xref: /freebsd/sys/vm/vm_page.c (revision 5773cccf19ef7b97e56c1101aa481c43149224da)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD$
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 
67 /*
68  *			GENERAL RULES ON VM_PAGE MANIPULATION
69  *
70  *	- a pageq mutex is required when adding or removing a page from a
71  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72  *	  busy state of a page.
73  *
74  *	- a hash chain mutex is required when associating or disassociating
75  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76  *	  regardless of other mutexes or the busy state of a page.
77  *
78  *	- either a hash chain mutex OR a busied page is required in order
79  *	  to modify the page flags.  A hash chain mutex must be obtained in
80  *	  order to busy a page.  A page's flags cannot be modified by a
81  *	  hash chain mutex if the page is marked busy.
82  *
83  *	- The object memq mutex is held when inserting or removing
84  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85  *	  is different from the object's main mutex.
86  *
87  *	Generally speaking, you have to be aware of side effects when running
88  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90  *	vm_page_cache(), vm_page_activate(), and a number of other routines
91  *	will release the hash chain mutex for you.  Intermediate manipulation
92  *	routines such as vm_page_flag_set() expect the hash chain to be held
93  *	on entry and the hash chain will remain held on return.
94  *
95  *	pageq scanning can only occur with the pageq in question locked.
96  *	We have a known bottleneck with the active queue, but the cache
97  *	and free queues are actually arrays already.
98  */
99 
100 /*
101  *	Resident memory management module.
102  */
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/lock.h>
107 #include <sys/malloc.h>
108 #include <sys/mutex.h>
109 #include <sys/proc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 #include <vm/uma_int.h>
123 
124 /*
125  *	Associated with page of user-allocatable memory is a
126  *	page structure.
127  */
128 
129 struct mtx vm_page_queue_mtx;
130 struct mtx vm_page_queue_free_mtx;
131 
132 vm_page_t vm_page_array = 0;
133 int vm_page_array_size = 0;
134 long first_page = 0;
135 int vm_page_zero_count = 0;
136 
137 /*
138  *	vm_set_page_size:
139  *
140  *	Sets the page size, perhaps based upon the memory
141  *	size.  Must be called before any use of page-size
142  *	dependent functions.
143  */
144 void
145 vm_set_page_size(void)
146 {
147 	if (cnt.v_page_size == 0)
148 		cnt.v_page_size = PAGE_SIZE;
149 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
150 		panic("vm_set_page_size: page size not a power of two");
151 }
152 
153 /*
154  *	vm_page_startup:
155  *
156  *	Initializes the resident memory module.
157  *
158  *	Allocates memory for the page cells, and
159  *	for the object/offset-to-page hash table headers.
160  *	Each page cell is initialized and placed on the free list.
161  */
162 vm_offset_t
163 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
164 {
165 	vm_offset_t mapped;
166 	vm_size_t npages, page_range;
167 	vm_offset_t new_end;
168 	int i;
169 	vm_offset_t pa;
170 	int nblocks;
171 	vm_offset_t last_pa;
172 
173 	/* the biggest memory array is the second group of pages */
174 	vm_offset_t end;
175 	vm_offset_t biggestone, biggestsize;
176 
177 	vm_offset_t total;
178 	vm_size_t bootpages;
179 
180 	total = 0;
181 	biggestsize = 0;
182 	biggestone = 0;
183 	nblocks = 0;
184 	vaddr = round_page(vaddr);
185 
186 	for (i = 0; phys_avail[i + 1]; i += 2) {
187 		phys_avail[i] = round_page(phys_avail[i]);
188 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
189 	}
190 
191 	for (i = 0; phys_avail[i + 1]; i += 2) {
192 		vm_size_t size = phys_avail[i + 1] - phys_avail[i];
193 
194 		if (size > biggestsize) {
195 			biggestone = i;
196 			biggestsize = size;
197 		}
198 		++nblocks;
199 		total += size;
200 	}
201 
202 	end = phys_avail[biggestone+1];
203 
204 	/*
205 	 * Initialize the locks.
206 	 */
207 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF);
208 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
209 	   MTX_SPIN);
210 
211 	/*
212 	 * Initialize the queue headers for the free queue, the active queue
213 	 * and the inactive queue.
214 	 */
215 	vm_pageq_init();
216 
217 	/*
218 	 * Allocate memory for use when boot strapping the kernel memory
219 	 * allocator.
220 	 */
221 	bootpages = UMA_BOOT_PAGES * UMA_SLAB_SIZE;
222 	new_end = end - bootpages;
223 	new_end = trunc_page(new_end);
224 	mapped = pmap_map(&vaddr, new_end, end,
225 	    VM_PROT_READ | VM_PROT_WRITE);
226 	bzero((caddr_t) mapped, end - new_end);
227 	uma_startup((caddr_t)mapped);
228 
229 	/*
230 	 * Compute the number of pages of memory that will be available for
231 	 * use (taking into account the overhead of a page structure per
232 	 * page).
233 	 */
234 	first_page = phys_avail[0] / PAGE_SIZE;
235 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
236 	npages = (total - (page_range * sizeof(struct vm_page)) -
237 	    (end - new_end)) / PAGE_SIZE;
238 	end = new_end;
239 
240 	/*
241 	 * Initialize the mem entry structures now, and put them in the free
242 	 * queue.
243 	 */
244 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
245 	mapped = pmap_map(&vaddr, new_end, end,
246 	    VM_PROT_READ | VM_PROT_WRITE);
247 	vm_page_array = (vm_page_t) mapped;
248 
249 	/*
250 	 * Clear all of the page structures
251 	 */
252 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
253 	vm_page_array_size = page_range;
254 
255 	/*
256 	 * Construct the free queue(s) in descending order (by physical
257 	 * address) so that the first 16MB of physical memory is allocated
258 	 * last rather than first.  On large-memory machines, this avoids
259 	 * the exhaustion of low physical memory before isa_dmainit has run.
260 	 */
261 	cnt.v_page_count = 0;
262 	cnt.v_free_count = 0;
263 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
264 		pa = phys_avail[i];
265 		if (i == biggestone)
266 			last_pa = new_end;
267 		else
268 			last_pa = phys_avail[i + 1];
269 		while (pa < last_pa && npages-- > 0) {
270 			vm_pageq_add_new_page(pa);
271 			pa += PAGE_SIZE;
272 		}
273 	}
274 	return (vaddr);
275 }
276 
277 void
278 vm_page_flag_set(vm_page_t m, unsigned short bits)
279 {
280 	GIANT_REQUIRED;
281 	m->flags |= bits;
282 }
283 
284 void
285 vm_page_flag_clear(vm_page_t m, unsigned short bits)
286 {
287 	GIANT_REQUIRED;
288 	m->flags &= ~bits;
289 }
290 
291 void
292 vm_page_busy(vm_page_t m)
293 {
294 	KASSERT((m->flags & PG_BUSY) == 0,
295 	    ("vm_page_busy: page already busy!!!"));
296 	vm_page_flag_set(m, PG_BUSY);
297 }
298 
299 /*
300  *      vm_page_flash:
301  *
302  *      wakeup anyone waiting for the page.
303  */
304 void
305 vm_page_flash(vm_page_t m)
306 {
307 	if (m->flags & PG_WANTED) {
308 		vm_page_flag_clear(m, PG_WANTED);
309 		wakeup(m);
310 	}
311 }
312 
313 /*
314  *      vm_page_wakeup:
315  *
316  *      clear the PG_BUSY flag and wakeup anyone waiting for the
317  *      page.
318  *
319  */
320 void
321 vm_page_wakeup(vm_page_t m)
322 {
323 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
324 	vm_page_flag_clear(m, PG_BUSY);
325 	vm_page_flash(m);
326 }
327 
328 /*
329  *
330  *
331  */
332 void
333 vm_page_io_start(vm_page_t m)
334 {
335 
336 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
337 	m->busy++;
338 }
339 
340 void
341 vm_page_io_finish(vm_page_t m)
342 {
343 
344 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
345 	m->busy--;
346 	if (m->busy == 0)
347 		vm_page_flash(m);
348 }
349 
350 /*
351  * Keep page from being freed by the page daemon
352  * much of the same effect as wiring, except much lower
353  * overhead and should be used only for *very* temporary
354  * holding ("wiring").
355  */
356 void
357 vm_page_hold(vm_page_t mem)
358 {
359         GIANT_REQUIRED;
360         mem->hold_count++;
361 }
362 
363 void
364 vm_page_unhold(vm_page_t mem)
365 {
366 	GIANT_REQUIRED;
367 	--mem->hold_count;
368 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
369 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
370 		vm_page_free_toq(mem);
371 }
372 
373 /*
374  *	vm_page_copy:
375  *
376  *	Copy one page to another
377  */
378 void
379 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
380 {
381 	pmap_copy_page(src_m, dest_m);
382 	dest_m->valid = VM_PAGE_BITS_ALL;
383 }
384 
385 /*
386  *	vm_page_free:
387  *
388  *	Free a page
389  *
390  *	The clearing of PG_ZERO is a temporary safety until the code can be
391  *	reviewed to determine that PG_ZERO is being properly cleared on
392  *	write faults or maps.  PG_ZERO was previously cleared in
393  *	vm_page_alloc().
394  */
395 void
396 vm_page_free(vm_page_t m)
397 {
398 	vm_page_flag_clear(m, PG_ZERO);
399 	vm_page_free_toq(m);
400 	vm_page_zero_idle_wakeup();
401 }
402 
403 /*
404  *	vm_page_free_zero:
405  *
406  *	Free a page to the zerod-pages queue
407  */
408 void
409 vm_page_free_zero(vm_page_t m)
410 {
411 	vm_page_flag_set(m, PG_ZERO);
412 	vm_page_free_toq(m);
413 }
414 
415 /*
416  *	vm_page_sleep_busy:
417  *
418  *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
419  *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
420  *	it almost had to sleep and made temporary spl*() mods), FALSE
421  *	otherwise.
422  *
423  *	This routine assumes that interrupts can only remove the busy
424  *	status from a page, not set the busy status or change it from
425  *	PG_BUSY to m->busy or vise versa (which would create a timing
426  *	window).
427  */
428 int
429 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
430 {
431 	GIANT_REQUIRED;
432 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
433 		int s = splvm();
434 		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
435 			/*
436 			 * Page is busy. Wait and retry.
437 			 */
438 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
439 			tsleep(m, PVM, msg, 0);
440 		}
441 		splx(s);
442 		return (TRUE);
443 		/* not reached */
444 	}
445 	return (FALSE);
446 }
447 
448 /*
449  *	vm_page_sleep_if_busy:
450  *
451  *	Sleep and release the page queues lock if PG_BUSY is set or,
452  *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
453  *	thread slept and the page queues lock was released.
454  *	Otherwise, retains the page queues lock and returns FALSE.
455  */
456 int
457 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
458 {
459 
460 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
461 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
462 		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
463 		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
464 		return (TRUE);
465 	}
466 	return (FALSE);
467 }
468 
469 /*
470  *	vm_page_dirty:
471  *
472  *	make page all dirty
473  */
474 void
475 vm_page_dirty(vm_page_t m)
476 {
477 	KASSERT(m->queue - m->pc != PQ_CACHE,
478 	    ("vm_page_dirty: page in cache!"));
479 	m->dirty = VM_PAGE_BITS_ALL;
480 }
481 
482 /*
483  *	vm_page_splay:
484  *
485  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
486  *	the vm_page containing the given pindex.  If, however, that
487  *	pindex is not found in the vm_object, returns a vm_page that is
488  *	adjacent to the pindex, coming before or after it.
489  */
490 vm_page_t
491 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
492 {
493 	struct vm_page dummy;
494 	vm_page_t lefttreemax, righttreemin, y;
495 
496 	if (root == NULL)
497 		return (root);
498 	lefttreemax = righttreemin = &dummy;
499 	for (;; root = y) {
500 		if (pindex < root->pindex) {
501 			if ((y = root->left) == NULL)
502 				break;
503 			if (pindex < y->pindex) {
504 				/* Rotate right. */
505 				root->left = y->right;
506 				y->right = root;
507 				root = y;
508 				if ((y = root->left) == NULL)
509 					break;
510 			}
511 			/* Link into the new root's right tree. */
512 			righttreemin->left = root;
513 			righttreemin = root;
514 		} else if (pindex > root->pindex) {
515 			if ((y = root->right) == NULL)
516 				break;
517 			if (pindex > y->pindex) {
518 				/* Rotate left. */
519 				root->right = y->left;
520 				y->left = root;
521 				root = y;
522 				if ((y = root->right) == NULL)
523 					break;
524 			}
525 			/* Link into the new root's left tree. */
526 			lefttreemax->right = root;
527 			lefttreemax = root;
528 		} else
529 			break;
530 	}
531 	/* Assemble the new root. */
532 	lefttreemax->right = root->left;
533 	righttreemin->left = root->right;
534 	root->left = dummy.right;
535 	root->right = dummy.left;
536 	return (root);
537 }
538 
539 /*
540  *	vm_page_insert:		[ internal use only ]
541  *
542  *	Inserts the given mem entry into the object and object list.
543  *
544  *	The pagetables are not updated but will presumably fault the page
545  *	in if necessary, or if a kernel page the caller will at some point
546  *	enter the page into the kernel's pmap.  We are not allowed to block
547  *	here so we *can't* do this anyway.
548  *
549  *	The object and page must be locked, and must be splhigh.
550  *	This routine may not block.
551  */
552 void
553 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
554 {
555 	vm_page_t root;
556 
557 	GIANT_REQUIRED;
558 
559 	if (m->object != NULL)
560 		panic("vm_page_insert: already inserted");
561 
562 	/*
563 	 * Record the object/offset pair in this page
564 	 */
565 	m->object = object;
566 	m->pindex = pindex;
567 
568 	/*
569 	 * Now link into the object's ordered list of backed pages.
570 	 */
571 	root = object->root;
572 	if (root == NULL) {
573 		m->left = NULL;
574 		m->right = NULL;
575 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
576 	} else {
577 		root = vm_page_splay(pindex, root);
578 		if (pindex < root->pindex) {
579 			m->left = root->left;
580 			m->right = root;
581 			root->left = NULL;
582 			TAILQ_INSERT_BEFORE(root, m, listq);
583 		} else {
584 			m->right = root->right;
585 			m->left = root;
586 			root->right = NULL;
587 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
588 		}
589 	}
590 	object->root = m;
591 	object->generation++;
592 
593 	/*
594 	 * show that the object has one more resident page.
595 	 */
596 	object->resident_page_count++;
597 
598 	/*
599 	 * Since we are inserting a new and possibly dirty page,
600 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
601 	 */
602 	if (m->flags & PG_WRITEABLE)
603 		vm_object_set_writeable_dirty(object);
604 }
605 
606 /*
607  *	vm_page_remove:
608  *				NOTE: used by device pager as well -wfj
609  *
610  *	Removes the given mem entry from the object/offset-page
611  *	table and the object page list, but do not invalidate/terminate
612  *	the backing store.
613  *
614  *	The object and page must be locked, and at splhigh.
615  *	The underlying pmap entry (if any) is NOT removed here.
616  *	This routine may not block.
617  */
618 void
619 vm_page_remove(vm_page_t m)
620 {
621 	vm_object_t object;
622 	vm_page_t root;
623 
624 	GIANT_REQUIRED;
625 
626 	if (m->object == NULL)
627 		return;
628 
629 	if ((m->flags & PG_BUSY) == 0) {
630 		panic("vm_page_remove: page not busy");
631 	}
632 
633 	/*
634 	 * Basically destroy the page.
635 	 */
636 	vm_page_wakeup(m);
637 
638 	object = m->object;
639 
640 	/*
641 	 * Now remove from the object's list of backed pages.
642 	 */
643 	if (m != object->root)
644 		vm_page_splay(m->pindex, object->root);
645 	if (m->left == NULL)
646 		root = m->right;
647 	else {
648 		root = vm_page_splay(m->pindex, m->left);
649 		root->right = m->right;
650 	}
651 	object->root = root;
652 	TAILQ_REMOVE(&object->memq, m, listq);
653 
654 	/*
655 	 * And show that the object has one fewer resident page.
656 	 */
657 	object->resident_page_count--;
658 	object->generation++;
659 
660 	m->object = NULL;
661 }
662 
663 /*
664  *	vm_page_lookup:
665  *
666  *	Returns the page associated with the object/offset
667  *	pair specified; if none is found, NULL is returned.
668  *
669  *	The object must be locked.
670  *	This routine may not block.
671  *	This is a critical path routine
672  */
673 vm_page_t
674 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
675 {
676 	vm_page_t m;
677 
678 	GIANT_REQUIRED;
679 
680 	m = vm_page_splay(pindex, object->root);
681 	if ((object->root = m) != NULL && m->pindex != pindex)
682 		m = NULL;
683 	return (m);
684 }
685 
686 /*
687  *	vm_page_rename:
688  *
689  *	Move the given memory entry from its
690  *	current object to the specified target object/offset.
691  *
692  *	The object must be locked.
693  *	This routine may not block.
694  *
695  *	Note: this routine will raise itself to splvm(), the caller need not.
696  *
697  *	Note: swap associated with the page must be invalidated by the move.  We
698  *	      have to do this for several reasons:  (1) we aren't freeing the
699  *	      page, (2) we are dirtying the page, (3) the VM system is probably
700  *	      moving the page from object A to B, and will then later move
701  *	      the backing store from A to B and we can't have a conflict.
702  *
703  *	Note: we *always* dirty the page.  It is necessary both for the
704  *	      fact that we moved it, and because we may be invalidating
705  *	      swap.  If the page is on the cache, we have to deactivate it
706  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
707  *	      on the cache.
708  */
709 void
710 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
711 {
712 	int s;
713 
714 	s = splvm();
715 	vm_page_lock_queues();
716 	vm_page_remove(m);
717 	vm_page_insert(m, new_object, new_pindex);
718 	if (m->queue - m->pc == PQ_CACHE)
719 		vm_page_deactivate(m);
720 	vm_page_dirty(m);
721 	vm_page_unlock_queues();
722 	splx(s);
723 }
724 
725 /*
726  *	vm_page_select_cache:
727  *
728  *	Find a page on the cache queue with color optimization.  As pages
729  *	might be found, but not applicable, they are deactivated.  This
730  *	keeps us from using potentially busy cached pages.
731  *
732  *	This routine must be called at splvm().
733  *	This routine may not block.
734  */
735 static vm_page_t
736 vm_page_select_cache(vm_pindex_t color)
737 {
738 	vm_page_t m;
739 
740 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
741 	while (TRUE) {
742 		m = vm_pageq_find(PQ_CACHE, color & PQ_L2_MASK, FALSE);
743 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
744 			       m->hold_count || m->wire_count)) {
745 			vm_page_deactivate(m);
746 			continue;
747 		}
748 		return m;
749 	}
750 }
751 
752 /*
753  *	vm_page_select_free:
754  *
755  *	Find a free or zero page, with specified preference.
756  *
757  *	This routine must be called at splvm().
758  *	This routine may not block.
759  */
760 static __inline vm_page_t
761 vm_page_select_free(vm_pindex_t color, boolean_t prefer_zero)
762 {
763 	vm_page_t m;
764 
765 	m = vm_pageq_find(PQ_FREE, color & PQ_L2_MASK, prefer_zero);
766 	return (m);
767 }
768 
769 /*
770  *	vm_page_alloc:
771  *
772  *	Allocate and return a memory cell associated
773  *	with this VM object/offset pair.
774  *
775  *	page_req classes:
776  *	VM_ALLOC_NORMAL		normal process request
777  *	VM_ALLOC_SYSTEM		system *really* needs a page
778  *	VM_ALLOC_INTERRUPT	interrupt time request
779  *	VM_ALLOC_ZERO		zero page
780  *
781  *	This routine may not block.
782  *
783  *	Additional special handling is required when called from an
784  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
785  *	the page cache in this case.
786  */
787 vm_page_t
788 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
789 {
790 	vm_page_t m = NULL;
791 	vm_pindex_t color;
792 	int page_req, s;
793 
794 	GIANT_REQUIRED;
795 
796 #ifdef INVARIANTS
797 	if ((req & VM_ALLOC_NOOBJ) == 0) {
798 		KASSERT(object != NULL,
799 		    ("vm_page_alloc: NULL object."));
800 		KASSERT(!vm_page_lookup(object, pindex),
801 		    ("vm_page_alloc: page already allocated"));
802 	}
803 #endif
804 
805 	page_req = req & VM_ALLOC_CLASS_MASK;
806 
807 	if ((req & VM_ALLOC_NOOBJ) == 0)
808 		color = pindex + object->pg_color;
809 	else
810 		color = pindex;
811 
812 	/*
813 	 * The pager is allowed to eat deeper into the free page list.
814 	 */
815 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
816 		page_req = VM_ALLOC_SYSTEM;
817 	};
818 
819 	s = splvm();
820 loop:
821 	mtx_lock_spin(&vm_page_queue_free_mtx);
822 	if (cnt.v_free_count > cnt.v_free_reserved) {
823 		/*
824 		 * Allocate from the free queue if there are plenty of pages
825 		 * in it.
826 		 */
827 		m = vm_page_select_free(color, (req & VM_ALLOC_ZERO) != 0);
828 
829 	} else if (
830 	    (page_req == VM_ALLOC_SYSTEM &&
831 	     cnt.v_cache_count == 0 &&
832 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
833 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
834 	) {
835 		/*
836 		 * Interrupt or system, dig deeper into the free list.
837 		 */
838 		m = vm_page_select_free(color, FALSE);
839 	} else if (page_req != VM_ALLOC_INTERRUPT) {
840 		mtx_unlock_spin(&vm_page_queue_free_mtx);
841 		/*
842 		 * Allocatable from cache (non-interrupt only).  On success,
843 		 * we must free the page and try again, thus ensuring that
844 		 * cnt.v_*_free_min counters are replenished.
845 		 */
846 		vm_page_lock_queues();
847 		if ((m = vm_page_select_cache(color)) == NULL) {
848 			vm_page_unlock_queues();
849 			splx(s);
850 #if defined(DIAGNOSTIC)
851 			if (cnt.v_cache_count > 0)
852 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
853 #endif
854 			vm_pageout_deficit++;
855 			pagedaemon_wakeup();
856 			return (NULL);
857 		}
858 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
859 		vm_page_busy(m);
860 		pmap_remove_all(m);
861 		vm_page_free(m);
862 		vm_page_unlock_queues();
863 		goto loop;
864 	} else {
865 		/*
866 		 * Not allocatable from cache from interrupt, give up.
867 		 */
868 		mtx_unlock_spin(&vm_page_queue_free_mtx);
869 		splx(s);
870 		vm_pageout_deficit++;
871 		pagedaemon_wakeup();
872 		return (NULL);
873 	}
874 
875 	/*
876 	 *  At this point we had better have found a good page.
877 	 */
878 
879 	KASSERT(
880 	    m != NULL,
881 	    ("vm_page_alloc(): missing page on free queue\n")
882 	);
883 
884 	/*
885 	 * Remove from free queue
886 	 */
887 
888 	vm_pageq_remove_nowakeup(m);
889 
890 	/*
891 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
892 	 */
893 	if (m->flags & PG_ZERO) {
894 		vm_page_zero_count--;
895 		m->flags = PG_ZERO | PG_BUSY;
896 	} else {
897 		m->flags = PG_BUSY;
898 	}
899 	if (req & VM_ALLOC_WIRED) {
900 		cnt.v_wire_count++;
901 		m->wire_count = 1;
902 	} else
903 		m->wire_count = 0;
904 	m->hold_count = 0;
905 	m->act_count = 0;
906 	m->busy = 0;
907 	m->valid = 0;
908 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
909 	mtx_unlock_spin(&vm_page_queue_free_mtx);
910 
911 	/*
912 	 * vm_page_insert() is safe prior to the splx().  Note also that
913 	 * inserting a page here does not insert it into the pmap (which
914 	 * could cause us to block allocating memory).  We cannot block
915 	 * anywhere.
916 	 */
917 	if ((req & VM_ALLOC_NOOBJ) == 0)
918 		vm_page_insert(m, object, pindex);
919 
920 	/*
921 	 * Don't wakeup too often - wakeup the pageout daemon when
922 	 * we would be nearly out of memory.
923 	 */
924 	if (vm_paging_needed())
925 		pagedaemon_wakeup();
926 
927 	splx(s);
928 	return (m);
929 }
930 
931 /*
932  *	vm_wait:	(also see VM_WAIT macro)
933  *
934  *	Block until free pages are available for allocation
935  *	- Called in various places before memory allocations.
936  */
937 void
938 vm_wait(void)
939 {
940 	int s;
941 
942 	s = splvm();
943 	if (curproc == pageproc) {
944 		vm_pageout_pages_needed = 1;
945 		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
946 	} else {
947 		if (!vm_pages_needed) {
948 			vm_pages_needed = 1;
949 			wakeup(&vm_pages_needed);
950 		}
951 		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
952 	}
953 	splx(s);
954 }
955 
956 /*
957  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
958  *
959  *	Block until free pages are available for allocation
960  *	- Called only in vm_fault so that processes page faulting
961  *	  can be easily tracked.
962  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
963  *	  processes will be able to grab memory first.  Do not change
964  *	  this balance without careful testing first.
965  */
966 void
967 vm_waitpfault(void)
968 {
969 	int s;
970 
971 	s = splvm();
972 	if (!vm_pages_needed) {
973 		vm_pages_needed = 1;
974 		wakeup(&vm_pages_needed);
975 	}
976 	tsleep(&cnt.v_free_count, PUSER, "pfault", 0);
977 	splx(s);
978 }
979 
980 /*
981  *	vm_page_activate:
982  *
983  *	Put the specified page on the active list (if appropriate).
984  *	Ensure that act_count is at least ACT_INIT but do not otherwise
985  *	mess with it.
986  *
987  *	The page queues must be locked.
988  *	This routine may not block.
989  */
990 void
991 vm_page_activate(vm_page_t m)
992 {
993 	int s;
994 
995 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
996 	s = splvm();
997 	if (m->queue != PQ_ACTIVE) {
998 		if ((m->queue - m->pc) == PQ_CACHE)
999 			cnt.v_reactivated++;
1000 		vm_pageq_remove(m);
1001 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1002 			if (m->act_count < ACT_INIT)
1003 				m->act_count = ACT_INIT;
1004 			vm_pageq_enqueue(PQ_ACTIVE, m);
1005 		}
1006 	} else {
1007 		if (m->act_count < ACT_INIT)
1008 			m->act_count = ACT_INIT;
1009 	}
1010 	splx(s);
1011 }
1012 
1013 /*
1014  *	vm_page_free_wakeup:
1015  *
1016  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1017  *	routine is called when a page has been added to the cache or free
1018  *	queues.
1019  *
1020  *	This routine may not block.
1021  *	This routine must be called at splvm()
1022  */
1023 static __inline void
1024 vm_page_free_wakeup(void)
1025 {
1026 	/*
1027 	 * if pageout daemon needs pages, then tell it that there are
1028 	 * some free.
1029 	 */
1030 	if (vm_pageout_pages_needed &&
1031 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1032 		wakeup(&vm_pageout_pages_needed);
1033 		vm_pageout_pages_needed = 0;
1034 	}
1035 	/*
1036 	 * wakeup processes that are waiting on memory if we hit a
1037 	 * high water mark. And wakeup scheduler process if we have
1038 	 * lots of memory. this process will swapin processes.
1039 	 */
1040 	if (vm_pages_needed && !vm_page_count_min()) {
1041 		vm_pages_needed = 0;
1042 		wakeup(&cnt.v_free_count);
1043 	}
1044 }
1045 
1046 /*
1047  *	vm_page_free_toq:
1048  *
1049  *	Returns the given page to the PQ_FREE list,
1050  *	disassociating it with any VM object.
1051  *
1052  *	Object and page must be locked prior to entry.
1053  *	This routine may not block.
1054  */
1055 
1056 void
1057 vm_page_free_toq(vm_page_t m)
1058 {
1059 	int s;
1060 	struct vpgqueues *pq;
1061 	vm_object_t object = m->object;
1062 
1063 	GIANT_REQUIRED;
1064 	s = splvm();
1065 	cnt.v_tfree++;
1066 
1067 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1068 		printf(
1069 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1070 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1071 		    m->hold_count);
1072 		if ((m->queue - m->pc) == PQ_FREE)
1073 			panic("vm_page_free: freeing free page");
1074 		else
1075 			panic("vm_page_free: freeing busy page");
1076 	}
1077 
1078 	/*
1079 	 * unqueue, then remove page.  Note that we cannot destroy
1080 	 * the page here because we do not want to call the pager's
1081 	 * callback routine until after we've put the page on the
1082 	 * appropriate free queue.
1083 	 */
1084 	vm_pageq_remove_nowakeup(m);
1085 	vm_page_remove(m);
1086 
1087 	/*
1088 	 * If fictitious remove object association and
1089 	 * return, otherwise delay object association removal.
1090 	 */
1091 	if ((m->flags & PG_FICTITIOUS) != 0) {
1092 		splx(s);
1093 		return;
1094 	}
1095 
1096 	m->valid = 0;
1097 	vm_page_undirty(m);
1098 
1099 	if (m->wire_count != 0) {
1100 		if (m->wire_count > 1) {
1101 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1102 				m->wire_count, (long)m->pindex);
1103 		}
1104 		panic("vm_page_free: freeing wired page\n");
1105 	}
1106 
1107 	/*
1108 	 * If we've exhausted the object's resident pages we want to free
1109 	 * it up.
1110 	 */
1111 	if (object &&
1112 	    (object->type == OBJT_VNODE) &&
1113 	    ((object->flags & OBJ_DEAD) == 0)
1114 	) {
1115 		struct vnode *vp = (struct vnode *)object->handle;
1116 
1117 		if (vp) {
1118 			VI_LOCK(vp);
1119 			if (VSHOULDFREE(vp))
1120 				vfree(vp);
1121 			VI_UNLOCK(vp);
1122 		}
1123 	}
1124 
1125 	/*
1126 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1127 	 */
1128 	if (m->flags & PG_UNMANAGED) {
1129 		m->flags &= ~PG_UNMANAGED;
1130 	} else {
1131 #ifdef __alpha__
1132 		pmap_page_is_free(m);
1133 #endif
1134 	}
1135 
1136 	if (m->hold_count != 0) {
1137 		m->flags &= ~PG_ZERO;
1138 		m->queue = PQ_HOLD;
1139 	} else
1140 		m->queue = PQ_FREE + m->pc;
1141 	pq = &vm_page_queues[m->queue];
1142 	mtx_lock_spin(&vm_page_queue_free_mtx);
1143 	pq->lcnt++;
1144 	++(*pq->cnt);
1145 
1146 	/*
1147 	 * Put zero'd pages on the end ( where we look for zero'd pages
1148 	 * first ) and non-zerod pages at the head.
1149 	 */
1150 	if (m->flags & PG_ZERO) {
1151 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1152 		++vm_page_zero_count;
1153 	} else {
1154 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1155 	}
1156 	mtx_unlock_spin(&vm_page_queue_free_mtx);
1157 	vm_page_free_wakeup();
1158 	splx(s);
1159 }
1160 
1161 /*
1162  *	vm_page_unmanage:
1163  *
1164  * 	Prevent PV management from being done on the page.  The page is
1165  *	removed from the paging queues as if it were wired, and as a
1166  *	consequence of no longer being managed the pageout daemon will not
1167  *	touch it (since there is no way to locate the pte mappings for the
1168  *	page).  madvise() calls that mess with the pmap will also no longer
1169  *	operate on the page.
1170  *
1171  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1172  *	will clear the flag.
1173  *
1174  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1175  *	physical memory as backing store rather then swap-backed memory and
1176  *	will eventually be extended to support 4MB unmanaged physical
1177  *	mappings.
1178  */
1179 void
1180 vm_page_unmanage(vm_page_t m)
1181 {
1182 	int s;
1183 
1184 	s = splvm();
1185 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1186 	if ((m->flags & PG_UNMANAGED) == 0) {
1187 		if (m->wire_count == 0)
1188 			vm_pageq_remove(m);
1189 	}
1190 	vm_page_flag_set(m, PG_UNMANAGED);
1191 	splx(s);
1192 }
1193 
1194 /*
1195  *	vm_page_wire:
1196  *
1197  *	Mark this page as wired down by yet
1198  *	another map, removing it from paging queues
1199  *	as necessary.
1200  *
1201  *	The page queues must be locked.
1202  *	This routine may not block.
1203  */
1204 void
1205 vm_page_wire(vm_page_t m)
1206 {
1207 	int s;
1208 
1209 	/*
1210 	 * Only bump the wire statistics if the page is not already wired,
1211 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1212 	 * it is already off the queues).
1213 	 */
1214 	s = splvm();
1215 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1216 	if (m->wire_count == 0) {
1217 		if ((m->flags & PG_UNMANAGED) == 0)
1218 			vm_pageq_remove(m);
1219 		cnt.v_wire_count++;
1220 	}
1221 	m->wire_count++;
1222 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1223 	splx(s);
1224 }
1225 
1226 /*
1227  *	vm_page_unwire:
1228  *
1229  *	Release one wiring of this page, potentially
1230  *	enabling it to be paged again.
1231  *
1232  *	Many pages placed on the inactive queue should actually go
1233  *	into the cache, but it is difficult to figure out which.  What
1234  *	we do instead, if the inactive target is well met, is to put
1235  *	clean pages at the head of the inactive queue instead of the tail.
1236  *	This will cause them to be moved to the cache more quickly and
1237  *	if not actively re-referenced, freed more quickly.  If we just
1238  *	stick these pages at the end of the inactive queue, heavy filesystem
1239  *	meta-data accesses can cause an unnecessary paging load on memory bound
1240  *	processes.  This optimization causes one-time-use metadata to be
1241  *	reused more quickly.
1242  *
1243  *	BUT, if we are in a low-memory situation we have no choice but to
1244  *	put clean pages on the cache queue.
1245  *
1246  *	A number of routines use vm_page_unwire() to guarantee that the page
1247  *	will go into either the inactive or active queues, and will NEVER
1248  *	be placed in the cache - for example, just after dirtying a page.
1249  *	dirty pages in the cache are not allowed.
1250  *
1251  *	The page queues must be locked.
1252  *	This routine may not block.
1253  */
1254 void
1255 vm_page_unwire(vm_page_t m, int activate)
1256 {
1257 	int s;
1258 
1259 	s = splvm();
1260 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1261 	if (m->wire_count > 0) {
1262 		m->wire_count--;
1263 		if (m->wire_count == 0) {
1264 			cnt.v_wire_count--;
1265 			if (m->flags & PG_UNMANAGED) {
1266 				;
1267 			} else if (activate)
1268 				vm_pageq_enqueue(PQ_ACTIVE, m);
1269 			else {
1270 				vm_page_flag_clear(m, PG_WINATCFLS);
1271 				vm_pageq_enqueue(PQ_INACTIVE, m);
1272 			}
1273 		}
1274 	} else {
1275 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1276 	}
1277 	splx(s);
1278 }
1279 
1280 
1281 /*
1282  * Move the specified page to the inactive queue.  If the page has
1283  * any associated swap, the swap is deallocated.
1284  *
1285  * Normally athead is 0 resulting in LRU operation.  athead is set
1286  * to 1 if we want this page to be 'as if it were placed in the cache',
1287  * except without unmapping it from the process address space.
1288  *
1289  * This routine may not block.
1290  */
1291 static __inline void
1292 _vm_page_deactivate(vm_page_t m, int athead)
1293 {
1294 	int s;
1295 
1296 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1297 	/*
1298 	 * Ignore if already inactive.
1299 	 */
1300 	if (m->queue == PQ_INACTIVE)
1301 		return;
1302 
1303 	s = splvm();
1304 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1305 		if ((m->queue - m->pc) == PQ_CACHE)
1306 			cnt.v_reactivated++;
1307 		vm_page_flag_clear(m, PG_WINATCFLS);
1308 		vm_pageq_remove(m);
1309 		if (athead)
1310 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1311 		else
1312 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1313 		m->queue = PQ_INACTIVE;
1314 		vm_page_queues[PQ_INACTIVE].lcnt++;
1315 		cnt.v_inactive_count++;
1316 	}
1317 	splx(s);
1318 }
1319 
1320 void
1321 vm_page_deactivate(vm_page_t m)
1322 {
1323     _vm_page_deactivate(m, 0);
1324 }
1325 
1326 /*
1327  * vm_page_try_to_cache:
1328  *
1329  * Returns 0 on failure, 1 on success
1330  */
1331 int
1332 vm_page_try_to_cache(vm_page_t m)
1333 {
1334 
1335 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1336 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1337 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1338 		return (0);
1339 	}
1340 	vm_page_test_dirty(m);
1341 	if (m->dirty)
1342 		return (0);
1343 	vm_page_cache(m);
1344 	return (1);
1345 }
1346 
1347 /*
1348  * vm_page_try_to_free()
1349  *
1350  *	Attempt to free the page.  If we cannot free it, we do nothing.
1351  *	1 is returned on success, 0 on failure.
1352  */
1353 int
1354 vm_page_try_to_free(vm_page_t m)
1355 {
1356 
1357 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1358 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1359 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1360 		return (0);
1361 	}
1362 	vm_page_test_dirty(m);
1363 	if (m->dirty)
1364 		return (0);
1365 	vm_page_busy(m);
1366 	pmap_remove_all(m);
1367 	vm_page_free(m);
1368 	return (1);
1369 }
1370 
1371 /*
1372  * vm_page_cache
1373  *
1374  * Put the specified page onto the page cache queue (if appropriate).
1375  *
1376  * This routine may not block.
1377  */
1378 void
1379 vm_page_cache(vm_page_t m)
1380 {
1381 	int s;
1382 
1383 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1384 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1385 		printf("vm_page_cache: attempting to cache busy page\n");
1386 		return;
1387 	}
1388 	if ((m->queue - m->pc) == PQ_CACHE)
1389 		return;
1390 
1391 	/*
1392 	 * Remove all pmaps and indicate that the page is not
1393 	 * writeable or mapped.
1394 	 */
1395 	pmap_remove_all(m);
1396 	if (m->dirty != 0) {
1397 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1398 			(long)m->pindex);
1399 	}
1400 	s = splvm();
1401 	vm_pageq_remove_nowakeup(m);
1402 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1403 	vm_page_free_wakeup();
1404 	splx(s);
1405 }
1406 
1407 /*
1408  * vm_page_dontneed
1409  *
1410  *	Cache, deactivate, or do nothing as appropriate.  This routine
1411  *	is typically used by madvise() MADV_DONTNEED.
1412  *
1413  *	Generally speaking we want to move the page into the cache so
1414  *	it gets reused quickly.  However, this can result in a silly syndrome
1415  *	due to the page recycling too quickly.  Small objects will not be
1416  *	fully cached.  On the otherhand, if we move the page to the inactive
1417  *	queue we wind up with a problem whereby very large objects
1418  *	unnecessarily blow away our inactive and cache queues.
1419  *
1420  *	The solution is to move the pages based on a fixed weighting.  We
1421  *	either leave them alone, deactivate them, or move them to the cache,
1422  *	where moving them to the cache has the highest weighting.
1423  *	By forcing some pages into other queues we eventually force the
1424  *	system to balance the queues, potentially recovering other unrelated
1425  *	space from active.  The idea is to not force this to happen too
1426  *	often.
1427  */
1428 void
1429 vm_page_dontneed(vm_page_t m)
1430 {
1431 	static int dnweight;
1432 	int dnw;
1433 	int head;
1434 
1435 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1436 	dnw = ++dnweight;
1437 
1438 	/*
1439 	 * occassionally leave the page alone
1440 	 */
1441 	if ((dnw & 0x01F0) == 0 ||
1442 	    m->queue == PQ_INACTIVE ||
1443 	    m->queue - m->pc == PQ_CACHE
1444 	) {
1445 		if (m->act_count >= ACT_INIT)
1446 			--m->act_count;
1447 		return;
1448 	}
1449 
1450 	if (m->dirty == 0)
1451 		vm_page_test_dirty(m);
1452 
1453 	if (m->dirty || (dnw & 0x0070) == 0) {
1454 		/*
1455 		 * Deactivate the page 3 times out of 32.
1456 		 */
1457 		head = 0;
1458 	} else {
1459 		/*
1460 		 * Cache the page 28 times out of every 32.  Note that
1461 		 * the page is deactivated instead of cached, but placed
1462 		 * at the head of the queue instead of the tail.
1463 		 */
1464 		head = 1;
1465 	}
1466 	_vm_page_deactivate(m, head);
1467 }
1468 
1469 /*
1470  * Grab a page, waiting until we are waken up due to the page
1471  * changing state.  We keep on waiting, if the page continues
1472  * to be in the object.  If the page doesn't exist, allocate it.
1473  *
1474  * This routine may block.
1475  */
1476 vm_page_t
1477 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1478 {
1479 	vm_page_t m;
1480 	int s, generation;
1481 
1482 	GIANT_REQUIRED;
1483 retrylookup:
1484 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1485 		vm_page_lock_queues();
1486 		if (m->busy || (m->flags & PG_BUSY)) {
1487 			generation = object->generation;
1488 
1489 			s = splvm();
1490 			while ((object->generation == generation) &&
1491 					(m->busy || (m->flags & PG_BUSY))) {
1492 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1493 				msleep(m, &vm_page_queue_mtx, PVM, "pgrbwt", 0);
1494 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1495 					vm_page_unlock_queues();
1496 					splx(s);
1497 					return NULL;
1498 				}
1499 			}
1500 			vm_page_unlock_queues();
1501 			splx(s);
1502 			goto retrylookup;
1503 		} else {
1504 			if (allocflags & VM_ALLOC_WIRED)
1505 				vm_page_wire(m);
1506 			vm_page_busy(m);
1507 			vm_page_unlock_queues();
1508 			return m;
1509 		}
1510 	}
1511 
1512 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1513 	if (m == NULL) {
1514 		VM_WAIT;
1515 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1516 			return NULL;
1517 		goto retrylookup;
1518 	}
1519 
1520 	return m;
1521 }
1522 
1523 /*
1524  * Mapping function for valid bits or for dirty bits in
1525  * a page.  May not block.
1526  *
1527  * Inputs are required to range within a page.
1528  */
1529 __inline int
1530 vm_page_bits(int base, int size)
1531 {
1532 	int first_bit;
1533 	int last_bit;
1534 
1535 	KASSERT(
1536 	    base + size <= PAGE_SIZE,
1537 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1538 	);
1539 
1540 	if (size == 0)		/* handle degenerate case */
1541 		return (0);
1542 
1543 	first_bit = base >> DEV_BSHIFT;
1544 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1545 
1546 	return ((2 << last_bit) - (1 << first_bit));
1547 }
1548 
1549 /*
1550  *	vm_page_set_validclean:
1551  *
1552  *	Sets portions of a page valid and clean.  The arguments are expected
1553  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1554  *	of any partial chunks touched by the range.  The invalid portion of
1555  *	such chunks will be zero'd.
1556  *
1557  *	This routine may not block.
1558  *
1559  *	(base + size) must be less then or equal to PAGE_SIZE.
1560  */
1561 void
1562 vm_page_set_validclean(vm_page_t m, int base, int size)
1563 {
1564 	int pagebits;
1565 	int frag;
1566 	int endoff;
1567 
1568 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1569 	if (size == 0)	/* handle degenerate case */
1570 		return;
1571 
1572 	/*
1573 	 * If the base is not DEV_BSIZE aligned and the valid
1574 	 * bit is clear, we have to zero out a portion of the
1575 	 * first block.
1576 	 */
1577 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1578 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1579 		pmap_zero_page_area(m, frag, base - frag);
1580 
1581 	/*
1582 	 * If the ending offset is not DEV_BSIZE aligned and the
1583 	 * valid bit is clear, we have to zero out a portion of
1584 	 * the last block.
1585 	 */
1586 	endoff = base + size;
1587 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1588 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1589 		pmap_zero_page_area(m, endoff,
1590 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1591 
1592 	/*
1593 	 * Set valid, clear dirty bits.  If validating the entire
1594 	 * page we can safely clear the pmap modify bit.  We also
1595 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1596 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1597 	 * be set again.
1598 	 *
1599 	 * We set valid bits inclusive of any overlap, but we can only
1600 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1601 	 * the range.
1602 	 */
1603 	pagebits = vm_page_bits(base, size);
1604 	m->valid |= pagebits;
1605 #if 0	/* NOT YET */
1606 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1607 		frag = DEV_BSIZE - frag;
1608 		base += frag;
1609 		size -= frag;
1610 		if (size < 0)
1611 			size = 0;
1612 	}
1613 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1614 #endif
1615 	m->dirty &= ~pagebits;
1616 	if (base == 0 && size == PAGE_SIZE) {
1617 		pmap_clear_modify(m);
1618 		vm_page_flag_clear(m, PG_NOSYNC);
1619 	}
1620 }
1621 
1622 #if 0
1623 
1624 void
1625 vm_page_set_dirty(vm_page_t m, int base, int size)
1626 {
1627 	m->dirty |= vm_page_bits(base, size);
1628 }
1629 
1630 #endif
1631 
1632 void
1633 vm_page_clear_dirty(vm_page_t m, int base, int size)
1634 {
1635 	GIANT_REQUIRED;
1636 	m->dirty &= ~vm_page_bits(base, size);
1637 }
1638 
1639 /*
1640  *	vm_page_set_invalid:
1641  *
1642  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1643  *	valid and dirty bits for the effected areas are cleared.
1644  *
1645  *	May not block.
1646  */
1647 void
1648 vm_page_set_invalid(vm_page_t m, int base, int size)
1649 {
1650 	int bits;
1651 
1652 	GIANT_REQUIRED;
1653 	bits = vm_page_bits(base, size);
1654 	m->valid &= ~bits;
1655 	m->dirty &= ~bits;
1656 	m->object->generation++;
1657 }
1658 
1659 /*
1660  * vm_page_zero_invalid()
1661  *
1662  *	The kernel assumes that the invalid portions of a page contain
1663  *	garbage, but such pages can be mapped into memory by user code.
1664  *	When this occurs, we must zero out the non-valid portions of the
1665  *	page so user code sees what it expects.
1666  *
1667  *	Pages are most often semi-valid when the end of a file is mapped
1668  *	into memory and the file's size is not page aligned.
1669  */
1670 void
1671 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1672 {
1673 	int b;
1674 	int i;
1675 
1676 	/*
1677 	 * Scan the valid bits looking for invalid sections that
1678 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1679 	 * valid bit may be set ) have already been zerod by
1680 	 * vm_page_set_validclean().
1681 	 */
1682 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1683 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1684 		    (m->valid & (1 << i))
1685 		) {
1686 			if (i > b) {
1687 				pmap_zero_page_area(m,
1688 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1689 			}
1690 			b = i + 1;
1691 		}
1692 	}
1693 
1694 	/*
1695 	 * setvalid is TRUE when we can safely set the zero'd areas
1696 	 * as being valid.  We can do this if there are no cache consistancy
1697 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1698 	 */
1699 	if (setvalid)
1700 		m->valid = VM_PAGE_BITS_ALL;
1701 }
1702 
1703 /*
1704  *	vm_page_is_valid:
1705  *
1706  *	Is (partial) page valid?  Note that the case where size == 0
1707  *	will return FALSE in the degenerate case where the page is
1708  *	entirely invalid, and TRUE otherwise.
1709  *
1710  *	May not block.
1711  */
1712 int
1713 vm_page_is_valid(vm_page_t m, int base, int size)
1714 {
1715 	int bits = vm_page_bits(base, size);
1716 
1717 	if (m->valid && ((m->valid & bits) == bits))
1718 		return 1;
1719 	else
1720 		return 0;
1721 }
1722 
1723 /*
1724  * update dirty bits from pmap/mmu.  May not block.
1725  */
1726 void
1727 vm_page_test_dirty(vm_page_t m)
1728 {
1729 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1730 		vm_page_dirty(m);
1731 	}
1732 }
1733 
1734 int so_zerocp_fullpage = 0;
1735 
1736 void
1737 vm_page_cowfault(vm_page_t m)
1738 {
1739 	vm_page_t mnew;
1740 	vm_object_t object;
1741 	vm_pindex_t pindex;
1742 
1743 	object = m->object;
1744 	pindex = m->pindex;
1745 	vm_page_busy(m);
1746 
1747  retry_alloc:
1748 	vm_page_remove(m);
1749 	/*
1750 	 * An interrupt allocation is requested because the page
1751 	 * queues lock is held.
1752 	 */
1753 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_INTERRUPT);
1754 	if (mnew == NULL) {
1755 		vm_page_insert(m, object, pindex);
1756 		vm_page_unlock_queues();
1757 		VM_WAIT;
1758 		vm_page_lock_queues();
1759 		goto retry_alloc;
1760 	}
1761 
1762 	if (m->cow == 0) {
1763 		/*
1764 		 * check to see if we raced with an xmit complete when
1765 		 * waiting to allocate a page.  If so, put things back
1766 		 * the way they were
1767 		 */
1768 		vm_page_busy(mnew);
1769 		vm_page_free(mnew);
1770 		vm_page_insert(m, object, pindex);
1771 	} else { /* clear COW & copy page */
1772 		if (so_zerocp_fullpage) {
1773 			mnew->valid = VM_PAGE_BITS_ALL;
1774 		} else {
1775 			vm_page_copy(m, mnew);
1776 		}
1777 		vm_page_dirty(mnew);
1778 		vm_page_flag_clear(mnew, PG_BUSY);
1779 	}
1780 }
1781 
1782 void
1783 vm_page_cowclear(vm_page_t m)
1784 {
1785 
1786 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1787 	if (m->cow) {
1788 		m->cow--;
1789 		/*
1790 		 * let vm_fault add back write permission  lazily
1791 		 */
1792 	}
1793 	/*
1794 	 *  sf_buf_free() will free the page, so we needn't do it here
1795 	 */
1796 }
1797 
1798 void
1799 vm_page_cowsetup(vm_page_t m)
1800 {
1801 
1802 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1803 	m->cow++;
1804 	pmap_page_protect(m, VM_PROT_READ);
1805 }
1806 
1807 #include "opt_ddb.h"
1808 #ifdef DDB
1809 #include <sys/kernel.h>
1810 
1811 #include <ddb/ddb.h>
1812 
1813 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1814 {
1815 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1816 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1817 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1818 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1819 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1820 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1821 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1822 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1823 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1824 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1825 }
1826 
1827 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1828 {
1829 	int i;
1830 	db_printf("PQ_FREE:");
1831 	for (i = 0; i < PQ_L2_SIZE; i++) {
1832 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1833 	}
1834 	db_printf("\n");
1835 
1836 	db_printf("PQ_CACHE:");
1837 	for (i = 0; i < PQ_L2_SIZE; i++) {
1838 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1839 	}
1840 	db_printf("\n");
1841 
1842 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1843 		vm_page_queues[PQ_ACTIVE].lcnt,
1844 		vm_page_queues[PQ_INACTIVE].lcnt);
1845 }
1846 #endif /* DDB */
1847