xref: /freebsd/sys/vm/vm_page.c (revision 551fdafaf4a18c92694eb257492a13c6aa531e74)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33  */
34 
35 /*-
36  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37  * All rights reserved.
38  *
39  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40  *
41  * Permission to use, copy, modify and distribute this software and
42  * its documentation is hereby granted, provided that both the copyright
43  * notice and this permission notice appear in all copies of the
44  * software, derivative works or modified versions, and any portions
45  * thereof, and that both notices appear in supporting documentation.
46  *
47  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50  *
51  * Carnegie Mellon requests users of this software to return to
52  *
53  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54  *  School of Computer Science
55  *  Carnegie Mellon University
56  *  Pittsburgh PA 15213-3890
57  *
58  * any improvements or extensions that they make and grant Carnegie the
59  * rights to redistribute these changes.
60  */
61 
62 /*
63  *			GENERAL RULES ON VM_PAGE MANIPULATION
64  *
65  *	- a pageq mutex is required when adding or removing a page from a
66  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67  *	  busy state of a page.
68  *
69  *	- a hash chain mutex is required when associating or disassociating
70  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71  *	  regardless of other mutexes or the busy state of a page.
72  *
73  *	- either a hash chain mutex OR a busied page is required in order
74  *	  to modify the page flags.  A hash chain mutex must be obtained in
75  *	  order to busy a page.  A page's flags cannot be modified by a
76  *	  hash chain mutex if the page is marked busy.
77  *
78  *	- The object memq mutex is held when inserting or removing
79  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80  *	  is different from the object's main mutex.
81  *
82  *	Generally speaking, you have to be aware of side effects when running
83  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85  *	vm_page_cache(), vm_page_activate(), and a number of other routines
86  *	will release the hash chain mutex for you.  Intermediate manipulation
87  *	routines such as vm_page_flag_set() expect the hash chain to be held
88  *	on entry and the hash chain will remain held on return.
89  *
90  *	pageq scanning can only occur with the pageq in question locked.
91  *	We have a known bottleneck with the active queue, but the cache
92  *	and free queues are actually arrays already.
93  */
94 
95 /*
96  *	Resident memory management module.
97  */
98 
99 #include <sys/cdefs.h>
100 __FBSDID("$FreeBSD$");
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/lock.h>
105 #include <sys/kernel.h>
106 #include <sys/malloc.h>
107 #include <sys/mutex.h>
108 #include <sys/proc.h>
109 #include <sys/sysctl.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 #include <vm/uma_int.h>
123 
124 /*
125  *	Associated with page of user-allocatable memory is a
126  *	page structure.
127  */
128 
129 struct mtx vm_page_queue_mtx;
130 struct mtx vm_page_queue_free_mtx;
131 
132 vm_page_t vm_page_array = 0;
133 int vm_page_array_size = 0;
134 long first_page = 0;
135 int vm_page_zero_count = 0;
136 
137 static int boot_pages = UMA_BOOT_PAGES;
138 TUNABLE_INT("vm.boot_pages", &boot_pages);
139 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
140 	"number of pages allocated for bootstrapping the VM system");
141 
142 /*
143  *	vm_set_page_size:
144  *
145  *	Sets the page size, perhaps based upon the memory
146  *	size.  Must be called before any use of page-size
147  *	dependent functions.
148  */
149 void
150 vm_set_page_size(void)
151 {
152 	if (cnt.v_page_size == 0)
153 		cnt.v_page_size = PAGE_SIZE;
154 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
155 		panic("vm_set_page_size: page size not a power of two");
156 }
157 
158 /*
159  *	vm_page_startup:
160  *
161  *	Initializes the resident memory module.
162  *
163  *	Allocates memory for the page cells, and
164  *	for the object/offset-to-page hash table headers.
165  *	Each page cell is initialized and placed on the free list.
166  */
167 vm_offset_t
168 vm_page_startup(vm_offset_t vaddr)
169 {
170 	vm_offset_t mapped;
171 	vm_size_t npages;
172 	vm_paddr_t page_range;
173 	vm_paddr_t new_end;
174 	int i;
175 	vm_paddr_t pa;
176 	int nblocks;
177 	vm_paddr_t last_pa;
178 
179 	/* the biggest memory array is the second group of pages */
180 	vm_paddr_t end;
181 	vm_paddr_t biggestsize;
182 	int biggestone;
183 
184 	vm_paddr_t total;
185 
186 	total = 0;
187 	biggestsize = 0;
188 	biggestone = 0;
189 	nblocks = 0;
190 	vaddr = round_page(vaddr);
191 
192 	for (i = 0; phys_avail[i + 1]; i += 2) {
193 		phys_avail[i] = round_page(phys_avail[i]);
194 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
195 	}
196 
197 	for (i = 0; phys_avail[i + 1]; i += 2) {
198 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
199 
200 		if (size > biggestsize) {
201 			biggestone = i;
202 			biggestsize = size;
203 		}
204 		++nblocks;
205 		total += size;
206 	}
207 
208 	end = phys_avail[biggestone+1];
209 
210 	/*
211 	 * Initialize the locks.
212 	 */
213 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
214 	    MTX_RECURSE);
215 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
216 	    MTX_SPIN);
217 
218 	/*
219 	 * Initialize the queue headers for the free queue, the active queue
220 	 * and the inactive queue.
221 	 */
222 	vm_pageq_init();
223 
224 	/*
225 	 * Allocate memory for use when boot strapping the kernel memory
226 	 * allocator.
227 	 */
228 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
229 	new_end = trunc_page(new_end);
230 	mapped = pmap_map(&vaddr, new_end, end,
231 	    VM_PROT_READ | VM_PROT_WRITE);
232 	bzero((void *)mapped, end - new_end);
233 	uma_startup((void *)mapped, boot_pages);
234 
235 	/*
236 	 * Compute the number of pages of memory that will be available for
237 	 * use (taking into account the overhead of a page structure per
238 	 * page).
239 	 */
240 	first_page = phys_avail[0] / PAGE_SIZE;
241 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
242 	npages = (total - (page_range * sizeof(struct vm_page)) -
243 	    (end - new_end)) / PAGE_SIZE;
244 	end = new_end;
245 
246 	/*
247 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
248 	 */
249 	vaddr += PAGE_SIZE;
250 
251 	/*
252 	 * Initialize the mem entry structures now, and put them in the free
253 	 * queue.
254 	 */
255 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
256 	mapped = pmap_map(&vaddr, new_end, end,
257 	    VM_PROT_READ | VM_PROT_WRITE);
258 	vm_page_array = (vm_page_t) mapped;
259 	phys_avail[biggestone + 1] = new_end;
260 
261 	/*
262 	 * Clear all of the page structures
263 	 */
264 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
265 	vm_page_array_size = page_range;
266 
267 	/*
268 	 * Construct the free queue(s) in descending order (by physical
269 	 * address) so that the first 16MB of physical memory is allocated
270 	 * last rather than first.  On large-memory machines, this avoids
271 	 * the exhaustion of low physical memory before isa_dma_init has run.
272 	 */
273 	cnt.v_page_count = 0;
274 	cnt.v_free_count = 0;
275 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
276 		pa = phys_avail[i];
277 		last_pa = phys_avail[i + 1];
278 		while (pa < last_pa && npages-- > 0) {
279 			vm_pageq_add_new_page(pa);
280 			pa += PAGE_SIZE;
281 		}
282 	}
283 	return (vaddr);
284 }
285 
286 void
287 vm_page_flag_set(vm_page_t m, unsigned short bits)
288 {
289 
290 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
291 	m->flags |= bits;
292 }
293 
294 void
295 vm_page_flag_clear(vm_page_t m, unsigned short bits)
296 {
297 
298 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
299 	m->flags &= ~bits;
300 }
301 
302 void
303 vm_page_busy(vm_page_t m)
304 {
305 
306 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
307 	KASSERT((m->flags & PG_BUSY) == 0,
308 	    ("vm_page_busy: page already busy!!!"));
309 	vm_page_flag_set(m, PG_BUSY);
310 }
311 
312 /*
313  *      vm_page_flash:
314  *
315  *      wakeup anyone waiting for the page.
316  */
317 void
318 vm_page_flash(vm_page_t m)
319 {
320 
321 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
322 	if (m->flags & PG_WANTED) {
323 		vm_page_flag_clear(m, PG_WANTED);
324 		wakeup(m);
325 	}
326 }
327 
328 /*
329  *      vm_page_wakeup:
330  *
331  *      clear the PG_BUSY flag and wakeup anyone waiting for the
332  *      page.
333  *
334  */
335 void
336 vm_page_wakeup(vm_page_t m)
337 {
338 
339 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
340 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
341 	vm_page_flag_clear(m, PG_BUSY);
342 	vm_page_flash(m);
343 }
344 
345 void
346 vm_page_io_start(vm_page_t m)
347 {
348 
349 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
350 	m->busy++;
351 }
352 
353 void
354 vm_page_io_finish(vm_page_t m)
355 {
356 
357 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
358 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
359 	m->busy--;
360 	if (m->busy == 0)
361 		vm_page_flash(m);
362 }
363 
364 /*
365  * Keep page from being freed by the page daemon
366  * much of the same effect as wiring, except much lower
367  * overhead and should be used only for *very* temporary
368  * holding ("wiring").
369  */
370 void
371 vm_page_hold(vm_page_t mem)
372 {
373 
374 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
375         mem->hold_count++;
376 }
377 
378 void
379 vm_page_unhold(vm_page_t mem)
380 {
381 
382 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
383 	--mem->hold_count;
384 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
385 	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
386 		vm_page_free_toq(mem);
387 }
388 
389 /*
390  *	vm_page_free:
391  *
392  *	Free a page
393  *
394  *	The clearing of PG_ZERO is a temporary safety until the code can be
395  *	reviewed to determine that PG_ZERO is being properly cleared on
396  *	write faults or maps.  PG_ZERO was previously cleared in
397  *	vm_page_alloc().
398  */
399 void
400 vm_page_free(vm_page_t m)
401 {
402 	vm_page_flag_clear(m, PG_ZERO);
403 	vm_page_free_toq(m);
404 	vm_page_zero_idle_wakeup();
405 }
406 
407 /*
408  *	vm_page_free_zero:
409  *
410  *	Free a page to the zerod-pages queue
411  */
412 void
413 vm_page_free_zero(vm_page_t m)
414 {
415 	vm_page_flag_set(m, PG_ZERO);
416 	vm_page_free_toq(m);
417 }
418 
419 /*
420  *	vm_page_sleep_if_busy:
421  *
422  *	Sleep and release the page queues lock if PG_BUSY is set or,
423  *	if also_m_busy is TRUE, busy is non-zero.  Returns TRUE if the
424  *	thread slept and the page queues lock was released.
425  *	Otherwise, retains the page queues lock and returns FALSE.
426  */
427 int
428 vm_page_sleep_if_busy(vm_page_t m, int also_m_busy, const char *msg)
429 {
430 	vm_object_t object;
431 
432 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
433 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
434 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
435 		vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
436 		/*
437 		 * It's possible that while we sleep, the page will get
438 		 * unbusied and freed.  If we are holding the object
439 		 * lock, we will assume we hold a reference to the object
440 		 * such that even if m->object changes, we can re-lock
441 		 * it.
442 		 */
443 		object = m->object;
444 		VM_OBJECT_UNLOCK(object);
445 		msleep(m, &vm_page_queue_mtx, PDROP | PVM, msg, 0);
446 		VM_OBJECT_LOCK(object);
447 		return (TRUE);
448 	}
449 	return (FALSE);
450 }
451 
452 /*
453  *	vm_page_dirty:
454  *
455  *	make page all dirty
456  */
457 void
458 vm_page_dirty(vm_page_t m)
459 {
460 	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE,
461 	    ("vm_page_dirty: page in cache!"));
462 	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_FREE,
463 	    ("vm_page_dirty: page is free!"));
464 	m->dirty = VM_PAGE_BITS_ALL;
465 }
466 
467 /*
468  *	vm_page_splay:
469  *
470  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
471  *	the vm_page containing the given pindex.  If, however, that
472  *	pindex is not found in the vm_object, returns a vm_page that is
473  *	adjacent to the pindex, coming before or after it.
474  */
475 vm_page_t
476 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
477 {
478 	struct vm_page dummy;
479 	vm_page_t lefttreemax, righttreemin, y;
480 
481 	if (root == NULL)
482 		return (root);
483 	lefttreemax = righttreemin = &dummy;
484 	for (;; root = y) {
485 		if (pindex < root->pindex) {
486 			if ((y = root->left) == NULL)
487 				break;
488 			if (pindex < y->pindex) {
489 				/* Rotate right. */
490 				root->left = y->right;
491 				y->right = root;
492 				root = y;
493 				if ((y = root->left) == NULL)
494 					break;
495 			}
496 			/* Link into the new root's right tree. */
497 			righttreemin->left = root;
498 			righttreemin = root;
499 		} else if (pindex > root->pindex) {
500 			if ((y = root->right) == NULL)
501 				break;
502 			if (pindex > y->pindex) {
503 				/* Rotate left. */
504 				root->right = y->left;
505 				y->left = root;
506 				root = y;
507 				if ((y = root->right) == NULL)
508 					break;
509 			}
510 			/* Link into the new root's left tree. */
511 			lefttreemax->right = root;
512 			lefttreemax = root;
513 		} else
514 			break;
515 	}
516 	/* Assemble the new root. */
517 	lefttreemax->right = root->left;
518 	righttreemin->left = root->right;
519 	root->left = dummy.right;
520 	root->right = dummy.left;
521 	return (root);
522 }
523 
524 /*
525  *	vm_page_insert:		[ internal use only ]
526  *
527  *	Inserts the given mem entry into the object and object list.
528  *
529  *	The pagetables are not updated but will presumably fault the page
530  *	in if necessary, or if a kernel page the caller will at some point
531  *	enter the page into the kernel's pmap.  We are not allowed to block
532  *	here so we *can't* do this anyway.
533  *
534  *	The object and page must be locked.
535  *	This routine may not block.
536  */
537 void
538 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
539 {
540 	vm_page_t root;
541 
542 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
543 	if (m->object != NULL)
544 		panic("vm_page_insert: page already inserted");
545 
546 	/*
547 	 * Record the object/offset pair in this page
548 	 */
549 	m->object = object;
550 	m->pindex = pindex;
551 
552 	/*
553 	 * Now link into the object's ordered list of backed pages.
554 	 */
555 	root = object->root;
556 	if (root == NULL) {
557 		m->left = NULL;
558 		m->right = NULL;
559 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
560 	} else {
561 		root = vm_page_splay(pindex, root);
562 		if (pindex < root->pindex) {
563 			m->left = root->left;
564 			m->right = root;
565 			root->left = NULL;
566 			TAILQ_INSERT_BEFORE(root, m, listq);
567 		} else if (pindex == root->pindex)
568 			panic("vm_page_insert: offset already allocated");
569 		else {
570 			m->right = root->right;
571 			m->left = root;
572 			root->right = NULL;
573 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
574 		}
575 	}
576 	object->root = m;
577 	object->generation++;
578 
579 	/*
580 	 * show that the object has one more resident page.
581 	 */
582 	object->resident_page_count++;
583 	/*
584 	 * Hold the vnode until the last page is released.
585 	 */
586 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
587 		vhold((struct vnode *)object->handle);
588 
589 	/*
590 	 * Since we are inserting a new and possibly dirty page,
591 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
592 	 */
593 	if (m->flags & PG_WRITEABLE)
594 		vm_object_set_writeable_dirty(object);
595 }
596 
597 /*
598  *	vm_page_remove:
599  *				NOTE: used by device pager as well -wfj
600  *
601  *	Removes the given mem entry from the object/offset-page
602  *	table and the object page list, but do not invalidate/terminate
603  *	the backing store.
604  *
605  *	The object and page must be locked.
606  *	The underlying pmap entry (if any) is NOT removed here.
607  *	This routine may not block.
608  */
609 void
610 vm_page_remove(vm_page_t m)
611 {
612 	vm_object_t object;
613 	vm_page_t root;
614 
615 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
616 	if ((object = m->object) == NULL)
617 		return;
618 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
619 	if (m->flags & PG_BUSY) {
620 		vm_page_flag_clear(m, PG_BUSY);
621 		vm_page_flash(m);
622 	}
623 
624 	/*
625 	 * Now remove from the object's list of backed pages.
626 	 */
627 	if (m != object->root)
628 		vm_page_splay(m->pindex, object->root);
629 	if (m->left == NULL)
630 		root = m->right;
631 	else {
632 		root = vm_page_splay(m->pindex, m->left);
633 		root->right = m->right;
634 	}
635 	object->root = root;
636 	TAILQ_REMOVE(&object->memq, m, listq);
637 
638 	/*
639 	 * And show that the object has one fewer resident page.
640 	 */
641 	object->resident_page_count--;
642 	object->generation++;
643 	/*
644 	 * The vnode may now be recycled.
645 	 */
646 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
647 		vdrop((struct vnode *)object->handle);
648 
649 	m->object = NULL;
650 }
651 
652 /*
653  *	vm_page_lookup:
654  *
655  *	Returns the page associated with the object/offset
656  *	pair specified; if none is found, NULL is returned.
657  *
658  *	The object must be locked.
659  *	This routine may not block.
660  *	This is a critical path routine
661  */
662 vm_page_t
663 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
664 {
665 	vm_page_t m;
666 
667 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
668 	if ((m = object->root) != NULL && m->pindex != pindex) {
669 		m = vm_page_splay(pindex, m);
670 		if ((object->root = m)->pindex != pindex)
671 			m = NULL;
672 	}
673 	return (m);
674 }
675 
676 /*
677  *	vm_page_rename:
678  *
679  *	Move the given memory entry from its
680  *	current object to the specified target object/offset.
681  *
682  *	The object must be locked.
683  *	This routine may not block.
684  *
685  *	Note: swap associated with the page must be invalidated by the move.  We
686  *	      have to do this for several reasons:  (1) we aren't freeing the
687  *	      page, (2) we are dirtying the page, (3) the VM system is probably
688  *	      moving the page from object A to B, and will then later move
689  *	      the backing store from A to B and we can't have a conflict.
690  *
691  *	Note: we *always* dirty the page.  It is necessary both for the
692  *	      fact that we moved it, and because we may be invalidating
693  *	      swap.  If the page is on the cache, we have to deactivate it
694  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
695  *	      on the cache.
696  */
697 void
698 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
699 {
700 
701 	vm_page_remove(m);
702 	vm_page_insert(m, new_object, new_pindex);
703 	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
704 		vm_page_deactivate(m);
705 	vm_page_dirty(m);
706 }
707 
708 /*
709  *	vm_page_select_cache:
710  *
711  *	Move a page of the given color from the cache queue to the free
712  *	queue.  As pages might be found, but are not applicable, they are
713  *	deactivated.
714  *
715  *	This routine may not block.
716  */
717 vm_page_t
718 vm_page_select_cache(int color)
719 {
720 	vm_object_t object;
721 	vm_page_t m;
722 	boolean_t was_trylocked;
723 
724 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
725 	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
726 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
727 		KASSERT(!pmap_page_is_mapped(m),
728 		    ("Found mapped cache page %p", m));
729 		KASSERT((m->flags & PG_UNMANAGED) == 0,
730 		    ("Found unmanaged cache page %p", m));
731 		KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
732 		if (m->hold_count == 0 && (object = m->object,
733 		    (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
734 		    VM_OBJECT_LOCKED(object))) {
735 			KASSERT((m->flags & PG_BUSY) == 0 && m->busy == 0,
736 			    ("Found busy cache page %p", m));
737 			vm_page_free(m);
738 			if (was_trylocked)
739 				VM_OBJECT_UNLOCK(object);
740 			break;
741 		}
742 		vm_page_deactivate(m);
743 	}
744 	return (m);
745 }
746 
747 /*
748  *	vm_page_alloc:
749  *
750  *	Allocate and return a memory cell associated
751  *	with this VM object/offset pair.
752  *
753  *	page_req classes:
754  *	VM_ALLOC_NORMAL		normal process request
755  *	VM_ALLOC_SYSTEM		system *really* needs a page
756  *	VM_ALLOC_INTERRUPT	interrupt time request
757  *	VM_ALLOC_ZERO		zero page
758  *
759  *	This routine may not block.
760  *
761  *	Additional special handling is required when called from an
762  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
763  *	the page cache in this case.
764  */
765 vm_page_t
766 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
767 {
768 	vm_page_t m = NULL;
769 	int color, flags, page_req;
770 
771 	page_req = req & VM_ALLOC_CLASS_MASK;
772 	KASSERT(curthread->td_intr_nesting_level == 0 ||
773 	    page_req == VM_ALLOC_INTERRUPT,
774 	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
775 
776 	if ((req & VM_ALLOC_NOOBJ) == 0) {
777 		KASSERT(object != NULL,
778 		    ("vm_page_alloc: NULL object."));
779 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
780 		color = (pindex + object->pg_color) & PQ_COLORMASK;
781 	} else
782 		color = pindex & PQ_COLORMASK;
783 
784 	/*
785 	 * The pager is allowed to eat deeper into the free page list.
786 	 */
787 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
788 		page_req = VM_ALLOC_SYSTEM;
789 	};
790 
791 loop:
792 	mtx_lock_spin(&vm_page_queue_free_mtx);
793 	if (cnt.v_free_count > cnt.v_free_reserved ||
794 	    (page_req == VM_ALLOC_SYSTEM &&
795 	     cnt.v_cache_count == 0 &&
796 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
797 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
798 		/*
799 		 * Allocate from the free queue if the number of free pages
800 		 * exceeds the minimum for the request class.
801 		 */
802 		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
803 	} else if (page_req != VM_ALLOC_INTERRUPT) {
804 		mtx_unlock_spin(&vm_page_queue_free_mtx);
805 		/*
806 		 * Allocatable from cache (non-interrupt only).  On success,
807 		 * we must free the page and try again, thus ensuring that
808 		 * cnt.v_*_free_min counters are replenished.
809 		 */
810 		vm_page_lock_queues();
811 		if ((m = vm_page_select_cache(color)) == NULL) {
812 #if defined(DIAGNOSTIC)
813 			if (cnt.v_cache_count > 0)
814 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
815 #endif
816 			vm_page_unlock_queues();
817 			atomic_add_int(&vm_pageout_deficit, 1);
818 			pagedaemon_wakeup();
819 			return (NULL);
820 		}
821 		vm_page_unlock_queues();
822 		goto loop;
823 	} else {
824 		/*
825 		 * Not allocatable from cache from interrupt, give up.
826 		 */
827 		mtx_unlock_spin(&vm_page_queue_free_mtx);
828 		atomic_add_int(&vm_pageout_deficit, 1);
829 		pagedaemon_wakeup();
830 		return (NULL);
831 	}
832 
833 	/*
834 	 *  At this point we had better have found a good page.
835 	 */
836 
837 	KASSERT(
838 	    m != NULL,
839 	    ("vm_page_alloc(): missing page on free queue")
840 	);
841 
842 	/*
843 	 * Remove from free queue
844 	 */
845 	vm_pageq_remove_nowakeup(m);
846 
847 	/*
848 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
849 	 */
850 	flags = PG_BUSY;
851 	if (m->flags & PG_ZERO) {
852 		vm_page_zero_count--;
853 		if (req & VM_ALLOC_ZERO)
854 			flags = PG_ZERO | PG_BUSY;
855 	}
856 	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
857 		flags &= ~PG_BUSY;
858 	m->flags = flags;
859 	if (req & VM_ALLOC_WIRED) {
860 		atomic_add_int(&cnt.v_wire_count, 1);
861 		m->wire_count = 1;
862 	} else
863 		m->wire_count = 0;
864 	m->hold_count = 0;
865 	m->act_count = 0;
866 	m->busy = 0;
867 	m->valid = 0;
868 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
869 	mtx_unlock_spin(&vm_page_queue_free_mtx);
870 
871 	if ((req & VM_ALLOC_NOOBJ) == 0)
872 		vm_page_insert(m, object, pindex);
873 	else
874 		m->pindex = pindex;
875 
876 	/*
877 	 * Don't wakeup too often - wakeup the pageout daemon when
878 	 * we would be nearly out of memory.
879 	 */
880 	if (vm_paging_needed())
881 		pagedaemon_wakeup();
882 
883 	return (m);
884 }
885 
886 /*
887  *	vm_wait:	(also see VM_WAIT macro)
888  *
889  *	Block until free pages are available for allocation
890  *	- Called in various places before memory allocations.
891  */
892 void
893 vm_wait(void)
894 {
895 
896 	vm_page_lock_queues();
897 	if (curproc == pageproc) {
898 		vm_pageout_pages_needed = 1;
899 		msleep(&vm_pageout_pages_needed, &vm_page_queue_mtx,
900 		    PDROP | PSWP, "VMWait", 0);
901 	} else {
902 		if (!vm_pages_needed) {
903 			vm_pages_needed = 1;
904 			wakeup(&vm_pages_needed);
905 		}
906 		msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PVM,
907 		    "vmwait", 0);
908 	}
909 }
910 
911 /*
912  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
913  *
914  *	Block until free pages are available for allocation
915  *	- Called only in vm_fault so that processes page faulting
916  *	  can be easily tracked.
917  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
918  *	  processes will be able to grab memory first.  Do not change
919  *	  this balance without careful testing first.
920  */
921 void
922 vm_waitpfault(void)
923 {
924 
925 	vm_page_lock_queues();
926 	if (!vm_pages_needed) {
927 		vm_pages_needed = 1;
928 		wakeup(&vm_pages_needed);
929 	}
930 	msleep(&cnt.v_free_count, &vm_page_queue_mtx, PDROP | PUSER,
931 	    "pfault", 0);
932 }
933 
934 /*
935  *	vm_page_activate:
936  *
937  *	Put the specified page on the active list (if appropriate).
938  *	Ensure that act_count is at least ACT_INIT but do not otherwise
939  *	mess with it.
940  *
941  *	The page queues must be locked.
942  *	This routine may not block.
943  */
944 void
945 vm_page_activate(vm_page_t m)
946 {
947 
948 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
949 	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
950 		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
951 			cnt.v_reactivated++;
952 		vm_pageq_remove(m);
953 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
954 			if (m->act_count < ACT_INIT)
955 				m->act_count = ACT_INIT;
956 			vm_pageq_enqueue(PQ_ACTIVE, m);
957 		}
958 	} else {
959 		if (m->act_count < ACT_INIT)
960 			m->act_count = ACT_INIT;
961 	}
962 }
963 
964 /*
965  *	vm_page_free_wakeup:
966  *
967  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
968  *	routine is called when a page has been added to the cache or free
969  *	queues.
970  *
971  *	The page queues must be locked.
972  *	This routine may not block.
973  */
974 static __inline void
975 vm_page_free_wakeup(void)
976 {
977 
978 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
979 	/*
980 	 * if pageout daemon needs pages, then tell it that there are
981 	 * some free.
982 	 */
983 	if (vm_pageout_pages_needed &&
984 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
985 		wakeup(&vm_pageout_pages_needed);
986 		vm_pageout_pages_needed = 0;
987 	}
988 	/*
989 	 * wakeup processes that are waiting on memory if we hit a
990 	 * high water mark. And wakeup scheduler process if we have
991 	 * lots of memory. this process will swapin processes.
992 	 */
993 	if (vm_pages_needed && !vm_page_count_min()) {
994 		vm_pages_needed = 0;
995 		wakeup(&cnt.v_free_count);
996 	}
997 }
998 
999 /*
1000  *	vm_page_free_toq:
1001  *
1002  *	Returns the given page to the PQ_FREE list,
1003  *	disassociating it with any VM object.
1004  *
1005  *	Object and page must be locked prior to entry.
1006  *	This routine may not block.
1007  */
1008 
1009 void
1010 vm_page_free_toq(vm_page_t m)
1011 {
1012 	struct vpgqueues *pq;
1013 
1014 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1015 	KASSERT(!pmap_page_is_mapped(m),
1016 	    ("vm_page_free_toq: freeing mapped page %p", m));
1017 	cnt.v_tfree++;
1018 
1019 	if (m->busy || VM_PAGE_INQUEUE1(m, PQ_FREE)) {
1020 		printf(
1021 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1022 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1023 		    m->hold_count);
1024 		if (VM_PAGE_INQUEUE1(m, PQ_FREE))
1025 			panic("vm_page_free: freeing free page");
1026 		else
1027 			panic("vm_page_free: freeing busy page");
1028 	}
1029 
1030 	/*
1031 	 * unqueue, then remove page.  Note that we cannot destroy
1032 	 * the page here because we do not want to call the pager's
1033 	 * callback routine until after we've put the page on the
1034 	 * appropriate free queue.
1035 	 */
1036 	vm_pageq_remove_nowakeup(m);
1037 	vm_page_remove(m);
1038 
1039 	/*
1040 	 * If fictitious remove object association and
1041 	 * return, otherwise delay object association removal.
1042 	 */
1043 	if ((m->flags & PG_FICTITIOUS) != 0) {
1044 		return;
1045 	}
1046 
1047 	m->valid = 0;
1048 	vm_page_undirty(m);
1049 
1050 	if (m->wire_count != 0) {
1051 		if (m->wire_count > 1) {
1052 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1053 				m->wire_count, (long)m->pindex);
1054 		}
1055 		panic("vm_page_free: freeing wired page");
1056 	}
1057 
1058 	/*
1059 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1060 	 */
1061 	if (m->flags & PG_UNMANAGED) {
1062 		m->flags &= ~PG_UNMANAGED;
1063 	}
1064 
1065 	if (m->hold_count != 0) {
1066 		m->flags &= ~PG_ZERO;
1067 		VM_PAGE_SETQUEUE2(m, PQ_HOLD);
1068 	} else
1069 		VM_PAGE_SETQUEUE1(m, PQ_FREE);
1070 	pq = &vm_page_queues[VM_PAGE_GETQUEUE(m)];
1071 	mtx_lock_spin(&vm_page_queue_free_mtx);
1072 	pq->lcnt++;
1073 	++(*pq->cnt);
1074 
1075 	/*
1076 	 * Put zero'd pages on the end ( where we look for zero'd pages
1077 	 * first ) and non-zerod pages at the head.
1078 	 */
1079 	if (m->flags & PG_ZERO) {
1080 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1081 		++vm_page_zero_count;
1082 	} else {
1083 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1084 	}
1085 	mtx_unlock_spin(&vm_page_queue_free_mtx);
1086 	vm_page_free_wakeup();
1087 }
1088 
1089 /*
1090  *	vm_page_unmanage:
1091  *
1092  * 	Prevent PV management from being done on the page.  The page is
1093  *	removed from the paging queues as if it were wired, and as a
1094  *	consequence of no longer being managed the pageout daemon will not
1095  *	touch it (since there is no way to locate the pte mappings for the
1096  *	page).  madvise() calls that mess with the pmap will also no longer
1097  *	operate on the page.
1098  *
1099  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1100  *	will clear the flag.
1101  *
1102  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1103  *	physical memory as backing store rather then swap-backed memory and
1104  *	will eventually be extended to support 4MB unmanaged physical
1105  *	mappings.
1106  */
1107 void
1108 vm_page_unmanage(vm_page_t m)
1109 {
1110 
1111 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1112 	if ((m->flags & PG_UNMANAGED) == 0) {
1113 		if (m->wire_count == 0)
1114 			vm_pageq_remove(m);
1115 	}
1116 	vm_page_flag_set(m, PG_UNMANAGED);
1117 }
1118 
1119 /*
1120  *	vm_page_wire:
1121  *
1122  *	Mark this page as wired down by yet
1123  *	another map, removing it from paging queues
1124  *	as necessary.
1125  *
1126  *	The page queues must be locked.
1127  *	This routine may not block.
1128  */
1129 void
1130 vm_page_wire(vm_page_t m)
1131 {
1132 
1133 	/*
1134 	 * Only bump the wire statistics if the page is not already wired,
1135 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1136 	 * it is already off the queues).
1137 	 */
1138 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1139 	if (m->flags & PG_FICTITIOUS)
1140 		return;
1141 	if (m->wire_count == 0) {
1142 		if ((m->flags & PG_UNMANAGED) == 0)
1143 			vm_pageq_remove(m);
1144 		atomic_add_int(&cnt.v_wire_count, 1);
1145 	}
1146 	m->wire_count++;
1147 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1148 }
1149 
1150 /*
1151  *	vm_page_unwire:
1152  *
1153  *	Release one wiring of this page, potentially
1154  *	enabling it to be paged again.
1155  *
1156  *	Many pages placed on the inactive queue should actually go
1157  *	into the cache, but it is difficult to figure out which.  What
1158  *	we do instead, if the inactive target is well met, is to put
1159  *	clean pages at the head of the inactive queue instead of the tail.
1160  *	This will cause them to be moved to the cache more quickly and
1161  *	if not actively re-referenced, freed more quickly.  If we just
1162  *	stick these pages at the end of the inactive queue, heavy filesystem
1163  *	meta-data accesses can cause an unnecessary paging load on memory bound
1164  *	processes.  This optimization causes one-time-use metadata to be
1165  *	reused more quickly.
1166  *
1167  *	BUT, if we are in a low-memory situation we have no choice but to
1168  *	put clean pages on the cache queue.
1169  *
1170  *	A number of routines use vm_page_unwire() to guarantee that the page
1171  *	will go into either the inactive or active queues, and will NEVER
1172  *	be placed in the cache - for example, just after dirtying a page.
1173  *	dirty pages in the cache are not allowed.
1174  *
1175  *	The page queues must be locked.
1176  *	This routine may not block.
1177  */
1178 void
1179 vm_page_unwire(vm_page_t m, int activate)
1180 {
1181 
1182 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1183 	if (m->flags & PG_FICTITIOUS)
1184 		return;
1185 	if (m->wire_count > 0) {
1186 		m->wire_count--;
1187 		if (m->wire_count == 0) {
1188 			atomic_subtract_int(&cnt.v_wire_count, 1);
1189 			if (m->flags & PG_UNMANAGED) {
1190 				;
1191 			} else if (activate)
1192 				vm_pageq_enqueue(PQ_ACTIVE, m);
1193 			else {
1194 				vm_page_flag_clear(m, PG_WINATCFLS);
1195 				vm_pageq_enqueue(PQ_INACTIVE, m);
1196 			}
1197 		}
1198 	} else {
1199 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1200 	}
1201 }
1202 
1203 
1204 /*
1205  * Move the specified page to the inactive queue.  If the page has
1206  * any associated swap, the swap is deallocated.
1207  *
1208  * Normally athead is 0 resulting in LRU operation.  athead is set
1209  * to 1 if we want this page to be 'as if it were placed in the cache',
1210  * except without unmapping it from the process address space.
1211  *
1212  * This routine may not block.
1213  */
1214 static __inline void
1215 _vm_page_deactivate(vm_page_t m, int athead)
1216 {
1217 
1218 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1219 
1220 	/*
1221 	 * Ignore if already inactive.
1222 	 */
1223 	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1224 		return;
1225 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1226 		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1227 			cnt.v_reactivated++;
1228 		vm_page_flag_clear(m, PG_WINATCFLS);
1229 		vm_pageq_remove(m);
1230 		if (athead)
1231 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1232 		else
1233 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1234 		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1235 		vm_page_queues[PQ_INACTIVE].lcnt++;
1236 		cnt.v_inactive_count++;
1237 	}
1238 }
1239 
1240 void
1241 vm_page_deactivate(vm_page_t m)
1242 {
1243     _vm_page_deactivate(m, 0);
1244 }
1245 
1246 /*
1247  * vm_page_try_to_cache:
1248  *
1249  * Returns 0 on failure, 1 on success
1250  */
1251 int
1252 vm_page_try_to_cache(vm_page_t m)
1253 {
1254 
1255 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1256 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1257 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1258 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1259 		return (0);
1260 	}
1261 	pmap_remove_all(m);
1262 	if (m->dirty)
1263 		return (0);
1264 	vm_page_cache(m);
1265 	return (1);
1266 }
1267 
1268 /*
1269  * vm_page_try_to_free()
1270  *
1271  *	Attempt to free the page.  If we cannot free it, we do nothing.
1272  *	1 is returned on success, 0 on failure.
1273  */
1274 int
1275 vm_page_try_to_free(vm_page_t m)
1276 {
1277 
1278 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1279 	if (m->object != NULL)
1280 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1281 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1282 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1283 		return (0);
1284 	}
1285 	pmap_remove_all(m);
1286 	if (m->dirty)
1287 		return (0);
1288 	vm_page_free(m);
1289 	return (1);
1290 }
1291 
1292 /*
1293  * vm_page_cache
1294  *
1295  * Put the specified page onto the page cache queue (if appropriate).
1296  *
1297  * This routine may not block.
1298  */
1299 void
1300 vm_page_cache(vm_page_t m)
1301 {
1302 
1303 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1304 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1305 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1306 	    m->hold_count || m->wire_count) {
1307 		printf("vm_page_cache: attempting to cache busy page\n");
1308 		return;
1309 	}
1310 	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1311 		return;
1312 
1313 	/*
1314 	 * Remove all pmaps and indicate that the page is not
1315 	 * writeable or mapped.
1316 	 */
1317 	pmap_remove_all(m);
1318 	if (m->dirty != 0) {
1319 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1320 			(long)m->pindex);
1321 	}
1322 	vm_pageq_remove_nowakeup(m);
1323 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1324 	vm_page_free_wakeup();
1325 }
1326 
1327 /*
1328  * vm_page_dontneed
1329  *
1330  *	Cache, deactivate, or do nothing as appropriate.  This routine
1331  *	is typically used by madvise() MADV_DONTNEED.
1332  *
1333  *	Generally speaking we want to move the page into the cache so
1334  *	it gets reused quickly.  However, this can result in a silly syndrome
1335  *	due to the page recycling too quickly.  Small objects will not be
1336  *	fully cached.  On the otherhand, if we move the page to the inactive
1337  *	queue we wind up with a problem whereby very large objects
1338  *	unnecessarily blow away our inactive and cache queues.
1339  *
1340  *	The solution is to move the pages based on a fixed weighting.  We
1341  *	either leave them alone, deactivate them, or move them to the cache,
1342  *	where moving them to the cache has the highest weighting.
1343  *	By forcing some pages into other queues we eventually force the
1344  *	system to balance the queues, potentially recovering other unrelated
1345  *	space from active.  The idea is to not force this to happen too
1346  *	often.
1347  */
1348 void
1349 vm_page_dontneed(vm_page_t m)
1350 {
1351 	static int dnweight;
1352 	int dnw;
1353 	int head;
1354 
1355 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1356 	dnw = ++dnweight;
1357 
1358 	/*
1359 	 * occassionally leave the page alone
1360 	 */
1361 	if ((dnw & 0x01F0) == 0 ||
1362 	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE) ||
1363 	    VM_PAGE_INQUEUE1(m, PQ_CACHE)
1364 	) {
1365 		if (m->act_count >= ACT_INIT)
1366 			--m->act_count;
1367 		return;
1368 	}
1369 
1370 	if (m->dirty == 0 && pmap_is_modified(m))
1371 		vm_page_dirty(m);
1372 
1373 	if (m->dirty || (dnw & 0x0070) == 0) {
1374 		/*
1375 		 * Deactivate the page 3 times out of 32.
1376 		 */
1377 		head = 0;
1378 	} else {
1379 		/*
1380 		 * Cache the page 28 times out of every 32.  Note that
1381 		 * the page is deactivated instead of cached, but placed
1382 		 * at the head of the queue instead of the tail.
1383 		 */
1384 		head = 1;
1385 	}
1386 	_vm_page_deactivate(m, head);
1387 }
1388 
1389 /*
1390  * Grab a page, waiting until we are waken up due to the page
1391  * changing state.  We keep on waiting, if the page continues
1392  * to be in the object.  If the page doesn't exist, first allocate it
1393  * and then conditionally zero it.
1394  *
1395  * This routine may block.
1396  */
1397 vm_page_t
1398 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1399 {
1400 	vm_page_t m;
1401 
1402 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1403 retrylookup:
1404 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1405 		vm_page_lock_queues();
1406 		if (m->busy || (m->flags & PG_BUSY)) {
1407 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1408 			VM_OBJECT_UNLOCK(object);
1409 			msleep(m, &vm_page_queue_mtx, PDROP | PVM, "pgrbwt", 0);
1410 			VM_OBJECT_LOCK(object);
1411 			if ((allocflags & VM_ALLOC_RETRY) == 0)
1412 				return (NULL);
1413 			goto retrylookup;
1414 		} else {
1415 			if (allocflags & VM_ALLOC_WIRED)
1416 				vm_page_wire(m);
1417 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1418 				vm_page_busy(m);
1419 			vm_page_unlock_queues();
1420 			return (m);
1421 		}
1422 	}
1423 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1424 	if (m == NULL) {
1425 		VM_OBJECT_UNLOCK(object);
1426 		VM_WAIT;
1427 		VM_OBJECT_LOCK(object);
1428 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1429 			return (NULL);
1430 		goto retrylookup;
1431 	}
1432 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1433 		pmap_zero_page(m);
1434 	return (m);
1435 }
1436 
1437 /*
1438  * Mapping function for valid bits or for dirty bits in
1439  * a page.  May not block.
1440  *
1441  * Inputs are required to range within a page.
1442  */
1443 __inline int
1444 vm_page_bits(int base, int size)
1445 {
1446 	int first_bit;
1447 	int last_bit;
1448 
1449 	KASSERT(
1450 	    base + size <= PAGE_SIZE,
1451 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1452 	);
1453 
1454 	if (size == 0)		/* handle degenerate case */
1455 		return (0);
1456 
1457 	first_bit = base >> DEV_BSHIFT;
1458 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1459 
1460 	return ((2 << last_bit) - (1 << first_bit));
1461 }
1462 
1463 /*
1464  *	vm_page_set_validclean:
1465  *
1466  *	Sets portions of a page valid and clean.  The arguments are expected
1467  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1468  *	of any partial chunks touched by the range.  The invalid portion of
1469  *	such chunks will be zero'd.
1470  *
1471  *	This routine may not block.
1472  *
1473  *	(base + size) must be less then or equal to PAGE_SIZE.
1474  */
1475 void
1476 vm_page_set_validclean(vm_page_t m, int base, int size)
1477 {
1478 	int pagebits;
1479 	int frag;
1480 	int endoff;
1481 
1482 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1483 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1484 	if (size == 0)	/* handle degenerate case */
1485 		return;
1486 
1487 	/*
1488 	 * If the base is not DEV_BSIZE aligned and the valid
1489 	 * bit is clear, we have to zero out a portion of the
1490 	 * first block.
1491 	 */
1492 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1493 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1494 		pmap_zero_page_area(m, frag, base - frag);
1495 
1496 	/*
1497 	 * If the ending offset is not DEV_BSIZE aligned and the
1498 	 * valid bit is clear, we have to zero out a portion of
1499 	 * the last block.
1500 	 */
1501 	endoff = base + size;
1502 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1503 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1504 		pmap_zero_page_area(m, endoff,
1505 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1506 
1507 	/*
1508 	 * Set valid, clear dirty bits.  If validating the entire
1509 	 * page we can safely clear the pmap modify bit.  We also
1510 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1511 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1512 	 * be set again.
1513 	 *
1514 	 * We set valid bits inclusive of any overlap, but we can only
1515 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1516 	 * the range.
1517 	 */
1518 	pagebits = vm_page_bits(base, size);
1519 	m->valid |= pagebits;
1520 #if 0	/* NOT YET */
1521 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1522 		frag = DEV_BSIZE - frag;
1523 		base += frag;
1524 		size -= frag;
1525 		if (size < 0)
1526 			size = 0;
1527 	}
1528 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1529 #endif
1530 	m->dirty &= ~pagebits;
1531 	if (base == 0 && size == PAGE_SIZE) {
1532 		pmap_clear_modify(m);
1533 		vm_page_flag_clear(m, PG_NOSYNC);
1534 	}
1535 }
1536 
1537 void
1538 vm_page_clear_dirty(vm_page_t m, int base, int size)
1539 {
1540 
1541 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1542 	m->dirty &= ~vm_page_bits(base, size);
1543 }
1544 
1545 /*
1546  *	vm_page_set_invalid:
1547  *
1548  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1549  *	valid and dirty bits for the effected areas are cleared.
1550  *
1551  *	May not block.
1552  */
1553 void
1554 vm_page_set_invalid(vm_page_t m, int base, int size)
1555 {
1556 	int bits;
1557 
1558 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1559 	bits = vm_page_bits(base, size);
1560 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1561 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1562 		pmap_remove_all(m);
1563 	m->valid &= ~bits;
1564 	m->dirty &= ~bits;
1565 	m->object->generation++;
1566 }
1567 
1568 /*
1569  * vm_page_zero_invalid()
1570  *
1571  *	The kernel assumes that the invalid portions of a page contain
1572  *	garbage, but such pages can be mapped into memory by user code.
1573  *	When this occurs, we must zero out the non-valid portions of the
1574  *	page so user code sees what it expects.
1575  *
1576  *	Pages are most often semi-valid when the end of a file is mapped
1577  *	into memory and the file's size is not page aligned.
1578  */
1579 void
1580 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1581 {
1582 	int b;
1583 	int i;
1584 
1585 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1586 	/*
1587 	 * Scan the valid bits looking for invalid sections that
1588 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1589 	 * valid bit may be set ) have already been zerod by
1590 	 * vm_page_set_validclean().
1591 	 */
1592 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1593 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1594 		    (m->valid & (1 << i))
1595 		) {
1596 			if (i > b) {
1597 				pmap_zero_page_area(m,
1598 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1599 			}
1600 			b = i + 1;
1601 		}
1602 	}
1603 
1604 	/*
1605 	 * setvalid is TRUE when we can safely set the zero'd areas
1606 	 * as being valid.  We can do this if there are no cache consistancy
1607 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1608 	 */
1609 	if (setvalid)
1610 		m->valid = VM_PAGE_BITS_ALL;
1611 }
1612 
1613 /*
1614  *	vm_page_is_valid:
1615  *
1616  *	Is (partial) page valid?  Note that the case where size == 0
1617  *	will return FALSE in the degenerate case where the page is
1618  *	entirely invalid, and TRUE otherwise.
1619  *
1620  *	May not block.
1621  */
1622 int
1623 vm_page_is_valid(vm_page_t m, int base, int size)
1624 {
1625 	int bits = vm_page_bits(base, size);
1626 
1627 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1628 	if (m->valid && ((m->valid & bits) == bits))
1629 		return 1;
1630 	else
1631 		return 0;
1632 }
1633 
1634 /*
1635  * update dirty bits from pmap/mmu.  May not block.
1636  */
1637 void
1638 vm_page_test_dirty(vm_page_t m)
1639 {
1640 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1641 		vm_page_dirty(m);
1642 	}
1643 }
1644 
1645 int so_zerocp_fullpage = 0;
1646 
1647 void
1648 vm_page_cowfault(vm_page_t m)
1649 {
1650 	vm_page_t mnew;
1651 	vm_object_t object;
1652 	vm_pindex_t pindex;
1653 
1654 	object = m->object;
1655 	pindex = m->pindex;
1656 
1657  retry_alloc:
1658 	pmap_remove_all(m);
1659 	vm_page_remove(m);
1660 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
1661 	if (mnew == NULL) {
1662 		vm_page_insert(m, object, pindex);
1663 		vm_page_unlock_queues();
1664 		VM_OBJECT_UNLOCK(object);
1665 		VM_WAIT;
1666 		VM_OBJECT_LOCK(object);
1667 		vm_page_lock_queues();
1668 		goto retry_alloc;
1669 	}
1670 
1671 	if (m->cow == 0) {
1672 		/*
1673 		 * check to see if we raced with an xmit complete when
1674 		 * waiting to allocate a page.  If so, put things back
1675 		 * the way they were
1676 		 */
1677 		vm_page_free(mnew);
1678 		vm_page_insert(m, object, pindex);
1679 	} else { /* clear COW & copy page */
1680 		if (!so_zerocp_fullpage)
1681 			pmap_copy_page(m, mnew);
1682 		mnew->valid = VM_PAGE_BITS_ALL;
1683 		vm_page_dirty(mnew);
1684 		vm_page_flag_clear(mnew, PG_BUSY);
1685 		mnew->wire_count = m->wire_count - m->cow;
1686 		m->wire_count = m->cow;
1687 	}
1688 }
1689 
1690 void
1691 vm_page_cowclear(vm_page_t m)
1692 {
1693 
1694 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1695 	if (m->cow) {
1696 		m->cow--;
1697 		/*
1698 		 * let vm_fault add back write permission  lazily
1699 		 */
1700 	}
1701 	/*
1702 	 *  sf_buf_free() will free the page, so we needn't do it here
1703 	 */
1704 }
1705 
1706 void
1707 vm_page_cowsetup(vm_page_t m)
1708 {
1709 
1710 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1711 	m->cow++;
1712 	pmap_page_protect(m, VM_PROT_READ);
1713 }
1714 
1715 #include "opt_ddb.h"
1716 #ifdef DDB
1717 #include <sys/kernel.h>
1718 
1719 #include <ddb/ddb.h>
1720 
1721 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1722 {
1723 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1724 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1725 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1726 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1727 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1728 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1729 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1730 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1731 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1732 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1733 }
1734 
1735 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1736 {
1737 	int i;
1738 	db_printf("PQ_FREE:");
1739 	for (i = 0; i < PQ_NUMCOLORS; i++) {
1740 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1741 	}
1742 	db_printf("\n");
1743 
1744 	db_printf("PQ_CACHE:");
1745 	for (i = 0; i < PQ_NUMCOLORS; i++) {
1746 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1747 	}
1748 	db_printf("\n");
1749 
1750 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1751 		vm_page_queues[PQ_ACTIVE].lcnt,
1752 		vm_page_queues[PQ_INACTIVE].lcnt);
1753 }
1754 #endif /* DDB */
1755