1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * The Mach Operating System project at Carnegie-Mellon University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 36 */ 37 38 /*- 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 65 /* 66 * Resident memory management module. 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_vm.h" 73 74 #include <sys/param.h> 75 #include <sys/systm.h> 76 #include <sys/lock.h> 77 #include <sys/domainset.h> 78 #include <sys/kernel.h> 79 #include <sys/limits.h> 80 #include <sys/linker.h> 81 #include <sys/malloc.h> 82 #include <sys/mman.h> 83 #include <sys/msgbuf.h> 84 #include <sys/mutex.h> 85 #include <sys/proc.h> 86 #include <sys/rwlock.h> 87 #include <sys/sbuf.h> 88 #include <sys/sched.h> 89 #include <sys/smp.h> 90 #include <sys/sysctl.h> 91 #include <sys/vmmeter.h> 92 #include <sys/vnode.h> 93 94 #include <vm/vm.h> 95 #include <vm/pmap.h> 96 #include <vm/vm_param.h> 97 #include <vm/vm_domainset.h> 98 #include <vm/vm_kern.h> 99 #include <vm/vm_map.h> 100 #include <vm/vm_object.h> 101 #include <vm/vm_page.h> 102 #include <vm/vm_pageout.h> 103 #include <vm/vm_phys.h> 104 #include <vm/vm_pagequeue.h> 105 #include <vm/vm_pager.h> 106 #include <vm/vm_radix.h> 107 #include <vm/vm_reserv.h> 108 #include <vm/vm_extern.h> 109 #include <vm/uma.h> 110 #include <vm/uma_int.h> 111 112 #include <machine/md_var.h> 113 114 extern int uma_startup_count(int); 115 extern void uma_startup(void *, int); 116 extern int vmem_startup_count(void); 117 118 struct vm_domain vm_dom[MAXMEMDOM]; 119 120 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]); 121 122 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT]; 123 124 struct mtx_padalign __exclusive_cache_line vm_domainset_lock; 125 /* The following fields are protected by the domainset lock. */ 126 domainset_t __exclusive_cache_line vm_min_domains; 127 domainset_t __exclusive_cache_line vm_severe_domains; 128 static int vm_min_waiters; 129 static int vm_severe_waiters; 130 static int vm_pageproc_waiters; 131 132 /* 133 * bogus page -- for I/O to/from partially complete buffers, 134 * or for paging into sparsely invalid regions. 135 */ 136 vm_page_t bogus_page; 137 138 vm_page_t vm_page_array; 139 long vm_page_array_size; 140 long first_page; 141 142 static int boot_pages; 143 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 144 &boot_pages, 0, 145 "number of pages allocated for bootstrapping the VM system"); 146 147 static int pa_tryrelock_restart; 148 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD, 149 &pa_tryrelock_restart, 0, "Number of tryrelock restarts"); 150 151 static TAILQ_HEAD(, vm_page) blacklist_head; 152 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); 153 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | 154 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); 155 156 static uma_zone_t fakepg_zone; 157 158 static void vm_page_alloc_check(vm_page_t m); 159 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 160 static void vm_page_dequeue_complete(vm_page_t m); 161 static void vm_page_enqueue(vm_page_t m, uint8_t queue); 162 static void vm_page_init(void *dummy); 163 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 164 vm_pindex_t pindex, vm_page_t mpred); 165 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 166 vm_page_t mpred); 167 static int vm_page_reclaim_run(int req_class, int domain, u_long npages, 168 vm_page_t m_run, vm_paddr_t high); 169 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, 170 int req); 171 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain, 172 int flags); 173 static void vm_page_zone_release(void *arg, void **store, int cnt); 174 175 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL); 176 177 static void 178 vm_page_init(void *dummy) 179 { 180 181 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 182 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 183 bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | 184 VM_ALLOC_NORMAL | VM_ALLOC_WIRED); 185 } 186 187 /* 188 * The cache page zone is initialized later since we need to be able to allocate 189 * pages before UMA is fully initialized. 190 */ 191 static void 192 vm_page_init_cache_zones(void *dummy __unused) 193 { 194 struct vm_domain *vmd; 195 struct vm_pgcache *pgcache; 196 int domain, pool; 197 198 for (domain = 0; domain < vm_ndomains; domain++) { 199 vmd = VM_DOMAIN(domain); 200 201 /* 202 * Don't allow the page caches to take up more than .25% of 203 * memory. 204 */ 205 if (vmd->vmd_page_count / 400 < 256 * mp_ncpus * VM_NFREEPOOL) 206 continue; 207 for (pool = 0; pool < VM_NFREEPOOL; pool++) { 208 pgcache = &vmd->vmd_pgcache[pool]; 209 pgcache->domain = domain; 210 pgcache->pool = pool; 211 pgcache->zone = uma_zcache_create("vm pgcache", 212 sizeof(struct vm_page), NULL, NULL, NULL, NULL, 213 vm_page_zone_import, vm_page_zone_release, pgcache, 214 UMA_ZONE_MAXBUCKET | UMA_ZONE_VM); 215 (void)uma_zone_set_maxcache(pgcache->zone, 0); 216 } 217 } 218 } 219 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL); 220 221 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 222 #if PAGE_SIZE == 32768 223 #ifdef CTASSERT 224 CTASSERT(sizeof(u_long) >= 8); 225 #endif 226 #endif 227 228 /* 229 * Try to acquire a physical address lock while a pmap is locked. If we 230 * fail to trylock we unlock and lock the pmap directly and cache the 231 * locked pa in *locked. The caller should then restart their loop in case 232 * the virtual to physical mapping has changed. 233 */ 234 int 235 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked) 236 { 237 vm_paddr_t lockpa; 238 239 lockpa = *locked; 240 *locked = pa; 241 if (lockpa) { 242 PA_LOCK_ASSERT(lockpa, MA_OWNED); 243 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa)) 244 return (0); 245 PA_UNLOCK(lockpa); 246 } 247 if (PA_TRYLOCK(pa)) 248 return (0); 249 PMAP_UNLOCK(pmap); 250 atomic_add_int(&pa_tryrelock_restart, 1); 251 PA_LOCK(pa); 252 PMAP_LOCK(pmap); 253 return (EAGAIN); 254 } 255 256 /* 257 * vm_set_page_size: 258 * 259 * Sets the page size, perhaps based upon the memory 260 * size. Must be called before any use of page-size 261 * dependent functions. 262 */ 263 void 264 vm_set_page_size(void) 265 { 266 if (vm_cnt.v_page_size == 0) 267 vm_cnt.v_page_size = PAGE_SIZE; 268 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 269 panic("vm_set_page_size: page size not a power of two"); 270 } 271 272 /* 273 * vm_page_blacklist_next: 274 * 275 * Find the next entry in the provided string of blacklist 276 * addresses. Entries are separated by space, comma, or newline. 277 * If an invalid integer is encountered then the rest of the 278 * string is skipped. Updates the list pointer to the next 279 * character, or NULL if the string is exhausted or invalid. 280 */ 281 static vm_paddr_t 282 vm_page_blacklist_next(char **list, char *end) 283 { 284 vm_paddr_t bad; 285 char *cp, *pos; 286 287 if (list == NULL || *list == NULL) 288 return (0); 289 if (**list =='\0') { 290 *list = NULL; 291 return (0); 292 } 293 294 /* 295 * If there's no end pointer then the buffer is coming from 296 * the kenv and we know it's null-terminated. 297 */ 298 if (end == NULL) 299 end = *list + strlen(*list); 300 301 /* Ensure that strtoq() won't walk off the end */ 302 if (*end != '\0') { 303 if (*end == '\n' || *end == ' ' || *end == ',') 304 *end = '\0'; 305 else { 306 printf("Blacklist not terminated, skipping\n"); 307 *list = NULL; 308 return (0); 309 } 310 } 311 312 for (pos = *list; *pos != '\0'; pos = cp) { 313 bad = strtoq(pos, &cp, 0); 314 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { 315 if (bad == 0) { 316 if (++cp < end) 317 continue; 318 else 319 break; 320 } 321 } else 322 break; 323 if (*cp == '\0' || ++cp >= end) 324 *list = NULL; 325 else 326 *list = cp; 327 return (trunc_page(bad)); 328 } 329 printf("Garbage in RAM blacklist, skipping\n"); 330 *list = NULL; 331 return (0); 332 } 333 334 bool 335 vm_page_blacklist_add(vm_paddr_t pa, bool verbose) 336 { 337 struct vm_domain *vmd; 338 vm_page_t m; 339 int ret; 340 341 m = vm_phys_paddr_to_vm_page(pa); 342 if (m == NULL) 343 return (true); /* page does not exist, no failure */ 344 345 vmd = vm_pagequeue_domain(m); 346 vm_domain_free_lock(vmd); 347 ret = vm_phys_unfree_page(m); 348 vm_domain_free_unlock(vmd); 349 if (ret != 0) { 350 vm_domain_freecnt_inc(vmd, -1); 351 TAILQ_INSERT_TAIL(&blacklist_head, m, listq); 352 if (verbose) 353 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa); 354 } 355 return (ret); 356 } 357 358 /* 359 * vm_page_blacklist_check: 360 * 361 * Iterate through the provided string of blacklist addresses, pulling 362 * each entry out of the physical allocator free list and putting it 363 * onto a list for reporting via the vm.page_blacklist sysctl. 364 */ 365 static void 366 vm_page_blacklist_check(char *list, char *end) 367 { 368 vm_paddr_t pa; 369 char *next; 370 371 next = list; 372 while (next != NULL) { 373 if ((pa = vm_page_blacklist_next(&next, end)) == 0) 374 continue; 375 vm_page_blacklist_add(pa, bootverbose); 376 } 377 } 378 379 /* 380 * vm_page_blacklist_load: 381 * 382 * Search for a special module named "ram_blacklist". It'll be a 383 * plain text file provided by the user via the loader directive 384 * of the same name. 385 */ 386 static void 387 vm_page_blacklist_load(char **list, char **end) 388 { 389 void *mod; 390 u_char *ptr; 391 u_int len; 392 393 mod = NULL; 394 ptr = NULL; 395 396 mod = preload_search_by_type("ram_blacklist"); 397 if (mod != NULL) { 398 ptr = preload_fetch_addr(mod); 399 len = preload_fetch_size(mod); 400 } 401 *list = ptr; 402 if (ptr != NULL) 403 *end = ptr + len; 404 else 405 *end = NULL; 406 return; 407 } 408 409 static int 410 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) 411 { 412 vm_page_t m; 413 struct sbuf sbuf; 414 int error, first; 415 416 first = 1; 417 error = sysctl_wire_old_buffer(req, 0); 418 if (error != 0) 419 return (error); 420 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 421 TAILQ_FOREACH(m, &blacklist_head, listq) { 422 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", 423 (uintmax_t)m->phys_addr); 424 first = 0; 425 } 426 error = sbuf_finish(&sbuf); 427 sbuf_delete(&sbuf); 428 return (error); 429 } 430 431 /* 432 * Initialize a dummy page for use in scans of the specified paging queue. 433 * In principle, this function only needs to set the flag PG_MARKER. 434 * Nonetheless, it write busies the page as a safety precaution. 435 */ 436 static void 437 vm_page_init_marker(vm_page_t marker, int queue, uint8_t aflags) 438 { 439 440 bzero(marker, sizeof(*marker)); 441 marker->flags = PG_MARKER; 442 marker->aflags = aflags; 443 marker->busy_lock = VPB_SINGLE_EXCLUSIVER; 444 marker->queue = queue; 445 } 446 447 static void 448 vm_page_domain_init(int domain) 449 { 450 struct vm_domain *vmd; 451 struct vm_pagequeue *pq; 452 int i; 453 454 vmd = VM_DOMAIN(domain); 455 bzero(vmd, sizeof(*vmd)); 456 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 457 "vm inactive pagequeue"; 458 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 459 "vm active pagequeue"; 460 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) = 461 "vm laundry pagequeue"; 462 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) = 463 "vm unswappable pagequeue"; 464 vmd->vmd_domain = domain; 465 vmd->vmd_page_count = 0; 466 vmd->vmd_free_count = 0; 467 vmd->vmd_segs = 0; 468 vmd->vmd_oom = FALSE; 469 for (i = 0; i < PQ_COUNT; i++) { 470 pq = &vmd->vmd_pagequeues[i]; 471 TAILQ_INIT(&pq->pq_pl); 472 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 473 MTX_DEF | MTX_DUPOK); 474 pq->pq_pdpages = 0; 475 vm_page_init_marker(&vmd->vmd_markers[i], i, 0); 476 } 477 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF); 478 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF); 479 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain); 480 481 /* 482 * inacthead is used to provide FIFO ordering for LRU-bypassing 483 * insertions. 484 */ 485 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED); 486 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl, 487 &vmd->vmd_inacthead, plinks.q); 488 489 /* 490 * The clock pages are used to implement active queue scanning without 491 * requeues. Scans start at clock[0], which is advanced after the scan 492 * ends. When the two clock hands meet, they are reset and scanning 493 * resumes from the head of the queue. 494 */ 495 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED); 496 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED); 497 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 498 &vmd->vmd_clock[0], plinks.q); 499 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 500 &vmd->vmd_clock[1], plinks.q); 501 } 502 503 /* 504 * Initialize a physical page in preparation for adding it to the free 505 * lists. 506 */ 507 static void 508 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind) 509 { 510 511 m->object = NULL; 512 m->wire_count = 0; 513 m->busy_lock = VPB_UNBUSIED; 514 m->flags = m->aflags = 0; 515 m->phys_addr = pa; 516 m->queue = PQ_NONE; 517 m->psind = 0; 518 m->segind = segind; 519 m->order = VM_NFREEORDER; 520 m->pool = VM_FREEPOOL_DEFAULT; 521 m->valid = m->dirty = 0; 522 pmap_page_init(m); 523 } 524 525 #ifndef PMAP_HAS_PAGE_ARRAY 526 static vm_paddr_t 527 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range) 528 { 529 vm_paddr_t new_end; 530 531 /* 532 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 533 * However, because this page is allocated from KVM, out-of-bounds 534 * accesses using the direct map will not be trapped. 535 */ 536 *vaddr += PAGE_SIZE; 537 538 /* 539 * Allocate physical memory for the page structures, and map it. 540 */ 541 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 542 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end, 543 VM_PROT_READ | VM_PROT_WRITE); 544 vm_page_array_size = page_range; 545 546 return (new_end); 547 } 548 #endif 549 550 /* 551 * vm_page_startup: 552 * 553 * Initializes the resident memory module. Allocates physical memory for 554 * bootstrapping UMA and some data structures that are used to manage 555 * physical pages. Initializes these structures, and populates the free 556 * page queues. 557 */ 558 vm_offset_t 559 vm_page_startup(vm_offset_t vaddr) 560 { 561 struct vm_phys_seg *seg; 562 vm_page_t m; 563 char *list, *listend; 564 vm_offset_t mapped; 565 vm_paddr_t end, high_avail, low_avail, new_end, page_range, size; 566 vm_paddr_t last_pa, pa; 567 u_long pagecount; 568 int biggestone, i, segind; 569 #ifdef WITNESS 570 int witness_size; 571 #endif 572 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 573 long ii; 574 #endif 575 576 vaddr = round_page(vaddr); 577 578 vm_phys_early_startup(); 579 biggestone = vm_phys_avail_largest(); 580 end = phys_avail[biggestone+1]; 581 582 /* 583 * Initialize the page and queue locks. 584 */ 585 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF); 586 for (i = 0; i < PA_LOCK_COUNT; i++) 587 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 588 for (i = 0; i < vm_ndomains; i++) 589 vm_page_domain_init(i); 590 591 /* 592 * Allocate memory for use when boot strapping the kernel memory 593 * allocator. Tell UMA how many zones we are going to create 594 * before going fully functional. UMA will add its zones. 595 * 596 * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP, 597 * KMAP ENTRY, MAP ENTRY, VMSPACE. 598 */ 599 boot_pages = uma_startup_count(8); 600 601 #ifndef UMA_MD_SMALL_ALLOC 602 /* vmem_startup() calls uma_prealloc(). */ 603 boot_pages += vmem_startup_count(); 604 /* vm_map_startup() calls uma_prealloc(). */ 605 boot_pages += howmany(MAX_KMAP, 606 UMA_SLAB_SPACE / sizeof(struct vm_map)); 607 608 /* 609 * Before going fully functional kmem_init() does allocation 610 * from "KMAP ENTRY" and vmem_create() does allocation from "vmem". 611 */ 612 boot_pages += 2; 613 #endif 614 /* 615 * CTFLAG_RDTUN doesn't work during the early boot process, so we must 616 * manually fetch the value. 617 */ 618 TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages); 619 new_end = end - (boot_pages * UMA_SLAB_SIZE); 620 new_end = trunc_page(new_end); 621 mapped = pmap_map(&vaddr, new_end, end, 622 VM_PROT_READ | VM_PROT_WRITE); 623 bzero((void *)mapped, end - new_end); 624 uma_startup((void *)mapped, boot_pages); 625 626 #ifdef WITNESS 627 witness_size = round_page(witness_startup_count()); 628 new_end -= witness_size; 629 mapped = pmap_map(&vaddr, new_end, new_end + witness_size, 630 VM_PROT_READ | VM_PROT_WRITE); 631 bzero((void *)mapped, witness_size); 632 witness_startup((void *)mapped); 633 #endif 634 635 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 636 defined(__i386__) || defined(__mips__) || defined(__riscv) 637 /* 638 * Allocate a bitmap to indicate that a random physical page 639 * needs to be included in a minidump. 640 * 641 * The amd64 port needs this to indicate which direct map pages 642 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 643 * 644 * However, i386 still needs this workspace internally within the 645 * minidump code. In theory, they are not needed on i386, but are 646 * included should the sf_buf code decide to use them. 647 */ 648 last_pa = 0; 649 for (i = 0; dump_avail[i + 1] != 0; i += 2) 650 if (dump_avail[i + 1] > last_pa) 651 last_pa = dump_avail[i + 1]; 652 page_range = last_pa / PAGE_SIZE; 653 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 654 new_end -= vm_page_dump_size; 655 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 656 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 657 bzero((void *)vm_page_dump, vm_page_dump_size); 658 #else 659 (void)last_pa; 660 #endif 661 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 662 defined(__riscv) 663 /* 664 * Include the UMA bootstrap pages, witness pages and vm_page_dump 665 * in a crash dump. When pmap_map() uses the direct map, they are 666 * not automatically included. 667 */ 668 for (pa = new_end; pa < end; pa += PAGE_SIZE) 669 dump_add_page(pa); 670 #endif 671 phys_avail[biggestone + 1] = new_end; 672 #ifdef __amd64__ 673 /* 674 * Request that the physical pages underlying the message buffer be 675 * included in a crash dump. Since the message buffer is accessed 676 * through the direct map, they are not automatically included. 677 */ 678 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 679 last_pa = pa + round_page(msgbufsize); 680 while (pa < last_pa) { 681 dump_add_page(pa); 682 pa += PAGE_SIZE; 683 } 684 #endif 685 /* 686 * Compute the number of pages of memory that will be available for 687 * use, taking into account the overhead of a page structure per page. 688 * In other words, solve 689 * "available physical memory" - round_page(page_range * 690 * sizeof(struct vm_page)) = page_range * PAGE_SIZE 691 * for page_range. 692 */ 693 low_avail = phys_avail[0]; 694 high_avail = phys_avail[1]; 695 for (i = 0; i < vm_phys_nsegs; i++) { 696 if (vm_phys_segs[i].start < low_avail) 697 low_avail = vm_phys_segs[i].start; 698 if (vm_phys_segs[i].end > high_avail) 699 high_avail = vm_phys_segs[i].end; 700 } 701 /* Skip the first chunk. It is already accounted for. */ 702 for (i = 2; phys_avail[i + 1] != 0; i += 2) { 703 if (phys_avail[i] < low_avail) 704 low_avail = phys_avail[i]; 705 if (phys_avail[i + 1] > high_avail) 706 high_avail = phys_avail[i + 1]; 707 } 708 first_page = low_avail / PAGE_SIZE; 709 #ifdef VM_PHYSSEG_SPARSE 710 size = 0; 711 for (i = 0; i < vm_phys_nsegs; i++) 712 size += vm_phys_segs[i].end - vm_phys_segs[i].start; 713 for (i = 0; phys_avail[i + 1] != 0; i += 2) 714 size += phys_avail[i + 1] - phys_avail[i]; 715 #elif defined(VM_PHYSSEG_DENSE) 716 size = high_avail - low_avail; 717 #else 718 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 719 #endif 720 721 #ifdef PMAP_HAS_PAGE_ARRAY 722 pmap_page_array_startup(size / PAGE_SIZE); 723 biggestone = vm_phys_avail_largest(); 724 end = new_end = phys_avail[biggestone + 1]; 725 #else 726 #ifdef VM_PHYSSEG_DENSE 727 /* 728 * In the VM_PHYSSEG_DENSE case, the number of pages can account for 729 * the overhead of a page structure per page only if vm_page_array is 730 * allocated from the last physical memory chunk. Otherwise, we must 731 * allocate page structures representing the physical memory 732 * underlying vm_page_array, even though they will not be used. 733 */ 734 if (new_end != high_avail) 735 page_range = size / PAGE_SIZE; 736 else 737 #endif 738 { 739 page_range = size / (PAGE_SIZE + sizeof(struct vm_page)); 740 741 /* 742 * If the partial bytes remaining are large enough for 743 * a page (PAGE_SIZE) without a corresponding 744 * 'struct vm_page', then new_end will contain an 745 * extra page after subtracting the length of the VM 746 * page array. Compensate by subtracting an extra 747 * page from new_end. 748 */ 749 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) { 750 if (new_end == high_avail) 751 high_avail -= PAGE_SIZE; 752 new_end -= PAGE_SIZE; 753 } 754 } 755 end = new_end; 756 new_end = vm_page_array_alloc(&vaddr, end, page_range); 757 #endif 758 759 #if VM_NRESERVLEVEL > 0 760 /* 761 * Allocate physical memory for the reservation management system's 762 * data structures, and map it. 763 */ 764 new_end = vm_reserv_startup(&vaddr, new_end); 765 #endif 766 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 767 defined(__riscv) 768 /* 769 * Include vm_page_array and vm_reserv_array in a crash dump. 770 */ 771 for (pa = new_end; pa < end; pa += PAGE_SIZE) 772 dump_add_page(pa); 773 #endif 774 phys_avail[biggestone + 1] = new_end; 775 776 /* 777 * Add physical memory segments corresponding to the available 778 * physical pages. 779 */ 780 for (i = 0; phys_avail[i + 1] != 0; i += 2) 781 if (vm_phys_avail_size(i) != 0) 782 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 783 784 /* 785 * Initialize the physical memory allocator. 786 */ 787 vm_phys_init(); 788 789 /* 790 * Initialize the page structures and add every available page to the 791 * physical memory allocator's free lists. 792 */ 793 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 794 for (ii = 0; ii < vm_page_array_size; ii++) { 795 m = &vm_page_array[ii]; 796 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0); 797 m->flags = PG_FICTITIOUS; 798 } 799 #endif 800 vm_cnt.v_page_count = 0; 801 for (segind = 0; segind < vm_phys_nsegs; segind++) { 802 seg = &vm_phys_segs[segind]; 803 for (m = seg->first_page, pa = seg->start; pa < seg->end; 804 m++, pa += PAGE_SIZE) 805 vm_page_init_page(m, pa, segind); 806 807 /* 808 * Add the segment to the free lists only if it is covered by 809 * one of the ranges in phys_avail. Because we've added the 810 * ranges to the vm_phys_segs array, we can assume that each 811 * segment is either entirely contained in one of the ranges, 812 * or doesn't overlap any of them. 813 */ 814 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 815 struct vm_domain *vmd; 816 817 if (seg->start < phys_avail[i] || 818 seg->end > phys_avail[i + 1]) 819 continue; 820 821 m = seg->first_page; 822 pagecount = (u_long)atop(seg->end - seg->start); 823 824 vmd = VM_DOMAIN(seg->domain); 825 vm_domain_free_lock(vmd); 826 vm_phys_enqueue_contig(m, pagecount); 827 vm_domain_free_unlock(vmd); 828 vm_domain_freecnt_inc(vmd, pagecount); 829 vm_cnt.v_page_count += (u_int)pagecount; 830 831 vmd = VM_DOMAIN(seg->domain); 832 vmd->vmd_page_count += (u_int)pagecount; 833 vmd->vmd_segs |= 1UL << m->segind; 834 break; 835 } 836 } 837 838 /* 839 * Remove blacklisted pages from the physical memory allocator. 840 */ 841 TAILQ_INIT(&blacklist_head); 842 vm_page_blacklist_load(&list, &listend); 843 vm_page_blacklist_check(list, listend); 844 845 list = kern_getenv("vm.blacklist"); 846 vm_page_blacklist_check(list, NULL); 847 848 freeenv(list); 849 #if VM_NRESERVLEVEL > 0 850 /* 851 * Initialize the reservation management system. 852 */ 853 vm_reserv_init(); 854 #endif 855 856 return (vaddr); 857 } 858 859 void 860 vm_page_reference(vm_page_t m) 861 { 862 863 vm_page_aflag_set(m, PGA_REFERENCED); 864 } 865 866 /* 867 * vm_page_busy_downgrade: 868 * 869 * Downgrade an exclusive busy page into a single shared busy page. 870 */ 871 void 872 vm_page_busy_downgrade(vm_page_t m) 873 { 874 u_int x; 875 bool locked; 876 877 vm_page_assert_xbusied(m); 878 locked = mtx_owned(vm_page_lockptr(m)); 879 880 for (;;) { 881 x = m->busy_lock; 882 x &= VPB_BIT_WAITERS; 883 if (x != 0 && !locked) 884 vm_page_lock(m); 885 if (atomic_cmpset_rel_int(&m->busy_lock, 886 VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1))) 887 break; 888 if (x != 0 && !locked) 889 vm_page_unlock(m); 890 } 891 if (x != 0) { 892 wakeup(m); 893 if (!locked) 894 vm_page_unlock(m); 895 } 896 } 897 898 /* 899 * vm_page_sbusied: 900 * 901 * Return a positive value if the page is shared busied, 0 otherwise. 902 */ 903 int 904 vm_page_sbusied(vm_page_t m) 905 { 906 u_int x; 907 908 x = m->busy_lock; 909 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 910 } 911 912 /* 913 * vm_page_sunbusy: 914 * 915 * Shared unbusy a page. 916 */ 917 void 918 vm_page_sunbusy(vm_page_t m) 919 { 920 u_int x; 921 922 vm_page_lock_assert(m, MA_NOTOWNED); 923 vm_page_assert_sbusied(m); 924 925 for (;;) { 926 x = m->busy_lock; 927 if (VPB_SHARERS(x) > 1) { 928 if (atomic_cmpset_int(&m->busy_lock, x, 929 x - VPB_ONE_SHARER)) 930 break; 931 continue; 932 } 933 if ((x & VPB_BIT_WAITERS) == 0) { 934 KASSERT(x == VPB_SHARERS_WORD(1), 935 ("vm_page_sunbusy: invalid lock state")); 936 if (atomic_cmpset_int(&m->busy_lock, 937 VPB_SHARERS_WORD(1), VPB_UNBUSIED)) 938 break; 939 continue; 940 } 941 KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS), 942 ("vm_page_sunbusy: invalid lock state for waiters")); 943 944 vm_page_lock(m); 945 if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) { 946 vm_page_unlock(m); 947 continue; 948 } 949 wakeup(m); 950 vm_page_unlock(m); 951 break; 952 } 953 } 954 955 /* 956 * vm_page_busy_sleep: 957 * 958 * Sleep and release the page lock, using the page pointer as wchan. 959 * This is used to implement the hard-path of busying mechanism. 960 * 961 * The given page must be locked. 962 * 963 * If nonshared is true, sleep only if the page is xbusy. 964 */ 965 void 966 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared) 967 { 968 u_int x; 969 970 vm_page_assert_locked(m); 971 972 x = m->busy_lock; 973 if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) || 974 ((x & VPB_BIT_WAITERS) == 0 && 975 !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) { 976 vm_page_unlock(m); 977 return; 978 } 979 msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0); 980 } 981 982 /* 983 * vm_page_trysbusy: 984 * 985 * Try to shared busy a page. 986 * If the operation succeeds 1 is returned otherwise 0. 987 * The operation never sleeps. 988 */ 989 int 990 vm_page_trysbusy(vm_page_t m) 991 { 992 u_int x; 993 994 for (;;) { 995 x = m->busy_lock; 996 if ((x & VPB_BIT_SHARED) == 0) 997 return (0); 998 if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER)) 999 return (1); 1000 } 1001 } 1002 1003 static void 1004 vm_page_xunbusy_locked(vm_page_t m) 1005 { 1006 1007 vm_page_assert_xbusied(m); 1008 vm_page_assert_locked(m); 1009 1010 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 1011 /* There is a waiter, do wakeup() instead of vm_page_flash(). */ 1012 wakeup(m); 1013 } 1014 1015 void 1016 vm_page_xunbusy_maybelocked(vm_page_t m) 1017 { 1018 bool lockacq; 1019 1020 vm_page_assert_xbusied(m); 1021 1022 /* 1023 * Fast path for unbusy. If it succeeds, we know that there 1024 * are no waiters, so we do not need a wakeup. 1025 */ 1026 if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER, 1027 VPB_UNBUSIED)) 1028 return; 1029 1030 lockacq = !mtx_owned(vm_page_lockptr(m)); 1031 if (lockacq) 1032 vm_page_lock(m); 1033 vm_page_xunbusy_locked(m); 1034 if (lockacq) 1035 vm_page_unlock(m); 1036 } 1037 1038 /* 1039 * vm_page_xunbusy_hard: 1040 * 1041 * Called after the first try the exclusive unbusy of a page failed. 1042 * It is assumed that the waiters bit is on. 1043 */ 1044 void 1045 vm_page_xunbusy_hard(vm_page_t m) 1046 { 1047 1048 vm_page_assert_xbusied(m); 1049 1050 vm_page_lock(m); 1051 vm_page_xunbusy_locked(m); 1052 vm_page_unlock(m); 1053 } 1054 1055 /* 1056 * vm_page_flash: 1057 * 1058 * Wakeup anyone waiting for the page. 1059 * The ownership bits do not change. 1060 * 1061 * The given page must be locked. 1062 */ 1063 void 1064 vm_page_flash(vm_page_t m) 1065 { 1066 u_int x; 1067 1068 vm_page_lock_assert(m, MA_OWNED); 1069 1070 for (;;) { 1071 x = m->busy_lock; 1072 if ((x & VPB_BIT_WAITERS) == 0) 1073 return; 1074 if (atomic_cmpset_int(&m->busy_lock, x, 1075 x & (~VPB_BIT_WAITERS))) 1076 break; 1077 } 1078 wakeup(m); 1079 } 1080 1081 /* 1082 * Avoid releasing and reacquiring the same page lock. 1083 */ 1084 void 1085 vm_page_change_lock(vm_page_t m, struct mtx **mtx) 1086 { 1087 struct mtx *mtx1; 1088 1089 mtx1 = vm_page_lockptr(m); 1090 if (*mtx == mtx1) 1091 return; 1092 if (*mtx != NULL) 1093 mtx_unlock(*mtx); 1094 *mtx = mtx1; 1095 mtx_lock(mtx1); 1096 } 1097 1098 /* 1099 * vm_page_unhold_pages: 1100 * 1101 * Unhold each of the pages that is referenced by the given array. 1102 */ 1103 void 1104 vm_page_unhold_pages(vm_page_t *ma, int count) 1105 { 1106 struct mtx *mtx; 1107 1108 mtx = NULL; 1109 for (; count != 0; count--) { 1110 vm_page_change_lock(*ma, &mtx); 1111 if (vm_page_unwire(*ma, PQ_ACTIVE) && (*ma)->object == NULL) 1112 vm_page_free(*ma); 1113 ma++; 1114 } 1115 if (mtx != NULL) 1116 mtx_unlock(mtx); 1117 } 1118 1119 vm_page_t 1120 PHYS_TO_VM_PAGE(vm_paddr_t pa) 1121 { 1122 vm_page_t m; 1123 1124 #ifdef VM_PHYSSEG_SPARSE 1125 m = vm_phys_paddr_to_vm_page(pa); 1126 if (m == NULL) 1127 m = vm_phys_fictitious_to_vm_page(pa); 1128 return (m); 1129 #elif defined(VM_PHYSSEG_DENSE) 1130 long pi; 1131 1132 pi = atop(pa); 1133 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 1134 m = &vm_page_array[pi - first_page]; 1135 return (m); 1136 } 1137 return (vm_phys_fictitious_to_vm_page(pa)); 1138 #else 1139 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 1140 #endif 1141 } 1142 1143 /* 1144 * vm_page_getfake: 1145 * 1146 * Create a fictitious page with the specified physical address and 1147 * memory attribute. The memory attribute is the only the machine- 1148 * dependent aspect of a fictitious page that must be initialized. 1149 */ 1150 vm_page_t 1151 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 1152 { 1153 vm_page_t m; 1154 1155 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 1156 vm_page_initfake(m, paddr, memattr); 1157 return (m); 1158 } 1159 1160 void 1161 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1162 { 1163 1164 if ((m->flags & PG_FICTITIOUS) != 0) { 1165 /* 1166 * The page's memattr might have changed since the 1167 * previous initialization. Update the pmap to the 1168 * new memattr. 1169 */ 1170 goto memattr; 1171 } 1172 m->phys_addr = paddr; 1173 m->queue = PQ_NONE; 1174 /* Fictitious pages don't use "segind". */ 1175 m->flags = PG_FICTITIOUS; 1176 /* Fictitious pages don't use "order" or "pool". */ 1177 m->oflags = VPO_UNMANAGED; 1178 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1179 m->wire_count = 1; 1180 pmap_page_init(m); 1181 memattr: 1182 pmap_page_set_memattr(m, memattr); 1183 } 1184 1185 /* 1186 * vm_page_putfake: 1187 * 1188 * Release a fictitious page. 1189 */ 1190 void 1191 vm_page_putfake(vm_page_t m) 1192 { 1193 1194 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 1195 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1196 ("vm_page_putfake: bad page %p", m)); 1197 uma_zfree(fakepg_zone, m); 1198 } 1199 1200 /* 1201 * vm_page_updatefake: 1202 * 1203 * Update the given fictitious page to the specified physical address and 1204 * memory attribute. 1205 */ 1206 void 1207 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1208 { 1209 1210 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1211 ("vm_page_updatefake: bad page %p", m)); 1212 m->phys_addr = paddr; 1213 pmap_page_set_memattr(m, memattr); 1214 } 1215 1216 /* 1217 * vm_page_free: 1218 * 1219 * Free a page. 1220 */ 1221 void 1222 vm_page_free(vm_page_t m) 1223 { 1224 1225 m->flags &= ~PG_ZERO; 1226 vm_page_free_toq(m); 1227 } 1228 1229 /* 1230 * vm_page_free_zero: 1231 * 1232 * Free a page to the zerod-pages queue 1233 */ 1234 void 1235 vm_page_free_zero(vm_page_t m) 1236 { 1237 1238 m->flags |= PG_ZERO; 1239 vm_page_free_toq(m); 1240 } 1241 1242 /* 1243 * Unbusy and handle the page queueing for a page from a getpages request that 1244 * was optionally read ahead or behind. 1245 */ 1246 void 1247 vm_page_readahead_finish(vm_page_t m) 1248 { 1249 1250 /* We shouldn't put invalid pages on queues. */ 1251 KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m)); 1252 1253 /* 1254 * Since the page is not the actually needed one, whether it should 1255 * be activated or deactivated is not obvious. Empirical results 1256 * have shown that deactivating the page is usually the best choice, 1257 * unless the page is wanted by another thread. 1258 */ 1259 vm_page_lock(m); 1260 if ((m->busy_lock & VPB_BIT_WAITERS) != 0) 1261 vm_page_activate(m); 1262 else 1263 vm_page_deactivate(m); 1264 vm_page_unlock(m); 1265 vm_page_xunbusy(m); 1266 } 1267 1268 /* 1269 * vm_page_sleep_if_busy: 1270 * 1271 * Sleep and release the page queues lock if the page is busied. 1272 * Returns TRUE if the thread slept. 1273 * 1274 * The given page must be unlocked and object containing it must 1275 * be locked. 1276 */ 1277 int 1278 vm_page_sleep_if_busy(vm_page_t m, const char *msg) 1279 { 1280 vm_object_t obj; 1281 1282 vm_page_lock_assert(m, MA_NOTOWNED); 1283 VM_OBJECT_ASSERT_WLOCKED(m->object); 1284 1285 if (vm_page_busied(m)) { 1286 /* 1287 * The page-specific object must be cached because page 1288 * identity can change during the sleep, causing the 1289 * re-lock of a different object. 1290 * It is assumed that a reference to the object is already 1291 * held by the callers. 1292 */ 1293 obj = m->object; 1294 vm_page_lock(m); 1295 VM_OBJECT_WUNLOCK(obj); 1296 vm_page_busy_sleep(m, msg, false); 1297 VM_OBJECT_WLOCK(obj); 1298 return (TRUE); 1299 } 1300 return (FALSE); 1301 } 1302 1303 /* 1304 * vm_page_dirty_KBI: [ internal use only ] 1305 * 1306 * Set all bits in the page's dirty field. 1307 * 1308 * The object containing the specified page must be locked if the 1309 * call is made from the machine-independent layer. 1310 * 1311 * See vm_page_clear_dirty_mask(). 1312 * 1313 * This function should only be called by vm_page_dirty(). 1314 */ 1315 void 1316 vm_page_dirty_KBI(vm_page_t m) 1317 { 1318 1319 /* Refer to this operation by its public name. */ 1320 KASSERT(m->valid == VM_PAGE_BITS_ALL, 1321 ("vm_page_dirty: page is invalid!")); 1322 m->dirty = VM_PAGE_BITS_ALL; 1323 } 1324 1325 /* 1326 * vm_page_insert: [ internal use only ] 1327 * 1328 * Inserts the given mem entry into the object and object list. 1329 * 1330 * The object must be locked. 1331 */ 1332 int 1333 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1334 { 1335 vm_page_t mpred; 1336 1337 VM_OBJECT_ASSERT_WLOCKED(object); 1338 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1339 return (vm_page_insert_after(m, object, pindex, mpred)); 1340 } 1341 1342 /* 1343 * vm_page_insert_after: 1344 * 1345 * Inserts the page "m" into the specified object at offset "pindex". 1346 * 1347 * The page "mpred" must immediately precede the offset "pindex" within 1348 * the specified object. 1349 * 1350 * The object must be locked. 1351 */ 1352 static int 1353 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1354 vm_page_t mpred) 1355 { 1356 vm_page_t msucc; 1357 1358 VM_OBJECT_ASSERT_WLOCKED(object); 1359 KASSERT(m->object == NULL, 1360 ("vm_page_insert_after: page already inserted")); 1361 if (mpred != NULL) { 1362 KASSERT(mpred->object == object, 1363 ("vm_page_insert_after: object doesn't contain mpred")); 1364 KASSERT(mpred->pindex < pindex, 1365 ("vm_page_insert_after: mpred doesn't precede pindex")); 1366 msucc = TAILQ_NEXT(mpred, listq); 1367 } else 1368 msucc = TAILQ_FIRST(&object->memq); 1369 if (msucc != NULL) 1370 KASSERT(msucc->pindex > pindex, 1371 ("vm_page_insert_after: msucc doesn't succeed pindex")); 1372 1373 /* 1374 * Record the object/offset pair in this page 1375 */ 1376 m->object = object; 1377 m->pindex = pindex; 1378 1379 /* 1380 * Now link into the object's ordered list of backed pages. 1381 */ 1382 if (vm_radix_insert(&object->rtree, m)) { 1383 m->object = NULL; 1384 m->pindex = 0; 1385 return (1); 1386 } 1387 vm_page_insert_radixdone(m, object, mpred); 1388 return (0); 1389 } 1390 1391 /* 1392 * vm_page_insert_radixdone: 1393 * 1394 * Complete page "m" insertion into the specified object after the 1395 * radix trie hooking. 1396 * 1397 * The page "mpred" must precede the offset "m->pindex" within the 1398 * specified object. 1399 * 1400 * The object must be locked. 1401 */ 1402 static void 1403 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1404 { 1405 1406 VM_OBJECT_ASSERT_WLOCKED(object); 1407 KASSERT(object != NULL && m->object == object, 1408 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1409 if (mpred != NULL) { 1410 KASSERT(mpred->object == object, 1411 ("vm_page_insert_after: object doesn't contain mpred")); 1412 KASSERT(mpred->pindex < m->pindex, 1413 ("vm_page_insert_after: mpred doesn't precede pindex")); 1414 } 1415 1416 if (mpred != NULL) 1417 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1418 else 1419 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1420 1421 /* 1422 * Show that the object has one more resident page. 1423 */ 1424 object->resident_page_count++; 1425 1426 /* 1427 * Hold the vnode until the last page is released. 1428 */ 1429 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1430 vhold(object->handle); 1431 1432 /* 1433 * Since we are inserting a new and possibly dirty page, 1434 * update the object's OBJ_MIGHTBEDIRTY flag. 1435 */ 1436 if (pmap_page_is_write_mapped(m)) 1437 vm_object_set_writeable_dirty(object); 1438 } 1439 1440 /* 1441 * vm_page_remove: 1442 * 1443 * Removes the specified page from its containing object, but does not 1444 * invalidate any backing storage. Return true if the page may be safely 1445 * freed and false otherwise. 1446 * 1447 * The object must be locked. The page must be locked if it is managed. 1448 */ 1449 bool 1450 vm_page_remove(vm_page_t m) 1451 { 1452 vm_object_t object; 1453 vm_page_t mrem; 1454 1455 object = m->object; 1456 1457 if ((m->oflags & VPO_UNMANAGED) == 0) 1458 vm_page_assert_locked(m); 1459 VM_OBJECT_ASSERT_WLOCKED(object); 1460 if (vm_page_xbusied(m)) 1461 vm_page_xunbusy_maybelocked(m); 1462 mrem = vm_radix_remove(&object->rtree, m->pindex); 1463 KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m)); 1464 1465 /* 1466 * Now remove from the object's list of backed pages. 1467 */ 1468 TAILQ_REMOVE(&object->memq, m, listq); 1469 1470 /* 1471 * And show that the object has one fewer resident page. 1472 */ 1473 object->resident_page_count--; 1474 1475 /* 1476 * The vnode may now be recycled. 1477 */ 1478 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1479 vdrop(object->handle); 1480 1481 m->object = NULL; 1482 return (!vm_page_wired(m)); 1483 } 1484 1485 /* 1486 * vm_page_lookup: 1487 * 1488 * Returns the page associated with the object/offset 1489 * pair specified; if none is found, NULL is returned. 1490 * 1491 * The object must be locked. 1492 */ 1493 vm_page_t 1494 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1495 { 1496 1497 VM_OBJECT_ASSERT_LOCKED(object); 1498 return (vm_radix_lookup(&object->rtree, pindex)); 1499 } 1500 1501 /* 1502 * vm_page_find_least: 1503 * 1504 * Returns the page associated with the object with least pindex 1505 * greater than or equal to the parameter pindex, or NULL. 1506 * 1507 * The object must be locked. 1508 */ 1509 vm_page_t 1510 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1511 { 1512 vm_page_t m; 1513 1514 VM_OBJECT_ASSERT_LOCKED(object); 1515 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1516 m = vm_radix_lookup_ge(&object->rtree, pindex); 1517 return (m); 1518 } 1519 1520 /* 1521 * Returns the given page's successor (by pindex) within the object if it is 1522 * resident; if none is found, NULL is returned. 1523 * 1524 * The object must be locked. 1525 */ 1526 vm_page_t 1527 vm_page_next(vm_page_t m) 1528 { 1529 vm_page_t next; 1530 1531 VM_OBJECT_ASSERT_LOCKED(m->object); 1532 if ((next = TAILQ_NEXT(m, listq)) != NULL) { 1533 MPASS(next->object == m->object); 1534 if (next->pindex != m->pindex + 1) 1535 next = NULL; 1536 } 1537 return (next); 1538 } 1539 1540 /* 1541 * Returns the given page's predecessor (by pindex) within the object if it is 1542 * resident; if none is found, NULL is returned. 1543 * 1544 * The object must be locked. 1545 */ 1546 vm_page_t 1547 vm_page_prev(vm_page_t m) 1548 { 1549 vm_page_t prev; 1550 1551 VM_OBJECT_ASSERT_LOCKED(m->object); 1552 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) { 1553 MPASS(prev->object == m->object); 1554 if (prev->pindex != m->pindex - 1) 1555 prev = NULL; 1556 } 1557 return (prev); 1558 } 1559 1560 /* 1561 * Uses the page mnew as a replacement for an existing page at index 1562 * pindex which must be already present in the object. 1563 * 1564 * The existing page must not be on a paging queue. 1565 */ 1566 vm_page_t 1567 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex) 1568 { 1569 vm_page_t mold; 1570 1571 VM_OBJECT_ASSERT_WLOCKED(object); 1572 KASSERT(mnew->object == NULL, 1573 ("vm_page_replace: page %p already in object", mnew)); 1574 KASSERT(mnew->queue == PQ_NONE || vm_page_wired(mnew), 1575 ("vm_page_replace: new page %p is on a paging queue", mnew)); 1576 1577 /* 1578 * This function mostly follows vm_page_insert() and 1579 * vm_page_remove() without the radix, object count and vnode 1580 * dance. Double check such functions for more comments. 1581 */ 1582 1583 mnew->object = object; 1584 mnew->pindex = pindex; 1585 mold = vm_radix_replace(&object->rtree, mnew); 1586 KASSERT(mold->queue == PQ_NONE, 1587 ("vm_page_replace: old page %p is on a paging queue", mold)); 1588 1589 /* Keep the resident page list in sorted order. */ 1590 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); 1591 TAILQ_REMOVE(&object->memq, mold, listq); 1592 1593 mold->object = NULL; 1594 vm_page_xunbusy_maybelocked(mold); 1595 1596 /* 1597 * The object's resident_page_count does not change because we have 1598 * swapped one page for another, but OBJ_MIGHTBEDIRTY. 1599 */ 1600 if (pmap_page_is_write_mapped(mnew)) 1601 vm_object_set_writeable_dirty(object); 1602 return (mold); 1603 } 1604 1605 /* 1606 * vm_page_rename: 1607 * 1608 * Move the given memory entry from its 1609 * current object to the specified target object/offset. 1610 * 1611 * Note: swap associated with the page must be invalidated by the move. We 1612 * have to do this for several reasons: (1) we aren't freeing the 1613 * page, (2) we are dirtying the page, (3) the VM system is probably 1614 * moving the page from object A to B, and will then later move 1615 * the backing store from A to B and we can't have a conflict. 1616 * 1617 * Note: we *always* dirty the page. It is necessary both for the 1618 * fact that we moved it, and because we may be invalidating 1619 * swap. 1620 * 1621 * The objects must be locked. 1622 */ 1623 int 1624 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1625 { 1626 vm_page_t mpred; 1627 vm_pindex_t opidx; 1628 1629 VM_OBJECT_ASSERT_WLOCKED(new_object); 1630 1631 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); 1632 KASSERT(mpred == NULL || mpred->pindex != new_pindex, 1633 ("vm_page_rename: pindex already renamed")); 1634 1635 /* 1636 * Create a custom version of vm_page_insert() which does not depend 1637 * by m_prev and can cheat on the implementation aspects of the 1638 * function. 1639 */ 1640 opidx = m->pindex; 1641 m->pindex = new_pindex; 1642 if (vm_radix_insert(&new_object->rtree, m)) { 1643 m->pindex = opidx; 1644 return (1); 1645 } 1646 1647 /* 1648 * The operation cannot fail anymore. The removal must happen before 1649 * the listq iterator is tainted. 1650 */ 1651 m->pindex = opidx; 1652 vm_page_lock(m); 1653 (void)vm_page_remove(m); 1654 1655 /* Return back to the new pindex to complete vm_page_insert(). */ 1656 m->pindex = new_pindex; 1657 m->object = new_object; 1658 vm_page_unlock(m); 1659 vm_page_insert_radixdone(m, new_object, mpred); 1660 vm_page_dirty(m); 1661 return (0); 1662 } 1663 1664 /* 1665 * vm_page_alloc: 1666 * 1667 * Allocate and return a page that is associated with the specified 1668 * object and offset pair. By default, this page is exclusive busied. 1669 * 1670 * The caller must always specify an allocation class. 1671 * 1672 * allocation classes: 1673 * VM_ALLOC_NORMAL normal process request 1674 * VM_ALLOC_SYSTEM system *really* needs a page 1675 * VM_ALLOC_INTERRUPT interrupt time request 1676 * 1677 * optional allocation flags: 1678 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1679 * intends to allocate 1680 * VM_ALLOC_NOBUSY do not exclusive busy the page 1681 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1682 * VM_ALLOC_NOOBJ page is not associated with an object and 1683 * should not be exclusive busy 1684 * VM_ALLOC_SBUSY shared busy the allocated page 1685 * VM_ALLOC_WIRED wire the allocated page 1686 * VM_ALLOC_ZERO prefer a zeroed page 1687 */ 1688 vm_page_t 1689 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1690 { 1691 1692 return (vm_page_alloc_after(object, pindex, req, object != NULL ? 1693 vm_radix_lookup_le(&object->rtree, pindex) : NULL)); 1694 } 1695 1696 vm_page_t 1697 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain, 1698 int req) 1699 { 1700 1701 return (vm_page_alloc_domain_after(object, pindex, domain, req, 1702 object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) : 1703 NULL)); 1704 } 1705 1706 /* 1707 * Allocate a page in the specified object with the given page index. To 1708 * optimize insertion of the page into the object, the caller must also specifiy 1709 * the resident page in the object with largest index smaller than the given 1710 * page index, or NULL if no such page exists. 1711 */ 1712 vm_page_t 1713 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, 1714 int req, vm_page_t mpred) 1715 { 1716 struct vm_domainset_iter di; 1717 vm_page_t m; 1718 int domain; 1719 1720 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 1721 do { 1722 m = vm_page_alloc_domain_after(object, pindex, domain, req, 1723 mpred); 1724 if (m != NULL) 1725 break; 1726 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 1727 1728 return (m); 1729 } 1730 1731 /* 1732 * Returns true if the number of free pages exceeds the minimum 1733 * for the request class and false otherwise. 1734 */ 1735 int 1736 vm_domain_allocate(struct vm_domain *vmd, int req, int npages) 1737 { 1738 u_int limit, old, new; 1739 1740 req = req & VM_ALLOC_CLASS_MASK; 1741 1742 /* 1743 * The page daemon is allowed to dig deeper into the free page list. 1744 */ 1745 if (curproc == pageproc && req != VM_ALLOC_INTERRUPT) 1746 req = VM_ALLOC_SYSTEM; 1747 if (req == VM_ALLOC_INTERRUPT) 1748 limit = 0; 1749 else if (req == VM_ALLOC_SYSTEM) 1750 limit = vmd->vmd_interrupt_free_min; 1751 else 1752 limit = vmd->vmd_free_reserved; 1753 1754 /* 1755 * Attempt to reserve the pages. Fail if we're below the limit. 1756 */ 1757 limit += npages; 1758 old = vmd->vmd_free_count; 1759 do { 1760 if (old < limit) 1761 return (0); 1762 new = old - npages; 1763 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0); 1764 1765 /* Wake the page daemon if we've crossed the threshold. */ 1766 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old)) 1767 pagedaemon_wakeup(vmd->vmd_domain); 1768 1769 /* Only update bitsets on transitions. */ 1770 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) || 1771 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe)) 1772 vm_domain_set(vmd); 1773 1774 return (1); 1775 } 1776 1777 vm_page_t 1778 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain, 1779 int req, vm_page_t mpred) 1780 { 1781 struct vm_domain *vmd; 1782 vm_page_t m; 1783 int flags, pool; 1784 1785 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1786 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1787 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1788 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1789 ("inconsistent object(%p)/req(%x)", object, req)); 1790 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, 1791 ("Can't sleep and retry object insertion.")); 1792 KASSERT(mpred == NULL || mpred->pindex < pindex, 1793 ("mpred %p doesn't precede pindex 0x%jx", mpred, 1794 (uintmax_t)pindex)); 1795 if (object != NULL) 1796 VM_OBJECT_ASSERT_WLOCKED(object); 1797 1798 flags = 0; 1799 m = NULL; 1800 pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT; 1801 again: 1802 #if VM_NRESERVLEVEL > 0 1803 /* 1804 * Can we allocate the page from a reservation? 1805 */ 1806 if (vm_object_reserv(object) && 1807 (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) != 1808 NULL) { 1809 domain = vm_phys_domain(m); 1810 vmd = VM_DOMAIN(domain); 1811 goto found; 1812 } 1813 #endif 1814 vmd = VM_DOMAIN(domain); 1815 if (vmd->vmd_pgcache[pool].zone != NULL) { 1816 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT); 1817 if (m != NULL) { 1818 flags |= PG_PCPU_CACHE; 1819 goto found; 1820 } 1821 } 1822 if (vm_domain_allocate(vmd, req, 1)) { 1823 /* 1824 * If not, allocate it from the free page queues. 1825 */ 1826 vm_domain_free_lock(vmd); 1827 m = vm_phys_alloc_pages(domain, pool, 0); 1828 vm_domain_free_unlock(vmd); 1829 if (m == NULL) { 1830 vm_domain_freecnt_inc(vmd, 1); 1831 #if VM_NRESERVLEVEL > 0 1832 if (vm_reserv_reclaim_inactive(domain)) 1833 goto again; 1834 #endif 1835 } 1836 } 1837 if (m == NULL) { 1838 /* 1839 * Not allocatable, give up. 1840 */ 1841 if (vm_domain_alloc_fail(vmd, object, req)) 1842 goto again; 1843 return (NULL); 1844 } 1845 1846 /* 1847 * At this point we had better have found a good page. 1848 */ 1849 found: 1850 vm_page_dequeue(m); 1851 vm_page_alloc_check(m); 1852 1853 /* 1854 * Initialize the page. Only the PG_ZERO flag is inherited. 1855 */ 1856 if ((req & VM_ALLOC_ZERO) != 0) 1857 flags |= (m->flags & PG_ZERO); 1858 if ((req & VM_ALLOC_NODUMP) != 0) 1859 flags |= PG_NODUMP; 1860 m->flags = flags; 1861 m->aflags = 0; 1862 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 1863 VPO_UNMANAGED : 0; 1864 m->busy_lock = VPB_UNBUSIED; 1865 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 1866 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1867 if ((req & VM_ALLOC_SBUSY) != 0) 1868 m->busy_lock = VPB_SHARERS_WORD(1); 1869 if (req & VM_ALLOC_WIRED) { 1870 /* 1871 * The page lock is not required for wiring a page until that 1872 * page is inserted into the object. 1873 */ 1874 vm_wire_add(1); 1875 m->wire_count = 1; 1876 } 1877 m->act_count = 0; 1878 1879 if (object != NULL) { 1880 if (vm_page_insert_after(m, object, pindex, mpred)) { 1881 if (req & VM_ALLOC_WIRED) { 1882 vm_wire_sub(1); 1883 m->wire_count = 0; 1884 } 1885 KASSERT(m->object == NULL, ("page %p has object", m)); 1886 m->oflags = VPO_UNMANAGED; 1887 m->busy_lock = VPB_UNBUSIED; 1888 /* Don't change PG_ZERO. */ 1889 vm_page_free_toq(m); 1890 if (req & VM_ALLOC_WAITFAIL) { 1891 VM_OBJECT_WUNLOCK(object); 1892 vm_radix_wait(); 1893 VM_OBJECT_WLOCK(object); 1894 } 1895 return (NULL); 1896 } 1897 1898 /* Ignore device objects; the pager sets "memattr" for them. */ 1899 if (object->memattr != VM_MEMATTR_DEFAULT && 1900 (object->flags & OBJ_FICTITIOUS) == 0) 1901 pmap_page_set_memattr(m, object->memattr); 1902 } else 1903 m->pindex = pindex; 1904 1905 return (m); 1906 } 1907 1908 /* 1909 * vm_page_alloc_contig: 1910 * 1911 * Allocate a contiguous set of physical pages of the given size "npages" 1912 * from the free lists. All of the physical pages must be at or above 1913 * the given physical address "low" and below the given physical address 1914 * "high". The given value "alignment" determines the alignment of the 1915 * first physical page in the set. If the given value "boundary" is 1916 * non-zero, then the set of physical pages cannot cross any physical 1917 * address boundary that is a multiple of that value. Both "alignment" 1918 * and "boundary" must be a power of two. 1919 * 1920 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 1921 * then the memory attribute setting for the physical pages is configured 1922 * to the object's memory attribute setting. Otherwise, the memory 1923 * attribute setting for the physical pages is configured to "memattr", 1924 * overriding the object's memory attribute setting. However, if the 1925 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 1926 * memory attribute setting for the physical pages cannot be configured 1927 * to VM_MEMATTR_DEFAULT. 1928 * 1929 * The specified object may not contain fictitious pages. 1930 * 1931 * The caller must always specify an allocation class. 1932 * 1933 * allocation classes: 1934 * VM_ALLOC_NORMAL normal process request 1935 * VM_ALLOC_SYSTEM system *really* needs a page 1936 * VM_ALLOC_INTERRUPT interrupt time request 1937 * 1938 * optional allocation flags: 1939 * VM_ALLOC_NOBUSY do not exclusive busy the page 1940 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1941 * VM_ALLOC_NOOBJ page is not associated with an object and 1942 * should not be exclusive busy 1943 * VM_ALLOC_SBUSY shared busy the allocated page 1944 * VM_ALLOC_WIRED wire the allocated page 1945 * VM_ALLOC_ZERO prefer a zeroed page 1946 */ 1947 vm_page_t 1948 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 1949 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1950 vm_paddr_t boundary, vm_memattr_t memattr) 1951 { 1952 struct vm_domainset_iter di; 1953 vm_page_t m; 1954 int domain; 1955 1956 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 1957 do { 1958 m = vm_page_alloc_contig_domain(object, pindex, domain, req, 1959 npages, low, high, alignment, boundary, memattr); 1960 if (m != NULL) 1961 break; 1962 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 1963 1964 return (m); 1965 } 1966 1967 vm_page_t 1968 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, 1969 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1970 vm_paddr_t boundary, vm_memattr_t memattr) 1971 { 1972 struct vm_domain *vmd; 1973 vm_page_t m, m_ret, mpred; 1974 u_int busy_lock, flags, oflags; 1975 1976 mpred = NULL; /* XXX: pacify gcc */ 1977 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1978 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1979 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1980 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1981 ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object, 1982 req)); 1983 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, 1984 ("Can't sleep and retry object insertion.")); 1985 if (object != NULL) { 1986 VM_OBJECT_ASSERT_WLOCKED(object); 1987 KASSERT((object->flags & OBJ_FICTITIOUS) == 0, 1988 ("vm_page_alloc_contig: object %p has fictitious pages", 1989 object)); 1990 } 1991 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 1992 1993 if (object != NULL) { 1994 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1995 KASSERT(mpred == NULL || mpred->pindex != pindex, 1996 ("vm_page_alloc_contig: pindex already allocated")); 1997 } 1998 1999 /* 2000 * Can we allocate the pages without the number of free pages falling 2001 * below the lower bound for the allocation class? 2002 */ 2003 m_ret = NULL; 2004 again: 2005 #if VM_NRESERVLEVEL > 0 2006 /* 2007 * Can we allocate the pages from a reservation? 2008 */ 2009 if (vm_object_reserv(object) && 2010 (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req, 2011 mpred, npages, low, high, alignment, boundary)) != NULL) { 2012 domain = vm_phys_domain(m_ret); 2013 vmd = VM_DOMAIN(domain); 2014 goto found; 2015 } 2016 #endif 2017 vmd = VM_DOMAIN(domain); 2018 if (vm_domain_allocate(vmd, req, npages)) { 2019 /* 2020 * allocate them from the free page queues. 2021 */ 2022 vm_domain_free_lock(vmd); 2023 m_ret = vm_phys_alloc_contig(domain, npages, low, high, 2024 alignment, boundary); 2025 vm_domain_free_unlock(vmd); 2026 if (m_ret == NULL) { 2027 vm_domain_freecnt_inc(vmd, npages); 2028 #if VM_NRESERVLEVEL > 0 2029 if (vm_reserv_reclaim_contig(domain, npages, low, 2030 high, alignment, boundary)) 2031 goto again; 2032 #endif 2033 } 2034 } 2035 if (m_ret == NULL) { 2036 if (vm_domain_alloc_fail(vmd, object, req)) 2037 goto again; 2038 return (NULL); 2039 } 2040 #if VM_NRESERVLEVEL > 0 2041 found: 2042 #endif 2043 for (m = m_ret; m < &m_ret[npages]; m++) { 2044 vm_page_dequeue(m); 2045 vm_page_alloc_check(m); 2046 } 2047 2048 /* 2049 * Initialize the pages. Only the PG_ZERO flag is inherited. 2050 */ 2051 flags = 0; 2052 if ((req & VM_ALLOC_ZERO) != 0) 2053 flags = PG_ZERO; 2054 if ((req & VM_ALLOC_NODUMP) != 0) 2055 flags |= PG_NODUMP; 2056 oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 2057 VPO_UNMANAGED : 0; 2058 busy_lock = VPB_UNBUSIED; 2059 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 2060 busy_lock = VPB_SINGLE_EXCLUSIVER; 2061 if ((req & VM_ALLOC_SBUSY) != 0) 2062 busy_lock = VPB_SHARERS_WORD(1); 2063 if ((req & VM_ALLOC_WIRED) != 0) 2064 vm_wire_add(npages); 2065 if (object != NULL) { 2066 if (object->memattr != VM_MEMATTR_DEFAULT && 2067 memattr == VM_MEMATTR_DEFAULT) 2068 memattr = object->memattr; 2069 } 2070 for (m = m_ret; m < &m_ret[npages]; m++) { 2071 m->aflags = 0; 2072 m->flags = (m->flags | PG_NODUMP) & flags; 2073 m->busy_lock = busy_lock; 2074 if ((req & VM_ALLOC_WIRED) != 0) 2075 m->wire_count = 1; 2076 m->act_count = 0; 2077 m->oflags = oflags; 2078 if (object != NULL) { 2079 if (vm_page_insert_after(m, object, pindex, mpred)) { 2080 if ((req & VM_ALLOC_WIRED) != 0) 2081 vm_wire_sub(npages); 2082 KASSERT(m->object == NULL, 2083 ("page %p has object", m)); 2084 mpred = m; 2085 for (m = m_ret; m < &m_ret[npages]; m++) { 2086 if (m <= mpred && 2087 (req & VM_ALLOC_WIRED) != 0) 2088 m->wire_count = 0; 2089 m->oflags = VPO_UNMANAGED; 2090 m->busy_lock = VPB_UNBUSIED; 2091 /* Don't change PG_ZERO. */ 2092 vm_page_free_toq(m); 2093 } 2094 if (req & VM_ALLOC_WAITFAIL) { 2095 VM_OBJECT_WUNLOCK(object); 2096 vm_radix_wait(); 2097 VM_OBJECT_WLOCK(object); 2098 } 2099 return (NULL); 2100 } 2101 mpred = m; 2102 } else 2103 m->pindex = pindex; 2104 if (memattr != VM_MEMATTR_DEFAULT) 2105 pmap_page_set_memattr(m, memattr); 2106 pindex++; 2107 } 2108 return (m_ret); 2109 } 2110 2111 /* 2112 * Check a page that has been freshly dequeued from a freelist. 2113 */ 2114 static void 2115 vm_page_alloc_check(vm_page_t m) 2116 { 2117 2118 KASSERT(m->object == NULL, ("page %p has object", m)); 2119 KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0, 2120 ("page %p has unexpected queue %d, flags %#x", 2121 m, m->queue, (m->aflags & PGA_QUEUE_STATE_MASK))); 2122 KASSERT(!vm_page_wired(m), ("page %p is wired", m)); 2123 KASSERT(!vm_page_busied(m), ("page %p is busy", m)); 2124 KASSERT(m->dirty == 0, ("page %p is dirty", m)); 2125 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 2126 ("page %p has unexpected memattr %d", 2127 m, pmap_page_get_memattr(m))); 2128 KASSERT(m->valid == 0, ("free page %p is valid", m)); 2129 } 2130 2131 /* 2132 * vm_page_alloc_freelist: 2133 * 2134 * Allocate a physical page from the specified free page list. 2135 * 2136 * The caller must always specify an allocation class. 2137 * 2138 * allocation classes: 2139 * VM_ALLOC_NORMAL normal process request 2140 * VM_ALLOC_SYSTEM system *really* needs a page 2141 * VM_ALLOC_INTERRUPT interrupt time request 2142 * 2143 * optional allocation flags: 2144 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 2145 * intends to allocate 2146 * VM_ALLOC_WIRED wire the allocated page 2147 * VM_ALLOC_ZERO prefer a zeroed page 2148 */ 2149 vm_page_t 2150 vm_page_alloc_freelist(int freelist, int req) 2151 { 2152 struct vm_domainset_iter di; 2153 vm_page_t m; 2154 int domain; 2155 2156 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2157 do { 2158 m = vm_page_alloc_freelist_domain(domain, freelist, req); 2159 if (m != NULL) 2160 break; 2161 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2162 2163 return (m); 2164 } 2165 2166 vm_page_t 2167 vm_page_alloc_freelist_domain(int domain, int freelist, int req) 2168 { 2169 struct vm_domain *vmd; 2170 vm_page_t m; 2171 u_int flags; 2172 2173 m = NULL; 2174 vmd = VM_DOMAIN(domain); 2175 again: 2176 if (vm_domain_allocate(vmd, req, 1)) { 2177 vm_domain_free_lock(vmd); 2178 m = vm_phys_alloc_freelist_pages(domain, freelist, 2179 VM_FREEPOOL_DIRECT, 0); 2180 vm_domain_free_unlock(vmd); 2181 if (m == NULL) 2182 vm_domain_freecnt_inc(vmd, 1); 2183 } 2184 if (m == NULL) { 2185 if (vm_domain_alloc_fail(vmd, NULL, req)) 2186 goto again; 2187 return (NULL); 2188 } 2189 vm_page_dequeue(m); 2190 vm_page_alloc_check(m); 2191 2192 /* 2193 * Initialize the page. Only the PG_ZERO flag is inherited. 2194 */ 2195 m->aflags = 0; 2196 flags = 0; 2197 if ((req & VM_ALLOC_ZERO) != 0) 2198 flags = PG_ZERO; 2199 m->flags &= flags; 2200 if ((req & VM_ALLOC_WIRED) != 0) { 2201 /* 2202 * The page lock is not required for wiring a page that does 2203 * not belong to an object. 2204 */ 2205 vm_wire_add(1); 2206 m->wire_count = 1; 2207 } 2208 /* Unmanaged pages don't use "act_count". */ 2209 m->oflags = VPO_UNMANAGED; 2210 return (m); 2211 } 2212 2213 static int 2214 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags) 2215 { 2216 struct vm_domain *vmd; 2217 struct vm_pgcache *pgcache; 2218 int i; 2219 2220 pgcache = arg; 2221 vmd = VM_DOMAIN(pgcache->domain); 2222 /* Only import if we can bring in a full bucket. */ 2223 if (cnt == 1 || !vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt)) 2224 return (0); 2225 domain = vmd->vmd_domain; 2226 vm_domain_free_lock(vmd); 2227 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt, 2228 (vm_page_t *)store); 2229 vm_domain_free_unlock(vmd); 2230 if (cnt != i) 2231 vm_domain_freecnt_inc(vmd, cnt - i); 2232 2233 return (i); 2234 } 2235 2236 static void 2237 vm_page_zone_release(void *arg, void **store, int cnt) 2238 { 2239 struct vm_domain *vmd; 2240 struct vm_pgcache *pgcache; 2241 vm_page_t m; 2242 int i; 2243 2244 pgcache = arg; 2245 vmd = VM_DOMAIN(pgcache->domain); 2246 vm_domain_free_lock(vmd); 2247 for (i = 0; i < cnt; i++) { 2248 m = (vm_page_t)store[i]; 2249 vm_phys_free_pages(m, 0); 2250 } 2251 vm_domain_free_unlock(vmd); 2252 vm_domain_freecnt_inc(vmd, cnt); 2253 } 2254 2255 #define VPSC_ANY 0 /* No restrictions. */ 2256 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ 2257 #define VPSC_NOSUPER 2 /* Skip superpages. */ 2258 2259 /* 2260 * vm_page_scan_contig: 2261 * 2262 * Scan vm_page_array[] between the specified entries "m_start" and 2263 * "m_end" for a run of contiguous physical pages that satisfy the 2264 * specified conditions, and return the lowest page in the run. The 2265 * specified "alignment" determines the alignment of the lowest physical 2266 * page in the run. If the specified "boundary" is non-zero, then the 2267 * run of physical pages cannot span a physical address that is a 2268 * multiple of "boundary". 2269 * 2270 * "m_end" is never dereferenced, so it need not point to a vm_page 2271 * structure within vm_page_array[]. 2272 * 2273 * "npages" must be greater than zero. "m_start" and "m_end" must not 2274 * span a hole (or discontiguity) in the physical address space. Both 2275 * "alignment" and "boundary" must be a power of two. 2276 */ 2277 vm_page_t 2278 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, 2279 u_long alignment, vm_paddr_t boundary, int options) 2280 { 2281 struct mtx *m_mtx; 2282 vm_object_t object; 2283 vm_paddr_t pa; 2284 vm_page_t m, m_run; 2285 #if VM_NRESERVLEVEL > 0 2286 int level; 2287 #endif 2288 int m_inc, order, run_ext, run_len; 2289 2290 KASSERT(npages > 0, ("npages is 0")); 2291 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2292 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2293 m_run = NULL; 2294 run_len = 0; 2295 m_mtx = NULL; 2296 for (m = m_start; m < m_end && run_len < npages; m += m_inc) { 2297 KASSERT((m->flags & PG_MARKER) == 0, 2298 ("page %p is PG_MARKER", m)); 2299 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->wire_count == 1, 2300 ("fictitious page %p has invalid wire count", m)); 2301 2302 /* 2303 * If the current page would be the start of a run, check its 2304 * physical address against the end, alignment, and boundary 2305 * conditions. If it doesn't satisfy these conditions, either 2306 * terminate the scan or advance to the next page that 2307 * satisfies the failed condition. 2308 */ 2309 if (run_len == 0) { 2310 KASSERT(m_run == NULL, ("m_run != NULL")); 2311 if (m + npages > m_end) 2312 break; 2313 pa = VM_PAGE_TO_PHYS(m); 2314 if ((pa & (alignment - 1)) != 0) { 2315 m_inc = atop(roundup2(pa, alignment) - pa); 2316 continue; 2317 } 2318 if (rounddown2(pa ^ (pa + ptoa(npages) - 1), 2319 boundary) != 0) { 2320 m_inc = atop(roundup2(pa, boundary) - pa); 2321 continue; 2322 } 2323 } else 2324 KASSERT(m_run != NULL, ("m_run == NULL")); 2325 2326 vm_page_change_lock(m, &m_mtx); 2327 m_inc = 1; 2328 retry: 2329 if (vm_page_wired(m)) 2330 run_ext = 0; 2331 #if VM_NRESERVLEVEL > 0 2332 else if ((level = vm_reserv_level(m)) >= 0 && 2333 (options & VPSC_NORESERV) != 0) { 2334 run_ext = 0; 2335 /* Advance to the end of the reservation. */ 2336 pa = VM_PAGE_TO_PHYS(m); 2337 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - 2338 pa); 2339 } 2340 #endif 2341 else if ((object = m->object) != NULL) { 2342 /* 2343 * The page is considered eligible for relocation if 2344 * and only if it could be laundered or reclaimed by 2345 * the page daemon. 2346 */ 2347 if (!VM_OBJECT_TRYRLOCK(object)) { 2348 mtx_unlock(m_mtx); 2349 VM_OBJECT_RLOCK(object); 2350 mtx_lock(m_mtx); 2351 if (m->object != object) { 2352 /* 2353 * The page may have been freed. 2354 */ 2355 VM_OBJECT_RUNLOCK(object); 2356 goto retry; 2357 } else if (vm_page_wired(m)) { 2358 run_ext = 0; 2359 goto unlock; 2360 } 2361 } 2362 /* Don't care: PG_NODUMP, PG_ZERO. */ 2363 if (object->type != OBJT_DEFAULT && 2364 object->type != OBJT_SWAP && 2365 object->type != OBJT_VNODE) { 2366 run_ext = 0; 2367 #if VM_NRESERVLEVEL > 0 2368 } else if ((options & VPSC_NOSUPER) != 0 && 2369 (level = vm_reserv_level_iffullpop(m)) >= 0) { 2370 run_ext = 0; 2371 /* Advance to the end of the superpage. */ 2372 pa = VM_PAGE_TO_PHYS(m); 2373 m_inc = atop(roundup2(pa + 1, 2374 vm_reserv_size(level)) - pa); 2375 #endif 2376 } else if (object->memattr == VM_MEMATTR_DEFAULT && 2377 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) { 2378 /* 2379 * The page is allocated but eligible for 2380 * relocation. Extend the current run by one 2381 * page. 2382 */ 2383 KASSERT(pmap_page_get_memattr(m) == 2384 VM_MEMATTR_DEFAULT, 2385 ("page %p has an unexpected memattr", m)); 2386 KASSERT((m->oflags & (VPO_SWAPINPROG | 2387 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2388 ("page %p has unexpected oflags", m)); 2389 /* Don't care: VPO_NOSYNC. */ 2390 run_ext = 1; 2391 } else 2392 run_ext = 0; 2393 unlock: 2394 VM_OBJECT_RUNLOCK(object); 2395 #if VM_NRESERVLEVEL > 0 2396 } else if (level >= 0) { 2397 /* 2398 * The page is reserved but not yet allocated. In 2399 * other words, it is still free. Extend the current 2400 * run by one page. 2401 */ 2402 run_ext = 1; 2403 #endif 2404 } else if ((order = m->order) < VM_NFREEORDER) { 2405 /* 2406 * The page is enqueued in the physical memory 2407 * allocator's free page queues. Moreover, it is the 2408 * first page in a power-of-two-sized run of 2409 * contiguous free pages. Add these pages to the end 2410 * of the current run, and jump ahead. 2411 */ 2412 run_ext = 1 << order; 2413 m_inc = 1 << order; 2414 } else { 2415 /* 2416 * Skip the page for one of the following reasons: (1) 2417 * It is enqueued in the physical memory allocator's 2418 * free page queues. However, it is not the first 2419 * page in a run of contiguous free pages. (This case 2420 * rarely occurs because the scan is performed in 2421 * ascending order.) (2) It is not reserved, and it is 2422 * transitioning from free to allocated. (Conversely, 2423 * the transition from allocated to free for managed 2424 * pages is blocked by the page lock.) (3) It is 2425 * allocated but not contained by an object and not 2426 * wired, e.g., allocated by Xen's balloon driver. 2427 */ 2428 run_ext = 0; 2429 } 2430 2431 /* 2432 * Extend or reset the current run of pages. 2433 */ 2434 if (run_ext > 0) { 2435 if (run_len == 0) 2436 m_run = m; 2437 run_len += run_ext; 2438 } else { 2439 if (run_len > 0) { 2440 m_run = NULL; 2441 run_len = 0; 2442 } 2443 } 2444 } 2445 if (m_mtx != NULL) 2446 mtx_unlock(m_mtx); 2447 if (run_len >= npages) 2448 return (m_run); 2449 return (NULL); 2450 } 2451 2452 /* 2453 * vm_page_reclaim_run: 2454 * 2455 * Try to relocate each of the allocated virtual pages within the 2456 * specified run of physical pages to a new physical address. Free the 2457 * physical pages underlying the relocated virtual pages. A virtual page 2458 * is relocatable if and only if it could be laundered or reclaimed by 2459 * the page daemon. Whenever possible, a virtual page is relocated to a 2460 * physical address above "high". 2461 * 2462 * Returns 0 if every physical page within the run was already free or 2463 * just freed by a successful relocation. Otherwise, returns a non-zero 2464 * value indicating why the last attempt to relocate a virtual page was 2465 * unsuccessful. 2466 * 2467 * "req_class" must be an allocation class. 2468 */ 2469 static int 2470 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run, 2471 vm_paddr_t high) 2472 { 2473 struct vm_domain *vmd; 2474 struct mtx *m_mtx; 2475 struct spglist free; 2476 vm_object_t object; 2477 vm_paddr_t pa; 2478 vm_page_t m, m_end, m_new; 2479 int error, order, req; 2480 2481 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, 2482 ("req_class is not an allocation class")); 2483 SLIST_INIT(&free); 2484 error = 0; 2485 m = m_run; 2486 m_end = m_run + npages; 2487 m_mtx = NULL; 2488 for (; error == 0 && m < m_end; m++) { 2489 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, 2490 ("page %p is PG_FICTITIOUS or PG_MARKER", m)); 2491 2492 /* 2493 * Avoid releasing and reacquiring the same page lock. 2494 */ 2495 vm_page_change_lock(m, &m_mtx); 2496 retry: 2497 if (vm_page_wired(m)) 2498 error = EBUSY; 2499 else if ((object = m->object) != NULL) { 2500 /* 2501 * The page is relocated if and only if it could be 2502 * laundered or reclaimed by the page daemon. 2503 */ 2504 if (!VM_OBJECT_TRYWLOCK(object)) { 2505 mtx_unlock(m_mtx); 2506 VM_OBJECT_WLOCK(object); 2507 mtx_lock(m_mtx); 2508 if (m->object != object) { 2509 /* 2510 * The page may have been freed. 2511 */ 2512 VM_OBJECT_WUNLOCK(object); 2513 goto retry; 2514 } else if (vm_page_wired(m)) { 2515 error = EBUSY; 2516 goto unlock; 2517 } 2518 } 2519 /* Don't care: PG_NODUMP, PG_ZERO. */ 2520 if (object->type != OBJT_DEFAULT && 2521 object->type != OBJT_SWAP && 2522 object->type != OBJT_VNODE) 2523 error = EINVAL; 2524 else if (object->memattr != VM_MEMATTR_DEFAULT) 2525 error = EINVAL; 2526 else if (vm_page_queue(m) != PQ_NONE && 2527 !vm_page_busied(m)) { 2528 KASSERT(pmap_page_get_memattr(m) == 2529 VM_MEMATTR_DEFAULT, 2530 ("page %p has an unexpected memattr", m)); 2531 KASSERT((m->oflags & (VPO_SWAPINPROG | 2532 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2533 ("page %p has unexpected oflags", m)); 2534 /* Don't care: VPO_NOSYNC. */ 2535 if (m->valid != 0) { 2536 /* 2537 * First, try to allocate a new page 2538 * that is above "high". Failing 2539 * that, try to allocate a new page 2540 * that is below "m_run". Allocate 2541 * the new page between the end of 2542 * "m_run" and "high" only as a last 2543 * resort. 2544 */ 2545 req = req_class | VM_ALLOC_NOOBJ; 2546 if ((m->flags & PG_NODUMP) != 0) 2547 req |= VM_ALLOC_NODUMP; 2548 if (trunc_page(high) != 2549 ~(vm_paddr_t)PAGE_MASK) { 2550 m_new = vm_page_alloc_contig( 2551 NULL, 0, req, 1, 2552 round_page(high), 2553 ~(vm_paddr_t)0, 2554 PAGE_SIZE, 0, 2555 VM_MEMATTR_DEFAULT); 2556 } else 2557 m_new = NULL; 2558 if (m_new == NULL) { 2559 pa = VM_PAGE_TO_PHYS(m_run); 2560 m_new = vm_page_alloc_contig( 2561 NULL, 0, req, 1, 2562 0, pa - 1, PAGE_SIZE, 0, 2563 VM_MEMATTR_DEFAULT); 2564 } 2565 if (m_new == NULL) { 2566 pa += ptoa(npages); 2567 m_new = vm_page_alloc_contig( 2568 NULL, 0, req, 1, 2569 pa, high, PAGE_SIZE, 0, 2570 VM_MEMATTR_DEFAULT); 2571 } 2572 if (m_new == NULL) { 2573 error = ENOMEM; 2574 goto unlock; 2575 } 2576 KASSERT(!vm_page_wired(m_new), 2577 ("page %p is wired", m_new)); 2578 2579 /* 2580 * Replace "m" with the new page. For 2581 * vm_page_replace(), "m" must be busy 2582 * and dequeued. Finally, change "m" 2583 * as if vm_page_free() was called. 2584 */ 2585 if (object->ref_count != 0) 2586 pmap_remove_all(m); 2587 m_new->aflags = m->aflags & 2588 ~PGA_QUEUE_STATE_MASK; 2589 KASSERT(m_new->oflags == VPO_UNMANAGED, 2590 ("page %p is managed", m_new)); 2591 m_new->oflags = m->oflags & VPO_NOSYNC; 2592 pmap_copy_page(m, m_new); 2593 m_new->valid = m->valid; 2594 m_new->dirty = m->dirty; 2595 m->flags &= ~PG_ZERO; 2596 vm_page_xbusy(m); 2597 vm_page_dequeue(m); 2598 vm_page_replace_checked(m_new, object, 2599 m->pindex, m); 2600 if (vm_page_free_prep(m)) 2601 SLIST_INSERT_HEAD(&free, m, 2602 plinks.s.ss); 2603 2604 /* 2605 * The new page must be deactivated 2606 * before the object is unlocked. 2607 */ 2608 vm_page_change_lock(m_new, &m_mtx); 2609 vm_page_deactivate(m_new); 2610 } else { 2611 m->flags &= ~PG_ZERO; 2612 vm_page_dequeue(m); 2613 if (vm_page_free_prep(m)) 2614 SLIST_INSERT_HEAD(&free, m, 2615 plinks.s.ss); 2616 KASSERT(m->dirty == 0, 2617 ("page %p is dirty", m)); 2618 } 2619 } else 2620 error = EBUSY; 2621 unlock: 2622 VM_OBJECT_WUNLOCK(object); 2623 } else { 2624 MPASS(vm_phys_domain(m) == domain); 2625 vmd = VM_DOMAIN(domain); 2626 vm_domain_free_lock(vmd); 2627 order = m->order; 2628 if (order < VM_NFREEORDER) { 2629 /* 2630 * The page is enqueued in the physical memory 2631 * allocator's free page queues. Moreover, it 2632 * is the first page in a power-of-two-sized 2633 * run of contiguous free pages. Jump ahead 2634 * to the last page within that run, and 2635 * continue from there. 2636 */ 2637 m += (1 << order) - 1; 2638 } 2639 #if VM_NRESERVLEVEL > 0 2640 else if (vm_reserv_is_page_free(m)) 2641 order = 0; 2642 #endif 2643 vm_domain_free_unlock(vmd); 2644 if (order == VM_NFREEORDER) 2645 error = EINVAL; 2646 } 2647 } 2648 if (m_mtx != NULL) 2649 mtx_unlock(m_mtx); 2650 if ((m = SLIST_FIRST(&free)) != NULL) { 2651 int cnt; 2652 2653 vmd = VM_DOMAIN(domain); 2654 cnt = 0; 2655 vm_domain_free_lock(vmd); 2656 do { 2657 MPASS(vm_phys_domain(m) == domain); 2658 SLIST_REMOVE_HEAD(&free, plinks.s.ss); 2659 vm_phys_free_pages(m, 0); 2660 cnt++; 2661 } while ((m = SLIST_FIRST(&free)) != NULL); 2662 vm_domain_free_unlock(vmd); 2663 vm_domain_freecnt_inc(vmd, cnt); 2664 } 2665 return (error); 2666 } 2667 2668 #define NRUNS 16 2669 2670 CTASSERT(powerof2(NRUNS)); 2671 2672 #define RUN_INDEX(count) ((count) & (NRUNS - 1)) 2673 2674 #define MIN_RECLAIM 8 2675 2676 /* 2677 * vm_page_reclaim_contig: 2678 * 2679 * Reclaim allocated, contiguous physical memory satisfying the specified 2680 * conditions by relocating the virtual pages using that physical memory. 2681 * Returns true if reclamation is successful and false otherwise. Since 2682 * relocation requires the allocation of physical pages, reclamation may 2683 * fail due to a shortage of free pages. When reclamation fails, callers 2684 * are expected to perform vm_wait() before retrying a failed allocation 2685 * operation, e.g., vm_page_alloc_contig(). 2686 * 2687 * The caller must always specify an allocation class through "req". 2688 * 2689 * allocation classes: 2690 * VM_ALLOC_NORMAL normal process request 2691 * VM_ALLOC_SYSTEM system *really* needs a page 2692 * VM_ALLOC_INTERRUPT interrupt time request 2693 * 2694 * The optional allocation flags are ignored. 2695 * 2696 * "npages" must be greater than zero. Both "alignment" and "boundary" 2697 * must be a power of two. 2698 */ 2699 bool 2700 vm_page_reclaim_contig_domain(int domain, int req, u_long npages, 2701 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 2702 { 2703 struct vm_domain *vmd; 2704 vm_paddr_t curr_low; 2705 vm_page_t m_run, m_runs[NRUNS]; 2706 u_long count, reclaimed; 2707 int error, i, options, req_class; 2708 2709 KASSERT(npages > 0, ("npages is 0")); 2710 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2711 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2712 req_class = req & VM_ALLOC_CLASS_MASK; 2713 2714 /* 2715 * The page daemon is allowed to dig deeper into the free page list. 2716 */ 2717 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2718 req_class = VM_ALLOC_SYSTEM; 2719 2720 /* 2721 * Return if the number of free pages cannot satisfy the requested 2722 * allocation. 2723 */ 2724 vmd = VM_DOMAIN(domain); 2725 count = vmd->vmd_free_count; 2726 if (count < npages + vmd->vmd_free_reserved || (count < npages + 2727 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || 2728 (count < npages && req_class == VM_ALLOC_INTERRUPT)) 2729 return (false); 2730 2731 /* 2732 * Scan up to three times, relaxing the restrictions ("options") on 2733 * the reclamation of reservations and superpages each time. 2734 */ 2735 for (options = VPSC_NORESERV;;) { 2736 /* 2737 * Find the highest runs that satisfy the given constraints 2738 * and restrictions, and record them in "m_runs". 2739 */ 2740 curr_low = low; 2741 count = 0; 2742 for (;;) { 2743 m_run = vm_phys_scan_contig(domain, npages, curr_low, 2744 high, alignment, boundary, options); 2745 if (m_run == NULL) 2746 break; 2747 curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages); 2748 m_runs[RUN_INDEX(count)] = m_run; 2749 count++; 2750 } 2751 2752 /* 2753 * Reclaim the highest runs in LIFO (descending) order until 2754 * the number of reclaimed pages, "reclaimed", is at least 2755 * MIN_RECLAIM. Reset "reclaimed" each time because each 2756 * reclamation is idempotent, and runs will (likely) recur 2757 * from one scan to the next as restrictions are relaxed. 2758 */ 2759 reclaimed = 0; 2760 for (i = 0; count > 0 && i < NRUNS; i++) { 2761 count--; 2762 m_run = m_runs[RUN_INDEX(count)]; 2763 error = vm_page_reclaim_run(req_class, domain, npages, 2764 m_run, high); 2765 if (error == 0) { 2766 reclaimed += npages; 2767 if (reclaimed >= MIN_RECLAIM) 2768 return (true); 2769 } 2770 } 2771 2772 /* 2773 * Either relax the restrictions on the next scan or return if 2774 * the last scan had no restrictions. 2775 */ 2776 if (options == VPSC_NORESERV) 2777 options = VPSC_NOSUPER; 2778 else if (options == VPSC_NOSUPER) 2779 options = VPSC_ANY; 2780 else if (options == VPSC_ANY) 2781 return (reclaimed != 0); 2782 } 2783 } 2784 2785 bool 2786 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, 2787 u_long alignment, vm_paddr_t boundary) 2788 { 2789 struct vm_domainset_iter di; 2790 int domain; 2791 bool ret; 2792 2793 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2794 do { 2795 ret = vm_page_reclaim_contig_domain(domain, req, npages, low, 2796 high, alignment, boundary); 2797 if (ret) 2798 break; 2799 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2800 2801 return (ret); 2802 } 2803 2804 /* 2805 * Set the domain in the appropriate page level domainset. 2806 */ 2807 void 2808 vm_domain_set(struct vm_domain *vmd) 2809 { 2810 2811 mtx_lock(&vm_domainset_lock); 2812 if (!vmd->vmd_minset && vm_paging_min(vmd)) { 2813 vmd->vmd_minset = 1; 2814 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains); 2815 } 2816 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) { 2817 vmd->vmd_severeset = 1; 2818 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains); 2819 } 2820 mtx_unlock(&vm_domainset_lock); 2821 } 2822 2823 /* 2824 * Clear the domain from the appropriate page level domainset. 2825 */ 2826 void 2827 vm_domain_clear(struct vm_domain *vmd) 2828 { 2829 2830 mtx_lock(&vm_domainset_lock); 2831 if (vmd->vmd_minset && !vm_paging_min(vmd)) { 2832 vmd->vmd_minset = 0; 2833 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains); 2834 if (vm_min_waiters != 0) { 2835 vm_min_waiters = 0; 2836 wakeup(&vm_min_domains); 2837 } 2838 } 2839 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) { 2840 vmd->vmd_severeset = 0; 2841 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains); 2842 if (vm_severe_waiters != 0) { 2843 vm_severe_waiters = 0; 2844 wakeup(&vm_severe_domains); 2845 } 2846 } 2847 2848 /* 2849 * If pageout daemon needs pages, then tell it that there are 2850 * some free. 2851 */ 2852 if (vmd->vmd_pageout_pages_needed && 2853 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) { 2854 wakeup(&vmd->vmd_pageout_pages_needed); 2855 vmd->vmd_pageout_pages_needed = 0; 2856 } 2857 2858 /* See comments in vm_wait_doms(). */ 2859 if (vm_pageproc_waiters) { 2860 vm_pageproc_waiters = 0; 2861 wakeup(&vm_pageproc_waiters); 2862 } 2863 mtx_unlock(&vm_domainset_lock); 2864 } 2865 2866 /* 2867 * Wait for free pages to exceed the min threshold globally. 2868 */ 2869 void 2870 vm_wait_min(void) 2871 { 2872 2873 mtx_lock(&vm_domainset_lock); 2874 while (vm_page_count_min()) { 2875 vm_min_waiters++; 2876 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0); 2877 } 2878 mtx_unlock(&vm_domainset_lock); 2879 } 2880 2881 /* 2882 * Wait for free pages to exceed the severe threshold globally. 2883 */ 2884 void 2885 vm_wait_severe(void) 2886 { 2887 2888 mtx_lock(&vm_domainset_lock); 2889 while (vm_page_count_severe()) { 2890 vm_severe_waiters++; 2891 msleep(&vm_severe_domains, &vm_domainset_lock, PVM, 2892 "vmwait", 0); 2893 } 2894 mtx_unlock(&vm_domainset_lock); 2895 } 2896 2897 u_int 2898 vm_wait_count(void) 2899 { 2900 2901 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters); 2902 } 2903 2904 void 2905 vm_wait_doms(const domainset_t *wdoms) 2906 { 2907 2908 /* 2909 * We use racey wakeup synchronization to avoid expensive global 2910 * locking for the pageproc when sleeping with a non-specific vm_wait. 2911 * To handle this, we only sleep for one tick in this instance. It 2912 * is expected that most allocations for the pageproc will come from 2913 * kmem or vm_page_grab* which will use the more specific and 2914 * race-free vm_wait_domain(). 2915 */ 2916 if (curproc == pageproc) { 2917 mtx_lock(&vm_domainset_lock); 2918 vm_pageproc_waiters++; 2919 msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP, 2920 "pageprocwait", 1); 2921 } else { 2922 /* 2923 * XXX Ideally we would wait only until the allocation could 2924 * be satisfied. This condition can cause new allocators to 2925 * consume all freed pages while old allocators wait. 2926 */ 2927 mtx_lock(&vm_domainset_lock); 2928 if (vm_page_count_min_set(wdoms)) { 2929 vm_min_waiters++; 2930 msleep(&vm_min_domains, &vm_domainset_lock, 2931 PVM | PDROP, "vmwait", 0); 2932 } else 2933 mtx_unlock(&vm_domainset_lock); 2934 } 2935 } 2936 2937 /* 2938 * vm_wait_domain: 2939 * 2940 * Sleep until free pages are available for allocation. 2941 * - Called in various places after failed memory allocations. 2942 */ 2943 void 2944 vm_wait_domain(int domain) 2945 { 2946 struct vm_domain *vmd; 2947 domainset_t wdom; 2948 2949 vmd = VM_DOMAIN(domain); 2950 vm_domain_free_assert_unlocked(vmd); 2951 2952 if (curproc == pageproc) { 2953 mtx_lock(&vm_domainset_lock); 2954 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) { 2955 vmd->vmd_pageout_pages_needed = 1; 2956 msleep(&vmd->vmd_pageout_pages_needed, 2957 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0); 2958 } else 2959 mtx_unlock(&vm_domainset_lock); 2960 } else { 2961 if (pageproc == NULL) 2962 panic("vm_wait in early boot"); 2963 DOMAINSET_ZERO(&wdom); 2964 DOMAINSET_SET(vmd->vmd_domain, &wdom); 2965 vm_wait_doms(&wdom); 2966 } 2967 } 2968 2969 /* 2970 * vm_wait: 2971 * 2972 * Sleep until free pages are available for allocation in the 2973 * affinity domains of the obj. If obj is NULL, the domain set 2974 * for the calling thread is used. 2975 * Called in various places after failed memory allocations. 2976 */ 2977 void 2978 vm_wait(vm_object_t obj) 2979 { 2980 struct domainset *d; 2981 2982 d = NULL; 2983 2984 /* 2985 * Carefully fetch pointers only once: the struct domainset 2986 * itself is ummutable but the pointer might change. 2987 */ 2988 if (obj != NULL) 2989 d = obj->domain.dr_policy; 2990 if (d == NULL) 2991 d = curthread->td_domain.dr_policy; 2992 2993 vm_wait_doms(&d->ds_mask); 2994 } 2995 2996 /* 2997 * vm_domain_alloc_fail: 2998 * 2999 * Called when a page allocation function fails. Informs the 3000 * pagedaemon and performs the requested wait. Requires the 3001 * domain_free and object lock on entry. Returns with the 3002 * object lock held and free lock released. Returns an error when 3003 * retry is necessary. 3004 * 3005 */ 3006 static int 3007 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req) 3008 { 3009 3010 vm_domain_free_assert_unlocked(vmd); 3011 3012 atomic_add_int(&vmd->vmd_pageout_deficit, 3013 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 3014 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) { 3015 if (object != NULL) 3016 VM_OBJECT_WUNLOCK(object); 3017 vm_wait_domain(vmd->vmd_domain); 3018 if (object != NULL) 3019 VM_OBJECT_WLOCK(object); 3020 if (req & VM_ALLOC_WAITOK) 3021 return (EAGAIN); 3022 } 3023 3024 return (0); 3025 } 3026 3027 /* 3028 * vm_waitpfault: 3029 * 3030 * Sleep until free pages are available for allocation. 3031 * - Called only in vm_fault so that processes page faulting 3032 * can be easily tracked. 3033 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 3034 * processes will be able to grab memory first. Do not change 3035 * this balance without careful testing first. 3036 */ 3037 void 3038 vm_waitpfault(struct domainset *dset, int timo) 3039 { 3040 3041 /* 3042 * XXX Ideally we would wait only until the allocation could 3043 * be satisfied. This condition can cause new allocators to 3044 * consume all freed pages while old allocators wait. 3045 */ 3046 mtx_lock(&vm_domainset_lock); 3047 if (vm_page_count_min_set(&dset->ds_mask)) { 3048 vm_min_waiters++; 3049 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP, 3050 "pfault", timo); 3051 } else 3052 mtx_unlock(&vm_domainset_lock); 3053 } 3054 3055 static struct vm_pagequeue * 3056 vm_page_pagequeue(vm_page_t m) 3057 { 3058 3059 uint8_t queue; 3060 3061 if ((queue = atomic_load_8(&m->queue)) == PQ_NONE) 3062 return (NULL); 3063 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]); 3064 } 3065 3066 static inline void 3067 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m) 3068 { 3069 struct vm_domain *vmd; 3070 uint8_t qflags; 3071 3072 CRITICAL_ASSERT(curthread); 3073 vm_pagequeue_assert_locked(pq); 3074 3075 /* 3076 * The page daemon is allowed to set m->queue = PQ_NONE without 3077 * the page queue lock held. In this case it is about to free the page, 3078 * which must not have any queue state. 3079 */ 3080 qflags = atomic_load_8(&m->aflags); 3081 KASSERT(pq == vm_page_pagequeue(m) || 3082 (qflags & PGA_QUEUE_STATE_MASK) == 0, 3083 ("page %p doesn't belong to queue %p but has aflags %#x", 3084 m, pq, qflags)); 3085 3086 if ((qflags & PGA_DEQUEUE) != 0) { 3087 if (__predict_true((qflags & PGA_ENQUEUED) != 0)) 3088 vm_pagequeue_remove(pq, m); 3089 vm_page_dequeue_complete(m); 3090 } else if ((qflags & (PGA_REQUEUE | PGA_REQUEUE_HEAD)) != 0) { 3091 if ((qflags & PGA_ENQUEUED) != 0) 3092 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3093 else { 3094 vm_pagequeue_cnt_inc(pq); 3095 vm_page_aflag_set(m, PGA_ENQUEUED); 3096 } 3097 3098 /* 3099 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. 3100 * In particular, if both flags are set in close succession, 3101 * only PGA_REQUEUE_HEAD will be applied, even if it was set 3102 * first. 3103 */ 3104 if ((qflags & PGA_REQUEUE_HEAD) != 0) { 3105 KASSERT(m->queue == PQ_INACTIVE, 3106 ("head enqueue not supported for page %p", m)); 3107 vmd = vm_pagequeue_domain(m); 3108 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 3109 } else 3110 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3111 3112 vm_page_aflag_clear(m, qflags & (PGA_REQUEUE | 3113 PGA_REQUEUE_HEAD)); 3114 } 3115 } 3116 3117 static void 3118 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq, 3119 uint8_t queue) 3120 { 3121 vm_page_t m; 3122 int i; 3123 3124 for (i = 0; i < bq->bq_cnt; i++) { 3125 m = bq->bq_pa[i]; 3126 if (__predict_false(m->queue != queue)) 3127 continue; 3128 vm_pqbatch_process_page(pq, m); 3129 } 3130 vm_batchqueue_init(bq); 3131 } 3132 3133 /* 3134 * vm_page_pqbatch_submit: [ internal use only ] 3135 * 3136 * Enqueue a page in the specified page queue's batched work queue. 3137 * The caller must have encoded the requested operation in the page 3138 * structure's aflags field. 3139 */ 3140 void 3141 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue) 3142 { 3143 struct vm_batchqueue *bq; 3144 struct vm_pagequeue *pq; 3145 int domain; 3146 3147 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3148 ("page %p is unmanaged", m)); 3149 KASSERT(mtx_owned(vm_page_lockptr(m)) || 3150 (m->object == NULL && (m->aflags & PGA_DEQUEUE) != 0), 3151 ("missing synchronization for page %p", m)); 3152 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue)); 3153 3154 domain = vm_phys_domain(m); 3155 pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue]; 3156 3157 critical_enter(); 3158 bq = DPCPU_PTR(pqbatch[domain][queue]); 3159 if (vm_batchqueue_insert(bq, m)) { 3160 critical_exit(); 3161 return; 3162 } 3163 if (!vm_pagequeue_trylock(pq)) { 3164 critical_exit(); 3165 vm_pagequeue_lock(pq); 3166 critical_enter(); 3167 bq = DPCPU_PTR(pqbatch[domain][queue]); 3168 } 3169 vm_pqbatch_process(pq, bq, queue); 3170 3171 /* 3172 * The page may have been logically dequeued before we acquired the 3173 * page queue lock. In this case, since we either hold the page lock 3174 * or the page is being freed, a different thread cannot be concurrently 3175 * enqueuing the page. 3176 */ 3177 if (__predict_true(m->queue == queue)) 3178 vm_pqbatch_process_page(pq, m); 3179 else { 3180 KASSERT(m->queue == PQ_NONE, 3181 ("invalid queue transition for page %p", m)); 3182 KASSERT((m->aflags & PGA_ENQUEUED) == 0, 3183 ("page %p is enqueued with invalid queue index", m)); 3184 } 3185 vm_pagequeue_unlock(pq); 3186 critical_exit(); 3187 } 3188 3189 /* 3190 * vm_page_pqbatch_drain: [ internal use only ] 3191 * 3192 * Force all per-CPU page queue batch queues to be drained. This is 3193 * intended for use in severe memory shortages, to ensure that pages 3194 * do not remain stuck in the batch queues. 3195 */ 3196 void 3197 vm_page_pqbatch_drain(void) 3198 { 3199 struct thread *td; 3200 struct vm_domain *vmd; 3201 struct vm_pagequeue *pq; 3202 int cpu, domain, queue; 3203 3204 td = curthread; 3205 CPU_FOREACH(cpu) { 3206 thread_lock(td); 3207 sched_bind(td, cpu); 3208 thread_unlock(td); 3209 3210 for (domain = 0; domain < vm_ndomains; domain++) { 3211 vmd = VM_DOMAIN(domain); 3212 for (queue = 0; queue < PQ_COUNT; queue++) { 3213 pq = &vmd->vmd_pagequeues[queue]; 3214 vm_pagequeue_lock(pq); 3215 critical_enter(); 3216 vm_pqbatch_process(pq, 3217 DPCPU_PTR(pqbatch[domain][queue]), queue); 3218 critical_exit(); 3219 vm_pagequeue_unlock(pq); 3220 } 3221 } 3222 } 3223 thread_lock(td); 3224 sched_unbind(td); 3225 thread_unlock(td); 3226 } 3227 3228 /* 3229 * Complete the logical removal of a page from a page queue. We must be 3230 * careful to synchronize with the page daemon, which may be concurrently 3231 * examining the page with only the page lock held. The page must not be 3232 * in a state where it appears to be logically enqueued. 3233 */ 3234 static void 3235 vm_page_dequeue_complete(vm_page_t m) 3236 { 3237 3238 m->queue = PQ_NONE; 3239 atomic_thread_fence_rel(); 3240 vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK); 3241 } 3242 3243 /* 3244 * vm_page_dequeue_deferred: [ internal use only ] 3245 * 3246 * Request removal of the given page from its current page 3247 * queue. Physical removal from the queue may be deferred 3248 * indefinitely. 3249 * 3250 * The page must be locked. 3251 */ 3252 void 3253 vm_page_dequeue_deferred(vm_page_t m) 3254 { 3255 uint8_t queue; 3256 3257 vm_page_assert_locked(m); 3258 3259 if ((queue = vm_page_queue(m)) == PQ_NONE) 3260 return; 3261 3262 /* 3263 * Set PGA_DEQUEUE if it is not already set to handle a concurrent call 3264 * to vm_page_dequeue_deferred_free(). In particular, avoid modifying 3265 * the page's queue state once vm_page_dequeue_deferred_free() has been 3266 * called. In the event of a race, two batch queue entries for the page 3267 * will be created, but the second will have no effect. 3268 */ 3269 if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE, PGA_DEQUEUE)) 3270 vm_page_pqbatch_submit(m, queue); 3271 } 3272 3273 /* 3274 * A variant of vm_page_dequeue_deferred() that does not assert the page 3275 * lock and is only to be called from vm_page_free_prep(). Because the 3276 * page is being freed, we can assume that nothing other than the page 3277 * daemon is scheduling queue operations on this page, so we get for 3278 * free the mutual exclusion that is otherwise provided by the page lock. 3279 * To handle races, the page daemon must take care to atomically check 3280 * for PGA_DEQUEUE when updating queue state. 3281 */ 3282 static void 3283 vm_page_dequeue_deferred_free(vm_page_t m) 3284 { 3285 uint8_t queue; 3286 3287 KASSERT(m->object == NULL, ("page %p has an object reference", m)); 3288 3289 if ((m->aflags & PGA_DEQUEUE) != 0) 3290 return; 3291 atomic_thread_fence_acq(); 3292 if ((queue = m->queue) == PQ_NONE) 3293 return; 3294 vm_page_aflag_set(m, PGA_DEQUEUE); 3295 vm_page_pqbatch_submit(m, queue); 3296 } 3297 3298 /* 3299 * vm_page_dequeue: 3300 * 3301 * Remove the page from whichever page queue it's in, if any. 3302 * The page must either be locked or unallocated. This constraint 3303 * ensures that the queue state of the page will remain consistent 3304 * after this function returns. 3305 */ 3306 void 3307 vm_page_dequeue(vm_page_t m) 3308 { 3309 struct vm_pagequeue *pq, *pq1; 3310 uint8_t aflags; 3311 3312 KASSERT(mtx_owned(vm_page_lockptr(m)) || m->object == NULL, 3313 ("page %p is allocated and unlocked", m)); 3314 3315 for (pq = vm_page_pagequeue(m);; pq = pq1) { 3316 if (pq == NULL) { 3317 /* 3318 * A thread may be concurrently executing 3319 * vm_page_dequeue_complete(). Ensure that all queue 3320 * state is cleared before we return. 3321 */ 3322 aflags = atomic_load_8(&m->aflags); 3323 if ((aflags & PGA_QUEUE_STATE_MASK) == 0) 3324 return; 3325 KASSERT((aflags & PGA_DEQUEUE) != 0, 3326 ("page %p has unexpected queue state flags %#x", 3327 m, aflags)); 3328 3329 /* 3330 * Busy wait until the thread updating queue state is 3331 * finished. Such a thread must be executing in a 3332 * critical section. 3333 */ 3334 cpu_spinwait(); 3335 pq1 = vm_page_pagequeue(m); 3336 continue; 3337 } 3338 vm_pagequeue_lock(pq); 3339 if ((pq1 = vm_page_pagequeue(m)) == pq) 3340 break; 3341 vm_pagequeue_unlock(pq); 3342 } 3343 KASSERT(pq == vm_page_pagequeue(m), 3344 ("%s: page %p migrated directly between queues", __func__, m)); 3345 KASSERT((m->aflags & PGA_DEQUEUE) != 0 || 3346 mtx_owned(vm_page_lockptr(m)), 3347 ("%s: queued unlocked page %p", __func__, m)); 3348 3349 if ((m->aflags & PGA_ENQUEUED) != 0) 3350 vm_pagequeue_remove(pq, m); 3351 vm_page_dequeue_complete(m); 3352 vm_pagequeue_unlock(pq); 3353 } 3354 3355 /* 3356 * Schedule the given page for insertion into the specified page queue. 3357 * Physical insertion of the page may be deferred indefinitely. 3358 */ 3359 static void 3360 vm_page_enqueue(vm_page_t m, uint8_t queue) 3361 { 3362 3363 vm_page_assert_locked(m); 3364 KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0, 3365 ("%s: page %p is already enqueued", __func__, m)); 3366 3367 m->queue = queue; 3368 if ((m->aflags & PGA_REQUEUE) == 0) 3369 vm_page_aflag_set(m, PGA_REQUEUE); 3370 vm_page_pqbatch_submit(m, queue); 3371 } 3372 3373 /* 3374 * vm_page_requeue: [ internal use only ] 3375 * 3376 * Schedule a requeue of the given page. 3377 * 3378 * The page must be locked. 3379 */ 3380 void 3381 vm_page_requeue(vm_page_t m) 3382 { 3383 3384 vm_page_assert_locked(m); 3385 KASSERT(vm_page_queue(m) != PQ_NONE, 3386 ("%s: page %p is not logically enqueued", __func__, m)); 3387 3388 if ((m->aflags & PGA_REQUEUE) == 0) 3389 vm_page_aflag_set(m, PGA_REQUEUE); 3390 vm_page_pqbatch_submit(m, atomic_load_8(&m->queue)); 3391 } 3392 3393 /* 3394 * vm_page_swapqueue: [ internal use only ] 3395 * 3396 * Move the page from one queue to another, or to the tail of its 3397 * current queue, in the face of a possible concurrent call to 3398 * vm_page_dequeue_deferred_free(). 3399 */ 3400 void 3401 vm_page_swapqueue(vm_page_t m, uint8_t oldq, uint8_t newq) 3402 { 3403 struct vm_pagequeue *pq; 3404 3405 KASSERT(oldq < PQ_COUNT && newq < PQ_COUNT && oldq != newq, 3406 ("vm_page_swapqueue: invalid queues (%d, %d)", oldq, newq)); 3407 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3408 ("vm_page_swapqueue: page %p is unmanaged", m)); 3409 vm_page_assert_locked(m); 3410 3411 /* 3412 * Atomically update the queue field and set PGA_REQUEUE while 3413 * ensuring that PGA_DEQUEUE has not been set. 3414 */ 3415 pq = &vm_pagequeue_domain(m)->vmd_pagequeues[oldq]; 3416 vm_pagequeue_lock(pq); 3417 if (!vm_page_pqstate_cmpset(m, oldq, newq, PGA_DEQUEUE, PGA_REQUEUE)) { 3418 vm_pagequeue_unlock(pq); 3419 return; 3420 } 3421 if ((m->aflags & PGA_ENQUEUED) != 0) { 3422 vm_pagequeue_remove(pq, m); 3423 vm_page_aflag_clear(m, PGA_ENQUEUED); 3424 } 3425 vm_pagequeue_unlock(pq); 3426 vm_page_pqbatch_submit(m, newq); 3427 } 3428 3429 /* 3430 * vm_page_free_prep: 3431 * 3432 * Prepares the given page to be put on the free list, 3433 * disassociating it from any VM object. The caller may return 3434 * the page to the free list only if this function returns true. 3435 * 3436 * The object must be locked. The page must be locked if it is 3437 * managed. 3438 */ 3439 bool 3440 vm_page_free_prep(vm_page_t m) 3441 { 3442 3443 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP) 3444 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) { 3445 uint64_t *p; 3446 int i; 3447 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 3448 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++) 3449 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx", 3450 m, i, (uintmax_t)*p)); 3451 } 3452 #endif 3453 if ((m->oflags & VPO_UNMANAGED) == 0) { 3454 vm_page_lock_assert(m, MA_OWNED); 3455 KASSERT(!pmap_page_is_mapped(m), 3456 ("vm_page_free_prep: freeing mapped page %p", m)); 3457 } else 3458 KASSERT(m->queue == PQ_NONE, 3459 ("vm_page_free_prep: unmanaged page %p is queued", m)); 3460 VM_CNT_INC(v_tfree); 3461 3462 if (vm_page_sbusied(m)) 3463 panic("vm_page_free_prep: freeing busy page %p", m); 3464 3465 if (m->object != NULL) 3466 (void)vm_page_remove(m); 3467 3468 /* 3469 * If fictitious remove object association and 3470 * return. 3471 */ 3472 if ((m->flags & PG_FICTITIOUS) != 0) { 3473 KASSERT(m->wire_count == 1, 3474 ("fictitious page %p is not wired", m)); 3475 KASSERT(m->queue == PQ_NONE, 3476 ("fictitious page %p is queued", m)); 3477 return (false); 3478 } 3479 3480 /* 3481 * Pages need not be dequeued before they are returned to the physical 3482 * memory allocator, but they must at least be marked for a deferred 3483 * dequeue. 3484 */ 3485 if ((m->oflags & VPO_UNMANAGED) == 0) 3486 vm_page_dequeue_deferred_free(m); 3487 3488 m->valid = 0; 3489 vm_page_undirty(m); 3490 3491 if (vm_page_wired(m) != 0) 3492 panic("vm_page_free_prep: freeing wired page %p", m); 3493 3494 /* 3495 * Restore the default memory attribute to the page. 3496 */ 3497 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 3498 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 3499 3500 #if VM_NRESERVLEVEL > 0 3501 /* 3502 * Determine whether the page belongs to a reservation. If the page was 3503 * allocated from a per-CPU cache, it cannot belong to a reservation, so 3504 * as an optimization, we avoid the check in that case. 3505 */ 3506 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m)) 3507 return (false); 3508 #endif 3509 3510 return (true); 3511 } 3512 3513 /* 3514 * vm_page_free_toq: 3515 * 3516 * Returns the given page to the free list, disassociating it 3517 * from any VM object. 3518 * 3519 * The object must be locked. The page must be locked if it is 3520 * managed. 3521 */ 3522 void 3523 vm_page_free_toq(vm_page_t m) 3524 { 3525 struct vm_domain *vmd; 3526 uma_zone_t zone; 3527 3528 if (!vm_page_free_prep(m)) 3529 return; 3530 3531 vmd = vm_pagequeue_domain(m); 3532 zone = vmd->vmd_pgcache[m->pool].zone; 3533 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) { 3534 uma_zfree(zone, m); 3535 return; 3536 } 3537 vm_domain_free_lock(vmd); 3538 vm_phys_free_pages(m, 0); 3539 vm_domain_free_unlock(vmd); 3540 vm_domain_freecnt_inc(vmd, 1); 3541 } 3542 3543 /* 3544 * vm_page_free_pages_toq: 3545 * 3546 * Returns a list of pages to the free list, disassociating it 3547 * from any VM object. In other words, this is equivalent to 3548 * calling vm_page_free_toq() for each page of a list of VM objects. 3549 * 3550 * The objects must be locked. The pages must be locked if it is 3551 * managed. 3552 */ 3553 void 3554 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count) 3555 { 3556 vm_page_t m; 3557 int count; 3558 3559 if (SLIST_EMPTY(free)) 3560 return; 3561 3562 count = 0; 3563 while ((m = SLIST_FIRST(free)) != NULL) { 3564 count++; 3565 SLIST_REMOVE_HEAD(free, plinks.s.ss); 3566 vm_page_free_toq(m); 3567 } 3568 3569 if (update_wire_count) 3570 vm_wire_sub(count); 3571 } 3572 3573 /* 3574 * vm_page_wire: 3575 * 3576 * Mark this page as wired down. If the page is fictitious, then 3577 * its wire count must remain one. 3578 * 3579 * The page must be locked. 3580 */ 3581 void 3582 vm_page_wire(vm_page_t m) 3583 { 3584 3585 vm_page_assert_locked(m); 3586 if ((m->flags & PG_FICTITIOUS) != 0) { 3587 KASSERT(m->wire_count == 1, 3588 ("vm_page_wire: fictitious page %p's wire count isn't one", 3589 m)); 3590 return; 3591 } 3592 if (!vm_page_wired(m)) { 3593 KASSERT((m->oflags & VPO_UNMANAGED) == 0 || 3594 m->queue == PQ_NONE, 3595 ("vm_page_wire: unmanaged page %p is queued", m)); 3596 vm_wire_add(1); 3597 } 3598 m->wire_count++; 3599 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 3600 } 3601 3602 /* 3603 * vm_page_unwire: 3604 * 3605 * Release one wiring of the specified page, potentially allowing it to be 3606 * paged out. Returns TRUE if the number of wirings transitions to zero and 3607 * FALSE otherwise. 3608 * 3609 * Only managed pages belonging to an object can be paged out. If the number 3610 * of wirings transitions to zero and the page is eligible for page out, then 3611 * the page is added to the specified paging queue (unless PQ_NONE is 3612 * specified, in which case the page is dequeued if it belongs to a paging 3613 * queue). 3614 * 3615 * If a page is fictitious, then its wire count must always be one. 3616 * 3617 * A managed page must be locked. 3618 */ 3619 bool 3620 vm_page_unwire(vm_page_t m, uint8_t queue) 3621 { 3622 bool unwired; 3623 3624 KASSERT(queue < PQ_COUNT || queue == PQ_NONE, 3625 ("vm_page_unwire: invalid queue %u request for page %p", 3626 queue, m)); 3627 if ((m->oflags & VPO_UNMANAGED) == 0) 3628 vm_page_assert_locked(m); 3629 3630 unwired = vm_page_unwire_noq(m); 3631 if (!unwired || (m->oflags & VPO_UNMANAGED) != 0 || m->object == NULL) 3632 return (unwired); 3633 3634 if (vm_page_queue(m) == queue) { 3635 if (queue == PQ_ACTIVE) 3636 vm_page_reference(m); 3637 else if (queue != PQ_NONE) 3638 vm_page_requeue(m); 3639 } else { 3640 vm_page_dequeue(m); 3641 if (queue != PQ_NONE) { 3642 vm_page_enqueue(m, queue); 3643 if (queue == PQ_ACTIVE) 3644 /* Initialize act_count. */ 3645 vm_page_activate(m); 3646 } 3647 } 3648 return (unwired); 3649 } 3650 3651 /* 3652 * 3653 * vm_page_unwire_noq: 3654 * 3655 * Unwire a page without (re-)inserting it into a page queue. It is up 3656 * to the caller to enqueue, requeue, or free the page as appropriate. 3657 * In most cases, vm_page_unwire() should be used instead. 3658 */ 3659 bool 3660 vm_page_unwire_noq(vm_page_t m) 3661 { 3662 3663 if ((m->oflags & VPO_UNMANAGED) == 0) 3664 vm_page_assert_locked(m); 3665 if ((m->flags & PG_FICTITIOUS) != 0) { 3666 KASSERT(m->wire_count == 1, 3667 ("vm_page_unwire: fictitious page %p's wire count isn't one", m)); 3668 return (false); 3669 } 3670 if (!vm_page_wired(m)) 3671 panic("vm_page_unwire: page %p's wire count is zero", m); 3672 m->wire_count--; 3673 if (m->wire_count == 0) { 3674 vm_wire_sub(1); 3675 return (true); 3676 } else 3677 return (false); 3678 } 3679 3680 /* 3681 * vm_page_activate: 3682 * 3683 * Put the specified page on the active list (if appropriate). 3684 * Ensure that act_count is at least ACT_INIT but do not otherwise 3685 * mess with it. 3686 * 3687 * The page must be locked. 3688 */ 3689 void 3690 vm_page_activate(vm_page_t m) 3691 { 3692 3693 vm_page_assert_locked(m); 3694 3695 if (vm_page_wired(m) || (m->oflags & VPO_UNMANAGED) != 0) 3696 return; 3697 if (vm_page_queue(m) == PQ_ACTIVE) { 3698 if (m->act_count < ACT_INIT) 3699 m->act_count = ACT_INIT; 3700 return; 3701 } 3702 3703 vm_page_dequeue(m); 3704 if (m->act_count < ACT_INIT) 3705 m->act_count = ACT_INIT; 3706 vm_page_enqueue(m, PQ_ACTIVE); 3707 } 3708 3709 /* 3710 * Move the specified page to the tail of the inactive queue, or requeue 3711 * the page if it is already in the inactive queue. 3712 * 3713 * The page must be locked. 3714 */ 3715 void 3716 vm_page_deactivate(vm_page_t m) 3717 { 3718 3719 vm_page_assert_locked(m); 3720 3721 if (vm_page_wired(m) || (m->oflags & VPO_UNMANAGED) != 0) 3722 return; 3723 3724 if (!vm_page_inactive(m)) { 3725 vm_page_dequeue(m); 3726 vm_page_enqueue(m, PQ_INACTIVE); 3727 } else 3728 vm_page_requeue(m); 3729 } 3730 3731 /* 3732 * Move the specified page close to the head of the inactive queue, 3733 * bypassing LRU. A marker page is used to maintain FIFO ordering. 3734 * As with regular enqueues, we use a per-CPU batch queue to reduce 3735 * contention on the page queue lock. 3736 * 3737 * The page must be locked. 3738 */ 3739 void 3740 vm_page_deactivate_noreuse(vm_page_t m) 3741 { 3742 3743 vm_page_assert_locked(m); 3744 3745 if (vm_page_wired(m) || (m->oflags & VPO_UNMANAGED) != 0) 3746 return; 3747 3748 if (!vm_page_inactive(m)) { 3749 vm_page_dequeue(m); 3750 m->queue = PQ_INACTIVE; 3751 } 3752 if ((m->aflags & PGA_REQUEUE_HEAD) == 0) 3753 vm_page_aflag_set(m, PGA_REQUEUE_HEAD); 3754 vm_page_pqbatch_submit(m, PQ_INACTIVE); 3755 } 3756 3757 /* 3758 * vm_page_launder 3759 * 3760 * Put a page in the laundry, or requeue it if it is already there. 3761 */ 3762 void 3763 vm_page_launder(vm_page_t m) 3764 { 3765 3766 vm_page_assert_locked(m); 3767 if (vm_page_wired(m) || (m->oflags & VPO_UNMANAGED) != 0) 3768 return; 3769 3770 if (vm_page_in_laundry(m)) 3771 vm_page_requeue(m); 3772 else { 3773 vm_page_dequeue(m); 3774 vm_page_enqueue(m, PQ_LAUNDRY); 3775 } 3776 } 3777 3778 /* 3779 * vm_page_unswappable 3780 * 3781 * Put a page in the PQ_UNSWAPPABLE holding queue. 3782 */ 3783 void 3784 vm_page_unswappable(vm_page_t m) 3785 { 3786 3787 vm_page_assert_locked(m); 3788 KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0, 3789 ("page %p already unswappable", m)); 3790 3791 vm_page_dequeue(m); 3792 vm_page_enqueue(m, PQ_UNSWAPPABLE); 3793 } 3794 3795 static void 3796 vm_page_release_toq(vm_page_t m, int flags) 3797 { 3798 3799 /* 3800 * Use a check of the valid bits to determine whether we should 3801 * accelerate reclamation of the page. The object lock might not be 3802 * held here, in which case the check is racy. At worst we will either 3803 * accelerate reclamation of a valid page and violate LRU, or 3804 * unnecessarily defer reclamation of an invalid page. 3805 * 3806 * If we were asked to not cache the page, place it near the head of the 3807 * inactive queue so that is reclaimed sooner. 3808 */ 3809 if ((flags & (VPR_TRYFREE | VPR_NOREUSE)) != 0 || m->valid == 0) 3810 vm_page_deactivate_noreuse(m); 3811 else if (vm_page_active(m)) 3812 vm_page_reference(m); 3813 else 3814 vm_page_deactivate(m); 3815 } 3816 3817 /* 3818 * Unwire a page and either attempt to free it or re-add it to the page queues. 3819 */ 3820 void 3821 vm_page_release(vm_page_t m, int flags) 3822 { 3823 vm_object_t object; 3824 bool freed; 3825 3826 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3827 ("vm_page_release: page %p is unmanaged", m)); 3828 3829 vm_page_lock(m); 3830 if (m->object != NULL) 3831 VM_OBJECT_ASSERT_UNLOCKED(m->object); 3832 if (vm_page_unwire_noq(m)) { 3833 if ((object = m->object) == NULL) { 3834 vm_page_free(m); 3835 } else { 3836 freed = false; 3837 if ((flags & VPR_TRYFREE) != 0 && !vm_page_busied(m) && 3838 /* Depends on type stability. */ 3839 VM_OBJECT_TRYWLOCK(object)) { 3840 /* 3841 * Only free unmapped pages. The busy test from 3842 * before the object was locked cannot be relied 3843 * upon. 3844 */ 3845 if ((object->ref_count == 0 || 3846 !pmap_page_is_mapped(m)) && m->dirty == 0 && 3847 !vm_page_busied(m)) { 3848 vm_page_free(m); 3849 freed = true; 3850 } 3851 VM_OBJECT_WUNLOCK(object); 3852 } 3853 3854 if (!freed) 3855 vm_page_release_toq(m, flags); 3856 } 3857 } 3858 vm_page_unlock(m); 3859 } 3860 3861 /* See vm_page_release(). */ 3862 void 3863 vm_page_release_locked(vm_page_t m, int flags) 3864 { 3865 3866 VM_OBJECT_ASSERT_WLOCKED(m->object); 3867 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3868 ("vm_page_release_locked: page %p is unmanaged", m)); 3869 3870 vm_page_lock(m); 3871 if (vm_page_unwire_noq(m)) { 3872 if ((flags & VPR_TRYFREE) != 0 && 3873 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) && 3874 m->dirty == 0 && !vm_page_busied(m)) { 3875 vm_page_free(m); 3876 } else { 3877 vm_page_release_toq(m, flags); 3878 } 3879 } 3880 vm_page_unlock(m); 3881 } 3882 3883 /* 3884 * vm_page_advise 3885 * 3886 * Apply the specified advice to the given page. 3887 * 3888 * The object and page must be locked. 3889 */ 3890 void 3891 vm_page_advise(vm_page_t m, int advice) 3892 { 3893 3894 vm_page_assert_locked(m); 3895 VM_OBJECT_ASSERT_WLOCKED(m->object); 3896 if (advice == MADV_FREE) 3897 /* 3898 * Mark the page clean. This will allow the page to be freed 3899 * without first paging it out. MADV_FREE pages are often 3900 * quickly reused by malloc(3), so we do not do anything that 3901 * would result in a page fault on a later access. 3902 */ 3903 vm_page_undirty(m); 3904 else if (advice != MADV_DONTNEED) { 3905 if (advice == MADV_WILLNEED) 3906 vm_page_activate(m); 3907 return; 3908 } 3909 3910 /* 3911 * Clear any references to the page. Otherwise, the page daemon will 3912 * immediately reactivate the page. 3913 */ 3914 vm_page_aflag_clear(m, PGA_REFERENCED); 3915 3916 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 3917 vm_page_dirty(m); 3918 3919 /* 3920 * Place clean pages near the head of the inactive queue rather than 3921 * the tail, thus defeating the queue's LRU operation and ensuring that 3922 * the page will be reused quickly. Dirty pages not already in the 3923 * laundry are moved there. 3924 */ 3925 if (m->dirty == 0) 3926 vm_page_deactivate_noreuse(m); 3927 else if (!vm_page_in_laundry(m)) 3928 vm_page_launder(m); 3929 } 3930 3931 /* 3932 * Grab a page, waiting until we are waken up due to the page 3933 * changing state. We keep on waiting, if the page continues 3934 * to be in the object. If the page doesn't exist, first allocate it 3935 * and then conditionally zero it. 3936 * 3937 * This routine may sleep. 3938 * 3939 * The object must be locked on entry. The lock will, however, be released 3940 * and reacquired if the routine sleeps. 3941 */ 3942 vm_page_t 3943 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 3944 { 3945 vm_page_t m; 3946 int sleep; 3947 int pflags; 3948 3949 VM_OBJECT_ASSERT_WLOCKED(object); 3950 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 3951 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 3952 ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 3953 pflags = allocflags & 3954 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL); 3955 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 3956 pflags |= VM_ALLOC_WAITFAIL; 3957 retrylookup: 3958 if ((m = vm_page_lookup(object, pindex)) != NULL) { 3959 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? 3960 vm_page_xbusied(m) : vm_page_busied(m); 3961 if (sleep) { 3962 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3963 return (NULL); 3964 /* 3965 * Reference the page before unlocking and 3966 * sleeping so that the page daemon is less 3967 * likely to reclaim it. 3968 */ 3969 vm_page_aflag_set(m, PGA_REFERENCED); 3970 vm_page_lock(m); 3971 VM_OBJECT_WUNLOCK(object); 3972 vm_page_busy_sleep(m, "pgrbwt", (allocflags & 3973 VM_ALLOC_IGN_SBUSY) != 0); 3974 VM_OBJECT_WLOCK(object); 3975 goto retrylookup; 3976 } else { 3977 if ((allocflags & VM_ALLOC_WIRED) != 0) { 3978 vm_page_lock(m); 3979 vm_page_wire(m); 3980 vm_page_unlock(m); 3981 } 3982 if ((allocflags & 3983 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 3984 vm_page_xbusy(m); 3985 if ((allocflags & VM_ALLOC_SBUSY) != 0) 3986 vm_page_sbusy(m); 3987 return (m); 3988 } 3989 } 3990 m = vm_page_alloc(object, pindex, pflags); 3991 if (m == NULL) { 3992 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 3993 return (NULL); 3994 goto retrylookup; 3995 } 3996 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 3997 pmap_zero_page(m); 3998 return (m); 3999 } 4000 4001 /* 4002 * Return the specified range of pages from the given object. For each 4003 * page offset within the range, if a page already exists within the object 4004 * at that offset and it is busy, then wait for it to change state. If, 4005 * instead, the page doesn't exist, then allocate it. 4006 * 4007 * The caller must always specify an allocation class. 4008 * 4009 * allocation classes: 4010 * VM_ALLOC_NORMAL normal process request 4011 * VM_ALLOC_SYSTEM system *really* needs the pages 4012 * 4013 * The caller must always specify that the pages are to be busied and/or 4014 * wired. 4015 * 4016 * optional allocation flags: 4017 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages 4018 * VM_ALLOC_NOBUSY do not exclusive busy the page 4019 * VM_ALLOC_NOWAIT do not sleep 4020 * VM_ALLOC_SBUSY set page to sbusy state 4021 * VM_ALLOC_WIRED wire the pages 4022 * VM_ALLOC_ZERO zero and validate any invalid pages 4023 * 4024 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it 4025 * may return a partial prefix of the requested range. 4026 */ 4027 int 4028 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, 4029 vm_page_t *ma, int count) 4030 { 4031 vm_page_t m, mpred; 4032 int pflags; 4033 int i; 4034 bool sleep; 4035 4036 VM_OBJECT_ASSERT_WLOCKED(object); 4037 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0, 4038 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed")); 4039 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 || 4040 (allocflags & VM_ALLOC_WIRED) != 0, 4041 ("vm_page_grab_pages: the pages must be busied or wired")); 4042 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4043 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4044 ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch")); 4045 if (count == 0) 4046 return (0); 4047 pflags = allocflags & ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | 4048 VM_ALLOC_WAITFAIL | VM_ALLOC_IGN_SBUSY); 4049 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 4050 pflags |= VM_ALLOC_WAITFAIL; 4051 i = 0; 4052 retrylookup: 4053 m = vm_radix_lookup_le(&object->rtree, pindex + i); 4054 if (m == NULL || m->pindex != pindex + i) { 4055 mpred = m; 4056 m = NULL; 4057 } else 4058 mpred = TAILQ_PREV(m, pglist, listq); 4059 for (; i < count; i++) { 4060 if (m != NULL) { 4061 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? 4062 vm_page_xbusied(m) : vm_page_busied(m); 4063 if (sleep) { 4064 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 4065 break; 4066 /* 4067 * Reference the page before unlocking and 4068 * sleeping so that the page daemon is less 4069 * likely to reclaim it. 4070 */ 4071 vm_page_aflag_set(m, PGA_REFERENCED); 4072 vm_page_lock(m); 4073 VM_OBJECT_WUNLOCK(object); 4074 vm_page_busy_sleep(m, "grbmaw", (allocflags & 4075 VM_ALLOC_IGN_SBUSY) != 0); 4076 VM_OBJECT_WLOCK(object); 4077 goto retrylookup; 4078 } 4079 if ((allocflags & VM_ALLOC_WIRED) != 0) { 4080 vm_page_lock(m); 4081 vm_page_wire(m); 4082 vm_page_unlock(m); 4083 } 4084 if ((allocflags & (VM_ALLOC_NOBUSY | 4085 VM_ALLOC_SBUSY)) == 0) 4086 vm_page_xbusy(m); 4087 if ((allocflags & VM_ALLOC_SBUSY) != 0) 4088 vm_page_sbusy(m); 4089 } else { 4090 m = vm_page_alloc_after(object, pindex + i, 4091 pflags | VM_ALLOC_COUNT(count - i), mpred); 4092 if (m == NULL) { 4093 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 4094 break; 4095 goto retrylookup; 4096 } 4097 } 4098 if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) { 4099 if ((m->flags & PG_ZERO) == 0) 4100 pmap_zero_page(m); 4101 m->valid = VM_PAGE_BITS_ALL; 4102 } 4103 ma[i] = mpred = m; 4104 m = vm_page_next(m); 4105 } 4106 return (i); 4107 } 4108 4109 /* 4110 * Mapping function for valid or dirty bits in a page. 4111 * 4112 * Inputs are required to range within a page. 4113 */ 4114 vm_page_bits_t 4115 vm_page_bits(int base, int size) 4116 { 4117 int first_bit; 4118 int last_bit; 4119 4120 KASSERT( 4121 base + size <= PAGE_SIZE, 4122 ("vm_page_bits: illegal base/size %d/%d", base, size) 4123 ); 4124 4125 if (size == 0) /* handle degenerate case */ 4126 return (0); 4127 4128 first_bit = base >> DEV_BSHIFT; 4129 last_bit = (base + size - 1) >> DEV_BSHIFT; 4130 4131 return (((vm_page_bits_t)2 << last_bit) - 4132 ((vm_page_bits_t)1 << first_bit)); 4133 } 4134 4135 /* 4136 * vm_page_set_valid_range: 4137 * 4138 * Sets portions of a page valid. The arguments are expected 4139 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 4140 * of any partial chunks touched by the range. The invalid portion of 4141 * such chunks will be zeroed. 4142 * 4143 * (base + size) must be less then or equal to PAGE_SIZE. 4144 */ 4145 void 4146 vm_page_set_valid_range(vm_page_t m, int base, int size) 4147 { 4148 int endoff, frag; 4149 4150 VM_OBJECT_ASSERT_WLOCKED(m->object); 4151 if (size == 0) /* handle degenerate case */ 4152 return; 4153 4154 /* 4155 * If the base is not DEV_BSIZE aligned and the valid 4156 * bit is clear, we have to zero out a portion of the 4157 * first block. 4158 */ 4159 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 4160 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 4161 pmap_zero_page_area(m, frag, base - frag); 4162 4163 /* 4164 * If the ending offset is not DEV_BSIZE aligned and the 4165 * valid bit is clear, we have to zero out a portion of 4166 * the last block. 4167 */ 4168 endoff = base + size; 4169 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 4170 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 4171 pmap_zero_page_area(m, endoff, 4172 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 4173 4174 /* 4175 * Assert that no previously invalid block that is now being validated 4176 * is already dirty. 4177 */ 4178 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 4179 ("vm_page_set_valid_range: page %p is dirty", m)); 4180 4181 /* 4182 * Set valid bits inclusive of any overlap. 4183 */ 4184 m->valid |= vm_page_bits(base, size); 4185 } 4186 4187 /* 4188 * Clear the given bits from the specified page's dirty field. 4189 */ 4190 static __inline void 4191 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 4192 { 4193 uintptr_t addr; 4194 #if PAGE_SIZE < 16384 4195 int shift; 4196 #endif 4197 4198 /* 4199 * If the object is locked and the page is neither exclusive busy nor 4200 * write mapped, then the page's dirty field cannot possibly be 4201 * set by a concurrent pmap operation. 4202 */ 4203 VM_OBJECT_ASSERT_WLOCKED(m->object); 4204 if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 4205 m->dirty &= ~pagebits; 4206 else { 4207 /* 4208 * The pmap layer can call vm_page_dirty() without 4209 * holding a distinguished lock. The combination of 4210 * the object's lock and an atomic operation suffice 4211 * to guarantee consistency of the page dirty field. 4212 * 4213 * For PAGE_SIZE == 32768 case, compiler already 4214 * properly aligns the dirty field, so no forcible 4215 * alignment is needed. Only require existence of 4216 * atomic_clear_64 when page size is 32768. 4217 */ 4218 addr = (uintptr_t)&m->dirty; 4219 #if PAGE_SIZE == 32768 4220 atomic_clear_64((uint64_t *)addr, pagebits); 4221 #elif PAGE_SIZE == 16384 4222 atomic_clear_32((uint32_t *)addr, pagebits); 4223 #else /* PAGE_SIZE <= 8192 */ 4224 /* 4225 * Use a trick to perform a 32-bit atomic on the 4226 * containing aligned word, to not depend on the existence 4227 * of atomic_clear_{8, 16}. 4228 */ 4229 shift = addr & (sizeof(uint32_t) - 1); 4230 #if BYTE_ORDER == BIG_ENDIAN 4231 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY; 4232 #else 4233 shift *= NBBY; 4234 #endif 4235 addr &= ~(sizeof(uint32_t) - 1); 4236 atomic_clear_32((uint32_t *)addr, pagebits << shift); 4237 #endif /* PAGE_SIZE */ 4238 } 4239 } 4240 4241 /* 4242 * vm_page_set_validclean: 4243 * 4244 * Sets portions of a page valid and clean. The arguments are expected 4245 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 4246 * of any partial chunks touched by the range. The invalid portion of 4247 * such chunks will be zero'd. 4248 * 4249 * (base + size) must be less then or equal to PAGE_SIZE. 4250 */ 4251 void 4252 vm_page_set_validclean(vm_page_t m, int base, int size) 4253 { 4254 vm_page_bits_t oldvalid, pagebits; 4255 int endoff, frag; 4256 4257 VM_OBJECT_ASSERT_WLOCKED(m->object); 4258 if (size == 0) /* handle degenerate case */ 4259 return; 4260 4261 /* 4262 * If the base is not DEV_BSIZE aligned and the valid 4263 * bit is clear, we have to zero out a portion of the 4264 * first block. 4265 */ 4266 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 4267 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 4268 pmap_zero_page_area(m, frag, base - frag); 4269 4270 /* 4271 * If the ending offset is not DEV_BSIZE aligned and the 4272 * valid bit is clear, we have to zero out a portion of 4273 * the last block. 4274 */ 4275 endoff = base + size; 4276 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 4277 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 4278 pmap_zero_page_area(m, endoff, 4279 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 4280 4281 /* 4282 * Set valid, clear dirty bits. If validating the entire 4283 * page we can safely clear the pmap modify bit. We also 4284 * use this opportunity to clear the VPO_NOSYNC flag. If a process 4285 * takes a write fault on a MAP_NOSYNC memory area the flag will 4286 * be set again. 4287 * 4288 * We set valid bits inclusive of any overlap, but we can only 4289 * clear dirty bits for DEV_BSIZE chunks that are fully within 4290 * the range. 4291 */ 4292 oldvalid = m->valid; 4293 pagebits = vm_page_bits(base, size); 4294 m->valid |= pagebits; 4295 #if 0 /* NOT YET */ 4296 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 4297 frag = DEV_BSIZE - frag; 4298 base += frag; 4299 size -= frag; 4300 if (size < 0) 4301 size = 0; 4302 } 4303 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 4304 #endif 4305 if (base == 0 && size == PAGE_SIZE) { 4306 /* 4307 * The page can only be modified within the pmap if it is 4308 * mapped, and it can only be mapped if it was previously 4309 * fully valid. 4310 */ 4311 if (oldvalid == VM_PAGE_BITS_ALL) 4312 /* 4313 * Perform the pmap_clear_modify() first. Otherwise, 4314 * a concurrent pmap operation, such as 4315 * pmap_protect(), could clear a modification in the 4316 * pmap and set the dirty field on the page before 4317 * pmap_clear_modify() had begun and after the dirty 4318 * field was cleared here. 4319 */ 4320 pmap_clear_modify(m); 4321 m->dirty = 0; 4322 m->oflags &= ~VPO_NOSYNC; 4323 } else if (oldvalid != VM_PAGE_BITS_ALL) 4324 m->dirty &= ~pagebits; 4325 else 4326 vm_page_clear_dirty_mask(m, pagebits); 4327 } 4328 4329 void 4330 vm_page_clear_dirty(vm_page_t m, int base, int size) 4331 { 4332 4333 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 4334 } 4335 4336 /* 4337 * vm_page_set_invalid: 4338 * 4339 * Invalidates DEV_BSIZE'd chunks within a page. Both the 4340 * valid and dirty bits for the effected areas are cleared. 4341 */ 4342 void 4343 vm_page_set_invalid(vm_page_t m, int base, int size) 4344 { 4345 vm_page_bits_t bits; 4346 vm_object_t object; 4347 4348 object = m->object; 4349 VM_OBJECT_ASSERT_WLOCKED(object); 4350 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 4351 size >= object->un_pager.vnp.vnp_size) 4352 bits = VM_PAGE_BITS_ALL; 4353 else 4354 bits = vm_page_bits(base, size); 4355 if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL && 4356 bits != 0) 4357 pmap_remove_all(m); 4358 KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) || 4359 !pmap_page_is_mapped(m), 4360 ("vm_page_set_invalid: page %p is mapped", m)); 4361 m->valid &= ~bits; 4362 m->dirty &= ~bits; 4363 } 4364 4365 /* 4366 * vm_page_zero_invalid() 4367 * 4368 * The kernel assumes that the invalid portions of a page contain 4369 * garbage, but such pages can be mapped into memory by user code. 4370 * When this occurs, we must zero out the non-valid portions of the 4371 * page so user code sees what it expects. 4372 * 4373 * Pages are most often semi-valid when the end of a file is mapped 4374 * into memory and the file's size is not page aligned. 4375 */ 4376 void 4377 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 4378 { 4379 int b; 4380 int i; 4381 4382 VM_OBJECT_ASSERT_WLOCKED(m->object); 4383 /* 4384 * Scan the valid bits looking for invalid sections that 4385 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the 4386 * valid bit may be set ) have already been zeroed by 4387 * vm_page_set_validclean(). 4388 */ 4389 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 4390 if (i == (PAGE_SIZE / DEV_BSIZE) || 4391 (m->valid & ((vm_page_bits_t)1 << i))) { 4392 if (i > b) { 4393 pmap_zero_page_area(m, 4394 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 4395 } 4396 b = i + 1; 4397 } 4398 } 4399 4400 /* 4401 * setvalid is TRUE when we can safely set the zero'd areas 4402 * as being valid. We can do this if there are no cache consistancy 4403 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 4404 */ 4405 if (setvalid) 4406 m->valid = VM_PAGE_BITS_ALL; 4407 } 4408 4409 /* 4410 * vm_page_is_valid: 4411 * 4412 * Is (partial) page valid? Note that the case where size == 0 4413 * will return FALSE in the degenerate case where the page is 4414 * entirely invalid, and TRUE otherwise. 4415 */ 4416 int 4417 vm_page_is_valid(vm_page_t m, int base, int size) 4418 { 4419 vm_page_bits_t bits; 4420 4421 VM_OBJECT_ASSERT_LOCKED(m->object); 4422 bits = vm_page_bits(base, size); 4423 return (m->valid != 0 && (m->valid & bits) == bits); 4424 } 4425 4426 /* 4427 * Returns true if all of the specified predicates are true for the entire 4428 * (super)page and false otherwise. 4429 */ 4430 bool 4431 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m) 4432 { 4433 vm_object_t object; 4434 int i, npages; 4435 4436 object = m->object; 4437 if (skip_m != NULL && skip_m->object != object) 4438 return (false); 4439 VM_OBJECT_ASSERT_LOCKED(object); 4440 npages = atop(pagesizes[m->psind]); 4441 4442 /* 4443 * The physically contiguous pages that make up a superpage, i.e., a 4444 * page with a page size index ("psind") greater than zero, will 4445 * occupy adjacent entries in vm_page_array[]. 4446 */ 4447 for (i = 0; i < npages; i++) { 4448 /* Always test object consistency, including "skip_m". */ 4449 if (m[i].object != object) 4450 return (false); 4451 if (&m[i] == skip_m) 4452 continue; 4453 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i])) 4454 return (false); 4455 if ((flags & PS_ALL_DIRTY) != 0) { 4456 /* 4457 * Calling vm_page_test_dirty() or pmap_is_modified() 4458 * might stop this case from spuriously returning 4459 * "false". However, that would require a write lock 4460 * on the object containing "m[i]". 4461 */ 4462 if (m[i].dirty != VM_PAGE_BITS_ALL) 4463 return (false); 4464 } 4465 if ((flags & PS_ALL_VALID) != 0 && 4466 m[i].valid != VM_PAGE_BITS_ALL) 4467 return (false); 4468 } 4469 return (true); 4470 } 4471 4472 /* 4473 * Set the page's dirty bits if the page is modified. 4474 */ 4475 void 4476 vm_page_test_dirty(vm_page_t m) 4477 { 4478 4479 VM_OBJECT_ASSERT_WLOCKED(m->object); 4480 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 4481 vm_page_dirty(m); 4482 } 4483 4484 void 4485 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 4486 { 4487 4488 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 4489 } 4490 4491 void 4492 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 4493 { 4494 4495 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 4496 } 4497 4498 int 4499 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 4500 { 4501 4502 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 4503 } 4504 4505 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 4506 void 4507 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 4508 { 4509 4510 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 4511 } 4512 4513 void 4514 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 4515 { 4516 4517 mtx_assert_(vm_page_lockptr(m), a, file, line); 4518 } 4519 #endif 4520 4521 #ifdef INVARIANTS 4522 void 4523 vm_page_object_lock_assert(vm_page_t m) 4524 { 4525 4526 /* 4527 * Certain of the page's fields may only be modified by the 4528 * holder of the containing object's lock or the exclusive busy. 4529 * holder. Unfortunately, the holder of the write busy is 4530 * not recorded, and thus cannot be checked here. 4531 */ 4532 if (m->object != NULL && !vm_page_xbusied(m)) 4533 VM_OBJECT_ASSERT_WLOCKED(m->object); 4534 } 4535 4536 void 4537 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits) 4538 { 4539 4540 if ((bits & PGA_WRITEABLE) == 0) 4541 return; 4542 4543 /* 4544 * The PGA_WRITEABLE flag can only be set if the page is 4545 * managed, is exclusively busied or the object is locked. 4546 * Currently, this flag is only set by pmap_enter(). 4547 */ 4548 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4549 ("PGA_WRITEABLE on unmanaged page")); 4550 if (!vm_page_xbusied(m)) 4551 VM_OBJECT_ASSERT_LOCKED(m->object); 4552 } 4553 #endif 4554 4555 #include "opt_ddb.h" 4556 #ifdef DDB 4557 #include <sys/kernel.h> 4558 4559 #include <ddb/ddb.h> 4560 4561 DB_SHOW_COMMAND(page, vm_page_print_page_info) 4562 { 4563 4564 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count()); 4565 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count()); 4566 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count()); 4567 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count()); 4568 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count()); 4569 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 4570 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 4571 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 4572 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 4573 } 4574 4575 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 4576 { 4577 int dom; 4578 4579 db_printf("pq_free %d\n", vm_free_count()); 4580 for (dom = 0; dom < vm_ndomains; dom++) { 4581 db_printf( 4582 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n", 4583 dom, 4584 vm_dom[dom].vmd_page_count, 4585 vm_dom[dom].vmd_free_count, 4586 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 4587 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 4588 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt, 4589 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt); 4590 } 4591 } 4592 4593 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 4594 { 4595 vm_page_t m; 4596 boolean_t phys, virt; 4597 4598 if (!have_addr) { 4599 db_printf("show pginfo addr\n"); 4600 return; 4601 } 4602 4603 phys = strchr(modif, 'p') != NULL; 4604 virt = strchr(modif, 'v') != NULL; 4605 if (virt) 4606 m = PHYS_TO_VM_PAGE(pmap_kextract(addr)); 4607 else if (phys) 4608 m = PHYS_TO_VM_PAGE(addr); 4609 else 4610 m = (vm_page_t)addr; 4611 db_printf( 4612 "page %p obj %p pidx 0x%jx phys 0x%jx q %d wire %d\n" 4613 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 4614 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 4615 m->queue, m->wire_count, m->aflags, m->oflags, 4616 m->flags, m->act_count, m->busy_lock, m->valid, m->dirty); 4617 } 4618 #endif /* DDB */ 4619