1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * The Mach Operating System project at Carnegie-Mellon University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 34 */ 35 36 /*- 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * GENERAL RULES ON VM_PAGE MANIPULATION 65 * 66 * - A page queue lock is required when adding or removing a page from a 67 * page queue (vm_pagequeues[]), regardless of other locks or the 68 * busy state of a page. 69 * 70 * * In general, no thread besides the page daemon can acquire or 71 * hold more than one page queue lock at a time. 72 * 73 * * The page daemon can acquire and hold any pair of page queue 74 * locks in any order. 75 * 76 * - The object lock is required when inserting or removing 77 * pages from an object (vm_page_insert() or vm_page_remove()). 78 * 79 */ 80 81 /* 82 * Resident memory management module. 83 */ 84 85 #include <sys/cdefs.h> 86 __FBSDID("$FreeBSD$"); 87 88 #include "opt_vm.h" 89 90 #include <sys/param.h> 91 #include <sys/systm.h> 92 #include <sys/lock.h> 93 #include <sys/kernel.h> 94 #include <sys/limits.h> 95 #include <sys/malloc.h> 96 #include <sys/msgbuf.h> 97 #include <sys/mutex.h> 98 #include <sys/proc.h> 99 #include <sys/rwlock.h> 100 #include <sys/sysctl.h> 101 #include <sys/vmmeter.h> 102 #include <sys/vnode.h> 103 104 #include <vm/vm.h> 105 #include <vm/pmap.h> 106 #include <vm/vm_param.h> 107 #include <vm/vm_kern.h> 108 #include <vm/vm_object.h> 109 #include <vm/vm_page.h> 110 #include <vm/vm_pageout.h> 111 #include <vm/vm_pager.h> 112 #include <vm/vm_phys.h> 113 #include <vm/vm_radix.h> 114 #include <vm/vm_reserv.h> 115 #include <vm/vm_extern.h> 116 #include <vm/uma.h> 117 #include <vm/uma_int.h> 118 119 #include <machine/md_var.h> 120 121 /* 122 * Associated with page of user-allocatable memory is a 123 * page structure. 124 */ 125 126 struct vm_pagequeue vm_pagequeues[PQ_COUNT] = { 127 [PQ_INACTIVE] = { 128 .pq_pl = TAILQ_HEAD_INITIALIZER( 129 vm_pagequeues[PQ_INACTIVE].pq_pl), 130 .pq_cnt = &cnt.v_inactive_count, 131 .pq_name = "vm inactive pagequeue" 132 }, 133 [PQ_ACTIVE] = { 134 .pq_pl = TAILQ_HEAD_INITIALIZER( 135 vm_pagequeues[PQ_ACTIVE].pq_pl), 136 .pq_cnt = &cnt.v_active_count, 137 .pq_name = "vm active pagequeue" 138 } 139 }; 140 struct mtx_padalign vm_page_queue_free_mtx; 141 142 struct mtx_padalign pa_lock[PA_LOCK_COUNT]; 143 144 vm_page_t vm_page_array; 145 long vm_page_array_size; 146 long first_page; 147 int vm_page_zero_count; 148 149 static int boot_pages = UMA_BOOT_PAGES; 150 TUNABLE_INT("vm.boot_pages", &boot_pages); 151 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0, 152 "number of pages allocated for bootstrapping the VM system"); 153 154 static int pa_tryrelock_restart; 155 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD, 156 &pa_tryrelock_restart, 0, "Number of tryrelock restarts"); 157 158 static uma_zone_t fakepg_zone; 159 160 static struct vnode *vm_page_alloc_init(vm_page_t m); 161 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 162 static void vm_page_enqueue(int queue, vm_page_t m); 163 static void vm_page_init_fakepg(void *dummy); 164 static void vm_page_insert_after(vm_page_t m, vm_object_t object, 165 vm_pindex_t pindex, vm_page_t mpred); 166 167 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL); 168 169 static void 170 vm_page_init_fakepg(void *dummy) 171 { 172 173 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 174 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 175 } 176 177 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 178 #if PAGE_SIZE == 32768 179 #ifdef CTASSERT 180 CTASSERT(sizeof(u_long) >= 8); 181 #endif 182 #endif 183 184 /* 185 * Try to acquire a physical address lock while a pmap is locked. If we 186 * fail to trylock we unlock and lock the pmap directly and cache the 187 * locked pa in *locked. The caller should then restart their loop in case 188 * the virtual to physical mapping has changed. 189 */ 190 int 191 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked) 192 { 193 vm_paddr_t lockpa; 194 195 lockpa = *locked; 196 *locked = pa; 197 if (lockpa) { 198 PA_LOCK_ASSERT(lockpa, MA_OWNED); 199 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa)) 200 return (0); 201 PA_UNLOCK(lockpa); 202 } 203 if (PA_TRYLOCK(pa)) 204 return (0); 205 PMAP_UNLOCK(pmap); 206 atomic_add_int(&pa_tryrelock_restart, 1); 207 PA_LOCK(pa); 208 PMAP_LOCK(pmap); 209 return (EAGAIN); 210 } 211 212 /* 213 * vm_set_page_size: 214 * 215 * Sets the page size, perhaps based upon the memory 216 * size. Must be called before any use of page-size 217 * dependent functions. 218 */ 219 void 220 vm_set_page_size(void) 221 { 222 if (cnt.v_page_size == 0) 223 cnt.v_page_size = PAGE_SIZE; 224 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 225 panic("vm_set_page_size: page size not a power of two"); 226 } 227 228 /* 229 * vm_page_blacklist_lookup: 230 * 231 * See if a physical address in this page has been listed 232 * in the blacklist tunable. Entries in the tunable are 233 * separated by spaces or commas. If an invalid integer is 234 * encountered then the rest of the string is skipped. 235 */ 236 static int 237 vm_page_blacklist_lookup(char *list, vm_paddr_t pa) 238 { 239 vm_paddr_t bad; 240 char *cp, *pos; 241 242 for (pos = list; *pos != '\0'; pos = cp) { 243 bad = strtoq(pos, &cp, 0); 244 if (*cp != '\0') { 245 if (*cp == ' ' || *cp == ',') { 246 cp++; 247 if (cp == pos) 248 continue; 249 } else 250 break; 251 } 252 if (pa == trunc_page(bad)) 253 return (1); 254 } 255 return (0); 256 } 257 258 /* 259 * vm_page_startup: 260 * 261 * Initializes the resident memory module. 262 * 263 * Allocates memory for the page cells, and 264 * for the object/offset-to-page hash table headers. 265 * Each page cell is initialized and placed on the free list. 266 */ 267 vm_offset_t 268 vm_page_startup(vm_offset_t vaddr) 269 { 270 vm_offset_t mapped; 271 vm_paddr_t page_range; 272 vm_paddr_t new_end; 273 int i; 274 vm_paddr_t pa; 275 vm_paddr_t last_pa; 276 char *list; 277 278 /* the biggest memory array is the second group of pages */ 279 vm_paddr_t end; 280 vm_paddr_t biggestsize; 281 vm_paddr_t low_water, high_water; 282 int biggestone; 283 284 biggestsize = 0; 285 biggestone = 0; 286 vaddr = round_page(vaddr); 287 288 for (i = 0; phys_avail[i + 1]; i += 2) { 289 phys_avail[i] = round_page(phys_avail[i]); 290 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 291 } 292 293 low_water = phys_avail[0]; 294 high_water = phys_avail[1]; 295 296 for (i = 0; phys_avail[i + 1]; i += 2) { 297 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 298 299 if (size > biggestsize) { 300 biggestone = i; 301 biggestsize = size; 302 } 303 if (phys_avail[i] < low_water) 304 low_water = phys_avail[i]; 305 if (phys_avail[i + 1] > high_water) 306 high_water = phys_avail[i + 1]; 307 } 308 309 #ifdef XEN 310 low_water = 0; 311 #endif 312 313 end = phys_avail[biggestone+1]; 314 315 /* 316 * Initialize the page and queue locks. 317 */ 318 mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF); 319 for (i = 0; i < PA_LOCK_COUNT; i++) 320 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 321 for (i = 0; i < PQ_COUNT; i++) 322 vm_pagequeue_init_lock(&vm_pagequeues[i]); 323 324 /* 325 * Allocate memory for use when boot strapping the kernel memory 326 * allocator. 327 */ 328 new_end = end - (boot_pages * UMA_SLAB_SIZE); 329 new_end = trunc_page(new_end); 330 mapped = pmap_map(&vaddr, new_end, end, 331 VM_PROT_READ | VM_PROT_WRITE); 332 bzero((void *)mapped, end - new_end); 333 uma_startup((void *)mapped, boot_pages); 334 335 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \ 336 defined(__mips__) 337 /* 338 * Allocate a bitmap to indicate that a random physical page 339 * needs to be included in a minidump. 340 * 341 * The amd64 port needs this to indicate which direct map pages 342 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 343 * 344 * However, i386 still needs this workspace internally within the 345 * minidump code. In theory, they are not needed on i386, but are 346 * included should the sf_buf code decide to use them. 347 */ 348 last_pa = 0; 349 for (i = 0; dump_avail[i + 1] != 0; i += 2) 350 if (dump_avail[i + 1] > last_pa) 351 last_pa = dump_avail[i + 1]; 352 page_range = last_pa / PAGE_SIZE; 353 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 354 new_end -= vm_page_dump_size; 355 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 356 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 357 bzero((void *)vm_page_dump, vm_page_dump_size); 358 #endif 359 #ifdef __amd64__ 360 /* 361 * Request that the physical pages underlying the message buffer be 362 * included in a crash dump. Since the message buffer is accessed 363 * through the direct map, they are not automatically included. 364 */ 365 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 366 last_pa = pa + round_page(msgbufsize); 367 while (pa < last_pa) { 368 dump_add_page(pa); 369 pa += PAGE_SIZE; 370 } 371 #endif 372 /* 373 * Compute the number of pages of memory that will be available for 374 * use (taking into account the overhead of a page structure per 375 * page). 376 */ 377 first_page = low_water / PAGE_SIZE; 378 #ifdef VM_PHYSSEG_SPARSE 379 page_range = 0; 380 for (i = 0; phys_avail[i + 1] != 0; i += 2) 381 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 382 #elif defined(VM_PHYSSEG_DENSE) 383 page_range = high_water / PAGE_SIZE - first_page; 384 #else 385 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 386 #endif 387 end = new_end; 388 389 /* 390 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 391 */ 392 vaddr += PAGE_SIZE; 393 394 /* 395 * Initialize the mem entry structures now, and put them in the free 396 * queue. 397 */ 398 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 399 mapped = pmap_map(&vaddr, new_end, end, 400 VM_PROT_READ | VM_PROT_WRITE); 401 vm_page_array = (vm_page_t) mapped; 402 #if VM_NRESERVLEVEL > 0 403 /* 404 * Allocate memory for the reservation management system's data 405 * structures. 406 */ 407 new_end = vm_reserv_startup(&vaddr, new_end, high_water); 408 #endif 409 #if defined(__amd64__) || defined(__mips__) 410 /* 411 * pmap_map on amd64 and mips can come out of the direct-map, not kvm 412 * like i386, so the pages must be tracked for a crashdump to include 413 * this data. This includes the vm_page_array and the early UMA 414 * bootstrap pages. 415 */ 416 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 417 dump_add_page(pa); 418 #endif 419 phys_avail[biggestone + 1] = new_end; 420 421 /* 422 * Clear all of the page structures 423 */ 424 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 425 for (i = 0; i < page_range; i++) 426 vm_page_array[i].order = VM_NFREEORDER; 427 vm_page_array_size = page_range; 428 429 /* 430 * Initialize the physical memory allocator. 431 */ 432 vm_phys_init(); 433 434 /* 435 * Add every available physical page that is not blacklisted to 436 * the free lists. 437 */ 438 cnt.v_page_count = 0; 439 cnt.v_free_count = 0; 440 list = getenv("vm.blacklist"); 441 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 442 pa = phys_avail[i]; 443 last_pa = phys_avail[i + 1]; 444 while (pa < last_pa) { 445 if (list != NULL && 446 vm_page_blacklist_lookup(list, pa)) 447 printf("Skipping page with pa 0x%jx\n", 448 (uintmax_t)pa); 449 else 450 vm_phys_add_page(pa); 451 pa += PAGE_SIZE; 452 } 453 } 454 freeenv(list); 455 #if VM_NRESERVLEVEL > 0 456 /* 457 * Initialize the reservation management system. 458 */ 459 vm_reserv_init(); 460 #endif 461 return (vaddr); 462 } 463 464 void 465 vm_page_reference(vm_page_t m) 466 { 467 468 vm_page_aflag_set(m, PGA_REFERENCED); 469 } 470 471 void 472 vm_page_busy(vm_page_t m) 473 { 474 475 VM_OBJECT_ASSERT_WLOCKED(m->object); 476 KASSERT((m->oflags & VPO_BUSY) == 0, 477 ("vm_page_busy: page already busy!!!")); 478 m->oflags |= VPO_BUSY; 479 } 480 481 /* 482 * vm_page_flash: 483 * 484 * wakeup anyone waiting for the page. 485 */ 486 void 487 vm_page_flash(vm_page_t m) 488 { 489 490 VM_OBJECT_ASSERT_WLOCKED(m->object); 491 if (m->oflags & VPO_WANTED) { 492 m->oflags &= ~VPO_WANTED; 493 wakeup(m); 494 } 495 } 496 497 /* 498 * vm_page_wakeup: 499 * 500 * clear the VPO_BUSY flag and wakeup anyone waiting for the 501 * page. 502 * 503 */ 504 void 505 vm_page_wakeup(vm_page_t m) 506 { 507 508 VM_OBJECT_ASSERT_WLOCKED(m->object); 509 KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!")); 510 m->oflags &= ~VPO_BUSY; 511 vm_page_flash(m); 512 } 513 514 void 515 vm_page_io_start(vm_page_t m) 516 { 517 518 VM_OBJECT_ASSERT_WLOCKED(m->object); 519 m->busy++; 520 } 521 522 void 523 vm_page_io_finish(vm_page_t m) 524 { 525 526 VM_OBJECT_ASSERT_WLOCKED(m->object); 527 KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m)); 528 m->busy--; 529 if (m->busy == 0) 530 vm_page_flash(m); 531 } 532 533 /* 534 * Keep page from being freed by the page daemon 535 * much of the same effect as wiring, except much lower 536 * overhead and should be used only for *very* temporary 537 * holding ("wiring"). 538 */ 539 void 540 vm_page_hold(vm_page_t mem) 541 { 542 543 vm_page_lock_assert(mem, MA_OWNED); 544 mem->hold_count++; 545 } 546 547 void 548 vm_page_unhold(vm_page_t mem) 549 { 550 551 vm_page_lock_assert(mem, MA_OWNED); 552 --mem->hold_count; 553 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 554 if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0) 555 vm_page_free_toq(mem); 556 } 557 558 /* 559 * vm_page_unhold_pages: 560 * 561 * Unhold each of the pages that is referenced by the given array. 562 */ 563 void 564 vm_page_unhold_pages(vm_page_t *ma, int count) 565 { 566 struct mtx *mtx, *new_mtx; 567 568 mtx = NULL; 569 for (; count != 0; count--) { 570 /* 571 * Avoid releasing and reacquiring the same page lock. 572 */ 573 new_mtx = vm_page_lockptr(*ma); 574 if (mtx != new_mtx) { 575 if (mtx != NULL) 576 mtx_unlock(mtx); 577 mtx = new_mtx; 578 mtx_lock(mtx); 579 } 580 vm_page_unhold(*ma); 581 ma++; 582 } 583 if (mtx != NULL) 584 mtx_unlock(mtx); 585 } 586 587 vm_page_t 588 PHYS_TO_VM_PAGE(vm_paddr_t pa) 589 { 590 vm_page_t m; 591 592 #ifdef VM_PHYSSEG_SPARSE 593 m = vm_phys_paddr_to_vm_page(pa); 594 if (m == NULL) 595 m = vm_phys_fictitious_to_vm_page(pa); 596 return (m); 597 #elif defined(VM_PHYSSEG_DENSE) 598 long pi; 599 600 pi = atop(pa); 601 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 602 m = &vm_page_array[pi - first_page]; 603 return (m); 604 } 605 return (vm_phys_fictitious_to_vm_page(pa)); 606 #else 607 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 608 #endif 609 } 610 611 /* 612 * vm_page_getfake: 613 * 614 * Create a fictitious page with the specified physical address and 615 * memory attribute. The memory attribute is the only the machine- 616 * dependent aspect of a fictitious page that must be initialized. 617 */ 618 vm_page_t 619 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 620 { 621 vm_page_t m; 622 623 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 624 vm_page_initfake(m, paddr, memattr); 625 return (m); 626 } 627 628 void 629 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 630 { 631 632 if ((m->flags & PG_FICTITIOUS) != 0) { 633 /* 634 * The page's memattr might have changed since the 635 * previous initialization. Update the pmap to the 636 * new memattr. 637 */ 638 goto memattr; 639 } 640 m->phys_addr = paddr; 641 m->queue = PQ_NONE; 642 /* Fictitious pages don't use "segind". */ 643 m->flags = PG_FICTITIOUS; 644 /* Fictitious pages don't use "order" or "pool". */ 645 m->oflags = VPO_BUSY | VPO_UNMANAGED; 646 m->wire_count = 1; 647 memattr: 648 pmap_page_set_memattr(m, memattr); 649 } 650 651 /* 652 * vm_page_putfake: 653 * 654 * Release a fictitious page. 655 */ 656 void 657 vm_page_putfake(vm_page_t m) 658 { 659 660 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 661 KASSERT((m->flags & PG_FICTITIOUS) != 0, 662 ("vm_page_putfake: bad page %p", m)); 663 uma_zfree(fakepg_zone, m); 664 } 665 666 /* 667 * vm_page_updatefake: 668 * 669 * Update the given fictitious page to the specified physical address and 670 * memory attribute. 671 */ 672 void 673 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 674 { 675 676 KASSERT((m->flags & PG_FICTITIOUS) != 0, 677 ("vm_page_updatefake: bad page %p", m)); 678 m->phys_addr = paddr; 679 pmap_page_set_memattr(m, memattr); 680 } 681 682 /* 683 * vm_page_free: 684 * 685 * Free a page. 686 */ 687 void 688 vm_page_free(vm_page_t m) 689 { 690 691 m->flags &= ~PG_ZERO; 692 vm_page_free_toq(m); 693 } 694 695 /* 696 * vm_page_free_zero: 697 * 698 * Free a page to the zerod-pages queue 699 */ 700 void 701 vm_page_free_zero(vm_page_t m) 702 { 703 704 m->flags |= PG_ZERO; 705 vm_page_free_toq(m); 706 } 707 708 /* 709 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES() 710 * array which is not the request page. 711 */ 712 void 713 vm_page_readahead_finish(vm_page_t m) 714 { 715 716 if (m->valid != 0) { 717 /* 718 * Since the page is not the requested page, whether 719 * it should be activated or deactivated is not 720 * obvious. Empirical results have shown that 721 * deactivating the page is usually the best choice, 722 * unless the page is wanted by another thread. 723 */ 724 if (m->oflags & VPO_WANTED) { 725 vm_page_lock(m); 726 vm_page_activate(m); 727 vm_page_unlock(m); 728 } else { 729 vm_page_lock(m); 730 vm_page_deactivate(m); 731 vm_page_unlock(m); 732 } 733 vm_page_wakeup(m); 734 } else { 735 /* 736 * Free the completely invalid page. Such page state 737 * occurs due to the short read operation which did 738 * not covered our page at all, or in case when a read 739 * error happens. 740 */ 741 vm_page_lock(m); 742 vm_page_free(m); 743 vm_page_unlock(m); 744 } 745 } 746 747 /* 748 * vm_page_sleep: 749 * 750 * Sleep and release the page lock. 751 * 752 * The object containing the given page must be locked. 753 */ 754 void 755 vm_page_sleep(vm_page_t m, const char *msg) 756 { 757 758 VM_OBJECT_ASSERT_WLOCKED(m->object); 759 if (mtx_owned(vm_page_lockptr(m))) 760 vm_page_unlock(m); 761 762 /* 763 * It's possible that while we sleep, the page will get 764 * unbusied and freed. If we are holding the object 765 * lock, we will assume we hold a reference to the object 766 * such that even if m->object changes, we can re-lock 767 * it. 768 */ 769 m->oflags |= VPO_WANTED; 770 VM_OBJECT_SLEEP(m->object, m, PVM, msg, 0); 771 } 772 773 /* 774 * vm_page_dirty_KBI: [ internal use only ] 775 * 776 * Set all bits in the page's dirty field. 777 * 778 * The object containing the specified page must be locked if the 779 * call is made from the machine-independent layer. 780 * 781 * See vm_page_clear_dirty_mask(). 782 * 783 * This function should only be called by vm_page_dirty(). 784 */ 785 void 786 vm_page_dirty_KBI(vm_page_t m) 787 { 788 789 /* These assertions refer to this operation by its public name. */ 790 KASSERT((m->flags & PG_CACHED) == 0, 791 ("vm_page_dirty: page in cache!")); 792 KASSERT(!VM_PAGE_IS_FREE(m), 793 ("vm_page_dirty: page is free!")); 794 KASSERT(m->valid == VM_PAGE_BITS_ALL, 795 ("vm_page_dirty: page is invalid!")); 796 m->dirty = VM_PAGE_BITS_ALL; 797 } 798 799 /* 800 * vm_page_insert: [ internal use only ] 801 * 802 * Inserts the given mem entry into the object and object list. 803 * 804 * The pagetables are not updated but will presumably fault the page 805 * in if necessary, or if a kernel page the caller will at some point 806 * enter the page into the kernel's pmap. We are not allowed to sleep 807 * here so we *can't* do this anyway. 808 * 809 * The object must be locked. 810 */ 811 void 812 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 813 { 814 vm_page_t mpred; 815 816 VM_OBJECT_ASSERT_WLOCKED(object); 817 mpred = vm_radix_lookup_le(&object->rtree, pindex); 818 vm_page_insert_after(m, object, pindex, mpred); 819 } 820 821 /* 822 * vm_page_insert_after: 823 * 824 * Inserts the page "m" into the specified object at offset "pindex". 825 * 826 * The page "mpred" must immediately precede the offset "pindex" within 827 * the specified object. 828 * 829 * The object must be locked. 830 */ 831 static void 832 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 833 vm_page_t mpred) 834 { 835 vm_page_t msucc; 836 837 VM_OBJECT_ASSERT_WLOCKED(object); 838 KASSERT(m->object == NULL, 839 ("vm_page_insert_after: page already inserted")); 840 if (mpred != NULL) { 841 KASSERT(mpred->object == object || 842 (mpred->flags & PG_SLAB) != 0, 843 ("vm_page_insert_after: object doesn't contain mpred")); 844 KASSERT(mpred->pindex < pindex, 845 ("vm_page_insert_after: mpred doesn't precede pindex")); 846 msucc = TAILQ_NEXT(mpred, listq); 847 } else 848 msucc = TAILQ_FIRST(&object->memq); 849 if (msucc != NULL) 850 KASSERT(msucc->pindex > pindex, 851 ("vm_page_insert_after: msucc doesn't succeed pindex")); 852 853 /* 854 * Record the object/offset pair in this page 855 */ 856 m->object = object; 857 m->pindex = pindex; 858 859 /* 860 * Now link into the object's ordered list of backed pages. 861 */ 862 if (mpred != NULL) 863 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 864 else 865 TAILQ_INSERT_HEAD(&object->memq, m, listq); 866 vm_radix_insert(&object->rtree, m); 867 868 /* 869 * Show that the object has one more resident page. 870 */ 871 object->resident_page_count++; 872 873 /* 874 * Hold the vnode until the last page is released. 875 */ 876 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 877 vhold(object->handle); 878 879 /* 880 * Since we are inserting a new and possibly dirty page, 881 * update the object's OBJ_MIGHTBEDIRTY flag. 882 */ 883 if (pmap_page_is_write_mapped(m)) 884 vm_object_set_writeable_dirty(object); 885 } 886 887 /* 888 * vm_page_remove: 889 * 890 * Removes the given mem entry from the object/offset-page 891 * table and the object page list, but do not invalidate/terminate 892 * the backing store. 893 * 894 * The underlying pmap entry (if any) is NOT removed here. 895 * 896 * The object must be locked. The page must be locked if it is managed. 897 */ 898 void 899 vm_page_remove(vm_page_t m) 900 { 901 vm_object_t object; 902 903 if ((m->oflags & VPO_UNMANAGED) == 0) 904 vm_page_lock_assert(m, MA_OWNED); 905 if ((object = m->object) == NULL) 906 return; 907 VM_OBJECT_ASSERT_WLOCKED(object); 908 if (m->oflags & VPO_BUSY) { 909 m->oflags &= ~VPO_BUSY; 910 vm_page_flash(m); 911 } 912 913 /* 914 * Now remove from the object's list of backed pages. 915 */ 916 vm_radix_remove(&object->rtree, m->pindex); 917 TAILQ_REMOVE(&object->memq, m, listq); 918 919 /* 920 * And show that the object has one fewer resident page. 921 */ 922 object->resident_page_count--; 923 924 /* 925 * The vnode may now be recycled. 926 */ 927 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 928 vdrop(object->handle); 929 930 m->object = NULL; 931 } 932 933 /* 934 * vm_page_lookup: 935 * 936 * Returns the page associated with the object/offset 937 * pair specified; if none is found, NULL is returned. 938 * 939 * The object must be locked. 940 */ 941 vm_page_t 942 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 943 { 944 945 VM_OBJECT_ASSERT_LOCKED(object); 946 return (vm_radix_lookup(&object->rtree, pindex)); 947 } 948 949 /* 950 * vm_page_find_least: 951 * 952 * Returns the page associated with the object with least pindex 953 * greater than or equal to the parameter pindex, or NULL. 954 * 955 * The object must be locked. 956 */ 957 vm_page_t 958 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 959 { 960 vm_page_t m; 961 962 VM_OBJECT_ASSERT_LOCKED(object); 963 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 964 m = vm_radix_lookup_ge(&object->rtree, pindex); 965 return (m); 966 } 967 968 /* 969 * Returns the given page's successor (by pindex) within the object if it is 970 * resident; if none is found, NULL is returned. 971 * 972 * The object must be locked. 973 */ 974 vm_page_t 975 vm_page_next(vm_page_t m) 976 { 977 vm_page_t next; 978 979 VM_OBJECT_ASSERT_WLOCKED(m->object); 980 if ((next = TAILQ_NEXT(m, listq)) != NULL && 981 next->pindex != m->pindex + 1) 982 next = NULL; 983 return (next); 984 } 985 986 /* 987 * Returns the given page's predecessor (by pindex) within the object if it is 988 * resident; if none is found, NULL is returned. 989 * 990 * The object must be locked. 991 */ 992 vm_page_t 993 vm_page_prev(vm_page_t m) 994 { 995 vm_page_t prev; 996 997 VM_OBJECT_ASSERT_WLOCKED(m->object); 998 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL && 999 prev->pindex != m->pindex - 1) 1000 prev = NULL; 1001 return (prev); 1002 } 1003 1004 /* 1005 * vm_page_rename: 1006 * 1007 * Move the given memory entry from its 1008 * current object to the specified target object/offset. 1009 * 1010 * Note: swap associated with the page must be invalidated by the move. We 1011 * have to do this for several reasons: (1) we aren't freeing the 1012 * page, (2) we are dirtying the page, (3) the VM system is probably 1013 * moving the page from object A to B, and will then later move 1014 * the backing store from A to B and we can't have a conflict. 1015 * 1016 * Note: we *always* dirty the page. It is necessary both for the 1017 * fact that we moved it, and because we may be invalidating 1018 * swap. If the page is on the cache, we have to deactivate it 1019 * or vm_page_dirty() will panic. Dirty pages are not allowed 1020 * on the cache. 1021 * 1022 * The objects must be locked. The page must be locked if it is managed. 1023 */ 1024 void 1025 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1026 { 1027 1028 vm_page_remove(m); 1029 vm_page_insert(m, new_object, new_pindex); 1030 vm_page_dirty(m); 1031 } 1032 1033 /* 1034 * Convert all of the given object's cached pages that have a 1035 * pindex within the given range into free pages. If the value 1036 * zero is given for "end", then the range's upper bound is 1037 * infinity. If the given object is backed by a vnode and it 1038 * transitions from having one or more cached pages to none, the 1039 * vnode's hold count is reduced. 1040 */ 1041 void 1042 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1043 { 1044 vm_page_t m; 1045 boolean_t empty; 1046 1047 mtx_lock(&vm_page_queue_free_mtx); 1048 if (__predict_false(vm_radix_is_empty(&object->cache))) { 1049 mtx_unlock(&vm_page_queue_free_mtx); 1050 return; 1051 } 1052 while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) { 1053 if (end != 0 && m->pindex >= end) 1054 break; 1055 vm_radix_remove(&object->cache, m->pindex); 1056 m->object = NULL; 1057 m->valid = 0; 1058 /* Clear PG_CACHED and set PG_FREE. */ 1059 m->flags ^= PG_CACHED | PG_FREE; 1060 KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE, 1061 ("vm_page_cache_free: page %p has inconsistent flags", m)); 1062 cnt.v_cache_count--; 1063 cnt.v_free_count++; 1064 } 1065 empty = vm_radix_is_empty(&object->cache); 1066 mtx_unlock(&vm_page_queue_free_mtx); 1067 if (object->type == OBJT_VNODE && empty) 1068 vdrop(object->handle); 1069 } 1070 1071 /* 1072 * Returns the cached page that is associated with the given 1073 * object and offset. If, however, none exists, returns NULL. 1074 * 1075 * The free page queue must be locked. 1076 */ 1077 static inline vm_page_t 1078 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex) 1079 { 1080 1081 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1082 return (vm_radix_lookup(&object->cache, pindex)); 1083 } 1084 1085 /* 1086 * Remove the given cached page from its containing object's 1087 * collection of cached pages. 1088 * 1089 * The free page queue must be locked. 1090 */ 1091 static void 1092 vm_page_cache_remove(vm_page_t m) 1093 { 1094 1095 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1096 KASSERT((m->flags & PG_CACHED) != 0, 1097 ("vm_page_cache_remove: page %p is not cached", m)); 1098 vm_radix_remove(&m->object->cache, m->pindex); 1099 m->object = NULL; 1100 cnt.v_cache_count--; 1101 } 1102 1103 /* 1104 * Transfer all of the cached pages with offset greater than or 1105 * equal to 'offidxstart' from the original object's cache to the 1106 * new object's cache. However, any cached pages with offset 1107 * greater than or equal to the new object's size are kept in the 1108 * original object. Initially, the new object's cache must be 1109 * empty. Offset 'offidxstart' in the original object must 1110 * correspond to offset zero in the new object. 1111 * 1112 * The new object must be locked. 1113 */ 1114 void 1115 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart, 1116 vm_object_t new_object) 1117 { 1118 vm_page_t m; 1119 1120 /* 1121 * Insertion into an object's collection of cached pages 1122 * requires the object to be locked. In contrast, removal does 1123 * not. 1124 */ 1125 VM_OBJECT_ASSERT_WLOCKED(new_object); 1126 KASSERT(vm_radix_is_empty(&new_object->cache), 1127 ("vm_page_cache_transfer: object %p has cached pages", 1128 new_object)); 1129 mtx_lock(&vm_page_queue_free_mtx); 1130 while ((m = vm_radix_lookup_ge(&orig_object->cache, 1131 offidxstart)) != NULL) { 1132 /* 1133 * Transfer all of the pages with offset greater than or 1134 * equal to 'offidxstart' from the original object's 1135 * cache to the new object's cache. 1136 */ 1137 if ((m->pindex - offidxstart) >= new_object->size) 1138 break; 1139 vm_radix_remove(&orig_object->cache, m->pindex); 1140 /* Update the page's object and offset. */ 1141 m->object = new_object; 1142 m->pindex -= offidxstart; 1143 vm_radix_insert(&new_object->cache, m); 1144 } 1145 mtx_unlock(&vm_page_queue_free_mtx); 1146 } 1147 1148 /* 1149 * Returns TRUE if a cached page is associated with the given object and 1150 * offset, and FALSE otherwise. 1151 * 1152 * The object must be locked. 1153 */ 1154 boolean_t 1155 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex) 1156 { 1157 vm_page_t m; 1158 1159 /* 1160 * Insertion into an object's collection of cached pages requires the 1161 * object to be locked. Therefore, if the object is locked and the 1162 * object's collection is empty, there is no need to acquire the free 1163 * page queues lock in order to prove that the specified page doesn't 1164 * exist. 1165 */ 1166 VM_OBJECT_ASSERT_WLOCKED(object); 1167 if (__predict_true(vm_object_cache_is_empty(object))) 1168 return (FALSE); 1169 mtx_lock(&vm_page_queue_free_mtx); 1170 m = vm_page_cache_lookup(object, pindex); 1171 mtx_unlock(&vm_page_queue_free_mtx); 1172 return (m != NULL); 1173 } 1174 1175 /* 1176 * vm_page_alloc: 1177 * 1178 * Allocate and return a page that is associated with the specified 1179 * object and offset pair. By default, this page has the flag VPO_BUSY 1180 * set. 1181 * 1182 * The caller must always specify an allocation class. 1183 * 1184 * allocation classes: 1185 * VM_ALLOC_NORMAL normal process request 1186 * VM_ALLOC_SYSTEM system *really* needs a page 1187 * VM_ALLOC_INTERRUPT interrupt time request 1188 * 1189 * optional allocation flags: 1190 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1191 * intends to allocate 1192 * VM_ALLOC_IFCACHED return page only if it is cached 1193 * VM_ALLOC_IFNOTCACHED return NULL, do not reactivate if the page 1194 * is cached 1195 * VM_ALLOC_NOBUSY do not set the flag VPO_BUSY on the page 1196 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1197 * VM_ALLOC_NOOBJ page is not associated with an object and 1198 * should not have the flag VPO_BUSY set 1199 * VM_ALLOC_WIRED wire the allocated page 1200 * VM_ALLOC_ZERO prefer a zeroed page 1201 * 1202 * This routine may not sleep. 1203 */ 1204 vm_page_t 1205 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1206 { 1207 struct vnode *vp = NULL; 1208 vm_object_t m_object; 1209 vm_page_t m, mpred; 1210 int flags, req_class; 1211 1212 mpred = 0; /* XXX: pacify gcc */ 1213 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0), 1214 ("vm_page_alloc: inconsistent object/req")); 1215 if (object != NULL) 1216 VM_OBJECT_ASSERT_WLOCKED(object); 1217 1218 req_class = req & VM_ALLOC_CLASS_MASK; 1219 1220 /* 1221 * The page daemon is allowed to dig deeper into the free page list. 1222 */ 1223 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1224 req_class = VM_ALLOC_SYSTEM; 1225 1226 if (object != NULL) { 1227 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1228 KASSERT(mpred == NULL || mpred->pindex != pindex, 1229 ("vm_page_alloc: pindex already allocated")); 1230 } 1231 mtx_lock(&vm_page_queue_free_mtx); 1232 if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved || 1233 (req_class == VM_ALLOC_SYSTEM && 1234 cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) || 1235 (req_class == VM_ALLOC_INTERRUPT && 1236 cnt.v_free_count + cnt.v_cache_count > 0)) { 1237 /* 1238 * Allocate from the free queue if the number of free pages 1239 * exceeds the minimum for the request class. 1240 */ 1241 if (object != NULL && 1242 (m = vm_page_cache_lookup(object, pindex)) != NULL) { 1243 if ((req & VM_ALLOC_IFNOTCACHED) != 0) { 1244 mtx_unlock(&vm_page_queue_free_mtx); 1245 return (NULL); 1246 } 1247 if (vm_phys_unfree_page(m)) 1248 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0); 1249 #if VM_NRESERVLEVEL > 0 1250 else if (!vm_reserv_reactivate_page(m)) 1251 #else 1252 else 1253 #endif 1254 panic("vm_page_alloc: cache page %p is missing" 1255 " from the free queue", m); 1256 } else if ((req & VM_ALLOC_IFCACHED) != 0) { 1257 mtx_unlock(&vm_page_queue_free_mtx); 1258 return (NULL); 1259 #if VM_NRESERVLEVEL > 0 1260 } else if (object == NULL || (object->flags & (OBJ_COLORED | 1261 OBJ_FICTITIOUS)) != OBJ_COLORED || (m = 1262 vm_reserv_alloc_page(object, pindex, mpred)) == NULL) { 1263 #else 1264 } else { 1265 #endif 1266 m = vm_phys_alloc_pages(object != NULL ? 1267 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 1268 #if VM_NRESERVLEVEL > 0 1269 if (m == NULL && vm_reserv_reclaim_inactive()) { 1270 m = vm_phys_alloc_pages(object != NULL ? 1271 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 1272 0); 1273 } 1274 #endif 1275 } 1276 } else { 1277 /* 1278 * Not allocatable, give up. 1279 */ 1280 mtx_unlock(&vm_page_queue_free_mtx); 1281 atomic_add_int(&vm_pageout_deficit, 1282 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 1283 pagedaemon_wakeup(); 1284 return (NULL); 1285 } 1286 1287 /* 1288 * At this point we had better have found a good page. 1289 */ 1290 KASSERT(m != NULL, ("vm_page_alloc: missing page")); 1291 KASSERT(m->queue == PQ_NONE, 1292 ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue)); 1293 KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m)); 1294 KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m)); 1295 KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m)); 1296 KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m)); 1297 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1298 ("vm_page_alloc: page %p has unexpected memattr %d", m, 1299 pmap_page_get_memattr(m))); 1300 if ((m->flags & PG_CACHED) != 0) { 1301 KASSERT((m->flags & PG_ZERO) == 0, 1302 ("vm_page_alloc: cached page %p is PG_ZERO", m)); 1303 KASSERT(m->valid != 0, 1304 ("vm_page_alloc: cached page %p is invalid", m)); 1305 if (m->object == object && m->pindex == pindex) 1306 cnt.v_reactivated++; 1307 else 1308 m->valid = 0; 1309 m_object = m->object; 1310 vm_page_cache_remove(m); 1311 if (m_object->type == OBJT_VNODE && 1312 vm_object_cache_is_empty(m_object)) 1313 vp = m_object->handle; 1314 } else { 1315 KASSERT(VM_PAGE_IS_FREE(m), 1316 ("vm_page_alloc: page %p is not free", m)); 1317 KASSERT(m->valid == 0, 1318 ("vm_page_alloc: free page %p is valid", m)); 1319 cnt.v_free_count--; 1320 } 1321 1322 /* 1323 * Only the PG_ZERO flag is inherited. The PG_CACHED or PG_FREE flag 1324 * must be cleared before the free page queues lock is released. 1325 */ 1326 flags = 0; 1327 if (m->flags & PG_ZERO) { 1328 vm_page_zero_count--; 1329 if (req & VM_ALLOC_ZERO) 1330 flags = PG_ZERO; 1331 } 1332 if (req & VM_ALLOC_NODUMP) 1333 flags |= PG_NODUMP; 1334 m->flags = flags; 1335 mtx_unlock(&vm_page_queue_free_mtx); 1336 m->aflags = 0; 1337 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 1338 VPO_UNMANAGED : 0; 1339 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0) 1340 m->oflags |= VPO_BUSY; 1341 if (req & VM_ALLOC_WIRED) { 1342 /* 1343 * The page lock is not required for wiring a page until that 1344 * page is inserted into the object. 1345 */ 1346 atomic_add_int(&cnt.v_wire_count, 1); 1347 m->wire_count = 1; 1348 } 1349 m->act_count = 0; 1350 1351 if (object != NULL) { 1352 /* Ignore device objects; the pager sets "memattr" for them. */ 1353 if (object->memattr != VM_MEMATTR_DEFAULT && 1354 (object->flags & OBJ_FICTITIOUS) == 0) 1355 pmap_page_set_memattr(m, object->memattr); 1356 vm_page_insert_after(m, object, pindex, mpred); 1357 } else 1358 m->pindex = pindex; 1359 1360 /* 1361 * The following call to vdrop() must come after the above call 1362 * to vm_page_insert() in case both affect the same object and 1363 * vnode. Otherwise, the affected vnode's hold count could 1364 * temporarily become zero. 1365 */ 1366 if (vp != NULL) 1367 vdrop(vp); 1368 1369 /* 1370 * Don't wakeup too often - wakeup the pageout daemon when 1371 * we would be nearly out of memory. 1372 */ 1373 if (vm_paging_needed()) 1374 pagedaemon_wakeup(); 1375 1376 return (m); 1377 } 1378 1379 /* 1380 * vm_page_alloc_contig: 1381 * 1382 * Allocate a contiguous set of physical pages of the given size "npages" 1383 * from the free lists. All of the physical pages must be at or above 1384 * the given physical address "low" and below the given physical address 1385 * "high". The given value "alignment" determines the alignment of the 1386 * first physical page in the set. If the given value "boundary" is 1387 * non-zero, then the set of physical pages cannot cross any physical 1388 * address boundary that is a multiple of that value. Both "alignment" 1389 * and "boundary" must be a power of two. 1390 * 1391 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 1392 * then the memory attribute setting for the physical pages is configured 1393 * to the object's memory attribute setting. Otherwise, the memory 1394 * attribute setting for the physical pages is configured to "memattr", 1395 * overriding the object's memory attribute setting. However, if the 1396 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 1397 * memory attribute setting for the physical pages cannot be configured 1398 * to VM_MEMATTR_DEFAULT. 1399 * 1400 * The caller must always specify an allocation class. 1401 * 1402 * allocation classes: 1403 * VM_ALLOC_NORMAL normal process request 1404 * VM_ALLOC_SYSTEM system *really* needs a page 1405 * VM_ALLOC_INTERRUPT interrupt time request 1406 * 1407 * optional allocation flags: 1408 * VM_ALLOC_NOBUSY do not set the flag VPO_BUSY on the page 1409 * VM_ALLOC_NOOBJ page is not associated with an object and 1410 * should not have the flag VPO_BUSY set 1411 * VM_ALLOC_WIRED wire the allocated page 1412 * VM_ALLOC_ZERO prefer a zeroed page 1413 * 1414 * This routine may not sleep. 1415 */ 1416 vm_page_t 1417 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 1418 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1419 vm_paddr_t boundary, vm_memattr_t memattr) 1420 { 1421 struct vnode *drop; 1422 vm_page_t deferred_vdrop_list, m, m_ret; 1423 u_int flags, oflags; 1424 int req_class; 1425 1426 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0), 1427 ("vm_page_alloc_contig: inconsistent object/req")); 1428 if (object != NULL) { 1429 VM_OBJECT_ASSERT_WLOCKED(object); 1430 KASSERT(object->type == OBJT_PHYS, 1431 ("vm_page_alloc_contig: object %p isn't OBJT_PHYS", 1432 object)); 1433 } 1434 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 1435 req_class = req & VM_ALLOC_CLASS_MASK; 1436 1437 /* 1438 * The page daemon is allowed to dig deeper into the free page list. 1439 */ 1440 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1441 req_class = VM_ALLOC_SYSTEM; 1442 1443 deferred_vdrop_list = NULL; 1444 mtx_lock(&vm_page_queue_free_mtx); 1445 if (cnt.v_free_count + cnt.v_cache_count >= npages + 1446 cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM && 1447 cnt.v_free_count + cnt.v_cache_count >= npages + 1448 cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT && 1449 cnt.v_free_count + cnt.v_cache_count >= npages)) { 1450 #if VM_NRESERVLEVEL > 0 1451 retry: 1452 if (object == NULL || (object->flags & OBJ_COLORED) == 0 || 1453 (m_ret = vm_reserv_alloc_contig(object, pindex, npages, 1454 low, high, alignment, boundary)) == NULL) 1455 #endif 1456 m_ret = vm_phys_alloc_contig(npages, low, high, 1457 alignment, boundary); 1458 } else { 1459 mtx_unlock(&vm_page_queue_free_mtx); 1460 atomic_add_int(&vm_pageout_deficit, npages); 1461 pagedaemon_wakeup(); 1462 return (NULL); 1463 } 1464 if (m_ret != NULL) 1465 for (m = m_ret; m < &m_ret[npages]; m++) { 1466 drop = vm_page_alloc_init(m); 1467 if (drop != NULL) { 1468 /* 1469 * Enqueue the vnode for deferred vdrop(). 1470 * 1471 * Once the pages are removed from the free 1472 * page list, "pageq" can be safely abused to 1473 * construct a short-lived list of vnodes. 1474 */ 1475 m->pageq.tqe_prev = (void *)drop; 1476 m->pageq.tqe_next = deferred_vdrop_list; 1477 deferred_vdrop_list = m; 1478 } 1479 } 1480 else { 1481 #if VM_NRESERVLEVEL > 0 1482 if (vm_reserv_reclaim_contig(npages, low, high, alignment, 1483 boundary)) 1484 goto retry; 1485 #endif 1486 } 1487 mtx_unlock(&vm_page_queue_free_mtx); 1488 if (m_ret == NULL) 1489 return (NULL); 1490 1491 /* 1492 * Initialize the pages. Only the PG_ZERO flag is inherited. 1493 */ 1494 flags = 0; 1495 if ((req & VM_ALLOC_ZERO) != 0) 1496 flags = PG_ZERO; 1497 if ((req & VM_ALLOC_NODUMP) != 0) 1498 flags |= PG_NODUMP; 1499 if ((req & VM_ALLOC_WIRED) != 0) 1500 atomic_add_int(&cnt.v_wire_count, npages); 1501 oflags = VPO_UNMANAGED; 1502 if (object != NULL) { 1503 if ((req & VM_ALLOC_NOBUSY) == 0) 1504 oflags |= VPO_BUSY; 1505 if (object->memattr != VM_MEMATTR_DEFAULT && 1506 memattr == VM_MEMATTR_DEFAULT) 1507 memattr = object->memattr; 1508 } 1509 for (m = m_ret; m < &m_ret[npages]; m++) { 1510 m->aflags = 0; 1511 m->flags = (m->flags | PG_NODUMP) & flags; 1512 if ((req & VM_ALLOC_WIRED) != 0) 1513 m->wire_count = 1; 1514 /* Unmanaged pages don't use "act_count". */ 1515 m->oflags = oflags; 1516 if (memattr != VM_MEMATTR_DEFAULT) 1517 pmap_page_set_memattr(m, memattr); 1518 if (object != NULL) 1519 vm_page_insert(m, object, pindex); 1520 else 1521 m->pindex = pindex; 1522 pindex++; 1523 } 1524 while (deferred_vdrop_list != NULL) { 1525 vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev); 1526 deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next; 1527 } 1528 if (vm_paging_needed()) 1529 pagedaemon_wakeup(); 1530 return (m_ret); 1531 } 1532 1533 /* 1534 * Initialize a page that has been freshly dequeued from a freelist. 1535 * The caller has to drop the vnode returned, if it is not NULL. 1536 * 1537 * This function may only be used to initialize unmanaged pages. 1538 * 1539 * To be called with vm_page_queue_free_mtx held. 1540 */ 1541 static struct vnode * 1542 vm_page_alloc_init(vm_page_t m) 1543 { 1544 struct vnode *drop; 1545 vm_object_t m_object; 1546 1547 KASSERT(m->queue == PQ_NONE, 1548 ("vm_page_alloc_init: page %p has unexpected queue %d", 1549 m, m->queue)); 1550 KASSERT(m->wire_count == 0, 1551 ("vm_page_alloc_init: page %p is wired", m)); 1552 KASSERT(m->hold_count == 0, 1553 ("vm_page_alloc_init: page %p is held", m)); 1554 KASSERT(m->busy == 0, 1555 ("vm_page_alloc_init: page %p is busy", m)); 1556 KASSERT(m->dirty == 0, 1557 ("vm_page_alloc_init: page %p is dirty", m)); 1558 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1559 ("vm_page_alloc_init: page %p has unexpected memattr %d", 1560 m, pmap_page_get_memattr(m))); 1561 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1562 drop = NULL; 1563 if ((m->flags & PG_CACHED) != 0) { 1564 KASSERT((m->flags & PG_ZERO) == 0, 1565 ("vm_page_alloc_init: cached page %p is PG_ZERO", m)); 1566 m->valid = 0; 1567 m_object = m->object; 1568 vm_page_cache_remove(m); 1569 if (m_object->type == OBJT_VNODE && 1570 vm_object_cache_is_empty(m_object)) 1571 drop = m_object->handle; 1572 } else { 1573 KASSERT(VM_PAGE_IS_FREE(m), 1574 ("vm_page_alloc_init: page %p is not free", m)); 1575 KASSERT(m->valid == 0, 1576 ("vm_page_alloc_init: free page %p is valid", m)); 1577 cnt.v_free_count--; 1578 if ((m->flags & PG_ZERO) != 0) 1579 vm_page_zero_count--; 1580 } 1581 /* Don't clear the PG_ZERO flag; we'll need it later. */ 1582 m->flags &= PG_ZERO; 1583 return (drop); 1584 } 1585 1586 /* 1587 * vm_page_alloc_freelist: 1588 * 1589 * Allocate a physical page from the specified free page list. 1590 * 1591 * The caller must always specify an allocation class. 1592 * 1593 * allocation classes: 1594 * VM_ALLOC_NORMAL normal process request 1595 * VM_ALLOC_SYSTEM system *really* needs a page 1596 * VM_ALLOC_INTERRUPT interrupt time request 1597 * 1598 * optional allocation flags: 1599 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1600 * intends to allocate 1601 * VM_ALLOC_WIRED wire the allocated page 1602 * VM_ALLOC_ZERO prefer a zeroed page 1603 * 1604 * This routine may not sleep. 1605 */ 1606 vm_page_t 1607 vm_page_alloc_freelist(int flind, int req) 1608 { 1609 struct vnode *drop; 1610 vm_page_t m; 1611 u_int flags; 1612 int req_class; 1613 1614 req_class = req & VM_ALLOC_CLASS_MASK; 1615 1616 /* 1617 * The page daemon is allowed to dig deeper into the free page list. 1618 */ 1619 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1620 req_class = VM_ALLOC_SYSTEM; 1621 1622 /* 1623 * Do not allocate reserved pages unless the req has asked for it. 1624 */ 1625 mtx_lock(&vm_page_queue_free_mtx); 1626 if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved || 1627 (req_class == VM_ALLOC_SYSTEM && 1628 cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) || 1629 (req_class == VM_ALLOC_INTERRUPT && 1630 cnt.v_free_count + cnt.v_cache_count > 0)) 1631 m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0); 1632 else { 1633 mtx_unlock(&vm_page_queue_free_mtx); 1634 atomic_add_int(&vm_pageout_deficit, 1635 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 1636 pagedaemon_wakeup(); 1637 return (NULL); 1638 } 1639 if (m == NULL) { 1640 mtx_unlock(&vm_page_queue_free_mtx); 1641 return (NULL); 1642 } 1643 drop = vm_page_alloc_init(m); 1644 mtx_unlock(&vm_page_queue_free_mtx); 1645 1646 /* 1647 * Initialize the page. Only the PG_ZERO flag is inherited. 1648 */ 1649 m->aflags = 0; 1650 flags = 0; 1651 if ((req & VM_ALLOC_ZERO) != 0) 1652 flags = PG_ZERO; 1653 m->flags &= flags; 1654 if ((req & VM_ALLOC_WIRED) != 0) { 1655 /* 1656 * The page lock is not required for wiring a page that does 1657 * not belong to an object. 1658 */ 1659 atomic_add_int(&cnt.v_wire_count, 1); 1660 m->wire_count = 1; 1661 } 1662 /* Unmanaged pages don't use "act_count". */ 1663 m->oflags = VPO_UNMANAGED; 1664 if (drop != NULL) 1665 vdrop(drop); 1666 if (vm_paging_needed()) 1667 pagedaemon_wakeup(); 1668 return (m); 1669 } 1670 1671 /* 1672 * vm_wait: (also see VM_WAIT macro) 1673 * 1674 * Sleep until free pages are available for allocation. 1675 * - Called in various places before memory allocations. 1676 */ 1677 void 1678 vm_wait(void) 1679 { 1680 1681 mtx_lock(&vm_page_queue_free_mtx); 1682 if (curproc == pageproc) { 1683 vm_pageout_pages_needed = 1; 1684 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, 1685 PDROP | PSWP, "VMWait", 0); 1686 } else { 1687 if (!vm_pages_needed) { 1688 vm_pages_needed = 1; 1689 wakeup(&vm_pages_needed); 1690 } 1691 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, 1692 "vmwait", 0); 1693 } 1694 } 1695 1696 /* 1697 * vm_waitpfault: (also see VM_WAITPFAULT macro) 1698 * 1699 * Sleep until free pages are available for allocation. 1700 * - Called only in vm_fault so that processes page faulting 1701 * can be easily tracked. 1702 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 1703 * processes will be able to grab memory first. Do not change 1704 * this balance without careful testing first. 1705 */ 1706 void 1707 vm_waitpfault(void) 1708 { 1709 1710 mtx_lock(&vm_page_queue_free_mtx); 1711 if (!vm_pages_needed) { 1712 vm_pages_needed = 1; 1713 wakeup(&vm_pages_needed); 1714 } 1715 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, 1716 "pfault", 0); 1717 } 1718 1719 /* 1720 * vm_page_dequeue: 1721 * 1722 * Remove the given page from its current page queue. 1723 * 1724 * The page must be locked. 1725 */ 1726 void 1727 vm_page_dequeue(vm_page_t m) 1728 { 1729 struct vm_pagequeue *pq; 1730 1731 vm_page_lock_assert(m, MA_OWNED); 1732 KASSERT(m->queue != PQ_NONE, 1733 ("vm_page_dequeue: page %p is not queued", m)); 1734 pq = &vm_pagequeues[m->queue]; 1735 vm_pagequeue_lock(pq); 1736 m->queue = PQ_NONE; 1737 TAILQ_REMOVE(&pq->pq_pl, m, pageq); 1738 (*pq->pq_cnt)--; 1739 vm_pagequeue_unlock(pq); 1740 } 1741 1742 /* 1743 * vm_page_dequeue_locked: 1744 * 1745 * Remove the given page from its current page queue. 1746 * 1747 * The page and page queue must be locked. 1748 */ 1749 void 1750 vm_page_dequeue_locked(vm_page_t m) 1751 { 1752 struct vm_pagequeue *pq; 1753 1754 vm_page_lock_assert(m, MA_OWNED); 1755 pq = &vm_pagequeues[m->queue]; 1756 vm_pagequeue_assert_locked(pq); 1757 m->queue = PQ_NONE; 1758 TAILQ_REMOVE(&pq->pq_pl, m, pageq); 1759 (*pq->pq_cnt)--; 1760 } 1761 1762 /* 1763 * vm_page_enqueue: 1764 * 1765 * Add the given page to the specified page queue. 1766 * 1767 * The page must be locked. 1768 */ 1769 static void 1770 vm_page_enqueue(int queue, vm_page_t m) 1771 { 1772 struct vm_pagequeue *pq; 1773 1774 vm_page_lock_assert(m, MA_OWNED); 1775 pq = &vm_pagequeues[queue]; 1776 vm_pagequeue_lock(pq); 1777 m->queue = queue; 1778 TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq); 1779 ++*pq->pq_cnt; 1780 vm_pagequeue_unlock(pq); 1781 } 1782 1783 /* 1784 * vm_page_requeue: 1785 * 1786 * Move the given page to the tail of its current page queue. 1787 * 1788 * The page must be locked. 1789 */ 1790 void 1791 vm_page_requeue(vm_page_t m) 1792 { 1793 struct vm_pagequeue *pq; 1794 1795 vm_page_lock_assert(m, MA_OWNED); 1796 KASSERT(m->queue != PQ_NONE, 1797 ("vm_page_requeue: page %p is not queued", m)); 1798 pq = &vm_pagequeues[m->queue]; 1799 vm_pagequeue_lock(pq); 1800 TAILQ_REMOVE(&pq->pq_pl, m, pageq); 1801 TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq); 1802 vm_pagequeue_unlock(pq); 1803 } 1804 1805 /* 1806 * vm_page_requeue_locked: 1807 * 1808 * Move the given page to the tail of its current page queue. 1809 * 1810 * The page queue must be locked. 1811 */ 1812 void 1813 vm_page_requeue_locked(vm_page_t m) 1814 { 1815 struct vm_pagequeue *pq; 1816 1817 KASSERT(m->queue != PQ_NONE, 1818 ("vm_page_requeue_locked: page %p is not queued", m)); 1819 pq = &vm_pagequeues[m->queue]; 1820 vm_pagequeue_assert_locked(pq); 1821 TAILQ_REMOVE(&pq->pq_pl, m, pageq); 1822 TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq); 1823 } 1824 1825 /* 1826 * vm_page_activate: 1827 * 1828 * Put the specified page on the active list (if appropriate). 1829 * Ensure that act_count is at least ACT_INIT but do not otherwise 1830 * mess with it. 1831 * 1832 * The page must be locked. 1833 */ 1834 void 1835 vm_page_activate(vm_page_t m) 1836 { 1837 int queue; 1838 1839 vm_page_lock_assert(m, MA_OWNED); 1840 VM_OBJECT_ASSERT_WLOCKED(m->object); 1841 if ((queue = m->queue) != PQ_ACTIVE) { 1842 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 1843 if (m->act_count < ACT_INIT) 1844 m->act_count = ACT_INIT; 1845 if (queue != PQ_NONE) 1846 vm_page_dequeue(m); 1847 vm_page_enqueue(PQ_ACTIVE, m); 1848 } else 1849 KASSERT(queue == PQ_NONE, 1850 ("vm_page_activate: wired page %p is queued", m)); 1851 } else { 1852 if (m->act_count < ACT_INIT) 1853 m->act_count = ACT_INIT; 1854 } 1855 } 1856 1857 /* 1858 * vm_page_free_wakeup: 1859 * 1860 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1861 * routine is called when a page has been added to the cache or free 1862 * queues. 1863 * 1864 * The page queues must be locked. 1865 */ 1866 static inline void 1867 vm_page_free_wakeup(void) 1868 { 1869 1870 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1871 /* 1872 * if pageout daemon needs pages, then tell it that there are 1873 * some free. 1874 */ 1875 if (vm_pageout_pages_needed && 1876 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1877 wakeup(&vm_pageout_pages_needed); 1878 vm_pageout_pages_needed = 0; 1879 } 1880 /* 1881 * wakeup processes that are waiting on memory if we hit a 1882 * high water mark. And wakeup scheduler process if we have 1883 * lots of memory. this process will swapin processes. 1884 */ 1885 if (vm_pages_needed && !vm_page_count_min()) { 1886 vm_pages_needed = 0; 1887 wakeup(&cnt.v_free_count); 1888 } 1889 } 1890 1891 /* 1892 * vm_page_free_toq: 1893 * 1894 * Returns the given page to the free list, 1895 * disassociating it with any VM object. 1896 * 1897 * The object must be locked. The page must be locked if it is managed. 1898 */ 1899 void 1900 vm_page_free_toq(vm_page_t m) 1901 { 1902 1903 if ((m->oflags & VPO_UNMANAGED) == 0) { 1904 vm_page_lock_assert(m, MA_OWNED); 1905 KASSERT(!pmap_page_is_mapped(m), 1906 ("vm_page_free_toq: freeing mapped page %p", m)); 1907 } else 1908 KASSERT(m->queue == PQ_NONE, 1909 ("vm_page_free_toq: unmanaged page %p is queued", m)); 1910 PCPU_INC(cnt.v_tfree); 1911 1912 if (VM_PAGE_IS_FREE(m)) 1913 panic("vm_page_free: freeing free page %p", m); 1914 else if (m->busy != 0) 1915 panic("vm_page_free: freeing busy page %p", m); 1916 1917 /* 1918 * Unqueue, then remove page. Note that we cannot destroy 1919 * the page here because we do not want to call the pager's 1920 * callback routine until after we've put the page on the 1921 * appropriate free queue. 1922 */ 1923 vm_page_remque(m); 1924 vm_page_remove(m); 1925 1926 /* 1927 * If fictitious remove object association and 1928 * return, otherwise delay object association removal. 1929 */ 1930 if ((m->flags & PG_FICTITIOUS) != 0) { 1931 return; 1932 } 1933 1934 m->valid = 0; 1935 vm_page_undirty(m); 1936 1937 if (m->wire_count != 0) 1938 panic("vm_page_free: freeing wired page %p", m); 1939 if (m->hold_count != 0) { 1940 m->flags &= ~PG_ZERO; 1941 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 1942 ("vm_page_free: freeing PG_UNHOLDFREE page %p", m)); 1943 m->flags |= PG_UNHOLDFREE; 1944 } else { 1945 /* 1946 * Restore the default memory attribute to the page. 1947 */ 1948 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 1949 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 1950 1951 /* 1952 * Insert the page into the physical memory allocator's 1953 * cache/free page queues. 1954 */ 1955 mtx_lock(&vm_page_queue_free_mtx); 1956 m->flags |= PG_FREE; 1957 cnt.v_free_count++; 1958 #if VM_NRESERVLEVEL > 0 1959 if (!vm_reserv_free_page(m)) 1960 #else 1961 if (TRUE) 1962 #endif 1963 vm_phys_free_pages(m, 0); 1964 if ((m->flags & PG_ZERO) != 0) 1965 ++vm_page_zero_count; 1966 else 1967 vm_page_zero_idle_wakeup(); 1968 vm_page_free_wakeup(); 1969 mtx_unlock(&vm_page_queue_free_mtx); 1970 } 1971 } 1972 1973 /* 1974 * vm_page_wire: 1975 * 1976 * Mark this page as wired down by yet 1977 * another map, removing it from paging queues 1978 * as necessary. 1979 * 1980 * If the page is fictitious, then its wire count must remain one. 1981 * 1982 * The page must be locked. 1983 */ 1984 void 1985 vm_page_wire(vm_page_t m) 1986 { 1987 1988 /* 1989 * Only bump the wire statistics if the page is not already wired, 1990 * and only unqueue the page if it is on some queue (if it is unmanaged 1991 * it is already off the queues). 1992 */ 1993 vm_page_lock_assert(m, MA_OWNED); 1994 if ((m->flags & PG_FICTITIOUS) != 0) { 1995 KASSERT(m->wire_count == 1, 1996 ("vm_page_wire: fictitious page %p's wire count isn't one", 1997 m)); 1998 return; 1999 } 2000 if (m->wire_count == 0) { 2001 KASSERT((m->oflags & VPO_UNMANAGED) == 0 || 2002 m->queue == PQ_NONE, 2003 ("vm_page_wire: unmanaged page %p is queued", m)); 2004 vm_page_remque(m); 2005 atomic_add_int(&cnt.v_wire_count, 1); 2006 } 2007 m->wire_count++; 2008 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 2009 } 2010 2011 /* 2012 * vm_page_unwire: 2013 * 2014 * Release one wiring of the specified page, potentially enabling it to be 2015 * paged again. If paging is enabled, then the value of the parameter 2016 * "activate" determines to which queue the page is added. If "activate" is 2017 * non-zero, then the page is added to the active queue. Otherwise, it is 2018 * added to the inactive queue. 2019 * 2020 * However, unless the page belongs to an object, it is not enqueued because 2021 * it cannot be paged out. 2022 * 2023 * If a page is fictitious, then its wire count must alway be one. 2024 * 2025 * A managed page must be locked. 2026 */ 2027 void 2028 vm_page_unwire(vm_page_t m, int activate) 2029 { 2030 2031 if ((m->oflags & VPO_UNMANAGED) == 0) 2032 vm_page_lock_assert(m, MA_OWNED); 2033 if ((m->flags & PG_FICTITIOUS) != 0) { 2034 KASSERT(m->wire_count == 1, 2035 ("vm_page_unwire: fictitious page %p's wire count isn't one", m)); 2036 return; 2037 } 2038 if (m->wire_count > 0) { 2039 m->wire_count--; 2040 if (m->wire_count == 0) { 2041 atomic_subtract_int(&cnt.v_wire_count, 1); 2042 if ((m->oflags & VPO_UNMANAGED) != 0 || 2043 m->object == NULL) 2044 return; 2045 if (!activate) 2046 m->flags &= ~PG_WINATCFLS; 2047 vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m); 2048 } 2049 } else 2050 panic("vm_page_unwire: page %p's wire count is zero", m); 2051 } 2052 2053 /* 2054 * Move the specified page to the inactive queue. 2055 * 2056 * Many pages placed on the inactive queue should actually go 2057 * into the cache, but it is difficult to figure out which. What 2058 * we do instead, if the inactive target is well met, is to put 2059 * clean pages at the head of the inactive queue instead of the tail. 2060 * This will cause them to be moved to the cache more quickly and 2061 * if not actively re-referenced, reclaimed more quickly. If we just 2062 * stick these pages at the end of the inactive queue, heavy filesystem 2063 * meta-data accesses can cause an unnecessary paging load on memory bound 2064 * processes. This optimization causes one-time-use metadata to be 2065 * reused more quickly. 2066 * 2067 * Normally athead is 0 resulting in LRU operation. athead is set 2068 * to 1 if we want this page to be 'as if it were placed in the cache', 2069 * except without unmapping it from the process address space. 2070 * 2071 * The page must be locked. 2072 */ 2073 static inline void 2074 _vm_page_deactivate(vm_page_t m, int athead) 2075 { 2076 struct vm_pagequeue *pq; 2077 int queue; 2078 2079 vm_page_lock_assert(m, MA_OWNED); 2080 2081 /* 2082 * Ignore if already inactive. 2083 */ 2084 if ((queue = m->queue) == PQ_INACTIVE) 2085 return; 2086 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 2087 if (queue != PQ_NONE) 2088 vm_page_dequeue(m); 2089 m->flags &= ~PG_WINATCFLS; 2090 pq = &vm_pagequeues[PQ_INACTIVE]; 2091 vm_pagequeue_lock(pq); 2092 m->queue = PQ_INACTIVE; 2093 if (athead) 2094 TAILQ_INSERT_HEAD(&pq->pq_pl, m, pageq); 2095 else 2096 TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq); 2097 cnt.v_inactive_count++; 2098 vm_pagequeue_unlock(pq); 2099 } 2100 } 2101 2102 /* 2103 * Move the specified page to the inactive queue. 2104 * 2105 * The page must be locked. 2106 */ 2107 void 2108 vm_page_deactivate(vm_page_t m) 2109 { 2110 2111 _vm_page_deactivate(m, 0); 2112 } 2113 2114 /* 2115 * vm_page_try_to_cache: 2116 * 2117 * Returns 0 on failure, 1 on success 2118 */ 2119 int 2120 vm_page_try_to_cache(vm_page_t m) 2121 { 2122 2123 vm_page_lock_assert(m, MA_OWNED); 2124 VM_OBJECT_ASSERT_WLOCKED(m->object); 2125 if (m->dirty || m->hold_count || m->busy || m->wire_count || 2126 (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0) 2127 return (0); 2128 pmap_remove_all(m); 2129 if (m->dirty) 2130 return (0); 2131 vm_page_cache(m); 2132 return (1); 2133 } 2134 2135 /* 2136 * vm_page_try_to_free() 2137 * 2138 * Attempt to free the page. If we cannot free it, we do nothing. 2139 * 1 is returned on success, 0 on failure. 2140 */ 2141 int 2142 vm_page_try_to_free(vm_page_t m) 2143 { 2144 2145 vm_page_lock_assert(m, MA_OWNED); 2146 if (m->object != NULL) 2147 VM_OBJECT_ASSERT_WLOCKED(m->object); 2148 if (m->dirty || m->hold_count || m->busy || m->wire_count || 2149 (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0) 2150 return (0); 2151 pmap_remove_all(m); 2152 if (m->dirty) 2153 return (0); 2154 vm_page_free(m); 2155 return (1); 2156 } 2157 2158 /* 2159 * vm_page_cache 2160 * 2161 * Put the specified page onto the page cache queue (if appropriate). 2162 * 2163 * The object and page must be locked. 2164 */ 2165 void 2166 vm_page_cache(vm_page_t m) 2167 { 2168 vm_object_t object; 2169 boolean_t cache_was_empty; 2170 2171 vm_page_lock_assert(m, MA_OWNED); 2172 object = m->object; 2173 VM_OBJECT_ASSERT_WLOCKED(object); 2174 if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy || 2175 m->hold_count || m->wire_count) 2176 panic("vm_page_cache: attempting to cache busy page"); 2177 KASSERT(!pmap_page_is_mapped(m), 2178 ("vm_page_cache: page %p is mapped", m)); 2179 KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m)); 2180 if (m->valid == 0 || object->type == OBJT_DEFAULT || 2181 (object->type == OBJT_SWAP && 2182 !vm_pager_has_page(object, m->pindex, NULL, NULL))) { 2183 /* 2184 * Hypothesis: A cache-elgible page belonging to a 2185 * default object or swap object but without a backing 2186 * store must be zero filled. 2187 */ 2188 vm_page_free(m); 2189 return; 2190 } 2191 KASSERT((m->flags & PG_CACHED) == 0, 2192 ("vm_page_cache: page %p is already cached", m)); 2193 PCPU_INC(cnt.v_tcached); 2194 2195 /* 2196 * Remove the page from the paging queues. 2197 */ 2198 vm_page_remque(m); 2199 2200 /* 2201 * Remove the page from the object's collection of resident 2202 * pages. 2203 */ 2204 vm_radix_remove(&object->rtree, m->pindex); 2205 TAILQ_REMOVE(&object->memq, m, listq); 2206 object->resident_page_count--; 2207 2208 /* 2209 * Restore the default memory attribute to the page. 2210 */ 2211 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 2212 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 2213 2214 /* 2215 * Insert the page into the object's collection of cached pages 2216 * and the physical memory allocator's cache/free page queues. 2217 */ 2218 m->flags &= ~PG_ZERO; 2219 mtx_lock(&vm_page_queue_free_mtx); 2220 m->flags |= PG_CACHED; 2221 cnt.v_cache_count++; 2222 cache_was_empty = vm_radix_is_empty(&object->cache); 2223 vm_radix_insert(&object->cache, m); 2224 #if VM_NRESERVLEVEL > 0 2225 if (!vm_reserv_free_page(m)) { 2226 #else 2227 if (TRUE) { 2228 #endif 2229 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0); 2230 vm_phys_free_pages(m, 0); 2231 } 2232 vm_page_free_wakeup(); 2233 mtx_unlock(&vm_page_queue_free_mtx); 2234 2235 /* 2236 * Increment the vnode's hold count if this is the object's only 2237 * cached page. Decrement the vnode's hold count if this was 2238 * the object's only resident page. 2239 */ 2240 if (object->type == OBJT_VNODE) { 2241 if (cache_was_empty && object->resident_page_count != 0) 2242 vhold(object->handle); 2243 else if (!cache_was_empty && object->resident_page_count == 0) 2244 vdrop(object->handle); 2245 } 2246 } 2247 2248 /* 2249 * vm_page_dontneed 2250 * 2251 * Cache, deactivate, or do nothing as appropriate. This routine 2252 * is typically used by madvise() MADV_DONTNEED. 2253 * 2254 * Generally speaking we want to move the page into the cache so 2255 * it gets reused quickly. However, this can result in a silly syndrome 2256 * due to the page recycling too quickly. Small objects will not be 2257 * fully cached. On the otherhand, if we move the page to the inactive 2258 * queue we wind up with a problem whereby very large objects 2259 * unnecessarily blow away our inactive and cache queues. 2260 * 2261 * The solution is to move the pages based on a fixed weighting. We 2262 * either leave them alone, deactivate them, or move them to the cache, 2263 * where moving them to the cache has the highest weighting. 2264 * By forcing some pages into other queues we eventually force the 2265 * system to balance the queues, potentially recovering other unrelated 2266 * space from active. The idea is to not force this to happen too 2267 * often. 2268 * 2269 * The object and page must be locked. 2270 */ 2271 void 2272 vm_page_dontneed(vm_page_t m) 2273 { 2274 int dnw; 2275 int head; 2276 2277 vm_page_lock_assert(m, MA_OWNED); 2278 VM_OBJECT_ASSERT_WLOCKED(m->object); 2279 dnw = PCPU_GET(dnweight); 2280 PCPU_INC(dnweight); 2281 2282 /* 2283 * Occasionally leave the page alone. 2284 */ 2285 if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) { 2286 if (m->act_count >= ACT_INIT) 2287 --m->act_count; 2288 return; 2289 } 2290 2291 /* 2292 * Clear any references to the page. Otherwise, the page daemon will 2293 * immediately reactivate the page. 2294 * 2295 * Perform the pmap_clear_reference() first. Otherwise, a concurrent 2296 * pmap operation, such as pmap_remove(), could clear a reference in 2297 * the pmap and set PGA_REFERENCED on the page before the 2298 * pmap_clear_reference() had completed. Consequently, the page would 2299 * appear referenced based upon an old reference that occurred before 2300 * this function ran. 2301 */ 2302 pmap_clear_reference(m); 2303 vm_page_aflag_clear(m, PGA_REFERENCED); 2304 2305 if (m->dirty == 0 && pmap_is_modified(m)) 2306 vm_page_dirty(m); 2307 2308 if (m->dirty || (dnw & 0x0070) == 0) { 2309 /* 2310 * Deactivate the page 3 times out of 32. 2311 */ 2312 head = 0; 2313 } else { 2314 /* 2315 * Cache the page 28 times out of every 32. Note that 2316 * the page is deactivated instead of cached, but placed 2317 * at the head of the queue instead of the tail. 2318 */ 2319 head = 1; 2320 } 2321 _vm_page_deactivate(m, head); 2322 } 2323 2324 /* 2325 * Grab a page, waiting until we are waken up due to the page 2326 * changing state. We keep on waiting, if the page continues 2327 * to be in the object. If the page doesn't exist, first allocate it 2328 * and then conditionally zero it. 2329 * 2330 * The caller must always specify the VM_ALLOC_RETRY flag. This is intended 2331 * to facilitate its eventual removal. 2332 * 2333 * This routine may sleep. 2334 * 2335 * The object must be locked on entry. The lock will, however, be released 2336 * and reacquired if the routine sleeps. 2337 */ 2338 vm_page_t 2339 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2340 { 2341 vm_page_t m; 2342 2343 VM_OBJECT_ASSERT_WLOCKED(object); 2344 KASSERT((allocflags & VM_ALLOC_RETRY) != 0, 2345 ("vm_page_grab: VM_ALLOC_RETRY is required")); 2346 retrylookup: 2347 if ((m = vm_page_lookup(object, pindex)) != NULL) { 2348 if ((m->oflags & VPO_BUSY) != 0 || 2349 ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) { 2350 /* 2351 * Reference the page before unlocking and 2352 * sleeping so that the page daemon is less 2353 * likely to reclaim it. 2354 */ 2355 vm_page_aflag_set(m, PGA_REFERENCED); 2356 vm_page_sleep(m, "pgrbwt"); 2357 goto retrylookup; 2358 } else { 2359 if ((allocflags & VM_ALLOC_WIRED) != 0) { 2360 vm_page_lock(m); 2361 vm_page_wire(m); 2362 vm_page_unlock(m); 2363 } 2364 if ((allocflags & VM_ALLOC_NOBUSY) == 0) 2365 vm_page_busy(m); 2366 return (m); 2367 } 2368 } 2369 m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY | 2370 VM_ALLOC_IGN_SBUSY)); 2371 if (m == NULL) { 2372 VM_OBJECT_WUNLOCK(object); 2373 VM_WAIT; 2374 VM_OBJECT_WLOCK(object); 2375 goto retrylookup; 2376 } else if (m->valid != 0) 2377 return (m); 2378 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 2379 pmap_zero_page(m); 2380 return (m); 2381 } 2382 2383 /* 2384 * Mapping function for valid or dirty bits in a page. 2385 * 2386 * Inputs are required to range within a page. 2387 */ 2388 vm_page_bits_t 2389 vm_page_bits(int base, int size) 2390 { 2391 int first_bit; 2392 int last_bit; 2393 2394 KASSERT( 2395 base + size <= PAGE_SIZE, 2396 ("vm_page_bits: illegal base/size %d/%d", base, size) 2397 ); 2398 2399 if (size == 0) /* handle degenerate case */ 2400 return (0); 2401 2402 first_bit = base >> DEV_BSHIFT; 2403 last_bit = (base + size - 1) >> DEV_BSHIFT; 2404 2405 return (((vm_page_bits_t)2 << last_bit) - 2406 ((vm_page_bits_t)1 << first_bit)); 2407 } 2408 2409 /* 2410 * vm_page_set_valid_range: 2411 * 2412 * Sets portions of a page valid. The arguments are expected 2413 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2414 * of any partial chunks touched by the range. The invalid portion of 2415 * such chunks will be zeroed. 2416 * 2417 * (base + size) must be less then or equal to PAGE_SIZE. 2418 */ 2419 void 2420 vm_page_set_valid_range(vm_page_t m, int base, int size) 2421 { 2422 int endoff, frag; 2423 2424 VM_OBJECT_ASSERT_WLOCKED(m->object); 2425 if (size == 0) /* handle degenerate case */ 2426 return; 2427 2428 /* 2429 * If the base is not DEV_BSIZE aligned and the valid 2430 * bit is clear, we have to zero out a portion of the 2431 * first block. 2432 */ 2433 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2434 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 2435 pmap_zero_page_area(m, frag, base - frag); 2436 2437 /* 2438 * If the ending offset is not DEV_BSIZE aligned and the 2439 * valid bit is clear, we have to zero out a portion of 2440 * the last block. 2441 */ 2442 endoff = base + size; 2443 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2444 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 2445 pmap_zero_page_area(m, endoff, 2446 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 2447 2448 /* 2449 * Assert that no previously invalid block that is now being validated 2450 * is already dirty. 2451 */ 2452 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 2453 ("vm_page_set_valid_range: page %p is dirty", m)); 2454 2455 /* 2456 * Set valid bits inclusive of any overlap. 2457 */ 2458 m->valid |= vm_page_bits(base, size); 2459 } 2460 2461 /* 2462 * Clear the given bits from the specified page's dirty field. 2463 */ 2464 static __inline void 2465 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 2466 { 2467 uintptr_t addr; 2468 #if PAGE_SIZE < 16384 2469 int shift; 2470 #endif 2471 2472 /* 2473 * If the object is locked and the page is neither VPO_BUSY nor 2474 * write mapped, then the page's dirty field cannot possibly be 2475 * set by a concurrent pmap operation. 2476 */ 2477 VM_OBJECT_ASSERT_WLOCKED(m->object); 2478 if ((m->oflags & VPO_BUSY) == 0 && !pmap_page_is_write_mapped(m)) 2479 m->dirty &= ~pagebits; 2480 else { 2481 /* 2482 * The pmap layer can call vm_page_dirty() without 2483 * holding a distinguished lock. The combination of 2484 * the object's lock and an atomic operation suffice 2485 * to guarantee consistency of the page dirty field. 2486 * 2487 * For PAGE_SIZE == 32768 case, compiler already 2488 * properly aligns the dirty field, so no forcible 2489 * alignment is needed. Only require existence of 2490 * atomic_clear_64 when page size is 32768. 2491 */ 2492 addr = (uintptr_t)&m->dirty; 2493 #if PAGE_SIZE == 32768 2494 atomic_clear_64((uint64_t *)addr, pagebits); 2495 #elif PAGE_SIZE == 16384 2496 atomic_clear_32((uint32_t *)addr, pagebits); 2497 #else /* PAGE_SIZE <= 8192 */ 2498 /* 2499 * Use a trick to perform a 32-bit atomic on the 2500 * containing aligned word, to not depend on the existence 2501 * of atomic_clear_{8, 16}. 2502 */ 2503 shift = addr & (sizeof(uint32_t) - 1); 2504 #if BYTE_ORDER == BIG_ENDIAN 2505 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY; 2506 #else 2507 shift *= NBBY; 2508 #endif 2509 addr &= ~(sizeof(uint32_t) - 1); 2510 atomic_clear_32((uint32_t *)addr, pagebits << shift); 2511 #endif /* PAGE_SIZE */ 2512 } 2513 } 2514 2515 /* 2516 * vm_page_set_validclean: 2517 * 2518 * Sets portions of a page valid and clean. The arguments are expected 2519 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2520 * of any partial chunks touched by the range. The invalid portion of 2521 * such chunks will be zero'd. 2522 * 2523 * (base + size) must be less then or equal to PAGE_SIZE. 2524 */ 2525 void 2526 vm_page_set_validclean(vm_page_t m, int base, int size) 2527 { 2528 vm_page_bits_t oldvalid, pagebits; 2529 int endoff, frag; 2530 2531 VM_OBJECT_ASSERT_WLOCKED(m->object); 2532 if (size == 0) /* handle degenerate case */ 2533 return; 2534 2535 /* 2536 * If the base is not DEV_BSIZE aligned and the valid 2537 * bit is clear, we have to zero out a portion of the 2538 * first block. 2539 */ 2540 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2541 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 2542 pmap_zero_page_area(m, frag, base - frag); 2543 2544 /* 2545 * If the ending offset is not DEV_BSIZE aligned and the 2546 * valid bit is clear, we have to zero out a portion of 2547 * the last block. 2548 */ 2549 endoff = base + size; 2550 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2551 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 2552 pmap_zero_page_area(m, endoff, 2553 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 2554 2555 /* 2556 * Set valid, clear dirty bits. If validating the entire 2557 * page we can safely clear the pmap modify bit. We also 2558 * use this opportunity to clear the VPO_NOSYNC flag. If a process 2559 * takes a write fault on a MAP_NOSYNC memory area the flag will 2560 * be set again. 2561 * 2562 * We set valid bits inclusive of any overlap, but we can only 2563 * clear dirty bits for DEV_BSIZE chunks that are fully within 2564 * the range. 2565 */ 2566 oldvalid = m->valid; 2567 pagebits = vm_page_bits(base, size); 2568 m->valid |= pagebits; 2569 #if 0 /* NOT YET */ 2570 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 2571 frag = DEV_BSIZE - frag; 2572 base += frag; 2573 size -= frag; 2574 if (size < 0) 2575 size = 0; 2576 } 2577 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 2578 #endif 2579 if (base == 0 && size == PAGE_SIZE) { 2580 /* 2581 * The page can only be modified within the pmap if it is 2582 * mapped, and it can only be mapped if it was previously 2583 * fully valid. 2584 */ 2585 if (oldvalid == VM_PAGE_BITS_ALL) 2586 /* 2587 * Perform the pmap_clear_modify() first. Otherwise, 2588 * a concurrent pmap operation, such as 2589 * pmap_protect(), could clear a modification in the 2590 * pmap and set the dirty field on the page before 2591 * pmap_clear_modify() had begun and after the dirty 2592 * field was cleared here. 2593 */ 2594 pmap_clear_modify(m); 2595 m->dirty = 0; 2596 m->oflags &= ~VPO_NOSYNC; 2597 } else if (oldvalid != VM_PAGE_BITS_ALL) 2598 m->dirty &= ~pagebits; 2599 else 2600 vm_page_clear_dirty_mask(m, pagebits); 2601 } 2602 2603 void 2604 vm_page_clear_dirty(vm_page_t m, int base, int size) 2605 { 2606 2607 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 2608 } 2609 2610 /* 2611 * vm_page_set_invalid: 2612 * 2613 * Invalidates DEV_BSIZE'd chunks within a page. Both the 2614 * valid and dirty bits for the effected areas are cleared. 2615 */ 2616 void 2617 vm_page_set_invalid(vm_page_t m, int base, int size) 2618 { 2619 vm_page_bits_t bits; 2620 2621 VM_OBJECT_ASSERT_WLOCKED(m->object); 2622 KASSERT((m->oflags & VPO_BUSY) == 0, 2623 ("vm_page_set_invalid: page %p is busy", m)); 2624 bits = vm_page_bits(base, size); 2625 if (m->valid == VM_PAGE_BITS_ALL && bits != 0) 2626 pmap_remove_all(m); 2627 KASSERT(!pmap_page_is_mapped(m), 2628 ("vm_page_set_invalid: page %p is mapped", m)); 2629 m->valid &= ~bits; 2630 m->dirty &= ~bits; 2631 } 2632 2633 /* 2634 * vm_page_zero_invalid() 2635 * 2636 * The kernel assumes that the invalid portions of a page contain 2637 * garbage, but such pages can be mapped into memory by user code. 2638 * When this occurs, we must zero out the non-valid portions of the 2639 * page so user code sees what it expects. 2640 * 2641 * Pages are most often semi-valid when the end of a file is mapped 2642 * into memory and the file's size is not page aligned. 2643 */ 2644 void 2645 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 2646 { 2647 int b; 2648 int i; 2649 2650 VM_OBJECT_ASSERT_WLOCKED(m->object); 2651 /* 2652 * Scan the valid bits looking for invalid sections that 2653 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 2654 * valid bit may be set ) have already been zerod by 2655 * vm_page_set_validclean(). 2656 */ 2657 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 2658 if (i == (PAGE_SIZE / DEV_BSIZE) || 2659 (m->valid & ((vm_page_bits_t)1 << i))) { 2660 if (i > b) { 2661 pmap_zero_page_area(m, 2662 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 2663 } 2664 b = i + 1; 2665 } 2666 } 2667 2668 /* 2669 * setvalid is TRUE when we can safely set the zero'd areas 2670 * as being valid. We can do this if there are no cache consistancy 2671 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 2672 */ 2673 if (setvalid) 2674 m->valid = VM_PAGE_BITS_ALL; 2675 } 2676 2677 /* 2678 * vm_page_is_valid: 2679 * 2680 * Is (partial) page valid? Note that the case where size == 0 2681 * will return FALSE in the degenerate case where the page is 2682 * entirely invalid, and TRUE otherwise. 2683 */ 2684 int 2685 vm_page_is_valid(vm_page_t m, int base, int size) 2686 { 2687 vm_page_bits_t bits; 2688 2689 VM_OBJECT_ASSERT_WLOCKED(m->object); 2690 bits = vm_page_bits(base, size); 2691 return (m->valid != 0 && (m->valid & bits) == bits); 2692 } 2693 2694 /* 2695 * Set the page's dirty bits if the page is modified. 2696 */ 2697 void 2698 vm_page_test_dirty(vm_page_t m) 2699 { 2700 2701 VM_OBJECT_ASSERT_WLOCKED(m->object); 2702 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 2703 vm_page_dirty(m); 2704 } 2705 2706 void 2707 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 2708 { 2709 2710 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 2711 } 2712 2713 void 2714 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 2715 { 2716 2717 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 2718 } 2719 2720 int 2721 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 2722 { 2723 2724 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 2725 } 2726 2727 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 2728 void 2729 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 2730 { 2731 2732 mtx_assert_(vm_page_lockptr(m), a, file, line); 2733 } 2734 #endif 2735 2736 int so_zerocp_fullpage = 0; 2737 2738 /* 2739 * Replace the given page with a copy. The copied page assumes 2740 * the portion of the given page's "wire_count" that is not the 2741 * responsibility of this copy-on-write mechanism. 2742 * 2743 * The object containing the given page must have a non-zero 2744 * paging-in-progress count and be locked. 2745 */ 2746 void 2747 vm_page_cowfault(vm_page_t m) 2748 { 2749 vm_page_t mnew; 2750 vm_object_t object; 2751 vm_pindex_t pindex; 2752 2753 vm_page_lock_assert(m, MA_OWNED); 2754 object = m->object; 2755 VM_OBJECT_ASSERT_WLOCKED(object); 2756 KASSERT(object->paging_in_progress != 0, 2757 ("vm_page_cowfault: object %p's paging-in-progress count is zero.", 2758 object)); 2759 pindex = m->pindex; 2760 2761 retry_alloc: 2762 pmap_remove_all(m); 2763 vm_page_remove(m); 2764 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY); 2765 if (mnew == NULL) { 2766 vm_page_insert(m, object, pindex); 2767 vm_page_unlock(m); 2768 VM_OBJECT_WUNLOCK(object); 2769 VM_WAIT; 2770 VM_OBJECT_WLOCK(object); 2771 if (m == vm_page_lookup(object, pindex)) { 2772 vm_page_lock(m); 2773 goto retry_alloc; 2774 } else { 2775 /* 2776 * Page disappeared during the wait. 2777 */ 2778 return; 2779 } 2780 } 2781 2782 if (m->cow == 0) { 2783 /* 2784 * check to see if we raced with an xmit complete when 2785 * waiting to allocate a page. If so, put things back 2786 * the way they were 2787 */ 2788 vm_page_unlock(m); 2789 vm_page_lock(mnew); 2790 vm_page_free(mnew); 2791 vm_page_unlock(mnew); 2792 vm_page_insert(m, object, pindex); 2793 } else { /* clear COW & copy page */ 2794 if (!so_zerocp_fullpage) 2795 pmap_copy_page(m, mnew); 2796 mnew->valid = VM_PAGE_BITS_ALL; 2797 vm_page_dirty(mnew); 2798 mnew->wire_count = m->wire_count - m->cow; 2799 m->wire_count = m->cow; 2800 vm_page_unlock(m); 2801 } 2802 } 2803 2804 void 2805 vm_page_cowclear(vm_page_t m) 2806 { 2807 2808 vm_page_lock_assert(m, MA_OWNED); 2809 if (m->cow) { 2810 m->cow--; 2811 /* 2812 * let vm_fault add back write permission lazily 2813 */ 2814 } 2815 /* 2816 * sf_buf_free() will free the page, so we needn't do it here 2817 */ 2818 } 2819 2820 int 2821 vm_page_cowsetup(vm_page_t m) 2822 { 2823 2824 vm_page_lock_assert(m, MA_OWNED); 2825 if ((m->flags & PG_FICTITIOUS) != 0 || 2826 (m->oflags & VPO_UNMANAGED) != 0 || 2827 m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYWLOCK(m->object)) 2828 return (EBUSY); 2829 m->cow++; 2830 pmap_remove_write(m); 2831 VM_OBJECT_WUNLOCK(m->object); 2832 return (0); 2833 } 2834 2835 #ifdef INVARIANTS 2836 void 2837 vm_page_object_lock_assert(vm_page_t m) 2838 { 2839 2840 /* 2841 * Certain of the page's fields may only be modified by the 2842 * holder of the containing object's lock or the setter of the 2843 * page's VPO_BUSY flag. Unfortunately, the setter of the 2844 * VPO_BUSY flag is not recorded, and thus cannot be checked 2845 * here. 2846 */ 2847 if (m->object != NULL && (m->oflags & VPO_BUSY) == 0) 2848 VM_OBJECT_ASSERT_WLOCKED(m->object); 2849 } 2850 #endif 2851 2852 #include "opt_ddb.h" 2853 #ifdef DDB 2854 #include <sys/kernel.h> 2855 2856 #include <ddb/ddb.h> 2857 2858 DB_SHOW_COMMAND(page, vm_page_print_page_info) 2859 { 2860 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 2861 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 2862 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 2863 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 2864 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 2865 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 2866 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 2867 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 2868 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 2869 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 2870 } 2871 2872 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 2873 { 2874 2875 db_printf("PQ_FREE:"); 2876 db_printf(" %d", cnt.v_free_count); 2877 db_printf("\n"); 2878 2879 db_printf("PQ_CACHE:"); 2880 db_printf(" %d", cnt.v_cache_count); 2881 db_printf("\n"); 2882 2883 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 2884 *vm_pagequeues[PQ_ACTIVE].pq_cnt, 2885 *vm_pagequeues[PQ_INACTIVE].pq_cnt); 2886 } 2887 2888 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 2889 { 2890 vm_page_t m; 2891 boolean_t phys; 2892 2893 if (!have_addr) { 2894 db_printf("show pginfo addr\n"); 2895 return; 2896 } 2897 2898 phys = strchr(modif, 'p') != NULL; 2899 if (phys) 2900 m = PHYS_TO_VM_PAGE(addr); 2901 else 2902 m = (vm_page_t)addr; 2903 db_printf( 2904 "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n" 2905 " af 0x%x of 0x%x f 0x%x act %d busy %d valid 0x%x dirty 0x%x\n", 2906 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 2907 m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags, 2908 m->flags, m->act_count, m->busy, m->valid, m->dirty); 2909 } 2910 #endif /* DDB */ 2911