xref: /freebsd/sys/vm/vm_page.c (revision 55bce0c1203e70d8b62a3dedc9235ab39660c6f4)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- A page queue lock is required when adding or removing a page from a
67  *	  page queue (vm_pagequeues[]), regardless of other locks or the
68  *	  busy state of a page.
69  *
70  *		* In general, no thread besides the page daemon can acquire or
71  *		  hold more than one page queue lock at a time.
72  *
73  *		* The page daemon can acquire and hold any pair of page queue
74  *		  locks in any order.
75  *
76  *	- The object lock is required when inserting or removing
77  *	  pages from an object (vm_page_insert() or vm_page_remove()).
78  *
79  */
80 
81 /*
82  *	Resident memory management module.
83  */
84 
85 #include <sys/cdefs.h>
86 __FBSDID("$FreeBSD$");
87 
88 #include "opt_vm.h"
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/lock.h>
93 #include <sys/kernel.h>
94 #include <sys/limits.h>
95 #include <sys/malloc.h>
96 #include <sys/mman.h>
97 #include <sys/msgbuf.h>
98 #include <sys/mutex.h>
99 #include <sys/proc.h>
100 #include <sys/rwlock.h>
101 #include <sys/sysctl.h>
102 #include <sys/vmmeter.h>
103 #include <sys/vnode.h>
104 
105 #include <vm/vm.h>
106 #include <vm/pmap.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_object.h>
110 #include <vm/vm_page.h>
111 #include <vm/vm_pageout.h>
112 #include <vm/vm_pager.h>
113 #include <vm/vm_phys.h>
114 #include <vm/vm_radix.h>
115 #include <vm/vm_reserv.h>
116 #include <vm/vm_extern.h>
117 #include <vm/uma.h>
118 #include <vm/uma_int.h>
119 
120 #include <machine/md_var.h>
121 
122 /*
123  *	Associated with page of user-allocatable memory is a
124  *	page structure.
125  */
126 
127 struct vm_pagequeue vm_pagequeues[PQ_COUNT] = {
128 	[PQ_INACTIVE] = {
129 		.pq_pl = TAILQ_HEAD_INITIALIZER(
130 		    vm_pagequeues[PQ_INACTIVE].pq_pl),
131 		.pq_cnt = &cnt.v_inactive_count,
132 		.pq_name = "vm inactive pagequeue"
133 	},
134 	[PQ_ACTIVE] = {
135 		.pq_pl = TAILQ_HEAD_INITIALIZER(
136 		    vm_pagequeues[PQ_ACTIVE].pq_pl),
137 		.pq_cnt = &cnt.v_active_count,
138 		.pq_name = "vm active pagequeue"
139 	}
140 };
141 struct mtx_padalign vm_page_queue_free_mtx;
142 
143 struct mtx_padalign pa_lock[PA_LOCK_COUNT];
144 
145 vm_page_t vm_page_array;
146 long vm_page_array_size;
147 long first_page;
148 int vm_page_zero_count;
149 
150 static int boot_pages = UMA_BOOT_PAGES;
151 TUNABLE_INT("vm.boot_pages", &boot_pages);
152 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
153 	"number of pages allocated for bootstrapping the VM system");
154 
155 static int pa_tryrelock_restart;
156 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
157     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
158 
159 static uma_zone_t fakepg_zone;
160 
161 static struct vnode *vm_page_alloc_init(vm_page_t m);
162 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
163 static void vm_page_enqueue(int queue, vm_page_t m);
164 static void vm_page_init_fakepg(void *dummy);
165 static void vm_page_insert_after(vm_page_t m, vm_object_t object,
166     vm_pindex_t pindex, vm_page_t mpred);
167 
168 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
169 
170 static void
171 vm_page_init_fakepg(void *dummy)
172 {
173 
174 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
175 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
176 }
177 
178 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
179 #if PAGE_SIZE == 32768
180 #ifdef CTASSERT
181 CTASSERT(sizeof(u_long) >= 8);
182 #endif
183 #endif
184 
185 /*
186  * Try to acquire a physical address lock while a pmap is locked.  If we
187  * fail to trylock we unlock and lock the pmap directly and cache the
188  * locked pa in *locked.  The caller should then restart their loop in case
189  * the virtual to physical mapping has changed.
190  */
191 int
192 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
193 {
194 	vm_paddr_t lockpa;
195 
196 	lockpa = *locked;
197 	*locked = pa;
198 	if (lockpa) {
199 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
200 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
201 			return (0);
202 		PA_UNLOCK(lockpa);
203 	}
204 	if (PA_TRYLOCK(pa))
205 		return (0);
206 	PMAP_UNLOCK(pmap);
207 	atomic_add_int(&pa_tryrelock_restart, 1);
208 	PA_LOCK(pa);
209 	PMAP_LOCK(pmap);
210 	return (EAGAIN);
211 }
212 
213 /*
214  *	vm_set_page_size:
215  *
216  *	Sets the page size, perhaps based upon the memory
217  *	size.  Must be called before any use of page-size
218  *	dependent functions.
219  */
220 void
221 vm_set_page_size(void)
222 {
223 	if (cnt.v_page_size == 0)
224 		cnt.v_page_size = PAGE_SIZE;
225 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
226 		panic("vm_set_page_size: page size not a power of two");
227 }
228 
229 /*
230  *	vm_page_blacklist_lookup:
231  *
232  *	See if a physical address in this page has been listed
233  *	in the blacklist tunable.  Entries in the tunable are
234  *	separated by spaces or commas.  If an invalid integer is
235  *	encountered then the rest of the string is skipped.
236  */
237 static int
238 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
239 {
240 	vm_paddr_t bad;
241 	char *cp, *pos;
242 
243 	for (pos = list; *pos != '\0'; pos = cp) {
244 		bad = strtoq(pos, &cp, 0);
245 		if (*cp != '\0') {
246 			if (*cp == ' ' || *cp == ',') {
247 				cp++;
248 				if (cp == pos)
249 					continue;
250 			} else
251 				break;
252 		}
253 		if (pa == trunc_page(bad))
254 			return (1);
255 	}
256 	return (0);
257 }
258 
259 /*
260  *	vm_page_startup:
261  *
262  *	Initializes the resident memory module.
263  *
264  *	Allocates memory for the page cells, and
265  *	for the object/offset-to-page hash table headers.
266  *	Each page cell is initialized and placed on the free list.
267  */
268 vm_offset_t
269 vm_page_startup(vm_offset_t vaddr)
270 {
271 	vm_offset_t mapped;
272 	vm_paddr_t page_range;
273 	vm_paddr_t new_end;
274 	int i;
275 	vm_paddr_t pa;
276 	vm_paddr_t last_pa;
277 	char *list;
278 
279 	/* the biggest memory array is the second group of pages */
280 	vm_paddr_t end;
281 	vm_paddr_t biggestsize;
282 	vm_paddr_t low_water, high_water;
283 	int biggestone;
284 
285 	biggestsize = 0;
286 	biggestone = 0;
287 	vaddr = round_page(vaddr);
288 
289 	for (i = 0; phys_avail[i + 1]; i += 2) {
290 		phys_avail[i] = round_page(phys_avail[i]);
291 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
292 	}
293 
294 	low_water = phys_avail[0];
295 	high_water = phys_avail[1];
296 
297 	for (i = 0; phys_avail[i + 1]; i += 2) {
298 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
299 
300 		if (size > biggestsize) {
301 			biggestone = i;
302 			biggestsize = size;
303 		}
304 		if (phys_avail[i] < low_water)
305 			low_water = phys_avail[i];
306 		if (phys_avail[i + 1] > high_water)
307 			high_water = phys_avail[i + 1];
308 	}
309 
310 #ifdef XEN
311 	low_water = 0;
312 #endif
313 
314 	end = phys_avail[biggestone+1];
315 
316 	/*
317 	 * Initialize the page and queue locks.
318 	 */
319 	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
320 	for (i = 0; i < PA_LOCK_COUNT; i++)
321 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
322 	for (i = 0; i < PQ_COUNT; i++)
323 		vm_pagequeue_init_lock(&vm_pagequeues[i]);
324 
325 	/*
326 	 * Allocate memory for use when boot strapping the kernel memory
327 	 * allocator.
328 	 */
329 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
330 	new_end = trunc_page(new_end);
331 	mapped = pmap_map(&vaddr, new_end, end,
332 	    VM_PROT_READ | VM_PROT_WRITE);
333 	bzero((void *)mapped, end - new_end);
334 	uma_startup((void *)mapped, boot_pages);
335 
336 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
337     defined(__mips__)
338 	/*
339 	 * Allocate a bitmap to indicate that a random physical page
340 	 * needs to be included in a minidump.
341 	 *
342 	 * The amd64 port needs this to indicate which direct map pages
343 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
344 	 *
345 	 * However, i386 still needs this workspace internally within the
346 	 * minidump code.  In theory, they are not needed on i386, but are
347 	 * included should the sf_buf code decide to use them.
348 	 */
349 	last_pa = 0;
350 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
351 		if (dump_avail[i + 1] > last_pa)
352 			last_pa = dump_avail[i + 1];
353 	page_range = last_pa / PAGE_SIZE;
354 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
355 	new_end -= vm_page_dump_size;
356 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
357 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
358 	bzero((void *)vm_page_dump, vm_page_dump_size);
359 #endif
360 #ifdef __amd64__
361 	/*
362 	 * Request that the physical pages underlying the message buffer be
363 	 * included in a crash dump.  Since the message buffer is accessed
364 	 * through the direct map, they are not automatically included.
365 	 */
366 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
367 	last_pa = pa + round_page(msgbufsize);
368 	while (pa < last_pa) {
369 		dump_add_page(pa);
370 		pa += PAGE_SIZE;
371 	}
372 #endif
373 	/*
374 	 * Compute the number of pages of memory that will be available for
375 	 * use (taking into account the overhead of a page structure per
376 	 * page).
377 	 */
378 	first_page = low_water / PAGE_SIZE;
379 #ifdef VM_PHYSSEG_SPARSE
380 	page_range = 0;
381 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
382 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
383 #elif defined(VM_PHYSSEG_DENSE)
384 	page_range = high_water / PAGE_SIZE - first_page;
385 #else
386 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
387 #endif
388 	end = new_end;
389 
390 	/*
391 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
392 	 */
393 	vaddr += PAGE_SIZE;
394 
395 	/*
396 	 * Initialize the mem entry structures now, and put them in the free
397 	 * queue.
398 	 */
399 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
400 	mapped = pmap_map(&vaddr, new_end, end,
401 	    VM_PROT_READ | VM_PROT_WRITE);
402 	vm_page_array = (vm_page_t) mapped;
403 #if VM_NRESERVLEVEL > 0
404 	/*
405 	 * Allocate memory for the reservation management system's data
406 	 * structures.
407 	 */
408 	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
409 #endif
410 #if defined(__amd64__) || defined(__mips__)
411 	/*
412 	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
413 	 * like i386, so the pages must be tracked for a crashdump to include
414 	 * this data.  This includes the vm_page_array and the early UMA
415 	 * bootstrap pages.
416 	 */
417 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
418 		dump_add_page(pa);
419 #endif
420 	phys_avail[biggestone + 1] = new_end;
421 
422 	/*
423 	 * Clear all of the page structures
424 	 */
425 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
426 	for (i = 0; i < page_range; i++)
427 		vm_page_array[i].order = VM_NFREEORDER;
428 	vm_page_array_size = page_range;
429 
430 	/*
431 	 * Initialize the physical memory allocator.
432 	 */
433 	vm_phys_init();
434 
435 	/*
436 	 * Add every available physical page that is not blacklisted to
437 	 * the free lists.
438 	 */
439 	cnt.v_page_count = 0;
440 	cnt.v_free_count = 0;
441 	list = getenv("vm.blacklist");
442 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
443 		pa = phys_avail[i];
444 		last_pa = phys_avail[i + 1];
445 		while (pa < last_pa) {
446 			if (list != NULL &&
447 			    vm_page_blacklist_lookup(list, pa))
448 				printf("Skipping page with pa 0x%jx\n",
449 				    (uintmax_t)pa);
450 			else
451 				vm_phys_add_page(pa);
452 			pa += PAGE_SIZE;
453 		}
454 	}
455 	freeenv(list);
456 #if VM_NRESERVLEVEL > 0
457 	/*
458 	 * Initialize the reservation management system.
459 	 */
460 	vm_reserv_init();
461 #endif
462 	return (vaddr);
463 }
464 
465 void
466 vm_page_reference(vm_page_t m)
467 {
468 
469 	vm_page_aflag_set(m, PGA_REFERENCED);
470 }
471 
472 void
473 vm_page_busy(vm_page_t m)
474 {
475 
476 	VM_OBJECT_ASSERT_WLOCKED(m->object);
477 	KASSERT((m->oflags & VPO_BUSY) == 0,
478 	    ("vm_page_busy: page already busy!!!"));
479 	m->oflags |= VPO_BUSY;
480 }
481 
482 /*
483  *      vm_page_flash:
484  *
485  *      wakeup anyone waiting for the page.
486  */
487 void
488 vm_page_flash(vm_page_t m)
489 {
490 
491 	VM_OBJECT_ASSERT_WLOCKED(m->object);
492 	if (m->oflags & VPO_WANTED) {
493 		m->oflags &= ~VPO_WANTED;
494 		wakeup(m);
495 	}
496 }
497 
498 /*
499  *      vm_page_wakeup:
500  *
501  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
502  *      page.
503  *
504  */
505 void
506 vm_page_wakeup(vm_page_t m)
507 {
508 
509 	VM_OBJECT_ASSERT_WLOCKED(m->object);
510 	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
511 	m->oflags &= ~VPO_BUSY;
512 	vm_page_flash(m);
513 }
514 
515 void
516 vm_page_io_start(vm_page_t m)
517 {
518 
519 	VM_OBJECT_ASSERT_WLOCKED(m->object);
520 	m->busy++;
521 }
522 
523 void
524 vm_page_io_finish(vm_page_t m)
525 {
526 
527 	VM_OBJECT_ASSERT_WLOCKED(m->object);
528 	KASSERT(m->busy > 0, ("vm_page_io_finish: page %p is not busy", m));
529 	m->busy--;
530 	if (m->busy == 0)
531 		vm_page_flash(m);
532 }
533 
534 /*
535  * Keep page from being freed by the page daemon
536  * much of the same effect as wiring, except much lower
537  * overhead and should be used only for *very* temporary
538  * holding ("wiring").
539  */
540 void
541 vm_page_hold(vm_page_t mem)
542 {
543 
544 	vm_page_lock_assert(mem, MA_OWNED);
545         mem->hold_count++;
546 }
547 
548 void
549 vm_page_unhold(vm_page_t mem)
550 {
551 
552 	vm_page_lock_assert(mem, MA_OWNED);
553 	--mem->hold_count;
554 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
555 	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
556 		vm_page_free_toq(mem);
557 }
558 
559 /*
560  *	vm_page_unhold_pages:
561  *
562  *	Unhold each of the pages that is referenced by the given array.
563  */
564 void
565 vm_page_unhold_pages(vm_page_t *ma, int count)
566 {
567 	struct mtx *mtx, *new_mtx;
568 
569 	mtx = NULL;
570 	for (; count != 0; count--) {
571 		/*
572 		 * Avoid releasing and reacquiring the same page lock.
573 		 */
574 		new_mtx = vm_page_lockptr(*ma);
575 		if (mtx != new_mtx) {
576 			if (mtx != NULL)
577 				mtx_unlock(mtx);
578 			mtx = new_mtx;
579 			mtx_lock(mtx);
580 		}
581 		vm_page_unhold(*ma);
582 		ma++;
583 	}
584 	if (mtx != NULL)
585 		mtx_unlock(mtx);
586 }
587 
588 vm_page_t
589 PHYS_TO_VM_PAGE(vm_paddr_t pa)
590 {
591 	vm_page_t m;
592 
593 #ifdef VM_PHYSSEG_SPARSE
594 	m = vm_phys_paddr_to_vm_page(pa);
595 	if (m == NULL)
596 		m = vm_phys_fictitious_to_vm_page(pa);
597 	return (m);
598 #elif defined(VM_PHYSSEG_DENSE)
599 	long pi;
600 
601 	pi = atop(pa);
602 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
603 		m = &vm_page_array[pi - first_page];
604 		return (m);
605 	}
606 	return (vm_phys_fictitious_to_vm_page(pa));
607 #else
608 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
609 #endif
610 }
611 
612 /*
613  *	vm_page_getfake:
614  *
615  *	Create a fictitious page with the specified physical address and
616  *	memory attribute.  The memory attribute is the only the machine-
617  *	dependent aspect of a fictitious page that must be initialized.
618  */
619 vm_page_t
620 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
621 {
622 	vm_page_t m;
623 
624 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
625 	vm_page_initfake(m, paddr, memattr);
626 	return (m);
627 }
628 
629 void
630 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
631 {
632 
633 	if ((m->flags & PG_FICTITIOUS) != 0) {
634 		/*
635 		 * The page's memattr might have changed since the
636 		 * previous initialization.  Update the pmap to the
637 		 * new memattr.
638 		 */
639 		goto memattr;
640 	}
641 	m->phys_addr = paddr;
642 	m->queue = PQ_NONE;
643 	/* Fictitious pages don't use "segind". */
644 	m->flags = PG_FICTITIOUS;
645 	/* Fictitious pages don't use "order" or "pool". */
646 	m->oflags = VPO_BUSY | VPO_UNMANAGED;
647 	m->wire_count = 1;
648 memattr:
649 	pmap_page_set_memattr(m, memattr);
650 }
651 
652 /*
653  *	vm_page_putfake:
654  *
655  *	Release a fictitious page.
656  */
657 void
658 vm_page_putfake(vm_page_t m)
659 {
660 
661 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
662 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
663 	    ("vm_page_putfake: bad page %p", m));
664 	uma_zfree(fakepg_zone, m);
665 }
666 
667 /*
668  *	vm_page_updatefake:
669  *
670  *	Update the given fictitious page to the specified physical address and
671  *	memory attribute.
672  */
673 void
674 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
675 {
676 
677 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
678 	    ("vm_page_updatefake: bad page %p", m));
679 	m->phys_addr = paddr;
680 	pmap_page_set_memattr(m, memattr);
681 }
682 
683 /*
684  *	vm_page_free:
685  *
686  *	Free a page.
687  */
688 void
689 vm_page_free(vm_page_t m)
690 {
691 
692 	m->flags &= ~PG_ZERO;
693 	vm_page_free_toq(m);
694 }
695 
696 /*
697  *	vm_page_free_zero:
698  *
699  *	Free a page to the zerod-pages queue
700  */
701 void
702 vm_page_free_zero(vm_page_t m)
703 {
704 
705 	m->flags |= PG_ZERO;
706 	vm_page_free_toq(m);
707 }
708 
709 /*
710  * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
711  * array which is not the request page.
712  */
713 void
714 vm_page_readahead_finish(vm_page_t m)
715 {
716 
717 	if (m->valid != 0) {
718 		/*
719 		 * Since the page is not the requested page, whether
720 		 * it should be activated or deactivated is not
721 		 * obvious.  Empirical results have shown that
722 		 * deactivating the page is usually the best choice,
723 		 * unless the page is wanted by another thread.
724 		 */
725 		if (m->oflags & VPO_WANTED) {
726 			vm_page_lock(m);
727 			vm_page_activate(m);
728 			vm_page_unlock(m);
729 		} else {
730 			vm_page_lock(m);
731 			vm_page_deactivate(m);
732 			vm_page_unlock(m);
733 		}
734 		vm_page_wakeup(m);
735 	} else {
736 		/*
737 		 * Free the completely invalid page.  Such page state
738 		 * occurs due to the short read operation which did
739 		 * not covered our page at all, or in case when a read
740 		 * error happens.
741 		 */
742 		vm_page_lock(m);
743 		vm_page_free(m);
744 		vm_page_unlock(m);
745 	}
746 }
747 
748 /*
749  *	vm_page_sleep:
750  *
751  *	Sleep and release the page lock.
752  *
753  *	The object containing the given page must be locked.
754  */
755 void
756 vm_page_sleep(vm_page_t m, const char *msg)
757 {
758 
759 	VM_OBJECT_ASSERT_WLOCKED(m->object);
760 	if (mtx_owned(vm_page_lockptr(m)))
761 		vm_page_unlock(m);
762 
763 	/*
764 	 * It's possible that while we sleep, the page will get
765 	 * unbusied and freed.  If we are holding the object
766 	 * lock, we will assume we hold a reference to the object
767 	 * such that even if m->object changes, we can re-lock
768 	 * it.
769 	 */
770 	m->oflags |= VPO_WANTED;
771 	VM_OBJECT_SLEEP(m->object, m, PVM, msg, 0);
772 }
773 
774 /*
775  *	vm_page_dirty_KBI:		[ internal use only ]
776  *
777  *	Set all bits in the page's dirty field.
778  *
779  *	The object containing the specified page must be locked if the
780  *	call is made from the machine-independent layer.
781  *
782  *	See vm_page_clear_dirty_mask().
783  *
784  *	This function should only be called by vm_page_dirty().
785  */
786 void
787 vm_page_dirty_KBI(vm_page_t m)
788 {
789 
790 	/* These assertions refer to this operation by its public name. */
791 	KASSERT((m->flags & PG_CACHED) == 0,
792 	    ("vm_page_dirty: page in cache!"));
793 	KASSERT(!VM_PAGE_IS_FREE(m),
794 	    ("vm_page_dirty: page is free!"));
795 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
796 	    ("vm_page_dirty: page is invalid!"));
797 	m->dirty = VM_PAGE_BITS_ALL;
798 }
799 
800 /*
801  *	vm_page_insert:		[ internal use only ]
802  *
803  *	Inserts the given mem entry into the object and object list.
804  *
805  *	The object must be locked.
806  */
807 void
808 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
809 {
810 	vm_page_t mpred;
811 
812 	VM_OBJECT_ASSERT_WLOCKED(object);
813 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
814 	vm_page_insert_after(m, object, pindex, mpred);
815 }
816 
817 /*
818  *	vm_page_insert_after:
819  *
820  *	Inserts the page "m" into the specified object at offset "pindex".
821  *
822  *	The page "mpred" must immediately precede the offset "pindex" within
823  *	the specified object.
824  *
825  *	The object must be locked.
826  */
827 static void
828 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
829     vm_page_t mpred)
830 {
831 	vm_page_t msucc;
832 
833 	VM_OBJECT_ASSERT_WLOCKED(object);
834 	KASSERT(m->object == NULL,
835 	    ("vm_page_insert_after: page already inserted"));
836 	if (mpred != NULL) {
837 		KASSERT(mpred->object == object ||
838 		    (mpred->flags & PG_SLAB) != 0,
839 		    ("vm_page_insert_after: object doesn't contain mpred"));
840 		KASSERT(mpred->pindex < pindex,
841 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
842 		msucc = TAILQ_NEXT(mpred, listq);
843 	} else
844 		msucc = TAILQ_FIRST(&object->memq);
845 	if (msucc != NULL)
846 		KASSERT(msucc->pindex > pindex,
847 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
848 
849 	/*
850 	 * Record the object/offset pair in this page
851 	 */
852 	m->object = object;
853 	m->pindex = pindex;
854 
855 	/*
856 	 * Now link into the object's ordered list of backed pages.
857 	 */
858 	if (mpred != NULL)
859 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
860 	else
861 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
862 	vm_radix_insert(&object->rtree, m);
863 
864 	/*
865 	 * Show that the object has one more resident page.
866 	 */
867 	object->resident_page_count++;
868 
869 	/*
870 	 * Hold the vnode until the last page is released.
871 	 */
872 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
873 		vhold(object->handle);
874 
875 	/*
876 	 * Since we are inserting a new and possibly dirty page,
877 	 * update the object's OBJ_MIGHTBEDIRTY flag.
878 	 */
879 	if (pmap_page_is_write_mapped(m))
880 		vm_object_set_writeable_dirty(object);
881 }
882 
883 /*
884  *	vm_page_remove:
885  *
886  *	Removes the given mem entry from the object/offset-page
887  *	table and the object page list, but do not invalidate/terminate
888  *	the backing store.
889  *
890  *	The object must be locked.  The page must be locked if it is managed.
891  */
892 void
893 vm_page_remove(vm_page_t m)
894 {
895 	vm_object_t object;
896 
897 	if ((m->oflags & VPO_UNMANAGED) == 0)
898 		vm_page_lock_assert(m, MA_OWNED);
899 	if ((object = m->object) == NULL)
900 		return;
901 	VM_OBJECT_ASSERT_WLOCKED(object);
902 	if (m->oflags & VPO_BUSY) {
903 		m->oflags &= ~VPO_BUSY;
904 		vm_page_flash(m);
905 	}
906 
907 	/*
908 	 * Now remove from the object's list of backed pages.
909 	 */
910 	vm_radix_remove(&object->rtree, m->pindex);
911 	TAILQ_REMOVE(&object->memq, m, listq);
912 
913 	/*
914 	 * And show that the object has one fewer resident page.
915 	 */
916 	object->resident_page_count--;
917 
918 	/*
919 	 * The vnode may now be recycled.
920 	 */
921 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
922 		vdrop(object->handle);
923 
924 	m->object = NULL;
925 }
926 
927 /*
928  *	vm_page_lookup:
929  *
930  *	Returns the page associated with the object/offset
931  *	pair specified; if none is found, NULL is returned.
932  *
933  *	The object must be locked.
934  */
935 vm_page_t
936 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
937 {
938 
939 	VM_OBJECT_ASSERT_LOCKED(object);
940 	return (vm_radix_lookup(&object->rtree, pindex));
941 }
942 
943 /*
944  *	vm_page_find_least:
945  *
946  *	Returns the page associated with the object with least pindex
947  *	greater than or equal to the parameter pindex, or NULL.
948  *
949  *	The object must be locked.
950  */
951 vm_page_t
952 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
953 {
954 	vm_page_t m;
955 
956 	VM_OBJECT_ASSERT_LOCKED(object);
957 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
958 		m = vm_radix_lookup_ge(&object->rtree, pindex);
959 	return (m);
960 }
961 
962 /*
963  * Returns the given page's successor (by pindex) within the object if it is
964  * resident; if none is found, NULL is returned.
965  *
966  * The object must be locked.
967  */
968 vm_page_t
969 vm_page_next(vm_page_t m)
970 {
971 	vm_page_t next;
972 
973 	VM_OBJECT_ASSERT_WLOCKED(m->object);
974 	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
975 	    next->pindex != m->pindex + 1)
976 		next = NULL;
977 	return (next);
978 }
979 
980 /*
981  * Returns the given page's predecessor (by pindex) within the object if it is
982  * resident; if none is found, NULL is returned.
983  *
984  * The object must be locked.
985  */
986 vm_page_t
987 vm_page_prev(vm_page_t m)
988 {
989 	vm_page_t prev;
990 
991 	VM_OBJECT_ASSERT_WLOCKED(m->object);
992 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
993 	    prev->pindex != m->pindex - 1)
994 		prev = NULL;
995 	return (prev);
996 }
997 
998 /*
999  *	vm_page_rename:
1000  *
1001  *	Move the given memory entry from its
1002  *	current object to the specified target object/offset.
1003  *
1004  *	Note: swap associated with the page must be invalidated by the move.  We
1005  *	      have to do this for several reasons:  (1) we aren't freeing the
1006  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1007  *	      moving the page from object A to B, and will then later move
1008  *	      the backing store from A to B and we can't have a conflict.
1009  *
1010  *	Note: we *always* dirty the page.  It is necessary both for the
1011  *	      fact that we moved it, and because we may be invalidating
1012  *	      swap.  If the page is on the cache, we have to deactivate it
1013  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1014  *	      on the cache.
1015  *
1016  *	The objects must be locked.  The page must be locked if it is managed.
1017  */
1018 void
1019 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1020 {
1021 
1022 	vm_page_remove(m);
1023 	vm_page_insert(m, new_object, new_pindex);
1024 	vm_page_dirty(m);
1025 }
1026 
1027 /*
1028  *	Convert all of the given object's cached pages that have a
1029  *	pindex within the given range into free pages.  If the value
1030  *	zero is given for "end", then the range's upper bound is
1031  *	infinity.  If the given object is backed by a vnode and it
1032  *	transitions from having one or more cached pages to none, the
1033  *	vnode's hold count is reduced.
1034  */
1035 void
1036 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1037 {
1038 	vm_page_t m;
1039 	boolean_t empty;
1040 
1041 	mtx_lock(&vm_page_queue_free_mtx);
1042 	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1043 		mtx_unlock(&vm_page_queue_free_mtx);
1044 		return;
1045 	}
1046 	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1047 		if (end != 0 && m->pindex >= end)
1048 			break;
1049 		vm_radix_remove(&object->cache, m->pindex);
1050 		m->object = NULL;
1051 		m->valid = 0;
1052 		/* Clear PG_CACHED and set PG_FREE. */
1053 		m->flags ^= PG_CACHED | PG_FREE;
1054 		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
1055 		    ("vm_page_cache_free: page %p has inconsistent flags", m));
1056 		cnt.v_cache_count--;
1057 		cnt.v_free_count++;
1058 	}
1059 	empty = vm_radix_is_empty(&object->cache);
1060 	mtx_unlock(&vm_page_queue_free_mtx);
1061 	if (object->type == OBJT_VNODE && empty)
1062 		vdrop(object->handle);
1063 }
1064 
1065 /*
1066  *	Returns the cached page that is associated with the given
1067  *	object and offset.  If, however, none exists, returns NULL.
1068  *
1069  *	The free page queue must be locked.
1070  */
1071 static inline vm_page_t
1072 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1073 {
1074 
1075 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1076 	return (vm_radix_lookup(&object->cache, pindex));
1077 }
1078 
1079 /*
1080  *	Remove the given cached page from its containing object's
1081  *	collection of cached pages.
1082  *
1083  *	The free page queue must be locked.
1084  */
1085 static void
1086 vm_page_cache_remove(vm_page_t m)
1087 {
1088 
1089 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1090 	KASSERT((m->flags & PG_CACHED) != 0,
1091 	    ("vm_page_cache_remove: page %p is not cached", m));
1092 	vm_radix_remove(&m->object->cache, m->pindex);
1093 	m->object = NULL;
1094 	cnt.v_cache_count--;
1095 }
1096 
1097 /*
1098  *	Transfer all of the cached pages with offset greater than or
1099  *	equal to 'offidxstart' from the original object's cache to the
1100  *	new object's cache.  However, any cached pages with offset
1101  *	greater than or equal to the new object's size are kept in the
1102  *	original object.  Initially, the new object's cache must be
1103  *	empty.  Offset 'offidxstart' in the original object must
1104  *	correspond to offset zero in the new object.
1105  *
1106  *	The new object must be locked.
1107  */
1108 void
1109 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1110     vm_object_t new_object)
1111 {
1112 	vm_page_t m;
1113 
1114 	/*
1115 	 * Insertion into an object's collection of cached pages
1116 	 * requires the object to be locked.  In contrast, removal does
1117 	 * not.
1118 	 */
1119 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1120 	KASSERT(vm_radix_is_empty(&new_object->cache),
1121 	    ("vm_page_cache_transfer: object %p has cached pages",
1122 	    new_object));
1123 	mtx_lock(&vm_page_queue_free_mtx);
1124 	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1125 	    offidxstart)) != NULL) {
1126 		/*
1127 		 * Transfer all of the pages with offset greater than or
1128 		 * equal to 'offidxstart' from the original object's
1129 		 * cache to the new object's cache.
1130 		 */
1131 		if ((m->pindex - offidxstart) >= new_object->size)
1132 			break;
1133 		vm_radix_remove(&orig_object->cache, m->pindex);
1134 		/* Update the page's object and offset. */
1135 		m->object = new_object;
1136 		m->pindex -= offidxstart;
1137 		vm_radix_insert(&new_object->cache, m);
1138 	}
1139 	mtx_unlock(&vm_page_queue_free_mtx);
1140 }
1141 
1142 /*
1143  *	Returns TRUE if a cached page is associated with the given object and
1144  *	offset, and FALSE otherwise.
1145  *
1146  *	The object must be locked.
1147  */
1148 boolean_t
1149 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1150 {
1151 	vm_page_t m;
1152 
1153 	/*
1154 	 * Insertion into an object's collection of cached pages requires the
1155 	 * object to be locked.  Therefore, if the object is locked and the
1156 	 * object's collection is empty, there is no need to acquire the free
1157 	 * page queues lock in order to prove that the specified page doesn't
1158 	 * exist.
1159 	 */
1160 	VM_OBJECT_ASSERT_WLOCKED(object);
1161 	if (__predict_true(vm_object_cache_is_empty(object)))
1162 		return (FALSE);
1163 	mtx_lock(&vm_page_queue_free_mtx);
1164 	m = vm_page_cache_lookup(object, pindex);
1165 	mtx_unlock(&vm_page_queue_free_mtx);
1166 	return (m != NULL);
1167 }
1168 
1169 /*
1170  *	vm_page_alloc:
1171  *
1172  *	Allocate and return a page that is associated with the specified
1173  *	object and offset pair.  By default, this page has the flag VPO_BUSY
1174  *	set.
1175  *
1176  *	The caller must always specify an allocation class.
1177  *
1178  *	allocation classes:
1179  *	VM_ALLOC_NORMAL		normal process request
1180  *	VM_ALLOC_SYSTEM		system *really* needs a page
1181  *	VM_ALLOC_INTERRUPT	interrupt time request
1182  *
1183  *	optional allocation flags:
1184  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1185  *				intends to allocate
1186  *	VM_ALLOC_IFCACHED	return page only if it is cached
1187  *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1188  *				is cached
1189  *	VM_ALLOC_NOBUSY		do not set the flag VPO_BUSY on the page
1190  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1191  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1192  *				should not have the flag VPO_BUSY set
1193  *	VM_ALLOC_WIRED		wire the allocated page
1194  *	VM_ALLOC_ZERO		prefer a zeroed page
1195  *
1196  *	This routine may not sleep.
1197  */
1198 vm_page_t
1199 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1200 {
1201 	struct vnode *vp = NULL;
1202 	vm_object_t m_object;
1203 	vm_page_t m, mpred;
1204 	int flags, req_class;
1205 
1206 	mpred = 0;	/* XXX: pacify gcc */
1207 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0),
1208 	    ("vm_page_alloc: inconsistent object/req"));
1209 	if (object != NULL)
1210 		VM_OBJECT_ASSERT_WLOCKED(object);
1211 
1212 	req_class = req & VM_ALLOC_CLASS_MASK;
1213 
1214 	/*
1215 	 * The page daemon is allowed to dig deeper into the free page list.
1216 	 */
1217 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1218 		req_class = VM_ALLOC_SYSTEM;
1219 
1220 	if (object != NULL) {
1221 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1222 		KASSERT(mpred == NULL || mpred->pindex != pindex,
1223 		   ("vm_page_alloc: pindex already allocated"));
1224 	}
1225 	mtx_lock(&vm_page_queue_free_mtx);
1226 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1227 	    (req_class == VM_ALLOC_SYSTEM &&
1228 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1229 	    (req_class == VM_ALLOC_INTERRUPT &&
1230 	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1231 		/*
1232 		 * Allocate from the free queue if the number of free pages
1233 		 * exceeds the minimum for the request class.
1234 		 */
1235 		if (object != NULL &&
1236 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1237 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1238 				mtx_unlock(&vm_page_queue_free_mtx);
1239 				return (NULL);
1240 			}
1241 			if (vm_phys_unfree_page(m))
1242 				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1243 #if VM_NRESERVLEVEL > 0
1244 			else if (!vm_reserv_reactivate_page(m))
1245 #else
1246 			else
1247 #endif
1248 				panic("vm_page_alloc: cache page %p is missing"
1249 				    " from the free queue", m);
1250 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1251 			mtx_unlock(&vm_page_queue_free_mtx);
1252 			return (NULL);
1253 #if VM_NRESERVLEVEL > 0
1254 		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1255 		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1256 		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1257 #else
1258 		} else {
1259 #endif
1260 			m = vm_phys_alloc_pages(object != NULL ?
1261 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1262 #if VM_NRESERVLEVEL > 0
1263 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1264 				m = vm_phys_alloc_pages(object != NULL ?
1265 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1266 				    0);
1267 			}
1268 #endif
1269 		}
1270 	} else {
1271 		/*
1272 		 * Not allocatable, give up.
1273 		 */
1274 		mtx_unlock(&vm_page_queue_free_mtx);
1275 		atomic_add_int(&vm_pageout_deficit,
1276 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1277 		pagedaemon_wakeup();
1278 		return (NULL);
1279 	}
1280 
1281 	/*
1282 	 *  At this point we had better have found a good page.
1283 	 */
1284 	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1285 	KASSERT(m->queue == PQ_NONE,
1286 	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1287 	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1288 	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1289 	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1290 	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1291 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1292 	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1293 	    pmap_page_get_memattr(m)));
1294 	if ((m->flags & PG_CACHED) != 0) {
1295 		KASSERT((m->flags & PG_ZERO) == 0,
1296 		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1297 		KASSERT(m->valid != 0,
1298 		    ("vm_page_alloc: cached page %p is invalid", m));
1299 		if (m->object == object && m->pindex == pindex)
1300 	  		cnt.v_reactivated++;
1301 		else
1302 			m->valid = 0;
1303 		m_object = m->object;
1304 		vm_page_cache_remove(m);
1305 		if (m_object->type == OBJT_VNODE &&
1306 		    vm_object_cache_is_empty(m_object))
1307 			vp = m_object->handle;
1308 	} else {
1309 		KASSERT(VM_PAGE_IS_FREE(m),
1310 		    ("vm_page_alloc: page %p is not free", m));
1311 		KASSERT(m->valid == 0,
1312 		    ("vm_page_alloc: free page %p is valid", m));
1313 		cnt.v_free_count--;
1314 	}
1315 
1316 	/*
1317 	 * Only the PG_ZERO flag is inherited.  The PG_CACHED or PG_FREE flag
1318 	 * must be cleared before the free page queues lock is released.
1319 	 */
1320 	flags = 0;
1321 	if (m->flags & PG_ZERO) {
1322 		vm_page_zero_count--;
1323 		if (req & VM_ALLOC_ZERO)
1324 			flags = PG_ZERO;
1325 	}
1326 	if (req & VM_ALLOC_NODUMP)
1327 		flags |= PG_NODUMP;
1328 	m->flags = flags;
1329 	mtx_unlock(&vm_page_queue_free_mtx);
1330 	m->aflags = 0;
1331 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1332 	    VPO_UNMANAGED : 0;
1333 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ)) == 0)
1334 		m->oflags |= VPO_BUSY;
1335 	if (req & VM_ALLOC_WIRED) {
1336 		/*
1337 		 * The page lock is not required for wiring a page until that
1338 		 * page is inserted into the object.
1339 		 */
1340 		atomic_add_int(&cnt.v_wire_count, 1);
1341 		m->wire_count = 1;
1342 	}
1343 	m->act_count = 0;
1344 
1345 	if (object != NULL) {
1346 		/* Ignore device objects; the pager sets "memattr" for them. */
1347 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1348 		    (object->flags & OBJ_FICTITIOUS) == 0)
1349 			pmap_page_set_memattr(m, object->memattr);
1350 		vm_page_insert_after(m, object, pindex, mpred);
1351 	} else
1352 		m->pindex = pindex;
1353 
1354 	/*
1355 	 * The following call to vdrop() must come after the above call
1356 	 * to vm_page_insert() in case both affect the same object and
1357 	 * vnode.  Otherwise, the affected vnode's hold count could
1358 	 * temporarily become zero.
1359 	 */
1360 	if (vp != NULL)
1361 		vdrop(vp);
1362 
1363 	/*
1364 	 * Don't wakeup too often - wakeup the pageout daemon when
1365 	 * we would be nearly out of memory.
1366 	 */
1367 	if (vm_paging_needed())
1368 		pagedaemon_wakeup();
1369 
1370 	return (m);
1371 }
1372 
1373 /*
1374  *	vm_page_alloc_contig:
1375  *
1376  *	Allocate a contiguous set of physical pages of the given size "npages"
1377  *	from the free lists.  All of the physical pages must be at or above
1378  *	the given physical address "low" and below the given physical address
1379  *	"high".  The given value "alignment" determines the alignment of the
1380  *	first physical page in the set.  If the given value "boundary" is
1381  *	non-zero, then the set of physical pages cannot cross any physical
1382  *	address boundary that is a multiple of that value.  Both "alignment"
1383  *	and "boundary" must be a power of two.
1384  *
1385  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1386  *	then the memory attribute setting for the physical pages is configured
1387  *	to the object's memory attribute setting.  Otherwise, the memory
1388  *	attribute setting for the physical pages is configured to "memattr",
1389  *	overriding the object's memory attribute setting.  However, if the
1390  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1391  *	memory attribute setting for the physical pages cannot be configured
1392  *	to VM_MEMATTR_DEFAULT.
1393  *
1394  *	The caller must always specify an allocation class.
1395  *
1396  *	allocation classes:
1397  *	VM_ALLOC_NORMAL		normal process request
1398  *	VM_ALLOC_SYSTEM		system *really* needs a page
1399  *	VM_ALLOC_INTERRUPT	interrupt time request
1400  *
1401  *	optional allocation flags:
1402  *	VM_ALLOC_NOBUSY		do not set the flag VPO_BUSY on the page
1403  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1404  *				should not have the flag VPO_BUSY set
1405  *	VM_ALLOC_WIRED		wire the allocated page
1406  *	VM_ALLOC_ZERO		prefer a zeroed page
1407  *
1408  *	This routine may not sleep.
1409  */
1410 vm_page_t
1411 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1412     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1413     vm_paddr_t boundary, vm_memattr_t memattr)
1414 {
1415 	struct vnode *drop;
1416 	vm_page_t deferred_vdrop_list, m, m_ret;
1417 	u_int flags, oflags;
1418 	int req_class;
1419 
1420 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0),
1421 	    ("vm_page_alloc_contig: inconsistent object/req"));
1422 	if (object != NULL) {
1423 		VM_OBJECT_ASSERT_WLOCKED(object);
1424 		KASSERT(object->type == OBJT_PHYS,
1425 		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1426 		    object));
1427 	}
1428 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1429 	req_class = req & VM_ALLOC_CLASS_MASK;
1430 
1431 	/*
1432 	 * The page daemon is allowed to dig deeper into the free page list.
1433 	 */
1434 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1435 		req_class = VM_ALLOC_SYSTEM;
1436 
1437 	deferred_vdrop_list = NULL;
1438 	mtx_lock(&vm_page_queue_free_mtx);
1439 	if (cnt.v_free_count + cnt.v_cache_count >= npages +
1440 	    cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1441 	    cnt.v_free_count + cnt.v_cache_count >= npages +
1442 	    cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1443 	    cnt.v_free_count + cnt.v_cache_count >= npages)) {
1444 #if VM_NRESERVLEVEL > 0
1445 retry:
1446 		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1447 		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1448 		    low, high, alignment, boundary)) == NULL)
1449 #endif
1450 			m_ret = vm_phys_alloc_contig(npages, low, high,
1451 			    alignment, boundary);
1452 	} else {
1453 		mtx_unlock(&vm_page_queue_free_mtx);
1454 		atomic_add_int(&vm_pageout_deficit, npages);
1455 		pagedaemon_wakeup();
1456 		return (NULL);
1457 	}
1458 	if (m_ret != NULL)
1459 		for (m = m_ret; m < &m_ret[npages]; m++) {
1460 			drop = vm_page_alloc_init(m);
1461 			if (drop != NULL) {
1462 				/*
1463 				 * Enqueue the vnode for deferred vdrop().
1464 				 *
1465 				 * Once the pages are removed from the free
1466 				 * page list, "pageq" can be safely abused to
1467 				 * construct a short-lived list of vnodes.
1468 				 */
1469 				m->pageq.tqe_prev = (void *)drop;
1470 				m->pageq.tqe_next = deferred_vdrop_list;
1471 				deferred_vdrop_list = m;
1472 			}
1473 		}
1474 	else {
1475 #if VM_NRESERVLEVEL > 0
1476 		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1477 		    boundary))
1478 			goto retry;
1479 #endif
1480 	}
1481 	mtx_unlock(&vm_page_queue_free_mtx);
1482 	if (m_ret == NULL)
1483 		return (NULL);
1484 
1485 	/*
1486 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1487 	 */
1488 	flags = 0;
1489 	if ((req & VM_ALLOC_ZERO) != 0)
1490 		flags = PG_ZERO;
1491 	if ((req & VM_ALLOC_NODUMP) != 0)
1492 		flags |= PG_NODUMP;
1493 	if ((req & VM_ALLOC_WIRED) != 0)
1494 		atomic_add_int(&cnt.v_wire_count, npages);
1495 	oflags = VPO_UNMANAGED;
1496 	if (object != NULL) {
1497 		if ((req & VM_ALLOC_NOBUSY) == 0)
1498 			oflags |= VPO_BUSY;
1499 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1500 		    memattr == VM_MEMATTR_DEFAULT)
1501 			memattr = object->memattr;
1502 	}
1503 	for (m = m_ret; m < &m_ret[npages]; m++) {
1504 		m->aflags = 0;
1505 		m->flags = (m->flags | PG_NODUMP) & flags;
1506 		if ((req & VM_ALLOC_WIRED) != 0)
1507 			m->wire_count = 1;
1508 		/* Unmanaged pages don't use "act_count". */
1509 		m->oflags = oflags;
1510 		if (memattr != VM_MEMATTR_DEFAULT)
1511 			pmap_page_set_memattr(m, memattr);
1512 		if (object != NULL)
1513 			vm_page_insert(m, object, pindex);
1514 		else
1515 			m->pindex = pindex;
1516 		pindex++;
1517 	}
1518 	while (deferred_vdrop_list != NULL) {
1519 		vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev);
1520 		deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next;
1521 	}
1522 	if (vm_paging_needed())
1523 		pagedaemon_wakeup();
1524 	return (m_ret);
1525 }
1526 
1527 /*
1528  * Initialize a page that has been freshly dequeued from a freelist.
1529  * The caller has to drop the vnode returned, if it is not NULL.
1530  *
1531  * This function may only be used to initialize unmanaged pages.
1532  *
1533  * To be called with vm_page_queue_free_mtx held.
1534  */
1535 static struct vnode *
1536 vm_page_alloc_init(vm_page_t m)
1537 {
1538 	struct vnode *drop;
1539 	vm_object_t m_object;
1540 
1541 	KASSERT(m->queue == PQ_NONE,
1542 	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1543 	    m, m->queue));
1544 	KASSERT(m->wire_count == 0,
1545 	    ("vm_page_alloc_init: page %p is wired", m));
1546 	KASSERT(m->hold_count == 0,
1547 	    ("vm_page_alloc_init: page %p is held", m));
1548 	KASSERT(m->busy == 0,
1549 	    ("vm_page_alloc_init: page %p is busy", m));
1550 	KASSERT(m->dirty == 0,
1551 	    ("vm_page_alloc_init: page %p is dirty", m));
1552 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1553 	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1554 	    m, pmap_page_get_memattr(m)));
1555 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1556 	drop = NULL;
1557 	if ((m->flags & PG_CACHED) != 0) {
1558 		KASSERT((m->flags & PG_ZERO) == 0,
1559 		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1560 		m->valid = 0;
1561 		m_object = m->object;
1562 		vm_page_cache_remove(m);
1563 		if (m_object->type == OBJT_VNODE &&
1564 		    vm_object_cache_is_empty(m_object))
1565 			drop = m_object->handle;
1566 	} else {
1567 		KASSERT(VM_PAGE_IS_FREE(m),
1568 		    ("vm_page_alloc_init: page %p is not free", m));
1569 		KASSERT(m->valid == 0,
1570 		    ("vm_page_alloc_init: free page %p is valid", m));
1571 		cnt.v_free_count--;
1572 		if ((m->flags & PG_ZERO) != 0)
1573 			vm_page_zero_count--;
1574 	}
1575 	/* Don't clear the PG_ZERO flag; we'll need it later. */
1576 	m->flags &= PG_ZERO;
1577 	return (drop);
1578 }
1579 
1580 /*
1581  * 	vm_page_alloc_freelist:
1582  *
1583  *	Allocate a physical page from the specified free page list.
1584  *
1585  *	The caller must always specify an allocation class.
1586  *
1587  *	allocation classes:
1588  *	VM_ALLOC_NORMAL		normal process request
1589  *	VM_ALLOC_SYSTEM		system *really* needs a page
1590  *	VM_ALLOC_INTERRUPT	interrupt time request
1591  *
1592  *	optional allocation flags:
1593  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1594  *				intends to allocate
1595  *	VM_ALLOC_WIRED		wire the allocated page
1596  *	VM_ALLOC_ZERO		prefer a zeroed page
1597  *
1598  *	This routine may not sleep.
1599  */
1600 vm_page_t
1601 vm_page_alloc_freelist(int flind, int req)
1602 {
1603 	struct vnode *drop;
1604 	vm_page_t m;
1605 	u_int flags;
1606 	int req_class;
1607 
1608 	req_class = req & VM_ALLOC_CLASS_MASK;
1609 
1610 	/*
1611 	 * The page daemon is allowed to dig deeper into the free page list.
1612 	 */
1613 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1614 		req_class = VM_ALLOC_SYSTEM;
1615 
1616 	/*
1617 	 * Do not allocate reserved pages unless the req has asked for it.
1618 	 */
1619 	mtx_lock(&vm_page_queue_free_mtx);
1620 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1621 	    (req_class == VM_ALLOC_SYSTEM &&
1622 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1623 	    (req_class == VM_ALLOC_INTERRUPT &&
1624 	    cnt.v_free_count + cnt.v_cache_count > 0))
1625 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1626 	else {
1627 		mtx_unlock(&vm_page_queue_free_mtx);
1628 		atomic_add_int(&vm_pageout_deficit,
1629 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1630 		pagedaemon_wakeup();
1631 		return (NULL);
1632 	}
1633 	if (m == NULL) {
1634 		mtx_unlock(&vm_page_queue_free_mtx);
1635 		return (NULL);
1636 	}
1637 	drop = vm_page_alloc_init(m);
1638 	mtx_unlock(&vm_page_queue_free_mtx);
1639 
1640 	/*
1641 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1642 	 */
1643 	m->aflags = 0;
1644 	flags = 0;
1645 	if ((req & VM_ALLOC_ZERO) != 0)
1646 		flags = PG_ZERO;
1647 	m->flags &= flags;
1648 	if ((req & VM_ALLOC_WIRED) != 0) {
1649 		/*
1650 		 * The page lock is not required for wiring a page that does
1651 		 * not belong to an object.
1652 		 */
1653 		atomic_add_int(&cnt.v_wire_count, 1);
1654 		m->wire_count = 1;
1655 	}
1656 	/* Unmanaged pages don't use "act_count". */
1657 	m->oflags = VPO_UNMANAGED;
1658 	if (drop != NULL)
1659 		vdrop(drop);
1660 	if (vm_paging_needed())
1661 		pagedaemon_wakeup();
1662 	return (m);
1663 }
1664 
1665 /*
1666  *	vm_wait:	(also see VM_WAIT macro)
1667  *
1668  *	Sleep until free pages are available for allocation.
1669  *	- Called in various places before memory allocations.
1670  */
1671 void
1672 vm_wait(void)
1673 {
1674 
1675 	mtx_lock(&vm_page_queue_free_mtx);
1676 	if (curproc == pageproc) {
1677 		vm_pageout_pages_needed = 1;
1678 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1679 		    PDROP | PSWP, "VMWait", 0);
1680 	} else {
1681 		if (!vm_pages_needed) {
1682 			vm_pages_needed = 1;
1683 			wakeup(&vm_pages_needed);
1684 		}
1685 		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1686 		    "vmwait", 0);
1687 	}
1688 }
1689 
1690 /*
1691  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1692  *
1693  *	Sleep until free pages are available for allocation.
1694  *	- Called only in vm_fault so that processes page faulting
1695  *	  can be easily tracked.
1696  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1697  *	  processes will be able to grab memory first.  Do not change
1698  *	  this balance without careful testing first.
1699  */
1700 void
1701 vm_waitpfault(void)
1702 {
1703 
1704 	mtx_lock(&vm_page_queue_free_mtx);
1705 	if (!vm_pages_needed) {
1706 		vm_pages_needed = 1;
1707 		wakeup(&vm_pages_needed);
1708 	}
1709 	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1710 	    "pfault", 0);
1711 }
1712 
1713 /*
1714  *	vm_page_dequeue:
1715  *
1716  *	Remove the given page from its current page queue.
1717  *
1718  *	The page must be locked.
1719  */
1720 void
1721 vm_page_dequeue(vm_page_t m)
1722 {
1723 	struct vm_pagequeue *pq;
1724 
1725 	vm_page_lock_assert(m, MA_OWNED);
1726 	KASSERT(m->queue != PQ_NONE,
1727 	    ("vm_page_dequeue: page %p is not queued", m));
1728 	pq = &vm_pagequeues[m->queue];
1729 	vm_pagequeue_lock(pq);
1730 	m->queue = PQ_NONE;
1731 	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1732 	(*pq->pq_cnt)--;
1733 	vm_pagequeue_unlock(pq);
1734 }
1735 
1736 /*
1737  *	vm_page_dequeue_locked:
1738  *
1739  *	Remove the given page from its current page queue.
1740  *
1741  *	The page and page queue must be locked.
1742  */
1743 void
1744 vm_page_dequeue_locked(vm_page_t m)
1745 {
1746 	struct vm_pagequeue *pq;
1747 
1748 	vm_page_lock_assert(m, MA_OWNED);
1749 	pq = &vm_pagequeues[m->queue];
1750 	vm_pagequeue_assert_locked(pq);
1751 	m->queue = PQ_NONE;
1752 	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1753 	(*pq->pq_cnt)--;
1754 }
1755 
1756 /*
1757  *	vm_page_enqueue:
1758  *
1759  *	Add the given page to the specified page queue.
1760  *
1761  *	The page must be locked.
1762  */
1763 static void
1764 vm_page_enqueue(int queue, vm_page_t m)
1765 {
1766 	struct vm_pagequeue *pq;
1767 
1768 	vm_page_lock_assert(m, MA_OWNED);
1769 	pq = &vm_pagequeues[queue];
1770 	vm_pagequeue_lock(pq);
1771 	m->queue = queue;
1772 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
1773 	++*pq->pq_cnt;
1774 	vm_pagequeue_unlock(pq);
1775 }
1776 
1777 /*
1778  *	vm_page_requeue:
1779  *
1780  *	Move the given page to the tail of its current page queue.
1781  *
1782  *	The page must be locked.
1783  */
1784 void
1785 vm_page_requeue(vm_page_t m)
1786 {
1787 	struct vm_pagequeue *pq;
1788 
1789 	vm_page_lock_assert(m, MA_OWNED);
1790 	KASSERT(m->queue != PQ_NONE,
1791 	    ("vm_page_requeue: page %p is not queued", m));
1792 	pq = &vm_pagequeues[m->queue];
1793 	vm_pagequeue_lock(pq);
1794 	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1795 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
1796 	vm_pagequeue_unlock(pq);
1797 }
1798 
1799 /*
1800  *	vm_page_requeue_locked:
1801  *
1802  *	Move the given page to the tail of its current page queue.
1803  *
1804  *	The page queue must be locked.
1805  */
1806 void
1807 vm_page_requeue_locked(vm_page_t m)
1808 {
1809 	struct vm_pagequeue *pq;
1810 
1811 	KASSERT(m->queue != PQ_NONE,
1812 	    ("vm_page_requeue_locked: page %p is not queued", m));
1813 	pq = &vm_pagequeues[m->queue];
1814 	vm_pagequeue_assert_locked(pq);
1815 	TAILQ_REMOVE(&pq->pq_pl, m, pageq);
1816 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
1817 }
1818 
1819 /*
1820  *	vm_page_activate:
1821  *
1822  *	Put the specified page on the active list (if appropriate).
1823  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1824  *	mess with it.
1825  *
1826  *	The page must be locked.
1827  */
1828 void
1829 vm_page_activate(vm_page_t m)
1830 {
1831 	int queue;
1832 
1833 	vm_page_lock_assert(m, MA_OWNED);
1834 	if ((queue = m->queue) != PQ_ACTIVE) {
1835 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
1836 			if (m->act_count < ACT_INIT)
1837 				m->act_count = ACT_INIT;
1838 			if (queue != PQ_NONE)
1839 				vm_page_dequeue(m);
1840 			vm_page_enqueue(PQ_ACTIVE, m);
1841 		} else
1842 			KASSERT(queue == PQ_NONE,
1843 			    ("vm_page_activate: wired page %p is queued", m));
1844 	} else {
1845 		if (m->act_count < ACT_INIT)
1846 			m->act_count = ACT_INIT;
1847 	}
1848 }
1849 
1850 /*
1851  *	vm_page_free_wakeup:
1852  *
1853  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1854  *	routine is called when a page has been added to the cache or free
1855  *	queues.
1856  *
1857  *	The page queues must be locked.
1858  */
1859 static inline void
1860 vm_page_free_wakeup(void)
1861 {
1862 
1863 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1864 	/*
1865 	 * if pageout daemon needs pages, then tell it that there are
1866 	 * some free.
1867 	 */
1868 	if (vm_pageout_pages_needed &&
1869 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1870 		wakeup(&vm_pageout_pages_needed);
1871 		vm_pageout_pages_needed = 0;
1872 	}
1873 	/*
1874 	 * wakeup processes that are waiting on memory if we hit a
1875 	 * high water mark. And wakeup scheduler process if we have
1876 	 * lots of memory. this process will swapin processes.
1877 	 */
1878 	if (vm_pages_needed && !vm_page_count_min()) {
1879 		vm_pages_needed = 0;
1880 		wakeup(&cnt.v_free_count);
1881 	}
1882 }
1883 
1884 /*
1885  *	vm_page_free_toq:
1886  *
1887  *	Returns the given page to the free list,
1888  *	disassociating it with any VM object.
1889  *
1890  *	The object must be locked.  The page must be locked if it is managed.
1891  */
1892 void
1893 vm_page_free_toq(vm_page_t m)
1894 {
1895 
1896 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1897 		vm_page_lock_assert(m, MA_OWNED);
1898 		KASSERT(!pmap_page_is_mapped(m),
1899 		    ("vm_page_free_toq: freeing mapped page %p", m));
1900 	} else
1901 		KASSERT(m->queue == PQ_NONE,
1902 		    ("vm_page_free_toq: unmanaged page %p is queued", m));
1903 	PCPU_INC(cnt.v_tfree);
1904 
1905 	if (VM_PAGE_IS_FREE(m))
1906 		panic("vm_page_free: freeing free page %p", m);
1907 	else if (m->busy != 0)
1908 		panic("vm_page_free: freeing busy page %p", m);
1909 
1910 	/*
1911 	 * Unqueue, then remove page.  Note that we cannot destroy
1912 	 * the page here because we do not want to call the pager's
1913 	 * callback routine until after we've put the page on the
1914 	 * appropriate free queue.
1915 	 */
1916 	vm_page_remque(m);
1917 	vm_page_remove(m);
1918 
1919 	/*
1920 	 * If fictitious remove object association and
1921 	 * return, otherwise delay object association removal.
1922 	 */
1923 	if ((m->flags & PG_FICTITIOUS) != 0) {
1924 		return;
1925 	}
1926 
1927 	m->valid = 0;
1928 	vm_page_undirty(m);
1929 
1930 	if (m->wire_count != 0)
1931 		panic("vm_page_free: freeing wired page %p", m);
1932 	if (m->hold_count != 0) {
1933 		m->flags &= ~PG_ZERO;
1934 		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
1935 		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
1936 		m->flags |= PG_UNHOLDFREE;
1937 	} else {
1938 		/*
1939 		 * Restore the default memory attribute to the page.
1940 		 */
1941 		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1942 			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1943 
1944 		/*
1945 		 * Insert the page into the physical memory allocator's
1946 		 * cache/free page queues.
1947 		 */
1948 		mtx_lock(&vm_page_queue_free_mtx);
1949 		m->flags |= PG_FREE;
1950 		cnt.v_free_count++;
1951 #if VM_NRESERVLEVEL > 0
1952 		if (!vm_reserv_free_page(m))
1953 #else
1954 		if (TRUE)
1955 #endif
1956 			vm_phys_free_pages(m, 0);
1957 		if ((m->flags & PG_ZERO) != 0)
1958 			++vm_page_zero_count;
1959 		else
1960 			vm_page_zero_idle_wakeup();
1961 		vm_page_free_wakeup();
1962 		mtx_unlock(&vm_page_queue_free_mtx);
1963 	}
1964 }
1965 
1966 /*
1967  *	vm_page_wire:
1968  *
1969  *	Mark this page as wired down by yet
1970  *	another map, removing it from paging queues
1971  *	as necessary.
1972  *
1973  *	If the page is fictitious, then its wire count must remain one.
1974  *
1975  *	The page must be locked.
1976  */
1977 void
1978 vm_page_wire(vm_page_t m)
1979 {
1980 
1981 	/*
1982 	 * Only bump the wire statistics if the page is not already wired,
1983 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1984 	 * it is already off the queues).
1985 	 */
1986 	vm_page_lock_assert(m, MA_OWNED);
1987 	if ((m->flags & PG_FICTITIOUS) != 0) {
1988 		KASSERT(m->wire_count == 1,
1989 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
1990 		    m));
1991 		return;
1992 	}
1993 	if (m->wire_count == 0) {
1994 		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
1995 		    m->queue == PQ_NONE,
1996 		    ("vm_page_wire: unmanaged page %p is queued", m));
1997 		vm_page_remque(m);
1998 		atomic_add_int(&cnt.v_wire_count, 1);
1999 	}
2000 	m->wire_count++;
2001 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2002 }
2003 
2004 /*
2005  * vm_page_unwire:
2006  *
2007  * Release one wiring of the specified page, potentially enabling it to be
2008  * paged again.  If paging is enabled, then the value of the parameter
2009  * "activate" determines to which queue the page is added.  If "activate" is
2010  * non-zero, then the page is added to the active queue.  Otherwise, it is
2011  * added to the inactive queue.
2012  *
2013  * However, unless the page belongs to an object, it is not enqueued because
2014  * it cannot be paged out.
2015  *
2016  * If a page is fictitious, then its wire count must alway be one.
2017  *
2018  * A managed page must be locked.
2019  */
2020 void
2021 vm_page_unwire(vm_page_t m, int activate)
2022 {
2023 
2024 	if ((m->oflags & VPO_UNMANAGED) == 0)
2025 		vm_page_lock_assert(m, MA_OWNED);
2026 	if ((m->flags & PG_FICTITIOUS) != 0) {
2027 		KASSERT(m->wire_count == 1,
2028 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2029 		return;
2030 	}
2031 	if (m->wire_count > 0) {
2032 		m->wire_count--;
2033 		if (m->wire_count == 0) {
2034 			atomic_subtract_int(&cnt.v_wire_count, 1);
2035 			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2036 			    m->object == NULL)
2037 				return;
2038 			if (!activate)
2039 				m->flags &= ~PG_WINATCFLS;
2040 			vm_page_enqueue(activate ? PQ_ACTIVE : PQ_INACTIVE, m);
2041 		}
2042 	} else
2043 		panic("vm_page_unwire: page %p's wire count is zero", m);
2044 }
2045 
2046 /*
2047  * Move the specified page to the inactive queue.
2048  *
2049  * Many pages placed on the inactive queue should actually go
2050  * into the cache, but it is difficult to figure out which.  What
2051  * we do instead, if the inactive target is well met, is to put
2052  * clean pages at the head of the inactive queue instead of the tail.
2053  * This will cause them to be moved to the cache more quickly and
2054  * if not actively re-referenced, reclaimed more quickly.  If we just
2055  * stick these pages at the end of the inactive queue, heavy filesystem
2056  * meta-data accesses can cause an unnecessary paging load on memory bound
2057  * processes.  This optimization causes one-time-use metadata to be
2058  * reused more quickly.
2059  *
2060  * Normally athead is 0 resulting in LRU operation.  athead is set
2061  * to 1 if we want this page to be 'as if it were placed in the cache',
2062  * except without unmapping it from the process address space.
2063  *
2064  * The page must be locked.
2065  */
2066 static inline void
2067 _vm_page_deactivate(vm_page_t m, int athead)
2068 {
2069 	struct vm_pagequeue *pq;
2070 	int queue;
2071 
2072 	vm_page_lock_assert(m, MA_OWNED);
2073 
2074 	/*
2075 	 * Ignore if already inactive.
2076 	 */
2077 	if ((queue = m->queue) == PQ_INACTIVE)
2078 		return;
2079 	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2080 		if (queue != PQ_NONE)
2081 			vm_page_dequeue(m);
2082 		m->flags &= ~PG_WINATCFLS;
2083 		pq = &vm_pagequeues[PQ_INACTIVE];
2084 		vm_pagequeue_lock(pq);
2085 		m->queue = PQ_INACTIVE;
2086 		if (athead)
2087 			TAILQ_INSERT_HEAD(&pq->pq_pl, m, pageq);
2088 		else
2089 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, pageq);
2090 		cnt.v_inactive_count++;
2091 		vm_pagequeue_unlock(pq);
2092 	}
2093 }
2094 
2095 /*
2096  * Move the specified page to the inactive queue.
2097  *
2098  * The page must be locked.
2099  */
2100 void
2101 vm_page_deactivate(vm_page_t m)
2102 {
2103 
2104 	_vm_page_deactivate(m, 0);
2105 }
2106 
2107 /*
2108  * vm_page_try_to_cache:
2109  *
2110  * Returns 0 on failure, 1 on success
2111  */
2112 int
2113 vm_page_try_to_cache(vm_page_t m)
2114 {
2115 
2116 	vm_page_lock_assert(m, MA_OWNED);
2117 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2118 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2119 	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2120 		return (0);
2121 	pmap_remove_all(m);
2122 	if (m->dirty)
2123 		return (0);
2124 	vm_page_cache(m);
2125 	return (1);
2126 }
2127 
2128 /*
2129  * vm_page_try_to_free()
2130  *
2131  *	Attempt to free the page.  If we cannot free it, we do nothing.
2132  *	1 is returned on success, 0 on failure.
2133  */
2134 int
2135 vm_page_try_to_free(vm_page_t m)
2136 {
2137 
2138 	vm_page_lock_assert(m, MA_OWNED);
2139 	if (m->object != NULL)
2140 		VM_OBJECT_ASSERT_WLOCKED(m->object);
2141 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
2142 	    (m->oflags & (VPO_BUSY | VPO_UNMANAGED)) != 0)
2143 		return (0);
2144 	pmap_remove_all(m);
2145 	if (m->dirty)
2146 		return (0);
2147 	vm_page_free(m);
2148 	return (1);
2149 }
2150 
2151 /*
2152  * vm_page_cache
2153  *
2154  * Put the specified page onto the page cache queue (if appropriate).
2155  *
2156  * The object and page must be locked.
2157  */
2158 void
2159 vm_page_cache(vm_page_t m)
2160 {
2161 	vm_object_t object;
2162 	boolean_t cache_was_empty;
2163 
2164 	vm_page_lock_assert(m, MA_OWNED);
2165 	object = m->object;
2166 	VM_OBJECT_ASSERT_WLOCKED(object);
2167 	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) || m->busy ||
2168 	    m->hold_count || m->wire_count)
2169 		panic("vm_page_cache: attempting to cache busy page");
2170 	KASSERT(!pmap_page_is_mapped(m),
2171 	    ("vm_page_cache: page %p is mapped", m));
2172 	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2173 	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2174 	    (object->type == OBJT_SWAP &&
2175 	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2176 		/*
2177 		 * Hypothesis: A cache-elgible page belonging to a
2178 		 * default object or swap object but without a backing
2179 		 * store must be zero filled.
2180 		 */
2181 		vm_page_free(m);
2182 		return;
2183 	}
2184 	KASSERT((m->flags & PG_CACHED) == 0,
2185 	    ("vm_page_cache: page %p is already cached", m));
2186 	PCPU_INC(cnt.v_tcached);
2187 
2188 	/*
2189 	 * Remove the page from the paging queues.
2190 	 */
2191 	vm_page_remque(m);
2192 
2193 	/*
2194 	 * Remove the page from the object's collection of resident
2195 	 * pages.
2196 	 */
2197 	vm_radix_remove(&object->rtree, m->pindex);
2198 	TAILQ_REMOVE(&object->memq, m, listq);
2199 	object->resident_page_count--;
2200 
2201 	/*
2202 	 * Restore the default memory attribute to the page.
2203 	 */
2204 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2205 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2206 
2207 	/*
2208 	 * Insert the page into the object's collection of cached pages
2209 	 * and the physical memory allocator's cache/free page queues.
2210 	 */
2211 	m->flags &= ~PG_ZERO;
2212 	mtx_lock(&vm_page_queue_free_mtx);
2213 	m->flags |= PG_CACHED;
2214 	cnt.v_cache_count++;
2215 	cache_was_empty = vm_radix_is_empty(&object->cache);
2216 	vm_radix_insert(&object->cache, m);
2217 #if VM_NRESERVLEVEL > 0
2218 	if (!vm_reserv_free_page(m)) {
2219 #else
2220 	if (TRUE) {
2221 #endif
2222 		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2223 		vm_phys_free_pages(m, 0);
2224 	}
2225 	vm_page_free_wakeup();
2226 	mtx_unlock(&vm_page_queue_free_mtx);
2227 
2228 	/*
2229 	 * Increment the vnode's hold count if this is the object's only
2230 	 * cached page.  Decrement the vnode's hold count if this was
2231 	 * the object's only resident page.
2232 	 */
2233 	if (object->type == OBJT_VNODE) {
2234 		if (cache_was_empty && object->resident_page_count != 0)
2235 			vhold(object->handle);
2236 		else if (!cache_was_empty && object->resident_page_count == 0)
2237 			vdrop(object->handle);
2238 	}
2239 }
2240 
2241 /*
2242  * vm_page_advise
2243  *
2244  *	Cache, deactivate, or do nothing as appropriate.  This routine
2245  *	is used by madvise().
2246  *
2247  *	Generally speaking we want to move the page into the cache so
2248  *	it gets reused quickly.  However, this can result in a silly syndrome
2249  *	due to the page recycling too quickly.  Small objects will not be
2250  *	fully cached.  On the other hand, if we move the page to the inactive
2251  *	queue we wind up with a problem whereby very large objects
2252  *	unnecessarily blow away our inactive and cache queues.
2253  *
2254  *	The solution is to move the pages based on a fixed weighting.  We
2255  *	either leave them alone, deactivate them, or move them to the cache,
2256  *	where moving them to the cache has the highest weighting.
2257  *	By forcing some pages into other queues we eventually force the
2258  *	system to balance the queues, potentially recovering other unrelated
2259  *	space from active.  The idea is to not force this to happen too
2260  *	often.
2261  *
2262  *	The object and page must be locked.
2263  */
2264 void
2265 vm_page_advise(vm_page_t m, int advice)
2266 {
2267 	int dnw, head;
2268 
2269 	vm_page_assert_locked(m);
2270 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2271 	if (advice == MADV_FREE) {
2272 		/*
2273 		 * Mark the page clean.  This will allow the page to be freed
2274 		 * up by the system.  However, such pages are often reused
2275 		 * quickly by malloc() so we do not do anything that would
2276 		 * cause a page fault if we can help it.
2277 		 *
2278 		 * Specifically, we do not try to actually free the page now
2279 		 * nor do we try to put it in the cache (which would cause a
2280 		 * page fault on reuse).
2281 		 *
2282 		 * But we do make the page is freeable as we can without
2283 		 * actually taking the step of unmapping it.
2284 		 */
2285 		pmap_clear_modify(m);
2286 		m->dirty = 0;
2287 		m->act_count = 0;
2288 	} else if (advice != MADV_DONTNEED)
2289 		return;
2290 	dnw = PCPU_GET(dnweight);
2291 	PCPU_INC(dnweight);
2292 
2293 	/*
2294 	 * Occasionally leave the page alone.
2295 	 */
2296 	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2297 		if (m->act_count >= ACT_INIT)
2298 			--m->act_count;
2299 		return;
2300 	}
2301 
2302 	/*
2303 	 * Clear any references to the page.  Otherwise, the page daemon will
2304 	 * immediately reactivate the page.
2305 	 *
2306 	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
2307 	 * pmap operation, such as pmap_remove(), could clear a reference in
2308 	 * the pmap and set PGA_REFERENCED on the page before the
2309 	 * pmap_clear_reference() had completed.  Consequently, the page would
2310 	 * appear referenced based upon an old reference that occurred before
2311 	 * this function ran.
2312 	 */
2313 	pmap_clear_reference(m);
2314 	vm_page_aflag_clear(m, PGA_REFERENCED);
2315 
2316 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
2317 		vm_page_dirty(m);
2318 
2319 	if (m->dirty || (dnw & 0x0070) == 0) {
2320 		/*
2321 		 * Deactivate the page 3 times out of 32.
2322 		 */
2323 		head = 0;
2324 	} else {
2325 		/*
2326 		 * Cache the page 28 times out of every 32.  Note that
2327 		 * the page is deactivated instead of cached, but placed
2328 		 * at the head of the queue instead of the tail.
2329 		 */
2330 		head = 1;
2331 	}
2332 	_vm_page_deactivate(m, head);
2333 }
2334 
2335 /*
2336  * Grab a page, waiting until we are waken up due to the page
2337  * changing state.  We keep on waiting, if the page continues
2338  * to be in the object.  If the page doesn't exist, first allocate it
2339  * and then conditionally zero it.
2340  *
2341  * The caller must always specify the VM_ALLOC_RETRY flag.  This is intended
2342  * to facilitate its eventual removal.
2343  *
2344  * This routine may sleep.
2345  *
2346  * The object must be locked on entry.  The lock will, however, be released
2347  * and reacquired if the routine sleeps.
2348  */
2349 vm_page_t
2350 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2351 {
2352 	vm_page_t m;
2353 
2354 	VM_OBJECT_ASSERT_WLOCKED(object);
2355 	KASSERT((allocflags & VM_ALLOC_RETRY) != 0,
2356 	    ("vm_page_grab: VM_ALLOC_RETRY is required"));
2357 retrylookup:
2358 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2359 		if ((m->oflags & VPO_BUSY) != 0 ||
2360 		    ((allocflags & VM_ALLOC_IGN_SBUSY) == 0 && m->busy != 0)) {
2361 			/*
2362 			 * Reference the page before unlocking and
2363 			 * sleeping so that the page daemon is less
2364 			 * likely to reclaim it.
2365 			 */
2366 			vm_page_aflag_set(m, PGA_REFERENCED);
2367 			vm_page_sleep(m, "pgrbwt");
2368 			goto retrylookup;
2369 		} else {
2370 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2371 				vm_page_lock(m);
2372 				vm_page_wire(m);
2373 				vm_page_unlock(m);
2374 			}
2375 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
2376 				vm_page_busy(m);
2377 			return (m);
2378 		}
2379 	}
2380 	m = vm_page_alloc(object, pindex, allocflags & ~(VM_ALLOC_RETRY |
2381 	    VM_ALLOC_IGN_SBUSY));
2382 	if (m == NULL) {
2383 		VM_OBJECT_WUNLOCK(object);
2384 		VM_WAIT;
2385 		VM_OBJECT_WLOCK(object);
2386 		goto retrylookup;
2387 	} else if (m->valid != 0)
2388 		return (m);
2389 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2390 		pmap_zero_page(m);
2391 	return (m);
2392 }
2393 
2394 /*
2395  * Mapping function for valid or dirty bits in a page.
2396  *
2397  * Inputs are required to range within a page.
2398  */
2399 vm_page_bits_t
2400 vm_page_bits(int base, int size)
2401 {
2402 	int first_bit;
2403 	int last_bit;
2404 
2405 	KASSERT(
2406 	    base + size <= PAGE_SIZE,
2407 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2408 	);
2409 
2410 	if (size == 0)		/* handle degenerate case */
2411 		return (0);
2412 
2413 	first_bit = base >> DEV_BSHIFT;
2414 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2415 
2416 	return (((vm_page_bits_t)2 << last_bit) -
2417 	    ((vm_page_bits_t)1 << first_bit));
2418 }
2419 
2420 /*
2421  *	vm_page_set_valid_range:
2422  *
2423  *	Sets portions of a page valid.  The arguments are expected
2424  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2425  *	of any partial chunks touched by the range.  The invalid portion of
2426  *	such chunks will be zeroed.
2427  *
2428  *	(base + size) must be less then or equal to PAGE_SIZE.
2429  */
2430 void
2431 vm_page_set_valid_range(vm_page_t m, int base, int size)
2432 {
2433 	int endoff, frag;
2434 
2435 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2436 	if (size == 0)	/* handle degenerate case */
2437 		return;
2438 
2439 	/*
2440 	 * If the base is not DEV_BSIZE aligned and the valid
2441 	 * bit is clear, we have to zero out a portion of the
2442 	 * first block.
2443 	 */
2444 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2445 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2446 		pmap_zero_page_area(m, frag, base - frag);
2447 
2448 	/*
2449 	 * If the ending offset is not DEV_BSIZE aligned and the
2450 	 * valid bit is clear, we have to zero out a portion of
2451 	 * the last block.
2452 	 */
2453 	endoff = base + size;
2454 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2455 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2456 		pmap_zero_page_area(m, endoff,
2457 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2458 
2459 	/*
2460 	 * Assert that no previously invalid block that is now being validated
2461 	 * is already dirty.
2462 	 */
2463 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2464 	    ("vm_page_set_valid_range: page %p is dirty", m));
2465 
2466 	/*
2467 	 * Set valid bits inclusive of any overlap.
2468 	 */
2469 	m->valid |= vm_page_bits(base, size);
2470 }
2471 
2472 /*
2473  * Clear the given bits from the specified page's dirty field.
2474  */
2475 static __inline void
2476 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2477 {
2478 	uintptr_t addr;
2479 #if PAGE_SIZE < 16384
2480 	int shift;
2481 #endif
2482 
2483 	/*
2484 	 * If the object is locked and the page is neither VPO_BUSY nor
2485 	 * write mapped, then the page's dirty field cannot possibly be
2486 	 * set by a concurrent pmap operation.
2487 	 */
2488 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2489 	if ((m->oflags & VPO_BUSY) == 0 && !pmap_page_is_write_mapped(m))
2490 		m->dirty &= ~pagebits;
2491 	else {
2492 		/*
2493 		 * The pmap layer can call vm_page_dirty() without
2494 		 * holding a distinguished lock.  The combination of
2495 		 * the object's lock and an atomic operation suffice
2496 		 * to guarantee consistency of the page dirty field.
2497 		 *
2498 		 * For PAGE_SIZE == 32768 case, compiler already
2499 		 * properly aligns the dirty field, so no forcible
2500 		 * alignment is needed. Only require existence of
2501 		 * atomic_clear_64 when page size is 32768.
2502 		 */
2503 		addr = (uintptr_t)&m->dirty;
2504 #if PAGE_SIZE == 32768
2505 		atomic_clear_64((uint64_t *)addr, pagebits);
2506 #elif PAGE_SIZE == 16384
2507 		atomic_clear_32((uint32_t *)addr, pagebits);
2508 #else		/* PAGE_SIZE <= 8192 */
2509 		/*
2510 		 * Use a trick to perform a 32-bit atomic on the
2511 		 * containing aligned word, to not depend on the existence
2512 		 * of atomic_clear_{8, 16}.
2513 		 */
2514 		shift = addr & (sizeof(uint32_t) - 1);
2515 #if BYTE_ORDER == BIG_ENDIAN
2516 		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2517 #else
2518 		shift *= NBBY;
2519 #endif
2520 		addr &= ~(sizeof(uint32_t) - 1);
2521 		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2522 #endif		/* PAGE_SIZE */
2523 	}
2524 }
2525 
2526 /*
2527  *	vm_page_set_validclean:
2528  *
2529  *	Sets portions of a page valid and clean.  The arguments are expected
2530  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2531  *	of any partial chunks touched by the range.  The invalid portion of
2532  *	such chunks will be zero'd.
2533  *
2534  *	(base + size) must be less then or equal to PAGE_SIZE.
2535  */
2536 void
2537 vm_page_set_validclean(vm_page_t m, int base, int size)
2538 {
2539 	vm_page_bits_t oldvalid, pagebits;
2540 	int endoff, frag;
2541 
2542 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2543 	if (size == 0)	/* handle degenerate case */
2544 		return;
2545 
2546 	/*
2547 	 * If the base is not DEV_BSIZE aligned and the valid
2548 	 * bit is clear, we have to zero out a portion of the
2549 	 * first block.
2550 	 */
2551 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2552 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2553 		pmap_zero_page_area(m, frag, base - frag);
2554 
2555 	/*
2556 	 * If the ending offset is not DEV_BSIZE aligned and the
2557 	 * valid bit is clear, we have to zero out a portion of
2558 	 * the last block.
2559 	 */
2560 	endoff = base + size;
2561 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2562 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2563 		pmap_zero_page_area(m, endoff,
2564 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2565 
2566 	/*
2567 	 * Set valid, clear dirty bits.  If validating the entire
2568 	 * page we can safely clear the pmap modify bit.  We also
2569 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2570 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2571 	 * be set again.
2572 	 *
2573 	 * We set valid bits inclusive of any overlap, but we can only
2574 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2575 	 * the range.
2576 	 */
2577 	oldvalid = m->valid;
2578 	pagebits = vm_page_bits(base, size);
2579 	m->valid |= pagebits;
2580 #if 0	/* NOT YET */
2581 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2582 		frag = DEV_BSIZE - frag;
2583 		base += frag;
2584 		size -= frag;
2585 		if (size < 0)
2586 			size = 0;
2587 	}
2588 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2589 #endif
2590 	if (base == 0 && size == PAGE_SIZE) {
2591 		/*
2592 		 * The page can only be modified within the pmap if it is
2593 		 * mapped, and it can only be mapped if it was previously
2594 		 * fully valid.
2595 		 */
2596 		if (oldvalid == VM_PAGE_BITS_ALL)
2597 			/*
2598 			 * Perform the pmap_clear_modify() first.  Otherwise,
2599 			 * a concurrent pmap operation, such as
2600 			 * pmap_protect(), could clear a modification in the
2601 			 * pmap and set the dirty field on the page before
2602 			 * pmap_clear_modify() had begun and after the dirty
2603 			 * field was cleared here.
2604 			 */
2605 			pmap_clear_modify(m);
2606 		m->dirty = 0;
2607 		m->oflags &= ~VPO_NOSYNC;
2608 	} else if (oldvalid != VM_PAGE_BITS_ALL)
2609 		m->dirty &= ~pagebits;
2610 	else
2611 		vm_page_clear_dirty_mask(m, pagebits);
2612 }
2613 
2614 void
2615 vm_page_clear_dirty(vm_page_t m, int base, int size)
2616 {
2617 
2618 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2619 }
2620 
2621 /*
2622  *	vm_page_set_invalid:
2623  *
2624  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2625  *	valid and dirty bits for the effected areas are cleared.
2626  */
2627 void
2628 vm_page_set_invalid(vm_page_t m, int base, int size)
2629 {
2630 	vm_page_bits_t bits;
2631 
2632 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2633 	KASSERT((m->oflags & VPO_BUSY) == 0,
2634 	    ("vm_page_set_invalid: page %p is busy", m));
2635 	bits = vm_page_bits(base, size);
2636 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2637 		pmap_remove_all(m);
2638 	KASSERT(!pmap_page_is_mapped(m),
2639 	    ("vm_page_set_invalid: page %p is mapped", m));
2640 	m->valid &= ~bits;
2641 	m->dirty &= ~bits;
2642 }
2643 
2644 /*
2645  * vm_page_zero_invalid()
2646  *
2647  *	The kernel assumes that the invalid portions of a page contain
2648  *	garbage, but such pages can be mapped into memory by user code.
2649  *	When this occurs, we must zero out the non-valid portions of the
2650  *	page so user code sees what it expects.
2651  *
2652  *	Pages are most often semi-valid when the end of a file is mapped
2653  *	into memory and the file's size is not page aligned.
2654  */
2655 void
2656 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2657 {
2658 	int b;
2659 	int i;
2660 
2661 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2662 	/*
2663 	 * Scan the valid bits looking for invalid sections that
2664 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2665 	 * valid bit may be set ) have already been zerod by
2666 	 * vm_page_set_validclean().
2667 	 */
2668 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2669 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2670 		    (m->valid & ((vm_page_bits_t)1 << i))) {
2671 			if (i > b) {
2672 				pmap_zero_page_area(m,
2673 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2674 			}
2675 			b = i + 1;
2676 		}
2677 	}
2678 
2679 	/*
2680 	 * setvalid is TRUE when we can safely set the zero'd areas
2681 	 * as being valid.  We can do this if there are no cache consistancy
2682 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2683 	 */
2684 	if (setvalid)
2685 		m->valid = VM_PAGE_BITS_ALL;
2686 }
2687 
2688 /*
2689  *	vm_page_is_valid:
2690  *
2691  *	Is (partial) page valid?  Note that the case where size == 0
2692  *	will return FALSE in the degenerate case where the page is
2693  *	entirely invalid, and TRUE otherwise.
2694  */
2695 int
2696 vm_page_is_valid(vm_page_t m, int base, int size)
2697 {
2698 	vm_page_bits_t bits;
2699 
2700 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2701 	bits = vm_page_bits(base, size);
2702 	return (m->valid != 0 && (m->valid & bits) == bits);
2703 }
2704 
2705 /*
2706  * Set the page's dirty bits if the page is modified.
2707  */
2708 void
2709 vm_page_test_dirty(vm_page_t m)
2710 {
2711 
2712 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2713 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2714 		vm_page_dirty(m);
2715 }
2716 
2717 void
2718 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
2719 {
2720 
2721 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
2722 }
2723 
2724 void
2725 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
2726 {
2727 
2728 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
2729 }
2730 
2731 int
2732 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
2733 {
2734 
2735 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
2736 }
2737 
2738 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
2739 void
2740 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
2741 {
2742 
2743 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
2744 }
2745 
2746 void
2747 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
2748 {
2749 
2750 	mtx_assert_(vm_page_lockptr(m), a, file, line);
2751 }
2752 #endif
2753 
2754 int so_zerocp_fullpage = 0;
2755 
2756 /*
2757  *	Replace the given page with a copy.  The copied page assumes
2758  *	the portion of the given page's "wire_count" that is not the
2759  *	responsibility of this copy-on-write mechanism.
2760  *
2761  *	The object containing the given page must have a non-zero
2762  *	paging-in-progress count and be locked.
2763  */
2764 void
2765 vm_page_cowfault(vm_page_t m)
2766 {
2767 	vm_page_t mnew;
2768 	vm_object_t object;
2769 	vm_pindex_t pindex;
2770 
2771 	vm_page_lock_assert(m, MA_OWNED);
2772 	object = m->object;
2773 	VM_OBJECT_ASSERT_WLOCKED(object);
2774 	KASSERT(object->paging_in_progress != 0,
2775 	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2776 	    object));
2777 	pindex = m->pindex;
2778 
2779  retry_alloc:
2780 	pmap_remove_all(m);
2781 	vm_page_remove(m);
2782 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2783 	if (mnew == NULL) {
2784 		vm_page_insert(m, object, pindex);
2785 		vm_page_unlock(m);
2786 		VM_OBJECT_WUNLOCK(object);
2787 		VM_WAIT;
2788 		VM_OBJECT_WLOCK(object);
2789 		if (m == vm_page_lookup(object, pindex)) {
2790 			vm_page_lock(m);
2791 			goto retry_alloc;
2792 		} else {
2793 			/*
2794 			 * Page disappeared during the wait.
2795 			 */
2796 			return;
2797 		}
2798 	}
2799 
2800 	if (m->cow == 0) {
2801 		/*
2802 		 * check to see if we raced with an xmit complete when
2803 		 * waiting to allocate a page.  If so, put things back
2804 		 * the way they were
2805 		 */
2806 		vm_page_unlock(m);
2807 		vm_page_lock(mnew);
2808 		vm_page_free(mnew);
2809 		vm_page_unlock(mnew);
2810 		vm_page_insert(m, object, pindex);
2811 	} else { /* clear COW & copy page */
2812 		if (!so_zerocp_fullpage)
2813 			pmap_copy_page(m, mnew);
2814 		mnew->valid = VM_PAGE_BITS_ALL;
2815 		vm_page_dirty(mnew);
2816 		mnew->wire_count = m->wire_count - m->cow;
2817 		m->wire_count = m->cow;
2818 		vm_page_unlock(m);
2819 	}
2820 }
2821 
2822 void
2823 vm_page_cowclear(vm_page_t m)
2824 {
2825 
2826 	vm_page_lock_assert(m, MA_OWNED);
2827 	if (m->cow) {
2828 		m->cow--;
2829 		/*
2830 		 * let vm_fault add back write permission  lazily
2831 		 */
2832 	}
2833 	/*
2834 	 *  sf_buf_free() will free the page, so we needn't do it here
2835 	 */
2836 }
2837 
2838 int
2839 vm_page_cowsetup(vm_page_t m)
2840 {
2841 
2842 	vm_page_lock_assert(m, MA_OWNED);
2843 	if ((m->flags & PG_FICTITIOUS) != 0 ||
2844 	    (m->oflags & VPO_UNMANAGED) != 0 ||
2845 	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYWLOCK(m->object))
2846 		return (EBUSY);
2847 	m->cow++;
2848 	pmap_remove_write(m);
2849 	VM_OBJECT_WUNLOCK(m->object);
2850 	return (0);
2851 }
2852 
2853 #ifdef INVARIANTS
2854 void
2855 vm_page_object_lock_assert(vm_page_t m)
2856 {
2857 
2858 	/*
2859 	 * Certain of the page's fields may only be modified by the
2860 	 * holder of the containing object's lock or the setter of the
2861 	 * page's VPO_BUSY flag.  Unfortunately, the setter of the
2862 	 * VPO_BUSY flag is not recorded, and thus cannot be checked
2863 	 * here.
2864 	 */
2865 	if (m->object != NULL && (m->oflags & VPO_BUSY) == 0)
2866 		VM_OBJECT_ASSERT_WLOCKED(m->object);
2867 }
2868 #endif
2869 
2870 #include "opt_ddb.h"
2871 #ifdef DDB
2872 #include <sys/kernel.h>
2873 
2874 #include <ddb/ddb.h>
2875 
2876 DB_SHOW_COMMAND(page, vm_page_print_page_info)
2877 {
2878 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2879 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2880 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2881 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2882 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2883 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2884 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2885 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2886 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2887 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2888 }
2889 
2890 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2891 {
2892 
2893 	db_printf("PQ_FREE:");
2894 	db_printf(" %d", cnt.v_free_count);
2895 	db_printf("\n");
2896 
2897 	db_printf("PQ_CACHE:");
2898 	db_printf(" %d", cnt.v_cache_count);
2899 	db_printf("\n");
2900 
2901 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2902 		*vm_pagequeues[PQ_ACTIVE].pq_cnt,
2903 		*vm_pagequeues[PQ_INACTIVE].pq_cnt);
2904 }
2905 
2906 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
2907 {
2908 	vm_page_t m;
2909 	boolean_t phys;
2910 
2911 	if (!have_addr) {
2912 		db_printf("show pginfo addr\n");
2913 		return;
2914 	}
2915 
2916 	phys = strchr(modif, 'p') != NULL;
2917 	if (phys)
2918 		m = PHYS_TO_VM_PAGE(addr);
2919 	else
2920 		m = (vm_page_t)addr;
2921 	db_printf(
2922     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
2923     "  af 0x%x of 0x%x f 0x%x act %d busy %d valid 0x%x dirty 0x%x\n",
2924 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
2925 	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
2926 	    m->flags, m->act_count, m->busy, m->valid, m->dirty);
2927 }
2928 #endif /* DDB */
2929