xref: /freebsd/sys/vm/vm_page.c (revision 5bf5ca772c6de2d53344a78cf461447cc322ccea)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
36  */
37 
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *			GENERAL RULES ON VM_PAGE MANIPULATION
67  *
68  *	- A page queue lock is required when adding or removing a page from a
69  *	  page queue regardless of other locks or the busy state of a page.
70  *
71  *		* In general, no thread besides the page daemon can acquire or
72  *		  hold more than one page queue lock at a time.
73  *
74  *		* The page daemon can acquire and hold any pair of page queue
75  *		  locks in any order.
76  *
77  *	- The object lock is required when inserting or removing
78  *	  pages from an object (vm_page_insert() or vm_page_remove()).
79  *
80  */
81 
82 /*
83  *	Resident memory management module.
84  */
85 
86 #include <sys/cdefs.h>
87 __FBSDID("$FreeBSD$");
88 
89 #include "opt_vm.h"
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/lock.h>
94 #include <sys/domainset.h>
95 #include <sys/kernel.h>
96 #include <sys/limits.h>
97 #include <sys/linker.h>
98 #include <sys/malloc.h>
99 #include <sys/mman.h>
100 #include <sys/msgbuf.h>
101 #include <sys/mutex.h>
102 #include <sys/proc.h>
103 #include <sys/rwlock.h>
104 #include <sys/sbuf.h>
105 #include <sys/smp.h>
106 #include <sys/sysctl.h>
107 #include <sys/vmmeter.h>
108 #include <sys/vnode.h>
109 
110 #include <vm/vm.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_param.h>
113 #include <vm/vm_domainset.h>
114 #include <vm/vm_kern.h>
115 #include <vm/vm_map.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_phys.h>
120 #include <vm/vm_pagequeue.h>
121 #include <vm/vm_pager.h>
122 #include <vm/vm_radix.h>
123 #include <vm/vm_reserv.h>
124 #include <vm/vm_extern.h>
125 #include <vm/uma.h>
126 #include <vm/uma_int.h>
127 
128 #include <machine/md_var.h>
129 
130 extern int	uma_startup_count(int);
131 extern void	uma_startup(void *, int);
132 extern int	vmem_startup_count(void);
133 
134 /*
135  *	Associated with page of user-allocatable memory is a
136  *	page structure.
137  */
138 
139 struct vm_domain vm_dom[MAXMEMDOM];
140 
141 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
142 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
143 domainset_t __exclusive_cache_line vm_min_domains;
144 domainset_t __exclusive_cache_line vm_severe_domains;
145 static int vm_min_waiters;
146 static int vm_severe_waiters;
147 static int vm_pageproc_waiters;
148 
149 
150 /*
151  * bogus page -- for I/O to/from partially complete buffers,
152  * or for paging into sparsely invalid regions.
153  */
154 vm_page_t bogus_page;
155 
156 vm_page_t vm_page_array;
157 long vm_page_array_size;
158 long first_page;
159 
160 static int boot_pages;
161 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
162     &boot_pages, 0,
163     "number of pages allocated for bootstrapping the VM system");
164 
165 static int pa_tryrelock_restart;
166 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
167     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
168 
169 static TAILQ_HEAD(, vm_page) blacklist_head;
170 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
171 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
172     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
173 
174 static uma_zone_t fakepg_zone;
175 
176 static void vm_page_alloc_check(vm_page_t m);
177 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
178 static void vm_page_enqueue(uint8_t queue, vm_page_t m);
179 static void vm_page_free_phys(struct vm_domain *vmd, vm_page_t m);
180 static void vm_page_init(void *dummy);
181 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
182     vm_pindex_t pindex, vm_page_t mpred);
183 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
184     vm_page_t mpred);
185 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
186     vm_page_t m_run, vm_paddr_t high);
187 static void vm_domain_free_wakeup(struct vm_domain *);
188 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
189     int req);
190 
191 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
192 
193 static void
194 vm_page_init(void *dummy)
195 {
196 
197 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
198 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
199 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
200 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
201 }
202 
203 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
204 #if PAGE_SIZE == 32768
205 #ifdef CTASSERT
206 CTASSERT(sizeof(u_long) >= 8);
207 #endif
208 #endif
209 
210 /*
211  * Try to acquire a physical address lock while a pmap is locked.  If we
212  * fail to trylock we unlock and lock the pmap directly and cache the
213  * locked pa in *locked.  The caller should then restart their loop in case
214  * the virtual to physical mapping has changed.
215  */
216 int
217 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
218 {
219 	vm_paddr_t lockpa;
220 
221 	lockpa = *locked;
222 	*locked = pa;
223 	if (lockpa) {
224 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
225 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
226 			return (0);
227 		PA_UNLOCK(lockpa);
228 	}
229 	if (PA_TRYLOCK(pa))
230 		return (0);
231 	PMAP_UNLOCK(pmap);
232 	atomic_add_int(&pa_tryrelock_restart, 1);
233 	PA_LOCK(pa);
234 	PMAP_LOCK(pmap);
235 	return (EAGAIN);
236 }
237 
238 /*
239  *	vm_set_page_size:
240  *
241  *	Sets the page size, perhaps based upon the memory
242  *	size.  Must be called before any use of page-size
243  *	dependent functions.
244  */
245 void
246 vm_set_page_size(void)
247 {
248 	if (vm_cnt.v_page_size == 0)
249 		vm_cnt.v_page_size = PAGE_SIZE;
250 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
251 		panic("vm_set_page_size: page size not a power of two");
252 }
253 
254 /*
255  *	vm_page_blacklist_next:
256  *
257  *	Find the next entry in the provided string of blacklist
258  *	addresses.  Entries are separated by space, comma, or newline.
259  *	If an invalid integer is encountered then the rest of the
260  *	string is skipped.  Updates the list pointer to the next
261  *	character, or NULL if the string is exhausted or invalid.
262  */
263 static vm_paddr_t
264 vm_page_blacklist_next(char **list, char *end)
265 {
266 	vm_paddr_t bad;
267 	char *cp, *pos;
268 
269 	if (list == NULL || *list == NULL)
270 		return (0);
271 	if (**list =='\0') {
272 		*list = NULL;
273 		return (0);
274 	}
275 
276 	/*
277 	 * If there's no end pointer then the buffer is coming from
278 	 * the kenv and we know it's null-terminated.
279 	 */
280 	if (end == NULL)
281 		end = *list + strlen(*list);
282 
283 	/* Ensure that strtoq() won't walk off the end */
284 	if (*end != '\0') {
285 		if (*end == '\n' || *end == ' ' || *end  == ',')
286 			*end = '\0';
287 		else {
288 			printf("Blacklist not terminated, skipping\n");
289 			*list = NULL;
290 			return (0);
291 		}
292 	}
293 
294 	for (pos = *list; *pos != '\0'; pos = cp) {
295 		bad = strtoq(pos, &cp, 0);
296 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
297 			if (bad == 0) {
298 				if (++cp < end)
299 					continue;
300 				else
301 					break;
302 			}
303 		} else
304 			break;
305 		if (*cp == '\0' || ++cp >= end)
306 			*list = NULL;
307 		else
308 			*list = cp;
309 		return (trunc_page(bad));
310 	}
311 	printf("Garbage in RAM blacklist, skipping\n");
312 	*list = NULL;
313 	return (0);
314 }
315 
316 /*
317  *	vm_page_blacklist_check:
318  *
319  *	Iterate through the provided string of blacklist addresses, pulling
320  *	each entry out of the physical allocator free list and putting it
321  *	onto a list for reporting via the vm.page_blacklist sysctl.
322  */
323 static void
324 vm_page_blacklist_check(char *list, char *end)
325 {
326 	struct vm_domain *vmd;
327 	vm_paddr_t pa;
328 	vm_page_t m;
329 	char *next;
330 	int ret;
331 
332 	next = list;
333 	while (next != NULL) {
334 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
335 			continue;
336 		m = vm_phys_paddr_to_vm_page(pa);
337 		if (m == NULL)
338 			continue;
339 		vmd = vm_pagequeue_domain(m);
340 		vm_domain_free_lock(vmd);
341 		ret = vm_phys_unfree_page(m);
342 		vm_domain_free_unlock(vmd);
343 		if (ret == TRUE) {
344 			TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
345 			if (bootverbose)
346 				printf("Skipping page with pa 0x%jx\n",
347 				    (uintmax_t)pa);
348 		}
349 	}
350 }
351 
352 /*
353  *	vm_page_blacklist_load:
354  *
355  *	Search for a special module named "ram_blacklist".  It'll be a
356  *	plain text file provided by the user via the loader directive
357  *	of the same name.
358  */
359 static void
360 vm_page_blacklist_load(char **list, char **end)
361 {
362 	void *mod;
363 	u_char *ptr;
364 	u_int len;
365 
366 	mod = NULL;
367 	ptr = NULL;
368 
369 	mod = preload_search_by_type("ram_blacklist");
370 	if (mod != NULL) {
371 		ptr = preload_fetch_addr(mod);
372 		len = preload_fetch_size(mod);
373         }
374 	*list = ptr;
375 	if (ptr != NULL)
376 		*end = ptr + len;
377 	else
378 		*end = NULL;
379 	return;
380 }
381 
382 static int
383 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
384 {
385 	vm_page_t m;
386 	struct sbuf sbuf;
387 	int error, first;
388 
389 	first = 1;
390 	error = sysctl_wire_old_buffer(req, 0);
391 	if (error != 0)
392 		return (error);
393 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
394 	TAILQ_FOREACH(m, &blacklist_head, listq) {
395 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
396 		    (uintmax_t)m->phys_addr);
397 		first = 0;
398 	}
399 	error = sbuf_finish(&sbuf);
400 	sbuf_delete(&sbuf);
401 	return (error);
402 }
403 
404 static void
405 vm_page_domain_init(int domain)
406 {
407 	struct vm_domain *vmd;
408 	struct vm_pagequeue *pq;
409 	int i;
410 
411 	vmd = VM_DOMAIN(domain);
412 	bzero(vmd, sizeof(*vmd));
413 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
414 	    "vm inactive pagequeue";
415 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
416 	    "vm active pagequeue";
417 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
418 	    "vm laundry pagequeue";
419 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
420 	    "vm unswappable pagequeue";
421 	vmd->vmd_domain = domain;
422 	vmd->vmd_page_count = 0;
423 	vmd->vmd_free_count = 0;
424 	vmd->vmd_segs = 0;
425 	vmd->vmd_oom = FALSE;
426 	for (i = 0; i < PQ_COUNT; i++) {
427 		pq = &vmd->vmd_pagequeues[i];
428 		TAILQ_INIT(&pq->pq_pl);
429 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
430 		    MTX_DEF | MTX_DUPOK);
431 	}
432 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
433 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
434 }
435 
436 /*
437  * Initialize a physical page in preparation for adding it to the free
438  * lists.
439  */
440 static void
441 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
442 {
443 
444 	m->object = NULL;
445 	m->wire_count = 0;
446 	m->busy_lock = VPB_UNBUSIED;
447 	m->hold_count = 0;
448 	m->flags = 0;
449 	m->phys_addr = pa;
450 	m->queue = PQ_NONE;
451 	m->psind = 0;
452 	m->segind = segind;
453 	m->order = VM_NFREEORDER;
454 	m->pool = VM_FREEPOOL_DEFAULT;
455 	m->valid = m->dirty = 0;
456 	pmap_page_init(m);
457 }
458 
459 /*
460  *	vm_page_startup:
461  *
462  *	Initializes the resident memory module.  Allocates physical memory for
463  *	bootstrapping UMA and some data structures that are used to manage
464  *	physical pages.  Initializes these structures, and populates the free
465  *	page queues.
466  */
467 vm_offset_t
468 vm_page_startup(vm_offset_t vaddr)
469 {
470 	struct vm_phys_seg *seg;
471 	vm_page_t m;
472 	char *list, *listend;
473 	vm_offset_t mapped;
474 	vm_paddr_t end, high_avail, low_avail, new_end, page_range, size;
475 	vm_paddr_t biggestsize, last_pa, pa;
476 	u_long pagecount;
477 	int biggestone, i, segind;
478 
479 	biggestsize = 0;
480 	biggestone = 0;
481 	vaddr = round_page(vaddr);
482 
483 	for (i = 0; phys_avail[i + 1]; i += 2) {
484 		phys_avail[i] = round_page(phys_avail[i]);
485 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
486 	}
487 	for (i = 0; phys_avail[i + 1]; i += 2) {
488 		size = phys_avail[i + 1] - phys_avail[i];
489 		if (size > biggestsize) {
490 			biggestone = i;
491 			biggestsize = size;
492 		}
493 	}
494 
495 	end = phys_avail[biggestone+1];
496 
497 	/*
498 	 * Initialize the page and queue locks.
499 	 */
500 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
501 	for (i = 0; i < PA_LOCK_COUNT; i++)
502 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
503 	for (i = 0; i < vm_ndomains; i++)
504 		vm_page_domain_init(i);
505 
506 	/*
507 	 * Allocate memory for use when boot strapping the kernel memory
508 	 * allocator.  Tell UMA how many zones we are going to create
509 	 * before going fully functional.  UMA will add its zones.
510 	 *
511 	 * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP,
512 	 * KMAP ENTRY, MAP ENTRY, VMSPACE.
513 	 */
514 	boot_pages = uma_startup_count(8);
515 
516 #ifndef UMA_MD_SMALL_ALLOC
517 	/* vmem_startup() calls uma_prealloc(). */
518 	boot_pages += vmem_startup_count();
519 	/* vm_map_startup() calls uma_prealloc(). */
520 	boot_pages += howmany(MAX_KMAP,
521 	    UMA_SLAB_SPACE / sizeof(struct vm_map));
522 
523 	/*
524 	 * Before going fully functional kmem_init() does allocation
525 	 * from "KMAP ENTRY" and vmem_create() does allocation from "vmem".
526 	 */
527 	boot_pages += 2;
528 #endif
529 	/*
530 	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
531 	 * manually fetch the value.
532 	 */
533 	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
534 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
535 	new_end = trunc_page(new_end);
536 	mapped = pmap_map(&vaddr, new_end, end,
537 	    VM_PROT_READ | VM_PROT_WRITE);
538 	bzero((void *)mapped, end - new_end);
539 	uma_startup((void *)mapped, boot_pages);
540 
541 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
542     defined(__i386__) || defined(__mips__)
543 	/*
544 	 * Allocate a bitmap to indicate that a random physical page
545 	 * needs to be included in a minidump.
546 	 *
547 	 * The amd64 port needs this to indicate which direct map pages
548 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
549 	 *
550 	 * However, i386 still needs this workspace internally within the
551 	 * minidump code.  In theory, they are not needed on i386, but are
552 	 * included should the sf_buf code decide to use them.
553 	 */
554 	last_pa = 0;
555 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
556 		if (dump_avail[i + 1] > last_pa)
557 			last_pa = dump_avail[i + 1];
558 	page_range = last_pa / PAGE_SIZE;
559 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
560 	new_end -= vm_page_dump_size;
561 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
562 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
563 	bzero((void *)vm_page_dump, vm_page_dump_size);
564 #else
565 	(void)last_pa;
566 #endif
567 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
568 	/*
569 	 * Include the UMA bootstrap pages and vm_page_dump in a crash dump.
570 	 * When pmap_map() uses the direct map, they are not automatically
571 	 * included.
572 	 */
573 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
574 		dump_add_page(pa);
575 #endif
576 	phys_avail[biggestone + 1] = new_end;
577 #ifdef __amd64__
578 	/*
579 	 * Request that the physical pages underlying the message buffer be
580 	 * included in a crash dump.  Since the message buffer is accessed
581 	 * through the direct map, they are not automatically included.
582 	 */
583 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
584 	last_pa = pa + round_page(msgbufsize);
585 	while (pa < last_pa) {
586 		dump_add_page(pa);
587 		pa += PAGE_SIZE;
588 	}
589 #endif
590 	/*
591 	 * Compute the number of pages of memory that will be available for
592 	 * use, taking into account the overhead of a page structure per page.
593 	 * In other words, solve
594 	 *	"available physical memory" - round_page(page_range *
595 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
596 	 * for page_range.
597 	 */
598 	low_avail = phys_avail[0];
599 	high_avail = phys_avail[1];
600 	for (i = 0; i < vm_phys_nsegs; i++) {
601 		if (vm_phys_segs[i].start < low_avail)
602 			low_avail = vm_phys_segs[i].start;
603 		if (vm_phys_segs[i].end > high_avail)
604 			high_avail = vm_phys_segs[i].end;
605 	}
606 	/* Skip the first chunk.  It is already accounted for. */
607 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
608 		if (phys_avail[i] < low_avail)
609 			low_avail = phys_avail[i];
610 		if (phys_avail[i + 1] > high_avail)
611 			high_avail = phys_avail[i + 1];
612 	}
613 	first_page = low_avail / PAGE_SIZE;
614 #ifdef VM_PHYSSEG_SPARSE
615 	size = 0;
616 	for (i = 0; i < vm_phys_nsegs; i++)
617 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
618 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
619 		size += phys_avail[i + 1] - phys_avail[i];
620 #elif defined(VM_PHYSSEG_DENSE)
621 	size = high_avail - low_avail;
622 #else
623 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
624 #endif
625 
626 #ifdef VM_PHYSSEG_DENSE
627 	/*
628 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
629 	 * the overhead of a page structure per page only if vm_page_array is
630 	 * allocated from the last physical memory chunk.  Otherwise, we must
631 	 * allocate page structures representing the physical memory
632 	 * underlying vm_page_array, even though they will not be used.
633 	 */
634 	if (new_end != high_avail)
635 		page_range = size / PAGE_SIZE;
636 	else
637 #endif
638 	{
639 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
640 
641 		/*
642 		 * If the partial bytes remaining are large enough for
643 		 * a page (PAGE_SIZE) without a corresponding
644 		 * 'struct vm_page', then new_end will contain an
645 		 * extra page after subtracting the length of the VM
646 		 * page array.  Compensate by subtracting an extra
647 		 * page from new_end.
648 		 */
649 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
650 			if (new_end == high_avail)
651 				high_avail -= PAGE_SIZE;
652 			new_end -= PAGE_SIZE;
653 		}
654 	}
655 	end = new_end;
656 
657 	/*
658 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
659 	 * However, because this page is allocated from KVM, out-of-bounds
660 	 * accesses using the direct map will not be trapped.
661 	 */
662 	vaddr += PAGE_SIZE;
663 
664 	/*
665 	 * Allocate physical memory for the page structures, and map it.
666 	 */
667 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
668 	mapped = pmap_map(&vaddr, new_end, end,
669 	    VM_PROT_READ | VM_PROT_WRITE);
670 	vm_page_array = (vm_page_t)mapped;
671 	vm_page_array_size = page_range;
672 
673 #if VM_NRESERVLEVEL > 0
674 	/*
675 	 * Allocate physical memory for the reservation management system's
676 	 * data structures, and map it.
677 	 */
678 	if (high_avail == end)
679 		high_avail = new_end;
680 	new_end = vm_reserv_startup(&vaddr, new_end, high_avail);
681 #endif
682 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
683 	/*
684 	 * Include vm_page_array and vm_reserv_array in a crash dump.
685 	 */
686 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
687 		dump_add_page(pa);
688 #endif
689 	phys_avail[biggestone + 1] = new_end;
690 
691 	/*
692 	 * Add physical memory segments corresponding to the available
693 	 * physical pages.
694 	 */
695 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
696 		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
697 
698 	/*
699 	 * Initialize the physical memory allocator.
700 	 */
701 	vm_phys_init();
702 
703 	/*
704 	 * Initialize the page structures and add every available page to the
705 	 * physical memory allocator's free lists.
706 	 */
707 	vm_cnt.v_page_count = 0;
708 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
709 		seg = &vm_phys_segs[segind];
710 		for (m = seg->first_page, pa = seg->start; pa < seg->end;
711 		    m++, pa += PAGE_SIZE)
712 			vm_page_init_page(m, pa, segind);
713 
714 		/*
715 		 * Add the segment to the free lists only if it is covered by
716 		 * one of the ranges in phys_avail.  Because we've added the
717 		 * ranges to the vm_phys_segs array, we can assume that each
718 		 * segment is either entirely contained in one of the ranges,
719 		 * or doesn't overlap any of them.
720 		 */
721 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
722 			struct vm_domain *vmd;
723 
724 			if (seg->start < phys_avail[i] ||
725 			    seg->end > phys_avail[i + 1])
726 				continue;
727 
728 			m = seg->first_page;
729 			pagecount = (u_long)atop(seg->end - seg->start);
730 
731 			vmd = VM_DOMAIN(seg->domain);
732 			vm_domain_free_lock(vmd);
733 			vm_phys_free_contig(m, pagecount);
734 			vm_domain_freecnt_adj(vmd, (int)pagecount);
735 			vm_domain_free_unlock(vmd);
736 			vm_cnt.v_page_count += (u_int)pagecount;
737 
738 			vmd = VM_DOMAIN(seg->domain);
739 			vmd->vmd_page_count += (u_int)pagecount;
740 			vmd->vmd_segs |= 1UL << m->segind;
741 			break;
742 		}
743 	}
744 
745 	/*
746 	 * Remove blacklisted pages from the physical memory allocator.
747 	 */
748 	TAILQ_INIT(&blacklist_head);
749 	vm_page_blacklist_load(&list, &listend);
750 	vm_page_blacklist_check(list, listend);
751 
752 	list = kern_getenv("vm.blacklist");
753 	vm_page_blacklist_check(list, NULL);
754 
755 	freeenv(list);
756 #if VM_NRESERVLEVEL > 0
757 	/*
758 	 * Initialize the reservation management system.
759 	 */
760 	vm_reserv_init();
761 #endif
762 	/*
763 	 * Set an initial domain policy for thread0 so that allocations
764 	 * can work.
765 	 */
766 	domainset_zero();
767 
768 	return (vaddr);
769 }
770 
771 void
772 vm_page_reference(vm_page_t m)
773 {
774 
775 	vm_page_aflag_set(m, PGA_REFERENCED);
776 }
777 
778 /*
779  *	vm_page_busy_downgrade:
780  *
781  *	Downgrade an exclusive busy page into a single shared busy page.
782  */
783 void
784 vm_page_busy_downgrade(vm_page_t m)
785 {
786 	u_int x;
787 	bool locked;
788 
789 	vm_page_assert_xbusied(m);
790 	locked = mtx_owned(vm_page_lockptr(m));
791 
792 	for (;;) {
793 		x = m->busy_lock;
794 		x &= VPB_BIT_WAITERS;
795 		if (x != 0 && !locked)
796 			vm_page_lock(m);
797 		if (atomic_cmpset_rel_int(&m->busy_lock,
798 		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1)))
799 			break;
800 		if (x != 0 && !locked)
801 			vm_page_unlock(m);
802 	}
803 	if (x != 0) {
804 		wakeup(m);
805 		if (!locked)
806 			vm_page_unlock(m);
807 	}
808 }
809 
810 /*
811  *	vm_page_sbusied:
812  *
813  *	Return a positive value if the page is shared busied, 0 otherwise.
814  */
815 int
816 vm_page_sbusied(vm_page_t m)
817 {
818 	u_int x;
819 
820 	x = m->busy_lock;
821 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
822 }
823 
824 /*
825  *	vm_page_sunbusy:
826  *
827  *	Shared unbusy a page.
828  */
829 void
830 vm_page_sunbusy(vm_page_t m)
831 {
832 	u_int x;
833 
834 	vm_page_lock_assert(m, MA_NOTOWNED);
835 	vm_page_assert_sbusied(m);
836 
837 	for (;;) {
838 		x = m->busy_lock;
839 		if (VPB_SHARERS(x) > 1) {
840 			if (atomic_cmpset_int(&m->busy_lock, x,
841 			    x - VPB_ONE_SHARER))
842 				break;
843 			continue;
844 		}
845 		if ((x & VPB_BIT_WAITERS) == 0) {
846 			KASSERT(x == VPB_SHARERS_WORD(1),
847 			    ("vm_page_sunbusy: invalid lock state"));
848 			if (atomic_cmpset_int(&m->busy_lock,
849 			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
850 				break;
851 			continue;
852 		}
853 		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
854 		    ("vm_page_sunbusy: invalid lock state for waiters"));
855 
856 		vm_page_lock(m);
857 		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
858 			vm_page_unlock(m);
859 			continue;
860 		}
861 		wakeup(m);
862 		vm_page_unlock(m);
863 		break;
864 	}
865 }
866 
867 /*
868  *	vm_page_busy_sleep:
869  *
870  *	Sleep and release the page lock, using the page pointer as wchan.
871  *	This is used to implement the hard-path of busying mechanism.
872  *
873  *	The given page must be locked.
874  *
875  *	If nonshared is true, sleep only if the page is xbusy.
876  */
877 void
878 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
879 {
880 	u_int x;
881 
882 	vm_page_assert_locked(m);
883 
884 	x = m->busy_lock;
885 	if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
886 	    ((x & VPB_BIT_WAITERS) == 0 &&
887 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
888 		vm_page_unlock(m);
889 		return;
890 	}
891 	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
892 }
893 
894 /*
895  *	vm_page_trysbusy:
896  *
897  *	Try to shared busy a page.
898  *	If the operation succeeds 1 is returned otherwise 0.
899  *	The operation never sleeps.
900  */
901 int
902 vm_page_trysbusy(vm_page_t m)
903 {
904 	u_int x;
905 
906 	for (;;) {
907 		x = m->busy_lock;
908 		if ((x & VPB_BIT_SHARED) == 0)
909 			return (0);
910 		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
911 			return (1);
912 	}
913 }
914 
915 static void
916 vm_page_xunbusy_locked(vm_page_t m)
917 {
918 
919 	vm_page_assert_xbusied(m);
920 	vm_page_assert_locked(m);
921 
922 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
923 	/* There is a waiter, do wakeup() instead of vm_page_flash(). */
924 	wakeup(m);
925 }
926 
927 void
928 vm_page_xunbusy_maybelocked(vm_page_t m)
929 {
930 	bool lockacq;
931 
932 	vm_page_assert_xbusied(m);
933 
934 	/*
935 	 * Fast path for unbusy.  If it succeeds, we know that there
936 	 * are no waiters, so we do not need a wakeup.
937 	 */
938 	if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER,
939 	    VPB_UNBUSIED))
940 		return;
941 
942 	lockacq = !mtx_owned(vm_page_lockptr(m));
943 	if (lockacq)
944 		vm_page_lock(m);
945 	vm_page_xunbusy_locked(m);
946 	if (lockacq)
947 		vm_page_unlock(m);
948 }
949 
950 /*
951  *	vm_page_xunbusy_hard:
952  *
953  *	Called after the first try the exclusive unbusy of a page failed.
954  *	It is assumed that the waiters bit is on.
955  */
956 void
957 vm_page_xunbusy_hard(vm_page_t m)
958 {
959 
960 	vm_page_assert_xbusied(m);
961 
962 	vm_page_lock(m);
963 	vm_page_xunbusy_locked(m);
964 	vm_page_unlock(m);
965 }
966 
967 /*
968  *	vm_page_flash:
969  *
970  *	Wakeup anyone waiting for the page.
971  *	The ownership bits do not change.
972  *
973  *	The given page must be locked.
974  */
975 void
976 vm_page_flash(vm_page_t m)
977 {
978 	u_int x;
979 
980 	vm_page_lock_assert(m, MA_OWNED);
981 
982 	for (;;) {
983 		x = m->busy_lock;
984 		if ((x & VPB_BIT_WAITERS) == 0)
985 			return;
986 		if (atomic_cmpset_int(&m->busy_lock, x,
987 		    x & (~VPB_BIT_WAITERS)))
988 			break;
989 	}
990 	wakeup(m);
991 }
992 
993 /*
994  * Avoid releasing and reacquiring the same page lock.
995  */
996 void
997 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
998 {
999 	struct mtx *mtx1;
1000 
1001 	mtx1 = vm_page_lockptr(m);
1002 	if (*mtx == mtx1)
1003 		return;
1004 	if (*mtx != NULL)
1005 		mtx_unlock(*mtx);
1006 	*mtx = mtx1;
1007 	mtx_lock(mtx1);
1008 }
1009 
1010 /*
1011  * Keep page from being freed by the page daemon
1012  * much of the same effect as wiring, except much lower
1013  * overhead and should be used only for *very* temporary
1014  * holding ("wiring").
1015  */
1016 void
1017 vm_page_hold(vm_page_t mem)
1018 {
1019 
1020 	vm_page_lock_assert(mem, MA_OWNED);
1021         mem->hold_count++;
1022 }
1023 
1024 void
1025 vm_page_unhold(vm_page_t mem)
1026 {
1027 
1028 	vm_page_lock_assert(mem, MA_OWNED);
1029 	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
1030 	--mem->hold_count;
1031 	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
1032 		vm_page_free_toq(mem);
1033 }
1034 
1035 /*
1036  *	vm_page_unhold_pages:
1037  *
1038  *	Unhold each of the pages that is referenced by the given array.
1039  */
1040 void
1041 vm_page_unhold_pages(vm_page_t *ma, int count)
1042 {
1043 	struct mtx *mtx;
1044 
1045 	mtx = NULL;
1046 	for (; count != 0; count--) {
1047 		vm_page_change_lock(*ma, &mtx);
1048 		vm_page_unhold(*ma);
1049 		ma++;
1050 	}
1051 	if (mtx != NULL)
1052 		mtx_unlock(mtx);
1053 }
1054 
1055 vm_page_t
1056 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1057 {
1058 	vm_page_t m;
1059 
1060 #ifdef VM_PHYSSEG_SPARSE
1061 	m = vm_phys_paddr_to_vm_page(pa);
1062 	if (m == NULL)
1063 		m = vm_phys_fictitious_to_vm_page(pa);
1064 	return (m);
1065 #elif defined(VM_PHYSSEG_DENSE)
1066 	long pi;
1067 
1068 	pi = atop(pa);
1069 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1070 		m = &vm_page_array[pi - first_page];
1071 		return (m);
1072 	}
1073 	return (vm_phys_fictitious_to_vm_page(pa));
1074 #else
1075 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1076 #endif
1077 }
1078 
1079 /*
1080  *	vm_page_getfake:
1081  *
1082  *	Create a fictitious page with the specified physical address and
1083  *	memory attribute.  The memory attribute is the only the machine-
1084  *	dependent aspect of a fictitious page that must be initialized.
1085  */
1086 vm_page_t
1087 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1088 {
1089 	vm_page_t m;
1090 
1091 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1092 	vm_page_initfake(m, paddr, memattr);
1093 	return (m);
1094 }
1095 
1096 void
1097 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1098 {
1099 
1100 	if ((m->flags & PG_FICTITIOUS) != 0) {
1101 		/*
1102 		 * The page's memattr might have changed since the
1103 		 * previous initialization.  Update the pmap to the
1104 		 * new memattr.
1105 		 */
1106 		goto memattr;
1107 	}
1108 	m->phys_addr = paddr;
1109 	m->queue = PQ_NONE;
1110 	/* Fictitious pages don't use "segind". */
1111 	m->flags = PG_FICTITIOUS;
1112 	/* Fictitious pages don't use "order" or "pool". */
1113 	m->oflags = VPO_UNMANAGED;
1114 	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1115 	m->wire_count = 1;
1116 	pmap_page_init(m);
1117 memattr:
1118 	pmap_page_set_memattr(m, memattr);
1119 }
1120 
1121 /*
1122  *	vm_page_putfake:
1123  *
1124  *	Release a fictitious page.
1125  */
1126 void
1127 vm_page_putfake(vm_page_t m)
1128 {
1129 
1130 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1131 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1132 	    ("vm_page_putfake: bad page %p", m));
1133 	uma_zfree(fakepg_zone, m);
1134 }
1135 
1136 /*
1137  *	vm_page_updatefake:
1138  *
1139  *	Update the given fictitious page to the specified physical address and
1140  *	memory attribute.
1141  */
1142 void
1143 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1144 {
1145 
1146 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1147 	    ("vm_page_updatefake: bad page %p", m));
1148 	m->phys_addr = paddr;
1149 	pmap_page_set_memattr(m, memattr);
1150 }
1151 
1152 /*
1153  *	vm_page_free:
1154  *
1155  *	Free a page.
1156  */
1157 void
1158 vm_page_free(vm_page_t m)
1159 {
1160 
1161 	m->flags &= ~PG_ZERO;
1162 	vm_page_free_toq(m);
1163 }
1164 
1165 /*
1166  *	vm_page_free_zero:
1167  *
1168  *	Free a page to the zerod-pages queue
1169  */
1170 void
1171 vm_page_free_zero(vm_page_t m)
1172 {
1173 
1174 	m->flags |= PG_ZERO;
1175 	vm_page_free_toq(m);
1176 }
1177 
1178 /*
1179  * Unbusy and handle the page queueing for a page from a getpages request that
1180  * was optionally read ahead or behind.
1181  */
1182 void
1183 vm_page_readahead_finish(vm_page_t m)
1184 {
1185 
1186 	/* We shouldn't put invalid pages on queues. */
1187 	KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
1188 
1189 	/*
1190 	 * Since the page is not the actually needed one, whether it should
1191 	 * be activated or deactivated is not obvious.  Empirical results
1192 	 * have shown that deactivating the page is usually the best choice,
1193 	 * unless the page is wanted by another thread.
1194 	 */
1195 	vm_page_lock(m);
1196 	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1197 		vm_page_activate(m);
1198 	else
1199 		vm_page_deactivate(m);
1200 	vm_page_unlock(m);
1201 	vm_page_xunbusy(m);
1202 }
1203 
1204 /*
1205  *	vm_page_sleep_if_busy:
1206  *
1207  *	Sleep and release the page queues lock if the page is busied.
1208  *	Returns TRUE if the thread slept.
1209  *
1210  *	The given page must be unlocked and object containing it must
1211  *	be locked.
1212  */
1213 int
1214 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1215 {
1216 	vm_object_t obj;
1217 
1218 	vm_page_lock_assert(m, MA_NOTOWNED);
1219 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1220 
1221 	if (vm_page_busied(m)) {
1222 		/*
1223 		 * The page-specific object must be cached because page
1224 		 * identity can change during the sleep, causing the
1225 		 * re-lock of a different object.
1226 		 * It is assumed that a reference to the object is already
1227 		 * held by the callers.
1228 		 */
1229 		obj = m->object;
1230 		vm_page_lock(m);
1231 		VM_OBJECT_WUNLOCK(obj);
1232 		vm_page_busy_sleep(m, msg, false);
1233 		VM_OBJECT_WLOCK(obj);
1234 		return (TRUE);
1235 	}
1236 	return (FALSE);
1237 }
1238 
1239 /*
1240  *	vm_page_dirty_KBI:		[ internal use only ]
1241  *
1242  *	Set all bits in the page's dirty field.
1243  *
1244  *	The object containing the specified page must be locked if the
1245  *	call is made from the machine-independent layer.
1246  *
1247  *	See vm_page_clear_dirty_mask().
1248  *
1249  *	This function should only be called by vm_page_dirty().
1250  */
1251 void
1252 vm_page_dirty_KBI(vm_page_t m)
1253 {
1254 
1255 	/* Refer to this operation by its public name. */
1256 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1257 	    ("vm_page_dirty: page is invalid!"));
1258 	m->dirty = VM_PAGE_BITS_ALL;
1259 }
1260 
1261 /*
1262  *	vm_page_insert:		[ internal use only ]
1263  *
1264  *	Inserts the given mem entry into the object and object list.
1265  *
1266  *	The object must be locked.
1267  */
1268 int
1269 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1270 {
1271 	vm_page_t mpred;
1272 
1273 	VM_OBJECT_ASSERT_WLOCKED(object);
1274 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1275 	return (vm_page_insert_after(m, object, pindex, mpred));
1276 }
1277 
1278 /*
1279  *	vm_page_insert_after:
1280  *
1281  *	Inserts the page "m" into the specified object at offset "pindex".
1282  *
1283  *	The page "mpred" must immediately precede the offset "pindex" within
1284  *	the specified object.
1285  *
1286  *	The object must be locked.
1287  */
1288 static int
1289 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1290     vm_page_t mpred)
1291 {
1292 	vm_page_t msucc;
1293 
1294 	VM_OBJECT_ASSERT_WLOCKED(object);
1295 	KASSERT(m->object == NULL,
1296 	    ("vm_page_insert_after: page already inserted"));
1297 	if (mpred != NULL) {
1298 		KASSERT(mpred->object == object,
1299 		    ("vm_page_insert_after: object doesn't contain mpred"));
1300 		KASSERT(mpred->pindex < pindex,
1301 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1302 		msucc = TAILQ_NEXT(mpred, listq);
1303 	} else
1304 		msucc = TAILQ_FIRST(&object->memq);
1305 	if (msucc != NULL)
1306 		KASSERT(msucc->pindex > pindex,
1307 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1308 
1309 	/*
1310 	 * Record the object/offset pair in this page
1311 	 */
1312 	m->object = object;
1313 	m->pindex = pindex;
1314 
1315 	/*
1316 	 * Now link into the object's ordered list of backed pages.
1317 	 */
1318 	if (vm_radix_insert(&object->rtree, m)) {
1319 		m->object = NULL;
1320 		m->pindex = 0;
1321 		return (1);
1322 	}
1323 	vm_page_insert_radixdone(m, object, mpred);
1324 	return (0);
1325 }
1326 
1327 /*
1328  *	vm_page_insert_radixdone:
1329  *
1330  *	Complete page "m" insertion into the specified object after the
1331  *	radix trie hooking.
1332  *
1333  *	The page "mpred" must precede the offset "m->pindex" within the
1334  *	specified object.
1335  *
1336  *	The object must be locked.
1337  */
1338 static void
1339 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1340 {
1341 
1342 	VM_OBJECT_ASSERT_WLOCKED(object);
1343 	KASSERT(object != NULL && m->object == object,
1344 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1345 	if (mpred != NULL) {
1346 		KASSERT(mpred->object == object,
1347 		    ("vm_page_insert_after: object doesn't contain mpred"));
1348 		KASSERT(mpred->pindex < m->pindex,
1349 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1350 	}
1351 
1352 	if (mpred != NULL)
1353 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1354 	else
1355 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1356 
1357 	/*
1358 	 * Show that the object has one more resident page.
1359 	 */
1360 	object->resident_page_count++;
1361 
1362 	/*
1363 	 * Hold the vnode until the last page is released.
1364 	 */
1365 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1366 		vhold(object->handle);
1367 
1368 	/*
1369 	 * Since we are inserting a new and possibly dirty page,
1370 	 * update the object's OBJ_MIGHTBEDIRTY flag.
1371 	 */
1372 	if (pmap_page_is_write_mapped(m))
1373 		vm_object_set_writeable_dirty(object);
1374 }
1375 
1376 /*
1377  *	vm_page_remove:
1378  *
1379  *	Removes the specified page from its containing object, but does not
1380  *	invalidate any backing storage.
1381  *
1382  *	The object must be locked.  The page must be locked if it is managed.
1383  */
1384 void
1385 vm_page_remove(vm_page_t m)
1386 {
1387 	vm_object_t object;
1388 	vm_page_t mrem;
1389 
1390 	if ((m->oflags & VPO_UNMANAGED) == 0)
1391 		vm_page_assert_locked(m);
1392 	if ((object = m->object) == NULL)
1393 		return;
1394 	VM_OBJECT_ASSERT_WLOCKED(object);
1395 	if (vm_page_xbusied(m))
1396 		vm_page_xunbusy_maybelocked(m);
1397 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1398 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1399 
1400 	/*
1401 	 * Now remove from the object's list of backed pages.
1402 	 */
1403 	TAILQ_REMOVE(&object->memq, m, listq);
1404 
1405 	/*
1406 	 * And show that the object has one fewer resident page.
1407 	 */
1408 	object->resident_page_count--;
1409 
1410 	/*
1411 	 * The vnode may now be recycled.
1412 	 */
1413 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1414 		vdrop(object->handle);
1415 
1416 	m->object = NULL;
1417 }
1418 
1419 /*
1420  *	vm_page_lookup:
1421  *
1422  *	Returns the page associated with the object/offset
1423  *	pair specified; if none is found, NULL is returned.
1424  *
1425  *	The object must be locked.
1426  */
1427 vm_page_t
1428 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1429 {
1430 
1431 	VM_OBJECT_ASSERT_LOCKED(object);
1432 	return (vm_radix_lookup(&object->rtree, pindex));
1433 }
1434 
1435 /*
1436  *	vm_page_find_least:
1437  *
1438  *	Returns the page associated with the object with least pindex
1439  *	greater than or equal to the parameter pindex, or NULL.
1440  *
1441  *	The object must be locked.
1442  */
1443 vm_page_t
1444 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1445 {
1446 	vm_page_t m;
1447 
1448 	VM_OBJECT_ASSERT_LOCKED(object);
1449 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1450 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1451 	return (m);
1452 }
1453 
1454 /*
1455  * Returns the given page's successor (by pindex) within the object if it is
1456  * resident; if none is found, NULL is returned.
1457  *
1458  * The object must be locked.
1459  */
1460 vm_page_t
1461 vm_page_next(vm_page_t m)
1462 {
1463 	vm_page_t next;
1464 
1465 	VM_OBJECT_ASSERT_LOCKED(m->object);
1466 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1467 		MPASS(next->object == m->object);
1468 		if (next->pindex != m->pindex + 1)
1469 			next = NULL;
1470 	}
1471 	return (next);
1472 }
1473 
1474 /*
1475  * Returns the given page's predecessor (by pindex) within the object if it is
1476  * resident; if none is found, NULL is returned.
1477  *
1478  * The object must be locked.
1479  */
1480 vm_page_t
1481 vm_page_prev(vm_page_t m)
1482 {
1483 	vm_page_t prev;
1484 
1485 	VM_OBJECT_ASSERT_LOCKED(m->object);
1486 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1487 		MPASS(prev->object == m->object);
1488 		if (prev->pindex != m->pindex - 1)
1489 			prev = NULL;
1490 	}
1491 	return (prev);
1492 }
1493 
1494 /*
1495  * Uses the page mnew as a replacement for an existing page at index
1496  * pindex which must be already present in the object.
1497  *
1498  * The existing page must not be on a paging queue.
1499  */
1500 vm_page_t
1501 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1502 {
1503 	vm_page_t mold;
1504 
1505 	VM_OBJECT_ASSERT_WLOCKED(object);
1506 	KASSERT(mnew->object == NULL,
1507 	    ("vm_page_replace: page already in object"));
1508 
1509 	/*
1510 	 * This function mostly follows vm_page_insert() and
1511 	 * vm_page_remove() without the radix, object count and vnode
1512 	 * dance.  Double check such functions for more comments.
1513 	 */
1514 
1515 	mnew->object = object;
1516 	mnew->pindex = pindex;
1517 	mold = vm_radix_replace(&object->rtree, mnew);
1518 	KASSERT(mold->queue == PQ_NONE,
1519 	    ("vm_page_replace: mold is on a paging queue"));
1520 
1521 	/* Keep the resident page list in sorted order. */
1522 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1523 	TAILQ_REMOVE(&object->memq, mold, listq);
1524 
1525 	mold->object = NULL;
1526 	vm_page_xunbusy_maybelocked(mold);
1527 
1528 	/*
1529 	 * The object's resident_page_count does not change because we have
1530 	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1531 	 */
1532 	if (pmap_page_is_write_mapped(mnew))
1533 		vm_object_set_writeable_dirty(object);
1534 	return (mold);
1535 }
1536 
1537 /*
1538  *	vm_page_rename:
1539  *
1540  *	Move the given memory entry from its
1541  *	current object to the specified target object/offset.
1542  *
1543  *	Note: swap associated with the page must be invalidated by the move.  We
1544  *	      have to do this for several reasons:  (1) we aren't freeing the
1545  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1546  *	      moving the page from object A to B, and will then later move
1547  *	      the backing store from A to B and we can't have a conflict.
1548  *
1549  *	Note: we *always* dirty the page.  It is necessary both for the
1550  *	      fact that we moved it, and because we may be invalidating
1551  *	      swap.
1552  *
1553  *	The objects must be locked.
1554  */
1555 int
1556 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1557 {
1558 	vm_page_t mpred;
1559 	vm_pindex_t opidx;
1560 
1561 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1562 
1563 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1564 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1565 	    ("vm_page_rename: pindex already renamed"));
1566 
1567 	/*
1568 	 * Create a custom version of vm_page_insert() which does not depend
1569 	 * by m_prev and can cheat on the implementation aspects of the
1570 	 * function.
1571 	 */
1572 	opidx = m->pindex;
1573 	m->pindex = new_pindex;
1574 	if (vm_radix_insert(&new_object->rtree, m)) {
1575 		m->pindex = opidx;
1576 		return (1);
1577 	}
1578 
1579 	/*
1580 	 * The operation cannot fail anymore.  The removal must happen before
1581 	 * the listq iterator is tainted.
1582 	 */
1583 	m->pindex = opidx;
1584 	vm_page_lock(m);
1585 	vm_page_remove(m);
1586 
1587 	/* Return back to the new pindex to complete vm_page_insert(). */
1588 	m->pindex = new_pindex;
1589 	m->object = new_object;
1590 	vm_page_unlock(m);
1591 	vm_page_insert_radixdone(m, new_object, mpred);
1592 	vm_page_dirty(m);
1593 	return (0);
1594 }
1595 
1596 /*
1597  *	vm_page_alloc:
1598  *
1599  *	Allocate and return a page that is associated with the specified
1600  *	object and offset pair.  By default, this page is exclusive busied.
1601  *
1602  *	The caller must always specify an allocation class.
1603  *
1604  *	allocation classes:
1605  *	VM_ALLOC_NORMAL		normal process request
1606  *	VM_ALLOC_SYSTEM		system *really* needs a page
1607  *	VM_ALLOC_INTERRUPT	interrupt time request
1608  *
1609  *	optional allocation flags:
1610  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1611  *				intends to allocate
1612  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1613  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1614  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1615  *				should not be exclusive busy
1616  *	VM_ALLOC_SBUSY		shared busy the allocated page
1617  *	VM_ALLOC_WIRED		wire the allocated page
1618  *	VM_ALLOC_ZERO		prefer a zeroed page
1619  */
1620 vm_page_t
1621 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1622 {
1623 
1624 	return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1625 	    vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1626 }
1627 
1628 vm_page_t
1629 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1630     int req)
1631 {
1632 
1633 	return (vm_page_alloc_domain_after(object, pindex, domain, req,
1634 	    object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1635 	    NULL));
1636 }
1637 
1638 /*
1639  * Allocate a page in the specified object with the given page index.  To
1640  * optimize insertion of the page into the object, the caller must also specifiy
1641  * the resident page in the object with largest index smaller than the given
1642  * page index, or NULL if no such page exists.
1643  */
1644 vm_page_t
1645 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1646     int req, vm_page_t mpred)
1647 {
1648 	struct vm_domainset_iter di;
1649 	vm_page_t m;
1650 	int domain;
1651 
1652 	vm_domainset_iter_page_init(&di, object, &domain, &req);
1653 	do {
1654 		m = vm_page_alloc_domain_after(object, pindex, domain, req,
1655 		    mpred);
1656 		if (m != NULL)
1657 			break;
1658 	} while (vm_domainset_iter_page(&di, &domain, &req) == 0);
1659 
1660 	return (m);
1661 }
1662 
1663 /*
1664  * Returns true if the number of free pages exceeds the minimum
1665  * for the request class and false otherwise.
1666  */
1667 int
1668 vm_domain_available(struct vm_domain *vmd, int req, int npages)
1669 {
1670 
1671 	vm_domain_free_assert_locked(vmd);
1672 	req = req & VM_ALLOC_CLASS_MASK;
1673 
1674 	/*
1675 	 * The page daemon is allowed to dig deeper into the free page list.
1676 	 */
1677 	if (curproc == pageproc && req != VM_ALLOC_INTERRUPT)
1678 		req = VM_ALLOC_SYSTEM;
1679 
1680 	if (vmd->vmd_free_count >= npages + vmd->vmd_free_reserved ||
1681 	    (req == VM_ALLOC_SYSTEM &&
1682 	    vmd->vmd_free_count >= npages + vmd->vmd_interrupt_free_min) ||
1683 	    (req == VM_ALLOC_INTERRUPT &&
1684 	    vmd->vmd_free_count >= npages))
1685 		return (1);
1686 
1687 	return (0);
1688 }
1689 
1690 vm_page_t
1691 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1692     int req, vm_page_t mpred)
1693 {
1694 	struct vm_domain *vmd;
1695 	vm_page_t m;
1696 	int flags;
1697 	u_int free_count;
1698 
1699 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1700 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1701 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1702 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1703 	    ("inconsistent object(%p)/req(%x)", object, req));
1704 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1705 	    ("Can't sleep and retry object insertion."));
1706 	KASSERT(mpred == NULL || mpred->pindex < pindex,
1707 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
1708 	    (uintmax_t)pindex));
1709 	if (object != NULL)
1710 		VM_OBJECT_ASSERT_WLOCKED(object);
1711 
1712 again:
1713 	m = NULL;
1714 #if VM_NRESERVLEVEL > 0
1715 	if (vm_object_reserv(object) &&
1716 	    (m = vm_reserv_extend(req, object, pindex, domain, mpred))
1717 	    != NULL) {
1718 		domain = vm_phys_domain(m);
1719 		vmd = VM_DOMAIN(domain);
1720 		goto found;
1721 	}
1722 #endif
1723 	vmd = VM_DOMAIN(domain);
1724 	vm_domain_free_lock(vmd);
1725 	if (vm_domain_available(vmd, req, 1)) {
1726 		/*
1727 		 * Can we allocate the page from a reservation?
1728 		 */
1729 #if VM_NRESERVLEVEL > 0
1730 		if (!vm_object_reserv(object) ||
1731 		    (m = vm_reserv_alloc_page(object, pindex,
1732 		    domain, mpred)) == NULL)
1733 #endif
1734 		{
1735 			/*
1736 			 * If not, allocate it from the free page queues.
1737 			 */
1738 			m = vm_phys_alloc_pages(domain, object != NULL ?
1739 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1740 #if VM_NRESERVLEVEL > 0
1741 			if (m == NULL && vm_reserv_reclaim_inactive(domain)) {
1742 				m = vm_phys_alloc_pages(domain,
1743 				    object != NULL ?
1744 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1745 				    0);
1746 			}
1747 #endif
1748 		}
1749 	}
1750 	if (m == NULL) {
1751 		/*
1752 		 * Not allocatable, give up.
1753 		 */
1754 		if (vm_domain_alloc_fail(vmd, object, req))
1755 			goto again;
1756 		return (NULL);
1757 	}
1758 
1759 	/*
1760 	 *  At this point we had better have found a good page.
1761 	 */
1762 	KASSERT(m != NULL, ("missing page"));
1763 	free_count = vm_domain_freecnt_adj(vmd, -1);
1764 	vm_domain_free_unlock(vmd);
1765 
1766 	/*
1767 	 * Don't wakeup too often - wakeup the pageout daemon when
1768 	 * we would be nearly out of memory.
1769 	 */
1770 	if (vm_paging_needed(vmd, free_count))
1771 		pagedaemon_wakeup(vmd->vmd_domain);
1772 #if VM_NRESERVLEVEL > 0
1773 found:
1774 #endif
1775 	vm_page_alloc_check(m);
1776 
1777 	/*
1778 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1779 	 */
1780 	flags = 0;
1781 	if ((req & VM_ALLOC_ZERO) != 0)
1782 		flags = PG_ZERO;
1783 	flags &= m->flags;
1784 	if ((req & VM_ALLOC_NODUMP) != 0)
1785 		flags |= PG_NODUMP;
1786 	m->flags = flags;
1787 	m->aflags = 0;
1788 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1789 	    VPO_UNMANAGED : 0;
1790 	m->busy_lock = VPB_UNBUSIED;
1791 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1792 		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1793 	if ((req & VM_ALLOC_SBUSY) != 0)
1794 		m->busy_lock = VPB_SHARERS_WORD(1);
1795 	if (req & VM_ALLOC_WIRED) {
1796 		/*
1797 		 * The page lock is not required for wiring a page until that
1798 		 * page is inserted into the object.
1799 		 */
1800 		vm_wire_add(1);
1801 		m->wire_count = 1;
1802 	}
1803 	m->act_count = 0;
1804 
1805 	if (object != NULL) {
1806 		if (vm_page_insert_after(m, object, pindex, mpred)) {
1807 			pagedaemon_wakeup(domain);
1808 			if (req & VM_ALLOC_WIRED) {
1809 				vm_wire_sub(1);
1810 				m->wire_count = 0;
1811 			}
1812 			KASSERT(m->object == NULL, ("page %p has object", m));
1813 			m->oflags = VPO_UNMANAGED;
1814 			m->busy_lock = VPB_UNBUSIED;
1815 			/* Don't change PG_ZERO. */
1816 			vm_page_free_toq(m);
1817 			if (req & VM_ALLOC_WAITFAIL) {
1818 				VM_OBJECT_WUNLOCK(object);
1819 				vm_radix_wait();
1820 				VM_OBJECT_WLOCK(object);
1821 			}
1822 			return (NULL);
1823 		}
1824 
1825 		/* Ignore device objects; the pager sets "memattr" for them. */
1826 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1827 		    (object->flags & OBJ_FICTITIOUS) == 0)
1828 			pmap_page_set_memattr(m, object->memattr);
1829 	} else
1830 		m->pindex = pindex;
1831 
1832 	return (m);
1833 }
1834 
1835 /*
1836  *	vm_page_alloc_contig:
1837  *
1838  *	Allocate a contiguous set of physical pages of the given size "npages"
1839  *	from the free lists.  All of the physical pages must be at or above
1840  *	the given physical address "low" and below the given physical address
1841  *	"high".  The given value "alignment" determines the alignment of the
1842  *	first physical page in the set.  If the given value "boundary" is
1843  *	non-zero, then the set of physical pages cannot cross any physical
1844  *	address boundary that is a multiple of that value.  Both "alignment"
1845  *	and "boundary" must be a power of two.
1846  *
1847  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1848  *	then the memory attribute setting for the physical pages is configured
1849  *	to the object's memory attribute setting.  Otherwise, the memory
1850  *	attribute setting for the physical pages is configured to "memattr",
1851  *	overriding the object's memory attribute setting.  However, if the
1852  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1853  *	memory attribute setting for the physical pages cannot be configured
1854  *	to VM_MEMATTR_DEFAULT.
1855  *
1856  *	The specified object may not contain fictitious pages.
1857  *
1858  *	The caller must always specify an allocation class.
1859  *
1860  *	allocation classes:
1861  *	VM_ALLOC_NORMAL		normal process request
1862  *	VM_ALLOC_SYSTEM		system *really* needs a page
1863  *	VM_ALLOC_INTERRUPT	interrupt time request
1864  *
1865  *	optional allocation flags:
1866  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1867  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1868  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1869  *				should not be exclusive busy
1870  *	VM_ALLOC_SBUSY		shared busy the allocated page
1871  *	VM_ALLOC_WIRED		wire the allocated page
1872  *	VM_ALLOC_ZERO		prefer a zeroed page
1873  */
1874 vm_page_t
1875 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1876     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1877     vm_paddr_t boundary, vm_memattr_t memattr)
1878 {
1879 	struct vm_domainset_iter di;
1880 	vm_page_t m;
1881 	int domain;
1882 
1883 	vm_domainset_iter_page_init(&di, object, &domain, &req);
1884 	do {
1885 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
1886 		    npages, low, high, alignment, boundary, memattr);
1887 		if (m != NULL)
1888 			break;
1889 	} while (vm_domainset_iter_page(&di, &domain, &req) == 0);
1890 
1891 	return (m);
1892 }
1893 
1894 vm_page_t
1895 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1896     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1897     vm_paddr_t boundary, vm_memattr_t memattr)
1898 {
1899 	struct vm_domain *vmd;
1900 	vm_page_t m, m_ret, mpred;
1901 	u_int busy_lock, flags, oflags;
1902 
1903 	mpred = NULL;	/* XXX: pacify gcc */
1904 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1905 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1906 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1907 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1908 	    ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
1909 	    req));
1910 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1911 	    ("Can't sleep and retry object insertion."));
1912 	if (object != NULL) {
1913 		VM_OBJECT_ASSERT_WLOCKED(object);
1914 		KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
1915 		    ("vm_page_alloc_contig: object %p has fictitious pages",
1916 		    object));
1917 	}
1918 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1919 
1920 	if (object != NULL) {
1921 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1922 		KASSERT(mpred == NULL || mpred->pindex != pindex,
1923 		    ("vm_page_alloc_contig: pindex already allocated"));
1924 	}
1925 
1926 	/*
1927 	 * Can we allocate the pages without the number of free pages falling
1928 	 * below the lower bound for the allocation class?
1929 	 */
1930 again:
1931 #if VM_NRESERVLEVEL > 0
1932 	if (vm_object_reserv(object) &&
1933 	    (m_ret = vm_reserv_extend_contig(req, object, pindex, domain,
1934 	    npages, low, high, alignment, boundary, mpred)) != NULL) {
1935 		domain = vm_phys_domain(m_ret);
1936 		vmd = VM_DOMAIN(domain);
1937 		goto found;
1938 	}
1939 #endif
1940 	m_ret = NULL;
1941 	vmd = VM_DOMAIN(domain);
1942 	vm_domain_free_lock(vmd);
1943 	if (vm_domain_available(vmd, req, npages)) {
1944 		/*
1945 		 * Can we allocate the pages from a reservation?
1946 		 */
1947 #if VM_NRESERVLEVEL > 0
1948 retry:
1949 		if (!vm_object_reserv(object) ||
1950 		    (m_ret = vm_reserv_alloc_contig(object, pindex, domain,
1951 		    npages, low, high, alignment, boundary, mpred)) == NULL)
1952 #endif
1953 			/*
1954 			 * If not, allocate them from the free page queues.
1955 			 */
1956 			m_ret = vm_phys_alloc_contig(domain, npages, low, high,
1957 			    alignment, boundary);
1958 #if VM_NRESERVLEVEL > 0
1959 		if (m_ret == NULL && vm_reserv_reclaim_contig(
1960 		    domain, npages, low, high, alignment, boundary))
1961 			goto retry;
1962 #endif
1963 	}
1964 	if (m_ret == NULL) {
1965 		if (vm_domain_alloc_fail(vmd, object, req))
1966 			goto again;
1967 		return (NULL);
1968 	}
1969 	vm_domain_freecnt_adj(vmd, -npages);
1970 	vm_domain_free_unlock(vmd);
1971 #if VM_NRESERVLEVEL > 0
1972 found:
1973 #endif
1974 	for (m = m_ret; m < &m_ret[npages]; m++)
1975 		vm_page_alloc_check(m);
1976 
1977 	/*
1978 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1979 	 */
1980 	flags = 0;
1981 	if ((req & VM_ALLOC_ZERO) != 0)
1982 		flags = PG_ZERO;
1983 	if ((req & VM_ALLOC_NODUMP) != 0)
1984 		flags |= PG_NODUMP;
1985 	oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1986 	    VPO_UNMANAGED : 0;
1987 	busy_lock = VPB_UNBUSIED;
1988 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1989 		busy_lock = VPB_SINGLE_EXCLUSIVER;
1990 	if ((req & VM_ALLOC_SBUSY) != 0)
1991 		busy_lock = VPB_SHARERS_WORD(1);
1992 	if ((req & VM_ALLOC_WIRED) != 0)
1993 		vm_wire_add(npages);
1994 	if (object != NULL) {
1995 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1996 		    memattr == VM_MEMATTR_DEFAULT)
1997 			memattr = object->memattr;
1998 	}
1999 	for (m = m_ret; m < &m_ret[npages]; m++) {
2000 		m->aflags = 0;
2001 		m->flags = (m->flags | PG_NODUMP) & flags;
2002 		m->busy_lock = busy_lock;
2003 		if ((req & VM_ALLOC_WIRED) != 0)
2004 			m->wire_count = 1;
2005 		m->act_count = 0;
2006 		m->oflags = oflags;
2007 		if (object != NULL) {
2008 			if (vm_page_insert_after(m, object, pindex, mpred)) {
2009 				pagedaemon_wakeup(domain);
2010 				if ((req & VM_ALLOC_WIRED) != 0)
2011 					vm_wire_sub(npages);
2012 				KASSERT(m->object == NULL,
2013 				    ("page %p has object", m));
2014 				mpred = m;
2015 				for (m = m_ret; m < &m_ret[npages]; m++) {
2016 					if (m <= mpred &&
2017 					    (req & VM_ALLOC_WIRED) != 0)
2018 						m->wire_count = 0;
2019 					m->oflags = VPO_UNMANAGED;
2020 					m->busy_lock = VPB_UNBUSIED;
2021 					/* Don't change PG_ZERO. */
2022 					vm_page_free_toq(m);
2023 				}
2024 				if (req & VM_ALLOC_WAITFAIL) {
2025 					VM_OBJECT_WUNLOCK(object);
2026 					vm_radix_wait();
2027 					VM_OBJECT_WLOCK(object);
2028 				}
2029 				return (NULL);
2030 			}
2031 			mpred = m;
2032 		} else
2033 			m->pindex = pindex;
2034 		if (memattr != VM_MEMATTR_DEFAULT)
2035 			pmap_page_set_memattr(m, memattr);
2036 		pindex++;
2037 	}
2038 	vmd = VM_DOMAIN(domain);
2039 	if (vm_paging_needed(vmd, vmd->vmd_free_count))
2040 		pagedaemon_wakeup(domain);
2041 	return (m_ret);
2042 }
2043 
2044 /*
2045  * Check a page that has been freshly dequeued from a freelist.
2046  */
2047 static void
2048 vm_page_alloc_check(vm_page_t m)
2049 {
2050 
2051 	KASSERT(m->object == NULL, ("page %p has object", m));
2052 	KASSERT(m->queue == PQ_NONE,
2053 	    ("page %p has unexpected queue %d", m, m->queue));
2054 	KASSERT(!vm_page_held(m), ("page %p is held", m));
2055 	KASSERT(!vm_page_busied(m), ("page %p is busy", m));
2056 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2057 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2058 	    ("page %p has unexpected memattr %d",
2059 	    m, pmap_page_get_memattr(m)));
2060 	KASSERT(m->valid == 0, ("free page %p is valid", m));
2061 }
2062 
2063 /*
2064  * 	vm_page_alloc_freelist:
2065  *
2066  *	Allocate a physical page from the specified free page list.
2067  *
2068  *	The caller must always specify an allocation class.
2069  *
2070  *	allocation classes:
2071  *	VM_ALLOC_NORMAL		normal process request
2072  *	VM_ALLOC_SYSTEM		system *really* needs a page
2073  *	VM_ALLOC_INTERRUPT	interrupt time request
2074  *
2075  *	optional allocation flags:
2076  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2077  *				intends to allocate
2078  *	VM_ALLOC_WIRED		wire the allocated page
2079  *	VM_ALLOC_ZERO		prefer a zeroed page
2080  */
2081 vm_page_t
2082 vm_page_alloc_freelist(int freelist, int req)
2083 {
2084 	struct vm_domainset_iter di;
2085 	vm_page_t m;
2086 	int domain;
2087 
2088 	vm_domainset_iter_page_init(&di, kernel_object, &domain, &req);
2089 	do {
2090 		m = vm_page_alloc_freelist_domain(domain, freelist, req);
2091 		if (m != NULL)
2092 			break;
2093 	} while (vm_domainset_iter_page(&di, &domain, &req) == 0);
2094 
2095 	return (m);
2096 }
2097 
2098 vm_page_t
2099 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2100 {
2101 	struct vm_domain *vmd;
2102 	vm_page_t m;
2103 	u_int flags, free_count;
2104 
2105 	/*
2106 	 * Do not allocate reserved pages unless the req has asked for it.
2107 	 */
2108 	vmd = VM_DOMAIN(domain);
2109 again:
2110 	vm_domain_free_lock(vmd);
2111 	if (vm_domain_available(vmd, req, 1))
2112 		m = vm_phys_alloc_freelist_pages(domain, freelist,
2113 		    VM_FREEPOOL_DIRECT, 0);
2114 	if (m == NULL) {
2115 		if (vm_domain_alloc_fail(vmd, NULL, req))
2116 			goto again;
2117 		return (NULL);
2118 	}
2119 	free_count = vm_domain_freecnt_adj(vmd, -1);
2120 	vm_domain_free_unlock(vmd);
2121 	vm_page_alloc_check(m);
2122 
2123 	/*
2124 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2125 	 */
2126 	m->aflags = 0;
2127 	flags = 0;
2128 	if ((req & VM_ALLOC_ZERO) != 0)
2129 		flags = PG_ZERO;
2130 	m->flags &= flags;
2131 	if ((req & VM_ALLOC_WIRED) != 0) {
2132 		/*
2133 		 * The page lock is not required for wiring a page that does
2134 		 * not belong to an object.
2135 		 */
2136 		vm_wire_add(1);
2137 		m->wire_count = 1;
2138 	}
2139 	/* Unmanaged pages don't use "act_count". */
2140 	m->oflags = VPO_UNMANAGED;
2141 	if (vm_paging_needed(vmd, free_count))
2142 		pagedaemon_wakeup(domain);
2143 	return (m);
2144 }
2145 
2146 #define	VPSC_ANY	0	/* No restrictions. */
2147 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2148 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2149 
2150 /*
2151  *	vm_page_scan_contig:
2152  *
2153  *	Scan vm_page_array[] between the specified entries "m_start" and
2154  *	"m_end" for a run of contiguous physical pages that satisfy the
2155  *	specified conditions, and return the lowest page in the run.  The
2156  *	specified "alignment" determines the alignment of the lowest physical
2157  *	page in the run.  If the specified "boundary" is non-zero, then the
2158  *	run of physical pages cannot span a physical address that is a
2159  *	multiple of "boundary".
2160  *
2161  *	"m_end" is never dereferenced, so it need not point to a vm_page
2162  *	structure within vm_page_array[].
2163  *
2164  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2165  *	span a hole (or discontiguity) in the physical address space.  Both
2166  *	"alignment" and "boundary" must be a power of two.
2167  */
2168 vm_page_t
2169 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2170     u_long alignment, vm_paddr_t boundary, int options)
2171 {
2172 	struct mtx *m_mtx;
2173 	vm_object_t object;
2174 	vm_paddr_t pa;
2175 	vm_page_t m, m_run;
2176 #if VM_NRESERVLEVEL > 0
2177 	int level;
2178 #endif
2179 	int m_inc, order, run_ext, run_len;
2180 
2181 	KASSERT(npages > 0, ("npages is 0"));
2182 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2183 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2184 	m_run = NULL;
2185 	run_len = 0;
2186 	m_mtx = NULL;
2187 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2188 		KASSERT((m->flags & PG_MARKER) == 0,
2189 		    ("page %p is PG_MARKER", m));
2190 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->wire_count == 1,
2191 		    ("fictitious page %p has invalid wire count", m));
2192 
2193 		/*
2194 		 * If the current page would be the start of a run, check its
2195 		 * physical address against the end, alignment, and boundary
2196 		 * conditions.  If it doesn't satisfy these conditions, either
2197 		 * terminate the scan or advance to the next page that
2198 		 * satisfies the failed condition.
2199 		 */
2200 		if (run_len == 0) {
2201 			KASSERT(m_run == NULL, ("m_run != NULL"));
2202 			if (m + npages > m_end)
2203 				break;
2204 			pa = VM_PAGE_TO_PHYS(m);
2205 			if ((pa & (alignment - 1)) != 0) {
2206 				m_inc = atop(roundup2(pa, alignment) - pa);
2207 				continue;
2208 			}
2209 			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2210 			    boundary) != 0) {
2211 				m_inc = atop(roundup2(pa, boundary) - pa);
2212 				continue;
2213 			}
2214 		} else
2215 			KASSERT(m_run != NULL, ("m_run == NULL"));
2216 
2217 		vm_page_change_lock(m, &m_mtx);
2218 		m_inc = 1;
2219 retry:
2220 		if (vm_page_held(m))
2221 			run_ext = 0;
2222 #if VM_NRESERVLEVEL > 0
2223 		else if ((level = vm_reserv_level(m)) >= 0 &&
2224 		    (options & VPSC_NORESERV) != 0) {
2225 			run_ext = 0;
2226 			/* Advance to the end of the reservation. */
2227 			pa = VM_PAGE_TO_PHYS(m);
2228 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2229 			    pa);
2230 		}
2231 #endif
2232 		else if ((object = m->object) != NULL) {
2233 			/*
2234 			 * The page is considered eligible for relocation if
2235 			 * and only if it could be laundered or reclaimed by
2236 			 * the page daemon.
2237 			 */
2238 			if (!VM_OBJECT_TRYRLOCK(object)) {
2239 				mtx_unlock(m_mtx);
2240 				VM_OBJECT_RLOCK(object);
2241 				mtx_lock(m_mtx);
2242 				if (m->object != object) {
2243 					/*
2244 					 * The page may have been freed.
2245 					 */
2246 					VM_OBJECT_RUNLOCK(object);
2247 					goto retry;
2248 				} else if (vm_page_held(m)) {
2249 					run_ext = 0;
2250 					goto unlock;
2251 				}
2252 			}
2253 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2254 			    ("page %p is PG_UNHOLDFREE", m));
2255 			/* Don't care: PG_NODUMP, PG_ZERO. */
2256 			if (object->type != OBJT_DEFAULT &&
2257 			    object->type != OBJT_SWAP &&
2258 			    object->type != OBJT_VNODE) {
2259 				run_ext = 0;
2260 #if VM_NRESERVLEVEL > 0
2261 			} else if ((options & VPSC_NOSUPER) != 0 &&
2262 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2263 				run_ext = 0;
2264 				/* Advance to the end of the superpage. */
2265 				pa = VM_PAGE_TO_PHYS(m);
2266 				m_inc = atop(roundup2(pa + 1,
2267 				    vm_reserv_size(level)) - pa);
2268 #endif
2269 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2270 			    m->queue != PQ_NONE && !vm_page_busied(m)) {
2271 				/*
2272 				 * The page is allocated but eligible for
2273 				 * relocation.  Extend the current run by one
2274 				 * page.
2275 				 */
2276 				KASSERT(pmap_page_get_memattr(m) ==
2277 				    VM_MEMATTR_DEFAULT,
2278 				    ("page %p has an unexpected memattr", m));
2279 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2280 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2281 				    ("page %p has unexpected oflags", m));
2282 				/* Don't care: VPO_NOSYNC. */
2283 				run_ext = 1;
2284 			} else
2285 				run_ext = 0;
2286 unlock:
2287 			VM_OBJECT_RUNLOCK(object);
2288 #if VM_NRESERVLEVEL > 0
2289 		} else if (level >= 0) {
2290 			/*
2291 			 * The page is reserved but not yet allocated.  In
2292 			 * other words, it is still free.  Extend the current
2293 			 * run by one page.
2294 			 */
2295 			run_ext = 1;
2296 #endif
2297 		} else if ((order = m->order) < VM_NFREEORDER) {
2298 			/*
2299 			 * The page is enqueued in the physical memory
2300 			 * allocator's free page queues.  Moreover, it is the
2301 			 * first page in a power-of-two-sized run of
2302 			 * contiguous free pages.  Add these pages to the end
2303 			 * of the current run, and jump ahead.
2304 			 */
2305 			run_ext = 1 << order;
2306 			m_inc = 1 << order;
2307 		} else {
2308 			/*
2309 			 * Skip the page for one of the following reasons: (1)
2310 			 * It is enqueued in the physical memory allocator's
2311 			 * free page queues.  However, it is not the first
2312 			 * page in a run of contiguous free pages.  (This case
2313 			 * rarely occurs because the scan is performed in
2314 			 * ascending order.) (2) It is not reserved, and it is
2315 			 * transitioning from free to allocated.  (Conversely,
2316 			 * the transition from allocated to free for managed
2317 			 * pages is blocked by the page lock.) (3) It is
2318 			 * allocated but not contained by an object and not
2319 			 * wired, e.g., allocated by Xen's balloon driver.
2320 			 */
2321 			run_ext = 0;
2322 		}
2323 
2324 		/*
2325 		 * Extend or reset the current run of pages.
2326 		 */
2327 		if (run_ext > 0) {
2328 			if (run_len == 0)
2329 				m_run = m;
2330 			run_len += run_ext;
2331 		} else {
2332 			if (run_len > 0) {
2333 				m_run = NULL;
2334 				run_len = 0;
2335 			}
2336 		}
2337 	}
2338 	if (m_mtx != NULL)
2339 		mtx_unlock(m_mtx);
2340 	if (run_len >= npages)
2341 		return (m_run);
2342 	return (NULL);
2343 }
2344 
2345 /*
2346  *	vm_page_reclaim_run:
2347  *
2348  *	Try to relocate each of the allocated virtual pages within the
2349  *	specified run of physical pages to a new physical address.  Free the
2350  *	physical pages underlying the relocated virtual pages.  A virtual page
2351  *	is relocatable if and only if it could be laundered or reclaimed by
2352  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2353  *	physical address above "high".
2354  *
2355  *	Returns 0 if every physical page within the run was already free or
2356  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2357  *	value indicating why the last attempt to relocate a virtual page was
2358  *	unsuccessful.
2359  *
2360  *	"req_class" must be an allocation class.
2361  */
2362 static int
2363 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2364     vm_paddr_t high)
2365 {
2366 	struct vm_domain *vmd;
2367 	struct mtx *m_mtx;
2368 	struct spglist free;
2369 	vm_object_t object;
2370 	vm_paddr_t pa;
2371 	vm_page_t m, m_end, m_new;
2372 	int error, order, req;
2373 
2374 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2375 	    ("req_class is not an allocation class"));
2376 	SLIST_INIT(&free);
2377 	error = 0;
2378 	m = m_run;
2379 	m_end = m_run + npages;
2380 	m_mtx = NULL;
2381 	for (; error == 0 && m < m_end; m++) {
2382 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2383 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2384 
2385 		/*
2386 		 * Avoid releasing and reacquiring the same page lock.
2387 		 */
2388 		vm_page_change_lock(m, &m_mtx);
2389 retry:
2390 		if (vm_page_held(m))
2391 			error = EBUSY;
2392 		else if ((object = m->object) != NULL) {
2393 			/*
2394 			 * The page is relocated if and only if it could be
2395 			 * laundered or reclaimed by the page daemon.
2396 			 */
2397 			if (!VM_OBJECT_TRYWLOCK(object)) {
2398 				mtx_unlock(m_mtx);
2399 				VM_OBJECT_WLOCK(object);
2400 				mtx_lock(m_mtx);
2401 				if (m->object != object) {
2402 					/*
2403 					 * The page may have been freed.
2404 					 */
2405 					VM_OBJECT_WUNLOCK(object);
2406 					goto retry;
2407 				} else if (vm_page_held(m)) {
2408 					error = EBUSY;
2409 					goto unlock;
2410 				}
2411 			}
2412 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2413 			    ("page %p is PG_UNHOLDFREE", m));
2414 			/* Don't care: PG_NODUMP, PG_ZERO. */
2415 			if (object->type != OBJT_DEFAULT &&
2416 			    object->type != OBJT_SWAP &&
2417 			    object->type != OBJT_VNODE)
2418 				error = EINVAL;
2419 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2420 				error = EINVAL;
2421 			else if (m->queue != PQ_NONE && !vm_page_busied(m)) {
2422 				KASSERT(pmap_page_get_memattr(m) ==
2423 				    VM_MEMATTR_DEFAULT,
2424 				    ("page %p has an unexpected memattr", m));
2425 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2426 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2427 				    ("page %p has unexpected oflags", m));
2428 				/* Don't care: VPO_NOSYNC. */
2429 				if (m->valid != 0) {
2430 					/*
2431 					 * First, try to allocate a new page
2432 					 * that is above "high".  Failing
2433 					 * that, try to allocate a new page
2434 					 * that is below "m_run".  Allocate
2435 					 * the new page between the end of
2436 					 * "m_run" and "high" only as a last
2437 					 * resort.
2438 					 */
2439 					req = req_class | VM_ALLOC_NOOBJ;
2440 					if ((m->flags & PG_NODUMP) != 0)
2441 						req |= VM_ALLOC_NODUMP;
2442 					if (trunc_page(high) !=
2443 					    ~(vm_paddr_t)PAGE_MASK) {
2444 						m_new = vm_page_alloc_contig(
2445 						    NULL, 0, req, 1,
2446 						    round_page(high),
2447 						    ~(vm_paddr_t)0,
2448 						    PAGE_SIZE, 0,
2449 						    VM_MEMATTR_DEFAULT);
2450 					} else
2451 						m_new = NULL;
2452 					if (m_new == NULL) {
2453 						pa = VM_PAGE_TO_PHYS(m_run);
2454 						m_new = vm_page_alloc_contig(
2455 						    NULL, 0, req, 1,
2456 						    0, pa - 1, PAGE_SIZE, 0,
2457 						    VM_MEMATTR_DEFAULT);
2458 					}
2459 					if (m_new == NULL) {
2460 						pa += ptoa(npages);
2461 						m_new = vm_page_alloc_contig(
2462 						    NULL, 0, req, 1,
2463 						    pa, high, PAGE_SIZE, 0,
2464 						    VM_MEMATTR_DEFAULT);
2465 					}
2466 					if (m_new == NULL) {
2467 						error = ENOMEM;
2468 						goto unlock;
2469 					}
2470 					KASSERT(m_new->wire_count == 0,
2471 					    ("page %p is wired", m));
2472 
2473 					/*
2474 					 * Replace "m" with the new page.  For
2475 					 * vm_page_replace(), "m" must be busy
2476 					 * and dequeued.  Finally, change "m"
2477 					 * as if vm_page_free() was called.
2478 					 */
2479 					if (object->ref_count != 0)
2480 						pmap_remove_all(m);
2481 					m_new->aflags = m->aflags;
2482 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2483 					    ("page %p is managed", m));
2484 					m_new->oflags = m->oflags & VPO_NOSYNC;
2485 					pmap_copy_page(m, m_new);
2486 					m_new->valid = m->valid;
2487 					m_new->dirty = m->dirty;
2488 					m->flags &= ~PG_ZERO;
2489 					vm_page_xbusy(m);
2490 					vm_page_remque(m);
2491 					vm_page_replace_checked(m_new, object,
2492 					    m->pindex, m);
2493 					m->valid = 0;
2494 					vm_page_undirty(m);
2495 
2496 					/*
2497 					 * The new page must be deactivated
2498 					 * before the object is unlocked.
2499 					 */
2500 					vm_page_change_lock(m_new, &m_mtx);
2501 					vm_page_deactivate(m_new);
2502 				} else {
2503 					m->flags &= ~PG_ZERO;
2504 					vm_page_remque(m);
2505 					vm_page_remove(m);
2506 					KASSERT(m->dirty == 0,
2507 					    ("page %p is dirty", m));
2508 				}
2509 				SLIST_INSERT_HEAD(&free, m, plinks.s.ss);
2510 			} else
2511 				error = EBUSY;
2512 unlock:
2513 			VM_OBJECT_WUNLOCK(object);
2514 		} else {
2515 			MPASS(vm_phys_domain(m) == domain);
2516 			vmd = VM_DOMAIN(domain);
2517 			vm_domain_free_lock(vmd);
2518 			order = m->order;
2519 			if (order < VM_NFREEORDER) {
2520 				/*
2521 				 * The page is enqueued in the physical memory
2522 				 * allocator's free page queues.  Moreover, it
2523 				 * is the first page in a power-of-two-sized
2524 				 * run of contiguous free pages.  Jump ahead
2525 				 * to the last page within that run, and
2526 				 * continue from there.
2527 				 */
2528 				m += (1 << order) - 1;
2529 			}
2530 #if VM_NRESERVLEVEL > 0
2531 			else if (vm_reserv_is_page_free(m))
2532 				order = 0;
2533 #endif
2534 			vm_domain_free_unlock(vmd);
2535 			if (order == VM_NFREEORDER)
2536 				error = EINVAL;
2537 		}
2538 	}
2539 	if (m_mtx != NULL)
2540 		mtx_unlock(m_mtx);
2541 	vm_page_free_pages_toq(&free, false);
2542 	return (error);
2543 }
2544 
2545 #define	NRUNS	16
2546 
2547 CTASSERT(powerof2(NRUNS));
2548 
2549 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2550 
2551 #define	MIN_RECLAIM	8
2552 
2553 /*
2554  *	vm_page_reclaim_contig:
2555  *
2556  *	Reclaim allocated, contiguous physical memory satisfying the specified
2557  *	conditions by relocating the virtual pages using that physical memory.
2558  *	Returns true if reclamation is successful and false otherwise.  Since
2559  *	relocation requires the allocation of physical pages, reclamation may
2560  *	fail due to a shortage of free pages.  When reclamation fails, callers
2561  *	are expected to perform vm_wait() before retrying a failed allocation
2562  *	operation, e.g., vm_page_alloc_contig().
2563  *
2564  *	The caller must always specify an allocation class through "req".
2565  *
2566  *	allocation classes:
2567  *	VM_ALLOC_NORMAL		normal process request
2568  *	VM_ALLOC_SYSTEM		system *really* needs a page
2569  *	VM_ALLOC_INTERRUPT	interrupt time request
2570  *
2571  *	The optional allocation flags are ignored.
2572  *
2573  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2574  *	must be a power of two.
2575  */
2576 bool
2577 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2578     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2579 {
2580 	struct vm_domain *vmd;
2581 	vm_paddr_t curr_low;
2582 	vm_page_t m_run, m_runs[NRUNS];
2583 	u_long count, reclaimed;
2584 	int error, i, options, req_class;
2585 
2586 	KASSERT(npages > 0, ("npages is 0"));
2587 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2588 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2589 	req_class = req & VM_ALLOC_CLASS_MASK;
2590 
2591 	/*
2592 	 * The page daemon is allowed to dig deeper into the free page list.
2593 	 */
2594 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2595 		req_class = VM_ALLOC_SYSTEM;
2596 
2597 	/*
2598 	 * Return if the number of free pages cannot satisfy the requested
2599 	 * allocation.
2600 	 */
2601 	vmd = VM_DOMAIN(domain);
2602 	count = vmd->vmd_free_count;
2603 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
2604 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2605 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2606 		return (false);
2607 
2608 	/*
2609 	 * Scan up to three times, relaxing the restrictions ("options") on
2610 	 * the reclamation of reservations and superpages each time.
2611 	 */
2612 	for (options = VPSC_NORESERV;;) {
2613 		/*
2614 		 * Find the highest runs that satisfy the given constraints
2615 		 * and restrictions, and record them in "m_runs".
2616 		 */
2617 		curr_low = low;
2618 		count = 0;
2619 		for (;;) {
2620 			m_run = vm_phys_scan_contig(domain, npages, curr_low,
2621 			    high, alignment, boundary, options);
2622 			if (m_run == NULL)
2623 				break;
2624 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2625 			m_runs[RUN_INDEX(count)] = m_run;
2626 			count++;
2627 		}
2628 
2629 		/*
2630 		 * Reclaim the highest runs in LIFO (descending) order until
2631 		 * the number of reclaimed pages, "reclaimed", is at least
2632 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2633 		 * reclamation is idempotent, and runs will (likely) recur
2634 		 * from one scan to the next as restrictions are relaxed.
2635 		 */
2636 		reclaimed = 0;
2637 		for (i = 0; count > 0 && i < NRUNS; i++) {
2638 			count--;
2639 			m_run = m_runs[RUN_INDEX(count)];
2640 			error = vm_page_reclaim_run(req_class, domain, npages,
2641 			    m_run, high);
2642 			if (error == 0) {
2643 				reclaimed += npages;
2644 				if (reclaimed >= MIN_RECLAIM)
2645 					return (true);
2646 			}
2647 		}
2648 
2649 		/*
2650 		 * Either relax the restrictions on the next scan or return if
2651 		 * the last scan had no restrictions.
2652 		 */
2653 		if (options == VPSC_NORESERV)
2654 			options = VPSC_NOSUPER;
2655 		else if (options == VPSC_NOSUPER)
2656 			options = VPSC_ANY;
2657 		else if (options == VPSC_ANY)
2658 			return (reclaimed != 0);
2659 	}
2660 }
2661 
2662 bool
2663 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2664     u_long alignment, vm_paddr_t boundary)
2665 {
2666 	struct vm_domainset_iter di;
2667 	int domain;
2668 	bool ret;
2669 
2670 	vm_domainset_iter_page_init(&di, kernel_object, &domain, &req);
2671 	do {
2672 		ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
2673 		    high, alignment, boundary);
2674 		if (ret)
2675 			break;
2676 	} while (vm_domainset_iter_page(&di, &domain, &req) == 0);
2677 
2678 	return (ret);
2679 }
2680 
2681 /*
2682  * Set the domain in the appropriate page level domainset.
2683  */
2684 void
2685 vm_domain_set(struct vm_domain *vmd)
2686 {
2687 
2688 	mtx_lock(&vm_domainset_lock);
2689 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
2690 		vmd->vmd_minset = 1;
2691 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
2692 	}
2693 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
2694 		vmd->vmd_severeset = 1;
2695 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
2696 	}
2697 	mtx_unlock(&vm_domainset_lock);
2698 }
2699 
2700 /*
2701  * Clear the domain from the appropriate page level domainset.
2702  */
2703 static void
2704 vm_domain_clear(struct vm_domain *vmd)
2705 {
2706 
2707 	mtx_lock(&vm_domainset_lock);
2708 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
2709 		vmd->vmd_minset = 0;
2710 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
2711 		if (vm_min_waiters != 0) {
2712 			vm_min_waiters = 0;
2713 			wakeup(&vm_min_domains);
2714 		}
2715 	}
2716 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
2717 		vmd->vmd_severeset = 0;
2718 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
2719 		if (vm_severe_waiters != 0) {
2720 			vm_severe_waiters = 0;
2721 			wakeup(&vm_severe_domains);
2722 		}
2723 	}
2724 	mtx_unlock(&vm_domainset_lock);
2725 }
2726 
2727 /*
2728  * Wait for free pages to exceed the min threshold globally.
2729  */
2730 void
2731 vm_wait_min(void)
2732 {
2733 
2734 	mtx_lock(&vm_domainset_lock);
2735 	while (vm_page_count_min()) {
2736 		vm_min_waiters++;
2737 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
2738 	}
2739 	mtx_unlock(&vm_domainset_lock);
2740 }
2741 
2742 /*
2743  * Wait for free pages to exceed the severe threshold globally.
2744  */
2745 void
2746 vm_wait_severe(void)
2747 {
2748 
2749 	mtx_lock(&vm_domainset_lock);
2750 	while (vm_page_count_severe()) {
2751 		vm_severe_waiters++;
2752 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
2753 		    "vmwait", 0);
2754 	}
2755 	mtx_unlock(&vm_domainset_lock);
2756 }
2757 
2758 u_int
2759 vm_wait_count(void)
2760 {
2761 
2762 	return (vm_severe_waiters + vm_min_waiters);
2763 }
2764 
2765 static void
2766 vm_wait_doms(const domainset_t *wdoms)
2767 {
2768 
2769 	/*
2770 	 * We use racey wakeup synchronization to avoid expensive global
2771 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
2772 	 * To handle this, we only sleep for one tick in this instance.  It
2773 	 * is expected that most allocations for the pageproc will come from
2774 	 * kmem or vm_page_grab* which will use the more specific and
2775 	 * race-free vm_wait_domain().
2776 	 */
2777 	if (curproc == pageproc) {
2778 		mtx_lock(&vm_domainset_lock);
2779 		vm_pageproc_waiters++;
2780 		msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM,
2781 		    "pageprocwait", 1);
2782 		mtx_unlock(&vm_domainset_lock);
2783 	} else {
2784 		/*
2785 		 * XXX Ideally we would wait only until the allocation could
2786 		 * be satisfied.  This condition can cause new allocators to
2787 		 * consume all freed pages while old allocators wait.
2788 		 */
2789 		mtx_lock(&vm_domainset_lock);
2790 		if (DOMAINSET_SUBSET(&vm_min_domains, wdoms)) {
2791 			vm_min_waiters++;
2792 			msleep(&vm_min_domains, &vm_domainset_lock, PVM,
2793 			    "vmwait", 0);
2794 		}
2795 		mtx_unlock(&vm_domainset_lock);
2796 	}
2797 }
2798 
2799 /*
2800  *	vm_wait_domain:
2801  *
2802  *	Sleep until free pages are available for allocation.
2803  *	- Called in various places after failed memory allocations.
2804  */
2805 void
2806 vm_wait_domain(int domain)
2807 {
2808 	struct vm_domain *vmd;
2809 	domainset_t wdom;
2810 
2811 	vmd = VM_DOMAIN(domain);
2812 	vm_domain_free_assert_locked(vmd);
2813 
2814 	if (curproc == pageproc) {
2815 		vmd->vmd_pageout_pages_needed = 1;
2816 		msleep(&vmd->vmd_pageout_pages_needed,
2817 		    vm_domain_free_lockptr(vmd), PDROP | PSWP, "VMWait", 0);
2818 	} else {
2819 		vm_domain_free_unlock(vmd);
2820 		if (pageproc == NULL)
2821 			panic("vm_wait in early boot");
2822 		DOMAINSET_ZERO(&wdom);
2823 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
2824 		vm_wait_doms(&wdom);
2825 	}
2826 }
2827 
2828 /*
2829  *	vm_wait:
2830  *
2831  *	Sleep until free pages are available for allocation in the
2832  *	affinity domains of the obj.  If obj is NULL, the domain set
2833  *	for the calling thread is used.
2834  *	Called in various places after failed memory allocations.
2835  */
2836 void
2837 vm_wait(vm_object_t obj)
2838 {
2839 	struct domainset *d;
2840 
2841 	d = NULL;
2842 
2843 	/*
2844 	 * Carefully fetch pointers only once: the struct domainset
2845 	 * itself is ummutable but the pointer might change.
2846 	 */
2847 	if (obj != NULL)
2848 		d = obj->domain.dr_policy;
2849 	if (d == NULL)
2850 		d = curthread->td_domain.dr_policy;
2851 
2852 	vm_wait_doms(&d->ds_mask);
2853 }
2854 
2855 /*
2856  *	vm_domain_alloc_fail:
2857  *
2858  *	Called when a page allocation function fails.  Informs the
2859  *	pagedaemon and performs the requested wait.  Requires the
2860  *	domain_free and object lock on entry.  Returns with the
2861  *	object lock held and free lock released.  Returns an error when
2862  *	retry is necessary.
2863  *
2864  */
2865 static int
2866 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
2867 {
2868 
2869 	vm_domain_free_assert_locked(vmd);
2870 
2871 	atomic_add_int(&vmd->vmd_pageout_deficit,
2872 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
2873 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
2874 		if (object != NULL)
2875 			VM_OBJECT_WUNLOCK(object);
2876 		vm_wait_domain(vmd->vmd_domain);
2877 		if (object != NULL)
2878 			VM_OBJECT_WLOCK(object);
2879 		if (req & VM_ALLOC_WAITOK)
2880 			return (EAGAIN);
2881 	} else {
2882 		vm_domain_free_unlock(vmd);
2883 		pagedaemon_wakeup(vmd->vmd_domain);
2884 	}
2885 	return (0);
2886 }
2887 
2888 /*
2889  *	vm_waitpfault:
2890  *
2891  *	Sleep until free pages are available for allocation.
2892  *	- Called only in vm_fault so that processes page faulting
2893  *	  can be easily tracked.
2894  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
2895  *	  processes will be able to grab memory first.  Do not change
2896  *	  this balance without careful testing first.
2897  */
2898 void
2899 vm_waitpfault(void)
2900 {
2901 
2902 	mtx_lock(&vm_domainset_lock);
2903 	if (vm_page_count_min()) {
2904 		vm_min_waiters++;
2905 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER, "pfault", 0);
2906 	}
2907 	mtx_unlock(&vm_domainset_lock);
2908 }
2909 
2910 struct vm_pagequeue *
2911 vm_page_pagequeue(vm_page_t m)
2912 {
2913 
2914 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[m->queue]);
2915 }
2916 
2917 /*
2918  *	vm_page_dequeue:
2919  *
2920  *	Remove the given page from its current page queue.
2921  *
2922  *	The page must be locked.
2923  */
2924 void
2925 vm_page_dequeue(vm_page_t m)
2926 {
2927 	struct vm_pagequeue *pq;
2928 
2929 	vm_page_assert_locked(m);
2930 	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2931 	    m));
2932 	pq = vm_page_pagequeue(m);
2933 	vm_pagequeue_lock(pq);
2934 	m->queue = PQ_NONE;
2935 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2936 	vm_pagequeue_cnt_dec(pq);
2937 	vm_pagequeue_unlock(pq);
2938 }
2939 
2940 /*
2941  *	vm_page_dequeue_locked:
2942  *
2943  *	Remove the given page from its current page queue.
2944  *
2945  *	The page and page queue must be locked.
2946  */
2947 void
2948 vm_page_dequeue_locked(vm_page_t m)
2949 {
2950 	struct vm_pagequeue *pq;
2951 
2952 	vm_page_lock_assert(m, MA_OWNED);
2953 	pq = vm_page_pagequeue(m);
2954 	vm_pagequeue_assert_locked(pq);
2955 	m->queue = PQ_NONE;
2956 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2957 	vm_pagequeue_cnt_dec(pq);
2958 }
2959 
2960 /*
2961  *	vm_page_enqueue:
2962  *
2963  *	Add the given page to the specified page queue.
2964  *
2965  *	The page must be locked.
2966  */
2967 static void
2968 vm_page_enqueue(uint8_t queue, vm_page_t m)
2969 {
2970 	struct vm_pagequeue *pq;
2971 
2972 	vm_page_lock_assert(m, MA_OWNED);
2973 	KASSERT(queue < PQ_COUNT,
2974 	    ("vm_page_enqueue: invalid queue %u request for page %p",
2975 	    queue, m));
2976 	pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
2977 	vm_pagequeue_lock(pq);
2978 	m->queue = queue;
2979 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2980 	vm_pagequeue_cnt_inc(pq);
2981 	vm_pagequeue_unlock(pq);
2982 }
2983 
2984 /*
2985  *	vm_page_requeue:
2986  *
2987  *	Move the given page to the tail of its current page queue.
2988  *
2989  *	The page must be locked.
2990  */
2991 void
2992 vm_page_requeue(vm_page_t m)
2993 {
2994 	struct vm_pagequeue *pq;
2995 
2996 	vm_page_lock_assert(m, MA_OWNED);
2997 	KASSERT(m->queue != PQ_NONE,
2998 	    ("vm_page_requeue: page %p is not queued", m));
2999 	pq = vm_page_pagequeue(m);
3000 	vm_pagequeue_lock(pq);
3001 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3002 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3003 	vm_pagequeue_unlock(pq);
3004 }
3005 
3006 /*
3007  *	vm_page_requeue_locked:
3008  *
3009  *	Move the given page to the tail of its current page queue.
3010  *
3011  *	The page queue must be locked.
3012  */
3013 void
3014 vm_page_requeue_locked(vm_page_t m)
3015 {
3016 	struct vm_pagequeue *pq;
3017 
3018 	KASSERT(m->queue != PQ_NONE,
3019 	    ("vm_page_requeue_locked: page %p is not queued", m));
3020 	pq = vm_page_pagequeue(m);
3021 	vm_pagequeue_assert_locked(pq);
3022 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3023 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3024 }
3025 
3026 /*
3027  *	vm_page_activate:
3028  *
3029  *	Put the specified page on the active list (if appropriate).
3030  *	Ensure that act_count is at least ACT_INIT but do not otherwise
3031  *	mess with it.
3032  *
3033  *	The page must be locked.
3034  */
3035 void
3036 vm_page_activate(vm_page_t m)
3037 {
3038 	int queue;
3039 
3040 	vm_page_lock_assert(m, MA_OWNED);
3041 	if ((queue = m->queue) != PQ_ACTIVE) {
3042 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3043 			if (m->act_count < ACT_INIT)
3044 				m->act_count = ACT_INIT;
3045 			if (queue != PQ_NONE)
3046 				vm_page_dequeue(m);
3047 			vm_page_enqueue(PQ_ACTIVE, m);
3048 		}
3049 	} else {
3050 		if (m->act_count < ACT_INIT)
3051 			m->act_count = ACT_INIT;
3052 	}
3053 }
3054 
3055 /*
3056  *	vm_domain_free_wakeup:
3057  *
3058  *	Helper routine for vm_page_free_toq().  This routine is called
3059  *	when a page is added to the free queues.
3060  *
3061  *	The page queues must be locked.
3062  */
3063 static void
3064 vm_domain_free_wakeup(struct vm_domain *vmd)
3065 {
3066 
3067 	vm_domain_free_assert_locked(vmd);
3068 
3069 	/*
3070 	 * if pageout daemon needs pages, then tell it that there are
3071 	 * some free.
3072 	 */
3073 	if (vmd->vmd_pageout_pages_needed &&
3074 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3075 		wakeup(&vmd->vmd_pageout_pages_needed);
3076 		vmd->vmd_pageout_pages_needed = 0;
3077 	}
3078 	/*
3079 	 * wakeup processes that are waiting on memory if we hit a
3080 	 * high water mark. And wakeup scheduler process if we have
3081 	 * lots of memory. this process will swapin processes.
3082 	 */
3083 	if ((vmd->vmd_minset && !vm_paging_min(vmd)) ||
3084 	    (vmd->vmd_severeset && !vm_paging_severe(vmd)))
3085 		vm_domain_clear(vmd);
3086 
3087 	/* See comments in vm_wait(); */
3088 	if (vm_pageproc_waiters) {
3089 		vm_pageproc_waiters = 0;
3090 		wakeup(&vm_pageproc_waiters);
3091 	}
3092 
3093 }
3094 
3095 /*
3096  *	vm_page_free_prep:
3097  *
3098  *	Prepares the given page to be put on the free list,
3099  *	disassociating it from any VM object. The caller may return
3100  *	the page to the free list only if this function returns true.
3101  *
3102  *	The object must be locked.  The page must be locked if it is
3103  *	managed.  For a queued managed page, the pagequeue_locked
3104  *	argument specifies whether the page queue is already locked.
3105  */
3106 bool
3107 vm_page_free_prep(vm_page_t m, bool pagequeue_locked)
3108 {
3109 
3110 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3111 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3112 		uint64_t *p;
3113 		int i;
3114 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3115 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3116 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3117 			    m, i, (uintmax_t)*p));
3118 	}
3119 #endif
3120 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3121 		vm_page_lock_assert(m, MA_OWNED);
3122 		KASSERT(!pmap_page_is_mapped(m),
3123 		    ("vm_page_free_toq: freeing mapped page %p", m));
3124 	} else
3125 		KASSERT(m->queue == PQ_NONE,
3126 		    ("vm_page_free_toq: unmanaged page %p is queued", m));
3127 	VM_CNT_INC(v_tfree);
3128 
3129 	if (vm_page_sbusied(m))
3130 		panic("vm_page_free: freeing busy page %p", m);
3131 
3132 	vm_page_remove(m);
3133 
3134 	/*
3135 	 * If fictitious remove object association and
3136 	 * return.
3137 	 */
3138 	if ((m->flags & PG_FICTITIOUS) != 0) {
3139 		KASSERT(m->wire_count == 1,
3140 		    ("fictitious page %p is not wired", m));
3141 		KASSERT(m->queue == PQ_NONE,
3142 		    ("fictitious page %p is queued", m));
3143 		return (false);
3144 	}
3145 
3146 	if (m->queue != PQ_NONE) {
3147 		if (pagequeue_locked)
3148 			vm_page_dequeue_locked(m);
3149 		else
3150 			vm_page_dequeue(m);
3151 	}
3152 	m->valid = 0;
3153 	vm_page_undirty(m);
3154 
3155 	if (m->wire_count != 0)
3156 		panic("vm_page_free: freeing wired page %p", m);
3157 	if (m->hold_count != 0) {
3158 		m->flags &= ~PG_ZERO;
3159 		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
3160 		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
3161 		m->flags |= PG_UNHOLDFREE;
3162 		return (false);
3163 	}
3164 
3165 	/*
3166 	 * Restore the default memory attribute to the page.
3167 	 */
3168 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3169 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3170 
3171 	return (true);
3172 }
3173 
3174 /*
3175  * Insert the page into the physical memory allocator's free page
3176  * queues.  This is the last step to free a page.
3177  */
3178 static void
3179 vm_page_free_phys(struct vm_domain *vmd, vm_page_t m)
3180 {
3181 
3182 	vm_domain_free_assert_locked(vmd);
3183 
3184 	vm_domain_freecnt_adj(vmd, 1);
3185 #if VM_NRESERVLEVEL > 0
3186 	if (!vm_reserv_free_page(m))
3187 #endif
3188 		vm_phys_free_pages(m, 0);
3189 }
3190 
3191 void
3192 vm_page_free_phys_pglist(struct pglist *tq)
3193 {
3194 	struct vm_domain *vmd;
3195 	vm_page_t m;
3196 
3197 	if (TAILQ_EMPTY(tq))
3198 		return;
3199 	vmd = NULL;
3200 	TAILQ_FOREACH(m, tq, listq) {
3201 		if (vmd != vm_pagequeue_domain(m)) {
3202 			if (vmd != NULL) {
3203 				vm_domain_free_wakeup(vmd);
3204 				vm_domain_free_unlock(vmd);
3205 			}
3206 			vmd = vm_pagequeue_domain(m);
3207 			vm_domain_free_lock(vmd);
3208 		}
3209 		vm_page_free_phys(vmd, m);
3210 	}
3211 	if (vmd != NULL) {
3212 		vm_domain_free_wakeup(vmd);
3213 		vm_domain_free_unlock(vmd);
3214 	}
3215 }
3216 
3217 /*
3218  *	vm_page_free_toq:
3219  *
3220  *	Returns the given page to the free list, disassociating it
3221  *	from any VM object.
3222  *
3223  *	The object must be locked.  The page must be locked if it is
3224  *	managed.
3225  */
3226 void
3227 vm_page_free_toq(vm_page_t m)
3228 {
3229 	struct vm_domain *vmd;
3230 
3231 	if (!vm_page_free_prep(m, false))
3232 		return;
3233 	vmd = vm_pagequeue_domain(m);
3234 	vm_domain_free_lock(vmd);
3235 	vm_page_free_phys(vmd, m);
3236 	vm_domain_free_wakeup(vmd);
3237 	vm_domain_free_unlock(vmd);
3238 }
3239 
3240 /*
3241  *	vm_page_free_pages_toq:
3242  *
3243  *	Returns a list of pages to the free list, disassociating it
3244  *	from any VM object.  In other words, this is equivalent to
3245  *	calling vm_page_free_toq() for each page of a list of VM objects.
3246  *
3247  *	The objects must be locked.  The pages must be locked if it is
3248  *	managed.
3249  */
3250 void
3251 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3252 {
3253 	vm_page_t m;
3254 	struct pglist pgl;
3255 	int count;
3256 
3257 	if (SLIST_EMPTY(free))
3258 		return;
3259 
3260 	count = 0;
3261 	TAILQ_INIT(&pgl);
3262 	while ((m = SLIST_FIRST(free)) != NULL) {
3263 		count++;
3264 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
3265 		if (vm_page_free_prep(m, false))
3266 			TAILQ_INSERT_TAIL(&pgl, m, listq);
3267 	}
3268 
3269 	vm_page_free_phys_pglist(&pgl);
3270 
3271 	if (update_wire_count)
3272 		vm_wire_sub(count);
3273 }
3274 
3275 /*
3276  *	vm_page_wire:
3277  *
3278  * Mark this page as wired down.  If the page is fictitious, then
3279  * its wire count must remain one.
3280  *
3281  * The page must be locked.
3282  */
3283 void
3284 vm_page_wire(vm_page_t m)
3285 {
3286 
3287 	vm_page_assert_locked(m);
3288 	if ((m->flags & PG_FICTITIOUS) != 0) {
3289 		KASSERT(m->wire_count == 1,
3290 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
3291 		    m));
3292 		return;
3293 	}
3294 	if (m->wire_count == 0) {
3295 		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
3296 		    m->queue == PQ_NONE,
3297 		    ("vm_page_wire: unmanaged page %p is queued", m));
3298 		vm_wire_add(1);
3299 	}
3300 	m->wire_count++;
3301 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
3302 }
3303 
3304 /*
3305  * vm_page_unwire:
3306  *
3307  * Release one wiring of the specified page, potentially allowing it to be
3308  * paged out.  Returns TRUE if the number of wirings transitions to zero and
3309  * FALSE otherwise.
3310  *
3311  * Only managed pages belonging to an object can be paged out.  If the number
3312  * of wirings transitions to zero and the page is eligible for page out, then
3313  * the page is added to the specified paging queue (unless PQ_NONE is
3314  * specified, in which case the page is dequeued if it belongs to a paging
3315  * queue).
3316  *
3317  * If a page is fictitious, then its wire count must always be one.
3318  *
3319  * A managed page must be locked.
3320  */
3321 bool
3322 vm_page_unwire(vm_page_t m, uint8_t queue)
3323 {
3324 	bool unwired;
3325 
3326 	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
3327 	    ("vm_page_unwire: invalid queue %u request for page %p",
3328 	    queue, m));
3329 
3330 	unwired = vm_page_unwire_noq(m);
3331 	if (unwired && (m->oflags & VPO_UNMANAGED) == 0 && m->object != NULL) {
3332 		if (m->queue == queue) {
3333 			if (queue == PQ_ACTIVE)
3334 				vm_page_reference(m);
3335 			else if (queue != PQ_NONE)
3336 				vm_page_requeue(m);
3337 		} else {
3338 			vm_page_remque(m);
3339 			if (queue != PQ_NONE) {
3340 				vm_page_enqueue(queue, m);
3341 				if (queue == PQ_ACTIVE)
3342 					/* Initialize act_count. */
3343 					vm_page_activate(m);
3344 			}
3345 		}
3346 	}
3347 	return (unwired);
3348 }
3349 
3350 /*
3351  *
3352  * vm_page_unwire_noq:
3353  *
3354  * Unwire a page without (re-)inserting it into a page queue.  It is up
3355  * to the caller to enqueue, requeue, or free the page as appropriate.
3356  * In most cases, vm_page_unwire() should be used instead.
3357  */
3358 bool
3359 vm_page_unwire_noq(vm_page_t m)
3360 {
3361 
3362 	if ((m->oflags & VPO_UNMANAGED) == 0)
3363 		vm_page_assert_locked(m);
3364 	if ((m->flags & PG_FICTITIOUS) != 0) {
3365 		KASSERT(m->wire_count == 1,
3366 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
3367 		return (false);
3368 	}
3369 	if (m->wire_count == 0)
3370 		panic("vm_page_unwire: page %p's wire count is zero", m);
3371 	m->wire_count--;
3372 	if (m->wire_count == 0) {
3373 		vm_wire_sub(1);
3374 		return (true);
3375 	} else
3376 		return (false);
3377 }
3378 
3379 /*
3380  * Move the specified page to the inactive queue.
3381  *
3382  * Normally, "noreuse" is FALSE, resulting in LRU ordering of the inactive
3383  * queue.  However, setting "noreuse" to TRUE will accelerate the specified
3384  * page's reclamation, but it will not unmap the page from any address space.
3385  * This is implemented by inserting the page near the head of the inactive
3386  * queue, using a marker page to guide FIFO insertion ordering.
3387  *
3388  * The page must be locked.
3389  */
3390 static inline void
3391 _vm_page_deactivate(vm_page_t m, boolean_t noreuse)
3392 {
3393 	struct vm_pagequeue *pq;
3394 	int queue;
3395 
3396 	vm_page_assert_locked(m);
3397 
3398 	/*
3399 	 * Ignore if the page is already inactive, unless it is unlikely to be
3400 	 * reactivated.
3401 	 */
3402 	if ((queue = m->queue) == PQ_INACTIVE && !noreuse)
3403 		return;
3404 	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
3405 		pq = &vm_pagequeue_domain(m)->vmd_pagequeues[PQ_INACTIVE];
3406 		/* Avoid multiple acquisitions of the inactive queue lock. */
3407 		if (queue == PQ_INACTIVE) {
3408 			vm_pagequeue_lock(pq);
3409 			vm_page_dequeue_locked(m);
3410 		} else {
3411 			if (queue != PQ_NONE)
3412 				vm_page_dequeue(m);
3413 			vm_pagequeue_lock(pq);
3414 		}
3415 		m->queue = PQ_INACTIVE;
3416 		if (noreuse)
3417 			TAILQ_INSERT_BEFORE(
3418 			    &vm_pagequeue_domain(m)->vmd_inacthead, m,
3419 			    plinks.q);
3420 		else
3421 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3422 		vm_pagequeue_cnt_inc(pq);
3423 		vm_pagequeue_unlock(pq);
3424 	}
3425 }
3426 
3427 /*
3428  * Move the specified page to the inactive queue.
3429  *
3430  * The page must be locked.
3431  */
3432 void
3433 vm_page_deactivate(vm_page_t m)
3434 {
3435 
3436 	_vm_page_deactivate(m, FALSE);
3437 }
3438 
3439 /*
3440  * Move the specified page to the inactive queue with the expectation
3441  * that it is unlikely to be reused.
3442  *
3443  * The page must be locked.
3444  */
3445 void
3446 vm_page_deactivate_noreuse(vm_page_t m)
3447 {
3448 
3449 	_vm_page_deactivate(m, TRUE);
3450 }
3451 
3452 /*
3453  * vm_page_launder
3454  *
3455  * 	Put a page in the laundry.
3456  */
3457 void
3458 vm_page_launder(vm_page_t m)
3459 {
3460 	int queue;
3461 
3462 	vm_page_assert_locked(m);
3463 	if ((queue = m->queue) != PQ_LAUNDRY && m->wire_count == 0 &&
3464 	    (m->oflags & VPO_UNMANAGED) == 0) {
3465 		if (queue != PQ_NONE)
3466 			vm_page_dequeue(m);
3467 		vm_page_enqueue(PQ_LAUNDRY, m);
3468 	}
3469 }
3470 
3471 /*
3472  * vm_page_unswappable
3473  *
3474  *	Put a page in the PQ_UNSWAPPABLE holding queue.
3475  */
3476 void
3477 vm_page_unswappable(vm_page_t m)
3478 {
3479 
3480 	vm_page_assert_locked(m);
3481 	KASSERT(m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0,
3482 	    ("page %p already unswappable", m));
3483 	if (m->queue != PQ_NONE)
3484 		vm_page_dequeue(m);
3485 	vm_page_enqueue(PQ_UNSWAPPABLE, m);
3486 }
3487 
3488 /*
3489  * Attempt to free the page.  If it cannot be freed, do nothing.  Returns true
3490  * if the page is freed and false otherwise.
3491  *
3492  * The page must be managed.  The page and its containing object must be
3493  * locked.
3494  */
3495 bool
3496 vm_page_try_to_free(vm_page_t m)
3497 {
3498 
3499 	vm_page_assert_locked(m);
3500 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3501 	KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("page %p is unmanaged", m));
3502 	if (m->dirty != 0 || vm_page_held(m) || vm_page_busied(m))
3503 		return (false);
3504 	if (m->object->ref_count != 0) {
3505 		pmap_remove_all(m);
3506 		if (m->dirty != 0)
3507 			return (false);
3508 	}
3509 	vm_page_free(m);
3510 	return (true);
3511 }
3512 
3513 /*
3514  * vm_page_advise
3515  *
3516  * 	Apply the specified advice to the given page.
3517  *
3518  *	The object and page must be locked.
3519  */
3520 void
3521 vm_page_advise(vm_page_t m, int advice)
3522 {
3523 
3524 	vm_page_assert_locked(m);
3525 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3526 	if (advice == MADV_FREE)
3527 		/*
3528 		 * Mark the page clean.  This will allow the page to be freed
3529 		 * without first paging it out.  MADV_FREE pages are often
3530 		 * quickly reused by malloc(3), so we do not do anything that
3531 		 * would result in a page fault on a later access.
3532 		 */
3533 		vm_page_undirty(m);
3534 	else if (advice != MADV_DONTNEED) {
3535 		if (advice == MADV_WILLNEED)
3536 			vm_page_activate(m);
3537 		return;
3538 	}
3539 
3540 	/*
3541 	 * Clear any references to the page.  Otherwise, the page daemon will
3542 	 * immediately reactivate the page.
3543 	 */
3544 	vm_page_aflag_clear(m, PGA_REFERENCED);
3545 
3546 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
3547 		vm_page_dirty(m);
3548 
3549 	/*
3550 	 * Place clean pages near the head of the inactive queue rather than
3551 	 * the tail, thus defeating the queue's LRU operation and ensuring that
3552 	 * the page will be reused quickly.  Dirty pages not already in the
3553 	 * laundry are moved there.
3554 	 */
3555 	if (m->dirty == 0)
3556 		vm_page_deactivate_noreuse(m);
3557 	else
3558 		vm_page_launder(m);
3559 }
3560 
3561 /*
3562  * Grab a page, waiting until we are waken up due to the page
3563  * changing state.  We keep on waiting, if the page continues
3564  * to be in the object.  If the page doesn't exist, first allocate it
3565  * and then conditionally zero it.
3566  *
3567  * This routine may sleep.
3568  *
3569  * The object must be locked on entry.  The lock will, however, be released
3570  * and reacquired if the routine sleeps.
3571  */
3572 vm_page_t
3573 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3574 {
3575 	vm_page_t m;
3576 	int sleep;
3577 	int pflags;
3578 
3579 	VM_OBJECT_ASSERT_WLOCKED(object);
3580 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3581 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3582 	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
3583 	pflags = allocflags &
3584 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
3585 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
3586 		pflags |= VM_ALLOC_WAITFAIL;
3587 retrylookup:
3588 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
3589 		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3590 		    vm_page_xbusied(m) : vm_page_busied(m);
3591 		if (sleep) {
3592 			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3593 				return (NULL);
3594 			/*
3595 			 * Reference the page before unlocking and
3596 			 * sleeping so that the page daemon is less
3597 			 * likely to reclaim it.
3598 			 */
3599 			vm_page_aflag_set(m, PGA_REFERENCED);
3600 			vm_page_lock(m);
3601 			VM_OBJECT_WUNLOCK(object);
3602 			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
3603 			    VM_ALLOC_IGN_SBUSY) != 0);
3604 			VM_OBJECT_WLOCK(object);
3605 			goto retrylookup;
3606 		} else {
3607 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3608 				vm_page_lock(m);
3609 				vm_page_wire(m);
3610 				vm_page_unlock(m);
3611 			}
3612 			if ((allocflags &
3613 			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
3614 				vm_page_xbusy(m);
3615 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3616 				vm_page_sbusy(m);
3617 			return (m);
3618 		}
3619 	}
3620 	m = vm_page_alloc(object, pindex, pflags);
3621 	if (m == NULL) {
3622 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3623 			return (NULL);
3624 		goto retrylookup;
3625 	}
3626 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
3627 		pmap_zero_page(m);
3628 	return (m);
3629 }
3630 
3631 /*
3632  * Return the specified range of pages from the given object.  For each
3633  * page offset within the range, if a page already exists within the object
3634  * at that offset and it is busy, then wait for it to change state.  If,
3635  * instead, the page doesn't exist, then allocate it.
3636  *
3637  * The caller must always specify an allocation class.
3638  *
3639  * allocation classes:
3640  *	VM_ALLOC_NORMAL		normal process request
3641  *	VM_ALLOC_SYSTEM		system *really* needs the pages
3642  *
3643  * The caller must always specify that the pages are to be busied and/or
3644  * wired.
3645  *
3646  * optional allocation flags:
3647  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
3648  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
3649  *	VM_ALLOC_NOWAIT		do not sleep
3650  *	VM_ALLOC_SBUSY		set page to sbusy state
3651  *	VM_ALLOC_WIRED		wire the pages
3652  *	VM_ALLOC_ZERO		zero and validate any invalid pages
3653  *
3654  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
3655  * may return a partial prefix of the requested range.
3656  */
3657 int
3658 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
3659     vm_page_t *ma, int count)
3660 {
3661 	vm_page_t m, mpred;
3662 	int pflags;
3663 	int i;
3664 	bool sleep;
3665 
3666 	VM_OBJECT_ASSERT_WLOCKED(object);
3667 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
3668 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
3669 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
3670 	    (allocflags & VM_ALLOC_WIRED) != 0,
3671 	    ("vm_page_grab_pages: the pages must be busied or wired"));
3672 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3673 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3674 	    ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch"));
3675 	if (count == 0)
3676 		return (0);
3677 	pflags = allocflags & ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK |
3678 	    VM_ALLOC_WAITFAIL | VM_ALLOC_IGN_SBUSY);
3679 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
3680 		pflags |= VM_ALLOC_WAITFAIL;
3681 	i = 0;
3682 retrylookup:
3683 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
3684 	if (m == NULL || m->pindex != pindex + i) {
3685 		mpred = m;
3686 		m = NULL;
3687 	} else
3688 		mpred = TAILQ_PREV(m, pglist, listq);
3689 	for (; i < count; i++) {
3690 		if (m != NULL) {
3691 			sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3692 			    vm_page_xbusied(m) : vm_page_busied(m);
3693 			if (sleep) {
3694 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3695 					break;
3696 				/*
3697 				 * Reference the page before unlocking and
3698 				 * sleeping so that the page daemon is less
3699 				 * likely to reclaim it.
3700 				 */
3701 				vm_page_aflag_set(m, PGA_REFERENCED);
3702 				vm_page_lock(m);
3703 				VM_OBJECT_WUNLOCK(object);
3704 				vm_page_busy_sleep(m, "grbmaw", (allocflags &
3705 				    VM_ALLOC_IGN_SBUSY) != 0);
3706 				VM_OBJECT_WLOCK(object);
3707 				goto retrylookup;
3708 			}
3709 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3710 				vm_page_lock(m);
3711 				vm_page_wire(m);
3712 				vm_page_unlock(m);
3713 			}
3714 			if ((allocflags & (VM_ALLOC_NOBUSY |
3715 			    VM_ALLOC_SBUSY)) == 0)
3716 				vm_page_xbusy(m);
3717 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3718 				vm_page_sbusy(m);
3719 		} else {
3720 			m = vm_page_alloc_after(object, pindex + i,
3721 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
3722 			if (m == NULL) {
3723 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3724 					break;
3725 				goto retrylookup;
3726 			}
3727 		}
3728 		if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) {
3729 			if ((m->flags & PG_ZERO) == 0)
3730 				pmap_zero_page(m);
3731 			m->valid = VM_PAGE_BITS_ALL;
3732 		}
3733 		ma[i] = mpred = m;
3734 		m = vm_page_next(m);
3735 	}
3736 	return (i);
3737 }
3738 
3739 /*
3740  * Mapping function for valid or dirty bits in a page.
3741  *
3742  * Inputs are required to range within a page.
3743  */
3744 vm_page_bits_t
3745 vm_page_bits(int base, int size)
3746 {
3747 	int first_bit;
3748 	int last_bit;
3749 
3750 	KASSERT(
3751 	    base + size <= PAGE_SIZE,
3752 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
3753 	);
3754 
3755 	if (size == 0)		/* handle degenerate case */
3756 		return (0);
3757 
3758 	first_bit = base >> DEV_BSHIFT;
3759 	last_bit = (base + size - 1) >> DEV_BSHIFT;
3760 
3761 	return (((vm_page_bits_t)2 << last_bit) -
3762 	    ((vm_page_bits_t)1 << first_bit));
3763 }
3764 
3765 /*
3766  *	vm_page_set_valid_range:
3767  *
3768  *	Sets portions of a page valid.  The arguments are expected
3769  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3770  *	of any partial chunks touched by the range.  The invalid portion of
3771  *	such chunks will be zeroed.
3772  *
3773  *	(base + size) must be less then or equal to PAGE_SIZE.
3774  */
3775 void
3776 vm_page_set_valid_range(vm_page_t m, int base, int size)
3777 {
3778 	int endoff, frag;
3779 
3780 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3781 	if (size == 0)	/* handle degenerate case */
3782 		return;
3783 
3784 	/*
3785 	 * If the base is not DEV_BSIZE aligned and the valid
3786 	 * bit is clear, we have to zero out a portion of the
3787 	 * first block.
3788 	 */
3789 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3790 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
3791 		pmap_zero_page_area(m, frag, base - frag);
3792 
3793 	/*
3794 	 * If the ending offset is not DEV_BSIZE aligned and the
3795 	 * valid bit is clear, we have to zero out a portion of
3796 	 * the last block.
3797 	 */
3798 	endoff = base + size;
3799 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3800 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
3801 		pmap_zero_page_area(m, endoff,
3802 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3803 
3804 	/*
3805 	 * Assert that no previously invalid block that is now being validated
3806 	 * is already dirty.
3807 	 */
3808 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
3809 	    ("vm_page_set_valid_range: page %p is dirty", m));
3810 
3811 	/*
3812 	 * Set valid bits inclusive of any overlap.
3813 	 */
3814 	m->valid |= vm_page_bits(base, size);
3815 }
3816 
3817 /*
3818  * Clear the given bits from the specified page's dirty field.
3819  */
3820 static __inline void
3821 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
3822 {
3823 	uintptr_t addr;
3824 #if PAGE_SIZE < 16384
3825 	int shift;
3826 #endif
3827 
3828 	/*
3829 	 * If the object is locked and the page is neither exclusive busy nor
3830 	 * write mapped, then the page's dirty field cannot possibly be
3831 	 * set by a concurrent pmap operation.
3832 	 */
3833 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3834 	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
3835 		m->dirty &= ~pagebits;
3836 	else {
3837 		/*
3838 		 * The pmap layer can call vm_page_dirty() without
3839 		 * holding a distinguished lock.  The combination of
3840 		 * the object's lock and an atomic operation suffice
3841 		 * to guarantee consistency of the page dirty field.
3842 		 *
3843 		 * For PAGE_SIZE == 32768 case, compiler already
3844 		 * properly aligns the dirty field, so no forcible
3845 		 * alignment is needed. Only require existence of
3846 		 * atomic_clear_64 when page size is 32768.
3847 		 */
3848 		addr = (uintptr_t)&m->dirty;
3849 #if PAGE_SIZE == 32768
3850 		atomic_clear_64((uint64_t *)addr, pagebits);
3851 #elif PAGE_SIZE == 16384
3852 		atomic_clear_32((uint32_t *)addr, pagebits);
3853 #else		/* PAGE_SIZE <= 8192 */
3854 		/*
3855 		 * Use a trick to perform a 32-bit atomic on the
3856 		 * containing aligned word, to not depend on the existence
3857 		 * of atomic_clear_{8, 16}.
3858 		 */
3859 		shift = addr & (sizeof(uint32_t) - 1);
3860 #if BYTE_ORDER == BIG_ENDIAN
3861 		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
3862 #else
3863 		shift *= NBBY;
3864 #endif
3865 		addr &= ~(sizeof(uint32_t) - 1);
3866 		atomic_clear_32((uint32_t *)addr, pagebits << shift);
3867 #endif		/* PAGE_SIZE */
3868 	}
3869 }
3870 
3871 /*
3872  *	vm_page_set_validclean:
3873  *
3874  *	Sets portions of a page valid and clean.  The arguments are expected
3875  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3876  *	of any partial chunks touched by the range.  The invalid portion of
3877  *	such chunks will be zero'd.
3878  *
3879  *	(base + size) must be less then or equal to PAGE_SIZE.
3880  */
3881 void
3882 vm_page_set_validclean(vm_page_t m, int base, int size)
3883 {
3884 	vm_page_bits_t oldvalid, pagebits;
3885 	int endoff, frag;
3886 
3887 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3888 	if (size == 0)	/* handle degenerate case */
3889 		return;
3890 
3891 	/*
3892 	 * If the base is not DEV_BSIZE aligned and the valid
3893 	 * bit is clear, we have to zero out a portion of the
3894 	 * first block.
3895 	 */
3896 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
3897 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
3898 		pmap_zero_page_area(m, frag, base - frag);
3899 
3900 	/*
3901 	 * If the ending offset is not DEV_BSIZE aligned and the
3902 	 * valid bit is clear, we have to zero out a portion of
3903 	 * the last block.
3904 	 */
3905 	endoff = base + size;
3906 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
3907 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
3908 		pmap_zero_page_area(m, endoff,
3909 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
3910 
3911 	/*
3912 	 * Set valid, clear dirty bits.  If validating the entire
3913 	 * page we can safely clear the pmap modify bit.  We also
3914 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
3915 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
3916 	 * be set again.
3917 	 *
3918 	 * We set valid bits inclusive of any overlap, but we can only
3919 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
3920 	 * the range.
3921 	 */
3922 	oldvalid = m->valid;
3923 	pagebits = vm_page_bits(base, size);
3924 	m->valid |= pagebits;
3925 #if 0	/* NOT YET */
3926 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
3927 		frag = DEV_BSIZE - frag;
3928 		base += frag;
3929 		size -= frag;
3930 		if (size < 0)
3931 			size = 0;
3932 	}
3933 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
3934 #endif
3935 	if (base == 0 && size == PAGE_SIZE) {
3936 		/*
3937 		 * The page can only be modified within the pmap if it is
3938 		 * mapped, and it can only be mapped if it was previously
3939 		 * fully valid.
3940 		 */
3941 		if (oldvalid == VM_PAGE_BITS_ALL)
3942 			/*
3943 			 * Perform the pmap_clear_modify() first.  Otherwise,
3944 			 * a concurrent pmap operation, such as
3945 			 * pmap_protect(), could clear a modification in the
3946 			 * pmap and set the dirty field on the page before
3947 			 * pmap_clear_modify() had begun and after the dirty
3948 			 * field was cleared here.
3949 			 */
3950 			pmap_clear_modify(m);
3951 		m->dirty = 0;
3952 		m->oflags &= ~VPO_NOSYNC;
3953 	} else if (oldvalid != VM_PAGE_BITS_ALL)
3954 		m->dirty &= ~pagebits;
3955 	else
3956 		vm_page_clear_dirty_mask(m, pagebits);
3957 }
3958 
3959 void
3960 vm_page_clear_dirty(vm_page_t m, int base, int size)
3961 {
3962 
3963 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
3964 }
3965 
3966 /*
3967  *	vm_page_set_invalid:
3968  *
3969  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
3970  *	valid and dirty bits for the effected areas are cleared.
3971  */
3972 void
3973 vm_page_set_invalid(vm_page_t m, int base, int size)
3974 {
3975 	vm_page_bits_t bits;
3976 	vm_object_t object;
3977 
3978 	object = m->object;
3979 	VM_OBJECT_ASSERT_WLOCKED(object);
3980 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
3981 	    size >= object->un_pager.vnp.vnp_size)
3982 		bits = VM_PAGE_BITS_ALL;
3983 	else
3984 		bits = vm_page_bits(base, size);
3985 	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
3986 	    bits != 0)
3987 		pmap_remove_all(m);
3988 	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
3989 	    !pmap_page_is_mapped(m),
3990 	    ("vm_page_set_invalid: page %p is mapped", m));
3991 	m->valid &= ~bits;
3992 	m->dirty &= ~bits;
3993 }
3994 
3995 /*
3996  * vm_page_zero_invalid()
3997  *
3998  *	The kernel assumes that the invalid portions of a page contain
3999  *	garbage, but such pages can be mapped into memory by user code.
4000  *	When this occurs, we must zero out the non-valid portions of the
4001  *	page so user code sees what it expects.
4002  *
4003  *	Pages are most often semi-valid when the end of a file is mapped
4004  *	into memory and the file's size is not page aligned.
4005  */
4006 void
4007 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
4008 {
4009 	int b;
4010 	int i;
4011 
4012 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4013 	/*
4014 	 * Scan the valid bits looking for invalid sections that
4015 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
4016 	 * valid bit may be set ) have already been zeroed by
4017 	 * vm_page_set_validclean().
4018 	 */
4019 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
4020 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
4021 		    (m->valid & ((vm_page_bits_t)1 << i))) {
4022 			if (i > b) {
4023 				pmap_zero_page_area(m,
4024 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
4025 			}
4026 			b = i + 1;
4027 		}
4028 	}
4029 
4030 	/*
4031 	 * setvalid is TRUE when we can safely set the zero'd areas
4032 	 * as being valid.  We can do this if there are no cache consistancy
4033 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
4034 	 */
4035 	if (setvalid)
4036 		m->valid = VM_PAGE_BITS_ALL;
4037 }
4038 
4039 /*
4040  *	vm_page_is_valid:
4041  *
4042  *	Is (partial) page valid?  Note that the case where size == 0
4043  *	will return FALSE in the degenerate case where the page is
4044  *	entirely invalid, and TRUE otherwise.
4045  */
4046 int
4047 vm_page_is_valid(vm_page_t m, int base, int size)
4048 {
4049 	vm_page_bits_t bits;
4050 
4051 	VM_OBJECT_ASSERT_LOCKED(m->object);
4052 	bits = vm_page_bits(base, size);
4053 	return (m->valid != 0 && (m->valid & bits) == bits);
4054 }
4055 
4056 /*
4057  * Returns true if all of the specified predicates are true for the entire
4058  * (super)page and false otherwise.
4059  */
4060 bool
4061 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
4062 {
4063 	vm_object_t object;
4064 	int i, npages;
4065 
4066 	object = m->object;
4067 	VM_OBJECT_ASSERT_LOCKED(object);
4068 	npages = atop(pagesizes[m->psind]);
4069 
4070 	/*
4071 	 * The physically contiguous pages that make up a superpage, i.e., a
4072 	 * page with a page size index ("psind") greater than zero, will
4073 	 * occupy adjacent entries in vm_page_array[].
4074 	 */
4075 	for (i = 0; i < npages; i++) {
4076 		/* Always test object consistency, including "skip_m". */
4077 		if (m[i].object != object)
4078 			return (false);
4079 		if (&m[i] == skip_m)
4080 			continue;
4081 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
4082 			return (false);
4083 		if ((flags & PS_ALL_DIRTY) != 0) {
4084 			/*
4085 			 * Calling vm_page_test_dirty() or pmap_is_modified()
4086 			 * might stop this case from spuriously returning
4087 			 * "false".  However, that would require a write lock
4088 			 * on the object containing "m[i]".
4089 			 */
4090 			if (m[i].dirty != VM_PAGE_BITS_ALL)
4091 				return (false);
4092 		}
4093 		if ((flags & PS_ALL_VALID) != 0 &&
4094 		    m[i].valid != VM_PAGE_BITS_ALL)
4095 			return (false);
4096 	}
4097 	return (true);
4098 }
4099 
4100 /*
4101  * Set the page's dirty bits if the page is modified.
4102  */
4103 void
4104 vm_page_test_dirty(vm_page_t m)
4105 {
4106 
4107 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4108 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
4109 		vm_page_dirty(m);
4110 }
4111 
4112 void
4113 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
4114 {
4115 
4116 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
4117 }
4118 
4119 void
4120 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
4121 {
4122 
4123 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
4124 }
4125 
4126 int
4127 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
4128 {
4129 
4130 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
4131 }
4132 
4133 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
4134 void
4135 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
4136 {
4137 
4138 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
4139 }
4140 
4141 void
4142 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
4143 {
4144 
4145 	mtx_assert_(vm_page_lockptr(m), a, file, line);
4146 }
4147 #endif
4148 
4149 #ifdef INVARIANTS
4150 void
4151 vm_page_object_lock_assert(vm_page_t m)
4152 {
4153 
4154 	/*
4155 	 * Certain of the page's fields may only be modified by the
4156 	 * holder of the containing object's lock or the exclusive busy.
4157 	 * holder.  Unfortunately, the holder of the write busy is
4158 	 * not recorded, and thus cannot be checked here.
4159 	 */
4160 	if (m->object != NULL && !vm_page_xbusied(m))
4161 		VM_OBJECT_ASSERT_WLOCKED(m->object);
4162 }
4163 
4164 void
4165 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
4166 {
4167 
4168 	if ((bits & PGA_WRITEABLE) == 0)
4169 		return;
4170 
4171 	/*
4172 	 * The PGA_WRITEABLE flag can only be set if the page is
4173 	 * managed, is exclusively busied or the object is locked.
4174 	 * Currently, this flag is only set by pmap_enter().
4175 	 */
4176 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4177 	    ("PGA_WRITEABLE on unmanaged page"));
4178 	if (!vm_page_xbusied(m))
4179 		VM_OBJECT_ASSERT_LOCKED(m->object);
4180 }
4181 #endif
4182 
4183 #include "opt_ddb.h"
4184 #ifdef DDB
4185 #include <sys/kernel.h>
4186 
4187 #include <ddb/ddb.h>
4188 
4189 DB_SHOW_COMMAND(page, vm_page_print_page_info)
4190 {
4191 
4192 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
4193 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
4194 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
4195 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
4196 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
4197 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
4198 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
4199 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
4200 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
4201 }
4202 
4203 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
4204 {
4205 	int dom;
4206 
4207 	db_printf("pq_free %d\n", vm_free_count());
4208 	for (dom = 0; dom < vm_ndomains; dom++) {
4209 		db_printf(
4210     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
4211 		    dom,
4212 		    vm_dom[dom].vmd_page_count,
4213 		    vm_dom[dom].vmd_free_count,
4214 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
4215 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
4216 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
4217 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
4218 	}
4219 }
4220 
4221 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
4222 {
4223 	vm_page_t m;
4224 	boolean_t phys;
4225 
4226 	if (!have_addr) {
4227 		db_printf("show pginfo addr\n");
4228 		return;
4229 	}
4230 
4231 	phys = strchr(modif, 'p') != NULL;
4232 	if (phys)
4233 		m = PHYS_TO_VM_PAGE(addr);
4234 	else
4235 		m = (vm_page_t)addr;
4236 	db_printf(
4237     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
4238     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
4239 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
4240 	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
4241 	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
4242 }
4243 #endif /* DDB */
4244