1 /* 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 37 * $FreeBSD$ 38 */ 39 40 /* 41 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 42 * All rights reserved. 43 * 44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 45 * 46 * Permission to use, copy, modify and distribute this software and 47 * its documentation is hereby granted, provided that both the copyright 48 * notice and this permission notice appear in all copies of the 49 * software, derivative works or modified versions, and any portions 50 * thereof, and that both notices appear in supporting documentation. 51 * 52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 55 * 56 * Carnegie Mellon requests users of this software to return to 57 * 58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 59 * School of Computer Science 60 * Carnegie Mellon University 61 * Pittsburgh PA 15213-3890 62 * 63 * any improvements or extensions that they make and grant Carnegie the 64 * rights to redistribute these changes. 65 */ 66 67 /* 68 * GENERAL RULES ON VM_PAGE MANIPULATION 69 * 70 * - a pageq mutex is required when adding or removing a page from a 71 * page queue (vm_page_queue[]), regardless of other mutexes or the 72 * busy state of a page. 73 * 74 * - a hash chain mutex is required when associating or disassociating 75 * a page from the VM PAGE CACHE hash table (vm_page_buckets), 76 * regardless of other mutexes or the busy state of a page. 77 * 78 * - either a hash chain mutex OR a busied page is required in order 79 * to modify the page flags. A hash chain mutex must be obtained in 80 * order to busy a page. A page's flags cannot be modified by a 81 * hash chain mutex if the page is marked busy. 82 * 83 * - The object memq mutex is held when inserting or removing 84 * pages from an object (vm_page_insert() or vm_page_remove()). This 85 * is different from the object's main mutex. 86 * 87 * Generally speaking, you have to be aware of side effects when running 88 * vm_page ops. A vm_page_lookup() will return with the hash chain 89 * locked, whether it was able to lookup the page or not. vm_page_free(), 90 * vm_page_cache(), vm_page_activate(), and a number of other routines 91 * will release the hash chain mutex for you. Intermediate manipulation 92 * routines such as vm_page_flag_set() expect the hash chain to be held 93 * on entry and the hash chain will remain held on return. 94 * 95 * pageq scanning can only occur with the pageq in question locked. 96 * We have a known bottleneck with the active queue, but the cache 97 * and free queues are actually arrays already. 98 */ 99 100 /* 101 * Resident memory management module. 102 */ 103 104 #include <sys/param.h> 105 #include <sys/systm.h> 106 #include <sys/lock.h> 107 #include <sys/malloc.h> 108 #include <sys/mutex.h> 109 #include <sys/proc.h> 110 #include <sys/vmmeter.h> 111 #include <sys/vnode.h> 112 113 #include <vm/vm.h> 114 #include <vm/vm_param.h> 115 #include <vm/vm_kern.h> 116 #include <vm/vm_object.h> 117 #include <vm/vm_page.h> 118 #include <vm/vm_pageout.h> 119 #include <vm/vm_pager.h> 120 #include <vm/vm_extern.h> 121 122 /* 123 * Associated with page of user-allocatable memory is a 124 * page structure. 125 */ 126 127 static struct vm_page **vm_page_buckets; /* Array of buckets */ 128 static int vm_page_bucket_count; /* How big is array? */ 129 static int vm_page_hash_mask; /* Mask for hash function */ 130 static volatile int vm_page_bucket_generation; 131 static struct mtx vm_buckets_mtx[BUCKET_HASH_SIZE]; 132 133 vm_page_t vm_page_array = 0; 134 int vm_page_array_size = 0; 135 long first_page = 0; 136 int vm_page_zero_count = 0; 137 138 /* 139 * vm_set_page_size: 140 * 141 * Sets the page size, perhaps based upon the memory 142 * size. Must be called before any use of page-size 143 * dependent functions. 144 */ 145 void 146 vm_set_page_size(void) 147 { 148 if (cnt.v_page_size == 0) 149 cnt.v_page_size = PAGE_SIZE; 150 if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0) 151 panic("vm_set_page_size: page size not a power of two"); 152 } 153 154 /* 155 * vm_page_startup: 156 * 157 * Initializes the resident memory module. 158 * 159 * Allocates memory for the page cells, and 160 * for the object/offset-to-page hash table headers. 161 * Each page cell is initialized and placed on the free list. 162 */ 163 164 vm_offset_t 165 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr) 166 { 167 vm_offset_t mapped; 168 struct vm_page **bucket; 169 vm_size_t npages, page_range; 170 vm_offset_t new_end; 171 int i; 172 vm_offset_t pa; 173 int nblocks; 174 vm_offset_t last_pa; 175 176 /* the biggest memory array is the second group of pages */ 177 vm_offset_t end; 178 vm_offset_t biggestone, biggestsize; 179 180 vm_offset_t total; 181 182 total = 0; 183 biggestsize = 0; 184 biggestone = 0; 185 nblocks = 0; 186 vaddr = round_page(vaddr); 187 188 for (i = 0; phys_avail[i + 1]; i += 2) { 189 phys_avail[i] = round_page(phys_avail[i]); 190 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 191 } 192 193 for (i = 0; phys_avail[i + 1]; i += 2) { 194 int size = phys_avail[i + 1] - phys_avail[i]; 195 196 if (size > biggestsize) { 197 biggestone = i; 198 biggestsize = size; 199 } 200 ++nblocks; 201 total += size; 202 } 203 204 end = phys_avail[biggestone+1]; 205 206 /* 207 * Initialize the queue headers for the free queue, the active queue 208 * and the inactive queue. 209 */ 210 211 vm_pageq_init(); 212 213 /* 214 * Allocate (and initialize) the hash table buckets. 215 * 216 * The number of buckets MUST BE a power of 2, and the actual value is 217 * the next power of 2 greater than the number of physical pages in 218 * the system. 219 * 220 * We make the hash table approximately 2x the number of pages to 221 * reduce the chain length. This is about the same size using the 222 * singly-linked list as the 1x hash table we were using before 223 * using TAILQ but the chain length will be smaller. 224 * 225 * Note: This computation can be tweaked if desired. 226 */ 227 if (vm_page_bucket_count == 0) { 228 vm_page_bucket_count = 1; 229 while (vm_page_bucket_count < atop(total)) 230 vm_page_bucket_count <<= 1; 231 } 232 vm_page_bucket_count <<= 1; 233 vm_page_hash_mask = vm_page_bucket_count - 1; 234 235 /* 236 * Validate these addresses. 237 */ 238 new_end = end - vm_page_bucket_count * sizeof(struct vm_page *); 239 new_end = trunc_page(new_end); 240 mapped = pmap_map(&vaddr, new_end, end, 241 VM_PROT_READ | VM_PROT_WRITE); 242 bzero((caddr_t) mapped, end - new_end); 243 244 vm_page_buckets = (struct vm_page **)mapped; 245 bucket = vm_page_buckets; 246 for (i = 0; i < vm_page_bucket_count; i++) { 247 *bucket = NULL; 248 bucket++; 249 } 250 for (i = 0; i < BUCKET_HASH_SIZE; ++i) 251 mtx_init(&vm_buckets_mtx[i], "vm buckets hash mutexes", MTX_DEF); 252 253 /* 254 * Compute the number of pages of memory that will be available for 255 * use (taking into account the overhead of a page structure per 256 * page). 257 */ 258 259 first_page = phys_avail[0] / PAGE_SIZE; 260 261 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 262 npages = (total - (page_range * sizeof(struct vm_page)) - 263 (end - new_end)) / PAGE_SIZE; 264 265 end = new_end; 266 267 /* 268 * Initialize the mem entry structures now, and put them in the free 269 * queue. 270 */ 271 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 272 mapped = pmap_map(&vaddr, new_end, end, 273 VM_PROT_READ | VM_PROT_WRITE); 274 vm_page_array = (vm_page_t) mapped; 275 276 /* 277 * Clear all of the page structures 278 */ 279 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 280 vm_page_array_size = page_range; 281 282 /* 283 * Construct the free queue(s) in descending order (by physical 284 * address) so that the first 16MB of physical memory is allocated 285 * last rather than first. On large-memory machines, this avoids 286 * the exhaustion of low physical memory before isa_dmainit has run. 287 */ 288 cnt.v_page_count = 0; 289 cnt.v_free_count = 0; 290 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 291 pa = phys_avail[i]; 292 if (i == biggestone) 293 last_pa = new_end; 294 else 295 last_pa = phys_avail[i + 1]; 296 while (pa < last_pa && npages-- > 0) { 297 vm_pageq_add_new_page(pa); 298 pa += PAGE_SIZE; 299 } 300 } 301 return (vaddr); 302 } 303 304 /* 305 * vm_page_hash: 306 * 307 * Distributes the object/offset key pair among hash buckets. 308 * 309 * NOTE: This macro depends on vm_page_bucket_count being a power of 2. 310 * This routine may not block. 311 * 312 * We try to randomize the hash based on the object to spread the pages 313 * out in the hash table without it costing us too much. 314 */ 315 static __inline int 316 vm_page_hash(vm_object_t object, vm_pindex_t pindex) 317 { 318 int i = ((uintptr_t)object + pindex) ^ object->hash_rand; 319 320 return(i & vm_page_hash_mask); 321 } 322 323 void 324 vm_page_flag_set(vm_page_t m, unsigned short bits) 325 { 326 GIANT_REQUIRED; 327 atomic_set_short(&(m)->flags, bits); 328 /* m->flags |= bits; */ 329 } 330 331 void 332 vm_page_flag_clear(vm_page_t m, unsigned short bits) 333 { 334 GIANT_REQUIRED; 335 atomic_clear_short(&(m)->flags, bits); 336 /* m->flags &= ~bits; */ 337 } 338 339 void 340 vm_page_busy(vm_page_t m) 341 { 342 KASSERT((m->flags & PG_BUSY) == 0, 343 ("vm_page_busy: page already busy!!!")); 344 vm_page_flag_set(m, PG_BUSY); 345 } 346 347 /* 348 * vm_page_flash: 349 * 350 * wakeup anyone waiting for the page. 351 */ 352 353 void 354 vm_page_flash(vm_page_t m) 355 { 356 if (m->flags & PG_WANTED) { 357 vm_page_flag_clear(m, PG_WANTED); 358 wakeup(m); 359 } 360 } 361 362 /* 363 * vm_page_wakeup: 364 * 365 * clear the PG_BUSY flag and wakeup anyone waiting for the 366 * page. 367 * 368 */ 369 370 void 371 vm_page_wakeup(vm_page_t m) 372 { 373 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 374 vm_page_flag_clear(m, PG_BUSY); 375 vm_page_flash(m); 376 } 377 378 /* 379 * 380 * 381 */ 382 383 void 384 vm_page_io_start(vm_page_t m) 385 { 386 GIANT_REQUIRED; 387 atomic_add_char(&(m)->busy, 1); 388 } 389 390 void 391 vm_page_io_finish(vm_page_t m) 392 { 393 GIANT_REQUIRED; 394 atomic_subtract_char(&(m)->busy, 1); 395 if (m->busy == 0) 396 vm_page_flash(m); 397 } 398 399 /* 400 * Keep page from being freed by the page daemon 401 * much of the same effect as wiring, except much lower 402 * overhead and should be used only for *very* temporary 403 * holding ("wiring"). 404 */ 405 void 406 vm_page_hold(vm_page_t mem) 407 { 408 GIANT_REQUIRED; 409 mem->hold_count++; 410 } 411 412 void 413 vm_page_unhold(vm_page_t mem) 414 { 415 GIANT_REQUIRED; 416 --mem->hold_count; 417 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 418 } 419 420 /* 421 * vm_page_protect: 422 * 423 * Reduce the protection of a page. This routine never raises the 424 * protection and therefore can be safely called if the page is already 425 * at VM_PROT_NONE (it will be a NOP effectively ). 426 */ 427 428 void 429 vm_page_protect(vm_page_t mem, int prot) 430 { 431 if (prot == VM_PROT_NONE) { 432 if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) { 433 pmap_page_protect(mem, VM_PROT_NONE); 434 vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED); 435 } 436 } else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) { 437 pmap_page_protect(mem, VM_PROT_READ); 438 vm_page_flag_clear(mem, PG_WRITEABLE); 439 } 440 } 441 /* 442 * vm_page_zero_fill: 443 * 444 * Zero-fill the specified page. 445 * Written as a standard pagein routine, to 446 * be used by the zero-fill object. 447 */ 448 boolean_t 449 vm_page_zero_fill(vm_page_t m) 450 { 451 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 452 return (TRUE); 453 } 454 455 /* 456 * vm_page_copy: 457 * 458 * Copy one page to another 459 */ 460 void 461 vm_page_copy(vm_page_t src_m, vm_page_t dest_m) 462 { 463 pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m)); 464 dest_m->valid = VM_PAGE_BITS_ALL; 465 } 466 467 /* 468 * vm_page_free: 469 * 470 * Free a page 471 * 472 * The clearing of PG_ZERO is a temporary safety until the code can be 473 * reviewed to determine that PG_ZERO is being properly cleared on 474 * write faults or maps. PG_ZERO was previously cleared in 475 * vm_page_alloc(). 476 */ 477 void 478 vm_page_free(vm_page_t m) 479 { 480 vm_page_flag_clear(m, PG_ZERO); 481 vm_page_free_toq(m); 482 } 483 484 /* 485 * vm_page_free_zero: 486 * 487 * Free a page to the zerod-pages queue 488 */ 489 void 490 vm_page_free_zero(vm_page_t m) 491 { 492 vm_page_flag_set(m, PG_ZERO); 493 vm_page_free_toq(m); 494 } 495 496 /* 497 * vm_page_sleep_busy: 498 * 499 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE) 500 * m->busy is zero. Returns TRUE if it had to sleep ( including if 501 * it almost had to sleep and made temporary spl*() mods), FALSE 502 * otherwise. 503 * 504 * This routine assumes that interrupts can only remove the busy 505 * status from a page, not set the busy status or change it from 506 * PG_BUSY to m->busy or vise versa (which would create a timing 507 * window). 508 */ 509 510 int 511 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg) 512 { 513 GIANT_REQUIRED; 514 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 515 int s = splvm(); 516 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) { 517 /* 518 * Page is busy. Wait and retry. 519 */ 520 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 521 tsleep(m, PVM, msg, 0); 522 } 523 splx(s); 524 return(TRUE); 525 /* not reached */ 526 } 527 return(FALSE); 528 } 529 /* 530 * vm_page_dirty: 531 * 532 * make page all dirty 533 */ 534 535 void 536 vm_page_dirty(vm_page_t m) 537 { 538 KASSERT(m->queue - m->pc != PQ_CACHE, 539 ("vm_page_dirty: page in cache!")); 540 m->dirty = VM_PAGE_BITS_ALL; 541 } 542 543 /* 544 * vm_page_undirty: 545 * 546 * Set page to not be dirty. Note: does not clear pmap modify bits 547 */ 548 549 void 550 vm_page_undirty(vm_page_t m) 551 { 552 m->dirty = 0; 553 } 554 555 /* 556 * vm_page_insert: [ internal use only ] 557 * 558 * Inserts the given mem entry into the object and object list. 559 * 560 * The pagetables are not updated but will presumably fault the page 561 * in if necessary, or if a kernel page the caller will at some point 562 * enter the page into the kernel's pmap. We are not allowed to block 563 * here so we *can't* do this anyway. 564 * 565 * The object and page must be locked, and must be splhigh. 566 * This routine may not block. 567 */ 568 569 void 570 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 571 { 572 struct vm_page **bucket; 573 574 GIANT_REQUIRED; 575 576 if (m->object != NULL) 577 panic("vm_page_insert: already inserted"); 578 579 /* 580 * Record the object/offset pair in this page 581 */ 582 583 m->object = object; 584 m->pindex = pindex; 585 586 /* 587 * Insert it into the object_object/offset hash table 588 */ 589 590 bucket = &vm_page_buckets[vm_page_hash(object, pindex)]; 591 m->hnext = *bucket; 592 *bucket = m; 593 vm_page_bucket_generation++; 594 595 /* 596 * Now link into the object's list of backed pages. 597 */ 598 599 TAILQ_INSERT_TAIL(&object->memq, m, listq); 600 object->generation++; 601 602 /* 603 * show that the object has one more resident page. 604 */ 605 606 object->resident_page_count++; 607 608 /* 609 * Since we are inserting a new and possibly dirty page, 610 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 611 */ 612 if (m->flags & PG_WRITEABLE) 613 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 614 } 615 616 /* 617 * vm_page_remove: 618 * NOTE: used by device pager as well -wfj 619 * 620 * Removes the given mem entry from the object/offset-page 621 * table and the object page list, but do not invalidate/terminate 622 * the backing store. 623 * 624 * The object and page must be locked, and at splhigh. 625 * The underlying pmap entry (if any) is NOT removed here. 626 * This routine may not block. 627 */ 628 629 void 630 vm_page_remove(vm_page_t m) 631 { 632 vm_object_t object; 633 634 GIANT_REQUIRED; 635 636 if (m->object == NULL) 637 return; 638 639 if ((m->flags & PG_BUSY) == 0) { 640 panic("vm_page_remove: page not busy"); 641 } 642 643 /* 644 * Basically destroy the page. 645 */ 646 647 vm_page_wakeup(m); 648 649 object = m->object; 650 651 /* 652 * Remove from the object_object/offset hash table. The object 653 * must be on the hash queue, we will panic if it isn't 654 * 655 * Note: we must NULL-out m->hnext to prevent loops in detached 656 * buffers with vm_page_lookup(). 657 */ 658 659 { 660 struct vm_page **bucket; 661 662 bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)]; 663 while (*bucket != m) { 664 if (*bucket == NULL) 665 panic("vm_page_remove(): page not found in hash"); 666 bucket = &(*bucket)->hnext; 667 } 668 *bucket = m->hnext; 669 m->hnext = NULL; 670 vm_page_bucket_generation++; 671 } 672 673 /* 674 * Now remove from the object's list of backed pages. 675 */ 676 677 TAILQ_REMOVE(&object->memq, m, listq); 678 679 /* 680 * And show that the object has one fewer resident page. 681 */ 682 683 object->resident_page_count--; 684 object->generation++; 685 686 m->object = NULL; 687 } 688 689 /* 690 * vm_page_lookup: 691 * 692 * Returns the page associated with the object/offset 693 * pair specified; if none is found, NULL is returned. 694 * 695 * NOTE: the code below does not lock. It will operate properly if 696 * an interrupt makes a change, but the generation algorithm will not 697 * operate properly in an SMP environment where both cpu's are able to run 698 * kernel code simultaneously. 699 * 700 * The object must be locked. No side effects. 701 * This routine may not block. 702 * This is a critical path routine 703 */ 704 705 vm_page_t 706 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 707 { 708 vm_page_t m; 709 struct vm_page **bucket; 710 int generation; 711 712 /* 713 * Search the hash table for this object/offset pair 714 */ 715 716 retry: 717 generation = vm_page_bucket_generation; 718 bucket = &vm_page_buckets[vm_page_hash(object, pindex)]; 719 for (m = *bucket; m != NULL; m = m->hnext) { 720 if ((m->object == object) && (m->pindex == pindex)) { 721 if (vm_page_bucket_generation != generation) 722 goto retry; 723 return (m); 724 } 725 } 726 if (vm_page_bucket_generation != generation) 727 goto retry; 728 return (NULL); 729 } 730 731 /* 732 * vm_page_rename: 733 * 734 * Move the given memory entry from its 735 * current object to the specified target object/offset. 736 * 737 * The object must be locked. 738 * This routine may not block. 739 * 740 * Note: this routine will raise itself to splvm(), the caller need not. 741 * 742 * Note: swap associated with the page must be invalidated by the move. We 743 * have to do this for several reasons: (1) we aren't freeing the 744 * page, (2) we are dirtying the page, (3) the VM system is probably 745 * moving the page from object A to B, and will then later move 746 * the backing store from A to B and we can't have a conflict. 747 * 748 * Note: we *always* dirty the page. It is necessary both for the 749 * fact that we moved it, and because we may be invalidating 750 * swap. If the page is on the cache, we have to deactivate it 751 * or vm_page_dirty() will panic. Dirty pages are not allowed 752 * on the cache. 753 */ 754 755 void 756 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 757 { 758 int s; 759 760 s = splvm(); 761 vm_page_remove(m); 762 vm_page_insert(m, new_object, new_pindex); 763 if (m->queue - m->pc == PQ_CACHE) 764 vm_page_deactivate(m); 765 vm_page_dirty(m); 766 splx(s); 767 } 768 769 /* 770 * vm_page_select_cache: 771 * 772 * Find a page on the cache queue with color optimization. As pages 773 * might be found, but not applicable, they are deactivated. This 774 * keeps us from using potentially busy cached pages. 775 * 776 * This routine must be called at splvm(). 777 * This routine may not block. 778 */ 779 vm_page_t 780 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex) 781 { 782 vm_page_t m; 783 784 GIANT_REQUIRED; 785 while (TRUE) { 786 m = vm_pageq_find( 787 PQ_CACHE, 788 (pindex + object->pg_color) & PQ_L2_MASK, 789 FALSE 790 ); 791 if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 792 m->hold_count || m->wire_count)) { 793 vm_page_deactivate(m); 794 continue; 795 } 796 return m; 797 } 798 } 799 800 /* 801 * vm_page_select_free: 802 * 803 * Find a free or zero page, with specified preference. 804 * 805 * This routine must be called at splvm(). 806 * This routine may not block. 807 */ 808 809 static __inline vm_page_t 810 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero) 811 { 812 vm_page_t m; 813 814 m = vm_pageq_find( 815 PQ_FREE, 816 (pindex + object->pg_color) & PQ_L2_MASK, 817 prefer_zero 818 ); 819 return(m); 820 } 821 822 /* 823 * vm_page_alloc: 824 * 825 * Allocate and return a memory cell associated 826 * with this VM object/offset pair. 827 * 828 * page_req classes: 829 * VM_ALLOC_NORMAL normal process request 830 * VM_ALLOC_SYSTEM system *really* needs a page 831 * VM_ALLOC_INTERRUPT interrupt time request 832 * VM_ALLOC_ZERO zero page 833 * 834 * This routine may not block. 835 * 836 * Additional special handling is required when called from an 837 * interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with 838 * the page cache in this case. 839 */ 840 841 vm_page_t 842 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req) 843 { 844 vm_page_t m = NULL; 845 int s; 846 847 GIANT_REQUIRED; 848 849 KASSERT(!vm_page_lookup(object, pindex), 850 ("vm_page_alloc: page already allocated")); 851 852 /* 853 * The pager is allowed to eat deeper into the free page list. 854 */ 855 856 if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { 857 page_req = VM_ALLOC_SYSTEM; 858 }; 859 860 s = splvm(); 861 862 loop: 863 if (cnt.v_free_count > cnt.v_free_reserved) { 864 /* 865 * Allocate from the free queue if there are plenty of pages 866 * in it. 867 */ 868 if (page_req == VM_ALLOC_ZERO) 869 m = vm_page_select_free(object, pindex, TRUE); 870 else 871 m = vm_page_select_free(object, pindex, FALSE); 872 } else if ( 873 (page_req == VM_ALLOC_SYSTEM && 874 cnt.v_cache_count == 0 && 875 cnt.v_free_count > cnt.v_interrupt_free_min) || 876 (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0) 877 ) { 878 /* 879 * Interrupt or system, dig deeper into the free list. 880 */ 881 m = vm_page_select_free(object, pindex, FALSE); 882 } else if (page_req != VM_ALLOC_INTERRUPT) { 883 /* 884 * Allocatable from cache (non-interrupt only). On success, 885 * we must free the page and try again, thus ensuring that 886 * cnt.v_*_free_min counters are replenished. 887 */ 888 m = vm_page_select_cache(object, pindex); 889 if (m == NULL) { 890 splx(s); 891 #if defined(DIAGNOSTIC) 892 if (cnt.v_cache_count > 0) 893 printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count); 894 #endif 895 vm_pageout_deficit++; 896 pagedaemon_wakeup(); 897 return (NULL); 898 } 899 KASSERT(m->dirty == 0, ("Found dirty cache page %p", m)); 900 vm_page_busy(m); 901 vm_page_protect(m, VM_PROT_NONE); 902 vm_page_free(m); 903 goto loop; 904 } else { 905 /* 906 * Not allocatable from cache from interrupt, give up. 907 */ 908 splx(s); 909 vm_pageout_deficit++; 910 pagedaemon_wakeup(); 911 return (NULL); 912 } 913 914 /* 915 * At this point we had better have found a good page. 916 */ 917 918 KASSERT( 919 m != NULL, 920 ("vm_page_alloc(): missing page on free queue\n") 921 ); 922 923 /* 924 * Remove from free queue 925 */ 926 927 vm_pageq_remove_nowakeup(m); 928 929 /* 930 * Initialize structure. Only the PG_ZERO flag is inherited. 931 */ 932 933 if (m->flags & PG_ZERO) { 934 vm_page_zero_count--; 935 m->flags = PG_ZERO | PG_BUSY; 936 } else { 937 m->flags = PG_BUSY; 938 } 939 m->wire_count = 0; 940 m->hold_count = 0; 941 m->act_count = 0; 942 m->busy = 0; 943 m->valid = 0; 944 KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m)); 945 946 /* 947 * vm_page_insert() is safe prior to the splx(). Note also that 948 * inserting a page here does not insert it into the pmap (which 949 * could cause us to block allocating memory). We cannot block 950 * anywhere. 951 */ 952 953 vm_page_insert(m, object, pindex); 954 955 /* 956 * Don't wakeup too often - wakeup the pageout daemon when 957 * we would be nearly out of memory. 958 */ 959 if (vm_paging_needed()) 960 pagedaemon_wakeup(); 961 962 splx(s); 963 964 return (m); 965 } 966 967 /* 968 * vm_wait: (also see VM_WAIT macro) 969 * 970 * Block until free pages are available for allocation 971 */ 972 973 void 974 vm_wait(void) 975 { 976 int s; 977 978 s = splvm(); 979 if (curproc == pageproc) { 980 vm_pageout_pages_needed = 1; 981 tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0); 982 } else { 983 if (!vm_pages_needed) { 984 vm_pages_needed = 1; 985 wakeup(&vm_pages_needed); 986 } 987 tsleep(&cnt.v_free_count, PVM, "vmwait", 0); 988 } 989 splx(s); 990 } 991 992 /* 993 * vm_await: (also see VM_AWAIT macro) 994 * 995 * asleep on an event that will signal when free pages are available 996 * for allocation. 997 */ 998 999 void 1000 vm_await(void) 1001 { 1002 int s; 1003 1004 s = splvm(); 1005 if (curproc == pageproc) { 1006 vm_pageout_pages_needed = 1; 1007 asleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0); 1008 } else { 1009 if (!vm_pages_needed) { 1010 vm_pages_needed++; 1011 wakeup(&vm_pages_needed); 1012 } 1013 asleep(&cnt.v_free_count, PVM, "vmwait", 0); 1014 } 1015 splx(s); 1016 } 1017 1018 /* 1019 * vm_page_activate: 1020 * 1021 * Put the specified page on the active list (if appropriate). 1022 * Ensure that act_count is at least ACT_INIT but do not otherwise 1023 * mess with it. 1024 * 1025 * The page queues must be locked. 1026 * This routine may not block. 1027 */ 1028 void 1029 vm_page_activate(vm_page_t m) 1030 { 1031 int s; 1032 1033 GIANT_REQUIRED; 1034 s = splvm(); 1035 1036 if (m->queue != PQ_ACTIVE) { 1037 if ((m->queue - m->pc) == PQ_CACHE) 1038 cnt.v_reactivated++; 1039 1040 vm_pageq_remove(m); 1041 1042 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1043 m->queue = PQ_ACTIVE; 1044 vm_page_queues[PQ_ACTIVE].lcnt++; 1045 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq); 1046 if (m->act_count < ACT_INIT) 1047 m->act_count = ACT_INIT; 1048 cnt.v_active_count++; 1049 } 1050 } else { 1051 if (m->act_count < ACT_INIT) 1052 m->act_count = ACT_INIT; 1053 } 1054 1055 splx(s); 1056 } 1057 1058 /* 1059 * vm_page_free_wakeup: 1060 * 1061 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1062 * routine is called when a page has been added to the cache or free 1063 * queues. 1064 * 1065 * This routine may not block. 1066 * This routine must be called at splvm() 1067 */ 1068 static __inline void 1069 vm_page_free_wakeup(void) 1070 { 1071 /* 1072 * if pageout daemon needs pages, then tell it that there are 1073 * some free. 1074 */ 1075 if (vm_pageout_pages_needed && 1076 cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) { 1077 wakeup(&vm_pageout_pages_needed); 1078 vm_pageout_pages_needed = 0; 1079 } 1080 /* 1081 * wakeup processes that are waiting on memory if we hit a 1082 * high water mark. And wakeup scheduler process if we have 1083 * lots of memory. this process will swapin processes. 1084 */ 1085 if (vm_pages_needed && !vm_page_count_min()) { 1086 vm_pages_needed = 0; 1087 wakeup(&cnt.v_free_count); 1088 } 1089 } 1090 1091 /* 1092 * vm_page_free_toq: 1093 * 1094 * Returns the given page to the PQ_FREE list, 1095 * disassociating it with any VM object. 1096 * 1097 * Object and page must be locked prior to entry. 1098 * This routine may not block. 1099 */ 1100 1101 void 1102 vm_page_free_toq(vm_page_t m) 1103 { 1104 int s; 1105 struct vpgqueues *pq; 1106 vm_object_t object = m->object; 1107 1108 GIANT_REQUIRED; 1109 s = splvm(); 1110 cnt.v_tfree++; 1111 1112 if (m->busy || ((m->queue - m->pc) == PQ_FREE) || 1113 (m->hold_count != 0)) { 1114 printf( 1115 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 1116 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 1117 m->hold_count); 1118 if ((m->queue - m->pc) == PQ_FREE) 1119 panic("vm_page_free: freeing free page"); 1120 else 1121 panic("vm_page_free: freeing busy page"); 1122 } 1123 1124 /* 1125 * unqueue, then remove page. Note that we cannot destroy 1126 * the page here because we do not want to call the pager's 1127 * callback routine until after we've put the page on the 1128 * appropriate free queue. 1129 */ 1130 1131 vm_pageq_remove_nowakeup(m); 1132 vm_page_remove(m); 1133 1134 /* 1135 * If fictitious remove object association and 1136 * return, otherwise delay object association removal. 1137 */ 1138 1139 if ((m->flags & PG_FICTITIOUS) != 0) { 1140 splx(s); 1141 return; 1142 } 1143 1144 m->valid = 0; 1145 vm_page_undirty(m); 1146 1147 if (m->wire_count != 0) { 1148 if (m->wire_count > 1) { 1149 panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1150 m->wire_count, (long)m->pindex); 1151 } 1152 panic("vm_page_free: freeing wired page\n"); 1153 } 1154 1155 /* 1156 * If we've exhausted the object's resident pages we want to free 1157 * it up. 1158 */ 1159 1160 if (object && 1161 (object->type == OBJT_VNODE) && 1162 ((object->flags & OBJ_DEAD) == 0) 1163 ) { 1164 struct vnode *vp = (struct vnode *)object->handle; 1165 1166 if (vp && VSHOULDFREE(vp)) 1167 vfree(vp); 1168 } 1169 1170 /* 1171 * Clear the UNMANAGED flag when freeing an unmanaged page. 1172 */ 1173 1174 if (m->flags & PG_UNMANAGED) { 1175 m->flags &= ~PG_UNMANAGED; 1176 } else { 1177 #ifdef __alpha__ 1178 pmap_page_is_free(m); 1179 #endif 1180 } 1181 1182 m->queue = PQ_FREE + m->pc; 1183 pq = &vm_page_queues[m->queue]; 1184 pq->lcnt++; 1185 ++(*pq->cnt); 1186 1187 /* 1188 * Put zero'd pages on the end ( where we look for zero'd pages 1189 * first ) and non-zerod pages at the head. 1190 */ 1191 1192 if (m->flags & PG_ZERO) { 1193 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1194 ++vm_page_zero_count; 1195 } else { 1196 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1197 } 1198 1199 vm_page_free_wakeup(); 1200 1201 splx(s); 1202 } 1203 1204 /* 1205 * vm_page_unmanage: 1206 * 1207 * Prevent PV management from being done on the page. The page is 1208 * removed from the paging queues as if it were wired, and as a 1209 * consequence of no longer being managed the pageout daemon will not 1210 * touch it (since there is no way to locate the pte mappings for the 1211 * page). madvise() calls that mess with the pmap will also no longer 1212 * operate on the page. 1213 * 1214 * Beyond that the page is still reasonably 'normal'. Freeing the page 1215 * will clear the flag. 1216 * 1217 * This routine is used by OBJT_PHYS objects - objects using unswappable 1218 * physical memory as backing store rather then swap-backed memory and 1219 * will eventually be extended to support 4MB unmanaged physical 1220 * mappings. 1221 */ 1222 1223 void 1224 vm_page_unmanage(vm_page_t m) 1225 { 1226 int s; 1227 1228 s = splvm(); 1229 if ((m->flags & PG_UNMANAGED) == 0) { 1230 if (m->wire_count == 0) 1231 vm_pageq_remove(m); 1232 } 1233 vm_page_flag_set(m, PG_UNMANAGED); 1234 splx(s); 1235 } 1236 1237 /* 1238 * vm_page_wire: 1239 * 1240 * Mark this page as wired down by yet 1241 * another map, removing it from paging queues 1242 * as necessary. 1243 * 1244 * The page queues must be locked. 1245 * This routine may not block. 1246 */ 1247 void 1248 vm_page_wire(vm_page_t m) 1249 { 1250 int s; 1251 1252 /* 1253 * Only bump the wire statistics if the page is not already wired, 1254 * and only unqueue the page if it is on some queue (if it is unmanaged 1255 * it is already off the queues). 1256 */ 1257 s = splvm(); 1258 if (m->wire_count == 0) { 1259 if ((m->flags & PG_UNMANAGED) == 0) 1260 vm_pageq_remove(m); 1261 cnt.v_wire_count++; 1262 } 1263 m->wire_count++; 1264 splx(s); 1265 vm_page_flag_set(m, PG_MAPPED); 1266 } 1267 1268 /* 1269 * vm_page_unwire: 1270 * 1271 * Release one wiring of this page, potentially 1272 * enabling it to be paged again. 1273 * 1274 * Many pages placed on the inactive queue should actually go 1275 * into the cache, but it is difficult to figure out which. What 1276 * we do instead, if the inactive target is well met, is to put 1277 * clean pages at the head of the inactive queue instead of the tail. 1278 * This will cause them to be moved to the cache more quickly and 1279 * if not actively re-referenced, freed more quickly. If we just 1280 * stick these pages at the end of the inactive queue, heavy filesystem 1281 * meta-data accesses can cause an unnecessary paging load on memory bound 1282 * processes. This optimization causes one-time-use metadata to be 1283 * reused more quickly. 1284 * 1285 * BUT, if we are in a low-memory situation we have no choice but to 1286 * put clean pages on the cache queue. 1287 * 1288 * A number of routines use vm_page_unwire() to guarantee that the page 1289 * will go into either the inactive or active queues, and will NEVER 1290 * be placed in the cache - for example, just after dirtying a page. 1291 * dirty pages in the cache are not allowed. 1292 * 1293 * The page queues must be locked. 1294 * This routine may not block. 1295 */ 1296 void 1297 vm_page_unwire(vm_page_t m, int activate) 1298 { 1299 int s; 1300 1301 s = splvm(); 1302 1303 if (m->wire_count > 0) { 1304 m->wire_count--; 1305 if (m->wire_count == 0) { 1306 cnt.v_wire_count--; 1307 if (m->flags & PG_UNMANAGED) { 1308 ; 1309 } else if (activate) { 1310 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq); 1311 m->queue = PQ_ACTIVE; 1312 vm_page_queues[PQ_ACTIVE].lcnt++; 1313 cnt.v_active_count++; 1314 } else { 1315 vm_page_flag_clear(m, PG_WINATCFLS); 1316 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1317 m->queue = PQ_INACTIVE; 1318 vm_page_queues[PQ_INACTIVE].lcnt++; 1319 cnt.v_inactive_count++; 1320 } 1321 } 1322 } else { 1323 panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count); 1324 } 1325 splx(s); 1326 } 1327 1328 1329 /* 1330 * Move the specified page to the inactive queue. If the page has 1331 * any associated swap, the swap is deallocated. 1332 * 1333 * Normally athead is 0 resulting in LRU operation. athead is set 1334 * to 1 if we want this page to be 'as if it were placed in the cache', 1335 * except without unmapping it from the process address space. 1336 * 1337 * This routine may not block. 1338 */ 1339 static __inline void 1340 _vm_page_deactivate(vm_page_t m, int athead) 1341 { 1342 int s; 1343 1344 GIANT_REQUIRED; 1345 /* 1346 * Ignore if already inactive. 1347 */ 1348 if (m->queue == PQ_INACTIVE) 1349 return; 1350 1351 s = splvm(); 1352 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1353 if ((m->queue - m->pc) == PQ_CACHE) 1354 cnt.v_reactivated++; 1355 vm_page_flag_clear(m, PG_WINATCFLS); 1356 vm_pageq_remove(m); 1357 if (athead) 1358 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1359 else 1360 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1361 m->queue = PQ_INACTIVE; 1362 vm_page_queues[PQ_INACTIVE].lcnt++; 1363 cnt.v_inactive_count++; 1364 } 1365 splx(s); 1366 } 1367 1368 void 1369 vm_page_deactivate(vm_page_t m) 1370 { 1371 _vm_page_deactivate(m, 0); 1372 } 1373 1374 /* 1375 * vm_page_try_to_cache: 1376 * 1377 * Returns 0 on failure, 1 on success 1378 */ 1379 int 1380 vm_page_try_to_cache(vm_page_t m) 1381 { 1382 GIANT_REQUIRED; 1383 1384 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1385 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1386 return(0); 1387 } 1388 vm_page_test_dirty(m); 1389 if (m->dirty) 1390 return(0); 1391 vm_page_cache(m); 1392 return(1); 1393 } 1394 1395 /* 1396 * vm_page_try_to_free() 1397 * 1398 * Attempt to free the page. If we cannot free it, we do nothing. 1399 * 1 is returned on success, 0 on failure. 1400 */ 1401 int 1402 vm_page_try_to_free(vm_page_t m) 1403 { 1404 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1405 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1406 return(0); 1407 } 1408 vm_page_test_dirty(m); 1409 if (m->dirty) 1410 return(0); 1411 vm_page_busy(m); 1412 vm_page_protect(m, VM_PROT_NONE); 1413 vm_page_free(m); 1414 return(1); 1415 } 1416 1417 /* 1418 * vm_page_cache 1419 * 1420 * Put the specified page onto the page cache queue (if appropriate). 1421 * 1422 * This routine may not block. 1423 */ 1424 void 1425 vm_page_cache(vm_page_t m) 1426 { 1427 int s; 1428 1429 GIANT_REQUIRED; 1430 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) { 1431 printf("vm_page_cache: attempting to cache busy page\n"); 1432 return; 1433 } 1434 if ((m->queue - m->pc) == PQ_CACHE) 1435 return; 1436 1437 /* 1438 * Remove all pmaps and indicate that the page is not 1439 * writeable or mapped. 1440 */ 1441 1442 vm_page_protect(m, VM_PROT_NONE); 1443 if (m->dirty != 0) { 1444 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1445 (long)m->pindex); 1446 } 1447 s = splvm(); 1448 vm_pageq_remove_nowakeup(m); 1449 m->queue = PQ_CACHE + m->pc; 1450 vm_page_queues[m->queue].lcnt++; 1451 TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq); 1452 cnt.v_cache_count++; 1453 vm_page_free_wakeup(); 1454 splx(s); 1455 } 1456 1457 /* 1458 * vm_page_dontneed 1459 * 1460 * Cache, deactivate, or do nothing as appropriate. This routine 1461 * is typically used by madvise() MADV_DONTNEED. 1462 * 1463 * Generally speaking we want to move the page into the cache so 1464 * it gets reused quickly. However, this can result in a silly syndrome 1465 * due to the page recycling too quickly. Small objects will not be 1466 * fully cached. On the otherhand, if we move the page to the inactive 1467 * queue we wind up with a problem whereby very large objects 1468 * unnecessarily blow away our inactive and cache queues. 1469 * 1470 * The solution is to move the pages based on a fixed weighting. We 1471 * either leave them alone, deactivate them, or move them to the cache, 1472 * where moving them to the cache has the highest weighting. 1473 * By forcing some pages into other queues we eventually force the 1474 * system to balance the queues, potentially recovering other unrelated 1475 * space from active. The idea is to not force this to happen too 1476 * often. 1477 */ 1478 1479 void 1480 vm_page_dontneed(vm_page_t m) 1481 { 1482 static int dnweight; 1483 int dnw; 1484 int head; 1485 1486 GIANT_REQUIRED; 1487 dnw = ++dnweight; 1488 1489 /* 1490 * occassionally leave the page alone 1491 */ 1492 1493 if ((dnw & 0x01F0) == 0 || 1494 m->queue == PQ_INACTIVE || 1495 m->queue - m->pc == PQ_CACHE 1496 ) { 1497 if (m->act_count >= ACT_INIT) 1498 --m->act_count; 1499 return; 1500 } 1501 1502 if (m->dirty == 0) 1503 vm_page_test_dirty(m); 1504 1505 if (m->dirty || (dnw & 0x0070) == 0) { 1506 /* 1507 * Deactivate the page 3 times out of 32. 1508 */ 1509 head = 0; 1510 } else { 1511 /* 1512 * Cache the page 28 times out of every 32. Note that 1513 * the page is deactivated instead of cached, but placed 1514 * at the head of the queue instead of the tail. 1515 */ 1516 head = 1; 1517 } 1518 _vm_page_deactivate(m, head); 1519 } 1520 1521 /* 1522 * Grab a page, waiting until we are waken up due to the page 1523 * changing state. We keep on waiting, if the page continues 1524 * to be in the object. If the page doesn't exist, allocate it. 1525 * 1526 * This routine may block. 1527 */ 1528 vm_page_t 1529 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1530 { 1531 vm_page_t m; 1532 int s, generation; 1533 1534 GIANT_REQUIRED; 1535 retrylookup: 1536 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1537 if (m->busy || (m->flags & PG_BUSY)) { 1538 generation = object->generation; 1539 1540 s = splvm(); 1541 while ((object->generation == generation) && 1542 (m->busy || (m->flags & PG_BUSY))) { 1543 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1544 tsleep(m, PVM, "pgrbwt", 0); 1545 if ((allocflags & VM_ALLOC_RETRY) == 0) { 1546 splx(s); 1547 return NULL; 1548 } 1549 } 1550 splx(s); 1551 goto retrylookup; 1552 } else { 1553 vm_page_busy(m); 1554 return m; 1555 } 1556 } 1557 1558 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1559 if (m == NULL) { 1560 VM_WAIT; 1561 if ((allocflags & VM_ALLOC_RETRY) == 0) 1562 return NULL; 1563 goto retrylookup; 1564 } 1565 1566 return m; 1567 } 1568 1569 /* 1570 * Mapping function for valid bits or for dirty bits in 1571 * a page. May not block. 1572 * 1573 * Inputs are required to range within a page. 1574 */ 1575 1576 __inline int 1577 vm_page_bits(int base, int size) 1578 { 1579 int first_bit; 1580 int last_bit; 1581 1582 KASSERT( 1583 base + size <= PAGE_SIZE, 1584 ("vm_page_bits: illegal base/size %d/%d", base, size) 1585 ); 1586 1587 if (size == 0) /* handle degenerate case */ 1588 return(0); 1589 1590 first_bit = base >> DEV_BSHIFT; 1591 last_bit = (base + size - 1) >> DEV_BSHIFT; 1592 1593 return ((2 << last_bit) - (1 << first_bit)); 1594 } 1595 1596 /* 1597 * vm_page_set_validclean: 1598 * 1599 * Sets portions of a page valid and clean. The arguments are expected 1600 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1601 * of any partial chunks touched by the range. The invalid portion of 1602 * such chunks will be zero'd. 1603 * 1604 * This routine may not block. 1605 * 1606 * (base + size) must be less then or equal to PAGE_SIZE. 1607 */ 1608 void 1609 vm_page_set_validclean(vm_page_t m, int base, int size) 1610 { 1611 int pagebits; 1612 int frag; 1613 int endoff; 1614 1615 GIANT_REQUIRED; 1616 if (size == 0) /* handle degenerate case */ 1617 return; 1618 1619 /* 1620 * If the base is not DEV_BSIZE aligned and the valid 1621 * bit is clear, we have to zero out a portion of the 1622 * first block. 1623 */ 1624 1625 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1626 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0 1627 ) { 1628 pmap_zero_page_area( 1629 VM_PAGE_TO_PHYS(m), 1630 frag, 1631 base - frag 1632 ); 1633 } 1634 1635 /* 1636 * If the ending offset is not DEV_BSIZE aligned and the 1637 * valid bit is clear, we have to zero out a portion of 1638 * the last block. 1639 */ 1640 1641 endoff = base + size; 1642 1643 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1644 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0 1645 ) { 1646 pmap_zero_page_area( 1647 VM_PAGE_TO_PHYS(m), 1648 endoff, 1649 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)) 1650 ); 1651 } 1652 1653 /* 1654 * Set valid, clear dirty bits. If validating the entire 1655 * page we can safely clear the pmap modify bit. We also 1656 * use this opportunity to clear the PG_NOSYNC flag. If a process 1657 * takes a write fault on a MAP_NOSYNC memory area the flag will 1658 * be set again. 1659 */ 1660 1661 pagebits = vm_page_bits(base, size); 1662 m->valid |= pagebits; 1663 m->dirty &= ~pagebits; 1664 if (base == 0 && size == PAGE_SIZE) { 1665 pmap_clear_modify(m); 1666 vm_page_flag_clear(m, PG_NOSYNC); 1667 } 1668 } 1669 1670 #if 0 1671 1672 void 1673 vm_page_set_dirty(vm_page_t m, int base, int size) 1674 { 1675 m->dirty |= vm_page_bits(base, size); 1676 } 1677 1678 #endif 1679 1680 void 1681 vm_page_clear_dirty(vm_page_t m, int base, int size) 1682 { 1683 GIANT_REQUIRED; 1684 m->dirty &= ~vm_page_bits(base, size); 1685 } 1686 1687 /* 1688 * vm_page_set_invalid: 1689 * 1690 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1691 * valid and dirty bits for the effected areas are cleared. 1692 * 1693 * May not block. 1694 */ 1695 void 1696 vm_page_set_invalid(vm_page_t m, int base, int size) 1697 { 1698 int bits; 1699 1700 GIANT_REQUIRED; 1701 bits = vm_page_bits(base, size); 1702 m->valid &= ~bits; 1703 m->dirty &= ~bits; 1704 m->object->generation++; 1705 } 1706 1707 /* 1708 * vm_page_zero_invalid() 1709 * 1710 * The kernel assumes that the invalid portions of a page contain 1711 * garbage, but such pages can be mapped into memory by user code. 1712 * When this occurs, we must zero out the non-valid portions of the 1713 * page so user code sees what it expects. 1714 * 1715 * Pages are most often semi-valid when the end of a file is mapped 1716 * into memory and the file's size is not page aligned. 1717 */ 1718 1719 void 1720 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1721 { 1722 int b; 1723 int i; 1724 1725 /* 1726 * Scan the valid bits looking for invalid sections that 1727 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1728 * valid bit may be set ) have already been zerod by 1729 * vm_page_set_validclean(). 1730 */ 1731 1732 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1733 if (i == (PAGE_SIZE / DEV_BSIZE) || 1734 (m->valid & (1 << i)) 1735 ) { 1736 if (i > b) { 1737 pmap_zero_page_area( 1738 VM_PAGE_TO_PHYS(m), 1739 b << DEV_BSHIFT, 1740 (i - b) << DEV_BSHIFT 1741 ); 1742 } 1743 b = i + 1; 1744 } 1745 } 1746 1747 /* 1748 * setvalid is TRUE when we can safely set the zero'd areas 1749 * as being valid. We can do this if there are no cache consistancy 1750 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1751 */ 1752 1753 if (setvalid) 1754 m->valid = VM_PAGE_BITS_ALL; 1755 } 1756 1757 /* 1758 * vm_page_is_valid: 1759 * 1760 * Is (partial) page valid? Note that the case where size == 0 1761 * will return FALSE in the degenerate case where the page is 1762 * entirely invalid, and TRUE otherwise. 1763 * 1764 * May not block. 1765 */ 1766 1767 int 1768 vm_page_is_valid(vm_page_t m, int base, int size) 1769 { 1770 int bits = vm_page_bits(base, size); 1771 1772 if (m->valid && ((m->valid & bits) == bits)) 1773 return 1; 1774 else 1775 return 0; 1776 } 1777 1778 /* 1779 * update dirty bits from pmap/mmu. May not block. 1780 */ 1781 1782 void 1783 vm_page_test_dirty(vm_page_t m) 1784 { 1785 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1786 vm_page_dirty(m); 1787 } 1788 } 1789 1790 #include "opt_ddb.h" 1791 #ifdef DDB 1792 #include <sys/kernel.h> 1793 1794 #include <ddb/ddb.h> 1795 1796 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1797 { 1798 db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); 1799 db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); 1800 db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); 1801 db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); 1802 db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); 1803 db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); 1804 db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); 1805 db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); 1806 db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); 1807 db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); 1808 } 1809 1810 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1811 { 1812 int i; 1813 db_printf("PQ_FREE:"); 1814 for (i = 0; i < PQ_L2_SIZE; i++) { 1815 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 1816 } 1817 db_printf("\n"); 1818 1819 db_printf("PQ_CACHE:"); 1820 for (i = 0; i < PQ_L2_SIZE; i++) { 1821 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 1822 } 1823 db_printf("\n"); 1824 1825 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1826 vm_page_queues[PQ_ACTIVE].lcnt, 1827 vm_page_queues[PQ_INACTIVE].lcnt); 1828 } 1829 #endif /* DDB */ 1830