648 root = vm_page_splay(m->pindex, m->left); 1649 root->right = m->right; 1650 } 1651 object->root = root; 1652 TAILQ_REMOVE(&object->memq, m, listq); 1653 object->resident_page_count--; 1654 object->generation++; 1655 1656 /* 1657 * Insert the page into the object's collection of cached pages 1658 * and the physical memory allocator's cache/free page queues. 1659 */ 1660 vm_page_flag_clear(m, PG_ZERO); 1661 mtx_lock(&vm_page_queue_free_mtx); 1662 m->flags |= PG_CACHED; 1663 cnt.v_cache_count++; 1664 root = object->cache; 1665 if (root == NULL) { 1666 m->left = NULL; 1667 m->right = NULL; 1668 } else { 1669 root = vm_page_splay(m->pindex, root); 1670 if (m->pindex < root->pindex) { 1671 m->left = root->left; 1672 m->right = root; 1673 root->left = NULL; 1674 } else if (__predict_false(m->pindex == root->pindex)) 1675 panic("vm_page_cache: offset already cached"); 1676 else { 1677 m->right = root->right; 1678 m->left = root; 1679 root->right = NULL; 1680 } 1681 } 1682 object->cache = m; 1683 #if VM_NRESERVLEVEL > 0 1684 if (!vm_reserv_free_page(m)) { 1685 #else 1686 if (TRUE) { 1687 #endif 1688 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0); 1689 vm_phys_free_pages(m, 0); 1690 } 1691 vm_page_free_wakeup(); 1692 mtx_unlock(&vm_page_queue_free_mtx); 1693 1694 /* 1695 * Increment the vnode's hold count if this is the object's only 1696 * cached page. Decrement the vnode's hold count if this was 1697 * the object's only resident page. 1698 */ 1699 if (object->type == OBJT_VNODE) { 1700 if (root == NULL && object->resident_page_count != 0) 1701 vhold(object->handle); 1702 else if (root != NULL && object->resident_page_count == 0) 1703 vdrop(object->handle); 1704 } 1705 } 1706 1707 /* 1708 * vm_page_dontneed 1709 * 1710 * Cache, deactivate, or do nothing as appropriate. This routine 1711 * is typically used by madvise() MADV_DONTNEED. 1712 * 1713 * Generally speaking we want to move the page into the cache so 1714 * it gets reused quickly. However, this can result in a silly syndrome 1715 * due to the page recycling too quickly. Small objects will not be 1716 * fully cached. On the otherhand, if we move the page to the inactive 1717 * queue we wind up with a problem whereby very large objects 1718 * unnecessarily blow away our inactive and cache queues. 1719 * 1720 * The solution is to move the pages based on a fixed weighting. We 1721 * either leave them alone, deactivate them, or move them to the cache, 1722 * where moving them to the cache has the highest weighting. 1723 * By forcing some pages into other queues we eventually force the 1724 * system to balance the queues, potentially recovering other unrelated 1725 * space from active. The idea is to not force this to happen too 1726 * often. 1727 */ 1728 void 1729 vm_page_dontneed(vm_page_t m) 1730 { 1731 static int dnweight; 1732 int dnw; 1733 int head; 1734 1735 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1736 dnw = ++dnweight; 1737 1738 /* 1739 * occassionally leave the page alone 1740 */ 1741 if ((dnw & 0x01F0) == 0 || 1742 VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) { 1743 if (m->act_count >= ACT_INIT) 1744 --m->act_count; 1745 return; 1746 } 1747 1748 /* 1749 * Clear any references to the page. Otherwise, the page daemon will 1750 * immediately reactivate the page. 1751 */ 1752 vm_page_flag_clear(m, PG_REFERENCED); 1753 pmap_clear_reference(m); 1754 1755 if (m->dirty == 0 && pmap_is_modified(m)) 1756 vm_page_dirty(m); 1757 1758 if (m->dirty || (dnw & 0x0070) == 0) { 1759 /* 1760 * Deactivate the page 3 times out of 32. 1761 */ 1762 head = 0; 1763 } else { 1764 /* 1765 * Cache the page 28 times out of every 32. Note that 1766 * the page is deactivated instead of cached, but placed 1767 * at the head of the queue instead of the tail. 1768 */ 1769 head = 1; 1770 } 1771 _vm_page_deactivate(m, head); 1772 } 1773 1774 /* 1775 * Grab a page, waiting until we are waken up due to the page 1776 * changing state. We keep on waiting, if the page continues 1777 * to be in the object. If the page doesn't exist, first allocate it 1778 * and then conditionally zero it. 1779 * 1780 * This routine may block. 1781 */ 1782 vm_page_t 1783 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1784 { 1785 vm_page_t m; 1786 1787 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1788 retrylookup: 1789 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1790 if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) { 1791 if ((allocflags & VM_ALLOC_RETRY) == 0) 1792 return (NULL); 1793 goto retrylookup; 1794 } else { 1795 if ((allocflags & VM_ALLOC_WIRED) != 0) { 1796 vm_page_lock_queues(); 1797 vm_page_wire(m); 1798 vm_page_unlock_queues(); 1799 } 1800 if ((allocflags & VM_ALLOC_NOBUSY) == 0) 1801 vm_page_busy(m); 1802 return (m); 1803 } 1804 } 1805 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1806 if (m == NULL) { 1807 VM_OBJECT_UNLOCK(object); 1808 VM_WAIT; 1809 VM_OBJECT_LOCK(object); 1810 if ((allocflags & VM_ALLOC_RETRY) == 0) 1811 return (NULL); 1812 goto retrylookup; 1813 } else if (m->valid != 0) 1814 return (m); 1815 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 1816 pmap_zero_page(m); 1817 return (m); 1818 } 1819 1820 /* 1821 * Mapping function for valid bits or for dirty bits in 1822 * a page. May not block. 1823 * 1824 * Inputs are required to range within a page. 1825 */ 1826 int 1827 vm_page_bits(int base, int size) 1828 { 1829 int first_bit; 1830 int last_bit; 1831 1832 KASSERT( 1833 base + size <= PAGE_SIZE, 1834 ("vm_page_bits: illegal base/size %d/%d", base, size) 1835 ); 1836 1837 if (size == 0) /* handle degenerate case */ 1838 return (0); 1839 1840 first_bit = base >> DEV_BSHIFT; 1841 last_bit = (base + size - 1) >> DEV_BSHIFT; 1842 1843 return ((2 << last_bit) - (1 << first_bit)); 1844 } 1845 1846 /* 1847 * vm_page_set_validclean: 1848 * 1849 * Sets portions of a page valid and clean. The arguments are expected 1850 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1851 * of any partial chunks touched by the range. The invalid portion of 1852 * such chunks will be zero'd. 1853 * 1854 * This routine may not block. 1855 * 1856 * (base + size) must be less then or equal to PAGE_SIZE. 1857 */ 1858 void 1859 vm_page_set_validclean(vm_page_t m, int base, int size) 1860 { 1861 int pagebits; 1862 int frag; 1863 int endoff; 1864 1865 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1866 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1867 if (size == 0) /* handle degenerate case */ 1868 return; 1869 1870 /* 1871 * If the base is not DEV_BSIZE aligned and the valid 1872 * bit is clear, we have to zero out a portion of the 1873 * first block. 1874 */ 1875 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1876 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1877 pmap_zero_page_area(m, frag, base - frag); 1878 1879 /* 1880 * If the ending offset is not DEV_BSIZE aligned and the 1881 * valid bit is clear, we have to zero out a portion of 1882 * the last block. 1883 */ 1884 endoff = base + size; 1885 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1886 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1887 pmap_zero_page_area(m, endoff, 1888 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1889 1890 /* 1891 * Set valid, clear dirty bits. If validating the entire 1892 * page we can safely clear the pmap modify bit. We also 1893 * use this opportunity to clear the VPO_NOSYNC flag. If a process 1894 * takes a write fault on a MAP_NOSYNC memory area the flag will 1895 * be set again. 1896 * 1897 * We set valid bits inclusive of any overlap, but we can only 1898 * clear dirty bits for DEV_BSIZE chunks that are fully within 1899 * the range. 1900 */ 1901 pagebits = vm_page_bits(base, size); 1902 m->valid |= pagebits; 1903 #if 0 /* NOT YET */ 1904 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1905 frag = DEV_BSIZE - frag; 1906 base += frag; 1907 size -= frag; 1908 if (size < 0) 1909 size = 0; 1910 } 1911 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1912 #endif 1913 m->dirty &= ~pagebits; 1914 if (base == 0 && size == PAGE_SIZE) { 1915 pmap_clear_modify(m); 1916 m->oflags &= ~VPO_NOSYNC; 1917 } 1918 } 1919 1920 void 1921 vm_page_clear_dirty(vm_page_t m, int base, int size) 1922 { 1923 1924 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1925 m->dirty &= ~vm_page_bits(base, size); 1926 } 1927 1928 /* 1929 * vm_page_set_invalid: 1930 * 1931 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1932 * valid and dirty bits for the effected areas are cleared. 1933 * 1934 * May not block. 1935 */ 1936 void 1937 vm_page_set_invalid(vm_page_t m, int base, int size) 1938 { 1939 int bits; 1940 1941 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1942 bits = vm_page_bits(base, size); 1943 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1944 if (m->valid == VM_PAGE_BITS_ALL && bits != 0) 1945 pmap_remove_all(m); 1946 m->valid &= ~bits; 1947 m->dirty &= ~bits; 1948 m->object->generation++; 1949 } 1950 1951 /* 1952 * vm_page_zero_invalid() 1953 * 1954 * The kernel assumes that the invalid portions of a page contain 1955 * garbage, but such pages can be mapped into memory by user code. 1956 * When this occurs, we must zero out the non-valid portions of the 1957 * page so user code sees what it expects. 1958 * 1959 * Pages are most often semi-valid when the end of a file is mapped 1960 * into memory and the file's size is not page aligned. 1961 */ 1962 void 1963 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1964 { 1965 int b; 1966 int i; 1967 1968 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1969 /* 1970 * Scan the valid bits looking for invalid sections that 1971 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1972 * valid bit may be set ) have already been zerod by 1973 * vm_page_set_validclean(). 1974 */ 1975 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1976 if (i == (PAGE_SIZE / DEV_BSIZE) || 1977 (m->valid & (1 << i)) 1978 ) { 1979 if (i > b) { 1980 pmap_zero_page_area(m, 1981 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1982 } 1983 b = i + 1; 1984 } 1985 } 1986 1987 /* 1988 * setvalid is TRUE when we can safely set the zero'd areas 1989 * as being valid. We can do this if there are no cache consistancy 1990 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1991 */ 1992 if (setvalid) 1993 m->valid = VM_PAGE_BITS_ALL; 1994 } 1995 1996 /* 1997 * vm_page_is_valid: 1998 * 1999 * Is (partial) page valid? Note that the case where size == 0 2000 * will return FALSE in the degenerate case where the page is 2001 * entirely invalid, and TRUE otherwise. 2002 * 2003 * May not block. 2004 */ 2005 int 2006 vm_page_is_valid(vm_page_t m, int base, int size) 2007 { 2008 int bits = vm_page_bits(base, size); 2009 2010 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 2011 if (m->valid && ((m->valid & bits) == bits)) 2012 return 1; 2013 else 2014 return 0; 2015 } 2016 2017 /* 2018 * update dirty bits from pmap/mmu. May not block. 2019 */ 2020 void 2021 vm_page_test_dirty(vm_page_t m) 2022 { 2023 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 2024 vm_page_dirty(m); 2025 } 2026 } 2027 2028 int so_zerocp_fullpage = 0; 2029 2030 /* 2031 * Replace the given page with a copy. The copied page assumes 2032 * the portion of the given page's "wire_count" that is not the 2033 * responsibility of this copy-on-write mechanism. 2034 * 2035 * The object containing the given page must have a non-zero 2036 * paging-in-progress count and be locked. 2037 */ 2038 void 2039 vm_page_cowfault(vm_page_t m) 2040 { 2041 vm_page_t mnew; 2042 vm_object_t object; 2043 vm_pindex_t pindex; 2044 2045 object = m->object; 2046 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2047 KASSERT(object->paging_in_progress != 0, 2048 ("vm_page_cowfault: object %p's paging-in-progress count is zero.", 2049 object)); 2050 pindex = m->pindex; 2051 2052 retry_alloc: 2053 pmap_remove_all(m); 2054 vm_page_remove(m); 2055 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY); 2056 if (mnew == NULL) { 2057 vm_page_insert(m, object, pindex); 2058 vm_page_unlock_queues(); 2059 VM_OBJECT_UNLOCK(object); 2060 VM_WAIT; 2061 VM_OBJECT_LOCK(object); 2062 if (m == vm_page_lookup(object, pindex)) { 2063 vm_page_lock_queues(); 2064 goto retry_alloc; 2065 } else { 2066 /* 2067 * Page disappeared during the wait. 2068 */ 2069 vm_page_lock_queues(); 2070 return; 2071 } 2072 } 2073 2074 if (m->cow == 0) { 2075 /* 2076 * check to see if we raced with an xmit complete when 2077 * waiting to allocate a page. If so, put things back 2078 * the way they were 2079 */ 2080 vm_page_free(mnew); 2081 vm_page_insert(m, object, pindex); 2082 } else { /* clear COW & copy page */ 2083 if (!so_zerocp_fullpage) 2084 pmap_copy_page(m, mnew); 2085 mnew->valid = VM_PAGE_BITS_ALL; 2086 vm_page_dirty(mnew); 2087 mnew->wire_count = m->wire_count - m->cow; 2088 m->wire_count = m->cow; 2089 } 2090 } 2091 2092 void 2093 vm_page_cowclear(vm_page_t m) 2094 { 2095 2096 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2097 if (m->cow) { 2098 m->cow--; 2099 /* 2100 * let vm_fault add back write permission lazily 2101 */ 2102 } 2103 /* 2104 * sf_buf_free() will free the page, so we needn't do it here 2105 */ 2106 } 2107 2108 void 2109 vm_page_cowsetup(vm_page_t m) 2110 { 2111 2112 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 2113 m->cow++; 2114 pmap_remove_write(m); 2115 } 2116 2117 #include "opt_ddb.h" 2118 #ifdef DDB 2119 #include <sys/kernel.h> 2120 2121 #include <ddb/ddb.h> 2122 2123 DB_SHOW_COMMAND(page, vm_page_print_page_info) 2124 { 2125 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 2126 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 2127 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 2128 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 2129 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 2130 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 2131 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 2132 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 2133 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 2134 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 2135 } 2136 2137 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 2138 { 2139 2140 db_printf("PQ_FREE:"); 2141 db_printf(" %d", cnt.v_free_count); 2142 db_printf("\n"); 2143 2144 db_printf("PQ_CACHE:"); 2145 db_printf(" %d", cnt.v_cache_count); 2146 db_printf("\n"); 2147 2148 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 2149 *vm_page_queues[PQ_ACTIVE].cnt, 2150 *vm_page_queues[PQ_INACTIVE].cnt); 2151 } 2152 #endif /* DDB */ 2153