xref: /freebsd/sys/vm/vm_page.c (revision 595e514d0df2bac5b813d35f83e32875dbf16a83)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- A page queue lock is required when adding or removing a page from a
67  *	  page queue (vm_pagequeues[]), regardless of other locks or the
68  *	  busy state of a page.
69  *
70  *		* In general, no thread besides the page daemon can acquire or
71  *		  hold more than one page queue lock at a time.
72  *
73  *		* The page daemon can acquire and hold any pair of page queue
74  *		  locks in any order.
75  *
76  *	- The object lock is required when inserting or removing
77  *	  pages from an object (vm_page_insert() or vm_page_remove()).
78  *
79  */
80 
81 /*
82  *	Resident memory management module.
83  */
84 
85 #include <sys/cdefs.h>
86 __FBSDID("$FreeBSD$");
87 
88 #include "opt_vm.h"
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/lock.h>
93 #include <sys/kernel.h>
94 #include <sys/limits.h>
95 #include <sys/malloc.h>
96 #include <sys/msgbuf.h>
97 #include <sys/mutex.h>
98 #include <sys/proc.h>
99 #include <sys/rwlock.h>
100 #include <sys/sysctl.h>
101 #include <sys/vmmeter.h>
102 #include <sys/vnode.h>
103 
104 #include <vm/vm.h>
105 #include <vm/pmap.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_kern.h>
108 #include <vm/vm_object.h>
109 #include <vm/vm_page.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_radix.h>
114 #include <vm/vm_reserv.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117 #include <vm/uma_int.h>
118 
119 #include <machine/md_var.h>
120 
121 /*
122  *	Associated with page of user-allocatable memory is a
123  *	page structure.
124  */
125 
126 struct vm_pagequeue vm_pagequeues[PQ_COUNT] = {
127 	[PQ_INACTIVE] = {
128 		.pq_pl = TAILQ_HEAD_INITIALIZER(
129 		    vm_pagequeues[PQ_INACTIVE].pq_pl),
130 		.pq_cnt = &cnt.v_inactive_count,
131 		.pq_name = "vm inactive pagequeue"
132 	},
133 	[PQ_ACTIVE] = {
134 		.pq_pl = TAILQ_HEAD_INITIALIZER(
135 		    vm_pagequeues[PQ_ACTIVE].pq_pl),
136 		.pq_cnt = &cnt.v_active_count,
137 		.pq_name = "vm active pagequeue"
138 	}
139 };
140 struct mtx_padalign vm_page_queue_free_mtx;
141 
142 struct mtx_padalign pa_lock[PA_LOCK_COUNT];
143 
144 vm_page_t vm_page_array;
145 long vm_page_array_size;
146 long first_page;
147 int vm_page_zero_count;
148 
149 static int boot_pages = UMA_BOOT_PAGES;
150 TUNABLE_INT("vm.boot_pages", &boot_pages);
151 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
152 	"number of pages allocated for bootstrapping the VM system");
153 
154 static int pa_tryrelock_restart;
155 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
156     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
157 
158 static uma_zone_t fakepg_zone;
159 
160 static struct vnode *vm_page_alloc_init(vm_page_t m);
161 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
162 static void vm_page_enqueue(int queue, vm_page_t m);
163 static void vm_page_init_fakepg(void *dummy);
164 static void vm_page_insert_after(vm_page_t m, vm_object_t object,
165     vm_pindex_t pindex, vm_page_t mpred);
166 
167 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
168 
169 static void
170 vm_page_init_fakepg(void *dummy)
171 {
172 
173 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
174 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
175 }
176 
177 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
178 #if PAGE_SIZE == 32768
179 #ifdef CTASSERT
180 CTASSERT(sizeof(u_long) >= 8);
181 #endif
182 #endif
183 
184 /*
185  * Try to acquire a physical address lock while a pmap is locked.  If we
186  * fail to trylock we unlock and lock the pmap directly and cache the
187  * locked pa in *locked.  The caller should then restart their loop in case
188  * the virtual to physical mapping has changed.
189  */
190 int
191 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
192 {
193 	vm_paddr_t lockpa;
194 
195 	lockpa = *locked;
196 	*locked = pa;
197 	if (lockpa) {
198 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
199 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
200 			return (0);
201 		PA_UNLOCK(lockpa);
202 	}
203 	if (PA_TRYLOCK(pa))
204 		return (0);
205 	PMAP_UNLOCK(pmap);
206 	atomic_add_int(&pa_tryrelock_restart, 1);
207 	PA_LOCK(pa);
208 	PMAP_LOCK(pmap);
209 	return (EAGAIN);
210 }
211 
212 /*
213  *	vm_set_page_size:
214  *
215  *	Sets the page size, perhaps based upon the memory
216  *	size.  Must be called before any use of page-size
217  *	dependent functions.
218  */
219 void
220 vm_set_page_size(void)
221 {
222 	if (cnt.v_page_size == 0)
223 		cnt.v_page_size = PAGE_SIZE;
224 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
225 		panic("vm_set_page_size: page size not a power of two");
226 }
227 
228 /*
229  *	vm_page_blacklist_lookup:
230  *
231  *	See if a physical address in this page has been listed
232  *	in the blacklist tunable.  Entries in the tunable are
233  *	separated by spaces or commas.  If an invalid integer is
234  *	encountered then the rest of the string is skipped.
235  */
236 static int
237 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
238 {
239 	vm_paddr_t bad;
240 	char *cp, *pos;
241 
242 	for (pos = list; *pos != '\0'; pos = cp) {
243 		bad = strtoq(pos, &cp, 0);
244 		if (*cp != '\0') {
245 			if (*cp == ' ' || *cp == ',') {
246 				cp++;
247 				if (cp == pos)
248 					continue;
249 			} else
250 				break;
251 		}
252 		if (pa == trunc_page(bad))
253 			return (1);
254 	}
255 	return (0);
256 }
257 
258 /*
259  *	vm_page_startup:
260  *
261  *	Initializes the resident memory module.
262  *
263  *	Allocates memory for the page cells, and
264  *	for the object/offset-to-page hash table headers.
265  *	Each page cell is initialized and placed on the free list.
266  */
267 vm_offset_t
268 vm_page_startup(vm_offset_t vaddr)
269 {
270 	vm_offset_t mapped;
271 	vm_paddr_t page_range;
272 	vm_paddr_t new_end;
273 	int i;
274 	vm_paddr_t pa;
275 	vm_paddr_t last_pa;
276 	char *list;
277 
278 	/* the biggest memory array is the second group of pages */
279 	vm_paddr_t end;
280 	vm_paddr_t biggestsize;
281 	vm_paddr_t low_water, high_water;
282 	int biggestone;
283 
284 	biggestsize = 0;
285 	biggestone = 0;
286 	vaddr = round_page(vaddr);
287 
288 	for (i = 0; phys_avail[i + 1]; i += 2) {
289 		phys_avail[i] = round_page(phys_avail[i]);
290 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
291 	}
292 
293 	low_water = phys_avail[0];
294 	high_water = phys_avail[1];
295 
296 	for (i = 0; phys_avail[i + 1]; i += 2) {
297 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
298 
299 		if (size > biggestsize) {
300 			biggestone = i;
301 			biggestsize = size;
302 		}
303 		if (phys_avail[i] < low_water)
304 			low_water = phys_avail[i];
305 		if (phys_avail[i + 1] > high_water)
306 			high_water = phys_avail[i + 1];
307 	}
308 
309 #ifdef XEN
310 	low_water = 0;
311 #endif
312 
313 	end = phys_avail[biggestone+1];
314 
315 	/*
316 	 * Initialize the page and queue locks.
317 	 */
318 	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
319 	for (i = 0; i < PA_LOCK_COUNT; i++)
320 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
321 	for (i = 0; i < PQ_COUNT; i++)
322 		vm_pagequeue_init_lock(&vm_pagequeues[i]);
323 
324 	/*
325 	 * Allocate memory for use when boot strapping the kernel memory
326 	 * allocator.
327 	 */
328 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
329 	new_end = trunc_page(new_end);
330 	mapped = pmap_map(&vaddr, new_end, end,
331 	    VM_PROT_READ | VM_PROT_WRITE);
332 	bzero((void *)mapped, end - new_end);
333 	uma_startup((void *)mapped, boot_pages);
334 
335 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
336     defined(__mips__)
337 	/*
338 	 * Allocate a bitmap to indicate that a random physical page
339 	 * needs to be included in a minidump.
340 	 *
341 	 * The amd64 port needs this to indicate which direct map pages
342 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
343 	 *
344 	 * However, i386 still needs this workspace internally within the
345 	 * minidump code.  In theory, they are not needed on i386, but are
346 	 * included should the sf_buf code decide to use them.
347 	 */
348 	last_pa = 0;
349 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
350 		if (dump_avail[i + 1] > last_pa)
351 			last_pa = dump_avail[i + 1];
352 	page_range = last_pa / PAGE_SIZE;
353 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
354 	new_end -= vm_page_dump_size;
355 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
356 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
357 	bzero((void *)vm_page_dump, vm_page_dump_size);
358 #endif
359 #ifdef __amd64__
360 	/*
361 	 * Request that the physical pages underlying the message buffer be
362 	 * included in a crash dump.  Since the message buffer is accessed
363 	 * through the direct map, they are not automatically included.
364 	 */
365 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
366 	last_pa = pa + round_page(msgbufsize);
367 	while (pa < last_pa) {
368 		dump_add_page(pa);
369 		pa += PAGE_SIZE;
370 	}
371 #endif
372 	/*
373 	 * Compute the number of pages of memory that will be available for
374 	 * use (taking into account the overhead of a page structure per
375 	 * page).
376 	 */
377 	first_page = low_water / PAGE_SIZE;
378 #ifdef VM_PHYSSEG_SPARSE
379 	page_range = 0;
380 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
381 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
382 #elif defined(VM_PHYSSEG_DENSE)
383 	page_range = high_water / PAGE_SIZE - first_page;
384 #else
385 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
386 #endif
387 	end = new_end;
388 
389 	/*
390 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
391 	 */
392 	vaddr += PAGE_SIZE;
393 
394 	/*
395 	 * Initialize the mem entry structures now, and put them in the free
396 	 * queue.
397 	 */
398 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
399 	mapped = pmap_map(&vaddr, new_end, end,
400 	    VM_PROT_READ | VM_PROT_WRITE);
401 	vm_page_array = (vm_page_t) mapped;
402 #if VM_NRESERVLEVEL > 0
403 	/*
404 	 * Allocate memory for the reservation management system's data
405 	 * structures.
406 	 */
407 	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
408 #endif
409 #if defined(__amd64__) || defined(__mips__)
410 	/*
411 	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
412 	 * like i386, so the pages must be tracked for a crashdump to include
413 	 * this data.  This includes the vm_page_array and the early UMA
414 	 * bootstrap pages.
415 	 */
416 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
417 		dump_add_page(pa);
418 #endif
419 	phys_avail[biggestone + 1] = new_end;
420 
421 	/*
422 	 * Clear all of the page structures
423 	 */
424 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
425 	for (i = 0; i < page_range; i++)
426 		vm_page_array[i].order = VM_NFREEORDER;
427 	vm_page_array_size = page_range;
428 
429 	/*
430 	 * Initialize the physical memory allocator.
431 	 */
432 	vm_phys_init();
433 
434 	/*
435 	 * Add every available physical page that is not blacklisted to
436 	 * the free lists.
437 	 */
438 	cnt.v_page_count = 0;
439 	cnt.v_free_count = 0;
440 	list = getenv("vm.blacklist");
441 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
442 		pa = phys_avail[i];
443 		last_pa = phys_avail[i + 1];
444 		while (pa < last_pa) {
445 			if (list != NULL &&
446 			    vm_page_blacklist_lookup(list, pa))
447 				printf("Skipping page with pa 0x%jx\n",
448 				    (uintmax_t)pa);
449 			else
450 				vm_phys_add_page(pa);
451 			pa += PAGE_SIZE;
452 		}
453 	}
454 	freeenv(list);
455 #if VM_NRESERVLEVEL > 0
456 	/*
457 	 * Initialize the reservation management system.
458 	 */
459 	vm_reserv_init();
460 #endif
461 	return (vaddr);
462 }
463 
464 void
465 vm_page_reference(vm_page_t m)
466 {
467 
468 	vm_page_aflag_set(m, PGA_REFERENCED);
469 }
470 
471 void
472 vm_page_busy(vm_page_t m)
473 {
474 
475 	VM_OBJECT_ASSERT_WLOCKED(m->object);
476 	KASSERT((m->oflags & VPO_BUSY) == 0,
477 	    ("vm_page_busy: page already busy!!!"));
478 	m->oflags |= VPO_BUSY;
479 }
480 
481 /*
482  *      vm_page_flash:
483  *
484  *      wakeup anyone waiting for the page.
485  */
486 void
487 vm_page_flash(vm_page_t m)
488 {
489 
490 	VM_OBJECT_ASSERT_WLOCKED(m->object);
491 	if (m->oflags & VPO_WANTED) {
492 		m->oflags &= ~VPO_WANTED;
493 		wakeup(m);
494 	}
495 }
496 
497 /*
498  *      vm_page_wakeup:
499  *
500  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
501  *      page.
502  *
503  */
504 void
505 vm_page_wakeup(vm_page_t m)
506 {
507 
508 	VM_OBJECT_ASSERT_WLOCKED(m->object);
509 	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
510 	m->oflags &= ~VPO_BUSY;
511 	vm_page_flash(m);
512 }
513 
514 void
515 vm_page_io_start(vm_page_t m)
516 {
517 
518 	VM_OBJECT_ASSERT_WLOCKED(m->object);
519 	m->busy++;
520 }
521 
522 void
523 vm_page_io_finish(vm_page_t m)
524 {
525 
526 	VM_OBJECT_ASSERT_WLOCKED(m->object);
527 	KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m));
528 	m->busy--;
529 	if (m->busy == 0)
530 		vm_page_flash(m);
531 }
532 
533 /*
534  * Keep page from being freed by the page daemon
535  * much of the same effect as wiring, except much lower
536  * overhead and should be used only for *very* temporary
537  * holding ("wiring").
538  */
539 void
540 vm_page_hold(vm_page_t mem)
541 {
542 
543 	vm_page_lock_assert(mem, MA_OWNED);
544         mem->hold_count++;
545 }
546 
547 void
548 vm_page_unhold(vm_page_t mem)
549 {
550 
551 	vm_page_lock_assert(mem, MA_OWNED);
552 	--mem->hold_count;
553 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
554 	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
555 		vm_page_free_toq(mem);
556 }
557 
558 /*
559  *	vm_page_unhold_pages:
560  *
561  *	Unhold each of the pages that is referenced by the given array.
562  */
563 void
564 vm_page_unhold_pages(vm_page_t *ma, int count)
565 {
566 	struct mtx *mtx, *new_mtx;
567 
568 	mtx = NULL;
569 	for (; count != 0; count--) {
570 		/*
571 		 * Avoid releasing and reacquiring the same page lock.
572 		 */
573 		new_mtx = vm_page_lockptr(*ma);
574 		if (mtx != new_mtx) {
575 			if (mtx != NULL)
576 				mtx_unlock(mtx);
577 			mtx = new_mtx;
578 			mtx_lock(mtx);
579 		}
580 		vm_page_unhold(*ma);
581 		ma++;
582 	}
583 	if (mtx != NULL)
584 		mtx_unlock(mtx);
585 }
586 
587 vm_page_t
588 PHYS_TO_VM_PAGE(vm_paddr_t pa)
589 {
590 	vm_page_t m;
591 
592 #ifdef VM_PHYSSEG_SPARSE
593 	m = vm_phys_paddr_to_vm_page(pa);
594 	if (m == NULL)
595 		m = vm_phys_fictitious_to_vm_page(pa);
596 	return (m);
597 #elif defined(VM_PHYSSEG_DENSE)
598 	long pi;
599 
600 	pi = atop(pa);
601 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
602 		m = &vm_page_array[pi - first_page];
603 		return (m);
604 	}
605 	return (vm_phys_fictitious_to_vm_page(pa));
606 #else
607 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
608 #endif
609 }
610 
611 /*
612  *	vm_page_getfake:
613  *
614  *	Create a fictitious page with the specified physical address and
615  *	memory attribute.  The memory attribute is the only the machine-
616  *	dependent aspect of a fictitious page that must be initialized.
617  */
618 vm_page_t
619 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
620 {
621 	vm_page_t m;
622 
623 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
624 	vm_page_initfake(m, paddr, memattr);
625 	return (m);
626 }
627 
628 void
629 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
630 {
631 
632 	if ((m->flags & PG_FICTITIOUS) != 0) {
633 		/*
634 		 * The page's memattr might have changed since the
635 		 * previous initialization.  Update the pmap to the
636 		 * new memattr.
637 		 */
638 		goto memattr;
639 	}
640 	m->phys_addr = paddr;
641 	m->queue = PQ_NONE;
642 	/* Fictitious pages don't use "segind". */
643 	m->flags = PG_FICTITIOUS;
644 	/* Fictitious pages don't use "order" or "pool". */
645 	m->oflags = VPO_BUSY | VPO_UNMANAGED;
646 	m->wire_count = 1;
647 memattr:
648 	pmap_page_set_memattr(m, memattr);
649 }
650 
651 /*
652  *	vm_page_putfake:
653  *
654  *	Release a fictitious page.
655  */
656 void
657 vm_page_putfake(vm_page_t m)
658 {
659 
660 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
661 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
662 	    ("vm_page_putfake: bad page %p", m));
663 	uma_zfree(fakepg_zone, m);
664 }
665 
666 /*
667  *	vm_page_updatefake:
668  *
669  *	Update the given fictitious page to the specified physical address and
670  *	memory attribute.
671  */
672 void
673 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
674 {
675 
676 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
677 	    ("vm_page_updatefake: bad page %p", m));
678 	m->phys_addr = paddr;
679 	pmap_page_set_memattr(m, memattr);
680 }
681 
682 /*
683  *	vm_page_free:
684  *
685  *	Free a page.
686  */
687 void
688 vm_page_free(vm_page_t m)
689 {
690 
691 	m->flags &= ~PG_ZERO;
692 	vm_page_free_toq(m);
693 }
694 
695 /*
696  *	vm_page_free_zero:
697  *
698  *	Free a page to the zerod-pages queue
699  */
700 void
701 vm_page_free_zero(vm_page_t m)
702 {
703 
704 	m->flags |= PG_ZERO;
705 	vm_page_free_toq(m);
706 }
707 
708 /*
709  * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
710  * array which is not the request page.
711  */
712 void
713 vm_page_readahead_finish(vm_page_t m)
714 {
715 
716 	if (m->valid != 0) {
717 		/*
718 		 * Since the page is not the requested page, whether
719 		 * it should be activated or deactivated is not
720 		 * obvious.  Empirical results have shown that
721 		 * deactivating the page is usually the best choice,
722 		 * unless the page is wanted by another thread.
723 		 */
724 		if (m->oflags & VPO_WANTED) {
725 			vm_page_lock(m);
726 			vm_page_activate(m);
727 			vm_page_unlock(m);
728 		} else {
729 			vm_page_lock(m);
730 			vm_page_deactivate(m);
731 			vm_page_unlock(m);
732 		}
733 		vm_page_wakeup(m);
734 	} else {
735 		/*
736 		 * Free the completely invalid page.  Such page state
737 		 * occurs due to the short read operation which did
738 		 * not covered our page at all, or in case when a read
739 		 * error happens.
740 		 */
741 		vm_page_lock(m);
742 		vm_page_free(m);
743 		vm_page_unlock(m);
744 	}
745 }
746 
747 /*
748  *	vm_page_sleep:
749  *
750  *	Sleep and release the page lock.
751  *
752  *	The object containing the given page must be locked.
753  */
754 void
755 vm_page_sleep(vm_page_t m, const char *msg)
756 {
757 
758 	VM_OBJECT_ASSERT_WLOCKED(m->object);
759 	if (mtx_owned(vm_page_lockptr(m)))
760 		vm_page_unlock(m);
761 
762 	/*
763 	 * It's possible that while we sleep, the page will get
764 	 * unbusied and freed.  If we are holding the object
765 	 * lock, we will assume we hold a reference to the object
766 	 * such that even if m->object changes, we can re-lock
767 	 * it.
768 	 */
769 	m->oflags |= VPO_WANTED;
770 	VM_OBJECT_SLEEP(m->object, m, PVM, msg, 0);
771 }
772 
773 /*
774  *	vm_page_dirty_KBI:		[ internal use only ]
775  *
776  *	Set all bits in the page's dirty field.
777  *
778  *	The object containing the specified page must be locked if the
779  *	call is made from the machine-independent layer.
780  *
781  *	See vm_page_clear_dirty_mask().
782  *
783  *	This function should only be called by vm_page_dirty().
784  */
785 void
786 vm_page_dirty_KBI(vm_page_t m)
787 {
788 
789 	/* These assertions refer to this operation by its public name. */
790 	KASSERT((m->flags & PG_CACHED) == 0,
791 	    ("vm_page_dirty: page in cache!"));
792 	KASSERT(!VM_PAGE_IS_FREE(m),
793 	    ("vm_page_dirty: page is free!"));
794 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
795 	    ("vm_page_dirty: page is invalid!"));
796 	m->dirty = VM_PAGE_BITS_ALL;
797 }
798 
799 /*
800  *	vm_page_insert:		[ internal use only ]
801  *
802  *	Inserts the given mem entry into the object and object list.
803  *
804  *	The object must be locked.
805  */
806 void
807 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
808 {
809 	vm_page_t mpred;
810 
811 	VM_OBJECT_ASSERT_WLOCKED(object);
812 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
813 	vm_page_insert_after(m, object, pindex, mpred);
814 }
815 
816 /*
817  *	vm_page_insert_after:
818  *
819  *	Inserts the page "m" into the specified object at offset "pindex".
820  *
821  *	The page "mpred" must immediately precede the offset "pindex" within
822  *	the specified object.
823  *
824  *	The object must be locked.
825  */
826 static void
827 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
828     vm_page_t mpred)
829 {
830 	vm_page_t msucc;
831 
832 	VM_OBJECT_ASSERT_WLOCKED(object);
833 	KASSERT(m->object == NULL,
834 	    ("vm_page_insert_after: page already inserted"));
835 	if (mpred != NULL) {
836 		KASSERT(mpred->object == object ||
837 		    (mpred->flags & PG_SLAB) != 0,
838 		    ("vm_page_insert_after: object doesn't contain mpred"));
839 		KASSERT(mpred->pindex < pindex,
840 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
841 		msucc = TAILQ_NEXT(mpred, listq);
842 	} else
843 		msucc = TAILQ_FIRST(&object->memq);
844 	if (msucc != NULL)
845 		KASSERT(msucc->pindex > pindex,
846 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
847 
848 	/*
849 	 * Record the object/offset pair in this page
850 	 */
851 	m->object = object;
852 	m->pindex = pindex;
853 
854 	/*
855 	 * Now link into the object's ordered list of backed pages.
856 	 */
857 	if (mpred != NULL)
858 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
859 	else
860 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
861 	vm_radix_insert(&object->rtree, m);
862 
863 	/*
864 	 * Show that the object has one more resident page.
865 	 */
866 	object->resident_page_count++;
867 
868 	/*
869 	 * Hold the vnode until the last page is released.
870 	 */
871 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
872 		vhold(object->handle);
873 
874 	/*
875 	 * Since we are inserting a new and possibly dirty page,
876 	 * update the object's OBJ_MIGHTBEDIRTY flag.
877 	 */
878 	if (pmap_page_is_write_mapped(m))
879 		vm_object_set_writeable_dirty(object);
880 }
881 
882 /*
883  *	vm_page_remove:
884  *
885  *	Removes the given mem entry from the object/offset-page
886  *	table and the object page list, but do not invalidate/terminate
887  *	the backing store.
888  *
889  *	The object must be locked.  The page must be locked if it is managed.
890  */
891 void
892 vm_page_remove(vm_page_t m)
893 {
894 	vm_object_t object;
895 
896 	if ((m->oflags & VPO_UNMANAGED) == 0)
897 		vm_page_lock_assert(m, MA_OWNED);
898 	if ((object = m->object) == NULL)
899 		return;
900 	VM_OBJECT_ASSERT_WLOCKED(object);
901 	if (m->oflags & VPO_BUSY) {
902 		m->oflags &= ~VPO_BUSY;
903 		vm_page_flash(m);
904 	}
905 
906 	/*
907 	 * Now remove from the object's list of backed pages.
908 	 */
909 	vm_radix_remove(&object->rtree, m->pindex);
910 	TAILQ_REMOVE(&object->memq, m, listq);
911 
912 	/*
913 	 * And show that the object has one fewer resident page.
914 	 */
915 	object->resident_page_count--;
916 
917 	/*
918 	 * The vnode may now be recycled.
919 	 */
920 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
921 		vdrop(object->handle);
922 
923 	m->object = NULL;
924 }
925 
926 /*
927  *	vm_page_lookup:
928  *
929  *	Returns the page associated with the object/offset
930  *	pair specified; if none is found, NULL is returned.
931  *
932  *	The object must be locked.
933  */
934 vm_page_t
935 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
936 {
937 
938 	VM_OBJECT_ASSERT_LOCKED(object);
939 	return (vm_radix_lookup(&object->rtree, pindex));
940 }
941 
942 /*
943  *	vm_page_find_least:
944  *
945  *	Returns the page associated with the object with least pindex
946  *	greater than or equal to the parameter pindex, or NULL.
947  *
948  *	The object must be locked.
949  */
950 vm_page_t
951 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
952 {
953 	vm_page_t m;
954 
955 	VM_OBJECT_ASSERT_LOCKED(object);
956 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
957 		m = vm_radix_lookup_ge(&object->rtree, pindex);
958 	return (m);
959 }
960 
961 /*
962  * Returns the given page's successor (by pindex) within the object if it is
963  * resident; if none is found, NULL is returned.
964  *
965  * The object must be locked.
966  */
967 vm_page_t
968 vm_page_next(vm_page_t m)
969 {
970 	vm_page_t next;
971 
972 	VM_OBJECT_ASSERT_WLOCKED(m->object);
973 	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
974 	    next->pindex != m->pindex + 1)
975 		next = NULL;
976 	return (next);
977 }
978 
979 /*
980  * Returns the given page's predecessor (by pindex) within the object if it is
981  * resident; if none is found, NULL is returned.
982  *
983  * The object must be locked.
984  */
985 vm_page_t
986 vm_page_prev(vm_page_t m)
987 {
988 	vm_page_t prev;
989 
990 	VM_OBJECT_ASSERT_WLOCKED(m->object);
991 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
992 	    prev->pindex != m->pindex - 1)
993 		prev = NULL;
994 	return (prev);
995 }
996 
997 /*
998  *	vm_page_rename:
999  *
1000  *	Move the given memory entry from its
1001  *	current object to the specified target object/offset.
1002  *
1003  *	Note: swap associated with the page must be invalidated by the move.  We
1004  *	      have to do this for several reasons:  (1) we aren't freeing the
1005  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1006  *	      moving the page from object A to B, and will then later move
1007  *	      the backing store from A to B and we can't have a conflict.
1008  *
1009  *	Note: we *always* dirty the page.  It is necessary both for the
1010  *	      fact that we moved it, and because we may be invalidating
1011  *	      swap.  If the page is on the cache, we have to deactivate it
1012  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1013  *	      on the cache.
1014  *
1015  *	The objects must be locked.  The page must be locked if it is managed.
1016  */
1017 void
1018 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1019 {
1020 
1021 	vm_page_remove(m);
1022 	vm_page_insert(m, new_object, new_pindex);
1023 	vm_page_dirty(m);
1024 }
1025 
1026 /*
1027  *	Convert all of the given object's cached pages that have a
1028  *	pindex within the given range into free pages.  If the value
1029  *	zero is given for "end", then the range's upper bound is
1030  *	infinity.  If the given object is backed by a vnode and it
1031  *	transitions from having one or more cached pages to none, the
1032  *	vnode's hold count is reduced.
1033  */
1034 void
1035 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1036 {
1037 	vm_page_t m;
1038 	boolean_t empty;
1039 
1040 	mtx_lock(&vm_page_queue_free_mtx);
1041 	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1042 		mtx_unlock(&vm_page_queue_free_mtx);
1043 		return;
1044 	}
1045 	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1046 		if (end != 0 && m->pindex >= end)
1047 			break;
1048 		vm_radix_remove(&object->cache, m->pindex);
1049 		m->object = NULL;
1050 		m->valid = 0;
1051 		/* Clear PG_CACHED and set PG_FREE. */
1052 		m->flags ^= PG_CACHED | PG_FREE;
1053 		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1054 		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1055 		cnt.v_cache_count--;
1056 		cnt.v_free_count++;
1057 	}
1058 	empty = vm_radix_is_empty(&object->cache);
1059 	mtx_unlock(&vm_page_queue_free_mtx);
1060 	if (object->type == OBJT_VNODE && empty)
1061 		vdrop(object->handle);
1062 }
1063 
1064 /*
1065  *	Returns the cached page that is associated with the given
1066  *	object and offset.  If, however, none exists, returns NULL.
1067  *
1068  *	The free page queue must be locked.
1069  */
1070 static inline vm_page_t
1071 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1072 {
1073 
1074 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1075 	return (vm_radix_lookup(&object->cache, pindex));
1076 }
1077 
1078 /*
1079  *	Remove the given cached page from its containing object's
1080  *	collection of cached pages.
1081  *
1082  *	The free page queue must be locked.
1083  */
1084 static void
1085 vm_page_cache_remove(vm_page_t m)
1086 {
1087 
1088 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1089 	KASSERT((m->flags & PG_CACHED) != 0,
1090 	    ("vm_page_cache_remove: page %p is not cached", m));
1091 	vm_radix_remove(&m->object->cache, m->pindex);
1092 	m->object = NULL;
1093 	cnt.v_cache_count--;
1094 }
1095 
1096 /*
1097  *	Transfer all of the cached pages with offset greater than or
1098  *	equal to 'offidxstart' from the original object's cache to the
1099  *	new object's cache.  However, any cached pages with offset
1100  *	greater than or equal to the new object's size are kept in the
1101  *	original object.  Initially, the new object's cache must be
1102  *	empty.  Offset 'offidxstart' in the original object must
1103  *	correspond to offset zero in the new object.
1104  *
1105  *	The new object must be locked.
1106  */
1107 void
1108 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1109     vm_object_t new_object)
1110 {
1111 	vm_page_t m;
1112 
1113 	/*
1114 	 * Insertion into an object's collection of cached pages
1115 	 * requires the object to be locked.  In contrast, removal does
1116 	 * not.
1117 	 */
1118 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1119 	KASSERT(vm_radix_is_empty(&new_object->cache),
1120 	    ("vm_page_cache_transfer: object %p has cached pages",
1121 	    new_object));
1122 	mtx_lock(&vm_page_queue_free_mtx);
1123 	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1124 	    offidxstart)) != NULL) {
1125 		/*
1126 		 * Transfer all of the pages with offset greater than or
1127 		 * equal to 'offidxstart' from the original object's
1128 		 * cache to the new object's cache.
1129 		 */
1130 		if ((m->pindex - offidxstart) >= new_object->size)
1131 			break;
1132 		vm_radix_remove(&orig_object->cache, m->pindex);
1133 		/* Update the page's object and offset. */
1134 		m->object = new_object;
1135 		m->pindex -= offidxstart;
1136 		vm_radix_insert(&new_object->cache, m);
1137 	}
1138 	mtx_unlock(&vm_page_queue_free_mtx);
1139 }
1140 
1141 /*
1142  *	Returns TRUE if a cached page is associated with the given object and
1143  *	offset, and FALSE otherwise.
1144  *
1145  *	The object must be locked.
1146  */
1147 boolean_t
1148 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1149 {
1150 	vm_page_t m;
1151 
1152 	/*
1153 	 * Insertion into an object's collection of cached pages requires the
1154 	 * object to be locked.  Therefore, if the object is locked and the
1155 	 * object's collection is empty, there is no need to acquire the free
1156 	 * page queues lock in order to prove that the specified page doesn't
1157 	 * exist.
1158 	 */
1159 	VM_OBJECT_ASSERT_WLOCKED(object);
1160 	if (__predict_true(vm_object_cache_is_empty(object)))
1161 		return (FALSE);
1162 	mtx_lock(&vm_page_queue_free_mtx);
1163 	m = vm_page_cache_lookup(object, pindex);
1164 	mtx_unlock(&vm_page_queue_free_mtx);
1165 	return (m != NULL);
1166 }
1167 
1168 /*
1169  *	vm_page_alloc:
1170  *
1171  *	Allocate and return a page that is associated with the specified
1172  *	object and offset pair.  By default, this page has the flag VPO_BUSY
1173  *	set.
1174  *
1175  *	The caller must always specify an allocation class.
1176  *
1177  *	allocation classes:
1178  *	VM_ALLOC_NORMAL		normal process request
1179  *	VM_ALLOC_SYSTEM		system *really* needs a page
1180  *	VM_ALLOC_INTERRUPT	interrupt time request
1181  *
1182  *	optional allocation flags:
1183  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1184  *				intends to allocate
1185  *	VM_ALLOC_IFCACHED	return page only if it is cached
1186  *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1187  *				is cached
1188  *	VM_ALLOC_NOBUSY		do not set the flag VPO_BUSY on the page
1189  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1190  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1191  *				should not have the flag VPO_BUSY set
1192  *	VM_ALLOC_WIRED		wire the allocated page
1193  *	VM_ALLOC_ZERO		prefer a zeroed page
1194  *
1195  *	This routine may not sleep.
1196  */
1197 vm_page_t
1198 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1199 {
1200 	struct vnode *vp = NULL;
1201 	vm_object_t m_object;
1202 	vm_page_t m, mpred;
1203 	int flags, req_class;
1204 
1205 	mpred = 0;	/* XXX: pacify gcc */
1206 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0),
1207 	    ("vm_page_alloc: inconsistent object/req"));
1208 	if (object != NULL)
1209 		VM_OBJECT_ASSERT_WLOCKED(object);
1210 
1211 	req_class = req & VM_ALLOC_CLASS_MASK;
1212 
1213 	/*
1214 	 * The page daemon is allowed to dig deeper into the free page list.
1215 	 */
1216 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1217 		req_class = VM_ALLOC_SYSTEM;
1218 
1219 	if (object != NULL) {
1220 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1221 		KASSERT(mpred == NULL || mpred->pindex != pindex,
1222 		   ("vm_page_alloc: pindex already allocated"));
1223 	}
1224 	mtx_lock(&vm_page_queue_free_mtx);
1225 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1226 	    (req_class == VM_ALLOC_SYSTEM &&
1227 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1228 	    (req_class == VM_ALLOC_INTERRUPT &&
1229 	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1230 		/*
1231 		 * Allocate from the free queue if the number of free pages
1232 		 * exceeds the minimum for the request class.
1233 		 */
1234 		if (object != NULL &&
1235 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1236 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1237 				mtx_unlock(&vm_page_queue_free_mtx);
1238 				return (NULL);
1239 			}
1240 			if (vm_phys_unfree_page(m))
1241 				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1242 #if VM_NRESERVLEVEL > 0
1243 			else if (!vm_reserv_reactivate_page(m))
1244 #else
1245 			else
1246 #endif
1247 				panic("vm_page_alloc: cache page %p is missing"
1248 				    " from the free queue", m);
1249 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1250 			mtx_unlock(&vm_page_queue_free_mtx);
1251 			return (NULL);
1252 #if VM_NRESERVLEVEL > 0
1253 		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1254 		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1255 		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1256 #else
1257 		} else {
1258 #endif
1259 			m = vm_phys_alloc_pages(object != NULL ?
1260 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1261 #if VM_NRESERVLEVEL > 0
1262 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1263 				m = vm_phys_alloc_pages(object != NULL ?
1264 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1265 				    0);
1266 			}
1267 #endif
1268 		}
1269 	} else {
1270 		/*
1271 		 * Not allocatable, give up.
1272 		 */
1273 		mtx_unlock(&vm_page_queue_free_mtx);
1274 		atomic_add_int(&vm_pageout_deficit,
1275 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1276 		pagedaemon_wakeup();
1277 		return (NULL);
1278 	}
1279 
1280 	/*
1281 	 *  At this point we had better have found a good page.
1282 	 */
1283 	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1284 	KASSERT(m->queue == PQ_NONE,
1285 	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1286 	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1287 	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1288 	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1289 	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1290 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1291 	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1292 	    pmap_page_get_memattr(m)));
1293 	if ((m->flags & PG_CACHED) != 0) {
1294 		KASSERT((m->flags & PG_ZERO) == 0,
1295 		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1296 		KASSERT(m->valid != 0,
1297 		    ("vm_page_alloc: cached page %p is invalid", m));
1298 		if (m->object == object && m->pindex == pindex)
1299 	  		cnt.v_reactivated++;
1300 		else
1301 			m->valid = 0;
1302 		m_object = m->object;
1303 		vm_page_cache_remove(m);
1304 		if (m_object->type == OBJT_VNODE &&
1305 		    vm_object_cache_is_empty(m_object))
1306 			vp = m_object->handle;
1307 	} else {
1308 		KASSERT(VM_PAGE_IS_FREE(m),
1309 		    ("vm_page_alloc: page %p is not free", m));
1310 		KASSERT(m->valid == 0,
1311 		    ("vm_page_alloc: free page %p is valid", m));
1312 		cnt.v_free_count--;
1313 	}
1314 
1315 	/*
1316 	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1317 	 * must be cleared before the free page queues lock is released.
1318 	 */
1319 	flags = 0;
1320 	if (m->flags & PG_ZERO) {
1321 		vm_page_zero_count--;
1322 		if (req & VM_ALLOC_ZERO)
1323 			flags = PG_ZERO;
1324 	}
1325 	if (req & VM_ALLOC_NODUMP)
1326 		flags |= PG_NODUMP;
1327 	m->flags = flags;
1328 	mtx_unlock(&vm_page_queue_free_mtx);
1329 	m->aflags = 0;
1330 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1331 	    VPO_UNMANAGED : 0;
1332 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0)
1333 		m->oflags |= VPO_BUSY;
1334 	if (req & VM_ALLOC_WIRED) {
1335 		/*
1336 		 * The page lock is not required for wiring a page until that
1337 		 * page is inserted into the object.
1338 		 */
1339 		atomic_add_int(&cnt.v_wire_count, 1);
1340 		m->wire_count = 1;
1341 	}
1342 	m->act_count = 0;
1343 
1344 	if (object != NULL) {
1345 		/* Ignore device objects; the pager sets "memattr" for them. */
1346 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1347 		    (object->flags & OBJ_FICTITIOUS) == 0)
1348 			pmap_page_set_memattr(m, object->memattr);
1349 		vm_page_insert_after(m, object, pindex, mpred);
1350 	} else
1351 		m->pindex = pindex;
1352 
1353 	/*
1354 	 * The following call to vdrop() must come after the above call
1355 	 * to vm_page_insert() in case both affect the same object and
1356 	 * vnode.  Otherwise, the affected vnode's hold count could
1357 	 * temporarily become zero.
1358 	 */
1359 	if (vp != NULL)
1360 		vdrop(vp);
1361 
1362 	/*
1363 	 * Don't wakeup too often - wakeup the pageout daemon when
1364 	 * we would be nearly out of memory.
1365 	 */
1366 	if (vm_paging_needed())
1367 		pagedaemon_wakeup();
1368 
1369 	return (m);
1370 }
1371 
1372 /*
1373  *	vm_page_alloc_contig:
1374  *
1375  *	Allocate a contiguous set of physical pages of the given size "npages"
1376  *	from the free lists.  All of the physical pages must be at or above
1377  *	the given physical address "low" and below the given physical address
1378  *	"high".  The given value "alignment" determines the alignment of the
1379  *	first physical page in the set.  If the given value "boundary" is
1380  *	non-zero, then the set of physical pages cannot cross any physical
1381  *	address boundary that is a multiple of that value.  Both "alignment"
1382  *	and "boundary" must be a power of two.
1383  *
1384  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1385  *	then the memory attribute setting for the physical pages is configured
1386  *	to the object's memory attribute setting.  Otherwise, the memory
1387  *	attribute setting for the physical pages is configured to "memattr",
1388  *	overriding the object's memory attribute setting.  However, if the
1389  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1390  *	memory attribute setting for the physical pages cannot be configured
1391  *	to VM_MEMATTR_DEFAULT.
1392  *
1393  *	The caller must always specify an allocation class.
1394  *
1395  *	allocation classes:
1396  *	VM_ALLOC_NORMAL		normal process request
1397  *	VM_ALLOC_SYSTEM		system *really* needs a page
1398  *	VM_ALLOC_INTERRUPT	interrupt time request
1399  *
1400  *	optional allocation flags:
1401  *	VM_ALLOC_NOBUSY		do not set the flag VPO_BUSY on the page
1402  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1403  *				should not have the flag VPO_BUSY set
1404  *	VM_ALLOC_WIRED		wire the allocated page
1405  *	VM_ALLOC_ZERO		prefer a zeroed page
1406  *
1407  *	This routine may not sleep.
1408  */
1409 vm_page_t
1410 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1411     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1412     vm_paddr_t boundary, vm_memattr_t memattr)
1413 {
1414 	struct vnode *drop;
1415 	vm_page_t deferred_vdrop_list, m, m_ret;
1416 	u_int flags, oflags;
1417 	int req_class;
1418 
1419 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0),
1420 	    ("vm_page_alloc_contig: inconsistent object/req"));
1421 	if (object != NULL) {
1422 		VM_OBJECT_ASSERT_WLOCKED(object);
1423 		KASSERT(object->type == OBJT_PHYS,
1424 		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1425 		    object));
1426 	}
1427 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1428 	req_class = req & VM_ALLOC_CLASS_MASK;
1429 
1430 	/*
1431 	 * The page daemon is allowed to dig deeper into the free page list.
1432 	 */
1433 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1434 		req_class = VM_ALLOC_SYSTEM;
1435 
1436 	deferred_vdrop_list = NULL;
1437 	mtx_lock(&vm_page_queue_free_mtx);
1438 	if (cnt.v_free_count + cnt.v_cache_count >= npages +
1439 	    cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1440 	    cnt.v_free_count + cnt.v_cache_count >= npages +
1441 	    cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1442 	    cnt.v_free_count + cnt.v_cache_count >= npages)) {
1443 #if VM_NRESERVLEVEL > 0
1444 retry:
1445 		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1446 		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1447 		    low, high, alignment, boundary)) == NULL)
1448 #endif
1449 			m_ret = vm_phys_alloc_contig(npages, low, high,
1450 			    alignment, boundary);
1451 	} else {
1452 		mtx_unlock(&vm_page_queue_free_mtx);
1453 		atomic_add_int(&vm_pageout_deficit, npages);
1454 		pagedaemon_wakeup();
1455 		return (NULL);
1456 	}
1457 	if (m_ret != NULL)
1458 		for (m = m_ret; m < &m_ret[npages]; m++) {
1459 			drop = vm_page_alloc_init(m);
1460 			if (drop != NULL) {
1461 				/*
1462 				 * Enqueue the vnode for deferred vdrop().
1463 				 *
1464 				 * Once the pages are removed from the free
1465 				 * page list, "pageq" can be safely abused to
1466 				 * construct a short-lived list of vnodes.
1467 				 */
1468 				m->pageq.tqe_prev = (void *)drop;
1469 				m->pageq.tqe_next = deferred_vdrop_list;
1470 				deferred_vdrop_list = m;
1471 			}
1472 		}
1473 	else {
1474 #if VM_NRESERVLEVEL > 0
1475 		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1476 		    boundary))
1477 			goto retry;
1478 #endif
1479 	}
1480 	mtx_unlock(&vm_page_queue_free_mtx);
1481 	if (m_ret == NULL)
1482 		return (NULL);
1483 
1484 	/*
1485 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1486 	 */
1487 	flags = 0;
1488 	if ((req & VM_ALLOC_ZERO) != 0)
1489 		flags = PG_ZERO;
1490 	if ((req & VM_ALLOC_NODUMP) != 0)
1491 		flags |= PG_NODUMP;
1492 	if ((req & VM_ALLOC_WIRED) != 0)
1493 		atomic_add_int(&cnt.v_wire_count, npages);
1494 	oflags = VPO_UNMANAGED;
1495 	if (object != NULL) {
1496 		if ((req & VM_ALLOC_NOBUSY) == 0)
1497 			oflags |= VPO_BUSY;
1498 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1499 		    memattr == VM_MEMATTR_DEFAULT)
1500 			memattr = object->memattr;
1501 	}
1502 	for (m = m_ret; m < &m_ret[npages]; m++) {
1503 		m->aflags = 0;
1504 		m->flags = (m->flags | PG_NODUMP) & flags;
1505 		if ((req & VM_ALLOC_WIRED) != 0)
1506 			m->wire_count = 1;
1507 		/* Unmanaged pages don't use "act_count". */
1508 		m->oflags = oflags;
1509 		if (memattr != VM_MEMATTR_DEFAULT)
1510 			pmap_page_set_memattr(m, memattr);
1511 		if (object != NULL)
1512 			vm_page_insert(m, object, pindex);
1513 		else
1514 			m->pindex = pindex;
1515 		pindex++;
1516 	}
1517 	while (deferred_vdrop_list != NULL) {
1518 		vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev);
1519 		deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next;
1520 	}
1521 	if (vm_paging_needed())
1522 		pagedaemon_wakeup();
1523 	return (m_ret);
1524 }
1525 
1526 /*
1527  * Initialize a page that has been freshly dequeued from a freelist.
1528  * The caller has to drop the vnode returned, if it is not NULL.
1529  *
1530  * This function may only be used to initialize unmanaged pages.
1531  *
1532  * To be called with vm_page_queue_free_mtx held.
1533  */
1534 static struct vnode *
1535 vm_page_alloc_init(vm_page_t m)
1536 {
1537 	struct vnode *drop;
1538 	vm_object_t m_object;
1539 
1540 	KASSERT(m->queue == PQ_NONE,
1541 	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1542 	    m, m->queue));
1543 	KASSERT(m->wire_count == 0,
1544 	    ("vm_page_alloc_init: page %p is wired", m));
1545 	KASSERT(m->hold_count == 0,
1546 	    ("vm_page_alloc_init: page %p is held", m));
1547 	KASSERT(m->busy == 0,
1548 	    ("vm_page_alloc_init: page %p is busy", m));
1549 	KASSERT(m->dirty == 0,
1550 	    ("vm_page_alloc_init: page %p is dirty", m));
1551 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1552 	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1553 	    m, pmap_page_get_memattr(m)));
1554 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1555 	drop = NULL;
1556 	if ((m->flags & PG_CACHED) != 0) {
1557 		KASSERT((m->flags & PG_ZERO) == 0,
1558 		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1559 		m->valid = 0;
1560 		m_object = m->object;
1561 		vm_page_cache_remove(m);
1562 		if (m_object->type == OBJT_VNODE &&
1563 		    vm_object_cache_is_empty(m_object))
1564 			drop = m_object->handle;
1565 	} else {
1566 		KASSERT(VM_PAGE_IS_FREE(m),
1567 		    ("vm_page_alloc_init: page %p is not free", m));
1568 		KASSERT(m->valid == 0,
1569 		    ("vm_page_alloc_init: free page %p is valid", m));
1570 		cnt.v_free_count--;
1571 		if ((m->flags & PG_ZERO) != 0)
1572 			vm_page_zero_count--;
1573 	}
1574 	/* Don't clear the PG_ZERO flag; we'll need it later. */
1575 	m->flags &= PG_ZERO;
1576 	return (drop);
1577 }
1578 
1579 /*
1580  * 	vm_page_alloc_freelist:
1581  *
1582  *	Allocate a physical page from the specified free page list.
1583  *
1584  *	The caller must always specify an allocation class.
1585  *
1586  *	allocation classes:
1587  *	VM_ALLOC_NORMAL		normal process request
1588  *	VM_ALLOC_SYSTEM		system *really* needs a page
1589  *	VM_ALLOC_INTERRUPT	interrupt time request
1590  *
1591  *	optional allocation flags:
1592  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1593  *				intends to allocate
1594  *	VM_ALLOC_WIRED		wire the allocated page
1595  *	VM_ALLOC_ZERO		prefer a zeroed page
1596  *
1597  *	This routine may not sleep.
1598  */
1599 vm_page_t
1600 vm_page_alloc_freelist(int flind, int req)
1601 {
1602 	struct vnode *drop;
1603 	vm_page_t m;
1604 	u_int flags;
1605 	int req_class;
1606 
1607 	req_class = req & VM_ALLOC_CLASS_MASK;
1608 
1609 	/*
1610 	 * The page daemon is allowed to dig deeper into the free page list.
1611 	 */
1612 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1613 		req_class = VM_ALLOC_SYSTEM;
1614 
1615 	/*
1616 	 * Do not allocate reserved pages unless the req has asked for it.
1617 	 */
1618 	mtx_lock(&vm_page_queue_free_mtx);
1619 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1620 	    (req_class == VM_ALLOC_SYSTEM &&
1621 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1622 	    (req_class == VM_ALLOC_INTERRUPT &&
1623 	    cnt.v_free_count + cnt.v_cache_count > 0))
1624 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1625 	else {
1626 		mtx_unlock(&vm_page_queue_free_mtx);
1627 		atomic_add_int(&vm_pageout_deficit,
1628 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1629 		pagedaemon_wakeup();
1630 		return (NULL);
1631 	}
1632 	if (m == NULL) {
1633 		mtx_unlock(&vm_page_queue_free_mtx);
1634 		return (NULL);
1635 	}
1636 	drop = vm_page_alloc_init(m);
1637 	mtx_unlock(&vm_page_queue_free_mtx);
1638 
1639 	/*
1640 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1641 	 */
1642 	m->aflags = 0;
1643 	flags = 0;
1644 	if ((req & VM_ALLOC_ZERO) != 0)
1645 		flags = PG_ZERO;
1646 	m->flags &= flags;
1647 	if ((req & VM_ALLOC_WIRED) != 0) {
1648 		/*
1649 		 * The page lock is not required for wiring a page that does
1650 		 * not belong to an object.
1651 		 */
1652 		atomic_add_int(&cnt.v_wire_count, 1);
1653 		m->wire_count = 1;
1654 	}
1655 	/* Unmanaged pages don't use "act_count". */
1656 	m->oflags = VPO_UNMANAGED;
1657 	if (drop != NULL)
1658 		vdrop(drop);
1659 	if (vm_paging_needed())
1660 		pagedaemon_wakeup();
1661 	return (m);
1662 }
1663 
1664 /*
1665  *	vm_wait:	(also see VM_WAIT macro)
1666  *
1667  *	Sleep until free pages are available for allocation.
1668  *	- Called in various places before memory allocations.
1669  */
1670 void
1671 vm_wait(void)
1672 {
1673 
1674 	mtx_lock(&vm_page_queue_free_mtx);
1675 	if (curproc == pageproc) {
1676 		vm_pageout_pages_needed = 1;
1677 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1678 		    PDROP | PSWP, "VMWait", 0);
1679 	} else {
1680 		if (!vm_pages_needed) {
1681 			vm_pages_needed = 1;
1682 			wakeup(&vm_pages_needed);
1683 		}
1684 		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1685 		    "vmwait", 0);
1686 	}
1687 }
1688 
1689 /*
1690  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1691  *
1692  *	Sleep until free pages are available for allocation.
1693  *	- Called only in vm_fault so that processes page faulting
1694  *	  can be easily tracked.
1695  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1696  *	  processes will be able to grab memory first.  Do not change
1697  *	  this balance without careful testing first.
1698  */
1699 void
1700 vm_waitpfault(void)
1701 {
1702 
1703 	mtx_lock(&vm_page_queue_free_mtx);
1704 	if (!vm_pages_needed) {
1705 		vm_pages_needed = 1;
1706 		wakeup(&vm_pages_needed);
1707 	}
1708 	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1709 	    "pfault", 0);
1710 }
1711 
1712 /*
1713  *	vm_page_dequeue:
1714  *
1715  *	Remove the given page from its current page queue.
1716  *
1717  *	The page must be locked.
1718  */
1719 void
1720 vm_page_dequeue(vm_page_t m)
1721 {
1722 	struct vm_pagequeue *pq;
1723 
1724 	vm_page_lock_assert(m, MA_OWNED);
1725 	KASSERT(m->queue != PQ_NONE,
1726 	    ("vm_page_dequeue: page %p is not queued", m));
1727 	pq = &vm_pagequeues[m->queue];
1728 	vm_pagequeue_lock(pq);
1729 	m->queue = PQ_NONE;
1730 	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1731 	(*pq->pq_cnt)--;
1732 	vm_pagequeue_unlock(pq);
1733 }
1734 
1735 /*
1736  *	vm_page_dequeue_locked:
1737  *
1738  *	Remove the given page from its current page queue.
1739  *
1740  *	The page and page queue must be locked.
1741  */
1742 void
1743 vm_page_dequeue_locked(vm_page_t m)
1744 {
1745 	struct vm_pagequeue *pq;
1746 
1747 	vm_page_lock_assert(m, MA_OWNED);
1748 	pq = &vm_pagequeues[m->queue];
1749 	vm_pagequeue_assert_locked(pq);
1750 	m->queue = PQ_NONE;
1751 	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1752 	(*pq->pq_cnt)--;
1753 }
1754 
1755 /*
1756  *	vm_page_enqueue:
1757  *
1758  *	Add the given page to the specified page queue.
1759  *
1760  *	The page must be locked.
1761  */
1762 static void
1763 vm_page_enqueue(int queue, vm_page_t m)
1764 {
1765 	struct vm_pagequeue *pq;
1766 
1767 	vm_page_lock_assert(m, MA_OWNED);
1768 	pq = &vm_pagequeues[queue];
1769 	vm_pagequeue_lock(pq);
1770 	m->queue = queue;
1771 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
1772 	++*pq->pq_cnt;
1773 	vm_pagequeue_unlock(pq);
1774 }
1775 
1776 /*
1777  *	vm_page_requeue:
1778  *
1779  *	Move the given page to the tail of its current page queue.
1780  *
1781  *	The page must be locked.
1782  */
1783 void
1784 vm_page_requeue(vm_page_t m)
1785 {
1786 	struct vm_pagequeue *pq;
1787 
1788 	vm_page_lock_assert(m, MA_OWNED);
1789 	KASSERT(m->queue != PQ_NONE,
1790 	    ("vm_page_requeue: page %p is not queued", m));
1791 	pq = &vm_pagequeues[m->queue];
1792 	vm_pagequeue_lock(pq);
1793 	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1794 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
1795 	vm_pagequeue_unlock(pq);
1796 }
1797 
1798 /*
1799  *	vm_page_requeue_locked:
1800  *
1801  *	Move the given page to the tail of its current page queue.
1802  *
1803  *	The page queue must be locked.
1804  */
1805 void
1806 vm_page_requeue_locked(vm_page_t m)
1807 {
1808 	struct vm_pagequeue *pq;
1809 
1810 	KASSERT(m->queue != PQ_NONE,
1811 	    ("vm_page_requeue_locked: page %p is not queued", m));
1812 	pq = &vm_pagequeues[m->queue];
1813 	vm_pagequeue_assert_locked(pq);
1814 	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1815 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
1816 }
1817 
1818 /*
1819  *	vm_page_activate:
1820  *
1821  *	Put the specified page on the active list (if appropriate).
1822  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1823  *	mess with it.
1824  *
1825  *	The page must be locked.
1826  */
1827 void
1828 vm_page_activate(vm_page_t m)
1829 {
1830 	int queue;
1831 
1832 	vm_page_lock_assert(m, MA_OWNED);
1833 	if ((queue = m->queue) != PQ_ACTIVE) {
1834 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
1835 			if (m->act_count < ACT_INIT)
1836 				m->act_count = ACT_INIT;
1837 			if (queue != PQ_NONE)
1838 				vm_page_dequeue(m);
1839 			vm_page_enqueue(PQ_ACTIVE, m);
1840 		} else
1841 			KASSERT(queue == PQ_NONE,
1842 			    ("vm_page_activate: wired page %p is queued", m));
1843 	} else {
1844 		if (m->act_count < ACT_INIT)
1845 			m->act_count = ACT_INIT;
1846 	}
1847 }
1848 
1849 /*
1850  *	vm_page_free_wakeup:
1851  *
1852  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1853  *	routine is called when a page has been added to the cache or free
1854  *	queues.
1855  *
1856  *	The page queues must be locked.
1857  */
1858 static inline void
1859 vm_page_free_wakeup(void)
1860 {
1861 
1862 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1863 	/*
1864 	 * if pageout daemon needs pages, then tell it that there are
1865 	 * some free.
1866 	 */
1867 	if (vm_pageout_pages_needed &&
1868 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1869 		wakeup(&vm_pageout_pages_needed);
1870 		vm_pageout_pages_needed = 0;
1871 	}
1872 	/*
1873 	 * wakeup processes that are waiting on memory if we hit a
1874 	 * high water mark. And wakeup scheduler process if we have
1875 	 * lots of memory. this process will swapin processes.
1876 	 */
1877 	if (vm_pages_needed && !vm_page_count_min()) {
1878 		vm_pages_needed = 0;
1879 		wakeup(&cnt.v_free_count);
1880 	}
1881 }
1882 
1883 /*
1884  *	vm_page_free_toq:
1885  *
1886  *	Returns the given page to the free list,
1887  *	disassociating it with any VM object.
1888  *
1889  *	The object must be locked.  The page must be locked if it is managed.
1890  */
1891 void
1892 vm_page_free_toq(vm_page_t m)
1893 {
1894 
1895 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1896 		vm_page_lock_assert(m, MA_OWNED);
1897 		KASSERT(!pmap_page_is_mapped(m),
1898 		    ("vm_page_free_toq: freeing mapped page %p", m));
1899 	} else
1900 		KASSERT(m->queue == PQ_NONE,
1901 		    ("vm_page_free_toq: unmanaged page %p is queued", m));
1902 	PCPU_INC(cnt.v_tfree);
1903 
1904 	if (VM_PAGE_IS_FREE(m))
1905 		panic("vm_page_free: freeing free page %p", m);
1906 	else if (m->busy != 0)
1907 		panic("vm_page_free: freeing busy page %p", m);
1908 
1909 	/*
1910 	 * Unqueue, then remove page.  Note that we cannot destroy
1911 	 * the page here because we do not want to call the pager's
1912 	 * callback routine until after we've put the page on the
1913 	 * appropriate free queue.
1914 	 */
1915 	vm_page_remque(m);
1916 	vm_page_remove(m);
1917 
1918 	/*
1919 	 * If fictitious remove object association and
1920 	 * return, otherwise delay object association removal.
1921 	 */
1922 	if ((m->flags & PG_FICTITIOUS) != 0) {
1923 		return;
1924 	}
1925 
1926 	m->valid = 0;
1927 	vm_page_undirty(m);
1928 
1929 	if (m->wire_count != 0)
1930 		panic("vm_page_free: freeing wired page %p", m);
1931 	if (m->hold_count != 0) {
1932 		m->flags &= ~PG_ZERO;
1933 		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
1934 		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
1935 		m->flags |= PG_UNHOLDFREE;
1936 	} else {
1937 		/*
1938 		 * Restore the default memory attribute to the page.
1939 		 */
1940 		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1941 			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1942 
1943 		/*
1944 		 * Insert the page into the physical memory allocator's
1945 		 * cache/free page queues.
1946 		 */
1947 		mtx_lock(&vm_page_queue_free_mtx);
1948 		m->flags |= PG_FREE;
1949 		cnt.v_free_count++;
1950 #if VM_NRESERVLEVEL > 0
1951 		if (!vm_reserv_free_page(m))
1952 #else
1953 		if (TRUE)
1954 #endif
1955 			vm_phys_free_pages(m, 0);
1956 		if ((m->flags & PG_ZERO) != 0)
1957 			++vm_page_zero_count;
1958 		else
1959 			vm_page_zero_idle_wakeup();
1960 		vm_page_free_wakeup();
1961 		mtx_unlock(&vm_page_queue_free_mtx);
1962 	}
1963 }
1964 
1965 /*
1966  *	vm_page_wire:
1967  *
1968  *	Mark this page as wired down by yet
1969  *	another map, removing it from paging queues
1970  *	as necessary.
1971  *
1972  *	If the page is fictitious, then its wire count must remain one.
1973  *
1974  *	The page must be locked.
1975  */
1976 void
1977 vm_page_wire(vm_page_t m)
1978 {
1979 
1980 	/*
1981 	 * Only bump the wire statistics if the page is not already wired,
1982 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1983 	 * it is already off the queues).
1984 	 */
1985 	vm_page_lock_assert(m, MA_OWNED);
1986 	if ((m->flags & PG_FICTITIOUS) != 0) {
1987 		KASSERT(m->wire_count == 1,
1988 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
1989 		    m));
1990 		return;
1991 	}
1992 	if (m->wire_count == 0) {
1993 		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
1994 		    m->queue == PQ_NONE,
1995 		    ("vm_page_wire: unmanaged page %p is queued", m));
1996 		vm_page_remque(m);
1997 		atomic_add_int(&cnt.v_wire_count, 1);
1998 	}
1999 	m->wire_count++;
2000 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2001 }
2002 
2003 /*
2004  * vm_page_unwire:
2005  *
2006  * Release one wiring of the specified page, potentially enabling it to be
2007  * paged again.  If paging is enabled, then the value of the parameter
2008  * "activate" determines to which queue the page is added.  If "activate" is
2009  * non-zero, then the page is added to the active queue.  Otherwise, it is
2010  * added to the inactive queue.
2011  *
2012  * However, unless the page belongs to an object, it is not enqueued because
2013  * it cannot be paged out.
2014  *
2015  * If a page is fictitious, then its wire count must alway be one.
2016  *
2017  * A managed page must be locked.
2018  */
2019 void
2020 vm_page_unwire(vm_page_t m, int activate)
2021 {
2022 
2023 	if ((m->oflags & VPO_UNMANAGED) == 0)
2024 		vm_page_lock_assert(m, MA_OWNED);
2025 	if ((m->flags & PG_FICTITIOUS) != 0) {
2026 		KASSERT(m->wire_count == 1,
2027 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2028 		return;
2029 	}
2030 	if (m->wire_count > 0) {
2031 		m->wire_count--;
2032 		if (m->wire_count == 0) {
2033 			atomic_subtract_int(&cnt.v_wire_count, 1);
2034 			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2035 			    m->object == NULL)
2036 				return;
2037 			if (!activate)
2038 				m->flags &= ~PG_WINATCFLS;
2039 			vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m);
2040 		}
2041 	} else
2042 		panic("vm_page_unwire: page %p's wire count is zero", m);
2043 }
2044 
2045 /*
2046  * Move the specified page to the inactive queue.
2047  *
2048  * Many pages placed on the inactive queue should actually go
2049  * into the cache, but it is difficult to figure out which.  What
2050  * we do instead, if the inactive target is well met, is to put
2051  * clean pages at the head of the inactive queue instead of the tail.
2052  * This will cause them to be moved to the cache more quickly and
2053  * if not actively re-referenced, reclaimed more quickly.  If we just
2054  * stick these pages at the end of the inactive queue, heavy filesystem
2055  * meta-data accesses can cause an unnecessary paging load on memory bound
2056  * processes.  This optimization causes one-time-use metadata to be
2057  * reused more quickly.
2058  *
2059  * Normally athead is 0 resulting in LRU operation.  athead is set
2060  * to 1 if we want this page to be 'as if it were placed in the cache',
2061  * except without unmapping it from the process address space.
2062  *
2063  * The page must be locked.
2064  */
2065 static inline void
2066 _vm_page_deactivate(vm_page_t m, int athead)
2067 {
2068 	struct vm_pagequeue *pq;
2069 	int queue;
2070 
2071 	vm_page_lock_assert(m, MA_OWNED);
2072 
2073 	/*
2074 	 * Ignore if already inactive.
2075 	 */
2076 	if ((queue = m->queue) == PQ_INACTIVE)
2077 		return;
2078 	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2079 		if (queue != PQ_NONE)
2080 			vm_page_dequeue(m);
2081 		m->flags &= ~PG_WINATCFLS;
2082 		pq = &vm_pagequeues[PQ_INACTIVE];
2083 		vm_pagequeue_lock(pq);
2084 		m->queue = PQ_INACTIVE;
2085 		if (athead)
2086 			TAILQ_INSERT_HEAD(&pq->pq_pl, m, pageq);
2087 		else
2088 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
2089 		cnt.v_inactive_count++;
2090 		vm_pagequeue_unlock(pq);
2091 	}
2092 }
2093 
2094 /*
2095  * Move the specified page to the inactive queue.
2096  *
2097  * The page must be locked.
2098  */
2099 void
2100 vm_page_deactivate(vm_page_t m)
2101 {
2102 
2103 	_vm_page_deactivate(m, 0);
2104 }
2105 
2106 /*
2107  * vm_page_try_to_cache:
2108  *
2109  * Returns 0 on failure, 1 on success
2110  */
2111 int
2112 vm_page_try_to_cache(vm_page_t m)
2113 {
2114 
2115 	vm_page_lock_assert(m, MA_OWNED);
2116 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2117 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2118 	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2119 		return (0);
2120 	pmap_remove_all(m);
2121 	if (m->dirty)
2122 		return (0);
2123 	vm_page_cache(m);
2124 	return (1);
2125 }
2126 
2127 /*
2128  * vm_page_try_to_free()
2129  *
2130  *	Attempt to free the page.  If we cannot free it, we do nothing.
2131  *	1 is returned on success, 0 on failure.
2132  */
2133 int
2134 vm_page_try_to_free(vm_page_t m)
2135 {
2136 
2137 	vm_page_lock_assert(m, MA_OWNED);
2138 	if (m->object != NULL)
2139 		VM_OBJECT_ASSERT_WLOCKED(m->object);
2140 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2141 	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2142 		return (0);
2143 	pmap_remove_all(m);
2144 	if (m->dirty)
2145 		return (0);
2146 	vm_page_free(m);
2147 	return (1);
2148 }
2149 
2150 /*
2151  * vm_page_cache
2152  *
2153  * Put the specified page onto the page cache queue (if appropriate).
2154  *
2155  * The object and page must be locked.
2156  */
2157 void
2158 vm_page_cache(vm_page_t m)
2159 {
2160 	vm_object_t object;
2161 	boolean_t cache_was_empty;
2162 
2163 	vm_page_lock_assert(m, MA_OWNED);
2164 	object = m->object;
2165 	VM_OBJECT_ASSERT_WLOCKED(object);
2166 	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy ||
2167 	    m->hold_count || m->wire_count)
2168 		panic("vm_page_cache: attempting to cache busy page");
2169 	KASSERT(!pmap_page_is_mapped(m),
2170 	    ("vm_page_cache: page %p is mapped", m));
2171 	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2172 	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2173 	    (object->type == OBJT_SWAP &&
2174 	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2175 		/*
2176 		 * Hypothesis: A cache-elgible page belonging to a
2177 		 * default object or swap object but without a backing
2178 		 * store must be zero filled.
2179 		 */
2180 		vm_page_free(m);
2181 		return;
2182 	}
2183 	KASSERT((m->flags & PG_CACHED) == 0,
2184 	    ("vm_page_cache: page %p is already cached", m));
2185 	PCPU_INC(cnt.v_tcached);
2186 
2187 	/*
2188 	 * Remove the page from the paging queues.
2189 	 */
2190 	vm_page_remque(m);
2191 
2192 	/*
2193 	 * Remove the page from the object's collection of resident
2194 	 * pages.
2195 	 */
2196 	vm_radix_remove(&object->rtree, m->pindex);
2197 	TAILQ_REMOVE(&object->memq, m, listq);
2198 	object->resident_page_count--;
2199 
2200 	/*
2201 	 * Restore the default memory attribute to the page.
2202 	 */
2203 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2204 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2205 
2206 	/*
2207 	 * Insert the page into the object's collection of cached pages
2208 	 * and the physical memory allocator's cache/free page queues.
2209 	 */
2210 	m->flags &= ~PG_ZERO;
2211 	mtx_lock(&vm_page_queue_free_mtx);
2212 	m->flags |= PG_CACHED;
2213 	cnt.v_cache_count++;
2214 	cache_was_empty = vm_radix_is_empty(&object->cache);
2215 	vm_radix_insert(&object->cache, m);
2216 #if VM_NRESERVLEVEL > 0
2217 	if (!vm_reserv_free_page(m)) {
2218 #else
2219 	if (TRUE) {
2220 #endif
2221 		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2222 		vm_phys_free_pages(m, 0);
2223 	}
2224 	vm_page_free_wakeup();
2225 	mtx_unlock(&vm_page_queue_free_mtx);
2226 
2227 	/*
2228 	 * Increment the vnode's hold count if this is the object's only
2229 	 * cached page.  Decrement the vnode's hold count if this was
2230 	 * the object's only resident page.
2231 	 */
2232 	if (object->type == OBJT_VNODE) {
2233 		if (cache_was_empty && object->resident_page_count != 0)
2234 			vhold(object->handle);
2235 		else if (!cache_was_empty && object->resident_page_count == 0)
2236 			vdrop(object->handle);
2237 	}
2238 }
2239 
2240 /*
2241  * vm_page_dontneed
2242  *
2243  *	Cache, deactivate, or do nothing as appropriate.  This routine
2244  *	is typically used by madvise() MADV_DONTNEED.
2245  *
2246  *	Generally speaking we want to move the page into the cache so
2247  *	it gets reused quickly.  However, this can result in a silly syndrome
2248  *	due to the page recycling too quickly.  Small objects will not be
2249  *	fully cached.  On the otherhand, if we move the page to the inactive
2250  *	queue we wind up with a problem whereby very large objects
2251  *	unnecessarily blow away our inactive and cache queues.
2252  *
2253  *	The solution is to move the pages based on a fixed weighting.  We
2254  *	either leave them alone, deactivate them, or move them to the cache,
2255  *	where moving them to the cache has the highest weighting.
2256  *	By forcing some pages into other queues we eventually force the
2257  *	system to balance the queues, potentially recovering other unrelated
2258  *	space from active.  The idea is to not force this to happen too
2259  *	often.
2260  *
2261  *	The object and page must be locked.
2262  */
2263 void
2264 vm_page_dontneed(vm_page_t m)
2265 {
2266 	int dnw;
2267 	int head;
2268 
2269 	vm_page_lock_assert(m, MA_OWNED);
2270 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2271 	dnw = PCPU_GET(dnweight);
2272 	PCPU_INC(dnweight);
2273 
2274 	/*
2275 	 * Occasionally leave the page alone.
2276 	 */
2277 	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2278 		if (m->act_count >= ACT_INIT)
2279 			--m->act_count;
2280 		return;
2281 	}
2282 
2283 	/*
2284 	 * Clear any references to the page.  Otherwise, the page daemon will
2285 	 * immediately reactivate the page.
2286 	 *
2287 	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2288 	 * pmap operation, such as pmap_remove(), could clear a reference in
2289 	 * the pmap and set PGA_REFERENCED on the page before the
2290 	 * pmap_clear_reference() had completed.  Consequently, the page would
2291 	 * appear referenced based upon an old reference that occurred before
2292 	 * this function ran.
2293 	 */
2294 	pmap_clear_reference(m);
2295 	vm_page_aflag_clear(m, PGA_REFERENCED);
2296 
2297 	if (m->dirty == 0 && pmap_is_modified(m))
2298 		vm_page_dirty(m);
2299 
2300 	if (m->dirty || (dnw & 0x0070) == 0) {
2301 		/*
2302 		 * Deactivate the page 3 times out of 32.
2303 		 */
2304 		head = 0;
2305 	} else {
2306 		/*
2307 		 * Cache the page 28 times out of every 32.  Note that
2308 		 * the page is deactivated instead of cached, but placed
2309 		 * at the head of the queue instead of the tail.
2310 		 */
2311 		head = 1;
2312 	}
2313 	_vm_page_deactivate(m, head);
2314 }
2315 
2316 /*
2317  * Grab a page, waiting until we are waken up due to the page
2318  * changing state.  We keep on waiting, if the page continues
2319  * to be in the object.  If the page doesn't exist, first allocate it
2320  * and then conditionally zero it.
2321  *
2322  * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2323  * to facilitate its eventual removal.
2324  *
2325  * This routine may sleep.
2326  *
2327  * The object must be locked on entry.  The lock will, however, be released
2328  * and reacquired if the routine sleeps.
2329  */
2330 vm_page_t
2331 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2332 {
2333 	vm_page_t m;
2334 
2335 	VM_OBJECT_ASSERT_WLOCKED(object);
2336 	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2337 	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2338 retrylookup:
2339 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2340 		if ((m->oflags & VPO_BUSY) != 0 ||
2341 		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2342 			/*
2343 			 * Reference the page before unlocking and
2344 			 * sleeping so that the page daemon is less
2345 			 * likely to reclaim it.
2346 			 */
2347 			vm_page_aflag_set(m, PGA_REFERENCED);
2348 			vm_page_sleep(m, "pgrbwt");
2349 			goto retrylookup;
2350 		} else {
2351 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2352 				vm_page_lock(m);
2353 				vm_page_wire(m);
2354 				vm_page_unlock(m);
2355 			}
2356 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2357 				vm_page_busy(m);
2358 			return (m);
2359 		}
2360 	}
2361 	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2362 	    VM_ALLOC_IGN_SBUSY));
2363 	if (m == NULL) {
2364 		VM_OBJECT_WUNLOCK(object);
2365 		VM_WAIT;
2366 		VM_OBJECT_WLOCK(object);
2367 		goto retrylookup;
2368 	} else if (m->valid != 0)
2369 		return (m);
2370 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2371 		pmap_zero_page(m);
2372 	return (m);
2373 }
2374 
2375 /*
2376  * Mapping function for valid or dirty bits in a page.
2377  *
2378  * Inputs are required to range within a page.
2379  */
2380 vm_page_bits_t
2381 vm_page_bits(int base, int size)
2382 {
2383 	int first_bit;
2384 	int last_bit;
2385 
2386 	KASSERT(
2387 	    base + size <= PAGE_SIZE,
2388 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2389 	);
2390 
2391 	if (size == 0)		/* handle degenerate case */
2392 		return (0);
2393 
2394 	first_bit = base >> DEV_BSHIFT;
2395 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2396 
2397 	return (((vm_page_bits_t)2 << last_bit) -
2398 	    ((vm_page_bits_t)1 << first_bit));
2399 }
2400 
2401 /*
2402  *	vm_page_set_valid_range:
2403  *
2404  *	Sets portions of a page valid.  The arguments are expected
2405  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2406  *	of any partial chunks touched by the range.  The invalid portion of
2407  *	such chunks will be zeroed.
2408  *
2409  *	(base + size) must be less then or equal to PAGE_SIZE.
2410  */
2411 void
2412 vm_page_set_valid_range(vm_page_t m, int base, int size)
2413 {
2414 	int endoff, frag;
2415 
2416 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2417 	if (size == 0)	/* handle degenerate case */
2418 		return;
2419 
2420 	/*
2421 	 * If the base is not DEV_BSIZE aligned and the valid
2422 	 * bit is clear, we have to zero out a portion of the
2423 	 * first block.
2424 	 */
2425 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2426 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2427 		pmap_zero_page_area(m, frag, base - frag);
2428 
2429 	/*
2430 	 * If the ending offset is not DEV_BSIZE aligned and the
2431 	 * valid bit is clear, we have to zero out a portion of
2432 	 * the last block.
2433 	 */
2434 	endoff = base + size;
2435 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2436 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2437 		pmap_zero_page_area(m, endoff,
2438 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2439 
2440 	/*
2441 	 * Assert that no previously invalid block that is now being validated
2442 	 * is already dirty.
2443 	 */
2444 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2445 	    ("vm_page_set_valid_range: page %p is dirty", m));
2446 
2447 	/*
2448 	 * Set valid bits inclusive of any overlap.
2449 	 */
2450 	m->valid |= vm_page_bits(base, size);
2451 }
2452 
2453 /*
2454  * Clear the given bits from the specified page's dirty field.
2455  */
2456 static __inline void
2457 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2458 {
2459 	uintptr_t addr;
2460 #if PAGE_SIZE < 16384
2461 	int shift;
2462 #endif
2463 
2464 	/*
2465 	 * If the object is locked and the page is neither VPO_BUSY nor
2466 	 * write mapped, then the page's dirty field cannot possibly be
2467 	 * set by a concurrent pmap operation.
2468 	 */
2469 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2470 	if ((m->oflags & VPO_BUSY) == 0 && !pmap_page_is_write_mapped(m))
2471 		m->dirty &= ~pagebits;
2472 	else {
2473 		/*
2474 		 * The pmap layer can call vm_page_dirty() without
2475 		 * holding a distinguished lock.  The combination of
2476 		 * the object's lock and an atomic operation suffice
2477 		 * to guarantee consistency of the page dirty field.
2478 		 *
2479 		 * For PAGE_SIZE == 32768 case, compiler already
2480 		 * properly aligns the dirty field, so no forcible
2481 		 * alignment is needed. Only require existence of
2482 		 * atomic_clear_64 when page size is 32768.
2483 		 */
2484 		addr = (uintptr_t)&m->dirty;
2485 #if PAGE_SIZE == 32768
2486 		atomic_clear_64((uint64_t *)addr, pagebits);
2487 #elif PAGE_SIZE == 16384
2488 		atomic_clear_32((uint32_t *)addr, pagebits);
2489 #else		/* PAGE_SIZE <= 8192 */
2490 		/*
2491 		 * Use a trick to perform a 32-bit atomic on the
2492 		 * containing aligned word, to not depend on the existence
2493 		 * of atomic_clear_{8, 16}.
2494 		 */
2495 		shift = addr & (sizeof(uint32_t) - 1);
2496 #if BYTE_ORDER == BIG_ENDIAN
2497 		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2498 #else
2499 		shift *= NBBY;
2500 #endif
2501 		addr &= ~(sizeof(uint32_t) - 1);
2502 		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2503 #endif		/* PAGE_SIZE */
2504 	}
2505 }
2506 
2507 /*
2508  *	vm_page_set_validclean:
2509  *
2510  *	Sets portions of a page valid and clean.  The arguments are expected
2511  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2512  *	of any partial chunks touched by the range.  The invalid portion of
2513  *	such chunks will be zero'd.
2514  *
2515  *	(base + size) must be less then or equal to PAGE_SIZE.
2516  */
2517 void
2518 vm_page_set_validclean(vm_page_t m, int base, int size)
2519 {
2520 	vm_page_bits_t oldvalid, pagebits;
2521 	int endoff, frag;
2522 
2523 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2524 	if (size == 0)	/* handle degenerate case */
2525 		return;
2526 
2527 	/*
2528 	 * If the base is not DEV_BSIZE aligned and the valid
2529 	 * bit is clear, we have to zero out a portion of the
2530 	 * first block.
2531 	 */
2532 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2533 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2534 		pmap_zero_page_area(m, frag, base - frag);
2535 
2536 	/*
2537 	 * If the ending offset is not DEV_BSIZE aligned and the
2538 	 * valid bit is clear, we have to zero out a portion of
2539 	 * the last block.
2540 	 */
2541 	endoff = base + size;
2542 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2543 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2544 		pmap_zero_page_area(m, endoff,
2545 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2546 
2547 	/*
2548 	 * Set valid, clear dirty bits.  If validating the entire
2549 	 * page we can safely clear the pmap modify bit.  We also
2550 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2551 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2552 	 * be set again.
2553 	 *
2554 	 * We set valid bits inclusive of any overlap, but we can only
2555 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2556 	 * the range.
2557 	 */
2558 	oldvalid = m->valid;
2559 	pagebits = vm_page_bits(base, size);
2560 	m->valid |= pagebits;
2561 #if 0	/* NOT YET */
2562 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2563 		frag = DEV_BSIZE - frag;
2564 		base += frag;
2565 		size -= frag;
2566 		if (size < 0)
2567 			size = 0;
2568 	}
2569 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2570 #endif
2571 	if (base == 0 && size == PAGE_SIZE) {
2572 		/*
2573 		 * The page can only be modified within the pmap if it is
2574 		 * mapped, and it can only be mapped if it was previously
2575 		 * fully valid.
2576 		 */
2577 		if (oldvalid == VM_PAGE_BITS_ALL)
2578 			/*
2579 			 * Perform the pmap_clear_modify() first.  Otherwise,
2580 			 * a concurrent pmap operation, such as
2581 			 * pmap_protect(), could clear a modification in the
2582 			 * pmap and set the dirty field on the page before
2583 			 * pmap_clear_modify() had begun and after the dirty
2584 			 * field was cleared here.
2585 			 */
2586 			pmap_clear_modify(m);
2587 		m->dirty = 0;
2588 		m->oflags &= ~VPO_NOSYNC;
2589 	} else if (oldvalid != VM_PAGE_BITS_ALL)
2590 		m->dirty &= ~pagebits;
2591 	else
2592 		vm_page_clear_dirty_mask(m, pagebits);
2593 }
2594 
2595 void
2596 vm_page_clear_dirty(vm_page_t m, int base, int size)
2597 {
2598 
2599 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2600 }
2601 
2602 /*
2603  *	vm_page_set_invalid:
2604  *
2605  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2606  *	valid and dirty bits for the effected areas are cleared.
2607  */
2608 void
2609 vm_page_set_invalid(vm_page_t m, int base, int size)
2610 {
2611 	vm_page_bits_t bits;
2612 
2613 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2614 	KASSERT((m->oflags & VPO_BUSY) == 0,
2615 	    ("vm_page_set_invalid: page %p is busy", m));
2616 	bits = vm_page_bits(base, size);
2617 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2618 		pmap_remove_all(m);
2619 	KASSERT(!pmap_page_is_mapped(m),
2620 	    ("vm_page_set_invalid: page %p is mapped", m));
2621 	m->valid &= ~bits;
2622 	m->dirty &= ~bits;
2623 }
2624 
2625 /*
2626  * vm_page_zero_invalid()
2627  *
2628  *	The kernel assumes that the invalid portions of a page contain
2629  *	garbage, but such pages can be mapped into memory by user code.
2630  *	When this occurs, we must zero out the non-valid portions of the
2631  *	page so user code sees what it expects.
2632  *
2633  *	Pages are most often semi-valid when the end of a file is mapped
2634  *	into memory and the file's size is not page aligned.
2635  */
2636 void
2637 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2638 {
2639 	int b;
2640 	int i;
2641 
2642 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2643 	/*
2644 	 * Scan the valid bits looking for invalid sections that
2645 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2646 	 * valid bit may be set ) have already been zerod by
2647 	 * vm_page_set_validclean().
2648 	 */
2649 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2650 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2651 		    (m->valid & ((vm_page_bits_t)1 << i))) {
2652 			if (i > b) {
2653 				pmap_zero_page_area(m,
2654 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2655 			}
2656 			b = i + 1;
2657 		}
2658 	}
2659 
2660 	/*
2661 	 * setvalid is TRUE when we can safely set the zero'd areas
2662 	 * as being valid.  We can do this if there are no cache consistancy
2663 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2664 	 */
2665 	if (setvalid)
2666 		m->valid = VM_PAGE_BITS_ALL;
2667 }
2668 
2669 /*
2670  *	vm_page_is_valid:
2671  *
2672  *	Is (partial) page valid?  Note that the case where size == 0
2673  *	will return FALSE in the degenerate case where the page is
2674  *	entirely invalid, and TRUE otherwise.
2675  */
2676 int
2677 vm_page_is_valid(vm_page_t m, int base, int size)
2678 {
2679 	vm_page_bits_t bits;
2680 
2681 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2682 	bits = vm_page_bits(base, size);
2683 	return (m->valid != 0 && (m->valid & bits) == bits);
2684 }
2685 
2686 /*
2687  * Set the page's dirty bits if the page is modified.
2688  */
2689 void
2690 vm_page_test_dirty(vm_page_t m)
2691 {
2692 
2693 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2694 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2695 		vm_page_dirty(m);
2696 }
2697 
2698 void
2699 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
2700 {
2701 
2702 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
2703 }
2704 
2705 void
2706 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
2707 {
2708 
2709 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
2710 }
2711 
2712 int
2713 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
2714 {
2715 
2716 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
2717 }
2718 
2719 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
2720 void
2721 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
2722 {
2723 
2724 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
2725 }
2726 
2727 void
2728 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
2729 {
2730 
2731 	mtx_assert_(vm_page_lockptr(m), a, file, line);
2732 }
2733 #endif
2734 
2735 int so_zerocp_fullpage = 0;
2736 
2737 /*
2738  *	Replace the given page with a copy.  The copied page assumes
2739  *	the portion of the given page's "wire_count" that is not the
2740  *	responsibility of this copy-on-write mechanism.
2741  *
2742  *	The object containing the given page must have a non-zero
2743  *	paging-in-progress count and be locked.
2744  */
2745 void
2746 vm_page_cowfault(vm_page_t m)
2747 {
2748 	vm_page_t mnew;
2749 	vm_object_t object;
2750 	vm_pindex_t pindex;
2751 
2752 	vm_page_lock_assert(m, MA_OWNED);
2753 	object = m->object;
2754 	VM_OBJECT_ASSERT_WLOCKED(object);
2755 	KASSERT(object->paging_in_progress != 0,
2756 	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2757 	    object));
2758 	pindex = m->pindex;
2759 
2760  retry_alloc:
2761 	pmap_remove_all(m);
2762 	vm_page_remove(m);
2763 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2764 	if (mnew == NULL) {
2765 		vm_page_insert(m, object, pindex);
2766 		vm_page_unlock(m);
2767 		VM_OBJECT_WUNLOCK(object);
2768 		VM_WAIT;
2769 		VM_OBJECT_WLOCK(object);
2770 		if (m == vm_page_lookup(object, pindex)) {
2771 			vm_page_lock(m);
2772 			goto retry_alloc;
2773 		} else {
2774 			/*
2775 			 * Page disappeared during the wait.
2776 			 */
2777 			return;
2778 		}
2779 	}
2780 
2781 	if (m->cow == 0) {
2782 		/*
2783 		 * check to see if we raced with an xmit complete when
2784 		 * waiting to allocate a page.  If so, put things back
2785 		 * the way they were
2786 		 */
2787 		vm_page_unlock(m);
2788 		vm_page_lock(mnew);
2789 		vm_page_free(mnew);
2790 		vm_page_unlock(mnew);
2791 		vm_page_insert(m, object, pindex);
2792 	} else { /* clear COW & copy page */
2793 		if (!so_zerocp_fullpage)
2794 			pmap_copy_page(m, mnew);
2795 		mnew->valid = VM_PAGE_BITS_ALL;
2796 		vm_page_dirty(mnew);
2797 		mnew->wire_count = m->wire_count - m->cow;
2798 		m->wire_count = m->cow;
2799 		vm_page_unlock(m);
2800 	}
2801 }
2802 
2803 void
2804 vm_page_cowclear(vm_page_t m)
2805 {
2806 
2807 	vm_page_lock_assert(m, MA_OWNED);
2808 	if (m->cow) {
2809 		m->cow--;
2810 		/*
2811 		 * let vm_fault add back write permission  lazily
2812 		 */
2813 	}
2814 	/*
2815 	 *  sf_buf_free() will free the page, so we needn't do it here
2816 	 */
2817 }
2818 
2819 int
2820 vm_page_cowsetup(vm_page_t m)
2821 {
2822 
2823 	vm_page_lock_assert(m, MA_OWNED);
2824 	if ((m->flags & PG_FICTITIOUS) != 0 ||
2825 	    (m->oflags & VPO_UNMANAGED) != 0 ||
2826 	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYWLOCK(m->object))
2827 		return (EBUSY);
2828 	m->cow++;
2829 	pmap_remove_write(m);
2830 	VM_OBJECT_WUNLOCK(m->object);
2831 	return (0);
2832 }
2833 
2834 #ifdef INVARIANTS
2835 void
2836 vm_page_object_lock_assert(vm_page_t m)
2837 {
2838 
2839 	/*
2840 	 * Certain of the page's fields may only be modified by the
2841 	 * holder of the containing object's lock or the setter of the
2842 	 * page's VPO_BUSY flag.  Unfortunately, the setter of the
2843 	 * VPO_BUSY flag is not recorded, and thus cannot be checked
2844 	 * here.
2845 	 */
2846 	if (m->object != NULL && (m->oflags & VPO_BUSY) == 0)
2847 		VM_OBJECT_ASSERT_WLOCKED(m->object);
2848 }
2849 #endif
2850 
2851 #include "opt_ddb.h"
2852 #ifdef DDB
2853 #include <sys/kernel.h>
2854 
2855 #include <ddb/ddb.h>
2856 
2857 DB_SHOW_COMMAND(page, vm_page_print_page_info)
2858 {
2859 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2860 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2861 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2862 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2863 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2864 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2865 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2866 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2867 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2868 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2869 }
2870 
2871 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2872 {
2873 
2874 	db_printf("PQ_FREE:");
2875 	db_printf(" %d", cnt.v_free_count);
2876 	db_printf("\n");
2877 
2878 	db_printf("PQ_CACHE:");
2879 	db_printf(" %d", cnt.v_cache_count);
2880 	db_printf("\n");
2881 
2882 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2883 		*vm_pagequeues[PQ_ACTIVE].pq_cnt,
2884 		*vm_pagequeues[PQ_INACTIVE].pq_cnt);
2885 }
2886 
2887 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
2888 {
2889 	vm_page_t m;
2890 	boolean_t phys;
2891 
2892 	if (!have_addr) {
2893 		db_printf("show pginfo addr\n");
2894 		return;
2895 	}
2896 
2897 	phys = strchr(modif, 'p') != NULL;
2898 	if (phys)
2899 		m = PHYS_TO_VM_PAGE(addr);
2900 	else
2901 		m = (vm_page_t)addr;
2902 	db_printf(
2903     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
2904     "  af 0x%x of 0x%x f 0x%x act %d busy %d valid 0x%x dirty 0x%x\n",
2905 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
2906 	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
2907 	    m->flags, m->act_count, m->busy, m->valid, m->dirty);
2908 }
2909 #endif /* DDB */
2910