xref: /freebsd/sys/vm/vm_page.c (revision 5129159789cc9d7bc514e4546b88e3427695002d)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD$
38  */
39 
40 /*
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  */
66 
67 /*
68  *	Resident memory management module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/vnode.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <sys/lock.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_pageout.h>
85 #include <vm/vm_pager.h>
86 #include <vm/vm_extern.h>
87 
88 static void	vm_page_queue_init __P((void));
89 static vm_page_t vm_page_select_cache __P((vm_object_t, vm_pindex_t));
90 
91 /*
92  *	Associated with page of user-allocatable memory is a
93  *	page structure.
94  */
95 
96 static struct vm_page **vm_page_buckets; /* Array of buckets */
97 static int vm_page_bucket_count;	/* How big is array? */
98 static int vm_page_hash_mask;		/* Mask for hash function */
99 static volatile int vm_page_bucket_generation;
100 
101 struct vpgqueues vm_page_queues[PQ_COUNT];
102 
103 static void
104 vm_page_queue_init(void) {
105 	int i;
106 
107 	for(i=0;i<PQ_L2_SIZE;i++) {
108 		vm_page_queues[PQ_FREE+i].cnt = &cnt.v_free_count;
109 	}
110 	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
111 
112 	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
113 	for(i=0;i<PQ_L2_SIZE;i++) {
114 		vm_page_queues[PQ_CACHE+i].cnt = &cnt.v_cache_count;
115 	}
116 	for(i=0;i<PQ_COUNT;i++) {
117 		TAILQ_INIT(&vm_page_queues[i].pl);
118 	}
119 }
120 
121 vm_page_t vm_page_array = 0;
122 static int vm_page_array_size = 0;
123 long first_page = 0;
124 int vm_page_zero_count = 0;
125 
126 static __inline int vm_page_hash __P((vm_object_t object, vm_pindex_t pindex));
127 static void vm_page_free_wakeup __P((void));
128 
129 /*
130  *	vm_set_page_size:
131  *
132  *	Sets the page size, perhaps based upon the memory
133  *	size.  Must be called before any use of page-size
134  *	dependent functions.
135  */
136 void
137 vm_set_page_size()
138 {
139 	if (cnt.v_page_size == 0)
140 		cnt.v_page_size = PAGE_SIZE;
141 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
142 		panic("vm_set_page_size: page size not a power of two");
143 }
144 
145 /*
146  *	vm_page_startup:
147  *
148  *	Initializes the resident memory module.
149  *
150  *	Allocates memory for the page cells, and
151  *	for the object/offset-to-page hash table headers.
152  *	Each page cell is initialized and placed on the free list.
153  */
154 
155 vm_offset_t
156 vm_page_startup(starta, enda, vaddr)
157 	register vm_offset_t starta;
158 	vm_offset_t enda;
159 	register vm_offset_t vaddr;
160 {
161 	register vm_offset_t mapped;
162 	register vm_page_t m;
163 	register struct vm_page **bucket;
164 	vm_size_t npages, page_range;
165 	register vm_offset_t new_start;
166 	int i;
167 	vm_offset_t pa;
168 	int nblocks;
169 	vm_offset_t first_managed_page;
170 
171 	/* the biggest memory array is the second group of pages */
172 	vm_offset_t start;
173 	vm_offset_t biggestone, biggestsize;
174 
175 	vm_offset_t total;
176 
177 	total = 0;
178 	biggestsize = 0;
179 	biggestone = 0;
180 	nblocks = 0;
181 	vaddr = round_page(vaddr);
182 
183 	for (i = 0; phys_avail[i + 1]; i += 2) {
184 		phys_avail[i] = round_page(phys_avail[i]);
185 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
186 	}
187 
188 	for (i = 0; phys_avail[i + 1]; i += 2) {
189 		int size = phys_avail[i + 1] - phys_avail[i];
190 
191 		if (size > biggestsize) {
192 			biggestone = i;
193 			biggestsize = size;
194 		}
195 		++nblocks;
196 		total += size;
197 	}
198 
199 	start = phys_avail[biggestone];
200 
201 	/*
202 	 * Initialize the queue headers for the free queue, the active queue
203 	 * and the inactive queue.
204 	 */
205 
206 	vm_page_queue_init();
207 
208 	/*
209 	 * Allocate (and initialize) the hash table buckets.
210 	 *
211 	 * The number of buckets MUST BE a power of 2, and the actual value is
212 	 * the next power of 2 greater than the number of physical pages in
213 	 * the system.
214 	 *
215 	 * We make the hash table approximately 2x the number of pages to
216 	 * reduce the chain length.  This is about the same size using the
217 	 * singly-linked list as the 1x hash table we were using before
218 	 * using TAILQ but the chain length will be smaller.
219 	 *
220 	 * Note: This computation can be tweaked if desired.
221 	 */
222 	vm_page_buckets = (struct vm_page **)vaddr;
223 	bucket = vm_page_buckets;
224 	if (vm_page_bucket_count == 0) {
225 		vm_page_bucket_count = 1;
226 		while (vm_page_bucket_count < atop(total))
227 			vm_page_bucket_count <<= 1;
228 	}
229 	vm_page_bucket_count <<= 1;
230 	vm_page_hash_mask = vm_page_bucket_count - 1;
231 
232 	/*
233 	 * Validate these addresses.
234 	 */
235 
236 	new_start = start + vm_page_bucket_count * sizeof(struct vm_page *);
237 	new_start = round_page(new_start);
238 	mapped = round_page(vaddr);
239 	vaddr = pmap_map(mapped, start, new_start,
240 	    VM_PROT_READ | VM_PROT_WRITE);
241 	start = new_start;
242 	vaddr = round_page(vaddr);
243 	bzero((caddr_t) mapped, vaddr - mapped);
244 
245 	for (i = 0; i < vm_page_bucket_count; i++) {
246 		*bucket = NULL;
247 		bucket++;
248 	}
249 
250 	/*
251 	 * Compute the number of pages of memory that will be available for
252 	 * use (taking into account the overhead of a page structure per
253 	 * page).
254 	 */
255 
256 	first_page = phys_avail[0] / PAGE_SIZE;
257 
258 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
259 	npages = (total - (page_range * sizeof(struct vm_page)) -
260 	    (start - phys_avail[biggestone])) / PAGE_SIZE;
261 
262 	/*
263 	 * Initialize the mem entry structures now, and put them in the free
264 	 * queue.
265 	 */
266 	vm_page_array = (vm_page_t) vaddr;
267 	mapped = vaddr;
268 
269 	/*
270 	 * Validate these addresses.
271 	 */
272 	new_start = round_page(start + page_range * sizeof(struct vm_page));
273 	mapped = pmap_map(mapped, start, new_start,
274 	    VM_PROT_READ | VM_PROT_WRITE);
275 	start = new_start;
276 
277 	first_managed_page = start / PAGE_SIZE;
278 
279 	/*
280 	 * Clear all of the page structures
281 	 */
282 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
283 	vm_page_array_size = page_range;
284 
285 	/*
286 	 * Construct the free queue(s) in descending order (by physical
287 	 * address) so that the first 16MB of physical memory is allocated
288 	 * last rather than first.  On large-memory machines, this avoids
289 	 * the exhaustion of low physical memory before isa_dmainit has run.
290 	 */
291 	cnt.v_page_count = 0;
292 	cnt.v_free_count = 0;
293 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
294 		if (i == biggestone)
295 			pa = ptoa(first_managed_page);
296 		else
297 			pa = phys_avail[i];
298 		while (pa < phys_avail[i + 1] && npages-- > 0) {
299 			++cnt.v_page_count;
300 			++cnt.v_free_count;
301 			m = PHYS_TO_VM_PAGE(pa);
302 			m->phys_addr = pa;
303 			m->flags = 0;
304 			m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
305 			m->queue = m->pc + PQ_FREE;
306 			TAILQ_INSERT_HEAD(&vm_page_queues[m->queue].pl, m, pageq);
307 			vm_page_queues[m->queue].lcnt++;
308 			pa += PAGE_SIZE;
309 		}
310 	}
311 	return (mapped);
312 }
313 
314 /*
315  *	vm_page_hash:
316  *
317  *	Distributes the object/offset key pair among hash buckets.
318  *
319  *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
320  *	This routine may not block.
321  *
322  *	We try to randomize the hash based on the object to spread the pages
323  *	out in the hash table without it costing us too much.
324  */
325 static __inline int
326 vm_page_hash(object, pindex)
327 	vm_object_t object;
328 	vm_pindex_t pindex;
329 {
330 	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
331 
332 	return(i & vm_page_hash_mask);
333 }
334 
335 /*
336  *	vm_page_insert:		[ internal use only ]
337  *
338  *	Inserts the given mem entry into the object and object list.
339  *
340  *	The pagetables are not updated but will presumably fault the page
341  *	in if necessary, or if a kernel page the caller will at some point
342  *	enter the page into the kernel's pmap.  We are not allowed to block
343  *	here so we *can't* do this anyway.
344  *
345  *	The object and page must be locked, and must be splhigh.
346  *	This routine may not block.
347  */
348 
349 void
350 vm_page_insert(m, object, pindex)
351 	register vm_page_t m;
352 	register vm_object_t object;
353 	register vm_pindex_t pindex;
354 {
355 	register struct vm_page **bucket;
356 
357 	if (m->object != NULL)
358 		panic("vm_page_insert: already inserted");
359 
360 	/*
361 	 * Record the object/offset pair in this page
362 	 */
363 
364 	m->object = object;
365 	m->pindex = pindex;
366 
367 	/*
368 	 * Insert it into the object_object/offset hash table
369 	 */
370 
371 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
372 	m->hnext = *bucket;
373 	*bucket = m;
374 	vm_page_bucket_generation++;
375 
376 	/*
377 	 * Now link into the object's list of backed pages.
378 	 */
379 
380 	TAILQ_INSERT_TAIL(&object->memq, m, listq);
381 	object->generation++;
382 
383 	/*
384 	 * show that the object has one more resident page.
385 	 */
386 
387 	object->resident_page_count++;
388 
389 	/*
390 	 * Since we are inserting a new and possibly dirty page,
391 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
392 	 */
393 	if (m->flags & PG_WRITEABLE)
394 	    vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
395 }
396 
397 /*
398  *	vm_page_remove:
399  *				NOTE: used by device pager as well -wfj
400  *
401  *	Removes the given mem entry from the object/offset-page
402  *	table and the object page list, but do not invalidate/terminate
403  *	the backing store.
404  *
405  *	The object and page must be locked, and at splhigh.
406  *	The underlying pmap entry (if any) is NOT removed here.
407  *	This routine may not block.
408  */
409 
410 void
411 vm_page_remove(m)
412 	vm_page_t m;
413 {
414 	vm_object_t object;
415 
416 	if (m->object == NULL)
417 		return;
418 
419 #if !defined(MAX_PERF)
420 	if ((m->flags & PG_BUSY) == 0) {
421 		panic("vm_page_remove: page not busy");
422 	}
423 #endif
424 
425 	/*
426 	 * Basically destroy the page.
427 	 */
428 
429 	vm_page_wakeup(m);
430 
431 	object = m->object;
432 
433 	/*
434 	 * Remove from the object_object/offset hash table.  The object
435 	 * must be on the hash queue, we will panic if it isn't
436 	 *
437 	 * Note: we must NULL-out m->hnext to prevent loops in detached
438 	 * buffers with vm_page_lookup().
439 	 */
440 
441 	{
442 		struct vm_page **bucket;
443 
444 		bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
445 		while (*bucket != m) {
446 #if !defined(MAX_PERF)
447 			if (*bucket == NULL)
448 				panic("vm_page_remove(): page not found in hash");
449 #endif
450 			bucket = &(*bucket)->hnext;
451 		}
452 		*bucket = m->hnext;
453 		m->hnext = NULL;
454 		vm_page_bucket_generation++;
455 	}
456 
457 	/*
458 	 * Now remove from the object's list of backed pages.
459 	 */
460 
461 	TAILQ_REMOVE(&object->memq, m, listq);
462 
463 	/*
464 	 * And show that the object has one fewer resident page.
465 	 */
466 
467 	object->resident_page_count--;
468 	object->generation++;
469 
470 	m->object = NULL;
471 }
472 
473 /*
474  *	vm_page_lookup:
475  *
476  *	Returns the page associated with the object/offset
477  *	pair specified; if none is found, NULL is returned.
478  *
479  *	NOTE: the code below does not lock.  It will operate properly if
480  *	an interrupt makes a change, but the generation algorithm will not
481  *	operate properly in an SMP environment where both cpu's are able to run
482  *	kernel code simultaniously.
483  *
484  *	The object must be locked.  No side effects.
485  *	This routine may not block.
486  *	This is a critical path routine
487  */
488 
489 vm_page_t
490 vm_page_lookup(object, pindex)
491 	register vm_object_t object;
492 	register vm_pindex_t pindex;
493 {
494 	register vm_page_t m;
495 	register struct vm_page **bucket;
496 	int generation;
497 
498 	/*
499 	 * Search the hash table for this object/offset pair
500 	 */
501 
502 retry:
503 	generation = vm_page_bucket_generation;
504 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
505 	for (m = *bucket; m != NULL; m = m->hnext) {
506 		if ((m->object == object) && (m->pindex == pindex)) {
507 			if (vm_page_bucket_generation != generation)
508 				goto retry;
509 			return (m);
510 		}
511 	}
512 	if (vm_page_bucket_generation != generation)
513 		goto retry;
514 	return (NULL);
515 }
516 
517 /*
518  *	vm_page_rename:
519  *
520  *	Move the given memory entry from its
521  *	current object to the specified target object/offset.
522  *
523  *	The object must be locked.
524  *	This routine may not block.
525  *
526  *	Note: this routine will raise itself to splvm(), the caller need not.
527  *
528  *	Note: swap associated with the page must be invalidated by the move.  We
529  *	      have to do this for several reasons:  (1) we aren't freeing the
530  *	      page, (2) we are dirtying the page, (3) the VM system is probably
531  *	      moving the page from object A to B, and will then later move
532  *	      the backing store from A to B and we can't have a conflict.
533  *
534  *	Note: we *always* dirty the page.  It is necessary both for the
535  *	      fact that we moved it, and because we may be invalidating
536  *	      swap.  If the page is on the cache, we have to deactivate it
537  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
538  *	      on the cache.
539  */
540 
541 void
542 vm_page_rename(m, new_object, new_pindex)
543 	register vm_page_t m;
544 	register vm_object_t new_object;
545 	vm_pindex_t new_pindex;
546 {
547 	int s;
548 
549 	s = splvm();
550 	vm_page_remove(m);
551 	vm_page_insert(m, new_object, new_pindex);
552 	if (m->queue - m->pc == PQ_CACHE)
553 		vm_page_deactivate(m);
554 	vm_page_dirty(m);
555 	splx(s);
556 }
557 
558 /*
559  * vm_page_unqueue_nowakeup:
560  *
561  * 	vm_page_unqueue() without any wakeup
562  *
563  *	This routine must be called at splhigh().
564  *	This routine may not block.
565  */
566 
567 void
568 vm_page_unqueue_nowakeup(m)
569 	vm_page_t m;
570 {
571 	int queue = m->queue;
572 	struct vpgqueues *pq;
573 	if (queue != PQ_NONE) {
574 		pq = &vm_page_queues[queue];
575 		m->queue = PQ_NONE;
576 		TAILQ_REMOVE(&pq->pl, m, pageq);
577 		(*pq->cnt)--;
578 		pq->lcnt--;
579 	}
580 }
581 
582 /*
583  * vm_page_unqueue:
584  *
585  *	Remove a page from its queue.
586  *
587  *	This routine must be called at splhigh().
588  *	This routine may not block.
589  */
590 
591 void
592 vm_page_unqueue(m)
593 	vm_page_t m;
594 {
595 	int queue = m->queue;
596 	struct vpgqueues *pq;
597 	if (queue != PQ_NONE) {
598 		m->queue = PQ_NONE;
599 		pq = &vm_page_queues[queue];
600 		TAILQ_REMOVE(&pq->pl, m, pageq);
601 		(*pq->cnt)--;
602 		pq->lcnt--;
603 		if ((queue - m->pc) == PQ_CACHE) {
604 			if (vm_paging_needed())
605 				pagedaemon_wakeup();
606 		}
607 	}
608 }
609 
610 #if PQ_L2_SIZE > 1
611 
612 /*
613  *	vm_page_list_find:
614  *
615  *	Find a page on the specified queue with color optimization.
616  *
617  *	The page coloring optimization attempts to locate a page
618  *	that does not overload other nearby pages in the object in
619  *	the cpu's L1 or L2 caches.  We need this optmization because
620  *	cpu caches tend to be physical caches, while object spaces tend
621  *	to be virtual.
622  *
623  *	This routine must be called at splvm().
624  *	This routine may not block.
625  *
626  *	This routine may only be called from the vm_page_list_find() macro
627  *	in vm_page.h
628  */
629 vm_page_t
630 _vm_page_list_find(basequeue, index)
631 	int basequeue, index;
632 {
633 	int i;
634 	vm_page_t m = NULL;
635 	struct vpgqueues *pq;
636 
637 	pq = &vm_page_queues[basequeue];
638 
639 	/*
640 	 * Note that for the first loop, index+i and index-i wind up at the
641 	 * same place.  Even though this is not totally optimal, we've already
642 	 * blown it by missing the cache case so we do not care.
643 	 */
644 
645 	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
646 		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
647 			break;
648 
649 		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
650 			break;
651 	}
652 	return(m);
653 }
654 
655 #endif
656 
657 /*
658  *	vm_page_select_cache:
659  *
660  *	Find a page on the cache queue with color optimization.  As pages
661  *	might be found, but not applicable, they are deactivated.  This
662  *	keeps us from using potentially busy cached pages.
663  *
664  *	This routine must be called at splvm().
665  *	This routine may not block.
666  */
667 vm_page_t
668 vm_page_select_cache(object, pindex)
669 	vm_object_t object;
670 	vm_pindex_t pindex;
671 {
672 	vm_page_t m;
673 
674 	while (TRUE) {
675 		m = vm_page_list_find(
676 		    PQ_CACHE,
677 		    (pindex + object->pg_color) & PQ_L2_MASK,
678 		    FALSE
679 		);
680 		if (m && ((m->flags & PG_BUSY) || m->busy ||
681 			       m->hold_count || m->wire_count)) {
682 			vm_page_deactivate(m);
683 			continue;
684 		}
685 		return m;
686 	}
687 }
688 
689 /*
690  *	vm_page_select_free:
691  *
692  *	Find a free or zero page, with specified preference.  We attempt to
693  *	inline the nominal case and fall back to _vm_page_select_free()
694  *	otherwise.
695  *
696  *	This routine must be called at splvm().
697  *	This routine may not block.
698  */
699 
700 static __inline vm_page_t
701 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
702 {
703 	vm_page_t m;
704 
705 	m = vm_page_list_find(
706 		PQ_FREE,
707 		(pindex + object->pg_color) & PQ_L2_MASK,
708 		prefer_zero
709 	);
710 	return(m);
711 }
712 
713 /*
714  *	vm_page_alloc:
715  *
716  *	Allocate and return a memory cell associated
717  *	with this VM object/offset pair.
718  *
719  *	page_req classes:
720  *	VM_ALLOC_NORMAL		normal process request
721  *	VM_ALLOC_SYSTEM		system *really* needs a page
722  *	VM_ALLOC_INTERRUPT	interrupt time request
723  *	VM_ALLOC_ZERO		zero page
724  *
725  *	Object must be locked.
726  *	This routine may not block.
727  *
728  *	Additional special handling is required when called from an
729  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
730  *	the page cache in this case.
731  */
732 
733 vm_page_t
734 vm_page_alloc(object, pindex, page_req)
735 	vm_object_t object;
736 	vm_pindex_t pindex;
737 	int page_req;
738 {
739 	register vm_page_t m = NULL;
740 	int s;
741 
742 	KASSERT(!vm_page_lookup(object, pindex),
743 		("vm_page_alloc: page already allocated"));
744 
745 	/*
746 	 * The pager is allowed to eat deeper into the free page list.
747 	 */
748 
749 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
750 		page_req = VM_ALLOC_SYSTEM;
751 	};
752 
753 	s = splvm();
754 
755 loop:
756 	if (cnt.v_free_count > cnt.v_free_reserved) {
757 		/*
758 		 * Allocate from the free queue if there are plenty of pages
759 		 * in it.
760 		 */
761 		if (page_req == VM_ALLOC_ZERO)
762 			m = vm_page_select_free(object, pindex, TRUE);
763 		else
764 			m = vm_page_select_free(object, pindex, FALSE);
765 	} else if (
766 	    (page_req == VM_ALLOC_SYSTEM &&
767 	     cnt.v_cache_count == 0 &&
768 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
769 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
770 	) {
771 		/*
772 		 * Interrupt or system, dig deeper into the free list.
773 		 */
774 		m = vm_page_select_free(object, pindex, FALSE);
775 	} else if (page_req != VM_ALLOC_INTERRUPT) {
776 		/*
777 		 * Allocateable from cache (non-interrupt only).  On success,
778 		 * we must free the page and try again, thus ensuring that
779 		 * cnt.v_*_free_min counters are replenished.
780 		 */
781 		m = vm_page_select_cache(object, pindex);
782 		if (m == NULL) {
783 			splx(s);
784 #if defined(DIAGNOSTIC)
785 			if (cnt.v_cache_count > 0)
786 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
787 #endif
788 			vm_pageout_deficit++;
789 			pagedaemon_wakeup();
790 			return (NULL);
791 		}
792 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
793 		vm_page_busy(m);
794 		vm_page_protect(m, VM_PROT_NONE);
795 		vm_page_free(m);
796 		goto loop;
797 	} else {
798 		/*
799 		 * Not allocateable from cache from interrupt, give up.
800 		 */
801 		splx(s);
802 		vm_pageout_deficit++;
803 		pagedaemon_wakeup();
804 		return (NULL);
805 	}
806 
807 	/*
808 	 *  At this point we had better have found a good page.
809 	 */
810 
811 	KASSERT(
812 	    m != NULL,
813 	    ("vm_page_alloc(): missing page on free queue\n")
814 	);
815 
816 	/*
817 	 * Remove from free queue
818 	 */
819 
820 	vm_page_unqueue_nowakeup(m);
821 
822 	/*
823 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
824 	 */
825 
826 	if (m->flags & PG_ZERO) {
827 		vm_page_zero_count--;
828 		m->flags = PG_ZERO | PG_BUSY;
829 	} else {
830 		m->flags = PG_BUSY;
831 	}
832 	m->wire_count = 0;
833 	m->hold_count = 0;
834 	m->act_count = 0;
835 	m->busy = 0;
836 	m->valid = 0;
837 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
838 
839 	/*
840 	 * vm_page_insert() is safe prior to the splx().  Note also that
841 	 * inserting a page here does not insert it into the pmap (which
842 	 * could cause us to block allocating memory).  We cannot block
843 	 * anywhere.
844 	 */
845 
846 	vm_page_insert(m, object, pindex);
847 
848 	/*
849 	 * Don't wakeup too often - wakeup the pageout daemon when
850 	 * we would be nearly out of memory.
851 	 */
852 	if (vm_paging_needed() || cnt.v_free_count < cnt.v_pageout_free_min)
853 		pagedaemon_wakeup();
854 
855 	splx(s);
856 
857 	return (m);
858 }
859 
860 /*
861  *	vm_wait:	(also see VM_WAIT macro)
862  *
863  *	Block until free pages are available for allocation
864  */
865 
866 void
867 vm_wait()
868 {
869 	int s;
870 
871 	s = splvm();
872 	if (curproc == pageproc) {
873 		vm_pageout_pages_needed = 1;
874 		tsleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
875 	} else {
876 		if (!vm_pages_needed) {
877 			vm_pages_needed++;
878 			wakeup(&vm_pages_needed);
879 		}
880 		tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
881 	}
882 	splx(s);
883 }
884 
885 /*
886  *	vm_await:	(also see VM_AWAIT macro)
887  *
888  *	asleep on an event that will signal when free pages are available
889  *	for allocation.
890  */
891 
892 void
893 vm_await()
894 {
895 	int s;
896 
897 	s = splvm();
898 	if (curproc == pageproc) {
899 		vm_pageout_pages_needed = 1;
900 		asleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
901 	} else {
902 		if (!vm_pages_needed) {
903 			vm_pages_needed++;
904 			wakeup(&vm_pages_needed);
905 		}
906 		asleep(&cnt.v_free_count, PVM, "vmwait", 0);
907 	}
908 	splx(s);
909 }
910 
911 #if 0
912 /*
913  *	vm_page_sleep:
914  *
915  *	Block until page is no longer busy.
916  */
917 
918 int
919 vm_page_sleep(vm_page_t m, char *msg, char *busy) {
920 	int slept = 0;
921 	if ((busy && *busy) || (m->flags & PG_BUSY)) {
922 		int s;
923 		s = splvm();
924 		if ((busy && *busy) || (m->flags & PG_BUSY)) {
925 			vm_page_flag_set(m, PG_WANTED);
926 			tsleep(m, PVM, msg, 0);
927 			slept = 1;
928 		}
929 		splx(s);
930 	}
931 	return slept;
932 }
933 
934 #endif
935 
936 #if 0
937 
938 /*
939  *	vm_page_asleep:
940  *
941  *	Similar to vm_page_sleep(), but does not block.  Returns 0 if
942  *	the page is not busy, or 1 if the page is busy.
943  *
944  *	This routine has the side effect of calling asleep() if the page
945  *	was busy (1 returned).
946  */
947 
948 int
949 vm_page_asleep(vm_page_t m, char *msg, char *busy) {
950 	int slept = 0;
951 	if ((busy && *busy) || (m->flags & PG_BUSY)) {
952 		int s;
953 		s = splvm();
954 		if ((busy && *busy) || (m->flags & PG_BUSY)) {
955 			vm_page_flag_set(m, PG_WANTED);
956 			asleep(m, PVM, msg, 0);
957 			slept = 1;
958 		}
959 		splx(s);
960 	}
961 	return slept;
962 }
963 
964 #endif
965 
966 /*
967  *	vm_page_activate:
968  *
969  *	Put the specified page on the active list (if appropriate).
970  *	Ensure that act_count is at least ACT_INIT but do not otherwise
971  *	mess with it.
972  *
973  *	The page queues must be locked.
974  *	This routine may not block.
975  */
976 void
977 vm_page_activate(m)
978 	register vm_page_t m;
979 {
980 	int s;
981 
982 	s = splvm();
983 	if (m->queue != PQ_ACTIVE) {
984 		if ((m->queue - m->pc) == PQ_CACHE)
985 			cnt.v_reactivated++;
986 
987 		vm_page_unqueue(m);
988 
989 		if (m->wire_count == 0) {
990 			m->queue = PQ_ACTIVE;
991 			vm_page_queues[PQ_ACTIVE].lcnt++;
992 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
993 			if (m->act_count < ACT_INIT)
994 				m->act_count = ACT_INIT;
995 			cnt.v_active_count++;
996 		}
997 	} else {
998 		if (m->act_count < ACT_INIT)
999 			m->act_count = ACT_INIT;
1000 	}
1001 
1002 	splx(s);
1003 }
1004 
1005 /*
1006  *	vm_page_free_wakeup:
1007  *
1008  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1009  *	routine is called when a page has been added to the cache or free
1010  *	queues.
1011  *
1012  *	This routine may not block.
1013  *	This routine must be called at splvm()
1014  */
1015 static __inline void
1016 vm_page_free_wakeup()
1017 {
1018 	/*
1019 	 * if pageout daemon needs pages, then tell it that there are
1020 	 * some free.
1021 	 */
1022 	if (vm_pageout_pages_needed) {
1023 		wakeup(&vm_pageout_pages_needed);
1024 		vm_pageout_pages_needed = 0;
1025 	}
1026 	/*
1027 	 * wakeup processes that are waiting on memory if we hit a
1028 	 * high water mark. And wakeup scheduler process if we have
1029 	 * lots of memory. this process will swapin processes.
1030 	 */
1031 	if (vm_pages_needed && vm_page_count_min()) {
1032 		wakeup(&cnt.v_free_count);
1033 		vm_pages_needed = 0;
1034 	}
1035 }
1036 
1037 /*
1038  *	vm_page_free_toq:
1039  *
1040  *	Returns the given page to the PQ_FREE list,
1041  *	disassociating it with any VM object.
1042  *
1043  *	Object and page must be locked prior to entry.
1044  *	This routine may not block.
1045  */
1046 
1047 void
1048 vm_page_free_toq(vm_page_t m)
1049 {
1050 	int s;
1051 	struct vpgqueues *pq;
1052 	vm_object_t object = m->object;
1053 
1054 	s = splvm();
1055 
1056 	cnt.v_tfree++;
1057 
1058 #if !defined(MAX_PERF)
1059 	if (m->busy || ((m->queue - m->pc) == PQ_FREE) ||
1060 		(m->hold_count != 0)) {
1061 		printf(
1062 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1063 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1064 		    m->hold_count);
1065 		if ((m->queue - m->pc) == PQ_FREE)
1066 			panic("vm_page_free: freeing free page");
1067 		else
1068 			panic("vm_page_free: freeing busy page");
1069 	}
1070 #endif
1071 
1072 	/*
1073 	 * unqueue, then remove page.  Note that we cannot destroy
1074 	 * the page here because we do not want to call the pager's
1075 	 * callback routine until after we've put the page on the
1076 	 * appropriate free queue.
1077 	 */
1078 
1079 	vm_page_unqueue_nowakeup(m);
1080 	vm_page_remove(m);
1081 
1082 	/*
1083 	 * If fictitious remove object association and
1084 	 * return, otherwise delay object association removal.
1085 	 */
1086 
1087 	if ((m->flags & PG_FICTITIOUS) != 0) {
1088 		splx(s);
1089 		return;
1090 	}
1091 
1092 	m->valid = 0;
1093 	vm_page_undirty(m);
1094 
1095 	if (m->wire_count != 0) {
1096 #if !defined(MAX_PERF)
1097 		if (m->wire_count > 1) {
1098 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1099 				m->wire_count, (long)m->pindex);
1100 		}
1101 #endif
1102 		panic("vm_page_free: freeing wired page\n");
1103 	}
1104 
1105 	/*
1106 	 * If we've exhausted the object's resident pages we want to free
1107 	 * it up.
1108 	 */
1109 
1110 	if (object &&
1111 	    (object->type == OBJT_VNODE) &&
1112 	    ((object->flags & OBJ_DEAD) == 0)
1113 	) {
1114 		struct vnode *vp = (struct vnode *)object->handle;
1115 
1116 		if (vp && VSHOULDFREE(vp)) {
1117 			if ((vp->v_flag & (VTBFREE|VDOOMED|VFREE)) == 0) {
1118 				TAILQ_INSERT_TAIL(&vnode_tobefree_list, vp, v_freelist);
1119 				vp->v_flag |= VTBFREE;
1120 			}
1121 		}
1122 	}
1123 
1124 #ifdef __alpha__
1125 	pmap_page_is_free(m);
1126 #endif
1127 
1128 	m->queue = PQ_FREE + m->pc;
1129 	pq = &vm_page_queues[m->queue];
1130 	pq->lcnt++;
1131 	++(*pq->cnt);
1132 
1133 	/*
1134 	 * Put zero'd pages on the end ( where we look for zero'd pages
1135 	 * first ) and non-zerod pages at the head.
1136 	 */
1137 
1138 	if (m->flags & PG_ZERO) {
1139 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1140 		++vm_page_zero_count;
1141 	} else {
1142 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1143 	}
1144 
1145 	vm_page_free_wakeup();
1146 
1147 	splx(s);
1148 }
1149 
1150 /*
1151  *	vm_page_wire:
1152  *
1153  *	Mark this page as wired down by yet
1154  *	another map, removing it from paging queues
1155  *	as necessary.
1156  *
1157  *	The page queues must be locked.
1158  *	This routine may not block.
1159  */
1160 void
1161 vm_page_wire(m)
1162 	register vm_page_t m;
1163 {
1164 	int s;
1165 
1166 	s = splvm();
1167 	if (m->wire_count == 0) {
1168 		vm_page_unqueue(m);
1169 		cnt.v_wire_count++;
1170 	}
1171 	m->wire_count++;
1172 	splx(s);
1173 	vm_page_flag_set(m, PG_MAPPED);
1174 }
1175 
1176 /*
1177  *	vm_page_unwire:
1178  *
1179  *	Release one wiring of this page, potentially
1180  *	enabling it to be paged again.
1181  *
1182  *	Many pages placed on the inactive queue should actually go
1183  *	into the cache, but it is difficult to figure out which.  What
1184  *	we do instead, if the inactive target is well met, is to put
1185  *	clean pages at the head of the inactive queue instead of the tail.
1186  *	This will cause them to be moved to the cache more quickly and
1187  *	if not actively re-referenced, freed more quickly.  If we just
1188  *	stick these pages at the end of the inactive queue, heavy filesystem
1189  *	meta-data accesses can cause an unnecessary paging load on memory bound
1190  *	processes.  This optimization causes one-time-use metadata to be
1191  *	reused more quickly.
1192  *
1193  *	A number of routines use vm_page_unwire() to guarentee that the page
1194  *	will go into either the inactive or active queues, and will NEVER
1195  *	be placed in the cache - for example, just after dirtying a page.
1196  *	dirty pages in the cache are not allowed.
1197  *
1198  *	The page queues must be locked.
1199  *	This routine may not block.
1200  */
1201 void
1202 vm_page_unwire(m, activate)
1203 	register vm_page_t m;
1204 	int activate;
1205 {
1206 	int s;
1207 
1208 	s = splvm();
1209 
1210 	if (m->wire_count > 0) {
1211 		m->wire_count--;
1212 		if (m->wire_count == 0) {
1213 			cnt.v_wire_count--;
1214 			if (activate) {
1215 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1216 				m->queue = PQ_ACTIVE;
1217 				vm_page_queues[PQ_ACTIVE].lcnt++;
1218 				cnt.v_active_count++;
1219 			} else {
1220 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1221 				m->queue = PQ_INACTIVE;
1222 				vm_page_queues[PQ_INACTIVE].lcnt++;
1223 				cnt.v_inactive_count++;
1224 			}
1225 		}
1226 	} else {
1227 #if !defined(MAX_PERF)
1228 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1229 #endif
1230 	}
1231 	splx(s);
1232 }
1233 
1234 
1235 /*
1236  * Move the specified page to the inactive queue.  If the page has
1237  * any associated swap, the swap is deallocated.
1238  *
1239  * Normally athead is 0 resulting in LRU operation.  athead is set
1240  * to 1 if we want this page to be 'as if it were placed in the cache',
1241  * except without unmapping it from the process address space.
1242  *
1243  * This routine may not block.
1244  */
1245 static __inline void
1246 _vm_page_deactivate(vm_page_t m, int athead)
1247 {
1248 	int s;
1249 
1250 	/*
1251 	 * Ignore if already inactive.
1252 	 */
1253 	if (m->queue == PQ_INACTIVE)
1254 		return;
1255 
1256 	s = splvm();
1257 	if (m->wire_count == 0) {
1258 		if ((m->queue - m->pc) == PQ_CACHE)
1259 			cnt.v_reactivated++;
1260 		vm_page_unqueue(m);
1261 		if (athead)
1262 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1263 		else
1264 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1265 		m->queue = PQ_INACTIVE;
1266 		vm_page_queues[PQ_INACTIVE].lcnt++;
1267 		cnt.v_inactive_count++;
1268 	}
1269 	splx(s);
1270 }
1271 
1272 void
1273 vm_page_deactivate(vm_page_t m)
1274 {
1275     _vm_page_deactivate(m, 0);
1276 }
1277 
1278 /*
1279  * vm_page_cache
1280  *
1281  * Put the specified page onto the page cache queue (if appropriate).
1282  *
1283  * This routine may not block.
1284  */
1285 void
1286 vm_page_cache(m)
1287 	register vm_page_t m;
1288 {
1289 	int s;
1290 
1291 #if !defined(MAX_PERF)
1292 	if ((m->flags & PG_BUSY) || m->busy || m->wire_count) {
1293 		printf("vm_page_cache: attempting to cache busy page\n");
1294 		return;
1295 	}
1296 #endif
1297 	if ((m->queue - m->pc) == PQ_CACHE)
1298 		return;
1299 
1300 	/*
1301 	 * Remove all pmaps and indicate that the page is not
1302 	 * writeable or mapped.
1303 	 */
1304 
1305 	vm_page_protect(m, VM_PROT_NONE);
1306 #if !defined(MAX_PERF)
1307 	if (m->dirty != 0) {
1308 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1309 			(long)m->pindex);
1310 	}
1311 #endif
1312 	s = splvm();
1313 	vm_page_unqueue_nowakeup(m);
1314 	m->queue = PQ_CACHE + m->pc;
1315 	vm_page_queues[m->queue].lcnt++;
1316 	TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1317 	cnt.v_cache_count++;
1318 	vm_page_free_wakeup();
1319 	splx(s);
1320 }
1321 
1322 /*
1323  * vm_page_dontneed
1324  *
1325  *	Cache, deactivate, or do nothing as appropriate.  This routine
1326  *	is typically used by madvise() MADV_DONTNEED.
1327  *
1328  *	Generally speaking we want to move the page into the cache so
1329  *	it gets reused quickly.  However, this can result in a silly syndrome
1330  *	due to the page recycling too quickly.  Small objects will not be
1331  *	fully cached.  On the otherhand, if we move the page to the inactive
1332  *	queue we wind up with a problem whereby very large objects
1333  *	unnecessarily blow away our inactive and cache queues.
1334  *
1335  *	The solution is to move the pages based on a fixed weighting.  We
1336  *	either leave them alone, deactivate them, or move them to the cache,
1337  *	where moving them to the cache has the highest weighting.
1338  *	By forcing some pages into other queues we eventually force the
1339  *	system to balance the queues, potentially recovering other unrelated
1340  *	space from active.  The idea is to not force this to happen too
1341  *	often.
1342  */
1343 
1344 void
1345 vm_page_dontneed(m)
1346 	vm_page_t m;
1347 {
1348 	static int dnweight;
1349 	int dnw;
1350 	int head;
1351 
1352 	dnw = ++dnweight;
1353 
1354 	/*
1355 	 * occassionally leave the page alone
1356 	 */
1357 
1358 	if ((dnw & 0x01F0) == 0 ||
1359 	    m->queue == PQ_INACTIVE ||
1360 	    m->queue - m->pc == PQ_CACHE
1361 	) {
1362 		if (m->act_count >= ACT_INIT)
1363 			--m->act_count;
1364 		return;
1365 	}
1366 
1367 	if (m->dirty == 0)
1368 		vm_page_test_dirty(m);
1369 
1370 	if (m->dirty || (dnw & 0x0070) == 0) {
1371 		/*
1372 		 * Deactivate the page 3 times out of 32.
1373 		 */
1374 		head = 0;
1375 	} else {
1376 		/*
1377 		 * Cache the page 28 times out of every 32.  Note that
1378 		 * the page is deactivated instead of cached, but placed
1379 		 * at the head of the queue instead of the tail.
1380 		 */
1381 		head = 1;
1382 	}
1383 	_vm_page_deactivate(m, head);
1384 }
1385 
1386 /*
1387  * Grab a page, waiting until we are waken up due to the page
1388  * changing state.  We keep on waiting, if the page continues
1389  * to be in the object.  If the page doesn't exist, allocate it.
1390  *
1391  * This routine may block.
1392  */
1393 vm_page_t
1394 vm_page_grab(object, pindex, allocflags)
1395 	vm_object_t object;
1396 	vm_pindex_t pindex;
1397 	int allocflags;
1398 {
1399 
1400 	vm_page_t m;
1401 	int s, generation;
1402 
1403 retrylookup:
1404 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1405 		if (m->busy || (m->flags & PG_BUSY)) {
1406 			generation = object->generation;
1407 
1408 			s = splvm();
1409 			while ((object->generation == generation) &&
1410 					(m->busy || (m->flags & PG_BUSY))) {
1411 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1412 				tsleep(m, PVM, "pgrbwt", 0);
1413 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1414 					splx(s);
1415 					return NULL;
1416 				}
1417 			}
1418 			splx(s);
1419 			goto retrylookup;
1420 		} else {
1421 			vm_page_busy(m);
1422 			return m;
1423 		}
1424 	}
1425 
1426 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1427 	if (m == NULL) {
1428 		VM_WAIT;
1429 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1430 			return NULL;
1431 		goto retrylookup;
1432 	}
1433 
1434 	return m;
1435 }
1436 
1437 /*
1438  * Mapping function for valid bits or for dirty bits in
1439  * a page.  May not block.
1440  *
1441  * Inputs are required to range within a page.
1442  */
1443 
1444 __inline int
1445 vm_page_bits(int base, int size)
1446 {
1447 	int first_bit;
1448 	int last_bit;
1449 
1450 	KASSERT(
1451 	    base + size <= PAGE_SIZE,
1452 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1453 	);
1454 
1455 	if (size == 0)		/* handle degenerate case */
1456 		return(0);
1457 
1458 	first_bit = base >> DEV_BSHIFT;
1459 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1460 
1461 	return ((2 << last_bit) - (1 << first_bit));
1462 }
1463 
1464 /*
1465  *	vm_page_set_validclean:
1466  *
1467  *	Sets portions of a page valid and clean.  The arguments are expected
1468  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1469  *	of any partial chunks touched by the range.  The invalid portion of
1470  *	such chunks will be zero'd.
1471  *
1472  *	This routine may not block.
1473  *
1474  *	(base + size) must be less then or equal to PAGE_SIZE.
1475  */
1476 void
1477 vm_page_set_validclean(m, base, size)
1478 	vm_page_t m;
1479 	int base;
1480 	int size;
1481 {
1482 	int pagebits;
1483 	int frag;
1484 	int endoff;
1485 
1486 	if (size == 0)	/* handle degenerate case */
1487 		return;
1488 
1489 	/*
1490 	 * If the base is not DEV_BSIZE aligned and the valid
1491 	 * bit is clear, we have to zero out a portion of the
1492 	 * first block.
1493 	 */
1494 
1495 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1496 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1497 	) {
1498 		pmap_zero_page_area(
1499 		    VM_PAGE_TO_PHYS(m),
1500 		    frag,
1501 		    base - frag
1502 		);
1503 	}
1504 
1505 	/*
1506 	 * If the ending offset is not DEV_BSIZE aligned and the
1507 	 * valid bit is clear, we have to zero out a portion of
1508 	 * the last block.
1509 	 */
1510 
1511 	endoff = base + size;
1512 
1513 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1514 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1515 	) {
1516 		pmap_zero_page_area(
1517 		    VM_PAGE_TO_PHYS(m),
1518 		    endoff,
1519 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1520 		);
1521 	}
1522 
1523 	/*
1524 	 * Set valid, clear dirty bits.  If validating the entire
1525 	 * page we can safely clear the pmap modify bit.  We also
1526 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1527 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1528 	 * be set again.
1529 	 */
1530 
1531 	pagebits = vm_page_bits(base, size);
1532 	m->valid |= pagebits;
1533 	m->dirty &= ~pagebits;
1534 	if (base == 0 && size == PAGE_SIZE) {
1535 		pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1536 		vm_page_flag_clear(m, PG_NOSYNC);
1537 	}
1538 }
1539 
1540 #if 0
1541 
1542 void
1543 vm_page_set_dirty(m, base, size)
1544 	vm_page_t m;
1545 	int base;
1546 	int size;
1547 {
1548 	m->dirty |= vm_page_bits(base, size);
1549 }
1550 
1551 #endif
1552 
1553 void
1554 vm_page_clear_dirty(m, base, size)
1555 	vm_page_t m;
1556 	int base;
1557 	int size;
1558 {
1559 	m->dirty &= ~vm_page_bits(base, size);
1560 }
1561 
1562 /*
1563  *	vm_page_set_invalid:
1564  *
1565  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1566  *	valid and dirty bits for the effected areas are cleared.
1567  *
1568  *	May not block.
1569  */
1570 void
1571 vm_page_set_invalid(m, base, size)
1572 	vm_page_t m;
1573 	int base;
1574 	int size;
1575 {
1576 	int bits;
1577 
1578 	bits = vm_page_bits(base, size);
1579 	m->valid &= ~bits;
1580 	m->dirty &= ~bits;
1581 	m->object->generation++;
1582 }
1583 
1584 /*
1585  * vm_page_zero_invalid()
1586  *
1587  *	The kernel assumes that the invalid portions of a page contain
1588  *	garbage, but such pages can be mapped into memory by user code.
1589  *	When this occurs, we must zero out the non-valid portions of the
1590  *	page so user code sees what it expects.
1591  *
1592  *	Pages are most often semi-valid when the end of a file is mapped
1593  *	into memory and the file's size is not page aligned.
1594  */
1595 
1596 void
1597 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1598 {
1599 	int b;
1600 	int i;
1601 
1602 	/*
1603 	 * Scan the valid bits looking for invalid sections that
1604 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1605 	 * valid bit may be set ) have already been zerod by
1606 	 * vm_page_set_validclean().
1607 	 */
1608 
1609 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1610 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1611 		    (m->valid & (1 << i))
1612 		) {
1613 			if (i > b) {
1614 				pmap_zero_page_area(
1615 				    VM_PAGE_TO_PHYS(m),
1616 				    b << DEV_BSHIFT,
1617 				    (i - b) << DEV_BSHIFT
1618 				);
1619 			}
1620 			b = i + 1;
1621 		}
1622 	}
1623 
1624 	/*
1625 	 * setvalid is TRUE when we can safely set the zero'd areas
1626 	 * as being valid.  We can do this if there are no cache consistancy
1627 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1628 	 */
1629 
1630 	if (setvalid)
1631 		m->valid = VM_PAGE_BITS_ALL;
1632 }
1633 
1634 /*
1635  *	vm_page_is_valid:
1636  *
1637  *	Is (partial) page valid?  Note that the case where size == 0
1638  *	will return FALSE in the degenerate case where the page is
1639  *	entirely invalid, and TRUE otherwise.
1640  *
1641  *	May not block.
1642  */
1643 
1644 int
1645 vm_page_is_valid(m, base, size)
1646 	vm_page_t m;
1647 	int base;
1648 	int size;
1649 {
1650 	int bits = vm_page_bits(base, size);
1651 
1652 	if (m->valid && ((m->valid & bits) == bits))
1653 		return 1;
1654 	else
1655 		return 0;
1656 }
1657 
1658 /*
1659  * update dirty bits from pmap/mmu.  May not block.
1660  */
1661 
1662 void
1663 vm_page_test_dirty(m)
1664 	vm_page_t m;
1665 {
1666 	if ((m->dirty != VM_PAGE_BITS_ALL) &&
1667 	    pmap_is_modified(VM_PAGE_TO_PHYS(m))) {
1668 		vm_page_dirty(m);
1669 	}
1670 }
1671 
1672 /*
1673  * This interface is for merging with malloc() someday.
1674  * Even if we never implement compaction so that contiguous allocation
1675  * works after initialization time, malloc()'s data structures are good
1676  * for statistics and for allocations of less than a page.
1677  */
1678 void *
1679 contigmalloc1(size, type, flags, low, high, alignment, boundary, map)
1680 	unsigned long size;	/* should be size_t here and for malloc() */
1681 	struct malloc_type *type;
1682 	int flags;
1683 	unsigned long low;
1684 	unsigned long high;
1685 	unsigned long alignment;
1686 	unsigned long boundary;
1687 	vm_map_t map;
1688 {
1689 	int i, s, start;
1690 	vm_offset_t addr, phys, tmp_addr;
1691 	int pass;
1692 	vm_page_t pga = vm_page_array;
1693 
1694 	size = round_page(size);
1695 #if !defined(MAX_PERF)
1696 	if (size == 0)
1697 		panic("contigmalloc1: size must not be 0");
1698 	if ((alignment & (alignment - 1)) != 0)
1699 		panic("contigmalloc1: alignment must be a power of 2");
1700 	if ((boundary & (boundary - 1)) != 0)
1701 		panic("contigmalloc1: boundary must be a power of 2");
1702 #endif
1703 
1704 	start = 0;
1705 	for (pass = 0; pass <= 1; pass++) {
1706 		s = splvm();
1707 again:
1708 		/*
1709 		 * Find first page in array that is free, within range, aligned, and
1710 		 * such that the boundary won't be crossed.
1711 		 */
1712 		for (i = start; i < cnt.v_page_count; i++) {
1713 			int pqtype;
1714 			phys = VM_PAGE_TO_PHYS(&pga[i]);
1715 			pqtype = pga[i].queue - pga[i].pc;
1716 			if (((pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
1717 			    (phys >= low) && (phys < high) &&
1718 			    ((phys & (alignment - 1)) == 0) &&
1719 			    (((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
1720 				break;
1721 		}
1722 
1723 		/*
1724 		 * If the above failed or we will exceed the upper bound, fail.
1725 		 */
1726 		if ((i == cnt.v_page_count) ||
1727 			((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
1728 			vm_page_t m, next;
1729 
1730 again1:
1731 			for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
1732 				m != NULL;
1733 				m = next) {
1734 
1735 				KASSERT(m->queue == PQ_INACTIVE,
1736 					("contigmalloc1: page %p is not PQ_INACTIVE", m));
1737 
1738 				next = TAILQ_NEXT(m, pageq);
1739 				if (vm_page_sleep_busy(m, TRUE, "vpctw0"))
1740 					goto again1;
1741 				vm_page_test_dirty(m);
1742 				if (m->dirty) {
1743 					if (m->object->type == OBJT_VNODE) {
1744 						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1745 						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1746 						VOP_UNLOCK(m->object->handle, 0, curproc);
1747 						goto again1;
1748 					} else if (m->object->type == OBJT_SWAP ||
1749 								m->object->type == OBJT_DEFAULT) {
1750 						vm_pageout_flush(&m, 1, 0);
1751 						goto again1;
1752 					}
1753 				}
1754 				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1755 					vm_page_cache(m);
1756 			}
1757 
1758 			for (m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1759 				m != NULL;
1760 				m = next) {
1761 
1762 				KASSERT(m->queue == PQ_ACTIVE,
1763 					("contigmalloc1: page %p is not PQ_ACTIVE", m));
1764 
1765 				next = TAILQ_NEXT(m, pageq);
1766 				if (vm_page_sleep_busy(m, TRUE, "vpctw1"))
1767 					goto again1;
1768 				vm_page_test_dirty(m);
1769 				if (m->dirty) {
1770 					if (m->object->type == OBJT_VNODE) {
1771 						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1772 						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1773 						VOP_UNLOCK(m->object->handle, 0, curproc);
1774 						goto again1;
1775 					} else if (m->object->type == OBJT_SWAP ||
1776 								m->object->type == OBJT_DEFAULT) {
1777 						vm_pageout_flush(&m, 1, 0);
1778 						goto again1;
1779 					}
1780 				}
1781 				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1782 					vm_page_cache(m);
1783 			}
1784 
1785 			splx(s);
1786 			continue;
1787 		}
1788 		start = i;
1789 
1790 		/*
1791 		 * Check successive pages for contiguous and free.
1792 		 */
1793 		for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
1794 			int pqtype;
1795 			pqtype = pga[i].queue - pga[i].pc;
1796 			if ((VM_PAGE_TO_PHYS(&pga[i]) !=
1797 			    (VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
1798 			    ((pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
1799 				start++;
1800 				goto again;
1801 			}
1802 		}
1803 
1804 		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1805 			int pqtype;
1806 			vm_page_t m = &pga[i];
1807 
1808 			pqtype = m->queue - m->pc;
1809 			if (pqtype == PQ_CACHE) {
1810 				vm_page_busy(m);
1811 				vm_page_free(m);
1812 			}
1813 
1814 			TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
1815 			vm_page_queues[m->queue].lcnt--;
1816 			cnt.v_free_count--;
1817 			m->valid = VM_PAGE_BITS_ALL;
1818 			m->flags = 0;
1819 			KASSERT(m->dirty == 0, ("contigmalloc1: page %p was dirty", m));
1820 			m->wire_count = 0;
1821 			m->busy = 0;
1822 			m->queue = PQ_NONE;
1823 			m->object = NULL;
1824 			vm_page_wire(m);
1825 		}
1826 
1827 		/*
1828 		 * We've found a contiguous chunk that meets are requirements.
1829 		 * Allocate kernel VM, unfree and assign the physical pages to it and
1830 		 * return kernel VM pointer.
1831 		 */
1832 		tmp_addr = addr = kmem_alloc_pageable(map, size);
1833 		if (addr == 0) {
1834 			/*
1835 			 * XXX We almost never run out of kernel virtual
1836 			 * space, so we don't make the allocated memory
1837 			 * above available.
1838 			 */
1839 			splx(s);
1840 			return (NULL);
1841 		}
1842 
1843 		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1844 			vm_page_t m = &pga[i];
1845 			vm_page_insert(m, kernel_object,
1846 				OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
1847 			pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
1848 			tmp_addr += PAGE_SIZE;
1849 		}
1850 
1851 		splx(s);
1852 		return ((void *)addr);
1853 	}
1854 	return NULL;
1855 }
1856 
1857 void *
1858 contigmalloc(size, type, flags, low, high, alignment, boundary)
1859 	unsigned long size;	/* should be size_t here and for malloc() */
1860 	struct malloc_type *type;
1861 	int flags;
1862 	unsigned long low;
1863 	unsigned long high;
1864 	unsigned long alignment;
1865 	unsigned long boundary;
1866 {
1867 	return contigmalloc1(size, type, flags, low, high, alignment, boundary,
1868 			     kernel_map);
1869 }
1870 
1871 void
1872 contigfree(addr, size, type)
1873 	void *addr;
1874 	unsigned long size;
1875 	struct malloc_type *type;
1876 {
1877 	kmem_free(kernel_map, (vm_offset_t)addr, size);
1878 }
1879 
1880 vm_offset_t
1881 vm_page_alloc_contig(size, low, high, alignment)
1882 	vm_offset_t size;
1883 	vm_offset_t low;
1884 	vm_offset_t high;
1885 	vm_offset_t alignment;
1886 {
1887 	return ((vm_offset_t)contigmalloc1(size, M_DEVBUF, M_NOWAIT, low, high,
1888 					  alignment, 0ul, kernel_map));
1889 }
1890 
1891 #include "opt_ddb.h"
1892 #ifdef DDB
1893 #include <sys/kernel.h>
1894 
1895 #include <ddb/ddb.h>
1896 
1897 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1898 {
1899 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1900 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1901 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1902 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1903 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1904 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1905 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1906 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1907 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1908 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1909 }
1910 
1911 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1912 {
1913 	int i;
1914 	db_printf("PQ_FREE:");
1915 	for(i=0;i<PQ_L2_SIZE;i++) {
1916 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1917 	}
1918 	db_printf("\n");
1919 
1920 	db_printf("PQ_CACHE:");
1921 	for(i=0;i<PQ_L2_SIZE;i++) {
1922 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1923 	}
1924 	db_printf("\n");
1925 
1926 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1927 		vm_page_queues[PQ_ACTIVE].lcnt,
1928 		vm_page_queues[PQ_INACTIVE].lcnt);
1929 }
1930 #endif /* DDB */
1931