xref: /freebsd/sys/vm/vm_page.c (revision 5521ff5a4d1929056e7ffc982fac3341ca54df7c)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD$
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 
67 /*
68  *			GENERAL RULES ON VM_PAGE MANIPULATION
69  *
70  *	- a pageq mutex is required when adding or removing a page from a
71  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
72  *	  busy state of a page.
73  *
74  *	- a hash chain mutex is required when associating or disassociating
75  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
76  *	  regardless of other mutexes or the busy state of a page.
77  *
78  *	- either a hash chain mutex OR a busied page is required in order
79  *	  to modify the page flags.  A hash chain mutex must be obtained in
80  *	  order to busy a page.  A page's flags cannot be modified by a
81  *	  hash chain mutex if the page is marked busy.
82  *
83  *	- The object memq mutex is held when inserting or removing
84  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
85  *	  is different from the object's main mutex.
86  *
87  *	Generally speaking, you have to be aware of side effects when running
88  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
89  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
90  *	vm_page_cache(), vm_page_activate(), and a number of other routines
91  *	will release the hash chain mutex for you.  Intermediate manipulation
92  *	routines such as vm_page_flag_set() expect the hash chain to be held
93  *	on entry and the hash chain will remain held on return.
94  *
95  *	pageq scanning can only occur with the pageq in question locked.
96  *	We have a known bottleneck with the active queue, but the cache
97  *	and free queues are actually arrays already.
98  */
99 
100 /*
101  *	Resident memory management module.
102  */
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/lock.h>
107 #include <sys/malloc.h>
108 #include <sys/mutex.h>
109 #include <sys/proc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 
122 /*
123  *	Associated with page of user-allocatable memory is a
124  *	page structure.
125  */
126 
127 static struct vm_page **vm_page_buckets; /* Array of buckets */
128 static int vm_page_bucket_count;	/* How big is array? */
129 static int vm_page_hash_mask;		/* Mask for hash function */
130 static volatile int vm_page_bucket_generation;
131 static struct mtx vm_buckets_mtx[BUCKET_HASH_SIZE];
132 
133 vm_page_t vm_page_array = 0;
134 int vm_page_array_size = 0;
135 long first_page = 0;
136 int vm_page_zero_count = 0;
137 
138 /*
139  *	vm_set_page_size:
140  *
141  *	Sets the page size, perhaps based upon the memory
142  *	size.  Must be called before any use of page-size
143  *	dependent functions.
144  */
145 void
146 vm_set_page_size(void)
147 {
148 	if (cnt.v_page_size == 0)
149 		cnt.v_page_size = PAGE_SIZE;
150 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
151 		panic("vm_set_page_size: page size not a power of two");
152 }
153 
154 /*
155  *	vm_page_startup:
156  *
157  *	Initializes the resident memory module.
158  *
159  *	Allocates memory for the page cells, and
160  *	for the object/offset-to-page hash table headers.
161  *	Each page cell is initialized and placed on the free list.
162  */
163 
164 vm_offset_t
165 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
166 {
167 	vm_offset_t mapped;
168 	struct vm_page **bucket;
169 	vm_size_t npages, page_range;
170 	vm_offset_t new_end;
171 	int i;
172 	vm_offset_t pa;
173 	int nblocks;
174 	vm_offset_t last_pa;
175 
176 	/* the biggest memory array is the second group of pages */
177 	vm_offset_t end;
178 	vm_offset_t biggestone, biggestsize;
179 
180 	vm_offset_t total;
181 
182 	total = 0;
183 	biggestsize = 0;
184 	biggestone = 0;
185 	nblocks = 0;
186 	vaddr = round_page(vaddr);
187 
188 	for (i = 0; phys_avail[i + 1]; i += 2) {
189 		phys_avail[i] = round_page(phys_avail[i]);
190 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
191 	}
192 
193 	for (i = 0; phys_avail[i + 1]; i += 2) {
194 		int size = phys_avail[i + 1] - phys_avail[i];
195 
196 		if (size > biggestsize) {
197 			biggestone = i;
198 			biggestsize = size;
199 		}
200 		++nblocks;
201 		total += size;
202 	}
203 
204 	end = phys_avail[biggestone+1];
205 
206 	/*
207 	 * Initialize the queue headers for the free queue, the active queue
208 	 * and the inactive queue.
209 	 */
210 
211 	vm_pageq_init();
212 
213 	/*
214 	 * Allocate (and initialize) the hash table buckets.
215 	 *
216 	 * The number of buckets MUST BE a power of 2, and the actual value is
217 	 * the next power of 2 greater than the number of physical pages in
218 	 * the system.
219 	 *
220 	 * We make the hash table approximately 2x the number of pages to
221 	 * reduce the chain length.  This is about the same size using the
222 	 * singly-linked list as the 1x hash table we were using before
223 	 * using TAILQ but the chain length will be smaller.
224 	 *
225 	 * Note: This computation can be tweaked if desired.
226 	 */
227 	if (vm_page_bucket_count == 0) {
228 		vm_page_bucket_count = 1;
229 		while (vm_page_bucket_count < atop(total))
230 			vm_page_bucket_count <<= 1;
231 	}
232 	vm_page_bucket_count <<= 1;
233 	vm_page_hash_mask = vm_page_bucket_count - 1;
234 
235 	/*
236 	 * Validate these addresses.
237 	 */
238 	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
239 	new_end = trunc_page(new_end);
240 	mapped = pmap_map(&vaddr, new_end, end,
241 	    VM_PROT_READ | VM_PROT_WRITE);
242 	bzero((caddr_t) mapped, end - new_end);
243 
244 	vm_page_buckets = (struct vm_page **)mapped;
245 	bucket = vm_page_buckets;
246 	for (i = 0; i < vm_page_bucket_count; i++) {
247 		*bucket = NULL;
248 		bucket++;
249 	}
250 	for (i = 0; i < BUCKET_HASH_SIZE; ++i)
251 		mtx_init(&vm_buckets_mtx[i],  "vm buckets hash mutexes", MTX_DEF);
252 
253 	/*
254 	 * Compute the number of pages of memory that will be available for
255 	 * use (taking into account the overhead of a page structure per
256 	 * page).
257 	 */
258 
259 	first_page = phys_avail[0] / PAGE_SIZE;
260 
261 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
262 	npages = (total - (page_range * sizeof(struct vm_page)) -
263 	    (end - new_end)) / PAGE_SIZE;
264 
265 	end = new_end;
266 
267 	/*
268 	 * Initialize the mem entry structures now, and put them in the free
269 	 * queue.
270 	 */
271 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
272 	mapped = pmap_map(&vaddr, new_end, end,
273 	    VM_PROT_READ | VM_PROT_WRITE);
274 	vm_page_array = (vm_page_t) mapped;
275 
276 	/*
277 	 * Clear all of the page structures
278 	 */
279 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
280 	vm_page_array_size = page_range;
281 
282 	/*
283 	 * Construct the free queue(s) in descending order (by physical
284 	 * address) so that the first 16MB of physical memory is allocated
285 	 * last rather than first.  On large-memory machines, this avoids
286 	 * the exhaustion of low physical memory before isa_dmainit has run.
287 	 */
288 	cnt.v_page_count = 0;
289 	cnt.v_free_count = 0;
290 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
291 		pa = phys_avail[i];
292 		if (i == biggestone)
293 			last_pa = new_end;
294 		else
295 			last_pa = phys_avail[i + 1];
296 		while (pa < last_pa && npages-- > 0) {
297 			vm_pageq_add_new_page(pa);
298 			pa += PAGE_SIZE;
299 		}
300 	}
301 	return (vaddr);
302 }
303 
304 /*
305  *	vm_page_hash:
306  *
307  *	Distributes the object/offset key pair among hash buckets.
308  *
309  *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
310  *	This routine may not block.
311  *
312  *	We try to randomize the hash based on the object to spread the pages
313  *	out in the hash table without it costing us too much.
314  */
315 static __inline int
316 vm_page_hash(vm_object_t object, vm_pindex_t pindex)
317 {
318 	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
319 
320 	return(i & vm_page_hash_mask);
321 }
322 
323 void
324 vm_page_flag_set(vm_page_t m, unsigned short bits)
325 {
326 	GIANT_REQUIRED;
327 	atomic_set_short(&(m)->flags, bits);
328 	/* m->flags |= bits; */
329 }
330 
331 void
332 vm_page_flag_clear(vm_page_t m, unsigned short bits)
333 {
334 	GIANT_REQUIRED;
335 	atomic_clear_short(&(m)->flags, bits);
336 	/* m->flags &= ~bits; */
337 }
338 
339 void
340 vm_page_busy(vm_page_t m)
341 {
342 	KASSERT((m->flags & PG_BUSY) == 0,
343 	    ("vm_page_busy: page already busy!!!"));
344 	vm_page_flag_set(m, PG_BUSY);
345 }
346 
347 /*
348  *      vm_page_flash:
349  *
350  *      wakeup anyone waiting for the page.
351  */
352 
353 void
354 vm_page_flash(vm_page_t m)
355 {
356 	if (m->flags & PG_WANTED) {
357 		vm_page_flag_clear(m, PG_WANTED);
358 		wakeup(m);
359 	}
360 }
361 
362 /*
363  *      vm_page_wakeup:
364  *
365  *      clear the PG_BUSY flag and wakeup anyone waiting for the
366  *      page.
367  *
368  */
369 
370 void
371 vm_page_wakeup(vm_page_t m)
372 {
373 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
374 	vm_page_flag_clear(m, PG_BUSY);
375 	vm_page_flash(m);
376 }
377 
378 /*
379  *
380  *
381  */
382 
383 void
384 vm_page_io_start(vm_page_t m)
385 {
386 	GIANT_REQUIRED;
387 	atomic_add_char(&(m)->busy, 1);
388 }
389 
390 void
391 vm_page_io_finish(vm_page_t m)
392 {
393 	GIANT_REQUIRED;
394 	atomic_subtract_char(&(m)->busy, 1);
395 	if (m->busy == 0)
396 		vm_page_flash(m);
397 }
398 
399 /*
400  * Keep page from being freed by the page daemon
401  * much of the same effect as wiring, except much lower
402  * overhead and should be used only for *very* temporary
403  * holding ("wiring").
404  */
405 void
406 vm_page_hold(vm_page_t mem)
407 {
408         GIANT_REQUIRED;
409         mem->hold_count++;
410 }
411 
412 void
413 vm_page_unhold(vm_page_t mem)
414 {
415 	GIANT_REQUIRED;
416 	--mem->hold_count;
417 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
418 }
419 
420 /*
421  *	vm_page_protect:
422  *
423  *	Reduce the protection of a page.  This routine never raises the
424  *	protection and therefore can be safely called if the page is already
425  *	at VM_PROT_NONE (it will be a NOP effectively ).
426  */
427 
428 void
429 vm_page_protect(vm_page_t mem, int prot)
430 {
431 	if (prot == VM_PROT_NONE) {
432 		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
433 			pmap_page_protect(mem, VM_PROT_NONE);
434 			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
435 		}
436 	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
437 		pmap_page_protect(mem, VM_PROT_READ);
438 		vm_page_flag_clear(mem, PG_WRITEABLE);
439 	}
440 }
441 /*
442  *	vm_page_zero_fill:
443  *
444  *	Zero-fill the specified page.
445  *	Written as a standard pagein routine, to
446  *	be used by the zero-fill object.
447  */
448 boolean_t
449 vm_page_zero_fill(vm_page_t m)
450 {
451 	pmap_zero_page(VM_PAGE_TO_PHYS(m));
452 	return (TRUE);
453 }
454 
455 /*
456  *	vm_page_copy:
457  *
458  *	Copy one page to another
459  */
460 void
461 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
462 {
463 	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
464 	dest_m->valid = VM_PAGE_BITS_ALL;
465 }
466 
467 /*
468  *	vm_page_free:
469  *
470  *	Free a page
471  *
472  *	The clearing of PG_ZERO is a temporary safety until the code can be
473  *	reviewed to determine that PG_ZERO is being properly cleared on
474  *	write faults or maps.  PG_ZERO was previously cleared in
475  *	vm_page_alloc().
476  */
477 void
478 vm_page_free(vm_page_t m)
479 {
480 	vm_page_flag_clear(m, PG_ZERO);
481 	vm_page_free_toq(m);
482 }
483 
484 /*
485  *	vm_page_free_zero:
486  *
487  *	Free a page to the zerod-pages queue
488  */
489 void
490 vm_page_free_zero(vm_page_t m)
491 {
492 	vm_page_flag_set(m, PG_ZERO);
493 	vm_page_free_toq(m);
494 }
495 
496 /*
497  *	vm_page_sleep_busy:
498  *
499  *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
500  *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
501  *	it almost had to sleep and made temporary spl*() mods), FALSE
502  *	otherwise.
503  *
504  *	This routine assumes that interrupts can only remove the busy
505  *	status from a page, not set the busy status or change it from
506  *	PG_BUSY to m->busy or vise versa (which would create a timing
507  *	window).
508  */
509 
510 int
511 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
512 {
513 	GIANT_REQUIRED;
514 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
515 		int s = splvm();
516 		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
517 			/*
518 			 * Page is busy. Wait and retry.
519 			 */
520 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
521 			tsleep(m, PVM, msg, 0);
522 		}
523 		splx(s);
524 		return(TRUE);
525 		/* not reached */
526 	}
527 	return(FALSE);
528 }
529 /*
530  *	vm_page_dirty:
531  *
532  *	make page all dirty
533  */
534 
535 void
536 vm_page_dirty(vm_page_t m)
537 {
538 	KASSERT(m->queue - m->pc != PQ_CACHE,
539 	    ("vm_page_dirty: page in cache!"));
540 	m->dirty = VM_PAGE_BITS_ALL;
541 }
542 
543 /*
544  *	vm_page_undirty:
545  *
546  *	Set page to not be dirty.  Note: does not clear pmap modify bits
547  */
548 
549 void
550 vm_page_undirty(vm_page_t m)
551 {
552 	m->dirty = 0;
553 }
554 
555 /*
556  *	vm_page_insert:		[ internal use only ]
557  *
558  *	Inserts the given mem entry into the object and object list.
559  *
560  *	The pagetables are not updated but will presumably fault the page
561  *	in if necessary, or if a kernel page the caller will at some point
562  *	enter the page into the kernel's pmap.  We are not allowed to block
563  *	here so we *can't* do this anyway.
564  *
565  *	The object and page must be locked, and must be splhigh.
566  *	This routine may not block.
567  */
568 
569 void
570 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
571 {
572 	struct vm_page **bucket;
573 
574 	GIANT_REQUIRED;
575 
576 	if (m->object != NULL)
577 		panic("vm_page_insert: already inserted");
578 
579 	/*
580 	 * Record the object/offset pair in this page
581 	 */
582 
583 	m->object = object;
584 	m->pindex = pindex;
585 
586 	/*
587 	 * Insert it into the object_object/offset hash table
588 	 */
589 
590 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
591 	m->hnext = *bucket;
592 	*bucket = m;
593 	vm_page_bucket_generation++;
594 
595 	/*
596 	 * Now link into the object's list of backed pages.
597 	 */
598 
599 	TAILQ_INSERT_TAIL(&object->memq, m, listq);
600 	object->generation++;
601 
602 	/*
603 	 * show that the object has one more resident page.
604 	 */
605 
606 	object->resident_page_count++;
607 
608 	/*
609 	 * Since we are inserting a new and possibly dirty page,
610 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
611 	 */
612 	if (m->flags & PG_WRITEABLE)
613 	    vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
614 }
615 
616 /*
617  *	vm_page_remove:
618  *				NOTE: used by device pager as well -wfj
619  *
620  *	Removes the given mem entry from the object/offset-page
621  *	table and the object page list, but do not invalidate/terminate
622  *	the backing store.
623  *
624  *	The object and page must be locked, and at splhigh.
625  *	The underlying pmap entry (if any) is NOT removed here.
626  *	This routine may not block.
627  */
628 
629 void
630 vm_page_remove(vm_page_t m)
631 {
632 	vm_object_t object;
633 
634 	GIANT_REQUIRED;
635 
636 	if (m->object == NULL)
637 		return;
638 
639 	if ((m->flags & PG_BUSY) == 0) {
640 		panic("vm_page_remove: page not busy");
641 	}
642 
643 	/*
644 	 * Basically destroy the page.
645 	 */
646 
647 	vm_page_wakeup(m);
648 
649 	object = m->object;
650 
651 	/*
652 	 * Remove from the object_object/offset hash table.  The object
653 	 * must be on the hash queue, we will panic if it isn't
654 	 *
655 	 * Note: we must NULL-out m->hnext to prevent loops in detached
656 	 * buffers with vm_page_lookup().
657 	 */
658 
659 	{
660 		struct vm_page **bucket;
661 
662 		bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
663 		while (*bucket != m) {
664 			if (*bucket == NULL)
665 				panic("vm_page_remove(): page not found in hash");
666 			bucket = &(*bucket)->hnext;
667 		}
668 		*bucket = m->hnext;
669 		m->hnext = NULL;
670 		vm_page_bucket_generation++;
671 	}
672 
673 	/*
674 	 * Now remove from the object's list of backed pages.
675 	 */
676 
677 	TAILQ_REMOVE(&object->memq, m, listq);
678 
679 	/*
680 	 * And show that the object has one fewer resident page.
681 	 */
682 
683 	object->resident_page_count--;
684 	object->generation++;
685 
686 	m->object = NULL;
687 }
688 
689 /*
690  *	vm_page_lookup:
691  *
692  *	Returns the page associated with the object/offset
693  *	pair specified; if none is found, NULL is returned.
694  *
695  *	NOTE: the code below does not lock.  It will operate properly if
696  *	an interrupt makes a change, but the generation algorithm will not
697  *	operate properly in an SMP environment where both cpu's are able to run
698  *	kernel code simultaneously.
699  *
700  *	The object must be locked.  No side effects.
701  *	This routine may not block.
702  *	This is a critical path routine
703  */
704 
705 vm_page_t
706 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
707 {
708 	vm_page_t m;
709 	struct vm_page **bucket;
710 	int generation;
711 
712 	/*
713 	 * Search the hash table for this object/offset pair
714 	 */
715 
716 retry:
717 	generation = vm_page_bucket_generation;
718 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
719 	for (m = *bucket; m != NULL; m = m->hnext) {
720 		if ((m->object == object) && (m->pindex == pindex)) {
721 			if (vm_page_bucket_generation != generation)
722 				goto retry;
723 			return (m);
724 		}
725 	}
726 	if (vm_page_bucket_generation != generation)
727 		goto retry;
728 	return (NULL);
729 }
730 
731 /*
732  *	vm_page_rename:
733  *
734  *	Move the given memory entry from its
735  *	current object to the specified target object/offset.
736  *
737  *	The object must be locked.
738  *	This routine may not block.
739  *
740  *	Note: this routine will raise itself to splvm(), the caller need not.
741  *
742  *	Note: swap associated with the page must be invalidated by the move.  We
743  *	      have to do this for several reasons:  (1) we aren't freeing the
744  *	      page, (2) we are dirtying the page, (3) the VM system is probably
745  *	      moving the page from object A to B, and will then later move
746  *	      the backing store from A to B and we can't have a conflict.
747  *
748  *	Note: we *always* dirty the page.  It is necessary both for the
749  *	      fact that we moved it, and because we may be invalidating
750  *	      swap.  If the page is on the cache, we have to deactivate it
751  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
752  *	      on the cache.
753  */
754 
755 void
756 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
757 {
758 	int s;
759 
760 	s = splvm();
761 	vm_page_remove(m);
762 	vm_page_insert(m, new_object, new_pindex);
763 	if (m->queue - m->pc == PQ_CACHE)
764 		vm_page_deactivate(m);
765 	vm_page_dirty(m);
766 	splx(s);
767 }
768 
769 /*
770  *	vm_page_select_cache:
771  *
772  *	Find a page on the cache queue with color optimization.  As pages
773  *	might be found, but not applicable, they are deactivated.  This
774  *	keeps us from using potentially busy cached pages.
775  *
776  *	This routine must be called at splvm().
777  *	This routine may not block.
778  */
779 vm_page_t
780 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
781 {
782 	vm_page_t m;
783 
784 	GIANT_REQUIRED;
785 	while (TRUE) {
786 		m = vm_pageq_find(
787 		    PQ_CACHE,
788 		    (pindex + object->pg_color) & PQ_L2_MASK,
789 		    FALSE
790 		);
791 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
792 			       m->hold_count || m->wire_count)) {
793 			vm_page_deactivate(m);
794 			continue;
795 		}
796 		return m;
797 	}
798 }
799 
800 /*
801  *	vm_page_select_free:
802  *
803  *	Find a free or zero page, with specified preference.
804  *
805  *	This routine must be called at splvm().
806  *	This routine may not block.
807  */
808 
809 static __inline vm_page_t
810 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
811 {
812 	vm_page_t m;
813 
814 	m = vm_pageq_find(
815 		PQ_FREE,
816 		(pindex + object->pg_color) & PQ_L2_MASK,
817 		prefer_zero
818 	);
819 	return(m);
820 }
821 
822 /*
823  *	vm_page_alloc:
824  *
825  *	Allocate and return a memory cell associated
826  *	with this VM object/offset pair.
827  *
828  *	page_req classes:
829  *	VM_ALLOC_NORMAL		normal process request
830  *	VM_ALLOC_SYSTEM		system *really* needs a page
831  *	VM_ALLOC_INTERRUPT	interrupt time request
832  *	VM_ALLOC_ZERO		zero page
833  *
834  *	This routine may not block.
835  *
836  *	Additional special handling is required when called from an
837  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
838  *	the page cache in this case.
839  */
840 
841 vm_page_t
842 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
843 {
844 	vm_page_t m = NULL;
845 	int s;
846 
847 	GIANT_REQUIRED;
848 
849 	KASSERT(!vm_page_lookup(object, pindex),
850 		("vm_page_alloc: page already allocated"));
851 
852 	/*
853 	 * The pager is allowed to eat deeper into the free page list.
854 	 */
855 
856 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
857 		page_req = VM_ALLOC_SYSTEM;
858 	};
859 
860 	s = splvm();
861 
862 loop:
863 	if (cnt.v_free_count > cnt.v_free_reserved) {
864 		/*
865 		 * Allocate from the free queue if there are plenty of pages
866 		 * in it.
867 		 */
868 		if (page_req == VM_ALLOC_ZERO)
869 			m = vm_page_select_free(object, pindex, TRUE);
870 		else
871 			m = vm_page_select_free(object, pindex, FALSE);
872 	} else if (
873 	    (page_req == VM_ALLOC_SYSTEM &&
874 	     cnt.v_cache_count == 0 &&
875 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
876 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
877 	) {
878 		/*
879 		 * Interrupt or system, dig deeper into the free list.
880 		 */
881 		m = vm_page_select_free(object, pindex, FALSE);
882 	} else if (page_req != VM_ALLOC_INTERRUPT) {
883 		/*
884 		 * Allocatable from cache (non-interrupt only).  On success,
885 		 * we must free the page and try again, thus ensuring that
886 		 * cnt.v_*_free_min counters are replenished.
887 		 */
888 		m = vm_page_select_cache(object, pindex);
889 		if (m == NULL) {
890 			splx(s);
891 #if defined(DIAGNOSTIC)
892 			if (cnt.v_cache_count > 0)
893 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
894 #endif
895 			vm_pageout_deficit++;
896 			pagedaemon_wakeup();
897 			return (NULL);
898 		}
899 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
900 		vm_page_busy(m);
901 		vm_page_protect(m, VM_PROT_NONE);
902 		vm_page_free(m);
903 		goto loop;
904 	} else {
905 		/*
906 		 * Not allocatable from cache from interrupt, give up.
907 		 */
908 		splx(s);
909 		vm_pageout_deficit++;
910 		pagedaemon_wakeup();
911 		return (NULL);
912 	}
913 
914 	/*
915 	 *  At this point we had better have found a good page.
916 	 */
917 
918 	KASSERT(
919 	    m != NULL,
920 	    ("vm_page_alloc(): missing page on free queue\n")
921 	);
922 
923 	/*
924 	 * Remove from free queue
925 	 */
926 
927 	vm_pageq_remove_nowakeup(m);
928 
929 	/*
930 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
931 	 */
932 
933 	if (m->flags & PG_ZERO) {
934 		vm_page_zero_count--;
935 		m->flags = PG_ZERO | PG_BUSY;
936 	} else {
937 		m->flags = PG_BUSY;
938 	}
939 	m->wire_count = 0;
940 	m->hold_count = 0;
941 	m->act_count = 0;
942 	m->busy = 0;
943 	m->valid = 0;
944 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
945 
946 	/*
947 	 * vm_page_insert() is safe prior to the splx().  Note also that
948 	 * inserting a page here does not insert it into the pmap (which
949 	 * could cause us to block allocating memory).  We cannot block
950 	 * anywhere.
951 	 */
952 
953 	vm_page_insert(m, object, pindex);
954 
955 	/*
956 	 * Don't wakeup too often - wakeup the pageout daemon when
957 	 * we would be nearly out of memory.
958 	 */
959 	if (vm_paging_needed())
960 		pagedaemon_wakeup();
961 
962 	splx(s);
963 
964 	return (m);
965 }
966 
967 /*
968  *	vm_wait:	(also see VM_WAIT macro)
969  *
970  *	Block until free pages are available for allocation
971  */
972 
973 void
974 vm_wait(void)
975 {
976 	int s;
977 
978 	s = splvm();
979 	if (curproc == pageproc) {
980 		vm_pageout_pages_needed = 1;
981 		tsleep(&vm_pageout_pages_needed, PSWP, "VMWait", 0);
982 	} else {
983 		if (!vm_pages_needed) {
984 			vm_pages_needed = 1;
985 			wakeup(&vm_pages_needed);
986 		}
987 		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
988 	}
989 	splx(s);
990 }
991 
992 /*
993  *	vm_await:	(also see VM_AWAIT macro)
994  *
995  *	asleep on an event that will signal when free pages are available
996  *	for allocation.
997  */
998 
999 void
1000 vm_await(void)
1001 {
1002 	int s;
1003 
1004 	s = splvm();
1005 	if (curproc == pageproc) {
1006 		vm_pageout_pages_needed = 1;
1007 		asleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
1008 	} else {
1009 		if (!vm_pages_needed) {
1010 			vm_pages_needed++;
1011 			wakeup(&vm_pages_needed);
1012 		}
1013 		asleep(&cnt.v_free_count, PVM, "vmwait", 0);
1014 	}
1015 	splx(s);
1016 }
1017 
1018 /*
1019  *	vm_page_activate:
1020  *
1021  *	Put the specified page on the active list (if appropriate).
1022  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1023  *	mess with it.
1024  *
1025  *	The page queues must be locked.
1026  *	This routine may not block.
1027  */
1028 void
1029 vm_page_activate(vm_page_t m)
1030 {
1031 	int s;
1032 
1033 	GIANT_REQUIRED;
1034 	s = splvm();
1035 
1036 	if (m->queue != PQ_ACTIVE) {
1037 		if ((m->queue - m->pc) == PQ_CACHE)
1038 			cnt.v_reactivated++;
1039 
1040 		vm_pageq_remove(m);
1041 
1042 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1043 			m->queue = PQ_ACTIVE;
1044 			vm_page_queues[PQ_ACTIVE].lcnt++;
1045 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1046 			if (m->act_count < ACT_INIT)
1047 				m->act_count = ACT_INIT;
1048 			cnt.v_active_count++;
1049 		}
1050 	} else {
1051 		if (m->act_count < ACT_INIT)
1052 			m->act_count = ACT_INIT;
1053 	}
1054 
1055 	splx(s);
1056 }
1057 
1058 /*
1059  *	vm_page_free_wakeup:
1060  *
1061  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1062  *	routine is called when a page has been added to the cache or free
1063  *	queues.
1064  *
1065  *	This routine may not block.
1066  *	This routine must be called at splvm()
1067  */
1068 static __inline void
1069 vm_page_free_wakeup(void)
1070 {
1071 	/*
1072 	 * if pageout daemon needs pages, then tell it that there are
1073 	 * some free.
1074 	 */
1075 	if (vm_pageout_pages_needed &&
1076 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1077 		wakeup(&vm_pageout_pages_needed);
1078 		vm_pageout_pages_needed = 0;
1079 	}
1080 	/*
1081 	 * wakeup processes that are waiting on memory if we hit a
1082 	 * high water mark. And wakeup scheduler process if we have
1083 	 * lots of memory. this process will swapin processes.
1084 	 */
1085 	if (vm_pages_needed && !vm_page_count_min()) {
1086 		vm_pages_needed = 0;
1087 		wakeup(&cnt.v_free_count);
1088 	}
1089 }
1090 
1091 /*
1092  *	vm_page_free_toq:
1093  *
1094  *	Returns the given page to the PQ_FREE list,
1095  *	disassociating it with any VM object.
1096  *
1097  *	Object and page must be locked prior to entry.
1098  *	This routine may not block.
1099  */
1100 
1101 void
1102 vm_page_free_toq(vm_page_t m)
1103 {
1104 	int s;
1105 	struct vpgqueues *pq;
1106 	vm_object_t object = m->object;
1107 
1108 	GIANT_REQUIRED;
1109 	s = splvm();
1110 	cnt.v_tfree++;
1111 
1112 	if (m->busy || ((m->queue - m->pc) == PQ_FREE) ||
1113 		(m->hold_count != 0)) {
1114 		printf(
1115 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1116 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1117 		    m->hold_count);
1118 		if ((m->queue - m->pc) == PQ_FREE)
1119 			panic("vm_page_free: freeing free page");
1120 		else
1121 			panic("vm_page_free: freeing busy page");
1122 	}
1123 
1124 	/*
1125 	 * unqueue, then remove page.  Note that we cannot destroy
1126 	 * the page here because we do not want to call the pager's
1127 	 * callback routine until after we've put the page on the
1128 	 * appropriate free queue.
1129 	 */
1130 
1131 	vm_pageq_remove_nowakeup(m);
1132 	vm_page_remove(m);
1133 
1134 	/*
1135 	 * If fictitious remove object association and
1136 	 * return, otherwise delay object association removal.
1137 	 */
1138 
1139 	if ((m->flags & PG_FICTITIOUS) != 0) {
1140 		splx(s);
1141 		return;
1142 	}
1143 
1144 	m->valid = 0;
1145 	vm_page_undirty(m);
1146 
1147 	if (m->wire_count != 0) {
1148 		if (m->wire_count > 1) {
1149 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1150 				m->wire_count, (long)m->pindex);
1151 		}
1152 		panic("vm_page_free: freeing wired page\n");
1153 	}
1154 
1155 	/*
1156 	 * If we've exhausted the object's resident pages we want to free
1157 	 * it up.
1158 	 */
1159 
1160 	if (object &&
1161 	    (object->type == OBJT_VNODE) &&
1162 	    ((object->flags & OBJ_DEAD) == 0)
1163 	) {
1164 		struct vnode *vp = (struct vnode *)object->handle;
1165 
1166 		if (vp && VSHOULDFREE(vp))
1167 			vfree(vp);
1168 	}
1169 
1170 	/*
1171 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1172 	 */
1173 
1174 	if (m->flags & PG_UNMANAGED) {
1175 	    m->flags &= ~PG_UNMANAGED;
1176 	} else {
1177 #ifdef __alpha__
1178 	    pmap_page_is_free(m);
1179 #endif
1180 	}
1181 
1182 	m->queue = PQ_FREE + m->pc;
1183 	pq = &vm_page_queues[m->queue];
1184 	pq->lcnt++;
1185 	++(*pq->cnt);
1186 
1187 	/*
1188 	 * Put zero'd pages on the end ( where we look for zero'd pages
1189 	 * first ) and non-zerod pages at the head.
1190 	 */
1191 
1192 	if (m->flags & PG_ZERO) {
1193 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1194 		++vm_page_zero_count;
1195 	} else {
1196 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1197 	}
1198 
1199 	vm_page_free_wakeup();
1200 
1201 	splx(s);
1202 }
1203 
1204 /*
1205  *	vm_page_unmanage:
1206  *
1207  * 	Prevent PV management from being done on the page.  The page is
1208  *	removed from the paging queues as if it were wired, and as a
1209  *	consequence of no longer being managed the pageout daemon will not
1210  *	touch it (since there is no way to locate the pte mappings for the
1211  *	page).  madvise() calls that mess with the pmap will also no longer
1212  *	operate on the page.
1213  *
1214  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1215  *	will clear the flag.
1216  *
1217  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1218  *	physical memory as backing store rather then swap-backed memory and
1219  *	will eventually be extended to support 4MB unmanaged physical
1220  *	mappings.
1221  */
1222 
1223 void
1224 vm_page_unmanage(vm_page_t m)
1225 {
1226 	int s;
1227 
1228 	s = splvm();
1229 	if ((m->flags & PG_UNMANAGED) == 0) {
1230 		if (m->wire_count == 0)
1231 			vm_pageq_remove(m);
1232 	}
1233 	vm_page_flag_set(m, PG_UNMANAGED);
1234 	splx(s);
1235 }
1236 
1237 /*
1238  *	vm_page_wire:
1239  *
1240  *	Mark this page as wired down by yet
1241  *	another map, removing it from paging queues
1242  *	as necessary.
1243  *
1244  *	The page queues must be locked.
1245  *	This routine may not block.
1246  */
1247 void
1248 vm_page_wire(vm_page_t m)
1249 {
1250 	int s;
1251 
1252 	/*
1253 	 * Only bump the wire statistics if the page is not already wired,
1254 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1255 	 * it is already off the queues).
1256 	 */
1257 	s = splvm();
1258 	if (m->wire_count == 0) {
1259 		if ((m->flags & PG_UNMANAGED) == 0)
1260 			vm_pageq_remove(m);
1261 		cnt.v_wire_count++;
1262 	}
1263 	m->wire_count++;
1264 	splx(s);
1265 	vm_page_flag_set(m, PG_MAPPED);
1266 }
1267 
1268 /*
1269  *	vm_page_unwire:
1270  *
1271  *	Release one wiring of this page, potentially
1272  *	enabling it to be paged again.
1273  *
1274  *	Many pages placed on the inactive queue should actually go
1275  *	into the cache, but it is difficult to figure out which.  What
1276  *	we do instead, if the inactive target is well met, is to put
1277  *	clean pages at the head of the inactive queue instead of the tail.
1278  *	This will cause them to be moved to the cache more quickly and
1279  *	if not actively re-referenced, freed more quickly.  If we just
1280  *	stick these pages at the end of the inactive queue, heavy filesystem
1281  *	meta-data accesses can cause an unnecessary paging load on memory bound
1282  *	processes.  This optimization causes one-time-use metadata to be
1283  *	reused more quickly.
1284  *
1285  *	BUT, if we are in a low-memory situation we have no choice but to
1286  *	put clean pages on the cache queue.
1287  *
1288  *	A number of routines use vm_page_unwire() to guarantee that the page
1289  *	will go into either the inactive or active queues, and will NEVER
1290  *	be placed in the cache - for example, just after dirtying a page.
1291  *	dirty pages in the cache are not allowed.
1292  *
1293  *	The page queues must be locked.
1294  *	This routine may not block.
1295  */
1296 void
1297 vm_page_unwire(vm_page_t m, int activate)
1298 {
1299 	int s;
1300 
1301 	s = splvm();
1302 
1303 	if (m->wire_count > 0) {
1304 		m->wire_count--;
1305 		if (m->wire_count == 0) {
1306 			cnt.v_wire_count--;
1307 			if (m->flags & PG_UNMANAGED) {
1308 				;
1309 			} else if (activate) {
1310 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1311 				m->queue = PQ_ACTIVE;
1312 				vm_page_queues[PQ_ACTIVE].lcnt++;
1313 				cnt.v_active_count++;
1314 			} else {
1315 				vm_page_flag_clear(m, PG_WINATCFLS);
1316 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1317 				m->queue = PQ_INACTIVE;
1318 				vm_page_queues[PQ_INACTIVE].lcnt++;
1319 				cnt.v_inactive_count++;
1320 			}
1321 		}
1322 	} else {
1323 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1324 	}
1325 	splx(s);
1326 }
1327 
1328 
1329 /*
1330  * Move the specified page to the inactive queue.  If the page has
1331  * any associated swap, the swap is deallocated.
1332  *
1333  * Normally athead is 0 resulting in LRU operation.  athead is set
1334  * to 1 if we want this page to be 'as if it were placed in the cache',
1335  * except without unmapping it from the process address space.
1336  *
1337  * This routine may not block.
1338  */
1339 static __inline void
1340 _vm_page_deactivate(vm_page_t m, int athead)
1341 {
1342 	int s;
1343 
1344 	GIANT_REQUIRED;
1345 	/*
1346 	 * Ignore if already inactive.
1347 	 */
1348 	if (m->queue == PQ_INACTIVE)
1349 		return;
1350 
1351 	s = splvm();
1352 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1353 		if ((m->queue - m->pc) == PQ_CACHE)
1354 			cnt.v_reactivated++;
1355 		vm_page_flag_clear(m, PG_WINATCFLS);
1356 		vm_pageq_remove(m);
1357 		if (athead)
1358 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1359 		else
1360 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1361 		m->queue = PQ_INACTIVE;
1362 		vm_page_queues[PQ_INACTIVE].lcnt++;
1363 		cnt.v_inactive_count++;
1364 	}
1365 	splx(s);
1366 }
1367 
1368 void
1369 vm_page_deactivate(vm_page_t m)
1370 {
1371     _vm_page_deactivate(m, 0);
1372 }
1373 
1374 /*
1375  * vm_page_try_to_cache:
1376  *
1377  * Returns 0 on failure, 1 on success
1378  */
1379 int
1380 vm_page_try_to_cache(vm_page_t m)
1381 {
1382 	GIANT_REQUIRED;
1383 
1384 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1385 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1386 		return(0);
1387 	}
1388 	vm_page_test_dirty(m);
1389 	if (m->dirty)
1390 		return(0);
1391 	vm_page_cache(m);
1392 	return(1);
1393 }
1394 
1395 /*
1396  * vm_page_try_to_free()
1397  *
1398  *	Attempt to free the page.  If we cannot free it, we do nothing.
1399  *	1 is returned on success, 0 on failure.
1400  */
1401 int
1402 vm_page_try_to_free(vm_page_t m)
1403 {
1404 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1405 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1406 		return(0);
1407 	}
1408 	vm_page_test_dirty(m);
1409 	if (m->dirty)
1410 		return(0);
1411 	vm_page_busy(m);
1412 	vm_page_protect(m, VM_PROT_NONE);
1413 	vm_page_free(m);
1414 	return(1);
1415 }
1416 
1417 /*
1418  * vm_page_cache
1419  *
1420  * Put the specified page onto the page cache queue (if appropriate).
1421  *
1422  * This routine may not block.
1423  */
1424 void
1425 vm_page_cache(vm_page_t m)
1426 {
1427 	int s;
1428 
1429 	GIANT_REQUIRED;
1430 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1431 		printf("vm_page_cache: attempting to cache busy page\n");
1432 		return;
1433 	}
1434 	if ((m->queue - m->pc) == PQ_CACHE)
1435 		return;
1436 
1437 	/*
1438 	 * Remove all pmaps and indicate that the page is not
1439 	 * writeable or mapped.
1440 	 */
1441 
1442 	vm_page_protect(m, VM_PROT_NONE);
1443 	if (m->dirty != 0) {
1444 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1445 			(long)m->pindex);
1446 	}
1447 	s = splvm();
1448 	vm_pageq_remove_nowakeup(m);
1449 	m->queue = PQ_CACHE + m->pc;
1450 	vm_page_queues[m->queue].lcnt++;
1451 	TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1452 	cnt.v_cache_count++;
1453 	vm_page_free_wakeup();
1454 	splx(s);
1455 }
1456 
1457 /*
1458  * vm_page_dontneed
1459  *
1460  *	Cache, deactivate, or do nothing as appropriate.  This routine
1461  *	is typically used by madvise() MADV_DONTNEED.
1462  *
1463  *	Generally speaking we want to move the page into the cache so
1464  *	it gets reused quickly.  However, this can result in a silly syndrome
1465  *	due to the page recycling too quickly.  Small objects will not be
1466  *	fully cached.  On the otherhand, if we move the page to the inactive
1467  *	queue we wind up with a problem whereby very large objects
1468  *	unnecessarily blow away our inactive and cache queues.
1469  *
1470  *	The solution is to move the pages based on a fixed weighting.  We
1471  *	either leave them alone, deactivate them, or move them to the cache,
1472  *	where moving them to the cache has the highest weighting.
1473  *	By forcing some pages into other queues we eventually force the
1474  *	system to balance the queues, potentially recovering other unrelated
1475  *	space from active.  The idea is to not force this to happen too
1476  *	often.
1477  */
1478 
1479 void
1480 vm_page_dontneed(vm_page_t m)
1481 {
1482 	static int dnweight;
1483 	int dnw;
1484 	int head;
1485 
1486 	GIANT_REQUIRED;
1487 	dnw = ++dnweight;
1488 
1489 	/*
1490 	 * occassionally leave the page alone
1491 	 */
1492 
1493 	if ((dnw & 0x01F0) == 0 ||
1494 	    m->queue == PQ_INACTIVE ||
1495 	    m->queue - m->pc == PQ_CACHE
1496 	) {
1497 		if (m->act_count >= ACT_INIT)
1498 			--m->act_count;
1499 		return;
1500 	}
1501 
1502 	if (m->dirty == 0)
1503 		vm_page_test_dirty(m);
1504 
1505 	if (m->dirty || (dnw & 0x0070) == 0) {
1506 		/*
1507 		 * Deactivate the page 3 times out of 32.
1508 		 */
1509 		head = 0;
1510 	} else {
1511 		/*
1512 		 * Cache the page 28 times out of every 32.  Note that
1513 		 * the page is deactivated instead of cached, but placed
1514 		 * at the head of the queue instead of the tail.
1515 		 */
1516 		head = 1;
1517 	}
1518 	_vm_page_deactivate(m, head);
1519 }
1520 
1521 /*
1522  * Grab a page, waiting until we are waken up due to the page
1523  * changing state.  We keep on waiting, if the page continues
1524  * to be in the object.  If the page doesn't exist, allocate it.
1525  *
1526  * This routine may block.
1527  */
1528 vm_page_t
1529 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1530 {
1531 	vm_page_t m;
1532 	int s, generation;
1533 
1534 	GIANT_REQUIRED;
1535 retrylookup:
1536 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1537 		if (m->busy || (m->flags & PG_BUSY)) {
1538 			generation = object->generation;
1539 
1540 			s = splvm();
1541 			while ((object->generation == generation) &&
1542 					(m->busy || (m->flags & PG_BUSY))) {
1543 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1544 				tsleep(m, PVM, "pgrbwt", 0);
1545 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1546 					splx(s);
1547 					return NULL;
1548 				}
1549 			}
1550 			splx(s);
1551 			goto retrylookup;
1552 		} else {
1553 			vm_page_busy(m);
1554 			return m;
1555 		}
1556 	}
1557 
1558 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1559 	if (m == NULL) {
1560 		VM_WAIT;
1561 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1562 			return NULL;
1563 		goto retrylookup;
1564 	}
1565 
1566 	return m;
1567 }
1568 
1569 /*
1570  * Mapping function for valid bits or for dirty bits in
1571  * a page.  May not block.
1572  *
1573  * Inputs are required to range within a page.
1574  */
1575 
1576 __inline int
1577 vm_page_bits(int base, int size)
1578 {
1579 	int first_bit;
1580 	int last_bit;
1581 
1582 	KASSERT(
1583 	    base + size <= PAGE_SIZE,
1584 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1585 	);
1586 
1587 	if (size == 0)		/* handle degenerate case */
1588 		return(0);
1589 
1590 	first_bit = base >> DEV_BSHIFT;
1591 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1592 
1593 	return ((2 << last_bit) - (1 << first_bit));
1594 }
1595 
1596 /*
1597  *	vm_page_set_validclean:
1598  *
1599  *	Sets portions of a page valid and clean.  The arguments are expected
1600  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1601  *	of any partial chunks touched by the range.  The invalid portion of
1602  *	such chunks will be zero'd.
1603  *
1604  *	This routine may not block.
1605  *
1606  *	(base + size) must be less then or equal to PAGE_SIZE.
1607  */
1608 void
1609 vm_page_set_validclean(vm_page_t m, int base, int size)
1610 {
1611 	int pagebits;
1612 	int frag;
1613 	int endoff;
1614 
1615 	GIANT_REQUIRED;
1616 	if (size == 0)	/* handle degenerate case */
1617 		return;
1618 
1619 	/*
1620 	 * If the base is not DEV_BSIZE aligned and the valid
1621 	 * bit is clear, we have to zero out a portion of the
1622 	 * first block.
1623 	 */
1624 
1625 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1626 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1627 	) {
1628 		pmap_zero_page_area(
1629 		    VM_PAGE_TO_PHYS(m),
1630 		    frag,
1631 		    base - frag
1632 		);
1633 	}
1634 
1635 	/*
1636 	 * If the ending offset is not DEV_BSIZE aligned and the
1637 	 * valid bit is clear, we have to zero out a portion of
1638 	 * the last block.
1639 	 */
1640 
1641 	endoff = base + size;
1642 
1643 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1644 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1645 	) {
1646 		pmap_zero_page_area(
1647 		    VM_PAGE_TO_PHYS(m),
1648 		    endoff,
1649 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1650 		);
1651 	}
1652 
1653 	/*
1654 	 * Set valid, clear dirty bits.  If validating the entire
1655 	 * page we can safely clear the pmap modify bit.  We also
1656 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1657 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1658 	 * be set again.
1659 	 */
1660 
1661 	pagebits = vm_page_bits(base, size);
1662 	m->valid |= pagebits;
1663 	m->dirty &= ~pagebits;
1664 	if (base == 0 && size == PAGE_SIZE) {
1665 		pmap_clear_modify(m);
1666 		vm_page_flag_clear(m, PG_NOSYNC);
1667 	}
1668 }
1669 
1670 #if 0
1671 
1672 void
1673 vm_page_set_dirty(vm_page_t m, int base, int size)
1674 {
1675 	m->dirty |= vm_page_bits(base, size);
1676 }
1677 
1678 #endif
1679 
1680 void
1681 vm_page_clear_dirty(vm_page_t m, int base, int size)
1682 {
1683 	GIANT_REQUIRED;
1684 	m->dirty &= ~vm_page_bits(base, size);
1685 }
1686 
1687 /*
1688  *	vm_page_set_invalid:
1689  *
1690  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1691  *	valid and dirty bits for the effected areas are cleared.
1692  *
1693  *	May not block.
1694  */
1695 void
1696 vm_page_set_invalid(vm_page_t m, int base, int size)
1697 {
1698 	int bits;
1699 
1700 	GIANT_REQUIRED;
1701 	bits = vm_page_bits(base, size);
1702 	m->valid &= ~bits;
1703 	m->dirty &= ~bits;
1704 	m->object->generation++;
1705 }
1706 
1707 /*
1708  * vm_page_zero_invalid()
1709  *
1710  *	The kernel assumes that the invalid portions of a page contain
1711  *	garbage, but such pages can be mapped into memory by user code.
1712  *	When this occurs, we must zero out the non-valid portions of the
1713  *	page so user code sees what it expects.
1714  *
1715  *	Pages are most often semi-valid when the end of a file is mapped
1716  *	into memory and the file's size is not page aligned.
1717  */
1718 
1719 void
1720 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1721 {
1722 	int b;
1723 	int i;
1724 
1725 	/*
1726 	 * Scan the valid bits looking for invalid sections that
1727 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1728 	 * valid bit may be set ) have already been zerod by
1729 	 * vm_page_set_validclean().
1730 	 */
1731 
1732 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1733 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1734 		    (m->valid & (1 << i))
1735 		) {
1736 			if (i > b) {
1737 				pmap_zero_page_area(
1738 				    VM_PAGE_TO_PHYS(m),
1739 				    b << DEV_BSHIFT,
1740 				    (i - b) << DEV_BSHIFT
1741 				);
1742 			}
1743 			b = i + 1;
1744 		}
1745 	}
1746 
1747 	/*
1748 	 * setvalid is TRUE when we can safely set the zero'd areas
1749 	 * as being valid.  We can do this if there are no cache consistancy
1750 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1751 	 */
1752 
1753 	if (setvalid)
1754 		m->valid = VM_PAGE_BITS_ALL;
1755 }
1756 
1757 /*
1758  *	vm_page_is_valid:
1759  *
1760  *	Is (partial) page valid?  Note that the case where size == 0
1761  *	will return FALSE in the degenerate case where the page is
1762  *	entirely invalid, and TRUE otherwise.
1763  *
1764  *	May not block.
1765  */
1766 
1767 int
1768 vm_page_is_valid(vm_page_t m, int base, int size)
1769 {
1770 	int bits = vm_page_bits(base, size);
1771 
1772 	if (m->valid && ((m->valid & bits) == bits))
1773 		return 1;
1774 	else
1775 		return 0;
1776 }
1777 
1778 /*
1779  * update dirty bits from pmap/mmu.  May not block.
1780  */
1781 
1782 void
1783 vm_page_test_dirty(vm_page_t m)
1784 {
1785 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1786 		vm_page_dirty(m);
1787 	}
1788 }
1789 
1790 #include "opt_ddb.h"
1791 #ifdef DDB
1792 #include <sys/kernel.h>
1793 
1794 #include <ddb/ddb.h>
1795 
1796 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1797 {
1798 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1799 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1800 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1801 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1802 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1803 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1804 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1805 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1806 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1807 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1808 }
1809 
1810 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1811 {
1812 	int i;
1813 	db_printf("PQ_FREE:");
1814 	for (i = 0; i < PQ_L2_SIZE; i++) {
1815 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1816 	}
1817 	db_printf("\n");
1818 
1819 	db_printf("PQ_CACHE:");
1820 	for (i = 0; i < PQ_L2_SIZE; i++) {
1821 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1822 	}
1823 	db_printf("\n");
1824 
1825 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1826 		vm_page_queues[PQ_ACTIVE].lcnt,
1827 		vm_page_queues[PQ_INACTIVE].lcnt);
1828 }
1829 #endif /* DDB */
1830