1 /* 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 37 * $FreeBSD$ 38 */ 39 40 /* 41 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 42 * All rights reserved. 43 * 44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 45 * 46 * Permission to use, copy, modify and distribute this software and 47 * its documentation is hereby granted, provided that both the copyright 48 * notice and this permission notice appear in all copies of the 49 * software, derivative works or modified versions, and any portions 50 * thereof, and that both notices appear in supporting documentation. 51 * 52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 55 * 56 * Carnegie Mellon requests users of this software to return to 57 * 58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 59 * School of Computer Science 60 * Carnegie Mellon University 61 * Pittsburgh PA 15213-3890 62 * 63 * any improvements or extensions that they make and grant Carnegie the 64 * rights to redistribute these changes. 65 */ 66 67 /* 68 * GENERAL RULES ON VM_PAGE MANIPULATION 69 * 70 * - a pageq mutex is required when adding or removing a page from a 71 * page queue (vm_page_queue[]), regardless of other mutexes or the 72 * busy state of a page. 73 * 74 * - a hash chain mutex is required when associating or disassociating 75 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 76 * regardless of other mutexes or the busy state of a page. 77 * 78 * - either a hash chain mutex OR a busied page is required in order 79 * to modify the page flags. A hash chain mutex must be obtained in 80 * order to busy a page. A page's flags cannot be modified by a 81 * hash chain mutex if the page is marked busy. 82 * 83 * - The object memq mutex is held when inserting or removing 84 * pages from an object (vm_page_insert() or vm_page_remove()). This 85 * is different from the object's main mutex. 86 * 87 * Generally speaking, you have to be aware of side effects when running 88 * vm_page ops. A vm_page_lookup() will return with the hash chain 89 * locked, whether it was able to lookup the page or not. vm_page_free(), 90 * vm_page_cache(), vm_page_activate(), and a number of other routines 91 * will release the hash chain mutex for you. Intermediate manipulation 92 * routines such as vm_page_flag_set() expect the hash chain to be held 93 * on entry and the hash chain will remain held on return. 94 * 95 * pageq scanning can only occur with the pageq in question locked. 96 * We have a known bottleneck with the active queue, but the cache 97 * and free queues are actually arrays already. 98 */ 99 100 /* 101 * Resident memory management module. 102 */ 103 104 #include <sys/param.h> 105 #include <sys/systm.h> 106 #include <sys/lock.h> 107 #include <sys/malloc.h> 108 #include <sys/mutex.h> 109 #include <sys/proc.h> 110 #include <sys/vmmeter.h> 111 #include <sys/vnode.h> 112 113 #include <vm/vm.h> 114 #include <vm/vm_param.h> 115 #include <vm/vm_kern.h> 116 #include <vm/vm_object.h> 117 #include <vm/vm_page.h> 118 #include <vm/vm_pageout.h> 119 #include <vm/vm_pager.h> 120 #include <vm/vm_extern.h> 121 #include <vm/uma.h> 122 #include <vm/uma_int.h> 123 124 /* 125 * Associated with page of user-allocatable memory is a 126 * page structure. 127 */ 128 129 struct mtx vm_page_queue_mtx; 130 struct mtx vm_page_queue_free_mtx; 131 132 vm_page_t vm_page_array = 0; 133 int vm_page_array_size = 0; 134 long first_page = 0; 135 int vm_page_zero_count = 0; 136 137 /* 138 * vm_set_page_size: 139 * 140 * Sets the page size, perhaps based upon the memory 141 * size. Must be called before any use of page-size 142 * dependent functions. 143 */ 144 void 145 vm_set_page_size(void) 146 { 147 if (cnt.v_page_size == 0) 148 cnt.v_page_size = PAGE_SIZE; 149 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 150 panic("vm_set_page_size: page size not a power of two"); 151 } 152 153 /* 154 * vm_page_startup: 155 * 156 * Initializes the resident memory module. 157 * 158 * Allocates memory for the page cells, and 159 * for the object/offset-to-page hash table headers. 160 * Each page cell is initialized and placed on the free list. 161 */ 162 vm_offset_t 163 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr) 164 { 165 vm_offset_t mapped; 166 vm_size_t npages, page_range; 167 vm_offset_t new_end; 168 int i; 169 vm_offset_t pa; 170 int nblocks; 171 vm_offset_t last_pa; 172 173 /* the biggest memory array is the second group of pages */ 174 vm_offset_t end; 175 vm_offset_t biggestone, biggestsize; 176 177 vm_offset_t total; 178 vm_size_t bootpages; 179 180 total = 0; 181 biggestsize = 0; 182 biggestone = 0; 183 nblocks = 0; 184 vaddr = round_page(vaddr); 185 186 for (i = 0; phys_avail[i + 1]; i += 2) { 187 phys_avail[i] = round_page(phys_avail[i]); 188 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 189 } 190 191 for (i = 0; phys_avail[i + 1]; i += 2) { 192 vm_size_t size = phys_avail[i + 1] - phys_avail[i]; 193 194 if (size > biggestsize) { 195 biggestone = i; 196 biggestsize = size; 197 } 198 ++nblocks; 199 total += size; 200 } 201 202 end = phys_avail[biggestone+1]; 203 204 /* 205 * Initialize the locks. 206 */ 207 mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF); 208 mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL, 209 MTX_SPIN); 210 211 /* 212 * Initialize the queue headers for the free queue, the active queue 213 * and the inactive queue. 214 */ 215 vm_pageq_init(); 216 217 /* 218 * Allocate memory for use when boot strapping the kernel memory 219 * allocator. 220 */ 221 bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE; 222 new_end = end - bootpages; 223 new_end = trunc_page(new_end); 224 mapped = pmap_map(&vaddr, new_end, end, 225 VM_PROT_READ | VM_PROT_WRITE); 226 bzero((caddr_t) mapped, end - new_end); 227 uma_startup((caddr_t)mapped); 228 229 /* 230 * Compute the number of pages of memory that will be available for 231 * use (taking into account the overhead of a page structure per 232 * page). 233 */ 234 first_page = phys_avail[0] / PAGE_SIZE; 235 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 236 npages = (total - (page_range * sizeof(struct vm_page)) - 237 (end - new_end)) / PAGE_SIZE; 238 end = new_end; 239 240 /* 241 * Initialize the mem entry structures now, and put them in the free 242 * queue. 243 */ 244 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 245 mapped = pmap_map(&vaddr, new_end, end, 246 VM_PROT_READ | VM_PROT_WRITE); 247 vm_page_array = (vm_page_t) mapped; 248 249 /* 250 * Clear all of the page structures 251 */ 252 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 253 vm_page_array_size = page_range; 254 255 /* 256 * Construct the free queue(s) in descending order (by physical 257 * address) so that the first 16MB of physical memory is allocated 258 * last rather than first. On large-memory machines, this avoids 259 * the exhaustion of low physical memory before isa_dmainit has run. 260 */ 261 cnt.v_page_count = 0; 262 cnt.v_free_count = 0; 263 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 264 pa = phys_avail[i]; 265 if (i == biggestone) 266 last_pa = new_end; 267 else 268 last_pa = phys_avail[i + 1]; 269 while (pa < last_pa && npages-- > 0) { 270 vm_pageq_add_new_page(pa); 271 pa += PAGE_SIZE; 272 } 273 } 274 return (vaddr); 275 } 276 277 void 278 vm_page_flag_set(vm_page_t m, unsigned short bits) 279 { 280 GIANT_REQUIRED; 281 m->flags |= bits; 282 } 283 284 void 285 vm_page_flag_clear(vm_page_t m, unsigned short bits) 286 { 287 GIANT_REQUIRED; 288 m->flags &= ~bits; 289 } 290 291 void 292 vm_page_busy(vm_page_t m) 293 { 294 KASSERT((m->flags & PG_BUSY) == 0, 295 ("vm_page_busy: page already busy!!!")); 296 vm_page_flag_set(m, PG_BUSY); 297 } 298 299 /* 300 * vm_page_flash: 301 * 302 * wakeup anyone waiting for the page. 303 */ 304 void 305 vm_page_flash(vm_page_t m) 306 { 307 if (m->flags & PG_WANTED) { 308 vm_page_flag_clear(m, PG_WANTED); 309 wakeup(m); 310 } 311 } 312 313 /* 314 * vm_page_wakeup: 315 * 316 * clear the PG_BUSY flag and wakeup anyone waiting for the 317 * page. 318 * 319 */ 320 void 321 vm_page_wakeup(vm_page_t m) 322 { 323 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 324 vm_page_flag_clear(m, PG_BUSY); 325 vm_page_flash(m); 326 } 327 328 /* 329 * 330 * 331 */ 332 void 333 vm_page_io_start(vm_page_t m) 334 { 335 336 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 337 m->busy++; 338 } 339 340 void 341 vm_page_io_finish(vm_page_t m) 342 { 343 344 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 345 m->busy--; 346 if (m->busy == 0) 347 vm_page_flash(m); 348 } 349 350 /* 351 * Keep page from being freed by the page daemon 352 * much of the same effect as wiring, except much lower 353 * overhead and should be used only for *very* temporary 354 * holding ("wiring"). 355 */ 356 void 357 vm_page_hold(vm_page_t mem) 358 { 359 GIANT_REQUIRED; 360 mem->hold_count++; 361 } 362 363 void 364 vm_page_unhold(vm_page_t mem) 365 { 366 GIANT_REQUIRED; 367 --mem->hold_count; 368 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 369 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) 370 vm_page_free_toq(mem); 371 } 372 373 /* 374 * vm_page_copy: 375 * 376 * Copy one page to another 377 */ 378 void 379 vm_page_copy(vm_page_t src_m, vm_page_t dest_m) 380 { 381 pmap_copy_page(src_m, dest_m); 382 dest_m->valid = VM_PAGE_BITS_ALL; 383 } 384 385 /* 386 * vm_page_free: 387 * 388 * Free a page 389 * 390 * The clearing of PG_ZERO is a temporary safety until the code can be 391 * reviewed to determine that PG_ZERO is being properly cleared on 392 * write faults or maps. PG_ZERO was previously cleared in 393 * vm_page_alloc(). 394 */ 395 void 396 vm_page_free(vm_page_t m) 397 { 398 vm_page_flag_clear(m, PG_ZERO); 399 vm_page_free_toq(m); 400 vm_page_zero_idle_wakeup(); 401 } 402 403 /* 404 * vm_page_free_zero: 405 * 406 * Free a page to the zerod-pages queue 407 */ 408 void 409 vm_page_free_zero(vm_page_t m) 410 { 411 vm_page_flag_set(m, PG_ZERO); 412 vm_page_free_toq(m); 413 } 414 415 /* 416 * vm_page_sleep_busy: 417 * 418 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE) 419 * m->busy is zero. Returns TRUE if it had to sleep ( including if 420 * it almost had to sleep and made temporary spl*() mods), FALSE 421 * otherwise. 422 * 423 * This routine assumes that interrupts can only remove the busy 424 * status from a page, not set the busy status or change it from 425 * PG_BUSY to m->busy or vise versa (which would create a timing 426 * window). 427 */ 428 int 429 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg) 430 { 431 GIANT_REQUIRED; 432 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 433 int s = splvm(); 434 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 435 /* 436 * Page is busy. Wait and retry. 437 */ 438 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 439 tsleep(m, PVM, msg, 0); 440 } 441 splx(s); 442 return (TRUE); 443 /* not reached */ 444 } 445 return (FALSE); 446 } 447 448 /* 449 * vm_page_sleep_if_busy: 450 * 451 * Sleep and release the page queues lock if PG_BUSY is set or, 452 * if also_m_busy is TRUE, busy is non-zero. Returns TRUE if the 453 * thread slept and the page queues lock was released. 454 * Otherwise, retains the page queues lock and returns FALSE. 455 */ 456 int 457 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg) 458 { 459 460 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 461 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 462 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 463 msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0); 464 return (TRUE); 465 } 466 return (FALSE); 467 } 468 469 /* 470 * vm_page_dirty: 471 * 472 * make page all dirty 473 */ 474 void 475 vm_page_dirty(vm_page_t m) 476 { 477 KASSERT(m->queue - m->pc != PQ_CACHE, 478 ("vm_page_dirty: page in cache!")); 479 m->dirty = VM_PAGE_BITS_ALL; 480 } 481 482 /* 483 * vm_page_splay: 484 * 485 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 486 * the vm_page containing the given pindex. If, however, that 487 * pindex is not found in the vm_object, returns a vm_page that is 488 * adjacent to the pindex, coming before or after it. 489 */ 490 vm_page_t 491 vm_page_splay(vm_pindex_t pindex, vm_page_t root) 492 { 493 struct vm_page dummy; 494 vm_page_t lefttreemax, righttreemin, y; 495 496 if (root == NULL) 497 return (root); 498 lefttreemax = righttreemin = &dummy; 499 for (;; root = y) { 500 if (pindex < root->pindex) { 501 if ((y = root->left) == NULL) 502 break; 503 if (pindex < y->pindex) { 504 /* Rotate right. */ 505 root->left = y->right; 506 y->right = root; 507 root = y; 508 if ((y = root->left) == NULL) 509 break; 510 } 511 /* Link into the new root's right tree. */ 512 righttreemin->left = root; 513 righttreemin = root; 514 } else if (pindex > root->pindex) { 515 if ((y = root->right) == NULL) 516 break; 517 if (pindex > y->pindex) { 518 /* Rotate left. */ 519 root->right = y->left; 520 y->left = root; 521 root = y; 522 if ((y = root->right) == NULL) 523 break; 524 } 525 /* Link into the new root's left tree. */ 526 lefttreemax->right = root; 527 lefttreemax = root; 528 } else 529 break; 530 } 531 /* Assemble the new root. */ 532 lefttreemax->right = root->left; 533 righttreemin->left = root->right; 534 root->left = dummy.right; 535 root->right = dummy.left; 536 return (root); 537 } 538 539 /* 540 * vm_page_insert: [ internal use only ] 541 * 542 * Inserts the given mem entry into the object and object list. 543 * 544 * The pagetables are not updated but will presumably fault the page 545 * in if necessary, or if a kernel page the caller will at some point 546 * enter the page into the kernel's pmap. We are not allowed to block 547 * here so we *can't* do this anyway. 548 * 549 * The object and page must be locked, and must be splhigh. 550 * This routine may not block. 551 */ 552 void 553 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 554 { 555 vm_page_t root; 556 557 GIANT_REQUIRED; 558 559 if (m->object != NULL) 560 panic("vm_page_insert: already inserted"); 561 562 /* 563 * Record the object/offset pair in this page 564 */ 565 m->object = object; 566 m->pindex = pindex; 567 568 /* 569 * Now link into the object's ordered list of backed pages. 570 */ 571 root = object->root; 572 if (root == NULL) { 573 m->left = NULL; 574 m->right = NULL; 575 TAILQ_INSERT_TAIL(&object->memq, m, listq); 576 } else { 577 root = vm_page_splay(pindex, root); 578 if (pindex < root->pindex) { 579 m->left = root->left; 580 m->right = root; 581 root->left = NULL; 582 TAILQ_INSERT_BEFORE(root, m, listq); 583 } else { 584 m->right = root->right; 585 m->left = root; 586 root->right = NULL; 587 TAILQ_INSERT_AFTER(&object->memq, root, m, listq); 588 } 589 } 590 object->root = m; 591 object->generation++; 592 593 /* 594 * show that the object has one more resident page. 595 */ 596 object->resident_page_count++; 597 598 /* 599 * Since we are inserting a new and possibly dirty page, 600 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 601 */ 602 if (m->flags & PG_WRITEABLE) 603 vm_object_set_writeable_dirty(object); 604 } 605 606 /* 607 * vm_page_remove: 608 * NOTE: used by device pager as well -wfj 609 * 610 * Removes the given mem entry from the object/offset-page 611 * table and the object page list, but do not invalidate/terminate 612 * the backing store. 613 * 614 * The object and page must be locked, and at splhigh. 615 * The underlying pmap entry (if any) is NOT removed here. 616 * This routine may not block. 617 */ 618 void 619 vm_page_remove(vm_page_t m) 620 { 621 vm_object_t object; 622 vm_page_t root; 623 624 GIANT_REQUIRED; 625 626 if (m->object == NULL) 627 return; 628 629 if ((m->flags & PG_BUSY) == 0) { 630 panic("vm_page_remove: page not busy"); 631 } 632 633 /* 634 * Basically destroy the page. 635 */ 636 vm_page_wakeup(m); 637 638 object = m->object; 639 640 /* 641 * Now remove from the object's list of backed pages. 642 */ 643 if (m != object->root) 644 vm_page_splay(m->pindex, object->root); 645 if (m->left == NULL) 646 root = m->right; 647 else { 648 root = vm_page_splay(m->pindex, m->left); 649 root->right = m->right; 650 } 651 object->root = root; 652 TAILQ_REMOVE(&object->memq, m, listq); 653 654 /* 655 * And show that the object has one fewer resident page. 656 */ 657 object->resident_page_count--; 658 object->generation++; 659 660 m->object = NULL; 661 } 662 663 /* 664 * vm_page_lookup: 665 * 666 * Returns the page associated with the object/offset 667 * pair specified; if none is found, NULL is returned. 668 * 669 * The object must be locked. 670 * This routine may not block. 671 * This is a critical path routine 672 */ 673 vm_page_t 674 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 675 { 676 vm_page_t m; 677 678 GIANT_REQUIRED; 679 680 m = vm_page_splay(pindex, object->root); 681 if ((object->root = m) != NULL && m->pindex != pindex) 682 m = NULL; 683 return (m); 684 } 685 686 /* 687 * vm_page_rename: 688 * 689 * Move the given memory entry from its 690 * current object to the specified target object/offset. 691 * 692 * The object must be locked. 693 * This routine may not block. 694 * 695 * Note: this routine will raise itself to splvm(), the caller need not. 696 * 697 * Note: swap associated with the page must be invalidated by the move. We 698 * have to do this for several reasons: (1) we aren't freeing the 699 * page, (2) we are dirtying the page, (3) the VM system is probably 700 * moving the page from object A to B, and will then later move 701 * the backing store from A to B and we can't have a conflict. 702 * 703 * Note: we *always* dirty the page. It is necessary both for the 704 * fact that we moved it, and because we may be invalidating 705 * swap. If the page is on the cache, we have to deactivate it 706 * or vm_page_dirty() will panic. Dirty pages are not allowed 707 * on the cache. 708 */ 709 void 710 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 711 { 712 int s; 713 714 s = splvm(); 715 vm_page_lock_queues(); 716 vm_page_remove(m); 717 vm_page_insert(m, new_object, new_pindex); 718 if (m->queue - m->pc == PQ_CACHE) 719 vm_page_deactivate(m); 720 vm_page_dirty(m); 721 vm_page_unlock_queues(); 722 splx(s); 723 } 724 725 /* 726 * vm_page_select_cache: 727 * 728 * Find a page on the cache queue with color optimization. As pages 729 * might be found, but not applicable, they are deactivated. This 730 * keeps us from using potentially busy cached pages. 731 * 732 * This routine must be called at splvm(). 733 * This routine may not block. 734 */ 735 static vm_page_t 736 vm_page_select_cache(vm_pindex_t color) 737 { 738 vm_page_t m; 739 740 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 741 while (TRUE) { 742 m = vm_pageq_find(PQ_CACHE, color & PQ_L2_MASK, FALSE); 743 if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 744 m->hold_count || m->wire_count)) { 745 vm_page_deactivate(m); 746 continue; 747 } 748 return m; 749 } 750 } 751 752 /* 753 * vm_page_select_free: 754 * 755 * Find a free or zero page, with specified preference. 756 * 757 * This routine must be called at splvm(). 758 * This routine may not block. 759 */ 760 static __inline vm_page_t 761 vm_page_select_free(vm_pindex_t color, boolean_t prefer_zero) 762 { 763 vm_page_t m; 764 765 m = vm_pageq_find(PQ_FREE, color & PQ_L2_MASK, prefer_zero); 766 return (m); 767 } 768 769 /* 770 * vm_page_alloc: 771 * 772 * Allocate and return a memory cell associated 773 * with this VM object/offset pair. 774 * 775 * page_req classes: 776 * VM_ALLOC_NORMAL normal process request 777 * VM_ALLOC_SYSTEM system *really* needs a page 778 * VM_ALLOC_INTERRUPT interrupt time request 779 * VM_ALLOC_ZERO zero page 780 * 781 * This routine may not block. 782 * 783 * Additional special handling is required when called from an 784 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with 785 * the page cache in this case. 786 */ 787 vm_page_t 788 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 789 { 790 vm_page_t m = NULL; 791 vm_pindex_t color; 792 int page_req, s; 793 794 GIANT_REQUIRED; 795 796 #ifdef INVARIANTS 797 if ((req & VM_ALLOC_NOOBJ) == 0) { 798 KASSERT(object != NULL, 799 ("vm_page_alloc: NULL object.")); 800 KASSERT(!vm_page_lookup(object, pindex), 801 ("vm_page_alloc: page already allocated")); 802 } 803 #endif 804 805 page_req = req & VM_ALLOC_CLASS_MASK; 806 807 if ((req & VM_ALLOC_NOOBJ) == 0) 808 color = pindex + object->pg_color; 809 else 810 color = pindex; 811 812 /* 813 * The pager is allowed to eat deeper into the free page list. 814 */ 815 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 816 page_req = VM_ALLOC_SYSTEM; 817 }; 818 819 s = splvm(); 820 loop: 821 mtx_lock_spin(&vm_page_queue_free_mtx); 822 if (cnt.v_free_count > cnt.v_free_reserved) { 823 /* 824 * Allocate from the free queue if there are plenty of pages 825 * in it. 826 */ 827 m = vm_page_select_free(color, (req & VM_ALLOC_ZERO) != 0); 828 829 } else if ( 830 (page_req == VM_ALLOC_SYSTEM && 831 cnt.v_cache_count == 0 && 832 cnt.v_free_count > cnt.v_interrupt_free_min) || 833 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0) 834 ) { 835 /* 836 * Interrupt or system, dig deeper into the free list. 837 */ 838 m = vm_page_select_free(color, FALSE); 839 } else if (page_req != VM_ALLOC_INTERRUPT) { 840 mtx_unlock_spin(&vm_page_queue_free_mtx); 841 /* 842 * Allocatable from cache (non-interrupt only). On success, 843 * we must free the page and try again, thus ensuring that 844 * cnt.v_*_free_min counters are replenished. 845 */ 846 vm_page_lock_queues(); 847 if ((m = vm_page_select_cache(color)) == NULL) { 848 vm_page_unlock_queues(); 849 splx(s); 850 #if defined(DIAGNOSTIC) 851 if (cnt.v_cache_count > 0) 852 printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count); 853 #endif 854 vm_pageout_deficit++; 855 pagedaemon_wakeup(); 856 return (NULL); 857 } 858 KASSERT(m->dirty == 0, ("Found dirty cache page %p", m)); 859 vm_page_busy(m); 860 pmap_remove_all(m); 861 vm_page_free(m); 862 vm_page_unlock_queues(); 863 goto loop; 864 } else { 865 /* 866 * Not allocatable from cache from interrupt, give up. 867 */ 868 mtx_unlock_spin(&vm_page_queue_free_mtx); 869 splx(s); 870 vm_pageout_deficit++; 871 pagedaemon_wakeup(); 872 return (NULL); 873 } 874 875 /* 876 * At this point we had better have found a good page. 877 */ 878 879 KASSERT( 880 m != NULL, 881 ("vm_page_alloc(): missing page on free queue\n") 882 ); 883 884 /* 885 * Remove from free queue 886 */ 887 888 vm_pageq_remove_nowakeup(m); 889 890 /* 891 * Initialize structure. Only the PG_ZERO flag is inherited. 892 */ 893 if (m->flags & PG_ZERO) { 894 vm_page_zero_count--; 895 m->flags = PG_ZERO | PG_BUSY; 896 } else { 897 m->flags = PG_BUSY; 898 } 899 if (req & VM_ALLOC_WIRED) { 900 cnt.v_wire_count++; 901 m->wire_count = 1; 902 } else 903 m->wire_count = 0; 904 m->hold_count = 0; 905 m->act_count = 0; 906 m->busy = 0; 907 m->valid = 0; 908 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 909 mtx_unlock_spin(&vm_page_queue_free_mtx); 910 911 /* 912 * vm_page_insert() is safe prior to the splx(). Note also that 913 * inserting a page here does not insert it into the pmap (which 914 * could cause us to block allocating memory). We cannot block 915 * anywhere. 916 */ 917 if ((req & VM_ALLOC_NOOBJ) == 0) 918 vm_page_insert(m, object, pindex); 919 920 /* 921 * Don't wakeup too often - wakeup the pageout daemon when 922 * we would be nearly out of memory. 923 */ 924 if (vm_paging_needed()) 925 pagedaemon_wakeup(); 926 927 splx(s); 928 return (m); 929 } 930 931 /* 932 * vm_wait: (also see VM_WAIT macro) 933 * 934 * Block until free pages are available for allocation 935 * - Called in various places before memory allocations. 936 */ 937 void 938 vm_wait(void) 939 { 940 int s; 941 942 s = splvm(); 943 if (curproc == pageproc) { 944 vm_pageout_pages_needed = 1; 945 tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0); 946 } else { 947 if (!vm_pages_needed) { 948 vm_pages_needed = 1; 949 wakeup(&vm_pages_needed); 950 } 951 tsleep(&cnt.v_free_count, PVM, "vmwait", 0); 952 } 953 splx(s); 954 } 955 956 /* 957 * vm_waitpfault: (also see VM_WAITPFAULT macro) 958 * 959 * Block until free pages are available for allocation 960 * - Called only in vm_fault so that processes page faulting 961 * can be easily tracked. 962 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 963 * processes will be able to grab memory first. Do not change 964 * this balance without careful testing first. 965 */ 966 void 967 vm_waitpfault(void) 968 { 969 int s; 970 971 s = splvm(); 972 if (!vm_pages_needed) { 973 vm_pages_needed = 1; 974 wakeup(&vm_pages_needed); 975 } 976 tsleep(&cnt.v_free_count, PUSER, "pfault", 0); 977 splx(s); 978 } 979 980 /* 981 * vm_page_activate: 982 * 983 * Put the specified page on the active list (if appropriate). 984 * Ensure that act_count is at least ACT_INIT but do not otherwise 985 * mess with it. 986 * 987 * The page queues must be locked. 988 * This routine may not block. 989 */ 990 void 991 vm_page_activate(vm_page_t m) 992 { 993 int s; 994 995 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 996 s = splvm(); 997 if (m->queue != PQ_ACTIVE) { 998 if ((m->queue - m->pc) == PQ_CACHE) 999 cnt.v_reactivated++; 1000 vm_pageq_remove(m); 1001 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1002 if (m->act_count < ACT_INIT) 1003 m->act_count = ACT_INIT; 1004 vm_pageq_enqueue(PQ_ACTIVE, m); 1005 } 1006 } else { 1007 if (m->act_count < ACT_INIT) 1008 m->act_count = ACT_INIT; 1009 } 1010 splx(s); 1011 } 1012 1013 /* 1014 * vm_page_free_wakeup: 1015 * 1016 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1017 * routine is called when a page has been added to the cache or free 1018 * queues. 1019 * 1020 * This routine may not block. 1021 * This routine must be called at splvm() 1022 */ 1023 static __inline void 1024 vm_page_free_wakeup(void) 1025 { 1026 /* 1027 * if pageout daemon needs pages, then tell it that there are 1028 * some free. 1029 */ 1030 if (vm_pageout_pages_needed && 1031 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1032 wakeup(&vm_pageout_pages_needed); 1033 vm_pageout_pages_needed = 0; 1034 } 1035 /* 1036 * wakeup processes that are waiting on memory if we hit a 1037 * high water mark. And wakeup scheduler process if we have 1038 * lots of memory. this process will swapin processes. 1039 */ 1040 if (vm_pages_needed && !vm_page_count_min()) { 1041 vm_pages_needed = 0; 1042 wakeup(&cnt.v_free_count); 1043 } 1044 } 1045 1046 /* 1047 * vm_page_free_toq: 1048 * 1049 * Returns the given page to the PQ_FREE list, 1050 * disassociating it with any VM object. 1051 * 1052 * Object and page must be locked prior to entry. 1053 * This routine may not block. 1054 */ 1055 1056 void 1057 vm_page_free_toq(vm_page_t m) 1058 { 1059 int s; 1060 struct vpgqueues *pq; 1061 vm_object_t object = m->object; 1062 1063 GIANT_REQUIRED; 1064 s = splvm(); 1065 cnt.v_tfree++; 1066 1067 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1068 printf( 1069 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 1070 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 1071 m->hold_count); 1072 if ((m->queue - m->pc) == PQ_FREE) 1073 panic("vm_page_free: freeing free page"); 1074 else 1075 panic("vm_page_free: freeing busy page"); 1076 } 1077 1078 /* 1079 * unqueue, then remove page. Note that we cannot destroy 1080 * the page here because we do not want to call the pager's 1081 * callback routine until after we've put the page on the 1082 * appropriate free queue. 1083 */ 1084 vm_pageq_remove_nowakeup(m); 1085 vm_page_remove(m); 1086 1087 /* 1088 * If fictitious remove object association and 1089 * return, otherwise delay object association removal. 1090 */ 1091 if ((m->flags & PG_FICTITIOUS) != 0) { 1092 splx(s); 1093 return; 1094 } 1095 1096 m->valid = 0; 1097 vm_page_undirty(m); 1098 1099 if (m->wire_count != 0) { 1100 if (m->wire_count > 1) { 1101 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1102 m->wire_count, (long)m->pindex); 1103 } 1104 panic("vm_page_free: freeing wired page\n"); 1105 } 1106 1107 /* 1108 * If we've exhausted the object's resident pages we want to free 1109 * it up. 1110 */ 1111 if (object && 1112 (object->type == OBJT_VNODE) && 1113 ((object->flags & OBJ_DEAD) == 0) 1114 ) { 1115 struct vnode *vp = (struct vnode *)object->handle; 1116 1117 if (vp) { 1118 VI_LOCK(vp); 1119 if (VSHOULDFREE(vp)) 1120 vfree(vp); 1121 VI_UNLOCK(vp); 1122 } 1123 } 1124 1125 /* 1126 * Clear the UNMANAGED flag when freeing an unmanaged page. 1127 */ 1128 if (m->flags & PG_UNMANAGED) { 1129 m->flags &= ~PG_UNMANAGED; 1130 } else { 1131 #ifdef __alpha__ 1132 pmap_page_is_free(m); 1133 #endif 1134 } 1135 1136 if (m->hold_count != 0) { 1137 m->flags &= ~PG_ZERO; 1138 m->queue = PQ_HOLD; 1139 } else 1140 m->queue = PQ_FREE + m->pc; 1141 pq = &vm_page_queues[m->queue]; 1142 mtx_lock_spin(&vm_page_queue_free_mtx); 1143 pq->lcnt++; 1144 ++(*pq->cnt); 1145 1146 /* 1147 * Put zero'd pages on the end ( where we look for zero'd pages 1148 * first ) and non-zerod pages at the head. 1149 */ 1150 if (m->flags & PG_ZERO) { 1151 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1152 ++vm_page_zero_count; 1153 } else { 1154 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1155 } 1156 mtx_unlock_spin(&vm_page_queue_free_mtx); 1157 vm_page_free_wakeup(); 1158 splx(s); 1159 } 1160 1161 /* 1162 * vm_page_unmanage: 1163 * 1164 * Prevent PV management from being done on the page. The page is 1165 * removed from the paging queues as if it were wired, and as a 1166 * consequence of no longer being managed the pageout daemon will not 1167 * touch it (since there is no way to locate the pte mappings for the 1168 * page). madvise() calls that mess with the pmap will also no longer 1169 * operate on the page. 1170 * 1171 * Beyond that the page is still reasonably 'normal'. Freeing the page 1172 * will clear the flag. 1173 * 1174 * This routine is used by OBJT_PHYS objects - objects using unswappable 1175 * physical memory as backing store rather then swap-backed memory and 1176 * will eventually be extended to support 4MB unmanaged physical 1177 * mappings. 1178 */ 1179 void 1180 vm_page_unmanage(vm_page_t m) 1181 { 1182 int s; 1183 1184 s = splvm(); 1185 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1186 if ((m->flags & PG_UNMANAGED) == 0) { 1187 if (m->wire_count == 0) 1188 vm_pageq_remove(m); 1189 } 1190 vm_page_flag_set(m, PG_UNMANAGED); 1191 splx(s); 1192 } 1193 1194 /* 1195 * vm_page_wire: 1196 * 1197 * Mark this page as wired down by yet 1198 * another map, removing it from paging queues 1199 * as necessary. 1200 * 1201 * The page queues must be locked. 1202 * This routine may not block. 1203 */ 1204 void 1205 vm_page_wire(vm_page_t m) 1206 { 1207 int s; 1208 1209 /* 1210 * Only bump the wire statistics if the page is not already wired, 1211 * and only unqueue the page if it is on some queue (if it is unmanaged 1212 * it is already off the queues). 1213 */ 1214 s = splvm(); 1215 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1216 if (m->wire_count == 0) { 1217 if ((m->flags & PG_UNMANAGED) == 0) 1218 vm_pageq_remove(m); 1219 cnt.v_wire_count++; 1220 } 1221 m->wire_count++; 1222 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 1223 splx(s); 1224 } 1225 1226 /* 1227 * vm_page_unwire: 1228 * 1229 * Release one wiring of this page, potentially 1230 * enabling it to be paged again. 1231 * 1232 * Many pages placed on the inactive queue should actually go 1233 * into the cache, but it is difficult to figure out which. What 1234 * we do instead, if the inactive target is well met, is to put 1235 * clean pages at the head of the inactive queue instead of the tail. 1236 * This will cause them to be moved to the cache more quickly and 1237 * if not actively re-referenced, freed more quickly. If we just 1238 * stick these pages at the end of the inactive queue, heavy filesystem 1239 * meta-data accesses can cause an unnecessary paging load on memory bound 1240 * processes. This optimization causes one-time-use metadata to be 1241 * reused more quickly. 1242 * 1243 * BUT, if we are in a low-memory situation we have no choice but to 1244 * put clean pages on the cache queue. 1245 * 1246 * A number of routines use vm_page_unwire() to guarantee that the page 1247 * will go into either the inactive or active queues, and will NEVER 1248 * be placed in the cache - for example, just after dirtying a page. 1249 * dirty pages in the cache are not allowed. 1250 * 1251 * The page queues must be locked. 1252 * This routine may not block. 1253 */ 1254 void 1255 vm_page_unwire(vm_page_t m, int activate) 1256 { 1257 int s; 1258 1259 s = splvm(); 1260 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1261 if (m->wire_count > 0) { 1262 m->wire_count--; 1263 if (m->wire_count == 0) { 1264 cnt.v_wire_count--; 1265 if (m->flags & PG_UNMANAGED) { 1266 ; 1267 } else if (activate) 1268 vm_pageq_enqueue(PQ_ACTIVE, m); 1269 else { 1270 vm_page_flag_clear(m, PG_WINATCFLS); 1271 vm_pageq_enqueue(PQ_INACTIVE, m); 1272 } 1273 } 1274 } else { 1275 panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count); 1276 } 1277 splx(s); 1278 } 1279 1280 1281 /* 1282 * Move the specified page to the inactive queue. If the page has 1283 * any associated swap, the swap is deallocated. 1284 * 1285 * Normally athead is 0 resulting in LRU operation. athead is set 1286 * to 1 if we want this page to be 'as if it were placed in the cache', 1287 * except without unmapping it from the process address space. 1288 * 1289 * This routine may not block. 1290 */ 1291 static __inline void 1292 _vm_page_deactivate(vm_page_t m, int athead) 1293 { 1294 int s; 1295 1296 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1297 /* 1298 * Ignore if already inactive. 1299 */ 1300 if (m->queue == PQ_INACTIVE) 1301 return; 1302 1303 s = splvm(); 1304 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1305 if ((m->queue - m->pc) == PQ_CACHE) 1306 cnt.v_reactivated++; 1307 vm_page_flag_clear(m, PG_WINATCFLS); 1308 vm_pageq_remove(m); 1309 if (athead) 1310 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1311 else 1312 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1313 m->queue = PQ_INACTIVE; 1314 vm_page_queues[PQ_INACTIVE].lcnt++; 1315 cnt.v_inactive_count++; 1316 } 1317 splx(s); 1318 } 1319 1320 void 1321 vm_page_deactivate(vm_page_t m) 1322 { 1323 _vm_page_deactivate(m, 0); 1324 } 1325 1326 /* 1327 * vm_page_try_to_cache: 1328 * 1329 * Returns 0 on failure, 1 on success 1330 */ 1331 int 1332 vm_page_try_to_cache(vm_page_t m) 1333 { 1334 1335 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1336 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1337 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1338 return (0); 1339 } 1340 vm_page_test_dirty(m); 1341 if (m->dirty) 1342 return (0); 1343 vm_page_cache(m); 1344 return (1); 1345 } 1346 1347 /* 1348 * vm_page_try_to_free() 1349 * 1350 * Attempt to free the page. If we cannot free it, we do nothing. 1351 * 1 is returned on success, 0 on failure. 1352 */ 1353 int 1354 vm_page_try_to_free(vm_page_t m) 1355 { 1356 1357 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1358 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1359 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1360 return (0); 1361 } 1362 vm_page_test_dirty(m); 1363 if (m->dirty) 1364 return (0); 1365 vm_page_busy(m); 1366 pmap_remove_all(m); 1367 vm_page_free(m); 1368 return (1); 1369 } 1370 1371 /* 1372 * vm_page_cache 1373 * 1374 * Put the specified page onto the page cache queue (if appropriate). 1375 * 1376 * This routine may not block. 1377 */ 1378 void 1379 vm_page_cache(vm_page_t m) 1380 { 1381 int s; 1382 1383 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1384 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) { 1385 printf("vm_page_cache: attempting to cache busy page\n"); 1386 return; 1387 } 1388 if ((m->queue - m->pc) == PQ_CACHE) 1389 return; 1390 1391 /* 1392 * Remove all pmaps and indicate that the page is not 1393 * writeable or mapped. 1394 */ 1395 pmap_remove_all(m); 1396 if (m->dirty != 0) { 1397 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1398 (long)m->pindex); 1399 } 1400 s = splvm(); 1401 vm_pageq_remove_nowakeup(m); 1402 vm_pageq_enqueue(PQ_CACHE + m->pc, m); 1403 vm_page_free_wakeup(); 1404 splx(s); 1405 } 1406 1407 /* 1408 * vm_page_dontneed 1409 * 1410 * Cache, deactivate, or do nothing as appropriate. This routine 1411 * is typically used by madvise() MADV_DONTNEED. 1412 * 1413 * Generally speaking we want to move the page into the cache so 1414 * it gets reused quickly. However, this can result in a silly syndrome 1415 * due to the page recycling too quickly. Small objects will not be 1416 * fully cached. On the otherhand, if we move the page to the inactive 1417 * queue we wind up with a problem whereby very large objects 1418 * unnecessarily blow away our inactive and cache queues. 1419 * 1420 * The solution is to move the pages based on a fixed weighting. We 1421 * either leave them alone, deactivate them, or move them to the cache, 1422 * where moving them to the cache has the highest weighting. 1423 * By forcing some pages into other queues we eventually force the 1424 * system to balance the queues, potentially recovering other unrelated 1425 * space from active. The idea is to not force this to happen too 1426 * often. 1427 */ 1428 void 1429 vm_page_dontneed(vm_page_t m) 1430 { 1431 static int dnweight; 1432 int dnw; 1433 int head; 1434 1435 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1436 dnw = ++dnweight; 1437 1438 /* 1439 * occassionally leave the page alone 1440 */ 1441 if ((dnw & 0x01F0) == 0 || 1442 m->queue == PQ_INACTIVE || 1443 m->queue - m->pc == PQ_CACHE 1444 ) { 1445 if (m->act_count >= ACT_INIT) 1446 --m->act_count; 1447 return; 1448 } 1449 1450 if (m->dirty == 0) 1451 vm_page_test_dirty(m); 1452 1453 if (m->dirty || (dnw & 0x0070) == 0) { 1454 /* 1455 * Deactivate the page 3 times out of 32. 1456 */ 1457 head = 0; 1458 } else { 1459 /* 1460 * Cache the page 28 times out of every 32. Note that 1461 * the page is deactivated instead of cached, but placed 1462 * at the head of the queue instead of the tail. 1463 */ 1464 head = 1; 1465 } 1466 _vm_page_deactivate(m, head); 1467 } 1468 1469 /* 1470 * Grab a page, waiting until we are waken up due to the page 1471 * changing state. We keep on waiting, if the page continues 1472 * to be in the object. If the page doesn't exist, allocate it. 1473 * 1474 * This routine may block. 1475 */ 1476 vm_page_t 1477 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1478 { 1479 vm_page_t m; 1480 int s, generation; 1481 1482 GIANT_REQUIRED; 1483 retrylookup: 1484 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1485 vm_page_lock_queues(); 1486 if (m->busy || (m->flags & PG_BUSY)) { 1487 generation = object->generation; 1488 1489 s = splvm(); 1490 while ((object->generation == generation) && 1491 (m->busy || (m->flags & PG_BUSY))) { 1492 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1493 msleep(m, &vm_page_queue_mtx, PVM, "pgrbwt", 0); 1494 if ((allocflags & VM_ALLOC_RETRY) == 0) { 1495 vm_page_unlock_queues(); 1496 splx(s); 1497 return NULL; 1498 } 1499 } 1500 vm_page_unlock_queues(); 1501 splx(s); 1502 goto retrylookup; 1503 } else { 1504 if (allocflags & VM_ALLOC_WIRED) 1505 vm_page_wire(m); 1506 vm_page_busy(m); 1507 vm_page_unlock_queues(); 1508 return m; 1509 } 1510 } 1511 1512 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1513 if (m == NULL) { 1514 VM_WAIT; 1515 if ((allocflags & VM_ALLOC_RETRY) == 0) 1516 return NULL; 1517 goto retrylookup; 1518 } 1519 1520 return m; 1521 } 1522 1523 /* 1524 * Mapping function for valid bits or for dirty bits in 1525 * a page. May not block. 1526 * 1527 * Inputs are required to range within a page. 1528 */ 1529 __inline int 1530 vm_page_bits(int base, int size) 1531 { 1532 int first_bit; 1533 int last_bit; 1534 1535 KASSERT( 1536 base + size <= PAGE_SIZE, 1537 ("vm_page_bits: illegal base/size %d/%d", base, size) 1538 ); 1539 1540 if (size == 0) /* handle degenerate case */ 1541 return (0); 1542 1543 first_bit = base >> DEV_BSHIFT; 1544 last_bit = (base + size - 1) >> DEV_BSHIFT; 1545 1546 return ((2 << last_bit) - (1 << first_bit)); 1547 } 1548 1549 /* 1550 * vm_page_set_validclean: 1551 * 1552 * Sets portions of a page valid and clean. The arguments are expected 1553 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1554 * of any partial chunks touched by the range. The invalid portion of 1555 * such chunks will be zero'd. 1556 * 1557 * This routine may not block. 1558 * 1559 * (base + size) must be less then or equal to PAGE_SIZE. 1560 */ 1561 void 1562 vm_page_set_validclean(vm_page_t m, int base, int size) 1563 { 1564 int pagebits; 1565 int frag; 1566 int endoff; 1567 1568 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1569 if (size == 0) /* handle degenerate case */ 1570 return; 1571 1572 /* 1573 * If the base is not DEV_BSIZE aligned and the valid 1574 * bit is clear, we have to zero out a portion of the 1575 * first block. 1576 */ 1577 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1578 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 1579 pmap_zero_page_area(m, frag, base - frag); 1580 1581 /* 1582 * If the ending offset is not DEV_BSIZE aligned and the 1583 * valid bit is clear, we have to zero out a portion of 1584 * the last block. 1585 */ 1586 endoff = base + size; 1587 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1588 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 1589 pmap_zero_page_area(m, endoff, 1590 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 1591 1592 /* 1593 * Set valid, clear dirty bits. If validating the entire 1594 * page we can safely clear the pmap modify bit. We also 1595 * use this opportunity to clear the PG_NOSYNC flag. If a process 1596 * takes a write fault on a MAP_NOSYNC memory area the flag will 1597 * be set again. 1598 * 1599 * We set valid bits inclusive of any overlap, but we can only 1600 * clear dirty bits for DEV_BSIZE chunks that are fully within 1601 * the range. 1602 */ 1603 pagebits = vm_page_bits(base, size); 1604 m->valid |= pagebits; 1605 #if 0 /* NOT YET */ 1606 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1607 frag = DEV_BSIZE - frag; 1608 base += frag; 1609 size -= frag; 1610 if (size < 0) 1611 size = 0; 1612 } 1613 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1614 #endif 1615 m->dirty &= ~pagebits; 1616 if (base == 0 && size == PAGE_SIZE) { 1617 pmap_clear_modify(m); 1618 vm_page_flag_clear(m, PG_NOSYNC); 1619 } 1620 } 1621 1622 #if 0 1623 1624 void 1625 vm_page_set_dirty(vm_page_t m, int base, int size) 1626 { 1627 m->dirty |= vm_page_bits(base, size); 1628 } 1629 1630 #endif 1631 1632 void 1633 vm_page_clear_dirty(vm_page_t m, int base, int size) 1634 { 1635 GIANT_REQUIRED; 1636 m->dirty &= ~vm_page_bits(base, size); 1637 } 1638 1639 /* 1640 * vm_page_set_invalid: 1641 * 1642 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1643 * valid and dirty bits for the effected areas are cleared. 1644 * 1645 * May not block. 1646 */ 1647 void 1648 vm_page_set_invalid(vm_page_t m, int base, int size) 1649 { 1650 int bits; 1651 1652 GIANT_REQUIRED; 1653 bits = vm_page_bits(base, size); 1654 m->valid &= ~bits; 1655 m->dirty &= ~bits; 1656 m->object->generation++; 1657 } 1658 1659 /* 1660 * vm_page_zero_invalid() 1661 * 1662 * The kernel assumes that the invalid portions of a page contain 1663 * garbage, but such pages can be mapped into memory by user code. 1664 * When this occurs, we must zero out the non-valid portions of the 1665 * page so user code sees what it expects. 1666 * 1667 * Pages are most often semi-valid when the end of a file is mapped 1668 * into memory and the file's size is not page aligned. 1669 */ 1670 void 1671 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1672 { 1673 int b; 1674 int i; 1675 1676 /* 1677 * Scan the valid bits looking for invalid sections that 1678 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1679 * valid bit may be set ) have already been zerod by 1680 * vm_page_set_validclean(). 1681 */ 1682 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1683 if (i == (PAGE_SIZE / DEV_BSIZE) || 1684 (m->valid & (1 << i)) 1685 ) { 1686 if (i > b) { 1687 pmap_zero_page_area(m, 1688 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 1689 } 1690 b = i + 1; 1691 } 1692 } 1693 1694 /* 1695 * setvalid is TRUE when we can safely set the zero'd areas 1696 * as being valid. We can do this if there are no cache consistancy 1697 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1698 */ 1699 if (setvalid) 1700 m->valid = VM_PAGE_BITS_ALL; 1701 } 1702 1703 /* 1704 * vm_page_is_valid: 1705 * 1706 * Is (partial) page valid? Note that the case where size == 0 1707 * will return FALSE in the degenerate case where the page is 1708 * entirely invalid, and TRUE otherwise. 1709 * 1710 * May not block. 1711 */ 1712 int 1713 vm_page_is_valid(vm_page_t m, int base, int size) 1714 { 1715 int bits = vm_page_bits(base, size); 1716 1717 if (m->valid && ((m->valid & bits) == bits)) 1718 return 1; 1719 else 1720 return 0; 1721 } 1722 1723 /* 1724 * update dirty bits from pmap/mmu. May not block. 1725 */ 1726 void 1727 vm_page_test_dirty(vm_page_t m) 1728 { 1729 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1730 vm_page_dirty(m); 1731 } 1732 } 1733 1734 int so_zerocp_fullpage = 0; 1735 1736 void 1737 vm_page_cowfault(vm_page_t m) 1738 { 1739 vm_page_t mnew; 1740 vm_object_t object; 1741 vm_pindex_t pindex; 1742 1743 object = m->object; 1744 pindex = m->pindex; 1745 vm_page_busy(m); 1746 1747 retry_alloc: 1748 vm_page_remove(m); 1749 /* 1750 * An interrupt allocation is requested because the page 1751 * queues lock is held. 1752 */ 1753 mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT); 1754 if (mnew == NULL) { 1755 vm_page_insert(m, object, pindex); 1756 vm_page_unlock_queues(); 1757 VM_WAIT; 1758 vm_page_lock_queues(); 1759 goto retry_alloc; 1760 } 1761 1762 if (m->cow == 0) { 1763 /* 1764 * check to see if we raced with an xmit complete when 1765 * waiting to allocate a page. If so, put things back 1766 * the way they were 1767 */ 1768 vm_page_busy(mnew); 1769 vm_page_free(mnew); 1770 vm_page_insert(m, object, pindex); 1771 } else { /* clear COW & copy page */ 1772 if (so_zerocp_fullpage) { 1773 mnew->valid = VM_PAGE_BITS_ALL; 1774 } else { 1775 vm_page_copy(m, mnew); 1776 } 1777 vm_page_dirty(mnew); 1778 vm_page_flag_clear(mnew, PG_BUSY); 1779 } 1780 } 1781 1782 void 1783 vm_page_cowclear(vm_page_t m) 1784 { 1785 1786 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1787 if (m->cow) { 1788 m->cow--; 1789 /* 1790 * let vm_fault add back write permission lazily 1791 */ 1792 } 1793 /* 1794 * sf_buf_free() will free the page, so we needn't do it here 1795 */ 1796 } 1797 1798 void 1799 vm_page_cowsetup(vm_page_t m) 1800 { 1801 1802 mtx_assert(&vm_page_queue_mtx, MA_OWNED); 1803 m->cow++; 1804 pmap_page_protect(m, VM_PROT_READ); 1805 } 1806 1807 #include "opt_ddb.h" 1808 #ifdef DDB 1809 #include <sys/kernel.h> 1810 1811 #include <ddb/ddb.h> 1812 1813 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1814 { 1815 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 1816 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 1817 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 1818 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 1819 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 1820 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 1821 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 1822 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 1823 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 1824 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 1825 } 1826 1827 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1828 { 1829 int i; 1830 db_printf("PQ_FREE:"); 1831 for (i = 0; i < PQ_L2_SIZE; i++) { 1832 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 1833 } 1834 db_printf("\n"); 1835 1836 db_printf("PQ_CACHE:"); 1837 for (i = 0; i < PQ_L2_SIZE; i++) { 1838 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 1839 } 1840 db_printf("\n"); 1841 1842 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1843 vm_page_queues[PQ_ACTIVE].lcnt, 1844 vm_page_queues[PQ_INACTIVE].lcnt); 1845 } 1846 #endif /* DDB */ 1847