1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * The Mach Operating System project at Carnegie-Mellon University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 34 */ 35 36 /*- 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * GENERAL RULES ON VM_PAGE MANIPULATION 65 * 66 * - A page queue lock is required when adding or removing a page from a 67 * page queue (vm_pagequeues[]), regardless of other locks or the 68 * busy state of a page. 69 * 70 * * In general, no thread besides the page daemon can acquire or 71 * hold more than one page queue lock at a time. 72 * 73 * * The page daemon can acquire and hold any pair of page queue 74 * locks in any order. 75 * 76 * - The object lock is required when inserting or removing 77 * pages from an object (vm_page_insert() or vm_page_remove()). 78 * 79 */ 80 81 /* 82 * Resident memory management module. 83 */ 84 85 #include <sys/cdefs.h> 86 __FBSDID("$FreeBSD$"); 87 88 #include "opt_vm.h" 89 90 #include <sys/param.h> 91 #include <sys/systm.h> 92 #include <sys/lock.h> 93 #include <sys/kernel.h> 94 #include <sys/limits.h> 95 #include <sys/malloc.h> 96 #include <sys/mman.h> 97 #include <sys/msgbuf.h> 98 #include <sys/mutex.h> 99 #include <sys/proc.h> 100 #include <sys/rwlock.h> 101 #include <sys/sysctl.h> 102 #include <sys/vmmeter.h> 103 #include <sys/vnode.h> 104 105 #include <vm/vm.h> 106 #include <vm/pmap.h> 107 #include <vm/vm_param.h> 108 #include <vm/vm_kern.h> 109 #include <vm/vm_object.h> 110 #include <vm/vm_page.h> 111 #include <vm/vm_pageout.h> 112 #include <vm/vm_pager.h> 113 #include <vm/vm_phys.h> 114 #include <vm/vm_radix.h> 115 #include <vm/vm_reserv.h> 116 #include <vm/vm_extern.h> 117 #include <vm/uma.h> 118 #include <vm/uma_int.h> 119 120 #include <machine/md_var.h> 121 122 /* 123 * Associated with page of user-allocatable memory is a 124 * page structure. 125 */ 126 127 struct vm_pagequeue vm_pagequeues[PQ_COUNT] = { 128 [PQ_INACTIVE] = { 129 .pq_pl = TAILQ_HEAD_INITIALIZER( 130 vm_pagequeues[PQ_INACTIVE].pq_pl), 131 .pq_cnt = &cnt.v_inactive_count, 132 .pq_name = "vm inactive pagequeue" 133 }, 134 [PQ_ACTIVE] = { 135 .pq_pl = TAILQ_HEAD_INITIALIZER( 136 vm_pagequeues[PQ_ACTIVE].pq_pl), 137 .pq_cnt = &cnt.v_active_count, 138 .pq_name = "vm active pagequeue" 139 } 140 }; 141 struct mtx_padalign vm_page_queue_free_mtx; 142 143 struct mtx_padalign pa_lock[PA_LOCK_COUNT]; 144 145 vm_page_t vm_page_array; 146 long vm_page_array_size; 147 long first_page; 148 int vm_page_zero_count; 149 150 static int boot_pages = UMA_BOOT_PAGES; 151 TUNABLE_INT("vm.boot_pages", &boot_pages); 152 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0, 153 "number of pages allocated for bootstrapping the VM system"); 154 155 static int pa_tryrelock_restart; 156 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD, 157 &pa_tryrelock_restart, 0, "Number of tryrelock restarts"); 158 159 static uma_zone_t fakepg_zone; 160 161 static struct vnode *vm_page_alloc_init(vm_page_t m); 162 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 163 static void vm_page_enqueue(int queue, vm_page_t m); 164 static void vm_page_init_fakepg(void *dummy); 165 static void vm_page_insert_after(vm_page_t m, vm_object_t object, 166 vm_pindex_t pindex, vm_page_t mpred); 167 168 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL); 169 170 static void 171 vm_page_init_fakepg(void *dummy) 172 { 173 174 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 175 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 176 } 177 178 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 179 #if PAGE_SIZE == 32768 180 #ifdef CTASSERT 181 CTASSERT(sizeof(u_long) >= 8); 182 #endif 183 #endif 184 185 /* 186 * Try to acquire a physical address lock while a pmap is locked. If we 187 * fail to trylock we unlock and lock the pmap directly and cache the 188 * locked pa in *locked. The caller should then restart their loop in case 189 * the virtual to physical mapping has changed. 190 */ 191 int 192 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked) 193 { 194 vm_paddr_t lockpa; 195 196 lockpa = *locked; 197 *locked = pa; 198 if (lockpa) { 199 PA_LOCK_ASSERT(lockpa, MA_OWNED); 200 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa)) 201 return (0); 202 PA_UNLOCK(lockpa); 203 } 204 if (PA_TRYLOCK(pa)) 205 return (0); 206 PMAP_UNLOCK(pmap); 207 atomic_add_int(&pa_tryrelock_restart, 1); 208 PA_LOCK(pa); 209 PMAP_LOCK(pmap); 210 return (EAGAIN); 211 } 212 213 /* 214 * vm_set_page_size: 215 * 216 * Sets the page size, perhaps based upon the memory 217 * size. Must be called before any use of page-size 218 * dependent functions. 219 */ 220 void 221 vm_set_page_size(void) 222 { 223 if (cnt.v_page_size == 0) 224 cnt.v_page_size = PAGE_SIZE; 225 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 226 panic("vm_set_page_size: page size not a power of two"); 227 } 228 229 /* 230 * vm_page_blacklist_lookup: 231 * 232 * See if a physical address in this page has been listed 233 * in the blacklist tunable. Entries in the tunable are 234 * separated by spaces or commas. If an invalid integer is 235 * encountered then the rest of the string is skipped. 236 */ 237 static int 238 vm_page_blacklist_lookup(char *list, vm_paddr_t pa) 239 { 240 vm_paddr_t bad; 241 char *cp, *pos; 242 243 for (pos = list; *pos != '\0'; pos = cp) { 244 bad = strtoq(pos, &cp, 0); 245 if (*cp != '\0') { 246 if (*cp == ' ' || *cp == ',') { 247 cp++; 248 if (cp == pos) 249 continue; 250 } else 251 break; 252 } 253 if (pa == trunc_page(bad)) 254 return (1); 255 } 256 return (0); 257 } 258 259 /* 260 * vm_page_startup: 261 * 262 * Initializes the resident memory module. 263 * 264 * Allocates memory for the page cells, and 265 * for the object/offset-to-page hash table headers. 266 * Each page cell is initialized and placed on the free list. 267 */ 268 vm_offset_t 269 vm_page_startup(vm_offset_t vaddr) 270 { 271 vm_offset_t mapped; 272 vm_paddr_t page_range; 273 vm_paddr_t new_end; 274 int i; 275 vm_paddr_t pa; 276 vm_paddr_t last_pa; 277 char *list; 278 279 /* the biggest memory array is the second group of pages */ 280 vm_paddr_t end; 281 vm_paddr_t biggestsize; 282 vm_paddr_t low_water, high_water; 283 int biggestone; 284 285 biggestsize = 0; 286 biggestone = 0; 287 vaddr = round_page(vaddr); 288 289 for (i = 0; phys_avail[i + 1]; i += 2) { 290 phys_avail[i] = round_page(phys_avail[i]); 291 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 292 } 293 294 low_water = phys_avail[0]; 295 high_water = phys_avail[1]; 296 297 for (i = 0; phys_avail[i + 1]; i += 2) { 298 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 299 300 if (size > biggestsize) { 301 biggestone = i; 302 biggestsize = size; 303 } 304 if (phys_avail[i] < low_water) 305 low_water = phys_avail[i]; 306 if (phys_avail[i + 1] > high_water) 307 high_water = phys_avail[i + 1]; 308 } 309 310 #ifdef XEN 311 low_water = 0; 312 #endif 313 314 end = phys_avail[biggestone+1]; 315 316 /* 317 * Initialize the page and queue locks. 318 */ 319 mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF); 320 for (i = 0; i < PA_LOCK_COUNT; i++) 321 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 322 for (i = 0; i < PQ_COUNT; i++) 323 vm_pagequeue_init_lock(&vm_pagequeues[i]); 324 325 /* 326 * Allocate memory for use when boot strapping the kernel memory 327 * allocator. 328 */ 329 new_end = end - (boot_pages * UMA_SLAB_SIZE); 330 new_end = trunc_page(new_end); 331 mapped = pmap_map(&vaddr, new_end, end, 332 VM_PROT_READ | VM_PROT_WRITE); 333 bzero((void *)mapped, end - new_end); 334 uma_startup((void *)mapped, boot_pages); 335 336 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \ 337 defined(__mips__) 338 /* 339 * Allocate a bitmap to indicate that a random physical page 340 * needs to be included in a minidump. 341 * 342 * The amd64 port needs this to indicate which direct map pages 343 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 344 * 345 * However, i386 still needs this workspace internally within the 346 * minidump code. In theory, they are not needed on i386, but are 347 * included should the sf_buf code decide to use them. 348 */ 349 last_pa = 0; 350 for (i = 0; dump_avail[i + 1] != 0; i += 2) 351 if (dump_avail[i + 1] > last_pa) 352 last_pa = dump_avail[i + 1]; 353 page_range = last_pa / PAGE_SIZE; 354 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 355 new_end -= vm_page_dump_size; 356 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 357 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 358 bzero((void *)vm_page_dump, vm_page_dump_size); 359 #endif 360 #ifdef __amd64__ 361 /* 362 * Request that the physical pages underlying the message buffer be 363 * included in a crash dump. Since the message buffer is accessed 364 * through the direct map, they are not automatically included. 365 */ 366 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 367 last_pa = pa + round_page(msgbufsize); 368 while (pa < last_pa) { 369 dump_add_page(pa); 370 pa += PAGE_SIZE; 371 } 372 #endif 373 /* 374 * Compute the number of pages of memory that will be available for 375 * use (taking into account the overhead of a page structure per 376 * page). 377 */ 378 first_page = low_water / PAGE_SIZE; 379 #ifdef VM_PHYSSEG_SPARSE 380 page_range = 0; 381 for (i = 0; phys_avail[i + 1] != 0; i += 2) 382 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 383 #elif defined(VM_PHYSSEG_DENSE) 384 page_range = high_water / PAGE_SIZE - first_page; 385 #else 386 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 387 #endif 388 end = new_end; 389 390 /* 391 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 392 */ 393 vaddr += PAGE_SIZE; 394 395 /* 396 * Initialize the mem entry structures now, and put them in the free 397 * queue. 398 */ 399 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 400 mapped = pmap_map(&vaddr, new_end, end, 401 VM_PROT_READ | VM_PROT_WRITE); 402 vm_page_array = (vm_page_t) mapped; 403 #if VM_NRESERVLEVEL > 0 404 /* 405 * Allocate memory for the reservation management system's data 406 * structures. 407 */ 408 new_end = vm_reserv_startup(&vaddr, new_end, high_water); 409 #endif 410 #if defined(__amd64__) || defined(__mips__) 411 /* 412 * pmap_map on amd64 and mips can come out of the direct-map, not kvm 413 * like i386, so the pages must be tracked for a crashdump to include 414 * this data. This includes the vm_page_array and the early UMA 415 * bootstrap pages. 416 */ 417 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 418 dump_add_page(pa); 419 #endif 420 phys_avail[biggestone + 1] = new_end; 421 422 /* 423 * Clear all of the page structures 424 */ 425 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 426 for (i = 0; i < page_range; i++) 427 vm_page_array[i].order = VM_NFREEORDER; 428 vm_page_array_size = page_range; 429 430 /* 431 * Initialize the physical memory allocator. 432 */ 433 vm_phys_init(); 434 435 /* 436 * Add every available physical page that is not blacklisted to 437 * the free lists. 438 */ 439 cnt.v_page_count = 0; 440 cnt.v_free_count = 0; 441 list = getenv("vm.blacklist"); 442 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 443 pa = phys_avail[i]; 444 last_pa = phys_avail[i + 1]; 445 while (pa < last_pa) { 446 if (list != NULL && 447 vm_page_blacklist_lookup(list, pa)) 448 printf("Skipping page with pa 0x%jx\n", 449 (uintmax_t)pa); 450 else 451 vm_phys_add_page(pa); 452 pa += PAGE_SIZE; 453 } 454 } 455 freeenv(list); 456 #if VM_NRESERVLEVEL > 0 457 /* 458 * Initialize the reservation management system. 459 */ 460 vm_reserv_init(); 461 #endif 462 return (vaddr); 463 } 464 465 void 466 vm_page_reference(vm_page_t m) 467 { 468 469 vm_page_aflag_set(m, PGA_REFERENCED); 470 } 471 472 void 473 vm_page_busy(vm_page_t m) 474 { 475 476 VM_OBJECT_ASSERT_WLOCKED(m->object); 477 KASSERT((m->oflags & VPO_BUSY) == 0, 478 ("vm_page_busy: page already busy!!!")); 479 m->oflags |= VPO_BUSY; 480 } 481 482 /* 483 * vm_page_flash: 484 * 485 * wakeup anyone waiting for the page. 486 */ 487 void 488 vm_page_flash(vm_page_t m) 489 { 490 491 VM_OBJECT_ASSERT_WLOCKED(m->object); 492 if (m->oflags & VPO_WANTED) { 493 m->oflags &= ~VPO_WANTED; 494 wakeup(m); 495 } 496 } 497 498 /* 499 * vm_page_wakeup: 500 * 501 * clear the VPO_BUSY flag and wakeup anyone waiting for the 502 * page. 503 * 504 */ 505 void 506 vm_page_wakeup(vm_page_t m) 507 { 508 509 VM_OBJECT_ASSERT_WLOCKED(m->object); 510 KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!")); 511 m->oflags &= ~VPO_BUSY; 512 vm_page_flash(m); 513 } 514 515 void 516 vm_page_io_start(vm_page_t m) 517 { 518 519 VM_OBJECT_ASSERT_WLOCKED(m->object); 520 m->busy++; 521 } 522 523 void 524 vm_page_io_finish(vm_page_t m) 525 { 526 527 VM_OBJECT_ASSERT_WLOCKED(m->object); 528 KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m)); 529 m->busy--; 530 if (m->busy == 0) 531 vm_page_flash(m); 532 } 533 534 /* 535 * Keep page from being freed by the page daemon 536 * much of the same effect as wiring, except much lower 537 * overhead and should be used only for *very* temporary 538 * holding ("wiring"). 539 */ 540 void 541 vm_page_hold(vm_page_t mem) 542 { 543 544 vm_page_lock_assert(mem, MA_OWNED); 545 mem->hold_count++; 546 } 547 548 void 549 vm_page_unhold(vm_page_t mem) 550 { 551 552 vm_page_lock_assert(mem, MA_OWNED); 553 --mem->hold_count; 554 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 555 if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0) 556 vm_page_free_toq(mem); 557 } 558 559 /* 560 * vm_page_unhold_pages: 561 * 562 * Unhold each of the pages that is referenced by the given array. 563 */ 564 void 565 vm_page_unhold_pages(vm_page_t *ma, int count) 566 { 567 struct mtx *mtx, *new_mtx; 568 569 mtx = NULL; 570 for (; count != 0; count--) { 571 /* 572 * Avoid releasing and reacquiring the same page lock. 573 */ 574 new_mtx = vm_page_lockptr(*ma); 575 if (mtx != new_mtx) { 576 if (mtx != NULL) 577 mtx_unlock(mtx); 578 mtx = new_mtx; 579 mtx_lock(mtx); 580 } 581 vm_page_unhold(*ma); 582 ma++; 583 } 584 if (mtx != NULL) 585 mtx_unlock(mtx); 586 } 587 588 vm_page_t 589 PHYS_TO_VM_PAGE(vm_paddr_t pa) 590 { 591 vm_page_t m; 592 593 #ifdef VM_PHYSSEG_SPARSE 594 m = vm_phys_paddr_to_vm_page(pa); 595 if (m == NULL) 596 m = vm_phys_fictitious_to_vm_page(pa); 597 return (m); 598 #elif defined(VM_PHYSSEG_DENSE) 599 long pi; 600 601 pi = atop(pa); 602 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 603 m = &vm_page_array[pi - first_page]; 604 return (m); 605 } 606 return (vm_phys_fictitious_to_vm_page(pa)); 607 #else 608 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 609 #endif 610 } 611 612 /* 613 * vm_page_getfake: 614 * 615 * Create a fictitious page with the specified physical address and 616 * memory attribute. The memory attribute is the only the machine- 617 * dependent aspect of a fictitious page that must be initialized. 618 */ 619 vm_page_t 620 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 621 { 622 vm_page_t m; 623 624 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 625 vm_page_initfake(m, paddr, memattr); 626 return (m); 627 } 628 629 void 630 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 631 { 632 633 if ((m->flags & PG_FICTITIOUS) != 0) { 634 /* 635 * The page's memattr might have changed since the 636 * previous initialization. Update the pmap to the 637 * new memattr. 638 */ 639 goto memattr; 640 } 641 m->phys_addr = paddr; 642 m->queue = PQ_NONE; 643 /* Fictitious pages don't use "segind". */ 644 m->flags = PG_FICTITIOUS; 645 /* Fictitious pages don't use "order" or "pool". */ 646 m->oflags = VPO_BUSY | VPO_UNMANAGED; 647 m->wire_count = 1; 648 memattr: 649 pmap_page_set_memattr(m, memattr); 650 } 651 652 /* 653 * vm_page_putfake: 654 * 655 * Release a fictitious page. 656 */ 657 void 658 vm_page_putfake(vm_page_t m) 659 { 660 661 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 662 KASSERT((m->flags & PG_FICTITIOUS) != 0, 663 ("vm_page_putfake: bad page %p", m)); 664 uma_zfree(fakepg_zone, m); 665 } 666 667 /* 668 * vm_page_updatefake: 669 * 670 * Update the given fictitious page to the specified physical address and 671 * memory attribute. 672 */ 673 void 674 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 675 { 676 677 KASSERT((m->flags & PG_FICTITIOUS) != 0, 678 ("vm_page_updatefake: bad page %p", m)); 679 m->phys_addr = paddr; 680 pmap_page_set_memattr(m, memattr); 681 } 682 683 /* 684 * vm_page_free: 685 * 686 * Free a page. 687 */ 688 void 689 vm_page_free(vm_page_t m) 690 { 691 692 m->flags &= ~PG_ZERO; 693 vm_page_free_toq(m); 694 } 695 696 /* 697 * vm_page_free_zero: 698 * 699 * Free a page to the zerod-pages queue 700 */ 701 void 702 vm_page_free_zero(vm_page_t m) 703 { 704 705 m->flags |= PG_ZERO; 706 vm_page_free_toq(m); 707 } 708 709 /* 710 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES() 711 * array which is not the request page. 712 */ 713 void 714 vm_page_readahead_finish(vm_page_t m) 715 { 716 717 if (m->valid != 0) { 718 /* 719 * Since the page is not the requested page, whether 720 * it should be activated or deactivated is not 721 * obvious. Empirical results have shown that 722 * deactivating the page is usually the best choice, 723 * unless the page is wanted by another thread. 724 */ 725 if (m->oflags & VPO_WANTED) { 726 vm_page_lock(m); 727 vm_page_activate(m); 728 vm_page_unlock(m); 729 } else { 730 vm_page_lock(m); 731 vm_page_deactivate(m); 732 vm_page_unlock(m); 733 } 734 vm_page_wakeup(m); 735 } else { 736 /* 737 * Free the completely invalid page. Such page state 738 * occurs due to the short read operation which did 739 * not covered our page at all, or in case when a read 740 * error happens. 741 */ 742 vm_page_lock(m); 743 vm_page_free(m); 744 vm_page_unlock(m); 745 } 746 } 747 748 /* 749 * vm_page_sleep: 750 * 751 * Sleep and release the page lock. 752 * 753 * The object containing the given page must be locked. 754 */ 755 void 756 vm_page_sleep(vm_page_t m, const char *msg) 757 { 758 759 VM_OBJECT_ASSERT_WLOCKED(m->object); 760 if (mtx_owned(vm_page_lockptr(m))) 761 vm_page_unlock(m); 762 763 /* 764 * It's possible that while we sleep, the page will get 765 * unbusied and freed. If we are holding the object 766 * lock, we will assume we hold a reference to the object 767 * such that even if m->object changes, we can re-lock 768 * it. 769 */ 770 m->oflags |= VPO_WANTED; 771 VM_OBJECT_SLEEP(m->object, m, PVM, msg, 0); 772 } 773 774 /* 775 * vm_page_dirty_KBI: [ internal use only ] 776 * 777 * Set all bits in the page's dirty field. 778 * 779 * The object containing the specified page must be locked if the 780 * call is made from the machine-independent layer. 781 * 782 * See vm_page_clear_dirty_mask(). 783 * 784 * This function should only be called by vm_page_dirty(). 785 */ 786 void 787 vm_page_dirty_KBI(vm_page_t m) 788 { 789 790 /* These assertions refer to this operation by its public name. */ 791 KASSERT((m->flags & PG_CACHED) == 0, 792 ("vm_page_dirty: page in cache!")); 793 KASSERT(!VM_PAGE_IS_FREE(m), 794 ("vm_page_dirty: page is free!")); 795 KASSERT(m->valid == VM_PAGE_BITS_ALL, 796 ("vm_page_dirty: page is invalid!")); 797 m->dirty = VM_PAGE_BITS_ALL; 798 } 799 800 /* 801 * vm_page_insert: [ internal use only ] 802 * 803 * Inserts the given mem entry into the object and object list. 804 * 805 * The object must be locked. 806 */ 807 void 808 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 809 { 810 vm_page_t mpred; 811 812 VM_OBJECT_ASSERT_WLOCKED(object); 813 mpred = vm_radix_lookup_le(&object->rtree, pindex); 814 vm_page_insert_after(m, object, pindex, mpred); 815 } 816 817 /* 818 * vm_page_insert_after: 819 * 820 * Inserts the page "m" into the specified object at offset "pindex". 821 * 822 * The page "mpred" must immediately precede the offset "pindex" within 823 * the specified object. 824 * 825 * The object must be locked. 826 */ 827 static void 828 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 829 vm_page_t mpred) 830 { 831 vm_page_t msucc; 832 833 VM_OBJECT_ASSERT_WLOCKED(object); 834 KASSERT(m->object == NULL, 835 ("vm_page_insert_after: page already inserted")); 836 if (mpred != NULL) { 837 KASSERT(mpred->object == object || 838 (mpred->flags & PG_SLAB) != 0, 839 ("vm_page_insert_after: object doesn't contain mpred")); 840 KASSERT(mpred->pindex < pindex, 841 ("vm_page_insert_after: mpred doesn't precede pindex")); 842 msucc = TAILQ_NEXT(mpred, listq); 843 } else 844 msucc = TAILQ_FIRST(&object->memq); 845 if (msucc != NULL) 846 KASSERT(msucc->pindex > pindex, 847 ("vm_page_insert_after: msucc doesn't succeed pindex")); 848 849 /* 850 * Record the object/offset pair in this page 851 */ 852 m->object = object; 853 m->pindex = pindex; 854 855 /* 856 * Now link into the object's ordered list of backed pages. 857 */ 858 if (mpred != NULL) 859 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 860 else 861 TAILQ_INSERT_HEAD(&object->memq, m, listq); 862 vm_radix_insert(&object->rtree, m); 863 864 /* 865 * Show that the object has one more resident page. 866 */ 867 object->resident_page_count++; 868 869 /* 870 * Hold the vnode until the last page is released. 871 */ 872 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 873 vhold(object->handle); 874 875 /* 876 * Since we are inserting a new and possibly dirty page, 877 * update the object's OBJ_MIGHTBEDIRTY flag. 878 */ 879 if (pmap_page_is_write_mapped(m)) 880 vm_object_set_writeable_dirty(object); 881 } 882 883 /* 884 * vm_page_remove: 885 * 886 * Removes the given mem entry from the object/offset-page 887 * table and the object page list, but do not invalidate/terminate 888 * the backing store. 889 * 890 * The object must be locked. The page must be locked if it is managed. 891 */ 892 void 893 vm_page_remove(vm_page_t m) 894 { 895 vm_object_t object; 896 897 if ((m->oflags & VPO_UNMANAGED) == 0) 898 vm_page_lock_assert(m, MA_OWNED); 899 if ((object = m->object) == NULL) 900 return; 901 VM_OBJECT_ASSERT_WLOCKED(object); 902 if (m->oflags & VPO_BUSY) { 903 m->oflags &= ~VPO_BUSY; 904 vm_page_flash(m); 905 } 906 907 /* 908 * Now remove from the object's list of backed pages. 909 */ 910 vm_radix_remove(&object->rtree, m->pindex); 911 TAILQ_REMOVE(&object->memq, m, listq); 912 913 /* 914 * And show that the object has one fewer resident page. 915 */ 916 object->resident_page_count--; 917 918 /* 919 * The vnode may now be recycled. 920 */ 921 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 922 vdrop(object->handle); 923 924 m->object = NULL; 925 } 926 927 /* 928 * vm_page_lookup: 929 * 930 * Returns the page associated with the object/offset 931 * pair specified; if none is found, NULL is returned. 932 * 933 * The object must be locked. 934 */ 935 vm_page_t 936 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 937 { 938 939 VM_OBJECT_ASSERT_LOCKED(object); 940 return (vm_radix_lookup(&object->rtree, pindex)); 941 } 942 943 /* 944 * vm_page_find_least: 945 * 946 * Returns the page associated with the object with least pindex 947 * greater than or equal to the parameter pindex, or NULL. 948 * 949 * The object must be locked. 950 */ 951 vm_page_t 952 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 953 { 954 vm_page_t m; 955 956 VM_OBJECT_ASSERT_LOCKED(object); 957 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 958 m = vm_radix_lookup_ge(&object->rtree, pindex); 959 return (m); 960 } 961 962 /* 963 * Returns the given page's successor (by pindex) within the object if it is 964 * resident; if none is found, NULL is returned. 965 * 966 * The object must be locked. 967 */ 968 vm_page_t 969 vm_page_next(vm_page_t m) 970 { 971 vm_page_t next; 972 973 VM_OBJECT_ASSERT_WLOCKED(m->object); 974 if ((next = TAILQ_NEXT(m, listq)) != NULL && 975 next->pindex != m->pindex + 1) 976 next = NULL; 977 return (next); 978 } 979 980 /* 981 * Returns the given page's predecessor (by pindex) within the object if it is 982 * resident; if none is found, NULL is returned. 983 * 984 * The object must be locked. 985 */ 986 vm_page_t 987 vm_page_prev(vm_page_t m) 988 { 989 vm_page_t prev; 990 991 VM_OBJECT_ASSERT_WLOCKED(m->object); 992 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL && 993 prev->pindex != m->pindex - 1) 994 prev = NULL; 995 return (prev); 996 } 997 998 /* 999 * vm_page_rename: 1000 * 1001 * Move the given memory entry from its 1002 * current object to the specified target object/offset. 1003 * 1004 * Note: swap associated with the page must be invalidated by the move. We 1005 * have to do this for several reasons: (1) we aren't freeing the 1006 * page, (2) we are dirtying the page, (3) the VM system is probably 1007 * moving the page from object A to B, and will then later move 1008 * the backing store from A to B and we can't have a conflict. 1009 * 1010 * Note: we *always* dirty the page. It is necessary both for the 1011 * fact that we moved it, and because we may be invalidating 1012 * swap. If the page is on the cache, we have to deactivate it 1013 * or vm_page_dirty() will panic. Dirty pages are not allowed 1014 * on the cache. 1015 * 1016 * The objects must be locked. The page must be locked if it is managed. 1017 */ 1018 void 1019 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1020 { 1021 1022 vm_page_remove(m); 1023 vm_page_insert(m, new_object, new_pindex); 1024 vm_page_dirty(m); 1025 } 1026 1027 /* 1028 * Convert all of the given object's cached pages that have a 1029 * pindex within the given range into free pages. If the value 1030 * zero is given for "end", then the range's upper bound is 1031 * infinity. If the given object is backed by a vnode and it 1032 * transitions from having one or more cached pages to none, the 1033 * vnode's hold count is reduced. 1034 */ 1035 void 1036 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1037 { 1038 vm_page_t m; 1039 boolean_t empty; 1040 1041 mtx_lock(&vm_page_queue_free_mtx); 1042 if (__predict_false(vm_radix_is_empty(&object->cache))) { 1043 mtx_unlock(&vm_page_queue_free_mtx); 1044 return; 1045 } 1046 while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) { 1047 if (end != 0 && m->pindex >= end) 1048 break; 1049 vm_radix_remove(&object->cache, m->pindex); 1050 m->object = NULL; 1051 m->valid = 0; 1052 /* Clear PG_CACHED and set PG_FREE. */ 1053 m->flags ^= PG_CACHED | PG_FREE; 1054 KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE, 1055 ("vm_page_cache_free: page %p has inconsistent flags", m)); 1056 cnt.v_cache_count--; 1057 cnt.v_free_count++; 1058 } 1059 empty = vm_radix_is_empty(&object->cache); 1060 mtx_unlock(&vm_page_queue_free_mtx); 1061 if (object->type == OBJT_VNODE && empty) 1062 vdrop(object->handle); 1063 } 1064 1065 /* 1066 * Returns the cached page that is associated with the given 1067 * object and offset. If, however, none exists, returns NULL. 1068 * 1069 * The free page queue must be locked. 1070 */ 1071 static inline vm_page_t 1072 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex) 1073 { 1074 1075 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1076 return (vm_radix_lookup(&object->cache, pindex)); 1077 } 1078 1079 /* 1080 * Remove the given cached page from its containing object's 1081 * collection of cached pages. 1082 * 1083 * The free page queue must be locked. 1084 */ 1085 static void 1086 vm_page_cache_remove(vm_page_t m) 1087 { 1088 1089 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1090 KASSERT((m->flags & PG_CACHED) != 0, 1091 ("vm_page_cache_remove: page %p is not cached", m)); 1092 vm_radix_remove(&m->object->cache, m->pindex); 1093 m->object = NULL; 1094 cnt.v_cache_count--; 1095 } 1096 1097 /* 1098 * Transfer all of the cached pages with offset greater than or 1099 * equal to 'offidxstart' from the original object's cache to the 1100 * new object's cache. However, any cached pages with offset 1101 * greater than or equal to the new object's size are kept in the 1102 * original object. Initially, the new object's cache must be 1103 * empty. Offset 'offidxstart' in the original object must 1104 * correspond to offset zero in the new object. 1105 * 1106 * The new object must be locked. 1107 */ 1108 void 1109 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart, 1110 vm_object_t new_object) 1111 { 1112 vm_page_t m; 1113 1114 /* 1115 * Insertion into an object's collection of cached pages 1116 * requires the object to be locked. In contrast, removal does 1117 * not. 1118 */ 1119 VM_OBJECT_ASSERT_WLOCKED(new_object); 1120 KASSERT(vm_radix_is_empty(&new_object->cache), 1121 ("vm_page_cache_transfer: object %p has cached pages", 1122 new_object)); 1123 mtx_lock(&vm_page_queue_free_mtx); 1124 while ((m = vm_radix_lookup_ge(&orig_object->cache, 1125 offidxstart)) != NULL) { 1126 /* 1127 * Transfer all of the pages with offset greater than or 1128 * equal to 'offidxstart' from the original object's 1129 * cache to the new object's cache. 1130 */ 1131 if ((m->pindex - offidxstart) >= new_object->size) 1132 break; 1133 vm_radix_remove(&orig_object->cache, m->pindex); 1134 /* Update the page's object and offset. */ 1135 m->object = new_object; 1136 m->pindex -= offidxstart; 1137 vm_radix_insert(&new_object->cache, m); 1138 } 1139 mtx_unlock(&vm_page_queue_free_mtx); 1140 } 1141 1142 /* 1143 * Returns TRUE if a cached page is associated with the given object and 1144 * offset, and FALSE otherwise. 1145 * 1146 * The object must be locked. 1147 */ 1148 boolean_t 1149 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex) 1150 { 1151 vm_page_t m; 1152 1153 /* 1154 * Insertion into an object's collection of cached pages requires the 1155 * object to be locked. Therefore, if the object is locked and the 1156 * object's collection is empty, there is no need to acquire the free 1157 * page queues lock in order to prove that the specified page doesn't 1158 * exist. 1159 */ 1160 VM_OBJECT_ASSERT_WLOCKED(object); 1161 if (__predict_true(vm_object_cache_is_empty(object))) 1162 return (FALSE); 1163 mtx_lock(&vm_page_queue_free_mtx); 1164 m = vm_page_cache_lookup(object, pindex); 1165 mtx_unlock(&vm_page_queue_free_mtx); 1166 return (m != NULL); 1167 } 1168 1169 /* 1170 * vm_page_alloc: 1171 * 1172 * Allocate and return a page that is associated with the specified 1173 * object and offset pair. By default, this page has the flag VPO_BUSY 1174 * set. 1175 * 1176 * The caller must always specify an allocation class. 1177 * 1178 * allocation classes: 1179 * VM_ALLOC_NORMAL normal process request 1180 * VM_ALLOC_SYSTEM system *really* needs a page 1181 * VM_ALLOC_INTERRUPT interrupt time request 1182 * 1183 * optional allocation flags: 1184 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1185 * intends to allocate 1186 * VM_ALLOC_IFCACHED return page only if it is cached 1187 * VM_ALLOC_IFNOTCACHED return NULL, do not reactivate if the page 1188 * is cached 1189 * VM_ALLOC_NOBUSY do not set the flag VPO_BUSY on the page 1190 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1191 * VM_ALLOC_NOOBJ page is not associated with an object and 1192 * should not have the flag VPO_BUSY set 1193 * VM_ALLOC_WIRED wire the allocated page 1194 * VM_ALLOC_ZERO prefer a zeroed page 1195 * 1196 * This routine may not sleep. 1197 */ 1198 vm_page_t 1199 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1200 { 1201 struct vnode *vp = NULL; 1202 vm_object_t m_object; 1203 vm_page_t m, mpred; 1204 int flags, req_class; 1205 1206 mpred = 0; /* XXX: pacify gcc */ 1207 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0), 1208 ("vm_page_alloc: inconsistent object/req")); 1209 if (object != NULL) 1210 VM_OBJECT_ASSERT_WLOCKED(object); 1211 1212 req_class = req & VM_ALLOC_CLASS_MASK; 1213 1214 /* 1215 * The page daemon is allowed to dig deeper into the free page list. 1216 */ 1217 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1218 req_class = VM_ALLOC_SYSTEM; 1219 1220 if (object != NULL) { 1221 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1222 KASSERT(mpred == NULL || mpred->pindex != pindex, 1223 ("vm_page_alloc: pindex already allocated")); 1224 } 1225 mtx_lock(&vm_page_queue_free_mtx); 1226 if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved || 1227 (req_class == VM_ALLOC_SYSTEM && 1228 cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) || 1229 (req_class == VM_ALLOC_INTERRUPT && 1230 cnt.v_free_count + cnt.v_cache_count > 0)) { 1231 /* 1232 * Allocate from the free queue if the number of free pages 1233 * exceeds the minimum for the request class. 1234 */ 1235 if (object != NULL && 1236 (m = vm_page_cache_lookup(object, pindex)) != NULL) { 1237 if ((req & VM_ALLOC_IFNOTCACHED) != 0) { 1238 mtx_unlock(&vm_page_queue_free_mtx); 1239 return (NULL); 1240 } 1241 if (vm_phys_unfree_page(m)) 1242 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0); 1243 #if VM_NRESERVLEVEL > 0 1244 else if (!vm_reserv_reactivate_page(m)) 1245 #else 1246 else 1247 #endif 1248 panic("vm_page_alloc: cache page %p is missing" 1249 " from the free queue", m); 1250 } else if ((req & VM_ALLOC_IFCACHED) != 0) { 1251 mtx_unlock(&vm_page_queue_free_mtx); 1252 return (NULL); 1253 #if VM_NRESERVLEVEL > 0 1254 } else if (object == NULL || (object->flags & (OBJ_COLORED | 1255 OBJ_FICTITIOUS)) != OBJ_COLORED || (m = 1256 vm_reserv_alloc_page(object, pindex, mpred)) == NULL) { 1257 #else 1258 } else { 1259 #endif 1260 m = vm_phys_alloc_pages(object != NULL ? 1261 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 1262 #if VM_NRESERVLEVEL > 0 1263 if (m == NULL && vm_reserv_reclaim_inactive()) { 1264 m = vm_phys_alloc_pages(object != NULL ? 1265 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 1266 0); 1267 } 1268 #endif 1269 } 1270 } else { 1271 /* 1272 * Not allocatable, give up. 1273 */ 1274 mtx_unlock(&vm_page_queue_free_mtx); 1275 atomic_add_int(&vm_pageout_deficit, 1276 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 1277 pagedaemon_wakeup(); 1278 return (NULL); 1279 } 1280 1281 /* 1282 * At this point we had better have found a good page. 1283 */ 1284 KASSERT(m != NULL, ("vm_page_alloc: missing page")); 1285 KASSERT(m->queue == PQ_NONE, 1286 ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue)); 1287 KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m)); 1288 KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m)); 1289 KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m)); 1290 KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m)); 1291 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1292 ("vm_page_alloc: page %p has unexpected memattr %d", m, 1293 pmap_page_get_memattr(m))); 1294 if ((m->flags & PG_CACHED) != 0) { 1295 KASSERT((m->flags & PG_ZERO) == 0, 1296 ("vm_page_alloc: cached page %p is PG_ZERO", m)); 1297 KASSERT(m->valid != 0, 1298 ("vm_page_alloc: cached page %p is invalid", m)); 1299 if (m->object == object && m->pindex == pindex) 1300 cnt.v_reactivated++; 1301 else 1302 m->valid = 0; 1303 m_object = m->object; 1304 vm_page_cache_remove(m); 1305 if (m_object->type == OBJT_VNODE && 1306 vm_object_cache_is_empty(m_object)) 1307 vp = m_object->handle; 1308 } else { 1309 KASSERT(VM_PAGE_IS_FREE(m), 1310 ("vm_page_alloc: page %p is not free", m)); 1311 KASSERT(m->valid == 0, 1312 ("vm_page_alloc: free page %p is valid", m)); 1313 cnt.v_free_count--; 1314 } 1315 1316 /* 1317 * Only the PG_ZERO flag is inherited. The PG_CACHED or PG_FREE flag 1318 * must be cleared before the free page queues lock is released. 1319 */ 1320 flags = 0; 1321 if (m->flags & PG_ZERO) { 1322 vm_page_zero_count--; 1323 if (req & VM_ALLOC_ZERO) 1324 flags = PG_ZERO; 1325 } 1326 if (req & VM_ALLOC_NODUMP) 1327 flags |= PG_NODUMP; 1328 m->flags = flags; 1329 mtx_unlock(&vm_page_queue_free_mtx); 1330 m->aflags = 0; 1331 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 1332 VPO_UNMANAGED : 0; 1333 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0) 1334 m->oflags |= VPO_BUSY; 1335 if (req & VM_ALLOC_WIRED) { 1336 /* 1337 * The page lock is not required for wiring a page until that 1338 * page is inserted into the object. 1339 */ 1340 atomic_add_int(&cnt.v_wire_count, 1); 1341 m->wire_count = 1; 1342 } 1343 m->act_count = 0; 1344 1345 if (object != NULL) { 1346 /* Ignore device objects; the pager sets "memattr" for them. */ 1347 if (object->memattr != VM_MEMATTR_DEFAULT && 1348 (object->flags & OBJ_FICTITIOUS) == 0) 1349 pmap_page_set_memattr(m, object->memattr); 1350 vm_page_insert_after(m, object, pindex, mpred); 1351 } else 1352 m->pindex = pindex; 1353 1354 /* 1355 * The following call to vdrop() must come after the above call 1356 * to vm_page_insert() in case both affect the same object and 1357 * vnode. Otherwise, the affected vnode's hold count could 1358 * temporarily become zero. 1359 */ 1360 if (vp != NULL) 1361 vdrop(vp); 1362 1363 /* 1364 * Don't wakeup too often - wakeup the pageout daemon when 1365 * we would be nearly out of memory. 1366 */ 1367 if (vm_paging_needed()) 1368 pagedaemon_wakeup(); 1369 1370 return (m); 1371 } 1372 1373 /* 1374 * vm_page_alloc_contig: 1375 * 1376 * Allocate a contiguous set of physical pages of the given size "npages" 1377 * from the free lists. All of the physical pages must be at or above 1378 * the given physical address "low" and below the given physical address 1379 * "high". The given value "alignment" determines the alignment of the 1380 * first physical page in the set. If the given value "boundary" is 1381 * non-zero, then the set of physical pages cannot cross any physical 1382 * address boundary that is a multiple of that value. Both "alignment" 1383 * and "boundary" must be a power of two. 1384 * 1385 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 1386 * then the memory attribute setting for the physical pages is configured 1387 * to the object's memory attribute setting. Otherwise, the memory 1388 * attribute setting for the physical pages is configured to "memattr", 1389 * overriding the object's memory attribute setting. However, if the 1390 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 1391 * memory attribute setting for the physical pages cannot be configured 1392 * to VM_MEMATTR_DEFAULT. 1393 * 1394 * The caller must always specify an allocation class. 1395 * 1396 * allocation classes: 1397 * VM_ALLOC_NORMAL normal process request 1398 * VM_ALLOC_SYSTEM system *really* needs a page 1399 * VM_ALLOC_INTERRUPT interrupt time request 1400 * 1401 * optional allocation flags: 1402 * VM_ALLOC_NOBUSY do not set the flag VPO_BUSY on the page 1403 * VM_ALLOC_NOOBJ page is not associated with an object and 1404 * should not have the flag VPO_BUSY set 1405 * VM_ALLOC_WIRED wire the allocated page 1406 * VM_ALLOC_ZERO prefer a zeroed page 1407 * 1408 * This routine may not sleep. 1409 */ 1410 vm_page_t 1411 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 1412 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1413 vm_paddr_t boundary, vm_memattr_t memattr) 1414 { 1415 struct vnode *drop; 1416 vm_page_t deferred_vdrop_list, m, m_ret; 1417 u_int flags, oflags; 1418 int req_class; 1419 1420 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0), 1421 ("vm_page_alloc_contig: inconsistent object/req")); 1422 if (object != NULL) { 1423 VM_OBJECT_ASSERT_WLOCKED(object); 1424 KASSERT(object->type == OBJT_PHYS, 1425 ("vm_page_alloc_contig: object %p isn't OBJT_PHYS", 1426 object)); 1427 } 1428 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 1429 req_class = req & VM_ALLOC_CLASS_MASK; 1430 1431 /* 1432 * The page daemon is allowed to dig deeper into the free page list. 1433 */ 1434 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1435 req_class = VM_ALLOC_SYSTEM; 1436 1437 deferred_vdrop_list = NULL; 1438 mtx_lock(&vm_page_queue_free_mtx); 1439 if (cnt.v_free_count + cnt.v_cache_count >= npages + 1440 cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM && 1441 cnt.v_free_count + cnt.v_cache_count >= npages + 1442 cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT && 1443 cnt.v_free_count + cnt.v_cache_count >= npages)) { 1444 #if VM_NRESERVLEVEL > 0 1445 retry: 1446 if (object == NULL || (object->flags & OBJ_COLORED) == 0 || 1447 (m_ret = vm_reserv_alloc_contig(object, pindex, npages, 1448 low, high, alignment, boundary)) == NULL) 1449 #endif 1450 m_ret = vm_phys_alloc_contig(npages, low, high, 1451 alignment, boundary); 1452 } else { 1453 mtx_unlock(&vm_page_queue_free_mtx); 1454 atomic_add_int(&vm_pageout_deficit, npages); 1455 pagedaemon_wakeup(); 1456 return (NULL); 1457 } 1458 if (m_ret != NULL) 1459 for (m = m_ret; m < &m_ret[npages]; m++) { 1460 drop = vm_page_alloc_init(m); 1461 if (drop != NULL) { 1462 /* 1463 * Enqueue the vnode for deferred vdrop(). 1464 * 1465 * Once the pages are removed from the free 1466 * page list, "pageq" can be safely abused to 1467 * construct a short-lived list of vnodes. 1468 */ 1469 m->pageq.tqe_prev = (void *)drop; 1470 m->pageq.tqe_next = deferred_vdrop_list; 1471 deferred_vdrop_list = m; 1472 } 1473 } 1474 else { 1475 #if VM_NRESERVLEVEL > 0 1476 if (vm_reserv_reclaim_contig(npages, low, high, alignment, 1477 boundary)) 1478 goto retry; 1479 #endif 1480 } 1481 mtx_unlock(&vm_page_queue_free_mtx); 1482 if (m_ret == NULL) 1483 return (NULL); 1484 1485 /* 1486 * Initialize the pages. Only the PG_ZERO flag is inherited. 1487 */ 1488 flags = 0; 1489 if ((req & VM_ALLOC_ZERO) != 0) 1490 flags = PG_ZERO; 1491 if ((req & VM_ALLOC_NODUMP) != 0) 1492 flags |= PG_NODUMP; 1493 if ((req & VM_ALLOC_WIRED) != 0) 1494 atomic_add_int(&cnt.v_wire_count, npages); 1495 oflags = VPO_UNMANAGED; 1496 if (object != NULL) { 1497 if ((req & VM_ALLOC_NOBUSY) == 0) 1498 oflags |= VPO_BUSY; 1499 if (object->memattr != VM_MEMATTR_DEFAULT && 1500 memattr == VM_MEMATTR_DEFAULT) 1501 memattr = object->memattr; 1502 } 1503 for (m = m_ret; m < &m_ret[npages]; m++) { 1504 m->aflags = 0; 1505 m->flags = (m->flags | PG_NODUMP) & flags; 1506 if ((req & VM_ALLOC_WIRED) != 0) 1507 m->wire_count = 1; 1508 /* Unmanaged pages don't use "act_count". */ 1509 m->oflags = oflags; 1510 if (memattr != VM_MEMATTR_DEFAULT) 1511 pmap_page_set_memattr(m, memattr); 1512 if (object != NULL) 1513 vm_page_insert(m, object, pindex); 1514 else 1515 m->pindex = pindex; 1516 pindex++; 1517 } 1518 while (deferred_vdrop_list != NULL) { 1519 vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev); 1520 deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next; 1521 } 1522 if (vm_paging_needed()) 1523 pagedaemon_wakeup(); 1524 return (m_ret); 1525 } 1526 1527 /* 1528 * Initialize a page that has been freshly dequeued from a freelist. 1529 * The caller has to drop the vnode returned, if it is not NULL. 1530 * 1531 * This function may only be used to initialize unmanaged pages. 1532 * 1533 * To be called with vm_page_queue_free_mtx held. 1534 */ 1535 static struct vnode * 1536 vm_page_alloc_init(vm_page_t m) 1537 { 1538 struct vnode *drop; 1539 vm_object_t m_object; 1540 1541 KASSERT(m->queue == PQ_NONE, 1542 ("vm_page_alloc_init: page %p has unexpected queue %d", 1543 m, m->queue)); 1544 KASSERT(m->wire_count == 0, 1545 ("vm_page_alloc_init: page %p is wired", m)); 1546 KASSERT(m->hold_count == 0, 1547 ("vm_page_alloc_init: page %p is held", m)); 1548 KASSERT(m->busy == 0, 1549 ("vm_page_alloc_init: page %p is busy", m)); 1550 KASSERT(m->dirty == 0, 1551 ("vm_page_alloc_init: page %p is dirty", m)); 1552 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1553 ("vm_page_alloc_init: page %p has unexpected memattr %d", 1554 m, pmap_page_get_memattr(m))); 1555 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1556 drop = NULL; 1557 if ((m->flags & PG_CACHED) != 0) { 1558 KASSERT((m->flags & PG_ZERO) == 0, 1559 ("vm_page_alloc_init: cached page %p is PG_ZERO", m)); 1560 m->valid = 0; 1561 m_object = m->object; 1562 vm_page_cache_remove(m); 1563 if (m_object->type == OBJT_VNODE && 1564 vm_object_cache_is_empty(m_object)) 1565 drop = m_object->handle; 1566 } else { 1567 KASSERT(VM_PAGE_IS_FREE(m), 1568 ("vm_page_alloc_init: page %p is not free", m)); 1569 KASSERT(m->valid == 0, 1570 ("vm_page_alloc_init: free page %p is valid", m)); 1571 cnt.v_free_count--; 1572 if ((m->flags & PG_ZERO) != 0) 1573 vm_page_zero_count--; 1574 } 1575 /* Don't clear the PG_ZERO flag; we'll need it later. */ 1576 m->flags &= PG_ZERO; 1577 return (drop); 1578 } 1579 1580 /* 1581 * vm_page_alloc_freelist: 1582 * 1583 * Allocate a physical page from the specified free page list. 1584 * 1585 * The caller must always specify an allocation class. 1586 * 1587 * allocation classes: 1588 * VM_ALLOC_NORMAL normal process request 1589 * VM_ALLOC_SYSTEM system *really* needs a page 1590 * VM_ALLOC_INTERRUPT interrupt time request 1591 * 1592 * optional allocation flags: 1593 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1594 * intends to allocate 1595 * VM_ALLOC_WIRED wire the allocated page 1596 * VM_ALLOC_ZERO prefer a zeroed page 1597 * 1598 * This routine may not sleep. 1599 */ 1600 vm_page_t 1601 vm_page_alloc_freelist(int flind, int req) 1602 { 1603 struct vnode *drop; 1604 vm_page_t m; 1605 u_int flags; 1606 int req_class; 1607 1608 req_class = req & VM_ALLOC_CLASS_MASK; 1609 1610 /* 1611 * The page daemon is allowed to dig deeper into the free page list. 1612 */ 1613 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1614 req_class = VM_ALLOC_SYSTEM; 1615 1616 /* 1617 * Do not allocate reserved pages unless the req has asked for it. 1618 */ 1619 mtx_lock(&vm_page_queue_free_mtx); 1620 if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved || 1621 (req_class == VM_ALLOC_SYSTEM && 1622 cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) || 1623 (req_class == VM_ALLOC_INTERRUPT && 1624 cnt.v_free_count + cnt.v_cache_count > 0)) 1625 m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0); 1626 else { 1627 mtx_unlock(&vm_page_queue_free_mtx); 1628 atomic_add_int(&vm_pageout_deficit, 1629 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 1630 pagedaemon_wakeup(); 1631 return (NULL); 1632 } 1633 if (m == NULL) { 1634 mtx_unlock(&vm_page_queue_free_mtx); 1635 return (NULL); 1636 } 1637 drop = vm_page_alloc_init(m); 1638 mtx_unlock(&vm_page_queue_free_mtx); 1639 1640 /* 1641 * Initialize the page. Only the PG_ZERO flag is inherited. 1642 */ 1643 m->aflags = 0; 1644 flags = 0; 1645 if ((req & VM_ALLOC_ZERO) != 0) 1646 flags = PG_ZERO; 1647 m->flags &= flags; 1648 if ((req & VM_ALLOC_WIRED) != 0) { 1649 /* 1650 * The page lock is not required for wiring a page that does 1651 * not belong to an object. 1652 */ 1653 atomic_add_int(&cnt.v_wire_count, 1); 1654 m->wire_count = 1; 1655 } 1656 /* Unmanaged pages don't use "act_count". */ 1657 m->oflags = VPO_UNMANAGED; 1658 if (drop != NULL) 1659 vdrop(drop); 1660 if (vm_paging_needed()) 1661 pagedaemon_wakeup(); 1662 return (m); 1663 } 1664 1665 /* 1666 * vm_wait: (also see VM_WAIT macro) 1667 * 1668 * Sleep until free pages are available for allocation. 1669 * - Called in various places before memory allocations. 1670 */ 1671 void 1672 vm_wait(void) 1673 { 1674 1675 mtx_lock(&vm_page_queue_free_mtx); 1676 if (curproc == pageproc) { 1677 vm_pageout_pages_needed = 1; 1678 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, 1679 PDROP | PSWP, "VMWait", 0); 1680 } else { 1681 if (!vm_pages_needed) { 1682 vm_pages_needed = 1; 1683 wakeup(&vm_pages_needed); 1684 } 1685 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, 1686 "vmwait", 0); 1687 } 1688 } 1689 1690 /* 1691 * vm_waitpfault: (also see VM_WAITPFAULT macro) 1692 * 1693 * Sleep until free pages are available for allocation. 1694 * - Called only in vm_fault so that processes page faulting 1695 * can be easily tracked. 1696 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 1697 * processes will be able to grab memory first. Do not change 1698 * this balance without careful testing first. 1699 */ 1700 void 1701 vm_waitpfault(void) 1702 { 1703 1704 mtx_lock(&vm_page_queue_free_mtx); 1705 if (!vm_pages_needed) { 1706 vm_pages_needed = 1; 1707 wakeup(&vm_pages_needed); 1708 } 1709 msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, 1710 "pfault", 0); 1711 } 1712 1713 /* 1714 * vm_page_dequeue: 1715 * 1716 * Remove the given page from its current page queue. 1717 * 1718 * The page must be locked. 1719 */ 1720 void 1721 vm_page_dequeue(vm_page_t m) 1722 { 1723 struct vm_pagequeue *pq; 1724 1725 vm_page_lock_assert(m, MA_OWNED); 1726 KASSERT(m->queue != PQ_NONE, 1727 ("vm_page_dequeue: page %p is not queued", m)); 1728 pq = &vm_pagequeues[m->queue]; 1729 vm_pagequeue_lock(pq); 1730 m->queue = PQ_NONE; 1731 TAILQ_REMOVE(&pq->pq_pl, m, pageq); 1732 (*pq->pq_cnt)--; 1733 vm_pagequeue_unlock(pq); 1734 } 1735 1736 /* 1737 * vm_page_dequeue_locked: 1738 * 1739 * Remove the given page from its current page queue. 1740 * 1741 * The page and page queue must be locked. 1742 */ 1743 void 1744 vm_page_dequeue_locked(vm_page_t m) 1745 { 1746 struct vm_pagequeue *pq; 1747 1748 vm_page_lock_assert(m, MA_OWNED); 1749 pq = &vm_pagequeues[m->queue]; 1750 vm_pagequeue_assert_locked(pq); 1751 m->queue = PQ_NONE; 1752 TAILQ_REMOVE(&pq->pq_pl, m, pageq); 1753 (*pq->pq_cnt)--; 1754 } 1755 1756 /* 1757 * vm_page_enqueue: 1758 * 1759 * Add the given page to the specified page queue. 1760 * 1761 * The page must be locked. 1762 */ 1763 static void 1764 vm_page_enqueue(int queue, vm_page_t m) 1765 { 1766 struct vm_pagequeue *pq; 1767 1768 vm_page_lock_assert(m, MA_OWNED); 1769 pq = &vm_pagequeues[queue]; 1770 vm_pagequeue_lock(pq); 1771 m->queue = queue; 1772 TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq); 1773 ++*pq->pq_cnt; 1774 vm_pagequeue_unlock(pq); 1775 } 1776 1777 /* 1778 * vm_page_requeue: 1779 * 1780 * Move the given page to the tail of its current page queue. 1781 * 1782 * The page must be locked. 1783 */ 1784 void 1785 vm_page_requeue(vm_page_t m) 1786 { 1787 struct vm_pagequeue *pq; 1788 1789 vm_page_lock_assert(m, MA_OWNED); 1790 KASSERT(m->queue != PQ_NONE, 1791 ("vm_page_requeue: page %p is not queued", m)); 1792 pq = &vm_pagequeues[m->queue]; 1793 vm_pagequeue_lock(pq); 1794 TAILQ_REMOVE(&pq->pq_pl, m, pageq); 1795 TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq); 1796 vm_pagequeue_unlock(pq); 1797 } 1798 1799 /* 1800 * vm_page_requeue_locked: 1801 * 1802 * Move the given page to the tail of its current page queue. 1803 * 1804 * The page queue must be locked. 1805 */ 1806 void 1807 vm_page_requeue_locked(vm_page_t m) 1808 { 1809 struct vm_pagequeue *pq; 1810 1811 KASSERT(m->queue != PQ_NONE, 1812 ("vm_page_requeue_locked: page %p is not queued", m)); 1813 pq = &vm_pagequeues[m->queue]; 1814 vm_pagequeue_assert_locked(pq); 1815 TAILQ_REMOVE(&pq->pq_pl, m, pageq); 1816 TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq); 1817 } 1818 1819 /* 1820 * vm_page_activate: 1821 * 1822 * Put the specified page on the active list (if appropriate). 1823 * Ensure that act_count is at least ACT_INIT but do not otherwise 1824 * mess with it. 1825 * 1826 * The page must be locked. 1827 */ 1828 void 1829 vm_page_activate(vm_page_t m) 1830 { 1831 int queue; 1832 1833 vm_page_lock_assert(m, MA_OWNED); 1834 if ((queue = m->queue) != PQ_ACTIVE) { 1835 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 1836 if (m->act_count < ACT_INIT) 1837 m->act_count = ACT_INIT; 1838 if (queue != PQ_NONE) 1839 vm_page_dequeue(m); 1840 vm_page_enqueue(PQ_ACTIVE, m); 1841 } else 1842 KASSERT(queue == PQ_NONE, 1843 ("vm_page_activate: wired page %p is queued", m)); 1844 } else { 1845 if (m->act_count < ACT_INIT) 1846 m->act_count = ACT_INIT; 1847 } 1848 } 1849 1850 /* 1851 * vm_page_free_wakeup: 1852 * 1853 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1854 * routine is called when a page has been added to the cache or free 1855 * queues. 1856 * 1857 * The page queues must be locked. 1858 */ 1859 static inline void 1860 vm_page_free_wakeup(void) 1861 { 1862 1863 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1864 /* 1865 * if pageout daemon needs pages, then tell it that there are 1866 * some free. 1867 */ 1868 if (vm_pageout_pages_needed && 1869 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1870 wakeup(&vm_pageout_pages_needed); 1871 vm_pageout_pages_needed = 0; 1872 } 1873 /* 1874 * wakeup processes that are waiting on memory if we hit a 1875 * high water mark. And wakeup scheduler process if we have 1876 * lots of memory. this process will swapin processes. 1877 */ 1878 if (vm_pages_needed && !vm_page_count_min()) { 1879 vm_pages_needed = 0; 1880 wakeup(&cnt.v_free_count); 1881 } 1882 } 1883 1884 /* 1885 * vm_page_free_toq: 1886 * 1887 * Returns the given page to the free list, 1888 * disassociating it with any VM object. 1889 * 1890 * The object must be locked. The page must be locked if it is managed. 1891 */ 1892 void 1893 vm_page_free_toq(vm_page_t m) 1894 { 1895 1896 if ((m->oflags & VPO_UNMANAGED) == 0) { 1897 vm_page_lock_assert(m, MA_OWNED); 1898 KASSERT(!pmap_page_is_mapped(m), 1899 ("vm_page_free_toq: freeing mapped page %p", m)); 1900 } else 1901 KASSERT(m->queue == PQ_NONE, 1902 ("vm_page_free_toq: unmanaged page %p is queued", m)); 1903 PCPU_INC(cnt.v_tfree); 1904 1905 if (VM_PAGE_IS_FREE(m)) 1906 panic("vm_page_free: freeing free page %p", m); 1907 else if (m->busy != 0) 1908 panic("vm_page_free: freeing busy page %p", m); 1909 1910 /* 1911 * Unqueue, then remove page. Note that we cannot destroy 1912 * the page here because we do not want to call the pager's 1913 * callback routine until after we've put the page on the 1914 * appropriate free queue. 1915 */ 1916 vm_page_remque(m); 1917 vm_page_remove(m); 1918 1919 /* 1920 * If fictitious remove object association and 1921 * return, otherwise delay object association removal. 1922 */ 1923 if ((m->flags & PG_FICTITIOUS) != 0) { 1924 return; 1925 } 1926 1927 m->valid = 0; 1928 vm_page_undirty(m); 1929 1930 if (m->wire_count != 0) 1931 panic("vm_page_free: freeing wired page %p", m); 1932 if (m->hold_count != 0) { 1933 m->flags &= ~PG_ZERO; 1934 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 1935 ("vm_page_free: freeing PG_UNHOLDFREE page %p", m)); 1936 m->flags |= PG_UNHOLDFREE; 1937 } else { 1938 /* 1939 * Restore the default memory attribute to the page. 1940 */ 1941 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 1942 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 1943 1944 /* 1945 * Insert the page into the physical memory allocator's 1946 * cache/free page queues. 1947 */ 1948 mtx_lock(&vm_page_queue_free_mtx); 1949 m->flags |= PG_FREE; 1950 cnt.v_free_count++; 1951 #if VM_NRESERVLEVEL > 0 1952 if (!vm_reserv_free_page(m)) 1953 #else 1954 if (TRUE) 1955 #endif 1956 vm_phys_free_pages(m, 0); 1957 if ((m->flags & PG_ZERO) != 0) 1958 ++vm_page_zero_count; 1959 else 1960 vm_page_zero_idle_wakeup(); 1961 vm_page_free_wakeup(); 1962 mtx_unlock(&vm_page_queue_free_mtx); 1963 } 1964 } 1965 1966 /* 1967 * vm_page_wire: 1968 * 1969 * Mark this page as wired down by yet 1970 * another map, removing it from paging queues 1971 * as necessary. 1972 * 1973 * If the page is fictitious, then its wire count must remain one. 1974 * 1975 * The page must be locked. 1976 */ 1977 void 1978 vm_page_wire(vm_page_t m) 1979 { 1980 1981 /* 1982 * Only bump the wire statistics if the page is not already wired, 1983 * and only unqueue the page if it is on some queue (if it is unmanaged 1984 * it is already off the queues). 1985 */ 1986 vm_page_lock_assert(m, MA_OWNED); 1987 if ((m->flags & PG_FICTITIOUS) != 0) { 1988 KASSERT(m->wire_count == 1, 1989 ("vm_page_wire: fictitious page %p's wire count isn't one", 1990 m)); 1991 return; 1992 } 1993 if (m->wire_count == 0) { 1994 KASSERT((m->oflags & VPO_UNMANAGED) == 0 || 1995 m->queue == PQ_NONE, 1996 ("vm_page_wire: unmanaged page %p is queued", m)); 1997 vm_page_remque(m); 1998 atomic_add_int(&cnt.v_wire_count, 1); 1999 } 2000 m->wire_count++; 2001 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 2002 } 2003 2004 /* 2005 * vm_page_unwire: 2006 * 2007 * Release one wiring of the specified page, potentially enabling it to be 2008 * paged again. If paging is enabled, then the value of the parameter 2009 * "activate" determines to which queue the page is added. If "activate" is 2010 * non-zero, then the page is added to the active queue. Otherwise, it is 2011 * added to the inactive queue. 2012 * 2013 * However, unless the page belongs to an object, it is not enqueued because 2014 * it cannot be paged out. 2015 * 2016 * If a page is fictitious, then its wire count must alway be one. 2017 * 2018 * A managed page must be locked. 2019 */ 2020 void 2021 vm_page_unwire(vm_page_t m, int activate) 2022 { 2023 2024 if ((m->oflags & VPO_UNMANAGED) == 0) 2025 vm_page_lock_assert(m, MA_OWNED); 2026 if ((m->flags & PG_FICTITIOUS) != 0) { 2027 KASSERT(m->wire_count == 1, 2028 ("vm_page_unwire: fictitious page %p's wire count isn't one", m)); 2029 return; 2030 } 2031 if (m->wire_count > 0) { 2032 m->wire_count--; 2033 if (m->wire_count == 0) { 2034 atomic_subtract_int(&cnt.v_wire_count, 1); 2035 if ((m->oflags & VPO_UNMANAGED) != 0 || 2036 m->object == NULL) 2037 return; 2038 if (!activate) 2039 m->flags &= ~PG_WINATCFLS; 2040 vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m); 2041 } 2042 } else 2043 panic("vm_page_unwire: page %p's wire count is zero", m); 2044 } 2045 2046 /* 2047 * Move the specified page to the inactive queue. 2048 * 2049 * Many pages placed on the inactive queue should actually go 2050 * into the cache, but it is difficult to figure out which. What 2051 * we do instead, if the inactive target is well met, is to put 2052 * clean pages at the head of the inactive queue instead of the tail. 2053 * This will cause them to be moved to the cache more quickly and 2054 * if not actively re-referenced, reclaimed more quickly. If we just 2055 * stick these pages at the end of the inactive queue, heavy filesystem 2056 * meta-data accesses can cause an unnecessary paging load on memory bound 2057 * processes. This optimization causes one-time-use metadata to be 2058 * reused more quickly. 2059 * 2060 * Normally athead is 0 resulting in LRU operation. athead is set 2061 * to 1 if we want this page to be 'as if it were placed in the cache', 2062 * except without unmapping it from the process address space. 2063 * 2064 * The page must be locked. 2065 */ 2066 static inline void 2067 _vm_page_deactivate(vm_page_t m, int athead) 2068 { 2069 struct vm_pagequeue *pq; 2070 int queue; 2071 2072 vm_page_lock_assert(m, MA_OWNED); 2073 2074 /* 2075 * Ignore if already inactive. 2076 */ 2077 if ((queue = m->queue) == PQ_INACTIVE) 2078 return; 2079 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 2080 if (queue != PQ_NONE) 2081 vm_page_dequeue(m); 2082 m->flags &= ~PG_WINATCFLS; 2083 pq = &vm_pagequeues[PQ_INACTIVE]; 2084 vm_pagequeue_lock(pq); 2085 m->queue = PQ_INACTIVE; 2086 if (athead) 2087 TAILQ_INSERT_HEAD(&pq->pq_pl, m, pageq); 2088 else 2089 TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq); 2090 cnt.v_inactive_count++; 2091 vm_pagequeue_unlock(pq); 2092 } 2093 } 2094 2095 /* 2096 * Move the specified page to the inactive queue. 2097 * 2098 * The page must be locked. 2099 */ 2100 void 2101 vm_page_deactivate(vm_page_t m) 2102 { 2103 2104 _vm_page_deactivate(m, 0); 2105 } 2106 2107 /* 2108 * vm_page_try_to_cache: 2109 * 2110 * Returns 0 on failure, 1 on success 2111 */ 2112 int 2113 vm_page_try_to_cache(vm_page_t m) 2114 { 2115 2116 vm_page_lock_assert(m, MA_OWNED); 2117 VM_OBJECT_ASSERT_WLOCKED(m->object); 2118 if (m->dirty || m->hold_count || m->busy || m->wire_count || 2119 (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0) 2120 return (0); 2121 pmap_remove_all(m); 2122 if (m->dirty) 2123 return (0); 2124 vm_page_cache(m); 2125 return (1); 2126 } 2127 2128 /* 2129 * vm_page_try_to_free() 2130 * 2131 * Attempt to free the page. If we cannot free it, we do nothing. 2132 * 1 is returned on success, 0 on failure. 2133 */ 2134 int 2135 vm_page_try_to_free(vm_page_t m) 2136 { 2137 2138 vm_page_lock_assert(m, MA_OWNED); 2139 if (m->object != NULL) 2140 VM_OBJECT_ASSERT_WLOCKED(m->object); 2141 if (m->dirty || m->hold_count || m->busy || m->wire_count || 2142 (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0) 2143 return (0); 2144 pmap_remove_all(m); 2145 if (m->dirty) 2146 return (0); 2147 vm_page_free(m); 2148 return (1); 2149 } 2150 2151 /* 2152 * vm_page_cache 2153 * 2154 * Put the specified page onto the page cache queue (if appropriate). 2155 * 2156 * The object and page must be locked. 2157 */ 2158 void 2159 vm_page_cache(vm_page_t m) 2160 { 2161 vm_object_t object; 2162 boolean_t cache_was_empty; 2163 2164 vm_page_lock_assert(m, MA_OWNED); 2165 object = m->object; 2166 VM_OBJECT_ASSERT_WLOCKED(object); 2167 if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy || 2168 m->hold_count || m->wire_count) 2169 panic("vm_page_cache: attempting to cache busy page"); 2170 KASSERT(!pmap_page_is_mapped(m), 2171 ("vm_page_cache: page %p is mapped", m)); 2172 KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m)); 2173 if (m->valid == 0 || object->type == OBJT_DEFAULT || 2174 (object->type == OBJT_SWAP && 2175 !vm_pager_has_page(object, m->pindex, NULL, NULL))) { 2176 /* 2177 * Hypothesis: A cache-elgible page belonging to a 2178 * default object or swap object but without a backing 2179 * store must be zero filled. 2180 */ 2181 vm_page_free(m); 2182 return; 2183 } 2184 KASSERT((m->flags & PG_CACHED) == 0, 2185 ("vm_page_cache: page %p is already cached", m)); 2186 PCPU_INC(cnt.v_tcached); 2187 2188 /* 2189 * Remove the page from the paging queues. 2190 */ 2191 vm_page_remque(m); 2192 2193 /* 2194 * Remove the page from the object's collection of resident 2195 * pages. 2196 */ 2197 vm_radix_remove(&object->rtree, m->pindex); 2198 TAILQ_REMOVE(&object->memq, m, listq); 2199 object->resident_page_count--; 2200 2201 /* 2202 * Restore the default memory attribute to the page. 2203 */ 2204 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 2205 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 2206 2207 /* 2208 * Insert the page into the object's collection of cached pages 2209 * and the physical memory allocator's cache/free page queues. 2210 */ 2211 m->flags &= ~PG_ZERO; 2212 mtx_lock(&vm_page_queue_free_mtx); 2213 m->flags |= PG_CACHED; 2214 cnt.v_cache_count++; 2215 cache_was_empty = vm_radix_is_empty(&object->cache); 2216 vm_radix_insert(&object->cache, m); 2217 #if VM_NRESERVLEVEL > 0 2218 if (!vm_reserv_free_page(m)) { 2219 #else 2220 if (TRUE) { 2221 #endif 2222 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0); 2223 vm_phys_free_pages(m, 0); 2224 } 2225 vm_page_free_wakeup(); 2226 mtx_unlock(&vm_page_queue_free_mtx); 2227 2228 /* 2229 * Increment the vnode's hold count if this is the object's only 2230 * cached page. Decrement the vnode's hold count if this was 2231 * the object's only resident page. 2232 */ 2233 if (object->type == OBJT_VNODE) { 2234 if (cache_was_empty && object->resident_page_count != 0) 2235 vhold(object->handle); 2236 else if (!cache_was_empty && object->resident_page_count == 0) 2237 vdrop(object->handle); 2238 } 2239 } 2240 2241 /* 2242 * vm_page_advise 2243 * 2244 * Cache, deactivate, or do nothing as appropriate. This routine 2245 * is used by madvise(). 2246 * 2247 * Generally speaking we want to move the page into the cache so 2248 * it gets reused quickly. However, this can result in a silly syndrome 2249 * due to the page recycling too quickly. Small objects will not be 2250 * fully cached. On the other hand, if we move the page to the inactive 2251 * queue we wind up with a problem whereby very large objects 2252 * unnecessarily blow away our inactive and cache queues. 2253 * 2254 * The solution is to move the pages based on a fixed weighting. We 2255 * either leave them alone, deactivate them, or move them to the cache, 2256 * where moving them to the cache has the highest weighting. 2257 * By forcing some pages into other queues we eventually force the 2258 * system to balance the queues, potentially recovering other unrelated 2259 * space from active. The idea is to not force this to happen too 2260 * often. 2261 * 2262 * The object and page must be locked. 2263 */ 2264 void 2265 vm_page_advise(vm_page_t m, int advice) 2266 { 2267 int dnw, head; 2268 2269 vm_page_assert_locked(m); 2270 VM_OBJECT_ASSERT_WLOCKED(m->object); 2271 if (advice == MADV_FREE) { 2272 /* 2273 * Mark the page clean. This will allow the page to be freed 2274 * up by the system. However, such pages are often reused 2275 * quickly by malloc() so we do not do anything that would 2276 * cause a page fault if we can help it. 2277 * 2278 * Specifically, we do not try to actually free the page now 2279 * nor do we try to put it in the cache (which would cause a 2280 * page fault on reuse). 2281 * 2282 * But we do make the page is freeable as we can without 2283 * actually taking the step of unmapping it. 2284 */ 2285 pmap_clear_modify(m); 2286 m->dirty = 0; 2287 m->act_count = 0; 2288 } else if (advice != MADV_DONTNEED) 2289 return; 2290 dnw = PCPU_GET(dnweight); 2291 PCPU_INC(dnweight); 2292 2293 /* 2294 * Occasionally leave the page alone. 2295 */ 2296 if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) { 2297 if (m->act_count >= ACT_INIT) 2298 --m->act_count; 2299 return; 2300 } 2301 2302 /* 2303 * Clear any references to the page. Otherwise, the page daemon will 2304 * immediately reactivate the page. 2305 * 2306 * Perform the pmap_clear_reference() first. Otherwise, a concurrent 2307 * pmap operation, such as pmap_remove(), could clear a reference in 2308 * the pmap and set PGA_REFERENCED on the page before the 2309 * pmap_clear_reference() had completed. Consequently, the page would 2310 * appear referenced based upon an old reference that occurred before 2311 * this function ran. 2312 */ 2313 pmap_clear_reference(m); 2314 vm_page_aflag_clear(m, PGA_REFERENCED); 2315 2316 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 2317 vm_page_dirty(m); 2318 2319 if (m->dirty || (dnw & 0x0070) == 0) { 2320 /* 2321 * Deactivate the page 3 times out of 32. 2322 */ 2323 head = 0; 2324 } else { 2325 /* 2326 * Cache the page 28 times out of every 32. Note that 2327 * the page is deactivated instead of cached, but placed 2328 * at the head of the queue instead of the tail. 2329 */ 2330 head = 1; 2331 } 2332 _vm_page_deactivate(m, head); 2333 } 2334 2335 /* 2336 * Grab a page, waiting until we are waken up due to the page 2337 * changing state. We keep on waiting, if the page continues 2338 * to be in the object. If the page doesn't exist, first allocate it 2339 * and then conditionally zero it. 2340 * 2341 * The caller must always specify the VM_ALLOC_RETRY flag. This is intended 2342 * to facilitate its eventual removal. 2343 * 2344 * This routine may sleep. 2345 * 2346 * The object must be locked on entry. The lock will, however, be released 2347 * and reacquired if the routine sleeps. 2348 */ 2349 vm_page_t 2350 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2351 { 2352 vm_page_t m; 2353 2354 VM_OBJECT_ASSERT_WLOCKED(object); 2355 KASSERT((allocflags & VM_ALLOC_RETRY) != 0, 2356 ("vm_page_grab: VM_ALLOC_RETRY is required")); 2357 retrylookup: 2358 if ((m = vm_page_lookup(object, pindex)) != NULL) { 2359 if ((m->oflags & VPO_BUSY) != 0 || 2360 ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) { 2361 /* 2362 * Reference the page before unlocking and 2363 * sleeping so that the page daemon is less 2364 * likely to reclaim it. 2365 */ 2366 vm_page_aflag_set(m, PGA_REFERENCED); 2367 vm_page_sleep(m, "pgrbwt"); 2368 goto retrylookup; 2369 } else { 2370 if ((allocflags & VM_ALLOC_WIRED) != 0) { 2371 vm_page_lock(m); 2372 vm_page_wire(m); 2373 vm_page_unlock(m); 2374 } 2375 if ((allocflags & VM_ALLOC_NOBUSY) == 0) 2376 vm_page_busy(m); 2377 return (m); 2378 } 2379 } 2380 m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY | 2381 VM_ALLOC_IGN_SBUSY)); 2382 if (m == NULL) { 2383 VM_OBJECT_WUNLOCK(object); 2384 VM_WAIT; 2385 VM_OBJECT_WLOCK(object); 2386 goto retrylookup; 2387 } else if (m->valid != 0) 2388 return (m); 2389 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 2390 pmap_zero_page(m); 2391 return (m); 2392 } 2393 2394 /* 2395 * Mapping function for valid or dirty bits in a page. 2396 * 2397 * Inputs are required to range within a page. 2398 */ 2399 vm_page_bits_t 2400 vm_page_bits(int base, int size) 2401 { 2402 int first_bit; 2403 int last_bit; 2404 2405 KASSERT( 2406 base + size <= PAGE_SIZE, 2407 ("vm_page_bits: illegal base/size %d/%d", base, size) 2408 ); 2409 2410 if (size == 0) /* handle degenerate case */ 2411 return (0); 2412 2413 first_bit = base >> DEV_BSHIFT; 2414 last_bit = (base + size - 1) >> DEV_BSHIFT; 2415 2416 return (((vm_page_bits_t)2 << last_bit) - 2417 ((vm_page_bits_t)1 << first_bit)); 2418 } 2419 2420 /* 2421 * vm_page_set_valid_range: 2422 * 2423 * Sets portions of a page valid. The arguments are expected 2424 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2425 * of any partial chunks touched by the range. The invalid portion of 2426 * such chunks will be zeroed. 2427 * 2428 * (base + size) must be less then or equal to PAGE_SIZE. 2429 */ 2430 void 2431 vm_page_set_valid_range(vm_page_t m, int base, int size) 2432 { 2433 int endoff, frag; 2434 2435 VM_OBJECT_ASSERT_WLOCKED(m->object); 2436 if (size == 0) /* handle degenerate case */ 2437 return; 2438 2439 /* 2440 * If the base is not DEV_BSIZE aligned and the valid 2441 * bit is clear, we have to zero out a portion of the 2442 * first block. 2443 */ 2444 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2445 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 2446 pmap_zero_page_area(m, frag, base - frag); 2447 2448 /* 2449 * If the ending offset is not DEV_BSIZE aligned and the 2450 * valid bit is clear, we have to zero out a portion of 2451 * the last block. 2452 */ 2453 endoff = base + size; 2454 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2455 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 2456 pmap_zero_page_area(m, endoff, 2457 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 2458 2459 /* 2460 * Assert that no previously invalid block that is now being validated 2461 * is already dirty. 2462 */ 2463 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 2464 ("vm_page_set_valid_range: page %p is dirty", m)); 2465 2466 /* 2467 * Set valid bits inclusive of any overlap. 2468 */ 2469 m->valid |= vm_page_bits(base, size); 2470 } 2471 2472 /* 2473 * Clear the given bits from the specified page's dirty field. 2474 */ 2475 static __inline void 2476 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 2477 { 2478 uintptr_t addr; 2479 #if PAGE_SIZE < 16384 2480 int shift; 2481 #endif 2482 2483 /* 2484 * If the object is locked and the page is neither VPO_BUSY nor 2485 * write mapped, then the page's dirty field cannot possibly be 2486 * set by a concurrent pmap operation. 2487 */ 2488 VM_OBJECT_ASSERT_WLOCKED(m->object); 2489 if ((m->oflags & VPO_BUSY) == 0 && !pmap_page_is_write_mapped(m)) 2490 m->dirty &= ~pagebits; 2491 else { 2492 /* 2493 * The pmap layer can call vm_page_dirty() without 2494 * holding a distinguished lock. The combination of 2495 * the object's lock and an atomic operation suffice 2496 * to guarantee consistency of the page dirty field. 2497 * 2498 * For PAGE_SIZE == 32768 case, compiler already 2499 * properly aligns the dirty field, so no forcible 2500 * alignment is needed. Only require existence of 2501 * atomic_clear_64 when page size is 32768. 2502 */ 2503 addr = (uintptr_t)&m->dirty; 2504 #if PAGE_SIZE == 32768 2505 atomic_clear_64((uint64_t *)addr, pagebits); 2506 #elif PAGE_SIZE == 16384 2507 atomic_clear_32((uint32_t *)addr, pagebits); 2508 #else /* PAGE_SIZE <= 8192 */ 2509 /* 2510 * Use a trick to perform a 32-bit atomic on the 2511 * containing aligned word, to not depend on the existence 2512 * of atomic_clear_{8, 16}. 2513 */ 2514 shift = addr & (sizeof(uint32_t) - 1); 2515 #if BYTE_ORDER == BIG_ENDIAN 2516 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY; 2517 #else 2518 shift *= NBBY; 2519 #endif 2520 addr &= ~(sizeof(uint32_t) - 1); 2521 atomic_clear_32((uint32_t *)addr, pagebits << shift); 2522 #endif /* PAGE_SIZE */ 2523 } 2524 } 2525 2526 /* 2527 * vm_page_set_validclean: 2528 * 2529 * Sets portions of a page valid and clean. The arguments are expected 2530 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2531 * of any partial chunks touched by the range. The invalid portion of 2532 * such chunks will be zero'd. 2533 * 2534 * (base + size) must be less then or equal to PAGE_SIZE. 2535 */ 2536 void 2537 vm_page_set_validclean(vm_page_t m, int base, int size) 2538 { 2539 vm_page_bits_t oldvalid, pagebits; 2540 int endoff, frag; 2541 2542 VM_OBJECT_ASSERT_WLOCKED(m->object); 2543 if (size == 0) /* handle degenerate case */ 2544 return; 2545 2546 /* 2547 * If the base is not DEV_BSIZE aligned and the valid 2548 * bit is clear, we have to zero out a portion of the 2549 * first block. 2550 */ 2551 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2552 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 2553 pmap_zero_page_area(m, frag, base - frag); 2554 2555 /* 2556 * If the ending offset is not DEV_BSIZE aligned and the 2557 * valid bit is clear, we have to zero out a portion of 2558 * the last block. 2559 */ 2560 endoff = base + size; 2561 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2562 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 2563 pmap_zero_page_area(m, endoff, 2564 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 2565 2566 /* 2567 * Set valid, clear dirty bits. If validating the entire 2568 * page we can safely clear the pmap modify bit. We also 2569 * use this opportunity to clear the VPO_NOSYNC flag. If a process 2570 * takes a write fault on a MAP_NOSYNC memory area the flag will 2571 * be set again. 2572 * 2573 * We set valid bits inclusive of any overlap, but we can only 2574 * clear dirty bits for DEV_BSIZE chunks that are fully within 2575 * the range. 2576 */ 2577 oldvalid = m->valid; 2578 pagebits = vm_page_bits(base, size); 2579 m->valid |= pagebits; 2580 #if 0 /* NOT YET */ 2581 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 2582 frag = DEV_BSIZE - frag; 2583 base += frag; 2584 size -= frag; 2585 if (size < 0) 2586 size = 0; 2587 } 2588 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 2589 #endif 2590 if (base == 0 && size == PAGE_SIZE) { 2591 /* 2592 * The page can only be modified within the pmap if it is 2593 * mapped, and it can only be mapped if it was previously 2594 * fully valid. 2595 */ 2596 if (oldvalid == VM_PAGE_BITS_ALL) 2597 /* 2598 * Perform the pmap_clear_modify() first. Otherwise, 2599 * a concurrent pmap operation, such as 2600 * pmap_protect(), could clear a modification in the 2601 * pmap and set the dirty field on the page before 2602 * pmap_clear_modify() had begun and after the dirty 2603 * field was cleared here. 2604 */ 2605 pmap_clear_modify(m); 2606 m->dirty = 0; 2607 m->oflags &= ~VPO_NOSYNC; 2608 } else if (oldvalid != VM_PAGE_BITS_ALL) 2609 m->dirty &= ~pagebits; 2610 else 2611 vm_page_clear_dirty_mask(m, pagebits); 2612 } 2613 2614 void 2615 vm_page_clear_dirty(vm_page_t m, int base, int size) 2616 { 2617 2618 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 2619 } 2620 2621 /* 2622 * vm_page_set_invalid: 2623 * 2624 * Invalidates DEV_BSIZE'd chunks within a page. Both the 2625 * valid and dirty bits for the effected areas are cleared. 2626 */ 2627 void 2628 vm_page_set_invalid(vm_page_t m, int base, int size) 2629 { 2630 vm_page_bits_t bits; 2631 2632 VM_OBJECT_ASSERT_WLOCKED(m->object); 2633 KASSERT((m->oflags & VPO_BUSY) == 0, 2634 ("vm_page_set_invalid: page %p is busy", m)); 2635 bits = vm_page_bits(base, size); 2636 if (m->valid == VM_PAGE_BITS_ALL && bits != 0) 2637 pmap_remove_all(m); 2638 KASSERT(!pmap_page_is_mapped(m), 2639 ("vm_page_set_invalid: page %p is mapped", m)); 2640 m->valid &= ~bits; 2641 m->dirty &= ~bits; 2642 } 2643 2644 /* 2645 * vm_page_zero_invalid() 2646 * 2647 * The kernel assumes that the invalid portions of a page contain 2648 * garbage, but such pages can be mapped into memory by user code. 2649 * When this occurs, we must zero out the non-valid portions of the 2650 * page so user code sees what it expects. 2651 * 2652 * Pages are most often semi-valid when the end of a file is mapped 2653 * into memory and the file's size is not page aligned. 2654 */ 2655 void 2656 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 2657 { 2658 int b; 2659 int i; 2660 2661 VM_OBJECT_ASSERT_WLOCKED(m->object); 2662 /* 2663 * Scan the valid bits looking for invalid sections that 2664 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 2665 * valid bit may be set ) have already been zerod by 2666 * vm_page_set_validclean(). 2667 */ 2668 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 2669 if (i == (PAGE_SIZE / DEV_BSIZE) || 2670 (m->valid & ((vm_page_bits_t)1 << i))) { 2671 if (i > b) { 2672 pmap_zero_page_area(m, 2673 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 2674 } 2675 b = i + 1; 2676 } 2677 } 2678 2679 /* 2680 * setvalid is TRUE when we can safely set the zero'd areas 2681 * as being valid. We can do this if there are no cache consistancy 2682 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 2683 */ 2684 if (setvalid) 2685 m->valid = VM_PAGE_BITS_ALL; 2686 } 2687 2688 /* 2689 * vm_page_is_valid: 2690 * 2691 * Is (partial) page valid? Note that the case where size == 0 2692 * will return FALSE in the degenerate case where the page is 2693 * entirely invalid, and TRUE otherwise. 2694 */ 2695 int 2696 vm_page_is_valid(vm_page_t m, int base, int size) 2697 { 2698 vm_page_bits_t bits; 2699 2700 VM_OBJECT_ASSERT_WLOCKED(m->object); 2701 bits = vm_page_bits(base, size); 2702 return (m->valid != 0 && (m->valid & bits) == bits); 2703 } 2704 2705 /* 2706 * Set the page's dirty bits if the page is modified. 2707 */ 2708 void 2709 vm_page_test_dirty(vm_page_t m) 2710 { 2711 2712 VM_OBJECT_ASSERT_WLOCKED(m->object); 2713 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 2714 vm_page_dirty(m); 2715 } 2716 2717 void 2718 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 2719 { 2720 2721 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 2722 } 2723 2724 void 2725 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 2726 { 2727 2728 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 2729 } 2730 2731 int 2732 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 2733 { 2734 2735 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 2736 } 2737 2738 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 2739 void 2740 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 2741 { 2742 2743 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 2744 } 2745 2746 void 2747 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 2748 { 2749 2750 mtx_assert_(vm_page_lockptr(m), a, file, line); 2751 } 2752 #endif 2753 2754 int so_zerocp_fullpage = 0; 2755 2756 /* 2757 * Replace the given page with a copy. The copied page assumes 2758 * the portion of the given page's "wire_count" that is not the 2759 * responsibility of this copy-on-write mechanism. 2760 * 2761 * The object containing the given page must have a non-zero 2762 * paging-in-progress count and be locked. 2763 */ 2764 void 2765 vm_page_cowfault(vm_page_t m) 2766 { 2767 vm_page_t mnew; 2768 vm_object_t object; 2769 vm_pindex_t pindex; 2770 2771 vm_page_lock_assert(m, MA_OWNED); 2772 object = m->object; 2773 VM_OBJECT_ASSERT_WLOCKED(object); 2774 KASSERT(object->paging_in_progress != 0, 2775 ("vm_page_cowfault: object %p's paging-in-progress count is zero.", 2776 object)); 2777 pindex = m->pindex; 2778 2779 retry_alloc: 2780 pmap_remove_all(m); 2781 vm_page_remove(m); 2782 mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY); 2783 if (mnew == NULL) { 2784 vm_page_insert(m, object, pindex); 2785 vm_page_unlock(m); 2786 VM_OBJECT_WUNLOCK(object); 2787 VM_WAIT; 2788 VM_OBJECT_WLOCK(object); 2789 if (m == vm_page_lookup(object, pindex)) { 2790 vm_page_lock(m); 2791 goto retry_alloc; 2792 } else { 2793 /* 2794 * Page disappeared during the wait. 2795 */ 2796 return; 2797 } 2798 } 2799 2800 if (m->cow == 0) { 2801 /* 2802 * check to see if we raced with an xmit complete when 2803 * waiting to allocate a page. If so, put things back 2804 * the way they were 2805 */ 2806 vm_page_unlock(m); 2807 vm_page_lock(mnew); 2808 vm_page_free(mnew); 2809 vm_page_unlock(mnew); 2810 vm_page_insert(m, object, pindex); 2811 } else { /* clear COW & copy page */ 2812 if (!so_zerocp_fullpage) 2813 pmap_copy_page(m, mnew); 2814 mnew->valid = VM_PAGE_BITS_ALL; 2815 vm_page_dirty(mnew); 2816 mnew->wire_count = m->wire_count - m->cow; 2817 m->wire_count = m->cow; 2818 vm_page_unlock(m); 2819 } 2820 } 2821 2822 void 2823 vm_page_cowclear(vm_page_t m) 2824 { 2825 2826 vm_page_lock_assert(m, MA_OWNED); 2827 if (m->cow) { 2828 m->cow--; 2829 /* 2830 * let vm_fault add back write permission lazily 2831 */ 2832 } 2833 /* 2834 * sf_buf_free() will free the page, so we needn't do it here 2835 */ 2836 } 2837 2838 int 2839 vm_page_cowsetup(vm_page_t m) 2840 { 2841 2842 vm_page_lock_assert(m, MA_OWNED); 2843 if ((m->flags & PG_FICTITIOUS) != 0 || 2844 (m->oflags & VPO_UNMANAGED) != 0 || 2845 m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYWLOCK(m->object)) 2846 return (EBUSY); 2847 m->cow++; 2848 pmap_remove_write(m); 2849 VM_OBJECT_WUNLOCK(m->object); 2850 return (0); 2851 } 2852 2853 #ifdef INVARIANTS 2854 void 2855 vm_page_object_lock_assert(vm_page_t m) 2856 { 2857 2858 /* 2859 * Certain of the page's fields may only be modified by the 2860 * holder of the containing object's lock or the setter of the 2861 * page's VPO_BUSY flag. Unfortunately, the setter of the 2862 * VPO_BUSY flag is not recorded, and thus cannot be checked 2863 * here. 2864 */ 2865 if (m->object != NULL && (m->oflags & VPO_BUSY) == 0) 2866 VM_OBJECT_ASSERT_WLOCKED(m->object); 2867 } 2868 #endif 2869 2870 #include "opt_ddb.h" 2871 #ifdef DDB 2872 #include <sys/kernel.h> 2873 2874 #include <ddb/ddb.h> 2875 2876 DB_SHOW_COMMAND(page, vm_page_print_page_info) 2877 { 2878 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 2879 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 2880 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 2881 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 2882 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 2883 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 2884 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 2885 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 2886 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 2887 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 2888 } 2889 2890 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 2891 { 2892 2893 db_printf("PQ_FREE:"); 2894 db_printf(" %d", cnt.v_free_count); 2895 db_printf("\n"); 2896 2897 db_printf("PQ_CACHE:"); 2898 db_printf(" %d", cnt.v_cache_count); 2899 db_printf("\n"); 2900 2901 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 2902 *vm_pagequeues[PQ_ACTIVE].pq_cnt, 2903 *vm_pagequeues[PQ_INACTIVE].pq_cnt); 2904 } 2905 2906 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 2907 { 2908 vm_page_t m; 2909 boolean_t phys; 2910 2911 if (!have_addr) { 2912 db_printf("show pginfo addr\n"); 2913 return; 2914 } 2915 2916 phys = strchr(modif, 'p') != NULL; 2917 if (phys) 2918 m = PHYS_TO_VM_PAGE(addr); 2919 else 2920 m = (vm_page_t)addr; 2921 db_printf( 2922 "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n" 2923 " af 0x%x of 0x%x f 0x%x act %d busy %d valid 0x%x dirty 0x%x\n", 2924 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 2925 m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags, 2926 m->flags, m->act_count, m->busy, m->valid, m->dirty); 2927 } 2928 #endif /* DDB */ 2929