1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * The Mach Operating System project at Carnegie-Mellon University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 /*- 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Resident memory management module. 65 */ 66 67 #include <sys/cdefs.h> 68 #include "opt_vm.h" 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/counter.h> 73 #include <sys/domainset.h> 74 #include <sys/kernel.h> 75 #include <sys/limits.h> 76 #include <sys/linker.h> 77 #include <sys/lock.h> 78 #include <sys/malloc.h> 79 #include <sys/mman.h> 80 #include <sys/msgbuf.h> 81 #include <sys/mutex.h> 82 #include <sys/proc.h> 83 #include <sys/rwlock.h> 84 #include <sys/sleepqueue.h> 85 #include <sys/sbuf.h> 86 #include <sys/sched.h> 87 #include <sys/smp.h> 88 #include <sys/sysctl.h> 89 #include <sys/vmmeter.h> 90 #include <sys/vnode.h> 91 92 #include <vm/vm.h> 93 #include <vm/pmap.h> 94 #include <vm/vm_param.h> 95 #include <vm/vm_domainset.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_map.h> 98 #include <vm/vm_object.h> 99 #include <vm/vm_page.h> 100 #include <vm/vm_pageout.h> 101 #include <vm/vm_phys.h> 102 #include <vm/vm_pagequeue.h> 103 #include <vm/vm_pager.h> 104 #include <vm/vm_radix.h> 105 #include <vm/vm_reserv.h> 106 #include <vm/vm_extern.h> 107 #include <vm/vm_dumpset.h> 108 #include <vm/uma.h> 109 #include <vm/uma_int.h> 110 111 #include <machine/md_var.h> 112 113 struct vm_domain vm_dom[MAXMEMDOM]; 114 115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]); 116 117 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT]; 118 119 struct mtx_padalign __exclusive_cache_line vm_domainset_lock; 120 /* The following fields are protected by the domainset lock. */ 121 domainset_t __exclusive_cache_line vm_min_domains; 122 domainset_t __exclusive_cache_line vm_severe_domains; 123 static int vm_min_waiters; 124 static int vm_severe_waiters; 125 static int vm_pageproc_waiters; 126 127 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 128 "VM page statistics"); 129 130 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries); 131 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries, 132 CTLFLAG_RD, &pqstate_commit_retries, 133 "Number of failed per-page atomic queue state updates"); 134 135 static COUNTER_U64_DEFINE_EARLY(queue_ops); 136 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops, 137 CTLFLAG_RD, &queue_ops, 138 "Number of batched queue operations"); 139 140 static COUNTER_U64_DEFINE_EARLY(queue_nops); 141 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops, 142 CTLFLAG_RD, &queue_nops, 143 "Number of batched queue operations with no effects"); 144 145 /* 146 * bogus page -- for I/O to/from partially complete buffers, 147 * or for paging into sparsely invalid regions. 148 */ 149 vm_page_t bogus_page; 150 151 vm_page_t vm_page_array; 152 long vm_page_array_size; 153 long first_page; 154 155 struct bitset *vm_page_dump; 156 long vm_page_dump_pages; 157 158 static TAILQ_HEAD(, vm_page) blacklist_head; 159 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); 160 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | 161 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); 162 163 static uma_zone_t fakepg_zone; 164 165 static void vm_page_alloc_check(vm_page_t m); 166 static vm_page_t vm_page_alloc_nofree_domain(int domain, int req); 167 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, 168 vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked); 169 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 170 static void vm_page_enqueue(vm_page_t m, uint8_t queue); 171 static bool vm_page_free_prep(vm_page_t m); 172 static void vm_page_free_toq(vm_page_t m); 173 static void vm_page_init(void *dummy); 174 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 175 vm_pindex_t pindex, vm_page_t mpred); 176 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 177 vm_page_t mpred); 178 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue, 179 const uint16_t nflag); 180 static int vm_page_reclaim_run(int req_class, int domain, u_long npages, 181 vm_page_t m_run, vm_paddr_t high); 182 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse); 183 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, 184 int req); 185 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain, 186 int flags); 187 static void vm_page_zone_release(void *arg, void **store, int cnt); 188 189 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL); 190 191 static void 192 vm_page_init(void *dummy) 193 { 194 195 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 196 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 197 bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_NOFREE); 198 } 199 200 static int pgcache_zone_max_pcpu; 201 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu, 202 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0, 203 "Per-CPU page cache size"); 204 205 /* 206 * The cache page zone is initialized later since we need to be able to allocate 207 * pages before UMA is fully initialized. 208 */ 209 static void 210 vm_page_init_cache_zones(void *dummy __unused) 211 { 212 struct vm_domain *vmd; 213 struct vm_pgcache *pgcache; 214 int cache, domain, maxcache, pool; 215 216 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu); 217 maxcache = pgcache_zone_max_pcpu * mp_ncpus; 218 for (domain = 0; domain < vm_ndomains; domain++) { 219 vmd = VM_DOMAIN(domain); 220 for (pool = 0; pool < VM_NFREEPOOL; pool++) { 221 pgcache = &vmd->vmd_pgcache[pool]; 222 pgcache->domain = domain; 223 pgcache->pool = pool; 224 pgcache->zone = uma_zcache_create("vm pgcache", 225 PAGE_SIZE, NULL, NULL, NULL, NULL, 226 vm_page_zone_import, vm_page_zone_release, pgcache, 227 UMA_ZONE_VM); 228 229 /* 230 * Limit each pool's zone to 0.1% of the pages in the 231 * domain. 232 */ 233 cache = maxcache != 0 ? maxcache : 234 vmd->vmd_page_count / 1000; 235 uma_zone_set_maxcache(pgcache->zone, cache); 236 } 237 } 238 } 239 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL); 240 241 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 242 #if PAGE_SIZE == 32768 243 #ifdef CTASSERT 244 CTASSERT(sizeof(u_long) >= 8); 245 #endif 246 #endif 247 248 /* 249 * vm_set_page_size: 250 * 251 * Sets the page size, perhaps based upon the memory 252 * size. Must be called before any use of page-size 253 * dependent functions. 254 */ 255 void 256 vm_set_page_size(void) 257 { 258 if (vm_cnt.v_page_size == 0) 259 vm_cnt.v_page_size = PAGE_SIZE; 260 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 261 panic("vm_set_page_size: page size not a power of two"); 262 } 263 264 /* 265 * vm_page_blacklist_next: 266 * 267 * Find the next entry in the provided string of blacklist 268 * addresses. Entries are separated by space, comma, or newline. 269 * If an invalid integer is encountered then the rest of the 270 * string is skipped. Updates the list pointer to the next 271 * character, or NULL if the string is exhausted or invalid. 272 */ 273 static vm_paddr_t 274 vm_page_blacklist_next(char **list, char *end) 275 { 276 vm_paddr_t bad; 277 char *cp, *pos; 278 279 if (list == NULL || *list == NULL) 280 return (0); 281 if (**list =='\0') { 282 *list = NULL; 283 return (0); 284 } 285 286 /* 287 * If there's no end pointer then the buffer is coming from 288 * the kenv and we know it's null-terminated. 289 */ 290 if (end == NULL) 291 end = *list + strlen(*list); 292 293 /* Ensure that strtoq() won't walk off the end */ 294 if (*end != '\0') { 295 if (*end == '\n' || *end == ' ' || *end == ',') 296 *end = '\0'; 297 else { 298 printf("Blacklist not terminated, skipping\n"); 299 *list = NULL; 300 return (0); 301 } 302 } 303 304 for (pos = *list; *pos != '\0'; pos = cp) { 305 bad = strtoq(pos, &cp, 0); 306 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { 307 if (bad == 0) { 308 if (++cp < end) 309 continue; 310 else 311 break; 312 } 313 } else 314 break; 315 if (*cp == '\0' || ++cp >= end) 316 *list = NULL; 317 else 318 *list = cp; 319 return (trunc_page(bad)); 320 } 321 printf("Garbage in RAM blacklist, skipping\n"); 322 *list = NULL; 323 return (0); 324 } 325 326 bool 327 vm_page_blacklist_add(vm_paddr_t pa, bool verbose) 328 { 329 struct vm_domain *vmd; 330 vm_page_t m; 331 bool found; 332 333 m = vm_phys_paddr_to_vm_page(pa); 334 if (m == NULL) 335 return (true); /* page does not exist, no failure */ 336 337 vmd = VM_DOMAIN(vm_phys_domain(pa)); 338 vm_domain_free_lock(vmd); 339 found = vm_phys_unfree_page(pa); 340 vm_domain_free_unlock(vmd); 341 if (found) { 342 vm_domain_freecnt_inc(vmd, -1); 343 TAILQ_INSERT_TAIL(&blacklist_head, m, listq); 344 if (verbose) 345 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa); 346 } 347 return (found); 348 } 349 350 /* 351 * vm_page_blacklist_check: 352 * 353 * Iterate through the provided string of blacklist addresses, pulling 354 * each entry out of the physical allocator free list and putting it 355 * onto a list for reporting via the vm.page_blacklist sysctl. 356 */ 357 static void 358 vm_page_blacklist_check(char *list, char *end) 359 { 360 vm_paddr_t pa; 361 char *next; 362 363 next = list; 364 while (next != NULL) { 365 if ((pa = vm_page_blacklist_next(&next, end)) == 0) 366 continue; 367 vm_page_blacklist_add(pa, bootverbose); 368 } 369 } 370 371 /* 372 * vm_page_blacklist_load: 373 * 374 * Search for a special module named "ram_blacklist". It'll be a 375 * plain text file provided by the user via the loader directive 376 * of the same name. 377 */ 378 static void 379 vm_page_blacklist_load(char **list, char **end) 380 { 381 void *mod; 382 u_char *ptr; 383 u_int len; 384 385 mod = NULL; 386 ptr = NULL; 387 388 mod = preload_search_by_type("ram_blacklist"); 389 if (mod != NULL) { 390 ptr = preload_fetch_addr(mod); 391 len = preload_fetch_size(mod); 392 } 393 *list = ptr; 394 if (ptr != NULL) 395 *end = ptr + len; 396 else 397 *end = NULL; 398 return; 399 } 400 401 static int 402 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) 403 { 404 vm_page_t m; 405 struct sbuf sbuf; 406 int error, first; 407 408 first = 1; 409 error = sysctl_wire_old_buffer(req, 0); 410 if (error != 0) 411 return (error); 412 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 413 TAILQ_FOREACH(m, &blacklist_head, listq) { 414 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", 415 (uintmax_t)m->phys_addr); 416 first = 0; 417 } 418 error = sbuf_finish(&sbuf); 419 sbuf_delete(&sbuf); 420 return (error); 421 } 422 423 /* 424 * Initialize a dummy page for use in scans of the specified paging queue. 425 * In principle, this function only needs to set the flag PG_MARKER. 426 * Nonetheless, it write busies the page as a safety precaution. 427 */ 428 void 429 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags) 430 { 431 432 bzero(marker, sizeof(*marker)); 433 marker->flags = PG_MARKER; 434 marker->a.flags = aflags; 435 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 436 marker->a.queue = queue; 437 } 438 439 static void 440 vm_page_domain_init(int domain) 441 { 442 struct vm_domain *vmd; 443 struct vm_pagequeue *pq; 444 int i; 445 446 vmd = VM_DOMAIN(domain); 447 bzero(vmd, sizeof(*vmd)); 448 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 449 "vm inactive pagequeue"; 450 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 451 "vm active pagequeue"; 452 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) = 453 "vm laundry pagequeue"; 454 *__DECONST(const char **, 455 &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) = 456 "vm unswappable pagequeue"; 457 vmd->vmd_domain = domain; 458 vmd->vmd_page_count = 0; 459 vmd->vmd_free_count = 0; 460 vmd->vmd_segs = 0; 461 vmd->vmd_oom = FALSE; 462 for (i = 0; i < PQ_COUNT; i++) { 463 pq = &vmd->vmd_pagequeues[i]; 464 TAILQ_INIT(&pq->pq_pl); 465 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 466 MTX_DEF | MTX_DUPOK); 467 pq->pq_pdpages = 0; 468 vm_page_init_marker(&vmd->vmd_markers[i], i, 0); 469 } 470 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF); 471 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF); 472 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain); 473 474 /* 475 * inacthead is used to provide FIFO ordering for LRU-bypassing 476 * insertions. 477 */ 478 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED); 479 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl, 480 &vmd->vmd_inacthead, plinks.q); 481 482 /* 483 * The clock pages are used to implement active queue scanning without 484 * requeues. Scans start at clock[0], which is advanced after the scan 485 * ends. When the two clock hands meet, they are reset and scanning 486 * resumes from the head of the queue. 487 */ 488 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED); 489 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED); 490 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 491 &vmd->vmd_clock[0], plinks.q); 492 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 493 &vmd->vmd_clock[1], plinks.q); 494 } 495 496 /* 497 * Initialize a physical page in preparation for adding it to the free 498 * lists. 499 */ 500 void 501 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool) 502 { 503 m->object = NULL; 504 m->ref_count = 0; 505 m->busy_lock = VPB_FREED; 506 m->flags = m->a.flags = 0; 507 m->phys_addr = pa; 508 m->a.queue = PQ_NONE; 509 m->psind = 0; 510 m->segind = segind; 511 m->order = VM_NFREEORDER; 512 m->pool = pool; 513 m->valid = m->dirty = 0; 514 pmap_page_init(m); 515 } 516 517 #ifndef PMAP_HAS_PAGE_ARRAY 518 static vm_paddr_t 519 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range) 520 { 521 vm_paddr_t new_end; 522 523 /* 524 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 525 * However, because this page is allocated from KVM, out-of-bounds 526 * accesses using the direct map will not be trapped. 527 */ 528 *vaddr += PAGE_SIZE; 529 530 /* 531 * Allocate physical memory for the page structures, and map it. 532 */ 533 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 534 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end, 535 VM_PROT_READ | VM_PROT_WRITE); 536 vm_page_array_size = page_range; 537 538 return (new_end); 539 } 540 #endif 541 542 /* 543 * vm_page_startup: 544 * 545 * Initializes the resident memory module. Allocates physical memory for 546 * bootstrapping UMA and some data structures that are used to manage 547 * physical pages. Initializes these structures, and populates the free 548 * page queues. 549 */ 550 vm_offset_t 551 vm_page_startup(vm_offset_t vaddr) 552 { 553 struct vm_phys_seg *seg; 554 struct vm_domain *vmd; 555 vm_page_t m; 556 char *list, *listend; 557 vm_paddr_t end, high_avail, low_avail, new_end, size; 558 vm_paddr_t page_range __unused; 559 vm_paddr_t last_pa, pa, startp, endp; 560 u_long pagecount; 561 #if MINIDUMP_PAGE_TRACKING 562 u_long vm_page_dump_size; 563 #endif 564 int biggestone, i, segind; 565 #ifdef WITNESS 566 vm_offset_t mapped; 567 int witness_size; 568 #endif 569 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 570 long ii; 571 #endif 572 #ifdef VM_FREEPOOL_LAZYINIT 573 int lazyinit; 574 #endif 575 576 vaddr = round_page(vaddr); 577 578 vm_phys_early_startup(); 579 biggestone = vm_phys_avail_largest(); 580 end = phys_avail[biggestone+1]; 581 582 /* 583 * Initialize the page and queue locks. 584 */ 585 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF); 586 for (i = 0; i < PA_LOCK_COUNT; i++) 587 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 588 for (i = 0; i < vm_ndomains; i++) 589 vm_page_domain_init(i); 590 591 new_end = end; 592 #ifdef WITNESS 593 witness_size = round_page(witness_startup_count()); 594 new_end -= witness_size; 595 mapped = pmap_map(&vaddr, new_end, new_end + witness_size, 596 VM_PROT_READ | VM_PROT_WRITE); 597 bzero((void *)mapped, witness_size); 598 witness_startup((void *)mapped); 599 #endif 600 601 #if MINIDUMP_PAGE_TRACKING 602 /* 603 * Allocate a bitmap to indicate that a random physical page 604 * needs to be included in a minidump. 605 * 606 * The amd64 port needs this to indicate which direct map pages 607 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 608 * 609 * However, i386 still needs this workspace internally within the 610 * minidump code. In theory, they are not needed on i386, but are 611 * included should the sf_buf code decide to use them. 612 */ 613 last_pa = 0; 614 vm_page_dump_pages = 0; 615 for (i = 0; dump_avail[i + 1] != 0; i += 2) { 616 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) - 617 dump_avail[i] / PAGE_SIZE; 618 if (dump_avail[i + 1] > last_pa) 619 last_pa = dump_avail[i + 1]; 620 } 621 vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages)); 622 new_end -= vm_page_dump_size; 623 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 624 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 625 bzero((void *)vm_page_dump, vm_page_dump_size); 626 #if MINIDUMP_STARTUP_PAGE_TRACKING 627 /* 628 * Include the UMA bootstrap pages, witness pages and vm_page_dump 629 * in a crash dump. When pmap_map() uses the direct map, they are 630 * not automatically included. 631 */ 632 for (pa = new_end; pa < end; pa += PAGE_SIZE) 633 dump_add_page(pa); 634 #endif 635 #else 636 (void)last_pa; 637 #endif 638 phys_avail[biggestone + 1] = new_end; 639 #ifdef __amd64__ 640 /* 641 * Request that the physical pages underlying the message buffer be 642 * included in a crash dump. Since the message buffer is accessed 643 * through the direct map, they are not automatically included. 644 */ 645 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 646 last_pa = pa + round_page(msgbufsize); 647 while (pa < last_pa) { 648 dump_add_page(pa); 649 pa += PAGE_SIZE; 650 } 651 #endif 652 /* 653 * Compute the number of pages of memory that will be available for 654 * use, taking into account the overhead of a page structure per page. 655 * In other words, solve 656 * "available physical memory" - round_page(page_range * 657 * sizeof(struct vm_page)) = page_range * PAGE_SIZE 658 * for page_range. 659 */ 660 low_avail = phys_avail[0]; 661 high_avail = phys_avail[1]; 662 for (i = 0; i < vm_phys_nsegs; i++) { 663 if (vm_phys_segs[i].start < low_avail) 664 low_avail = vm_phys_segs[i].start; 665 if (vm_phys_segs[i].end > high_avail) 666 high_avail = vm_phys_segs[i].end; 667 } 668 /* Skip the first chunk. It is already accounted for. */ 669 for (i = 2; phys_avail[i + 1] != 0; i += 2) { 670 if (phys_avail[i] < low_avail) 671 low_avail = phys_avail[i]; 672 if (phys_avail[i + 1] > high_avail) 673 high_avail = phys_avail[i + 1]; 674 } 675 first_page = low_avail / PAGE_SIZE; 676 #ifdef VM_PHYSSEG_SPARSE 677 size = 0; 678 for (i = 0; i < vm_phys_nsegs; i++) 679 size += vm_phys_segs[i].end - vm_phys_segs[i].start; 680 for (i = 0; phys_avail[i + 1] != 0; i += 2) 681 size += phys_avail[i + 1] - phys_avail[i]; 682 #elif defined(VM_PHYSSEG_DENSE) 683 size = high_avail - low_avail; 684 #else 685 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 686 #endif 687 688 #ifdef PMAP_HAS_PAGE_ARRAY 689 pmap_page_array_startup(size / PAGE_SIZE); 690 biggestone = vm_phys_avail_largest(); 691 end = new_end = phys_avail[biggestone + 1]; 692 #else 693 #ifdef VM_PHYSSEG_DENSE 694 /* 695 * In the VM_PHYSSEG_DENSE case, the number of pages can account for 696 * the overhead of a page structure per page only if vm_page_array is 697 * allocated from the last physical memory chunk. Otherwise, we must 698 * allocate page structures representing the physical memory 699 * underlying vm_page_array, even though they will not be used. 700 */ 701 if (new_end != high_avail) 702 page_range = size / PAGE_SIZE; 703 else 704 #endif 705 { 706 page_range = size / (PAGE_SIZE + sizeof(struct vm_page)); 707 708 /* 709 * If the partial bytes remaining are large enough for 710 * a page (PAGE_SIZE) without a corresponding 711 * 'struct vm_page', then new_end will contain an 712 * extra page after subtracting the length of the VM 713 * page array. Compensate by subtracting an extra 714 * page from new_end. 715 */ 716 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) { 717 if (new_end == high_avail) 718 high_avail -= PAGE_SIZE; 719 new_end -= PAGE_SIZE; 720 } 721 } 722 end = new_end; 723 new_end = vm_page_array_alloc(&vaddr, end, page_range); 724 #endif 725 726 #if VM_NRESERVLEVEL > 0 727 /* 728 * Allocate physical memory for the reservation management system's 729 * data structures, and map it. 730 */ 731 new_end = vm_reserv_startup(&vaddr, new_end); 732 #endif 733 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING 734 /* 735 * Include vm_page_array and vm_reserv_array in a crash dump. 736 */ 737 for (pa = new_end; pa < end; pa += PAGE_SIZE) 738 dump_add_page(pa); 739 #endif 740 phys_avail[biggestone + 1] = new_end; 741 742 /* 743 * Add physical memory segments corresponding to the available 744 * physical pages. 745 */ 746 for (i = 0; phys_avail[i + 1] != 0; i += 2) 747 if (vm_phys_avail_size(i) != 0) 748 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 749 750 /* 751 * Initialize the physical memory allocator. 752 */ 753 vm_phys_init(); 754 755 #ifdef VM_FREEPOOL_LAZYINIT 756 lazyinit = 1; 757 TUNABLE_INT_FETCH("debug.vm.lazy_page_init", &lazyinit); 758 #endif 759 760 /* 761 * Initialize the page structures and add every available page to the 762 * physical memory allocator's free lists. 763 */ 764 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 765 for (ii = 0; ii < vm_page_array_size; ii++) { 766 m = &vm_page_array[ii]; 767 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0, 768 VM_FREEPOOL_DEFAULT); 769 m->flags = PG_FICTITIOUS; 770 } 771 #endif 772 vm_cnt.v_page_count = 0; 773 for (segind = 0; segind < vm_phys_nsegs; segind++) { 774 seg = &vm_phys_segs[segind]; 775 776 /* 777 * If lazy vm_page initialization is not enabled, simply 778 * initialize all of the pages in the segment. Otherwise, we 779 * only initialize: 780 * 1. Pages not covered by phys_avail[], since they might be 781 * freed to the allocator at some future point, e.g., by 782 * kmem_bootstrap_free(). 783 * 2. The first page of each run of free pages handed to the 784 * vm_phys allocator, which in turn defers initialization 785 * of pages until they are needed. 786 * This avoids blocking the boot process for long periods, which 787 * may be relevant for VMs (which ought to boot as quickly as 788 * possible) and/or systems with large amounts of physical 789 * memory. 790 */ 791 #ifdef VM_FREEPOOL_LAZYINIT 792 if (lazyinit) { 793 startp = seg->start; 794 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 795 if (startp >= seg->end) 796 break; 797 798 if (phys_avail[i + 1] < startp) 799 continue; 800 if (phys_avail[i] <= startp) { 801 startp = phys_avail[i + 1]; 802 continue; 803 } 804 805 m = vm_phys_seg_paddr_to_vm_page(seg, startp); 806 for (endp = MIN(phys_avail[i], seg->end); 807 startp < endp; startp += PAGE_SIZE, m++) { 808 vm_page_init_page(m, startp, segind, 809 VM_FREEPOOL_DEFAULT); 810 } 811 } 812 } else 813 #endif 814 for (m = seg->first_page, pa = seg->start; 815 pa < seg->end; m++, pa += PAGE_SIZE) { 816 vm_page_init_page(m, pa, segind, 817 VM_FREEPOOL_DEFAULT); 818 } 819 820 /* 821 * Add the segment's pages that are covered by one of 822 * phys_avail's ranges to the free lists. 823 */ 824 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 825 if (seg->end <= phys_avail[i] || 826 seg->start >= phys_avail[i + 1]) 827 continue; 828 829 startp = MAX(seg->start, phys_avail[i]); 830 endp = MIN(seg->end, phys_avail[i + 1]); 831 pagecount = (u_long)atop(endp - startp); 832 if (pagecount == 0) 833 continue; 834 835 m = vm_phys_seg_paddr_to_vm_page(seg, startp); 836 #ifdef VM_FREEPOOL_LAZYINIT 837 if (lazyinit) { 838 vm_page_init_page(m, startp, segind, 839 VM_FREEPOOL_LAZYINIT); 840 } 841 #endif 842 vmd = VM_DOMAIN(seg->domain); 843 vm_domain_free_lock(vmd); 844 vm_phys_enqueue_contig(m, pagecount); 845 vm_domain_free_unlock(vmd); 846 vm_domain_freecnt_inc(vmd, pagecount); 847 vm_cnt.v_page_count += (u_int)pagecount; 848 vmd->vmd_page_count += (u_int)pagecount; 849 vmd->vmd_segs |= 1UL << segind; 850 } 851 } 852 853 /* 854 * Remove blacklisted pages from the physical memory allocator. 855 */ 856 TAILQ_INIT(&blacklist_head); 857 vm_page_blacklist_load(&list, &listend); 858 vm_page_blacklist_check(list, listend); 859 860 list = kern_getenv("vm.blacklist"); 861 vm_page_blacklist_check(list, NULL); 862 863 freeenv(list); 864 #if VM_NRESERVLEVEL > 0 865 /* 866 * Initialize the reservation management system. 867 */ 868 vm_reserv_init(); 869 #endif 870 871 return (vaddr); 872 } 873 874 void 875 vm_page_reference(vm_page_t m) 876 { 877 878 vm_page_aflag_set(m, PGA_REFERENCED); 879 } 880 881 /* 882 * vm_page_trybusy 883 * 884 * Helper routine for grab functions to trylock busy. 885 * 886 * Returns true on success and false on failure. 887 */ 888 static bool 889 vm_page_trybusy(vm_page_t m, int allocflags) 890 { 891 892 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0) 893 return (vm_page_trysbusy(m)); 894 else 895 return (vm_page_tryxbusy(m)); 896 } 897 898 /* 899 * vm_page_tryacquire 900 * 901 * Helper routine for grab functions to trylock busy and wire. 902 * 903 * Returns true on success and false on failure. 904 */ 905 static inline bool 906 vm_page_tryacquire(vm_page_t m, int allocflags) 907 { 908 bool locked; 909 910 locked = vm_page_trybusy(m, allocflags); 911 if (locked && (allocflags & VM_ALLOC_WIRED) != 0) 912 vm_page_wire(m); 913 return (locked); 914 } 915 916 /* 917 * vm_page_busy_acquire: 918 * 919 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop 920 * and drop the object lock if necessary. 921 */ 922 bool 923 vm_page_busy_acquire(vm_page_t m, int allocflags) 924 { 925 vm_object_t obj; 926 bool locked; 927 928 /* 929 * The page-specific object must be cached because page 930 * identity can change during the sleep, causing the 931 * re-lock of a different object. 932 * It is assumed that a reference to the object is already 933 * held by the callers. 934 */ 935 obj = atomic_load_ptr(&m->object); 936 for (;;) { 937 if (vm_page_tryacquire(m, allocflags)) 938 return (true); 939 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 940 return (false); 941 if (obj != NULL) 942 locked = VM_OBJECT_WOWNED(obj); 943 else 944 locked = false; 945 MPASS(locked || vm_page_wired(m)); 946 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags, 947 locked) && locked) 948 VM_OBJECT_WLOCK(obj); 949 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 950 return (false); 951 KASSERT(m->object == obj || m->object == NULL, 952 ("vm_page_busy_acquire: page %p does not belong to %p", 953 m, obj)); 954 } 955 } 956 957 /* 958 * vm_page_busy_downgrade: 959 * 960 * Downgrade an exclusive busy page into a single shared busy page. 961 */ 962 void 963 vm_page_busy_downgrade(vm_page_t m) 964 { 965 u_int x; 966 967 vm_page_assert_xbusied(m); 968 969 x = vm_page_busy_fetch(m); 970 for (;;) { 971 if (atomic_fcmpset_rel_int(&m->busy_lock, 972 &x, VPB_SHARERS_WORD(1))) 973 break; 974 } 975 if ((x & VPB_BIT_WAITERS) != 0) 976 wakeup(m); 977 } 978 979 /* 980 * 981 * vm_page_busy_tryupgrade: 982 * 983 * Attempt to upgrade a single shared busy into an exclusive busy. 984 */ 985 int 986 vm_page_busy_tryupgrade(vm_page_t m) 987 { 988 u_int ce, x; 989 990 vm_page_assert_sbusied(m); 991 992 x = vm_page_busy_fetch(m); 993 ce = VPB_CURTHREAD_EXCLUSIVE; 994 for (;;) { 995 if (VPB_SHARERS(x) > 1) 996 return (0); 997 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 998 ("vm_page_busy_tryupgrade: invalid lock state")); 999 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x, 1000 ce | (x & VPB_BIT_WAITERS))) 1001 continue; 1002 return (1); 1003 } 1004 } 1005 1006 /* 1007 * vm_page_sbusied: 1008 * 1009 * Return a positive value if the page is shared busied, 0 otherwise. 1010 */ 1011 int 1012 vm_page_sbusied(vm_page_t m) 1013 { 1014 u_int x; 1015 1016 x = vm_page_busy_fetch(m); 1017 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 1018 } 1019 1020 /* 1021 * vm_page_sunbusy: 1022 * 1023 * Shared unbusy a page. 1024 */ 1025 void 1026 vm_page_sunbusy(vm_page_t m) 1027 { 1028 u_int x; 1029 1030 vm_page_assert_sbusied(m); 1031 1032 x = vm_page_busy_fetch(m); 1033 for (;;) { 1034 KASSERT(x != VPB_FREED, 1035 ("vm_page_sunbusy: Unlocking freed page.")); 1036 if (VPB_SHARERS(x) > 1) { 1037 if (atomic_fcmpset_int(&m->busy_lock, &x, 1038 x - VPB_ONE_SHARER)) 1039 break; 1040 continue; 1041 } 1042 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 1043 ("vm_page_sunbusy: invalid lock state")); 1044 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED)) 1045 continue; 1046 if ((x & VPB_BIT_WAITERS) == 0) 1047 break; 1048 wakeup(m); 1049 break; 1050 } 1051 } 1052 1053 /* 1054 * vm_page_busy_sleep: 1055 * 1056 * Sleep if the page is busy, using the page pointer as wchan. 1057 * This is used to implement the hard-path of the busying mechanism. 1058 * 1059 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function 1060 * will not sleep if the page is shared-busy. 1061 * 1062 * The object lock must be held on entry. 1063 * 1064 * Returns true if it slept and dropped the object lock, or false 1065 * if there was no sleep and the lock is still held. 1066 */ 1067 bool 1068 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags) 1069 { 1070 vm_object_t obj; 1071 1072 obj = m->object; 1073 VM_OBJECT_ASSERT_LOCKED(obj); 1074 1075 return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags, 1076 true)); 1077 } 1078 1079 /* 1080 * vm_page_busy_sleep_unlocked: 1081 * 1082 * Sleep if the page is busy, using the page pointer as wchan. 1083 * This is used to implement the hard-path of busying mechanism. 1084 * 1085 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function 1086 * will not sleep if the page is shared-busy. 1087 * 1088 * The object lock must not be held on entry. The operation will 1089 * return if the page changes identity. 1090 */ 1091 void 1092 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex, 1093 const char *wmesg, int allocflags) 1094 { 1095 VM_OBJECT_ASSERT_UNLOCKED(obj); 1096 1097 (void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false); 1098 } 1099 1100 /* 1101 * _vm_page_busy_sleep: 1102 * 1103 * Internal busy sleep function. Verifies the page identity and 1104 * lockstate against parameters. Returns true if it sleeps and 1105 * false otherwise. 1106 * 1107 * allocflags uses VM_ALLOC_* flags to specify the lock required. 1108 * 1109 * If locked is true the lock will be dropped for any true returns 1110 * and held for any false returns. 1111 */ 1112 static bool 1113 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex, 1114 const char *wmesg, int allocflags, bool locked) 1115 { 1116 bool xsleep; 1117 u_int x; 1118 1119 /* 1120 * If the object is busy we must wait for that to drain to zero 1121 * before trying the page again. 1122 */ 1123 if (obj != NULL && vm_object_busied(obj)) { 1124 if (locked) 1125 VM_OBJECT_DROP(obj); 1126 vm_object_busy_wait(obj, wmesg); 1127 return (true); 1128 } 1129 1130 if (!vm_page_busied(m)) 1131 return (false); 1132 1133 xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0; 1134 sleepq_lock(m); 1135 x = vm_page_busy_fetch(m); 1136 do { 1137 /* 1138 * If the page changes objects or becomes unlocked we can 1139 * simply return. 1140 */ 1141 if (x == VPB_UNBUSIED || 1142 (xsleep && (x & VPB_BIT_SHARED) != 0) || 1143 m->object != obj || m->pindex != pindex) { 1144 sleepq_release(m); 1145 return (false); 1146 } 1147 if ((x & VPB_BIT_WAITERS) != 0) 1148 break; 1149 } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS)); 1150 if (locked) 1151 VM_OBJECT_DROP(obj); 1152 DROP_GIANT(); 1153 sleepq_add(m, NULL, wmesg, 0, 0); 1154 sleepq_wait(m, PVM); 1155 PICKUP_GIANT(); 1156 return (true); 1157 } 1158 1159 /* 1160 * vm_page_trysbusy: 1161 * 1162 * Try to shared busy a page. 1163 * If the operation succeeds 1 is returned otherwise 0. 1164 * The operation never sleeps. 1165 */ 1166 int 1167 vm_page_trysbusy(vm_page_t m) 1168 { 1169 vm_object_t obj; 1170 u_int x; 1171 1172 obj = m->object; 1173 x = vm_page_busy_fetch(m); 1174 for (;;) { 1175 if ((x & VPB_BIT_SHARED) == 0) 1176 return (0); 1177 /* 1178 * Reduce the window for transient busies that will trigger 1179 * false negatives in vm_page_ps_test(). 1180 */ 1181 if (obj != NULL && vm_object_busied(obj)) 1182 return (0); 1183 if (atomic_fcmpset_acq_int(&m->busy_lock, &x, 1184 x + VPB_ONE_SHARER)) 1185 break; 1186 } 1187 1188 /* Refetch the object now that we're guaranteed that it is stable. */ 1189 obj = m->object; 1190 if (obj != NULL && vm_object_busied(obj)) { 1191 vm_page_sunbusy(m); 1192 return (0); 1193 } 1194 return (1); 1195 } 1196 1197 /* 1198 * vm_page_tryxbusy: 1199 * 1200 * Try to exclusive busy a page. 1201 * If the operation succeeds 1 is returned otherwise 0. 1202 * The operation never sleeps. 1203 */ 1204 int 1205 vm_page_tryxbusy(vm_page_t m) 1206 { 1207 vm_object_t obj; 1208 1209 if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED, 1210 VPB_CURTHREAD_EXCLUSIVE) == 0) 1211 return (0); 1212 1213 obj = m->object; 1214 if (obj != NULL && vm_object_busied(obj)) { 1215 vm_page_xunbusy(m); 1216 return (0); 1217 } 1218 return (1); 1219 } 1220 1221 static void 1222 vm_page_xunbusy_hard_tail(vm_page_t m) 1223 { 1224 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 1225 /* Wake the waiter. */ 1226 wakeup(m); 1227 } 1228 1229 /* 1230 * vm_page_xunbusy_hard: 1231 * 1232 * Called when unbusy has failed because there is a waiter. 1233 */ 1234 void 1235 vm_page_xunbusy_hard(vm_page_t m) 1236 { 1237 vm_page_assert_xbusied(m); 1238 vm_page_xunbusy_hard_tail(m); 1239 } 1240 1241 void 1242 vm_page_xunbusy_hard_unchecked(vm_page_t m) 1243 { 1244 vm_page_assert_xbusied_unchecked(m); 1245 vm_page_xunbusy_hard_tail(m); 1246 } 1247 1248 static void 1249 vm_page_busy_free(vm_page_t m) 1250 { 1251 u_int x; 1252 1253 atomic_thread_fence_rel(); 1254 x = atomic_swap_int(&m->busy_lock, VPB_FREED); 1255 if ((x & VPB_BIT_WAITERS) != 0) 1256 wakeup(m); 1257 } 1258 1259 /* 1260 * vm_page_unhold_pages: 1261 * 1262 * Unhold each of the pages that is referenced by the given array. 1263 */ 1264 void 1265 vm_page_unhold_pages(vm_page_t *ma, int count) 1266 { 1267 1268 for (; count != 0; count--) { 1269 vm_page_unwire(*ma, PQ_ACTIVE); 1270 ma++; 1271 } 1272 } 1273 1274 vm_page_t 1275 PHYS_TO_VM_PAGE(vm_paddr_t pa) 1276 { 1277 vm_page_t m; 1278 1279 #ifdef VM_PHYSSEG_SPARSE 1280 m = vm_phys_paddr_to_vm_page(pa); 1281 if (m == NULL) 1282 m = vm_phys_fictitious_to_vm_page(pa); 1283 return (m); 1284 #elif defined(VM_PHYSSEG_DENSE) 1285 long pi; 1286 1287 pi = atop(pa); 1288 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 1289 m = &vm_page_array[pi - first_page]; 1290 return (m); 1291 } 1292 return (vm_phys_fictitious_to_vm_page(pa)); 1293 #else 1294 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 1295 #endif 1296 } 1297 1298 /* 1299 * vm_page_getfake: 1300 * 1301 * Create a fictitious page with the specified physical address and 1302 * memory attribute. The memory attribute is the only the machine- 1303 * dependent aspect of a fictitious page that must be initialized. 1304 */ 1305 vm_page_t 1306 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 1307 { 1308 vm_page_t m; 1309 1310 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 1311 vm_page_initfake(m, paddr, memattr); 1312 return (m); 1313 } 1314 1315 void 1316 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1317 { 1318 1319 if ((m->flags & PG_FICTITIOUS) != 0) { 1320 /* 1321 * The page's memattr might have changed since the 1322 * previous initialization. Update the pmap to the 1323 * new memattr. 1324 */ 1325 goto memattr; 1326 } 1327 m->phys_addr = paddr; 1328 m->a.queue = PQ_NONE; 1329 /* Fictitious pages don't use "segind". */ 1330 m->flags = PG_FICTITIOUS; 1331 /* Fictitious pages don't use "order" or "pool". */ 1332 m->oflags = VPO_UNMANAGED; 1333 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 1334 /* Fictitious pages are unevictable. */ 1335 m->ref_count = 1; 1336 pmap_page_init(m); 1337 memattr: 1338 pmap_page_set_memattr(m, memattr); 1339 } 1340 1341 /* 1342 * vm_page_putfake: 1343 * 1344 * Release a fictitious page. 1345 */ 1346 void 1347 vm_page_putfake(vm_page_t m) 1348 { 1349 1350 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 1351 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1352 ("vm_page_putfake: bad page %p", m)); 1353 vm_page_assert_xbusied(m); 1354 vm_page_busy_free(m); 1355 uma_zfree(fakepg_zone, m); 1356 } 1357 1358 /* 1359 * vm_page_updatefake: 1360 * 1361 * Update the given fictitious page to the specified physical address and 1362 * memory attribute. 1363 */ 1364 void 1365 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1366 { 1367 1368 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1369 ("vm_page_updatefake: bad page %p", m)); 1370 m->phys_addr = paddr; 1371 pmap_page_set_memattr(m, memattr); 1372 } 1373 1374 /* 1375 * vm_page_free: 1376 * 1377 * Free a page. 1378 */ 1379 void 1380 vm_page_free(vm_page_t m) 1381 { 1382 1383 m->flags &= ~PG_ZERO; 1384 vm_page_free_toq(m); 1385 } 1386 1387 /* 1388 * vm_page_free_zero: 1389 * 1390 * Free a page to the zerod-pages queue 1391 */ 1392 void 1393 vm_page_free_zero(vm_page_t m) 1394 { 1395 1396 m->flags |= PG_ZERO; 1397 vm_page_free_toq(m); 1398 } 1399 1400 /* 1401 * Unbusy and handle the page queueing for a page from a getpages request that 1402 * was optionally read ahead or behind. 1403 */ 1404 void 1405 vm_page_readahead_finish(vm_page_t m) 1406 { 1407 1408 /* We shouldn't put invalid pages on queues. */ 1409 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m)); 1410 1411 /* 1412 * Since the page is not the actually needed one, whether it should 1413 * be activated or deactivated is not obvious. Empirical results 1414 * have shown that deactivating the page is usually the best choice, 1415 * unless the page is wanted by another thread. 1416 */ 1417 if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0) 1418 vm_page_activate(m); 1419 else 1420 vm_page_deactivate(m); 1421 vm_page_xunbusy_unchecked(m); 1422 } 1423 1424 /* 1425 * Destroy the identity of an invalid page and free it if possible. 1426 * This is intended to be used when reading a page from backing store fails. 1427 */ 1428 void 1429 vm_page_free_invalid(vm_page_t m) 1430 { 1431 1432 KASSERT(vm_page_none_valid(m), ("page %p is valid", m)); 1433 KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m)); 1434 KASSERT(m->object != NULL, ("page %p has no object", m)); 1435 VM_OBJECT_ASSERT_WLOCKED(m->object); 1436 1437 /* 1438 * We may be attempting to free the page as part of the handling for an 1439 * I/O error, in which case the page was xbusied by a different thread. 1440 */ 1441 vm_page_xbusy_claim(m); 1442 1443 /* 1444 * If someone has wired this page while the object lock 1445 * was not held, then the thread that unwires is responsible 1446 * for freeing the page. Otherwise just free the page now. 1447 * The wire count of this unmapped page cannot change while 1448 * we have the page xbusy and the page's object wlocked. 1449 */ 1450 if (vm_page_remove(m)) 1451 vm_page_free(m); 1452 } 1453 1454 /* 1455 * vm_page_dirty_KBI: [ internal use only ] 1456 * 1457 * Set all bits in the page's dirty field. 1458 * 1459 * The object containing the specified page must be locked if the 1460 * call is made from the machine-independent layer. 1461 * 1462 * See vm_page_clear_dirty_mask(). 1463 * 1464 * This function should only be called by vm_page_dirty(). 1465 */ 1466 void 1467 vm_page_dirty_KBI(vm_page_t m) 1468 { 1469 1470 /* Refer to this operation by its public name. */ 1471 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!")); 1472 m->dirty = VM_PAGE_BITS_ALL; 1473 } 1474 1475 /* 1476 * Insert the given page into the given object at the given pindex. mpred is 1477 * used for memq linkage. From vm_page_insert, lookup is true, mpred is 1478 * initially NULL, and this procedure looks it up. From vm_page_insert_after, 1479 * lookup is false and mpred is known to the caller to be valid, and may be 1480 * NULL if this will be the page with the lowest pindex. 1481 * 1482 * The procedure is marked __always_inline to suggest to the compiler to 1483 * eliminate the lookup parameter and the associated alternate branch. 1484 */ 1485 static __always_inline int 1486 vm_page_insert_lookup(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1487 vm_page_t mpred, bool lookup) 1488 { 1489 int error; 1490 1491 VM_OBJECT_ASSERT_WLOCKED(object); 1492 KASSERT(m->object == NULL, 1493 ("vm_page_insert: page %p already inserted", m)); 1494 1495 /* 1496 * Record the object/offset pair in this page. 1497 */ 1498 m->object = object; 1499 m->pindex = pindex; 1500 m->ref_count |= VPRC_OBJREF; 1501 1502 /* 1503 * Add this page to the object's radix tree, and look up mpred if 1504 * needed. 1505 */ 1506 if (lookup) 1507 error = vm_radix_insert_lookup_lt(&object->rtree, m, &mpred); 1508 else 1509 error = vm_radix_insert(&object->rtree, m); 1510 if (__predict_false(error != 0)) { 1511 m->object = NULL; 1512 m->pindex = 0; 1513 m->ref_count &= ~VPRC_OBJREF; 1514 return (1); 1515 } 1516 1517 /* 1518 * Now link into the object's ordered list of backed pages. 1519 */ 1520 vm_page_insert_radixdone(m, object, mpred); 1521 vm_pager_page_inserted(object, m); 1522 return (0); 1523 } 1524 1525 /* 1526 * vm_page_insert: [ internal use only ] 1527 * 1528 * Inserts the given mem entry into the object and object list. 1529 * 1530 * The object must be locked. 1531 */ 1532 int 1533 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1534 { 1535 return (vm_page_insert_lookup(m, object, pindex, NULL, true)); 1536 } 1537 1538 /* 1539 * vm_page_insert_after: 1540 * 1541 * Inserts the page "m" into the specified object at offset "pindex". 1542 * 1543 * The page "mpred" must immediately precede the offset "pindex" within 1544 * the specified object. 1545 * 1546 * The object must be locked. 1547 */ 1548 static int 1549 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1550 vm_page_t mpred) 1551 { 1552 return (vm_page_insert_lookup(m, object, pindex, mpred, false)); 1553 } 1554 1555 /* 1556 * vm_page_insert_radixdone: 1557 * 1558 * Complete page "m" insertion into the specified object after the 1559 * radix trie hooking. 1560 * 1561 * The page "mpred" must precede the offset "m->pindex" within the 1562 * specified object. 1563 * 1564 * The object must be locked. 1565 */ 1566 static void 1567 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1568 { 1569 1570 VM_OBJECT_ASSERT_WLOCKED(object); 1571 KASSERT(object != NULL && m->object == object, 1572 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1573 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1574 ("vm_page_insert_radixdone: page %p is missing object ref", m)); 1575 if (mpred != NULL) { 1576 KASSERT(mpred->object == object, 1577 ("vm_page_insert_radixdone: object doesn't contain mpred")); 1578 KASSERT(mpred->pindex < m->pindex, 1579 ("vm_page_insert_radixdone: mpred doesn't precede pindex")); 1580 KASSERT(TAILQ_NEXT(mpred, listq) == NULL || 1581 m->pindex < TAILQ_NEXT(mpred, listq)->pindex, 1582 ("vm_page_insert_radixdone: pindex doesn't precede msucc")); 1583 } else { 1584 KASSERT(TAILQ_EMPTY(&object->memq) || 1585 m->pindex < TAILQ_FIRST(&object->memq)->pindex, 1586 ("vm_page_insert_radixdone: no mpred but not first page")); 1587 } 1588 1589 if (mpred != NULL) 1590 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1591 else 1592 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1593 1594 /* 1595 * Show that the object has one more resident page. 1596 */ 1597 object->resident_page_count++; 1598 1599 /* 1600 * Hold the vnode until the last page is released. 1601 */ 1602 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1603 vhold(object->handle); 1604 1605 /* 1606 * Since we are inserting a new and possibly dirty page, 1607 * update the object's generation count. 1608 */ 1609 if (pmap_page_is_write_mapped(m)) 1610 vm_object_set_writeable_dirty(object); 1611 } 1612 1613 /* 1614 * Do the work to remove a page from its object. The caller is responsible for 1615 * updating the page's fields to reflect this removal. 1616 */ 1617 static void 1618 vm_page_object_remove(vm_page_t m) 1619 { 1620 vm_object_t object; 1621 vm_page_t mrem __diagused; 1622 1623 vm_page_assert_xbusied(m); 1624 object = m->object; 1625 VM_OBJECT_ASSERT_WLOCKED(object); 1626 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1627 ("page %p is missing its object ref", m)); 1628 1629 /* Deferred free of swap space. */ 1630 if ((m->a.flags & PGA_SWAP_FREE) != 0) 1631 vm_pager_page_unswapped(m); 1632 1633 vm_pager_page_removed(object, m); 1634 1635 m->object = NULL; 1636 mrem = vm_radix_remove(&object->rtree, m->pindex); 1637 KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m)); 1638 1639 /* 1640 * Now remove from the object's list of backed pages. 1641 */ 1642 TAILQ_REMOVE(&object->memq, m, listq); 1643 1644 /* 1645 * And show that the object has one fewer resident page. 1646 */ 1647 object->resident_page_count--; 1648 1649 /* 1650 * The vnode may now be recycled. 1651 */ 1652 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1653 vdrop(object->handle); 1654 } 1655 1656 /* 1657 * vm_page_remove: 1658 * 1659 * Removes the specified page from its containing object, but does not 1660 * invalidate any backing storage. Returns true if the object's reference 1661 * was the last reference to the page, and false otherwise. 1662 * 1663 * The object must be locked and the page must be exclusively busied. 1664 * The exclusive busy will be released on return. If this is not the 1665 * final ref and the caller does not hold a wire reference it may not 1666 * continue to access the page. 1667 */ 1668 bool 1669 vm_page_remove(vm_page_t m) 1670 { 1671 bool dropped; 1672 1673 dropped = vm_page_remove_xbusy(m); 1674 vm_page_xunbusy(m); 1675 1676 return (dropped); 1677 } 1678 1679 /* 1680 * vm_page_remove_xbusy 1681 * 1682 * Removes the page but leaves the xbusy held. Returns true if this 1683 * removed the final ref and false otherwise. 1684 */ 1685 bool 1686 vm_page_remove_xbusy(vm_page_t m) 1687 { 1688 1689 vm_page_object_remove(m); 1690 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF); 1691 } 1692 1693 /* 1694 * vm_page_lookup: 1695 * 1696 * Returns the page associated with the object/offset 1697 * pair specified; if none is found, NULL is returned. 1698 * 1699 * The object must be locked. 1700 */ 1701 vm_page_t 1702 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1703 { 1704 1705 VM_OBJECT_ASSERT_LOCKED(object); 1706 return (vm_radix_lookup(&object->rtree, pindex)); 1707 } 1708 1709 /* 1710 * vm_page_iter_init: 1711 * 1712 * Initialize iterator for vm pages. 1713 */ 1714 void 1715 vm_page_iter_init(struct pctrie_iter *pages, vm_object_t object) 1716 { 1717 1718 vm_radix_iter_init(pages, &object->rtree); 1719 } 1720 1721 /* 1722 * vm_page_iter_init: 1723 * 1724 * Initialize iterator for vm pages. 1725 */ 1726 void 1727 vm_page_iter_limit_init(struct pctrie_iter *pages, vm_object_t object, 1728 vm_pindex_t limit) 1729 { 1730 1731 vm_radix_iter_limit_init(pages, &object->rtree, limit); 1732 } 1733 1734 /* 1735 * vm_page_iter_lookup: 1736 * 1737 * Returns the page associated with the object/offset pair specified, and 1738 * stores the path to its position; if none is found, NULL is returned. 1739 * 1740 * The iter pctrie must be locked. 1741 */ 1742 vm_page_t 1743 vm_page_iter_lookup(struct pctrie_iter *pages, vm_pindex_t pindex) 1744 { 1745 1746 return (vm_radix_iter_lookup(pages, pindex)); 1747 } 1748 1749 /* 1750 * vm_page_lookup_unlocked: 1751 * 1752 * Returns the page associated with the object/offset pair specified; 1753 * if none is found, NULL is returned. The page may be no longer be 1754 * present in the object at the time that this function returns. Only 1755 * useful for opportunistic checks such as inmem(). 1756 */ 1757 vm_page_t 1758 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex) 1759 { 1760 1761 return (vm_radix_lookup_unlocked(&object->rtree, pindex)); 1762 } 1763 1764 /* 1765 * vm_page_relookup: 1766 * 1767 * Returns a page that must already have been busied by 1768 * the caller. Used for bogus page replacement. 1769 */ 1770 vm_page_t 1771 vm_page_relookup(vm_object_t object, vm_pindex_t pindex) 1772 { 1773 vm_page_t m; 1774 1775 m = vm_page_lookup_unlocked(object, pindex); 1776 KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) && 1777 m->object == object && m->pindex == pindex, 1778 ("vm_page_relookup: Invalid page %p", m)); 1779 return (m); 1780 } 1781 1782 /* 1783 * This should only be used by lockless functions for releasing transient 1784 * incorrect acquires. The page may have been freed after we acquired a 1785 * busy lock. In this case busy_lock == VPB_FREED and we have nothing 1786 * further to do. 1787 */ 1788 static void 1789 vm_page_busy_release(vm_page_t m) 1790 { 1791 u_int x; 1792 1793 x = vm_page_busy_fetch(m); 1794 for (;;) { 1795 if (x == VPB_FREED) 1796 break; 1797 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) { 1798 if (atomic_fcmpset_int(&m->busy_lock, &x, 1799 x - VPB_ONE_SHARER)) 1800 break; 1801 continue; 1802 } 1803 KASSERT((x & VPB_BIT_SHARED) != 0 || 1804 (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE, 1805 ("vm_page_busy_release: %p xbusy not owned.", m)); 1806 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED)) 1807 continue; 1808 if ((x & VPB_BIT_WAITERS) != 0) 1809 wakeup(m); 1810 break; 1811 } 1812 } 1813 1814 /* 1815 * vm_page_find_least: 1816 * 1817 * Returns the page associated with the object with least pindex 1818 * greater than or equal to the parameter pindex, or NULL. 1819 * 1820 * The object must be locked. 1821 */ 1822 vm_page_t 1823 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1824 { 1825 vm_page_t m; 1826 1827 VM_OBJECT_ASSERT_LOCKED(object); 1828 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1829 m = vm_radix_lookup_ge(&object->rtree, pindex); 1830 return (m); 1831 } 1832 1833 /* 1834 * vm_page_iter_lookup_ge: 1835 * 1836 * Returns the page associated with the object with least pindex 1837 * greater than or equal to the parameter pindex, or NULL. Initializes the 1838 * iterator to point to that page. 1839 * 1840 * The iter pctrie must be locked. 1841 */ 1842 vm_page_t 1843 vm_page_iter_lookup_ge(struct pctrie_iter *pages, vm_pindex_t pindex) 1844 { 1845 1846 return (vm_radix_iter_lookup_ge(pages, pindex)); 1847 } 1848 1849 /* 1850 * Returns the given page's successor (by pindex) within the object if it is 1851 * resident; if none is found, NULL is returned. 1852 * 1853 * The object must be locked. 1854 */ 1855 vm_page_t 1856 vm_page_next(vm_page_t m) 1857 { 1858 vm_page_t next; 1859 1860 VM_OBJECT_ASSERT_LOCKED(m->object); 1861 if ((next = TAILQ_NEXT(m, listq)) != NULL) { 1862 MPASS(next->object == m->object); 1863 if (next->pindex != m->pindex + 1) 1864 next = NULL; 1865 } 1866 return (next); 1867 } 1868 1869 /* 1870 * Returns the given page's predecessor (by pindex) within the object if it is 1871 * resident; if none is found, NULL is returned. 1872 * 1873 * The object must be locked. 1874 */ 1875 vm_page_t 1876 vm_page_prev(vm_page_t m) 1877 { 1878 vm_page_t prev; 1879 1880 VM_OBJECT_ASSERT_LOCKED(m->object); 1881 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) { 1882 MPASS(prev->object == m->object); 1883 if (prev->pindex != m->pindex - 1) 1884 prev = NULL; 1885 } 1886 return (prev); 1887 } 1888 1889 /* 1890 * Uses the page mnew as a replacement for an existing page at index 1891 * pindex which must be already present in the object. 1892 * 1893 * Both pages must be exclusively busied on enter. The old page is 1894 * unbusied on exit. 1895 * 1896 * A return value of true means mold is now free. If this is not the 1897 * final ref and the caller does not hold a wire reference it may not 1898 * continue to access the page. 1899 */ 1900 static bool 1901 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 1902 vm_page_t mold) 1903 { 1904 vm_page_t mret __diagused; 1905 bool dropped; 1906 1907 VM_OBJECT_ASSERT_WLOCKED(object); 1908 vm_page_assert_xbusied(mold); 1909 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0, 1910 ("vm_page_replace: page %p already in object", mnew)); 1911 1912 /* 1913 * This function mostly follows vm_page_insert() and 1914 * vm_page_remove() without the radix, object count and vnode 1915 * dance. Double check such functions for more comments. 1916 */ 1917 1918 mnew->object = object; 1919 mnew->pindex = pindex; 1920 atomic_set_int(&mnew->ref_count, VPRC_OBJREF); 1921 mret = vm_radix_replace(&object->rtree, mnew); 1922 KASSERT(mret == mold, 1923 ("invalid page replacement, mold=%p, mret=%p", mold, mret)); 1924 KASSERT((mold->oflags & VPO_UNMANAGED) == 1925 (mnew->oflags & VPO_UNMANAGED), 1926 ("vm_page_replace: mismatched VPO_UNMANAGED")); 1927 1928 /* Keep the resident page list in sorted order. */ 1929 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); 1930 TAILQ_REMOVE(&object->memq, mold, listq); 1931 mold->object = NULL; 1932 1933 /* 1934 * The object's resident_page_count does not change because we have 1935 * swapped one page for another, but the generation count should 1936 * change if the page is dirty. 1937 */ 1938 if (pmap_page_is_write_mapped(mnew)) 1939 vm_object_set_writeable_dirty(object); 1940 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF; 1941 vm_page_xunbusy(mold); 1942 1943 return (dropped); 1944 } 1945 1946 void 1947 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 1948 vm_page_t mold) 1949 { 1950 1951 vm_page_assert_xbusied(mnew); 1952 1953 if (vm_page_replace_hold(mnew, object, pindex, mold)) 1954 vm_page_free(mold); 1955 } 1956 1957 /* 1958 * vm_page_rename: 1959 * 1960 * Move the given memory entry from its 1961 * current object to the specified target object/offset. 1962 * 1963 * Note: swap associated with the page must be invalidated by the move. We 1964 * have to do this for several reasons: (1) we aren't freeing the 1965 * page, (2) we are dirtying the page, (3) the VM system is probably 1966 * moving the page from object A to B, and will then later move 1967 * the backing store from A to B and we can't have a conflict. 1968 * 1969 * Note: we *always* dirty the page. It is necessary both for the 1970 * fact that we moved it, and because we may be invalidating 1971 * swap. 1972 * 1973 * The objects must be locked. 1974 */ 1975 int 1976 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1977 { 1978 vm_page_t mpred; 1979 vm_pindex_t opidx; 1980 1981 VM_OBJECT_ASSERT_WLOCKED(new_object); 1982 1983 KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m)); 1984 1985 /* 1986 * Create a custom version of vm_page_insert() which does not depend 1987 * by m_prev and can cheat on the implementation aspects of the 1988 * function. 1989 */ 1990 opidx = m->pindex; 1991 m->pindex = new_pindex; 1992 if (vm_radix_insert_lookup_lt(&new_object->rtree, m, &mpred) != 0) { 1993 m->pindex = opidx; 1994 return (1); 1995 } 1996 1997 /* 1998 * The operation cannot fail anymore. The removal must happen before 1999 * the listq iterator is tainted. 2000 */ 2001 m->pindex = opidx; 2002 vm_page_object_remove(m); 2003 2004 /* Return back to the new pindex to complete vm_page_insert(). */ 2005 m->pindex = new_pindex; 2006 m->object = new_object; 2007 2008 vm_page_insert_radixdone(m, new_object, mpred); 2009 vm_page_dirty(m); 2010 vm_pager_page_inserted(new_object, m); 2011 return (0); 2012 } 2013 2014 /* 2015 * vm_page_mpred: 2016 * 2017 * Return the greatest page of the object with index <= pindex, 2018 * or NULL, if there is none. Assumes object lock is held. 2019 */ 2020 vm_page_t 2021 vm_page_mpred(vm_object_t object, vm_pindex_t pindex) 2022 { 2023 return (vm_radix_lookup_le(&object->rtree, pindex)); 2024 } 2025 2026 /* 2027 * vm_page_alloc: 2028 * 2029 * Allocate and return a page that is associated with the specified 2030 * object and offset pair. By default, this page is exclusive busied. 2031 * 2032 * The caller must always specify an allocation class. 2033 * 2034 * allocation classes: 2035 * VM_ALLOC_NORMAL normal process request 2036 * VM_ALLOC_SYSTEM system *really* needs a page 2037 * VM_ALLOC_INTERRUPT interrupt time request 2038 * 2039 * optional allocation flags: 2040 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 2041 * intends to allocate 2042 * VM_ALLOC_NOBUSY do not exclusive busy the page 2043 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 2044 * VM_ALLOC_SBUSY shared busy the allocated page 2045 * VM_ALLOC_WIRED wire the allocated page 2046 * VM_ALLOC_ZERO prefer a zeroed page 2047 */ 2048 vm_page_t 2049 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 2050 { 2051 2052 return (vm_page_alloc_after(object, pindex, req, 2053 vm_page_mpred(object, pindex))); 2054 } 2055 2056 /* 2057 * Allocate a page in the specified object with the given page index. To 2058 * optimize insertion of the page into the object, the caller must also specify 2059 * the resident page in the object with largest index smaller than the given 2060 * page index, or NULL if no such page exists. 2061 */ 2062 vm_page_t 2063 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, 2064 int req, vm_page_t mpred) 2065 { 2066 struct vm_domainset_iter di; 2067 vm_page_t m; 2068 int domain; 2069 2070 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 2071 do { 2072 m = vm_page_alloc_domain_after(object, pindex, domain, req, 2073 mpred); 2074 if (m != NULL) 2075 break; 2076 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 2077 2078 return (m); 2079 } 2080 2081 /* 2082 * Returns true if the number of free pages exceeds the minimum 2083 * for the request class and false otherwise. 2084 */ 2085 static int 2086 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages) 2087 { 2088 u_int limit, old, new; 2089 2090 if (req_class == VM_ALLOC_INTERRUPT) 2091 limit = 0; 2092 else if (req_class == VM_ALLOC_SYSTEM) 2093 limit = vmd->vmd_interrupt_free_min; 2094 else 2095 limit = vmd->vmd_free_reserved; 2096 2097 /* 2098 * Attempt to reserve the pages. Fail if we're below the limit. 2099 */ 2100 limit += npages; 2101 old = atomic_load_int(&vmd->vmd_free_count); 2102 do { 2103 if (old < limit) 2104 return (0); 2105 new = old - npages; 2106 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0); 2107 2108 /* Wake the page daemon if we've crossed the threshold. */ 2109 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old)) 2110 pagedaemon_wakeup(vmd->vmd_domain); 2111 2112 /* Only update bitsets on transitions. */ 2113 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) || 2114 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe)) 2115 vm_domain_set(vmd); 2116 2117 return (1); 2118 } 2119 2120 int 2121 vm_domain_allocate(struct vm_domain *vmd, int req, int npages) 2122 { 2123 int req_class; 2124 2125 /* 2126 * The page daemon is allowed to dig deeper into the free page list. 2127 */ 2128 req_class = req & VM_ALLOC_CLASS_MASK; 2129 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2130 req_class = VM_ALLOC_SYSTEM; 2131 return (_vm_domain_allocate(vmd, req_class, npages)); 2132 } 2133 2134 vm_page_t 2135 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain, 2136 int req, vm_page_t mpred) 2137 { 2138 struct vm_domain *vmd; 2139 vm_page_t m; 2140 int flags; 2141 2142 #define VPA_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \ 2143 VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY | \ 2144 VM_ALLOC_SBUSY | VM_ALLOC_WIRED | \ 2145 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \ 2146 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK) 2147 KASSERT((req & ~VPA_FLAGS) == 0, 2148 ("invalid request %#x", req)); 2149 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2150 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2151 ("invalid request %#x", req)); 2152 KASSERT(mpred == NULL || mpred->pindex < pindex, 2153 ("mpred %p doesn't precede pindex 0x%jx", mpred, 2154 (uintmax_t)pindex)); 2155 VM_OBJECT_ASSERT_WLOCKED(object); 2156 2157 flags = 0; 2158 m = NULL; 2159 if (!vm_pager_can_alloc_page(object, pindex)) 2160 return (NULL); 2161 again: 2162 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) { 2163 m = vm_page_alloc_nofree_domain(domain, req); 2164 if (m != NULL) 2165 goto found; 2166 } 2167 #if VM_NRESERVLEVEL > 0 2168 /* 2169 * Can we allocate the page from a reservation? 2170 */ 2171 if (vm_object_reserv(object) && 2172 (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) != 2173 NULL) { 2174 goto found; 2175 } 2176 #endif 2177 vmd = VM_DOMAIN(domain); 2178 if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) { 2179 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone, 2180 M_NOWAIT | M_NOVM); 2181 if (m != NULL) { 2182 flags |= PG_PCPU_CACHE; 2183 goto found; 2184 } 2185 } 2186 if (vm_domain_allocate(vmd, req, 1)) { 2187 /* 2188 * If not, allocate it from the free page queues. 2189 */ 2190 vm_domain_free_lock(vmd); 2191 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0); 2192 vm_domain_free_unlock(vmd); 2193 if (m == NULL) { 2194 vm_domain_freecnt_inc(vmd, 1); 2195 #if VM_NRESERVLEVEL > 0 2196 if (vm_reserv_reclaim_inactive(domain)) 2197 goto again; 2198 #endif 2199 } 2200 } 2201 if (m == NULL) { 2202 /* 2203 * Not allocatable, give up. 2204 */ 2205 if (vm_domain_alloc_fail(vmd, object, req)) 2206 goto again; 2207 return (NULL); 2208 } 2209 2210 /* 2211 * At this point we had better have found a good page. 2212 */ 2213 found: 2214 vm_page_dequeue(m); 2215 vm_page_alloc_check(m); 2216 2217 /* 2218 * Initialize the page. Only the PG_ZERO flag is inherited. 2219 */ 2220 flags |= m->flags & PG_ZERO; 2221 if ((req & VM_ALLOC_NODUMP) != 0) 2222 flags |= PG_NODUMP; 2223 if ((req & VM_ALLOC_NOFREE) != 0) 2224 flags |= PG_NOFREE; 2225 m->flags = flags; 2226 m->a.flags = 0; 2227 m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0; 2228 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 2229 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2230 else if ((req & VM_ALLOC_SBUSY) != 0) 2231 m->busy_lock = VPB_SHARERS_WORD(1); 2232 else 2233 m->busy_lock = VPB_UNBUSIED; 2234 if (req & VM_ALLOC_WIRED) { 2235 vm_wire_add(1); 2236 m->ref_count = 1; 2237 } 2238 m->a.act_count = 0; 2239 2240 if (vm_page_insert_after(m, object, pindex, mpred)) { 2241 if (req & VM_ALLOC_WIRED) { 2242 vm_wire_sub(1); 2243 m->ref_count = 0; 2244 } 2245 KASSERT(m->object == NULL, ("page %p has object", m)); 2246 m->oflags = VPO_UNMANAGED; 2247 m->busy_lock = VPB_UNBUSIED; 2248 /* Don't change PG_ZERO. */ 2249 vm_page_free_toq(m); 2250 if (req & VM_ALLOC_WAITFAIL) { 2251 VM_OBJECT_WUNLOCK(object); 2252 vm_radix_wait(); 2253 VM_OBJECT_WLOCK(object); 2254 } 2255 return (NULL); 2256 } 2257 2258 /* Ignore device objects; the pager sets "memattr" for them. */ 2259 if (object->memattr != VM_MEMATTR_DEFAULT && 2260 (object->flags & OBJ_FICTITIOUS) == 0) 2261 pmap_page_set_memattr(m, object->memattr); 2262 2263 return (m); 2264 } 2265 2266 /* 2267 * vm_page_alloc_contig: 2268 * 2269 * Allocate a contiguous set of physical pages of the given size "npages" 2270 * from the free lists. All of the physical pages must be at or above 2271 * the given physical address "low" and below the given physical address 2272 * "high". The given value "alignment" determines the alignment of the 2273 * first physical page in the set. If the given value "boundary" is 2274 * non-zero, then the set of physical pages cannot cross any physical 2275 * address boundary that is a multiple of that value. Both "alignment" 2276 * and "boundary" must be a power of two. 2277 * 2278 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 2279 * then the memory attribute setting for the physical pages is configured 2280 * to the object's memory attribute setting. Otherwise, the memory 2281 * attribute setting for the physical pages is configured to "memattr", 2282 * overriding the object's memory attribute setting. However, if the 2283 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 2284 * memory attribute setting for the physical pages cannot be configured 2285 * to VM_MEMATTR_DEFAULT. 2286 * 2287 * The specified object may not contain fictitious pages. 2288 * 2289 * The caller must always specify an allocation class. 2290 * 2291 * allocation classes: 2292 * VM_ALLOC_NORMAL normal process request 2293 * VM_ALLOC_SYSTEM system *really* needs a page 2294 * VM_ALLOC_INTERRUPT interrupt time request 2295 * 2296 * optional allocation flags: 2297 * VM_ALLOC_NOBUSY do not exclusive busy the page 2298 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 2299 * VM_ALLOC_SBUSY shared busy the allocated page 2300 * VM_ALLOC_WIRED wire the allocated page 2301 * VM_ALLOC_ZERO prefer a zeroed page 2302 */ 2303 vm_page_t 2304 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 2305 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2306 vm_paddr_t boundary, vm_memattr_t memattr) 2307 { 2308 struct vm_domainset_iter di; 2309 vm_page_t bounds[2]; 2310 vm_page_t m; 2311 int domain; 2312 int start_segind; 2313 2314 start_segind = -1; 2315 2316 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 2317 do { 2318 m = vm_page_alloc_contig_domain(object, pindex, domain, req, 2319 npages, low, high, alignment, boundary, memattr); 2320 if (m != NULL) 2321 break; 2322 if (start_segind == -1) 2323 start_segind = vm_phys_lookup_segind(low); 2324 if (vm_phys_find_range(bounds, start_segind, domain, 2325 npages, low, high) == -1) { 2326 vm_domainset_iter_ignore(&di, domain); 2327 } 2328 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 2329 2330 return (m); 2331 } 2332 2333 static vm_page_t 2334 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low, 2335 vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 2336 { 2337 struct vm_domain *vmd; 2338 vm_page_t m_ret; 2339 2340 /* 2341 * Can we allocate the pages without the number of free pages falling 2342 * below the lower bound for the allocation class? 2343 */ 2344 vmd = VM_DOMAIN(domain); 2345 if (!vm_domain_allocate(vmd, req, npages)) 2346 return (NULL); 2347 /* 2348 * Try to allocate the pages from the free page queues. 2349 */ 2350 vm_domain_free_lock(vmd); 2351 m_ret = vm_phys_alloc_contig(domain, npages, low, high, 2352 alignment, boundary); 2353 vm_domain_free_unlock(vmd); 2354 if (m_ret != NULL) 2355 return (m_ret); 2356 #if VM_NRESERVLEVEL > 0 2357 /* 2358 * Try to break a reservation to allocate the pages. 2359 */ 2360 if ((req & VM_ALLOC_NORECLAIM) == 0) { 2361 m_ret = vm_reserv_reclaim_contig(domain, npages, low, 2362 high, alignment, boundary); 2363 if (m_ret != NULL) 2364 return (m_ret); 2365 } 2366 #endif 2367 vm_domain_freecnt_inc(vmd, npages); 2368 return (NULL); 2369 } 2370 2371 vm_page_t 2372 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, 2373 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2374 vm_paddr_t boundary, vm_memattr_t memattr) 2375 { 2376 vm_page_t m, m_ret, mpred; 2377 u_int busy_lock, flags, oflags; 2378 2379 #define VPAC_FLAGS (VPA_FLAGS | VM_ALLOC_NORECLAIM) 2380 KASSERT((req & ~VPAC_FLAGS) == 0, 2381 ("invalid request %#x", req)); 2382 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2383 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2384 ("invalid request %#x", req)); 2385 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) != 2386 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM), 2387 ("invalid request %#x", req)); 2388 VM_OBJECT_ASSERT_WLOCKED(object); 2389 KASSERT((object->flags & OBJ_FICTITIOUS) == 0, 2390 ("vm_page_alloc_contig: object %p has fictitious pages", 2391 object)); 2392 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 2393 2394 mpred = vm_page_mpred(object, pindex); 2395 KASSERT(mpred == NULL || mpred->pindex != pindex, 2396 ("vm_page_alloc_contig: pindex already allocated")); 2397 for (;;) { 2398 #if VM_NRESERVLEVEL > 0 2399 /* 2400 * Can we allocate the pages from a reservation? 2401 */ 2402 if (vm_object_reserv(object) && 2403 (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req, 2404 mpred, npages, low, high, alignment, boundary)) != NULL) { 2405 break; 2406 } 2407 #endif 2408 if ((m_ret = vm_page_find_contig_domain(domain, req, npages, 2409 low, high, alignment, boundary)) != NULL) 2410 break; 2411 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req)) 2412 return (NULL); 2413 } 2414 2415 /* 2416 * Initialize the pages. Only the PG_ZERO flag is inherited. 2417 */ 2418 flags = PG_ZERO; 2419 if ((req & VM_ALLOC_NODUMP) != 0) 2420 flags |= PG_NODUMP; 2421 oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0; 2422 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 2423 busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2424 else if ((req & VM_ALLOC_SBUSY) != 0) 2425 busy_lock = VPB_SHARERS_WORD(1); 2426 else 2427 busy_lock = VPB_UNBUSIED; 2428 if ((req & VM_ALLOC_WIRED) != 0) 2429 vm_wire_add(npages); 2430 if (object->memattr != VM_MEMATTR_DEFAULT && 2431 memattr == VM_MEMATTR_DEFAULT) 2432 memattr = object->memattr; 2433 for (m = m_ret; m < &m_ret[npages]; m++) { 2434 vm_page_dequeue(m); 2435 vm_page_alloc_check(m); 2436 m->a.flags = 0; 2437 m->flags = (m->flags | PG_NODUMP) & flags; 2438 m->busy_lock = busy_lock; 2439 if ((req & VM_ALLOC_WIRED) != 0) 2440 m->ref_count = 1; 2441 m->a.act_count = 0; 2442 m->oflags = oflags; 2443 if (vm_page_insert_after(m, object, pindex, mpred)) { 2444 if ((req & VM_ALLOC_WIRED) != 0) 2445 vm_wire_sub(npages); 2446 KASSERT(m->object == NULL, 2447 ("page %p has object", m)); 2448 mpred = m; 2449 for (m = m_ret; m < &m_ret[npages]; m++) { 2450 if (m <= mpred && 2451 (req & VM_ALLOC_WIRED) != 0) 2452 m->ref_count = 0; 2453 m->oflags = VPO_UNMANAGED; 2454 m->busy_lock = VPB_UNBUSIED; 2455 /* Don't change PG_ZERO. */ 2456 vm_page_free_toq(m); 2457 } 2458 if (req & VM_ALLOC_WAITFAIL) { 2459 VM_OBJECT_WUNLOCK(object); 2460 vm_radix_wait(); 2461 VM_OBJECT_WLOCK(object); 2462 } 2463 return (NULL); 2464 } 2465 mpred = m; 2466 if (memattr != VM_MEMATTR_DEFAULT) 2467 pmap_page_set_memattr(m, memattr); 2468 pindex++; 2469 } 2470 return (m_ret); 2471 } 2472 2473 /* 2474 * Allocate a physical page that is not intended to be inserted into a VM 2475 * object. 2476 */ 2477 vm_page_t 2478 vm_page_alloc_noobj_domain(int domain, int req) 2479 { 2480 struct vm_domain *vmd; 2481 vm_page_t m; 2482 int flags; 2483 2484 #define VPAN_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \ 2485 VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | \ 2486 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED | \ 2487 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \ 2488 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK) 2489 KASSERT((req & ~VPAN_FLAGS) == 0, 2490 ("invalid request %#x", req)); 2491 2492 flags = ((req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0) | 2493 ((req & VM_ALLOC_NOFREE) != 0 ? PG_NOFREE : 0); 2494 vmd = VM_DOMAIN(domain); 2495 again: 2496 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) { 2497 m = vm_page_alloc_nofree_domain(domain, req); 2498 if (m != NULL) 2499 goto found; 2500 } 2501 2502 if (vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) { 2503 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone, 2504 M_NOWAIT | M_NOVM); 2505 if (m != NULL) { 2506 flags |= PG_PCPU_CACHE; 2507 goto found; 2508 } 2509 } 2510 2511 if (vm_domain_allocate(vmd, req, 1)) { 2512 vm_domain_free_lock(vmd); 2513 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0); 2514 vm_domain_free_unlock(vmd); 2515 if (m == NULL) { 2516 vm_domain_freecnt_inc(vmd, 1); 2517 #if VM_NRESERVLEVEL > 0 2518 if (vm_reserv_reclaim_inactive(domain)) 2519 goto again; 2520 #endif 2521 } 2522 } 2523 if (m == NULL) { 2524 if (vm_domain_alloc_fail(vmd, NULL, req)) 2525 goto again; 2526 return (NULL); 2527 } 2528 2529 found: 2530 vm_page_dequeue(m); 2531 vm_page_alloc_check(m); 2532 2533 /* 2534 * Consumers should not rely on a useful default pindex value. 2535 */ 2536 m->pindex = 0xdeadc0dedeadc0de; 2537 m->flags = (m->flags & PG_ZERO) | flags; 2538 m->a.flags = 0; 2539 m->oflags = VPO_UNMANAGED; 2540 m->busy_lock = VPB_UNBUSIED; 2541 if ((req & VM_ALLOC_WIRED) != 0) { 2542 vm_wire_add(1); 2543 m->ref_count = 1; 2544 } 2545 2546 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0) 2547 pmap_zero_page(m); 2548 2549 return (m); 2550 } 2551 2552 #if VM_NRESERVLEVEL > 1 2553 #define VM_NOFREE_IMPORT_ORDER (VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER) 2554 #elif VM_NRESERVLEVEL > 0 2555 #define VM_NOFREE_IMPORT_ORDER VM_LEVEL_0_ORDER 2556 #else 2557 #define VM_NOFREE_IMPORT_ORDER 8 2558 #endif 2559 2560 /* 2561 * Allocate a single NOFREE page. 2562 * 2563 * This routine hands out NOFREE pages from higher-order 2564 * physical memory blocks in order to reduce memory fragmentation. 2565 * When a NOFREE for a given domain chunk is used up, 2566 * the routine will try to fetch a new one from the freelists 2567 * and discard the old one. 2568 */ 2569 static vm_page_t 2570 vm_page_alloc_nofree_domain(int domain, int req) 2571 { 2572 vm_page_t m; 2573 struct vm_domain *vmd; 2574 struct vm_nofreeq *nqp; 2575 2576 KASSERT((req & VM_ALLOC_NOFREE) != 0, ("invalid request %#x", req)); 2577 2578 vmd = VM_DOMAIN(domain); 2579 nqp = &vmd->vmd_nofreeq; 2580 vm_domain_free_lock(vmd); 2581 if (nqp->offs >= (1 << VM_NOFREE_IMPORT_ORDER) || nqp->ma == NULL) { 2582 if (!vm_domain_allocate(vmd, req, 2583 1 << VM_NOFREE_IMPORT_ORDER)) { 2584 vm_domain_free_unlock(vmd); 2585 return (NULL); 2586 } 2587 nqp->ma = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 2588 VM_NOFREE_IMPORT_ORDER); 2589 if (nqp->ma == NULL) { 2590 vm_domain_freecnt_inc(vmd, 1 << VM_NOFREE_IMPORT_ORDER); 2591 vm_domain_free_unlock(vmd); 2592 return (NULL); 2593 } 2594 nqp->offs = 0; 2595 } 2596 m = &nqp->ma[nqp->offs++]; 2597 vm_domain_free_unlock(vmd); 2598 VM_CNT_ADD(v_nofree_count, 1); 2599 2600 return (m); 2601 } 2602 2603 vm_page_t 2604 vm_page_alloc_noobj(int req) 2605 { 2606 struct vm_domainset_iter di; 2607 vm_page_t m; 2608 int domain; 2609 2610 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2611 do { 2612 m = vm_page_alloc_noobj_domain(domain, req); 2613 if (m != NULL) 2614 break; 2615 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2616 2617 return (m); 2618 } 2619 2620 vm_page_t 2621 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low, 2622 vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 2623 vm_memattr_t memattr) 2624 { 2625 struct vm_domainset_iter di; 2626 vm_page_t m; 2627 int domain; 2628 2629 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2630 do { 2631 m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low, 2632 high, alignment, boundary, memattr); 2633 if (m != NULL) 2634 break; 2635 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2636 2637 return (m); 2638 } 2639 2640 vm_page_t 2641 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages, 2642 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 2643 vm_memattr_t memattr) 2644 { 2645 vm_page_t m, m_ret; 2646 u_int flags; 2647 2648 #define VPANC_FLAGS (VPAN_FLAGS | VM_ALLOC_NORECLAIM) 2649 KASSERT((req & ~VPANC_FLAGS) == 0, 2650 ("invalid request %#x", req)); 2651 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) != 2652 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM), 2653 ("invalid request %#x", req)); 2654 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2655 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2656 ("invalid request %#x", req)); 2657 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 2658 2659 while ((m_ret = vm_page_find_contig_domain(domain, req, npages, 2660 low, high, alignment, boundary)) == NULL) { 2661 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req)) 2662 return (NULL); 2663 } 2664 2665 /* 2666 * Initialize the pages. Only the PG_ZERO flag is inherited. 2667 */ 2668 flags = PG_ZERO; 2669 if ((req & VM_ALLOC_NODUMP) != 0) 2670 flags |= PG_NODUMP; 2671 if ((req & VM_ALLOC_WIRED) != 0) 2672 vm_wire_add(npages); 2673 for (m = m_ret; m < &m_ret[npages]; m++) { 2674 vm_page_dequeue(m); 2675 vm_page_alloc_check(m); 2676 2677 /* 2678 * Consumers should not rely on a useful default pindex value. 2679 */ 2680 m->pindex = 0xdeadc0dedeadc0de; 2681 m->a.flags = 0; 2682 m->flags = (m->flags | PG_NODUMP) & flags; 2683 m->busy_lock = VPB_UNBUSIED; 2684 if ((req & VM_ALLOC_WIRED) != 0) 2685 m->ref_count = 1; 2686 m->a.act_count = 0; 2687 m->oflags = VPO_UNMANAGED; 2688 2689 /* 2690 * Zero the page before updating any mappings since the page is 2691 * not yet shared with any devices which might require the 2692 * non-default memory attribute. pmap_page_set_memattr() 2693 * flushes data caches before returning. 2694 */ 2695 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0) 2696 pmap_zero_page(m); 2697 if (memattr != VM_MEMATTR_DEFAULT) 2698 pmap_page_set_memattr(m, memattr); 2699 } 2700 return (m_ret); 2701 } 2702 2703 /* 2704 * Check a page that has been freshly dequeued from a freelist. 2705 */ 2706 static void 2707 vm_page_alloc_check(vm_page_t m) 2708 { 2709 2710 KASSERT(m->object == NULL, ("page %p has object", m)); 2711 KASSERT(m->a.queue == PQ_NONE && 2712 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 2713 ("page %p has unexpected queue %d, flags %#x", 2714 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK))); 2715 KASSERT(m->ref_count == 0, ("page %p has references", m)); 2716 KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m)); 2717 KASSERT(m->dirty == 0, ("page %p is dirty", m)); 2718 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 2719 ("page %p has unexpected memattr %d", 2720 m, pmap_page_get_memattr(m))); 2721 KASSERT(vm_page_none_valid(m), ("free page %p is valid", m)); 2722 pmap_vm_page_alloc_check(m); 2723 } 2724 2725 static int 2726 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags) 2727 { 2728 struct vm_domain *vmd; 2729 struct vm_pgcache *pgcache; 2730 int i; 2731 2732 pgcache = arg; 2733 vmd = VM_DOMAIN(pgcache->domain); 2734 2735 /* 2736 * The page daemon should avoid creating extra memory pressure since its 2737 * main purpose is to replenish the store of free pages. 2738 */ 2739 if (vmd->vmd_severeset || curproc == pageproc || 2740 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt)) 2741 return (0); 2742 domain = vmd->vmd_domain; 2743 vm_domain_free_lock(vmd); 2744 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt, 2745 (vm_page_t *)store); 2746 vm_domain_free_unlock(vmd); 2747 if (cnt != i) 2748 vm_domain_freecnt_inc(vmd, cnt - i); 2749 2750 return (i); 2751 } 2752 2753 static void 2754 vm_page_zone_release(void *arg, void **store, int cnt) 2755 { 2756 struct vm_domain *vmd; 2757 struct vm_pgcache *pgcache; 2758 vm_page_t m; 2759 int i; 2760 2761 pgcache = arg; 2762 vmd = VM_DOMAIN(pgcache->domain); 2763 vm_domain_free_lock(vmd); 2764 for (i = 0; i < cnt; i++) { 2765 m = (vm_page_t)store[i]; 2766 vm_phys_free_pages(m, 0); 2767 } 2768 vm_domain_free_unlock(vmd); 2769 vm_domain_freecnt_inc(vmd, cnt); 2770 } 2771 2772 #define VPSC_ANY 0 /* No restrictions. */ 2773 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ 2774 #define VPSC_NOSUPER 2 /* Skip superpages. */ 2775 2776 /* 2777 * vm_page_scan_contig: 2778 * 2779 * Scan vm_page_array[] between the specified entries "m_start" and 2780 * "m_end" for a run of contiguous physical pages that satisfy the 2781 * specified conditions, and return the lowest page in the run. The 2782 * specified "alignment" determines the alignment of the lowest physical 2783 * page in the run. If the specified "boundary" is non-zero, then the 2784 * run of physical pages cannot span a physical address that is a 2785 * multiple of "boundary". 2786 * 2787 * "m_end" is never dereferenced, so it need not point to a vm_page 2788 * structure within vm_page_array[]. 2789 * 2790 * "npages" must be greater than zero. "m_start" and "m_end" must not 2791 * span a hole (or discontiguity) in the physical address space. Both 2792 * "alignment" and "boundary" must be a power of two. 2793 */ 2794 static vm_page_t 2795 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, 2796 u_long alignment, vm_paddr_t boundary, int options) 2797 { 2798 vm_object_t object; 2799 vm_paddr_t pa; 2800 vm_page_t m, m_run; 2801 #if VM_NRESERVLEVEL > 0 2802 int level; 2803 #endif 2804 int m_inc, order, run_ext, run_len; 2805 2806 KASSERT(npages > 0, ("npages is 0")); 2807 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2808 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2809 m_run = NULL; 2810 run_len = 0; 2811 for (m = m_start; m < m_end && run_len < npages; m += m_inc) { 2812 KASSERT((m->flags & PG_MARKER) == 0, 2813 ("page %p is PG_MARKER", m)); 2814 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1, 2815 ("fictitious page %p has invalid ref count", m)); 2816 2817 /* 2818 * If the current page would be the start of a run, check its 2819 * physical address against the end, alignment, and boundary 2820 * conditions. If it doesn't satisfy these conditions, either 2821 * terminate the scan or advance to the next page that 2822 * satisfies the failed condition. 2823 */ 2824 if (run_len == 0) { 2825 KASSERT(m_run == NULL, ("m_run != NULL")); 2826 if (m + npages > m_end) 2827 break; 2828 pa = VM_PAGE_TO_PHYS(m); 2829 if (!vm_addr_align_ok(pa, alignment)) { 2830 m_inc = atop(roundup2(pa, alignment) - pa); 2831 continue; 2832 } 2833 if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) { 2834 m_inc = atop(roundup2(pa, boundary) - pa); 2835 continue; 2836 } 2837 } else 2838 KASSERT(m_run != NULL, ("m_run == NULL")); 2839 2840 retry: 2841 m_inc = 1; 2842 if (vm_page_wired(m)) 2843 run_ext = 0; 2844 #if VM_NRESERVLEVEL > 0 2845 else if ((level = vm_reserv_level(m)) >= 0 && 2846 (options & VPSC_NORESERV) != 0) { 2847 run_ext = 0; 2848 /* Advance to the end of the reservation. */ 2849 pa = VM_PAGE_TO_PHYS(m); 2850 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - 2851 pa); 2852 } 2853 #endif 2854 else if ((object = atomic_load_ptr(&m->object)) != NULL) { 2855 /* 2856 * The page is considered eligible for relocation if 2857 * and only if it could be laundered or reclaimed by 2858 * the page daemon. 2859 */ 2860 VM_OBJECT_RLOCK(object); 2861 if (object != m->object) { 2862 VM_OBJECT_RUNLOCK(object); 2863 goto retry; 2864 } 2865 /* Don't care: PG_NODUMP, PG_ZERO. */ 2866 if ((object->flags & OBJ_SWAP) == 0 && 2867 object->type != OBJT_VNODE) { 2868 run_ext = 0; 2869 #if VM_NRESERVLEVEL > 0 2870 } else if ((options & VPSC_NOSUPER) != 0 && 2871 (level = vm_reserv_level_iffullpop(m)) >= 0) { 2872 run_ext = 0; 2873 /* Advance to the end of the superpage. */ 2874 pa = VM_PAGE_TO_PHYS(m); 2875 m_inc = atop(roundup2(pa + 1, 2876 vm_reserv_size(level)) - pa); 2877 #endif 2878 } else if (object->memattr == VM_MEMATTR_DEFAULT && 2879 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) { 2880 /* 2881 * The page is allocated but eligible for 2882 * relocation. Extend the current run by one 2883 * page. 2884 */ 2885 KASSERT(pmap_page_get_memattr(m) == 2886 VM_MEMATTR_DEFAULT, 2887 ("page %p has an unexpected memattr", m)); 2888 KASSERT((m->oflags & (VPO_SWAPINPROG | 2889 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2890 ("page %p has unexpected oflags", m)); 2891 /* Don't care: PGA_NOSYNC. */ 2892 run_ext = 1; 2893 } else 2894 run_ext = 0; 2895 VM_OBJECT_RUNLOCK(object); 2896 #if VM_NRESERVLEVEL > 0 2897 } else if (level >= 0) { 2898 /* 2899 * The page is reserved but not yet allocated. In 2900 * other words, it is still free. Extend the current 2901 * run by one page. 2902 */ 2903 run_ext = 1; 2904 #endif 2905 } else if ((order = m->order) < VM_NFREEORDER) { 2906 /* 2907 * The page is enqueued in the physical memory 2908 * allocator's free page queues. Moreover, it is the 2909 * first page in a power-of-two-sized run of 2910 * contiguous free pages. Add these pages to the end 2911 * of the current run, and jump ahead. 2912 */ 2913 run_ext = 1 << order; 2914 m_inc = 1 << order; 2915 } else { 2916 /* 2917 * Skip the page for one of the following reasons: (1) 2918 * It is enqueued in the physical memory allocator's 2919 * free page queues. However, it is not the first 2920 * page in a run of contiguous free pages. (This case 2921 * rarely occurs because the scan is performed in 2922 * ascending order.) (2) It is not reserved, and it is 2923 * transitioning from free to allocated. (Conversely, 2924 * the transition from allocated to free for managed 2925 * pages is blocked by the page busy lock.) (3) It is 2926 * allocated but not contained by an object and not 2927 * wired, e.g., allocated by Xen's balloon driver. 2928 */ 2929 run_ext = 0; 2930 } 2931 2932 /* 2933 * Extend or reset the current run of pages. 2934 */ 2935 if (run_ext > 0) { 2936 if (run_len == 0) 2937 m_run = m; 2938 run_len += run_ext; 2939 } else { 2940 if (run_len > 0) { 2941 m_run = NULL; 2942 run_len = 0; 2943 } 2944 } 2945 } 2946 if (run_len >= npages) 2947 return (m_run); 2948 return (NULL); 2949 } 2950 2951 /* 2952 * vm_page_reclaim_run: 2953 * 2954 * Try to relocate each of the allocated virtual pages within the 2955 * specified run of physical pages to a new physical address. Free the 2956 * physical pages underlying the relocated virtual pages. A virtual page 2957 * is relocatable if and only if it could be laundered or reclaimed by 2958 * the page daemon. Whenever possible, a virtual page is relocated to a 2959 * physical address above "high". 2960 * 2961 * Returns 0 if every physical page within the run was already free or 2962 * just freed by a successful relocation. Otherwise, returns a non-zero 2963 * value indicating why the last attempt to relocate a virtual page was 2964 * unsuccessful. 2965 * 2966 * "req_class" must be an allocation class. 2967 */ 2968 static int 2969 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run, 2970 vm_paddr_t high) 2971 { 2972 struct vm_domain *vmd; 2973 struct spglist free; 2974 vm_object_t object; 2975 vm_paddr_t pa; 2976 vm_page_t m, m_end, m_new; 2977 int error, order, req; 2978 2979 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, 2980 ("req_class is not an allocation class")); 2981 SLIST_INIT(&free); 2982 error = 0; 2983 m = m_run; 2984 m_end = m_run + npages; 2985 for (; error == 0 && m < m_end; m++) { 2986 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, 2987 ("page %p is PG_FICTITIOUS or PG_MARKER", m)); 2988 2989 /* 2990 * Racily check for wirings. Races are handled once the object 2991 * lock is held and the page is unmapped. 2992 */ 2993 if (vm_page_wired(m)) 2994 error = EBUSY; 2995 else if ((object = atomic_load_ptr(&m->object)) != NULL) { 2996 /* 2997 * The page is relocated if and only if it could be 2998 * laundered or reclaimed by the page daemon. 2999 */ 3000 VM_OBJECT_WLOCK(object); 3001 /* Don't care: PG_NODUMP, PG_ZERO. */ 3002 if (m->object != object || 3003 ((object->flags & OBJ_SWAP) == 0 && 3004 object->type != OBJT_VNODE)) 3005 error = EINVAL; 3006 else if (object->memattr != VM_MEMATTR_DEFAULT) 3007 error = EINVAL; 3008 else if (vm_page_queue(m) != PQ_NONE && 3009 vm_page_tryxbusy(m) != 0) { 3010 if (vm_page_wired(m)) { 3011 vm_page_xunbusy(m); 3012 error = EBUSY; 3013 goto unlock; 3014 } 3015 KASSERT(pmap_page_get_memattr(m) == 3016 VM_MEMATTR_DEFAULT, 3017 ("page %p has an unexpected memattr", m)); 3018 KASSERT(m->oflags == 0, 3019 ("page %p has unexpected oflags", m)); 3020 /* Don't care: PGA_NOSYNC. */ 3021 if (!vm_page_none_valid(m)) { 3022 /* 3023 * First, try to allocate a new page 3024 * that is above "high". Failing 3025 * that, try to allocate a new page 3026 * that is below "m_run". Allocate 3027 * the new page between the end of 3028 * "m_run" and "high" only as a last 3029 * resort. 3030 */ 3031 req = req_class; 3032 if ((m->flags & PG_NODUMP) != 0) 3033 req |= VM_ALLOC_NODUMP; 3034 if (trunc_page(high) != 3035 ~(vm_paddr_t)PAGE_MASK) { 3036 m_new = 3037 vm_page_alloc_noobj_contig( 3038 req, 1, round_page(high), 3039 ~(vm_paddr_t)0, PAGE_SIZE, 3040 0, VM_MEMATTR_DEFAULT); 3041 } else 3042 m_new = NULL; 3043 if (m_new == NULL) { 3044 pa = VM_PAGE_TO_PHYS(m_run); 3045 m_new = 3046 vm_page_alloc_noobj_contig( 3047 req, 1, 0, pa - 1, 3048 PAGE_SIZE, 0, 3049 VM_MEMATTR_DEFAULT); 3050 } 3051 if (m_new == NULL) { 3052 pa += ptoa(npages); 3053 m_new = 3054 vm_page_alloc_noobj_contig( 3055 req, 1, pa, high, PAGE_SIZE, 3056 0, VM_MEMATTR_DEFAULT); 3057 } 3058 if (m_new == NULL) { 3059 vm_page_xunbusy(m); 3060 error = ENOMEM; 3061 goto unlock; 3062 } 3063 3064 /* 3065 * Unmap the page and check for new 3066 * wirings that may have been acquired 3067 * through a pmap lookup. 3068 */ 3069 if (object->ref_count != 0 && 3070 !vm_page_try_remove_all(m)) { 3071 vm_page_xunbusy(m); 3072 vm_page_free(m_new); 3073 error = EBUSY; 3074 goto unlock; 3075 } 3076 3077 /* 3078 * Replace "m" with the new page. For 3079 * vm_page_replace(), "m" must be busy 3080 * and dequeued. Finally, change "m" 3081 * as if vm_page_free() was called. 3082 */ 3083 m_new->a.flags = m->a.flags & 3084 ~PGA_QUEUE_STATE_MASK; 3085 KASSERT(m_new->oflags == VPO_UNMANAGED, 3086 ("page %p is managed", m_new)); 3087 m_new->oflags = 0; 3088 pmap_copy_page(m, m_new); 3089 m_new->valid = m->valid; 3090 m_new->dirty = m->dirty; 3091 m->flags &= ~PG_ZERO; 3092 vm_page_dequeue(m); 3093 if (vm_page_replace_hold(m_new, object, 3094 m->pindex, m) && 3095 vm_page_free_prep(m)) 3096 SLIST_INSERT_HEAD(&free, m, 3097 plinks.s.ss); 3098 3099 /* 3100 * The new page must be deactivated 3101 * before the object is unlocked. 3102 */ 3103 vm_page_deactivate(m_new); 3104 } else { 3105 m->flags &= ~PG_ZERO; 3106 vm_page_dequeue(m); 3107 if (vm_page_free_prep(m)) 3108 SLIST_INSERT_HEAD(&free, m, 3109 plinks.s.ss); 3110 KASSERT(m->dirty == 0, 3111 ("page %p is dirty", m)); 3112 } 3113 } else 3114 error = EBUSY; 3115 unlock: 3116 VM_OBJECT_WUNLOCK(object); 3117 } else { 3118 MPASS(vm_page_domain(m) == domain); 3119 vmd = VM_DOMAIN(domain); 3120 vm_domain_free_lock(vmd); 3121 order = m->order; 3122 if (order < VM_NFREEORDER) { 3123 /* 3124 * The page is enqueued in the physical memory 3125 * allocator's free page queues. Moreover, it 3126 * is the first page in a power-of-two-sized 3127 * run of contiguous free pages. Jump ahead 3128 * to the last page within that run, and 3129 * continue from there. 3130 */ 3131 m += (1 << order) - 1; 3132 } 3133 #if VM_NRESERVLEVEL > 0 3134 else if (vm_reserv_is_page_free(m)) 3135 order = 0; 3136 #endif 3137 vm_domain_free_unlock(vmd); 3138 if (order == VM_NFREEORDER) 3139 error = EINVAL; 3140 } 3141 } 3142 if ((m = SLIST_FIRST(&free)) != NULL) { 3143 int cnt; 3144 3145 vmd = VM_DOMAIN(domain); 3146 cnt = 0; 3147 vm_domain_free_lock(vmd); 3148 do { 3149 MPASS(vm_page_domain(m) == domain); 3150 SLIST_REMOVE_HEAD(&free, plinks.s.ss); 3151 vm_phys_free_pages(m, 0); 3152 cnt++; 3153 } while ((m = SLIST_FIRST(&free)) != NULL); 3154 vm_domain_free_unlock(vmd); 3155 vm_domain_freecnt_inc(vmd, cnt); 3156 } 3157 return (error); 3158 } 3159 3160 #define NRUNS 16 3161 3162 #define RUN_INDEX(count, nruns) ((count) % (nruns)) 3163 3164 #define MIN_RECLAIM 8 3165 3166 /* 3167 * vm_page_reclaim_contig: 3168 * 3169 * Reclaim allocated, contiguous physical memory satisfying the specified 3170 * conditions by relocating the virtual pages using that physical memory. 3171 * Returns 0 if reclamation is successful, ERANGE if the specified domain 3172 * can't possibly satisfy the reclamation request, or ENOMEM if not 3173 * currently able to reclaim the requested number of pages. Since 3174 * relocation requires the allocation of physical pages, reclamation may 3175 * fail with ENOMEM due to a shortage of free pages. When reclamation 3176 * fails in this manner, callers are expected to perform vm_wait() before 3177 * retrying a failed allocation operation, e.g., vm_page_alloc_contig(). 3178 * 3179 * The caller must always specify an allocation class through "req". 3180 * 3181 * allocation classes: 3182 * VM_ALLOC_NORMAL normal process request 3183 * VM_ALLOC_SYSTEM system *really* needs a page 3184 * VM_ALLOC_INTERRUPT interrupt time request 3185 * 3186 * The optional allocation flags are ignored. 3187 * 3188 * "npages" must be greater than zero. Both "alignment" and "boundary" 3189 * must be a power of two. 3190 */ 3191 int 3192 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages, 3193 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 3194 int desired_runs) 3195 { 3196 struct vm_domain *vmd; 3197 vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs; 3198 u_long count, minalign, reclaimed; 3199 int error, i, min_reclaim, nruns, options, req_class; 3200 int segind, start_segind; 3201 int ret; 3202 3203 KASSERT(npages > 0, ("npages is 0")); 3204 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 3205 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 3206 3207 ret = ENOMEM; 3208 3209 /* 3210 * If the caller wants to reclaim multiple runs, try to allocate 3211 * space to store the runs. If that fails, fall back to the old 3212 * behavior of just reclaiming MIN_RECLAIM pages. 3213 */ 3214 if (desired_runs > 1) 3215 m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs), 3216 M_TEMP, M_NOWAIT); 3217 else 3218 m_runs = NULL; 3219 3220 if (m_runs == NULL) { 3221 m_runs = _m_runs; 3222 nruns = NRUNS; 3223 } else { 3224 nruns = NRUNS + desired_runs - 1; 3225 } 3226 min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM); 3227 3228 /* 3229 * The caller will attempt an allocation after some runs have been 3230 * reclaimed and added to the vm_phys buddy lists. Due to limitations 3231 * of vm_phys_alloc_contig(), round up the requested length to the next 3232 * power of two or maximum chunk size, and ensure that each run is 3233 * suitably aligned. 3234 */ 3235 minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1); 3236 npages = roundup2(npages, minalign); 3237 if (alignment < ptoa(minalign)) 3238 alignment = ptoa(minalign); 3239 3240 /* 3241 * The page daemon is allowed to dig deeper into the free page list. 3242 */ 3243 req_class = req & VM_ALLOC_CLASS_MASK; 3244 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 3245 req_class = VM_ALLOC_SYSTEM; 3246 3247 start_segind = vm_phys_lookup_segind(low); 3248 3249 /* 3250 * Return if the number of free pages cannot satisfy the requested 3251 * allocation. 3252 */ 3253 vmd = VM_DOMAIN(domain); 3254 count = vmd->vmd_free_count; 3255 if (count < npages + vmd->vmd_free_reserved || (count < npages + 3256 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || 3257 (count < npages && req_class == VM_ALLOC_INTERRUPT)) 3258 goto done; 3259 3260 /* 3261 * Scan up to three times, relaxing the restrictions ("options") on 3262 * the reclamation of reservations and superpages each time. 3263 */ 3264 for (options = VPSC_NORESERV;;) { 3265 bool phys_range_exists = false; 3266 3267 /* 3268 * Find the highest runs that satisfy the given constraints 3269 * and restrictions, and record them in "m_runs". 3270 */ 3271 count = 0; 3272 segind = start_segind; 3273 while ((segind = vm_phys_find_range(bounds, segind, domain, 3274 npages, low, high)) != -1) { 3275 phys_range_exists = true; 3276 while ((m_run = vm_page_scan_contig(npages, bounds[0], 3277 bounds[1], alignment, boundary, options))) { 3278 bounds[0] = m_run + npages; 3279 m_runs[RUN_INDEX(count, nruns)] = m_run; 3280 count++; 3281 } 3282 segind++; 3283 } 3284 3285 if (!phys_range_exists) { 3286 ret = ERANGE; 3287 goto done; 3288 } 3289 3290 /* 3291 * Reclaim the highest runs in LIFO (descending) order until 3292 * the number of reclaimed pages, "reclaimed", is at least 3293 * "min_reclaim". Reset "reclaimed" each time because each 3294 * reclamation is idempotent, and runs will (likely) recur 3295 * from one scan to the next as restrictions are relaxed. 3296 */ 3297 reclaimed = 0; 3298 for (i = 0; count > 0 && i < nruns; i++) { 3299 count--; 3300 m_run = m_runs[RUN_INDEX(count, nruns)]; 3301 error = vm_page_reclaim_run(req_class, domain, npages, 3302 m_run, high); 3303 if (error == 0) { 3304 reclaimed += npages; 3305 if (reclaimed >= min_reclaim) { 3306 ret = 0; 3307 goto done; 3308 } 3309 } 3310 } 3311 3312 /* 3313 * Either relax the restrictions on the next scan or return if 3314 * the last scan had no restrictions. 3315 */ 3316 if (options == VPSC_NORESERV) 3317 options = VPSC_NOSUPER; 3318 else if (options == VPSC_NOSUPER) 3319 options = VPSC_ANY; 3320 else if (options == VPSC_ANY) { 3321 if (reclaimed != 0) 3322 ret = 0; 3323 goto done; 3324 } 3325 } 3326 done: 3327 if (m_runs != _m_runs) 3328 free(m_runs, M_TEMP); 3329 return (ret); 3330 } 3331 3332 int 3333 vm_page_reclaim_contig_domain(int domain, int req, u_long npages, 3334 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 3335 { 3336 return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low, high, 3337 alignment, boundary, 1)); 3338 } 3339 3340 int 3341 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, 3342 u_long alignment, vm_paddr_t boundary) 3343 { 3344 struct vm_domainset_iter di; 3345 int domain, ret, status; 3346 3347 ret = ERANGE; 3348 3349 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 3350 do { 3351 status = vm_page_reclaim_contig_domain(domain, req, npages, low, 3352 high, alignment, boundary); 3353 if (status == 0) 3354 return (0); 3355 else if (status == ERANGE) 3356 vm_domainset_iter_ignore(&di, domain); 3357 else { 3358 KASSERT(status == ENOMEM, ("Unrecognized error %d " 3359 "from vm_page_reclaim_contig_domain()", status)); 3360 ret = ENOMEM; 3361 } 3362 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 3363 3364 return (ret); 3365 } 3366 3367 /* 3368 * Set the domain in the appropriate page level domainset. 3369 */ 3370 void 3371 vm_domain_set(struct vm_domain *vmd) 3372 { 3373 3374 mtx_lock(&vm_domainset_lock); 3375 if (!vmd->vmd_minset && vm_paging_min(vmd)) { 3376 vmd->vmd_minset = 1; 3377 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains); 3378 } 3379 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) { 3380 vmd->vmd_severeset = 1; 3381 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains); 3382 } 3383 mtx_unlock(&vm_domainset_lock); 3384 } 3385 3386 /* 3387 * Clear the domain from the appropriate page level domainset. 3388 */ 3389 void 3390 vm_domain_clear(struct vm_domain *vmd) 3391 { 3392 3393 mtx_lock(&vm_domainset_lock); 3394 if (vmd->vmd_minset && !vm_paging_min(vmd)) { 3395 vmd->vmd_minset = 0; 3396 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains); 3397 if (vm_min_waiters != 0) { 3398 vm_min_waiters = 0; 3399 wakeup(&vm_min_domains); 3400 } 3401 } 3402 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) { 3403 vmd->vmd_severeset = 0; 3404 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains); 3405 if (vm_severe_waiters != 0) { 3406 vm_severe_waiters = 0; 3407 wakeup(&vm_severe_domains); 3408 } 3409 } 3410 3411 /* 3412 * If pageout daemon needs pages, then tell it that there are 3413 * some free. 3414 */ 3415 if (vmd->vmd_pageout_pages_needed && 3416 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) { 3417 wakeup(&vmd->vmd_pageout_pages_needed); 3418 vmd->vmd_pageout_pages_needed = 0; 3419 } 3420 3421 /* See comments in vm_wait_doms(). */ 3422 if (vm_pageproc_waiters) { 3423 vm_pageproc_waiters = 0; 3424 wakeup(&vm_pageproc_waiters); 3425 } 3426 mtx_unlock(&vm_domainset_lock); 3427 } 3428 3429 /* 3430 * Wait for free pages to exceed the min threshold globally. 3431 */ 3432 void 3433 vm_wait_min(void) 3434 { 3435 3436 mtx_lock(&vm_domainset_lock); 3437 while (vm_page_count_min()) { 3438 vm_min_waiters++; 3439 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0); 3440 } 3441 mtx_unlock(&vm_domainset_lock); 3442 } 3443 3444 /* 3445 * Wait for free pages to exceed the severe threshold globally. 3446 */ 3447 void 3448 vm_wait_severe(void) 3449 { 3450 3451 mtx_lock(&vm_domainset_lock); 3452 while (vm_page_count_severe()) { 3453 vm_severe_waiters++; 3454 msleep(&vm_severe_domains, &vm_domainset_lock, PVM, 3455 "vmwait", 0); 3456 } 3457 mtx_unlock(&vm_domainset_lock); 3458 } 3459 3460 u_int 3461 vm_wait_count(void) 3462 { 3463 3464 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters); 3465 } 3466 3467 int 3468 vm_wait_doms(const domainset_t *wdoms, int mflags) 3469 { 3470 int error; 3471 3472 error = 0; 3473 3474 /* 3475 * We use racey wakeup synchronization to avoid expensive global 3476 * locking for the pageproc when sleeping with a non-specific vm_wait. 3477 * To handle this, we only sleep for one tick in this instance. It 3478 * is expected that most allocations for the pageproc will come from 3479 * kmem or vm_page_grab* which will use the more specific and 3480 * race-free vm_wait_domain(). 3481 */ 3482 if (curproc == pageproc) { 3483 mtx_lock(&vm_domainset_lock); 3484 vm_pageproc_waiters++; 3485 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock, 3486 PVM | PDROP | mflags, "pageprocwait", 1); 3487 } else { 3488 /* 3489 * XXX Ideally we would wait only until the allocation could 3490 * be satisfied. This condition can cause new allocators to 3491 * consume all freed pages while old allocators wait. 3492 */ 3493 mtx_lock(&vm_domainset_lock); 3494 if (vm_page_count_min_set(wdoms)) { 3495 if (pageproc == NULL) 3496 panic("vm_wait in early boot"); 3497 vm_min_waiters++; 3498 error = msleep(&vm_min_domains, &vm_domainset_lock, 3499 PVM | PDROP | mflags, "vmwait", 0); 3500 } else 3501 mtx_unlock(&vm_domainset_lock); 3502 } 3503 return (error); 3504 } 3505 3506 /* 3507 * vm_wait_domain: 3508 * 3509 * Sleep until free pages are available for allocation. 3510 * - Called in various places after failed memory allocations. 3511 */ 3512 void 3513 vm_wait_domain(int domain) 3514 { 3515 struct vm_domain *vmd; 3516 domainset_t wdom; 3517 3518 vmd = VM_DOMAIN(domain); 3519 vm_domain_free_assert_unlocked(vmd); 3520 3521 if (curproc == pageproc) { 3522 mtx_lock(&vm_domainset_lock); 3523 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) { 3524 vmd->vmd_pageout_pages_needed = 1; 3525 msleep(&vmd->vmd_pageout_pages_needed, 3526 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0); 3527 } else 3528 mtx_unlock(&vm_domainset_lock); 3529 } else { 3530 DOMAINSET_ZERO(&wdom); 3531 DOMAINSET_SET(vmd->vmd_domain, &wdom); 3532 vm_wait_doms(&wdom, 0); 3533 } 3534 } 3535 3536 static int 3537 vm_wait_flags(vm_object_t obj, int mflags) 3538 { 3539 struct domainset *d; 3540 3541 d = NULL; 3542 3543 /* 3544 * Carefully fetch pointers only once: the struct domainset 3545 * itself is ummutable but the pointer might change. 3546 */ 3547 if (obj != NULL) 3548 d = obj->domain.dr_policy; 3549 if (d == NULL) 3550 d = curthread->td_domain.dr_policy; 3551 3552 return (vm_wait_doms(&d->ds_mask, mflags)); 3553 } 3554 3555 /* 3556 * vm_wait: 3557 * 3558 * Sleep until free pages are available for allocation in the 3559 * affinity domains of the obj. If obj is NULL, the domain set 3560 * for the calling thread is used. 3561 * Called in various places after failed memory allocations. 3562 */ 3563 void 3564 vm_wait(vm_object_t obj) 3565 { 3566 (void)vm_wait_flags(obj, 0); 3567 } 3568 3569 int 3570 vm_wait_intr(vm_object_t obj) 3571 { 3572 return (vm_wait_flags(obj, PCATCH)); 3573 } 3574 3575 /* 3576 * vm_domain_alloc_fail: 3577 * 3578 * Called when a page allocation function fails. Informs the 3579 * pagedaemon and performs the requested wait. Requires the 3580 * domain_free and object lock on entry. Returns with the 3581 * object lock held and free lock released. Returns an error when 3582 * retry is necessary. 3583 * 3584 */ 3585 static int 3586 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req) 3587 { 3588 3589 vm_domain_free_assert_unlocked(vmd); 3590 3591 atomic_add_int(&vmd->vmd_pageout_deficit, 3592 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 3593 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) { 3594 if (object != NULL) 3595 VM_OBJECT_WUNLOCK(object); 3596 vm_wait_domain(vmd->vmd_domain); 3597 if (object != NULL) 3598 VM_OBJECT_WLOCK(object); 3599 if (req & VM_ALLOC_WAITOK) 3600 return (EAGAIN); 3601 } 3602 3603 return (0); 3604 } 3605 3606 /* 3607 * vm_waitpfault: 3608 * 3609 * Sleep until free pages are available for allocation. 3610 * - Called only in vm_fault so that processes page faulting 3611 * can be easily tracked. 3612 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 3613 * processes will be able to grab memory first. Do not change 3614 * this balance without careful testing first. 3615 */ 3616 void 3617 vm_waitpfault(struct domainset *dset, int timo) 3618 { 3619 3620 /* 3621 * XXX Ideally we would wait only until the allocation could 3622 * be satisfied. This condition can cause new allocators to 3623 * consume all freed pages while old allocators wait. 3624 */ 3625 mtx_lock(&vm_domainset_lock); 3626 if (vm_page_count_min_set(&dset->ds_mask)) { 3627 vm_min_waiters++; 3628 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP, 3629 "pfault", timo); 3630 } else 3631 mtx_unlock(&vm_domainset_lock); 3632 } 3633 3634 static struct vm_pagequeue * 3635 _vm_page_pagequeue(vm_page_t m, uint8_t queue) 3636 { 3637 3638 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]); 3639 } 3640 3641 #ifdef INVARIANTS 3642 static struct vm_pagequeue * 3643 vm_page_pagequeue(vm_page_t m) 3644 { 3645 3646 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue)); 3647 } 3648 #endif 3649 3650 static __always_inline bool 3651 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) 3652 { 3653 vm_page_astate_t tmp; 3654 3655 tmp = *old; 3656 do { 3657 if (__predict_true(vm_page_astate_fcmpset(m, old, new))) 3658 return (true); 3659 counter_u64_add(pqstate_commit_retries, 1); 3660 } while (old->_bits == tmp._bits); 3661 3662 return (false); 3663 } 3664 3665 /* 3666 * Do the work of committing a queue state update that moves the page out of 3667 * its current queue. 3668 */ 3669 static bool 3670 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m, 3671 vm_page_astate_t *old, vm_page_astate_t new) 3672 { 3673 vm_page_t next; 3674 3675 vm_pagequeue_assert_locked(pq); 3676 KASSERT(vm_page_pagequeue(m) == pq, 3677 ("%s: queue %p does not match page %p", __func__, pq, m)); 3678 KASSERT(old->queue != PQ_NONE && new.queue != old->queue, 3679 ("%s: invalid queue indices %d %d", 3680 __func__, old->queue, new.queue)); 3681 3682 /* 3683 * Once the queue index of the page changes there is nothing 3684 * synchronizing with further updates to the page's physical 3685 * queue state. Therefore we must speculatively remove the page 3686 * from the queue now and be prepared to roll back if the queue 3687 * state update fails. If the page is not physically enqueued then 3688 * we just update its queue index. 3689 */ 3690 if ((old->flags & PGA_ENQUEUED) != 0) { 3691 new.flags &= ~PGA_ENQUEUED; 3692 next = TAILQ_NEXT(m, plinks.q); 3693 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3694 vm_pagequeue_cnt_dec(pq); 3695 if (!vm_page_pqstate_fcmpset(m, old, new)) { 3696 if (next == NULL) 3697 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3698 else 3699 TAILQ_INSERT_BEFORE(next, m, plinks.q); 3700 vm_pagequeue_cnt_inc(pq); 3701 return (false); 3702 } else { 3703 return (true); 3704 } 3705 } else { 3706 return (vm_page_pqstate_fcmpset(m, old, new)); 3707 } 3708 } 3709 3710 static bool 3711 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old, 3712 vm_page_astate_t new) 3713 { 3714 struct vm_pagequeue *pq; 3715 vm_page_astate_t as; 3716 bool ret; 3717 3718 pq = _vm_page_pagequeue(m, old->queue); 3719 3720 /* 3721 * The queue field and PGA_ENQUEUED flag are stable only so long as the 3722 * corresponding page queue lock is held. 3723 */ 3724 vm_pagequeue_lock(pq); 3725 as = vm_page_astate_load(m); 3726 if (__predict_false(as._bits != old->_bits)) { 3727 *old = as; 3728 ret = false; 3729 } else { 3730 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new); 3731 } 3732 vm_pagequeue_unlock(pq); 3733 return (ret); 3734 } 3735 3736 /* 3737 * Commit a queue state update that enqueues or requeues a page. 3738 */ 3739 static bool 3740 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m, 3741 vm_page_astate_t *old, vm_page_astate_t new) 3742 { 3743 struct vm_domain *vmd; 3744 3745 vm_pagequeue_assert_locked(pq); 3746 KASSERT(old->queue != PQ_NONE && new.queue == old->queue, 3747 ("%s: invalid queue indices %d %d", 3748 __func__, old->queue, new.queue)); 3749 3750 new.flags |= PGA_ENQUEUED; 3751 if (!vm_page_pqstate_fcmpset(m, old, new)) 3752 return (false); 3753 3754 if ((old->flags & PGA_ENQUEUED) != 0) 3755 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3756 else 3757 vm_pagequeue_cnt_inc(pq); 3758 3759 /* 3760 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if 3761 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be 3762 * applied, even if it was set first. 3763 */ 3764 if ((old->flags & PGA_REQUEUE_HEAD) != 0) { 3765 vmd = vm_pagequeue_domain(m); 3766 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE], 3767 ("%s: invalid page queue for page %p", __func__, m)); 3768 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 3769 } else { 3770 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3771 } 3772 return (true); 3773 } 3774 3775 /* 3776 * Commit a queue state update that encodes a request for a deferred queue 3777 * operation. 3778 */ 3779 static bool 3780 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old, 3781 vm_page_astate_t new) 3782 { 3783 3784 KASSERT(old->queue == new.queue || new.queue != PQ_NONE, 3785 ("%s: invalid state, queue %d flags %x", 3786 __func__, new.queue, new.flags)); 3787 3788 if (old->_bits != new._bits && 3789 !vm_page_pqstate_fcmpset(m, old, new)) 3790 return (false); 3791 vm_page_pqbatch_submit(m, new.queue); 3792 return (true); 3793 } 3794 3795 /* 3796 * A generic queue state update function. This handles more cases than the 3797 * specialized functions above. 3798 */ 3799 bool 3800 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) 3801 { 3802 3803 if (old->_bits == new._bits) 3804 return (true); 3805 3806 if (old->queue != PQ_NONE && new.queue != old->queue) { 3807 if (!vm_page_pqstate_commit_dequeue(m, old, new)) 3808 return (false); 3809 if (new.queue != PQ_NONE) 3810 vm_page_pqbatch_submit(m, new.queue); 3811 } else { 3812 if (!vm_page_pqstate_fcmpset(m, old, new)) 3813 return (false); 3814 if (new.queue != PQ_NONE && 3815 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0) 3816 vm_page_pqbatch_submit(m, new.queue); 3817 } 3818 return (true); 3819 } 3820 3821 /* 3822 * Apply deferred queue state updates to a page. 3823 */ 3824 static inline void 3825 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue) 3826 { 3827 vm_page_astate_t new, old; 3828 3829 CRITICAL_ASSERT(curthread); 3830 vm_pagequeue_assert_locked(pq); 3831 KASSERT(queue < PQ_COUNT, 3832 ("%s: invalid queue index %d", __func__, queue)); 3833 KASSERT(pq == _vm_page_pagequeue(m, queue), 3834 ("%s: page %p does not belong to queue %p", __func__, m, pq)); 3835 3836 for (old = vm_page_astate_load(m);;) { 3837 if (__predict_false(old.queue != queue || 3838 (old.flags & PGA_QUEUE_OP_MASK) == 0)) { 3839 counter_u64_add(queue_nops, 1); 3840 break; 3841 } 3842 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3843 ("%s: page %p is unmanaged", __func__, m)); 3844 3845 new = old; 3846 if ((old.flags & PGA_DEQUEUE) != 0) { 3847 new.flags &= ~PGA_QUEUE_OP_MASK; 3848 new.queue = PQ_NONE; 3849 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq, 3850 m, &old, new))) { 3851 counter_u64_add(queue_ops, 1); 3852 break; 3853 } 3854 } else { 3855 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD); 3856 if (__predict_true(_vm_page_pqstate_commit_requeue(pq, 3857 m, &old, new))) { 3858 counter_u64_add(queue_ops, 1); 3859 break; 3860 } 3861 } 3862 } 3863 } 3864 3865 static void 3866 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq, 3867 uint8_t queue) 3868 { 3869 int i; 3870 3871 for (i = 0; i < bq->bq_cnt; i++) 3872 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue); 3873 vm_batchqueue_init(bq); 3874 } 3875 3876 /* 3877 * vm_page_pqbatch_submit: [ internal use only ] 3878 * 3879 * Enqueue a page in the specified page queue's batched work queue. 3880 * The caller must have encoded the requested operation in the page 3881 * structure's a.flags field. 3882 */ 3883 void 3884 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue) 3885 { 3886 struct vm_batchqueue *bq; 3887 struct vm_pagequeue *pq; 3888 int domain, slots_remaining; 3889 3890 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue)); 3891 3892 domain = vm_page_domain(m); 3893 critical_enter(); 3894 bq = DPCPU_PTR(pqbatch[domain][queue]); 3895 slots_remaining = vm_batchqueue_insert(bq, m); 3896 if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) { 3897 /* keep building the bq */ 3898 critical_exit(); 3899 return; 3900 } else if (slots_remaining > 0 ) { 3901 /* Try to process the bq if we can get the lock */ 3902 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue]; 3903 if (vm_pagequeue_trylock(pq)) { 3904 vm_pqbatch_process(pq, bq, queue); 3905 vm_pagequeue_unlock(pq); 3906 } 3907 critical_exit(); 3908 return; 3909 } 3910 critical_exit(); 3911 3912 /* if we make it here, the bq is full so wait for the lock */ 3913 3914 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue]; 3915 vm_pagequeue_lock(pq); 3916 critical_enter(); 3917 bq = DPCPU_PTR(pqbatch[domain][queue]); 3918 vm_pqbatch_process(pq, bq, queue); 3919 vm_pqbatch_process_page(pq, m, queue); 3920 vm_pagequeue_unlock(pq); 3921 critical_exit(); 3922 } 3923 3924 /* 3925 * vm_page_pqbatch_drain: [ internal use only ] 3926 * 3927 * Force all per-CPU page queue batch queues to be drained. This is 3928 * intended for use in severe memory shortages, to ensure that pages 3929 * do not remain stuck in the batch queues. 3930 */ 3931 void 3932 vm_page_pqbatch_drain(void) 3933 { 3934 struct thread *td; 3935 struct vm_domain *vmd; 3936 struct vm_pagequeue *pq; 3937 int cpu, domain, queue; 3938 3939 td = curthread; 3940 CPU_FOREACH(cpu) { 3941 thread_lock(td); 3942 sched_bind(td, cpu); 3943 thread_unlock(td); 3944 3945 for (domain = 0; domain < vm_ndomains; domain++) { 3946 vmd = VM_DOMAIN(domain); 3947 for (queue = 0; queue < PQ_COUNT; queue++) { 3948 pq = &vmd->vmd_pagequeues[queue]; 3949 vm_pagequeue_lock(pq); 3950 critical_enter(); 3951 vm_pqbatch_process(pq, 3952 DPCPU_PTR(pqbatch[domain][queue]), queue); 3953 critical_exit(); 3954 vm_pagequeue_unlock(pq); 3955 } 3956 } 3957 } 3958 thread_lock(td); 3959 sched_unbind(td); 3960 thread_unlock(td); 3961 } 3962 3963 /* 3964 * vm_page_dequeue_deferred: [ internal use only ] 3965 * 3966 * Request removal of the given page from its current page 3967 * queue. Physical removal from the queue may be deferred 3968 * indefinitely. 3969 */ 3970 void 3971 vm_page_dequeue_deferred(vm_page_t m) 3972 { 3973 vm_page_astate_t new, old; 3974 3975 old = vm_page_astate_load(m); 3976 do { 3977 if (old.queue == PQ_NONE) { 3978 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, 3979 ("%s: page %p has unexpected queue state", 3980 __func__, m)); 3981 break; 3982 } 3983 new = old; 3984 new.flags |= PGA_DEQUEUE; 3985 } while (!vm_page_pqstate_commit_request(m, &old, new)); 3986 } 3987 3988 /* 3989 * vm_page_dequeue: 3990 * 3991 * Remove the page from whichever page queue it's in, if any, before 3992 * returning. 3993 */ 3994 void 3995 vm_page_dequeue(vm_page_t m) 3996 { 3997 vm_page_astate_t new, old; 3998 3999 old = vm_page_astate_load(m); 4000 do { 4001 if (old.queue == PQ_NONE) { 4002 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, 4003 ("%s: page %p has unexpected queue state", 4004 __func__, m)); 4005 break; 4006 } 4007 new = old; 4008 new.flags &= ~PGA_QUEUE_OP_MASK; 4009 new.queue = PQ_NONE; 4010 } while (!vm_page_pqstate_commit_dequeue(m, &old, new)); 4011 4012 } 4013 4014 /* 4015 * Schedule the given page for insertion into the specified page queue. 4016 * Physical insertion of the page may be deferred indefinitely. 4017 */ 4018 static void 4019 vm_page_enqueue(vm_page_t m, uint8_t queue) 4020 { 4021 4022 KASSERT(m->a.queue == PQ_NONE && 4023 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 4024 ("%s: page %p is already enqueued", __func__, m)); 4025 KASSERT(m->ref_count > 0, 4026 ("%s: page %p does not carry any references", __func__, m)); 4027 4028 m->a.queue = queue; 4029 if ((m->a.flags & PGA_REQUEUE) == 0) 4030 vm_page_aflag_set(m, PGA_REQUEUE); 4031 vm_page_pqbatch_submit(m, queue); 4032 } 4033 4034 /* 4035 * vm_page_free_prep: 4036 * 4037 * Prepares the given page to be put on the free list, 4038 * disassociating it from any VM object. The caller may return 4039 * the page to the free list only if this function returns true. 4040 * 4041 * The object, if it exists, must be locked, and then the page must 4042 * be xbusy. Otherwise the page must be not busied. A managed 4043 * page must be unmapped. 4044 */ 4045 static bool 4046 vm_page_free_prep(vm_page_t m) 4047 { 4048 4049 /* 4050 * Synchronize with threads that have dropped a reference to this 4051 * page. 4052 */ 4053 atomic_thread_fence_acq(); 4054 4055 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP) 4056 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) { 4057 uint64_t *p; 4058 int i; 4059 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 4060 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++) 4061 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx", 4062 m, i, (uintmax_t)*p)); 4063 } 4064 #endif 4065 KASSERT((m->flags & PG_NOFREE) == 0, 4066 ("%s: attempting to free a PG_NOFREE page", __func__)); 4067 if ((m->oflags & VPO_UNMANAGED) == 0) { 4068 KASSERT(!pmap_page_is_mapped(m), 4069 ("vm_page_free_prep: freeing mapped page %p", m)); 4070 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0, 4071 ("vm_page_free_prep: mapping flags set in page %p", m)); 4072 } else { 4073 KASSERT(m->a.queue == PQ_NONE, 4074 ("vm_page_free_prep: unmanaged page %p is queued", m)); 4075 } 4076 VM_CNT_INC(v_tfree); 4077 4078 if (m->object != NULL) { 4079 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) == 4080 ((m->object->flags & OBJ_UNMANAGED) != 0), 4081 ("vm_page_free_prep: managed flag mismatch for page %p", 4082 m)); 4083 vm_page_assert_xbusied(m); 4084 4085 /* 4086 * The object reference can be released without an atomic 4087 * operation. 4088 */ 4089 KASSERT((m->flags & PG_FICTITIOUS) != 0 || 4090 m->ref_count == VPRC_OBJREF, 4091 ("vm_page_free_prep: page %p has unexpected ref_count %u", 4092 m, m->ref_count)); 4093 vm_page_object_remove(m); 4094 m->ref_count -= VPRC_OBJREF; 4095 } else 4096 vm_page_assert_unbusied(m); 4097 4098 vm_page_busy_free(m); 4099 4100 /* 4101 * If fictitious remove object association and 4102 * return. 4103 */ 4104 if ((m->flags & PG_FICTITIOUS) != 0) { 4105 KASSERT(m->ref_count == 1, 4106 ("fictitious page %p is referenced", m)); 4107 KASSERT(m->a.queue == PQ_NONE, 4108 ("fictitious page %p is queued", m)); 4109 return (false); 4110 } 4111 4112 /* 4113 * Pages need not be dequeued before they are returned to the physical 4114 * memory allocator, but they must at least be marked for a deferred 4115 * dequeue. 4116 */ 4117 if ((m->oflags & VPO_UNMANAGED) == 0) 4118 vm_page_dequeue_deferred(m); 4119 4120 m->valid = 0; 4121 vm_page_undirty(m); 4122 4123 if (m->ref_count != 0) 4124 panic("vm_page_free_prep: page %p has references", m); 4125 4126 /* 4127 * Restore the default memory attribute to the page. 4128 */ 4129 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 4130 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 4131 4132 #if VM_NRESERVLEVEL > 0 4133 /* 4134 * Determine whether the page belongs to a reservation. If the page was 4135 * allocated from a per-CPU cache, it cannot belong to a reservation, so 4136 * as an optimization, we avoid the check in that case. 4137 */ 4138 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m)) 4139 return (false); 4140 #endif 4141 4142 return (true); 4143 } 4144 4145 /* 4146 * vm_page_free_toq: 4147 * 4148 * Returns the given page to the free list, disassociating it 4149 * from any VM object. 4150 * 4151 * The object must be locked. The page must be exclusively busied if it 4152 * belongs to an object. 4153 */ 4154 static void 4155 vm_page_free_toq(vm_page_t m) 4156 { 4157 struct vm_domain *vmd; 4158 uma_zone_t zone; 4159 4160 if (!vm_page_free_prep(m)) 4161 return; 4162 4163 vmd = vm_pagequeue_domain(m); 4164 zone = vmd->vmd_pgcache[m->pool].zone; 4165 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) { 4166 uma_zfree(zone, m); 4167 return; 4168 } 4169 vm_domain_free_lock(vmd); 4170 vm_phys_free_pages(m, 0); 4171 vm_domain_free_unlock(vmd); 4172 vm_domain_freecnt_inc(vmd, 1); 4173 } 4174 4175 /* 4176 * vm_page_free_pages_toq: 4177 * 4178 * Returns a list of pages to the free list, disassociating it 4179 * from any VM object. In other words, this is equivalent to 4180 * calling vm_page_free_toq() for each page of a list of VM objects. 4181 */ 4182 int 4183 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count) 4184 { 4185 vm_page_t m; 4186 int count; 4187 4188 if (SLIST_EMPTY(free)) 4189 return (0); 4190 4191 count = 0; 4192 while ((m = SLIST_FIRST(free)) != NULL) { 4193 count++; 4194 SLIST_REMOVE_HEAD(free, plinks.s.ss); 4195 vm_page_free_toq(m); 4196 } 4197 4198 if (update_wire_count) 4199 vm_wire_sub(count); 4200 return (count); 4201 } 4202 4203 /* 4204 * Mark this page as wired down. For managed pages, this prevents reclamation 4205 * by the page daemon, or when the containing object, if any, is destroyed. 4206 */ 4207 void 4208 vm_page_wire(vm_page_t m) 4209 { 4210 u_int old; 4211 4212 #ifdef INVARIANTS 4213 if (m->object != NULL && !vm_page_busied(m) && 4214 !vm_object_busied(m->object)) 4215 VM_OBJECT_ASSERT_LOCKED(m->object); 4216 #endif 4217 KASSERT((m->flags & PG_FICTITIOUS) == 0 || 4218 VPRC_WIRE_COUNT(m->ref_count) >= 1, 4219 ("vm_page_wire: fictitious page %p has zero wirings", m)); 4220 4221 old = atomic_fetchadd_int(&m->ref_count, 1); 4222 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX, 4223 ("vm_page_wire: counter overflow for page %p", m)); 4224 if (VPRC_WIRE_COUNT(old) == 0) { 4225 if ((m->oflags & VPO_UNMANAGED) == 0) 4226 vm_page_aflag_set(m, PGA_DEQUEUE); 4227 vm_wire_add(1); 4228 } 4229 } 4230 4231 /* 4232 * Attempt to wire a mapped page following a pmap lookup of that page. 4233 * This may fail if a thread is concurrently tearing down mappings of the page. 4234 * The transient failure is acceptable because it translates to the 4235 * failure of the caller pmap_extract_and_hold(), which should be then 4236 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages(). 4237 */ 4238 bool 4239 vm_page_wire_mapped(vm_page_t m) 4240 { 4241 u_int old; 4242 4243 old = atomic_load_int(&m->ref_count); 4244 do { 4245 KASSERT(old > 0, 4246 ("vm_page_wire_mapped: wiring unreferenced page %p", m)); 4247 if ((old & VPRC_BLOCKED) != 0) 4248 return (false); 4249 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1)); 4250 4251 if (VPRC_WIRE_COUNT(old) == 0) { 4252 if ((m->oflags & VPO_UNMANAGED) == 0) 4253 vm_page_aflag_set(m, PGA_DEQUEUE); 4254 vm_wire_add(1); 4255 } 4256 return (true); 4257 } 4258 4259 /* 4260 * Release a wiring reference to a managed page. If the page still belongs to 4261 * an object, update its position in the page queues to reflect the reference. 4262 * If the wiring was the last reference to the page, free the page. 4263 */ 4264 static void 4265 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse) 4266 { 4267 u_int old; 4268 4269 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4270 ("%s: page %p is unmanaged", __func__, m)); 4271 4272 /* 4273 * Update LRU state before releasing the wiring reference. 4274 * Use a release store when updating the reference count to 4275 * synchronize with vm_page_free_prep(). 4276 */ 4277 old = atomic_load_int(&m->ref_count); 4278 do { 4279 u_int count; 4280 4281 KASSERT(VPRC_WIRE_COUNT(old) > 0, 4282 ("vm_page_unwire: wire count underflow for page %p", m)); 4283 4284 count = old & ~VPRC_BLOCKED; 4285 if (count > VPRC_OBJREF + 1) { 4286 /* 4287 * The page has at least one other wiring reference. An 4288 * earlier iteration of this loop may have called 4289 * vm_page_release_toq() and cleared PGA_DEQUEUE, so 4290 * re-set it if necessary. 4291 */ 4292 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0) 4293 vm_page_aflag_set(m, PGA_DEQUEUE); 4294 } else if (count == VPRC_OBJREF + 1) { 4295 /* 4296 * This is the last wiring. Clear PGA_DEQUEUE and 4297 * update the page's queue state to reflect the 4298 * reference. If the page does not belong to an object 4299 * (i.e., the VPRC_OBJREF bit is clear), we only need to 4300 * clear leftover queue state. 4301 */ 4302 vm_page_release_toq(m, nqueue, noreuse); 4303 } else if (count == 1) { 4304 vm_page_aflag_clear(m, PGA_DEQUEUE); 4305 } 4306 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1)); 4307 4308 if (VPRC_WIRE_COUNT(old) == 1) { 4309 vm_wire_sub(1); 4310 if (old == 1) 4311 vm_page_free(m); 4312 } 4313 } 4314 4315 /* 4316 * Release one wiring of the specified page, potentially allowing it to be 4317 * paged out. 4318 * 4319 * Only managed pages belonging to an object can be paged out. If the number 4320 * of wirings transitions to zero and the page is eligible for page out, then 4321 * the page is added to the specified paging queue. If the released wiring 4322 * represented the last reference to the page, the page is freed. 4323 */ 4324 void 4325 vm_page_unwire(vm_page_t m, uint8_t nqueue) 4326 { 4327 4328 KASSERT(nqueue < PQ_COUNT, 4329 ("vm_page_unwire: invalid queue %u request for page %p", 4330 nqueue, m)); 4331 4332 if ((m->oflags & VPO_UNMANAGED) != 0) { 4333 if (vm_page_unwire_noq(m) && m->ref_count == 0) 4334 vm_page_free(m); 4335 return; 4336 } 4337 vm_page_unwire_managed(m, nqueue, false); 4338 } 4339 4340 /* 4341 * Unwire a page without (re-)inserting it into a page queue. It is up 4342 * to the caller to enqueue, requeue, or free the page as appropriate. 4343 * In most cases involving managed pages, vm_page_unwire() should be used 4344 * instead. 4345 */ 4346 bool 4347 vm_page_unwire_noq(vm_page_t m) 4348 { 4349 u_int old; 4350 4351 old = vm_page_drop(m, 1); 4352 KASSERT(VPRC_WIRE_COUNT(old) != 0, 4353 ("%s: counter underflow for page %p", __func__, m)); 4354 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1, 4355 ("%s: missing ref on fictitious page %p", __func__, m)); 4356 4357 if (VPRC_WIRE_COUNT(old) > 1) 4358 return (false); 4359 if ((m->oflags & VPO_UNMANAGED) == 0) 4360 vm_page_aflag_clear(m, PGA_DEQUEUE); 4361 vm_wire_sub(1); 4362 return (true); 4363 } 4364 4365 /* 4366 * Ensure that the page ends up in the specified page queue. If the page is 4367 * active or being moved to the active queue, ensure that its act_count is 4368 * at least ACT_INIT but do not otherwise mess with it. 4369 */ 4370 static __always_inline void 4371 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag) 4372 { 4373 vm_page_astate_t old, new; 4374 4375 KASSERT(m->ref_count > 0, 4376 ("%s: page %p does not carry any references", __func__, m)); 4377 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD, 4378 ("%s: invalid flags %x", __func__, nflag)); 4379 4380 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m)) 4381 return; 4382 4383 old = vm_page_astate_load(m); 4384 do { 4385 if ((old.flags & PGA_DEQUEUE) != 0) 4386 break; 4387 new = old; 4388 new.flags &= ~PGA_QUEUE_OP_MASK; 4389 if (nqueue == PQ_ACTIVE) 4390 new.act_count = max(old.act_count, ACT_INIT); 4391 if (old.queue == nqueue) { 4392 /* 4393 * There is no need to requeue pages already in the 4394 * active queue. 4395 */ 4396 if (nqueue != PQ_ACTIVE || 4397 (old.flags & PGA_ENQUEUED) == 0) 4398 new.flags |= nflag; 4399 } else { 4400 new.flags |= nflag; 4401 new.queue = nqueue; 4402 } 4403 } while (!vm_page_pqstate_commit(m, &old, new)); 4404 } 4405 4406 /* 4407 * Put the specified page on the active list (if appropriate). 4408 */ 4409 void 4410 vm_page_activate(vm_page_t m) 4411 { 4412 4413 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE); 4414 } 4415 4416 /* 4417 * Move the specified page to the tail of the inactive queue, or requeue 4418 * the page if it is already in the inactive queue. 4419 */ 4420 void 4421 vm_page_deactivate(vm_page_t m) 4422 { 4423 4424 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE); 4425 } 4426 4427 void 4428 vm_page_deactivate_noreuse(vm_page_t m) 4429 { 4430 4431 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD); 4432 } 4433 4434 /* 4435 * Put a page in the laundry, or requeue it if it is already there. 4436 */ 4437 void 4438 vm_page_launder(vm_page_t m) 4439 { 4440 4441 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE); 4442 } 4443 4444 /* 4445 * Put a page in the PQ_UNSWAPPABLE holding queue. 4446 */ 4447 void 4448 vm_page_unswappable(vm_page_t m) 4449 { 4450 4451 VM_OBJECT_ASSERT_LOCKED(m->object); 4452 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4453 ("page %p already unswappable", m)); 4454 4455 vm_page_dequeue(m); 4456 vm_page_enqueue(m, PQ_UNSWAPPABLE); 4457 } 4458 4459 /* 4460 * Release a page back to the page queues in preparation for unwiring. 4461 */ 4462 static void 4463 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse) 4464 { 4465 vm_page_astate_t old, new; 4466 uint16_t nflag; 4467 4468 /* 4469 * Use a check of the valid bits to determine whether we should 4470 * accelerate reclamation of the page. The object lock might not be 4471 * held here, in which case the check is racy. At worst we will either 4472 * accelerate reclamation of a valid page and violate LRU, or 4473 * unnecessarily defer reclamation of an invalid page. 4474 * 4475 * If we were asked to not cache the page, place it near the head of the 4476 * inactive queue so that is reclaimed sooner. 4477 */ 4478 if (noreuse || vm_page_none_valid(m)) { 4479 nqueue = PQ_INACTIVE; 4480 nflag = PGA_REQUEUE_HEAD; 4481 } else { 4482 nflag = PGA_REQUEUE; 4483 } 4484 4485 old = vm_page_astate_load(m); 4486 do { 4487 new = old; 4488 4489 /* 4490 * If the page is already in the active queue and we are not 4491 * trying to accelerate reclamation, simply mark it as 4492 * referenced and avoid any queue operations. 4493 */ 4494 new.flags &= ~PGA_QUEUE_OP_MASK; 4495 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE && 4496 (old.flags & PGA_ENQUEUED) != 0) 4497 new.flags |= PGA_REFERENCED; 4498 else { 4499 new.flags |= nflag; 4500 new.queue = nqueue; 4501 } 4502 } while (!vm_page_pqstate_commit(m, &old, new)); 4503 } 4504 4505 /* 4506 * Unwire a page and either attempt to free it or re-add it to the page queues. 4507 */ 4508 void 4509 vm_page_release(vm_page_t m, int flags) 4510 { 4511 vm_object_t object; 4512 4513 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4514 ("vm_page_release: page %p is unmanaged", m)); 4515 4516 if ((flags & VPR_TRYFREE) != 0) { 4517 for (;;) { 4518 object = atomic_load_ptr(&m->object); 4519 if (object == NULL) 4520 break; 4521 /* Depends on type-stability. */ 4522 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) 4523 break; 4524 if (object == m->object) { 4525 vm_page_release_locked(m, flags); 4526 VM_OBJECT_WUNLOCK(object); 4527 return; 4528 } 4529 VM_OBJECT_WUNLOCK(object); 4530 } 4531 } 4532 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0); 4533 } 4534 4535 /* See vm_page_release(). */ 4536 void 4537 vm_page_release_locked(vm_page_t m, int flags) 4538 { 4539 4540 VM_OBJECT_ASSERT_WLOCKED(m->object); 4541 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4542 ("vm_page_release_locked: page %p is unmanaged", m)); 4543 4544 if (vm_page_unwire_noq(m)) { 4545 if ((flags & VPR_TRYFREE) != 0 && 4546 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) && 4547 m->dirty == 0 && vm_page_tryxbusy(m)) { 4548 /* 4549 * An unlocked lookup may have wired the page before the 4550 * busy lock was acquired, in which case the page must 4551 * not be freed. 4552 */ 4553 if (__predict_true(!vm_page_wired(m))) { 4554 vm_page_free(m); 4555 return; 4556 } 4557 vm_page_xunbusy(m); 4558 } else { 4559 vm_page_release_toq(m, PQ_INACTIVE, flags != 0); 4560 } 4561 } 4562 } 4563 4564 static bool 4565 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t)) 4566 { 4567 u_int old; 4568 4569 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0, 4570 ("vm_page_try_blocked_op: page %p has no object", m)); 4571 KASSERT(vm_page_busied(m), 4572 ("vm_page_try_blocked_op: page %p is not busy", m)); 4573 VM_OBJECT_ASSERT_LOCKED(m->object); 4574 4575 old = atomic_load_int(&m->ref_count); 4576 do { 4577 KASSERT(old != 0, 4578 ("vm_page_try_blocked_op: page %p has no references", m)); 4579 KASSERT((old & VPRC_BLOCKED) == 0, 4580 ("vm_page_try_blocked_op: page %p blocks wirings", m)); 4581 if (VPRC_WIRE_COUNT(old) != 0) 4582 return (false); 4583 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED)); 4584 4585 (op)(m); 4586 4587 /* 4588 * If the object is read-locked, new wirings may be created via an 4589 * object lookup. 4590 */ 4591 old = vm_page_drop(m, VPRC_BLOCKED); 4592 KASSERT(!VM_OBJECT_WOWNED(m->object) || 4593 old == (VPRC_BLOCKED | VPRC_OBJREF), 4594 ("vm_page_try_blocked_op: unexpected refcount value %u for %p", 4595 old, m)); 4596 return (true); 4597 } 4598 4599 /* 4600 * Atomically check for wirings and remove all mappings of the page. 4601 */ 4602 bool 4603 vm_page_try_remove_all(vm_page_t m) 4604 { 4605 4606 return (vm_page_try_blocked_op(m, pmap_remove_all)); 4607 } 4608 4609 /* 4610 * Atomically check for wirings and remove all writeable mappings of the page. 4611 */ 4612 bool 4613 vm_page_try_remove_write(vm_page_t m) 4614 { 4615 4616 return (vm_page_try_blocked_op(m, pmap_remove_write)); 4617 } 4618 4619 /* 4620 * vm_page_advise 4621 * 4622 * Apply the specified advice to the given page. 4623 */ 4624 void 4625 vm_page_advise(vm_page_t m, int advice) 4626 { 4627 4628 VM_OBJECT_ASSERT_WLOCKED(m->object); 4629 vm_page_assert_xbusied(m); 4630 4631 if (advice == MADV_FREE) 4632 /* 4633 * Mark the page clean. This will allow the page to be freed 4634 * without first paging it out. MADV_FREE pages are often 4635 * quickly reused by malloc(3), so we do not do anything that 4636 * would result in a page fault on a later access. 4637 */ 4638 vm_page_undirty(m); 4639 else if (advice != MADV_DONTNEED) { 4640 if (advice == MADV_WILLNEED) 4641 vm_page_activate(m); 4642 return; 4643 } 4644 4645 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 4646 vm_page_dirty(m); 4647 4648 /* 4649 * Clear any references to the page. Otherwise, the page daemon will 4650 * immediately reactivate the page. 4651 */ 4652 vm_page_aflag_clear(m, PGA_REFERENCED); 4653 4654 /* 4655 * Place clean pages near the head of the inactive queue rather than 4656 * the tail, thus defeating the queue's LRU operation and ensuring that 4657 * the page will be reused quickly. Dirty pages not already in the 4658 * laundry are moved there. 4659 */ 4660 if (m->dirty == 0) 4661 vm_page_deactivate_noreuse(m); 4662 else if (!vm_page_in_laundry(m)) 4663 vm_page_launder(m); 4664 } 4665 4666 /* 4667 * vm_page_grab_release 4668 * 4669 * Helper routine for grab functions to release busy on return. 4670 */ 4671 static inline void 4672 vm_page_grab_release(vm_page_t m, int allocflags) 4673 { 4674 4675 if ((allocflags & VM_ALLOC_NOBUSY) != 0) { 4676 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4677 vm_page_sunbusy(m); 4678 else 4679 vm_page_xunbusy(m); 4680 } 4681 } 4682 4683 /* 4684 * vm_page_grab_sleep 4685 * 4686 * Sleep for busy according to VM_ALLOC_ parameters. Returns true 4687 * if the caller should retry and false otherwise. 4688 * 4689 * If the object is locked on entry the object will be unlocked with 4690 * false returns and still locked but possibly having been dropped 4691 * with true returns. 4692 */ 4693 static bool 4694 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex, 4695 const char *wmesg, int allocflags, bool locked) 4696 { 4697 4698 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 4699 return (false); 4700 4701 /* 4702 * Reference the page before unlocking and sleeping so that 4703 * the page daemon is less likely to reclaim it. 4704 */ 4705 if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0) 4706 vm_page_reference(m); 4707 4708 if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) && 4709 locked) 4710 VM_OBJECT_WLOCK(object); 4711 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 4712 return (false); 4713 4714 return (true); 4715 } 4716 4717 /* 4718 * Assert that the grab flags are valid. 4719 */ 4720 static inline void 4721 vm_page_grab_check(int allocflags) 4722 { 4723 4724 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 || 4725 (allocflags & VM_ALLOC_WIRED) != 0, 4726 ("vm_page_grab*: the pages must be busied or wired")); 4727 4728 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4729 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4730 ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 4731 } 4732 4733 /* 4734 * Calculate the page allocation flags for grab. 4735 */ 4736 static inline int 4737 vm_page_grab_pflags(int allocflags) 4738 { 4739 int pflags; 4740 4741 pflags = allocflags & 4742 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL | 4743 VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY); 4744 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 4745 pflags |= VM_ALLOC_WAITFAIL; 4746 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4747 pflags |= VM_ALLOC_SBUSY; 4748 4749 return (pflags); 4750 } 4751 4752 /* 4753 * Grab a page, waiting until we are waken up due to the page 4754 * changing state. We keep on waiting, if the page continues 4755 * to be in the object. If the page doesn't exist, first allocate it 4756 * and then conditionally zero it. 4757 * 4758 * This routine may sleep. 4759 * 4760 * The object must be locked on entry. The lock will, however, be released 4761 * and reacquired if the routine sleeps. 4762 */ 4763 vm_page_t 4764 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 4765 { 4766 vm_page_t m; 4767 4768 VM_OBJECT_ASSERT_WLOCKED(object); 4769 vm_page_grab_check(allocflags); 4770 4771 retrylookup: 4772 if ((m = vm_page_lookup(object, pindex)) != NULL) { 4773 if (!vm_page_tryacquire(m, allocflags)) { 4774 if (vm_page_grab_sleep(object, m, pindex, "pgrbwt", 4775 allocflags, true)) 4776 goto retrylookup; 4777 return (NULL); 4778 } 4779 goto out; 4780 } 4781 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4782 return (NULL); 4783 m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags)); 4784 if (m == NULL) { 4785 if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0) 4786 return (NULL); 4787 goto retrylookup; 4788 } 4789 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 4790 pmap_zero_page(m); 4791 4792 out: 4793 vm_page_grab_release(m, allocflags); 4794 4795 return (m); 4796 } 4797 4798 /* 4799 * Attempt to validate a page, locklessly acquiring it if necessary, given a 4800 * (object, pindex) tuple and either an invalided page or NULL. The resulting 4801 * page will be validated against the identity tuple, and busied or wired as 4802 * requested. A NULL page returned guarantees that the page was not in radix at 4803 * the time of the call but callers must perform higher level synchronization or 4804 * retry the operation under a lock if they require an atomic answer. This is 4805 * the only lock free validation routine, other routines can depend on the 4806 * resulting page state. 4807 * 4808 * The return value PAGE_NOT_ACQUIRED indicates that the operation failed due to 4809 * caller flags. 4810 */ 4811 #define PAGE_NOT_ACQUIRED ((vm_page_t)1) 4812 static vm_page_t 4813 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, vm_page_t m, 4814 int allocflags) 4815 { 4816 if (m == NULL) 4817 m = vm_page_lookup_unlocked(object, pindex); 4818 for (; m != NULL; m = vm_page_lookup_unlocked(object, pindex)) { 4819 if (vm_page_trybusy(m, allocflags)) { 4820 if (m->object == object && m->pindex == pindex) { 4821 if ((allocflags & VM_ALLOC_WIRED) != 0) 4822 vm_page_wire(m); 4823 vm_page_grab_release(m, allocflags); 4824 break; 4825 } 4826 /* relookup. */ 4827 vm_page_busy_release(m); 4828 cpu_spinwait(); 4829 continue; 4830 } 4831 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp", 4832 allocflags, false)) 4833 return (PAGE_NOT_ACQUIRED); 4834 } 4835 return (m); 4836 } 4837 4838 /* 4839 * Try to locklessly grab a page and fall back to the object lock if NOCREAT 4840 * is not set. 4841 */ 4842 vm_page_t 4843 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags) 4844 { 4845 vm_page_t m; 4846 4847 vm_page_grab_check(allocflags); 4848 m = vm_page_acquire_unlocked(object, pindex, NULL, allocflags); 4849 if (m == PAGE_NOT_ACQUIRED) 4850 return (NULL); 4851 if (m != NULL) 4852 return (m); 4853 4854 /* 4855 * The radix lockless lookup should never return a false negative 4856 * errors. If the user specifies NOCREAT they are guaranteed there 4857 * was no page present at the instant of the call. A NOCREAT caller 4858 * must handle create races gracefully. 4859 */ 4860 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4861 return (NULL); 4862 4863 VM_OBJECT_WLOCK(object); 4864 m = vm_page_grab(object, pindex, allocflags); 4865 VM_OBJECT_WUNLOCK(object); 4866 4867 return (m); 4868 } 4869 4870 /* 4871 * Grab a page and make it valid, paging in if necessary. Pages missing from 4872 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied 4873 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought 4874 * in simultaneously. Additional pages will be left on a paging queue but 4875 * will neither be wired nor busy regardless of allocflags. 4876 */ 4877 int 4878 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags) 4879 { 4880 vm_page_t m; 4881 vm_page_t ma[VM_INITIAL_PAGEIN]; 4882 int after, i, pflags, rv; 4883 4884 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4885 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4886 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 4887 KASSERT((allocflags & 4888 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0, 4889 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags)); 4890 VM_OBJECT_ASSERT_WLOCKED(object); 4891 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY | 4892 VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY); 4893 pflags |= VM_ALLOC_WAITFAIL; 4894 4895 retrylookup: 4896 if ((m = vm_page_lookup(object, pindex)) != NULL) { 4897 /* 4898 * If the page is fully valid it can only become invalid 4899 * with the object lock held. If it is not valid it can 4900 * become valid with the busy lock held. Therefore, we 4901 * may unnecessarily lock the exclusive busy here if we 4902 * race with I/O completion not using the object lock. 4903 * However, we will not end up with an invalid page and a 4904 * shared lock. 4905 */ 4906 if (!vm_page_trybusy(m, 4907 vm_page_all_valid(m) ? allocflags : 0)) { 4908 (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt", 4909 allocflags, true); 4910 goto retrylookup; 4911 } 4912 if (vm_page_all_valid(m)) 4913 goto out; 4914 if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 4915 vm_page_busy_release(m); 4916 *mp = NULL; 4917 return (VM_PAGER_FAIL); 4918 } 4919 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 4920 *mp = NULL; 4921 return (VM_PAGER_FAIL); 4922 } else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) { 4923 if (!vm_pager_can_alloc_page(object, pindex)) { 4924 *mp = NULL; 4925 return (VM_PAGER_AGAIN); 4926 } 4927 goto retrylookup; 4928 } 4929 4930 vm_page_assert_xbusied(m); 4931 if (vm_pager_has_page(object, pindex, NULL, &after)) { 4932 after = MIN(after, VM_INITIAL_PAGEIN); 4933 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT); 4934 after = MAX(after, 1); 4935 ma[0] = m; 4936 for (i = 1; i < after; i++) { 4937 if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) { 4938 if (vm_page_any_valid(ma[i]) || 4939 !vm_page_tryxbusy(ma[i])) 4940 break; 4941 } else { 4942 ma[i] = vm_page_alloc(object, m->pindex + i, 4943 VM_ALLOC_NORMAL); 4944 if (ma[i] == NULL) 4945 break; 4946 } 4947 } 4948 after = i; 4949 vm_object_pip_add(object, after); 4950 VM_OBJECT_WUNLOCK(object); 4951 rv = vm_pager_get_pages(object, ma, after, NULL, NULL); 4952 VM_OBJECT_WLOCK(object); 4953 vm_object_pip_wakeupn(object, after); 4954 /* Pager may have replaced a page. */ 4955 m = ma[0]; 4956 if (rv != VM_PAGER_OK) { 4957 for (i = 0; i < after; i++) { 4958 if (!vm_page_wired(ma[i])) 4959 vm_page_free(ma[i]); 4960 else 4961 vm_page_xunbusy(ma[i]); 4962 } 4963 *mp = NULL; 4964 return (rv); 4965 } 4966 for (i = 1; i < after; i++) 4967 vm_page_readahead_finish(ma[i]); 4968 MPASS(vm_page_all_valid(m)); 4969 } else { 4970 vm_page_zero_invalid(m, TRUE); 4971 } 4972 out: 4973 if ((allocflags & VM_ALLOC_WIRED) != 0) 4974 vm_page_wire(m); 4975 if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m)) 4976 vm_page_busy_downgrade(m); 4977 else if ((allocflags & VM_ALLOC_NOBUSY) != 0) 4978 vm_page_busy_release(m); 4979 *mp = m; 4980 return (VM_PAGER_OK); 4981 } 4982 4983 /* 4984 * Locklessly grab a valid page. If the page is not valid or not yet 4985 * allocated this will fall back to the object lock method. 4986 */ 4987 int 4988 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object, 4989 vm_pindex_t pindex, int allocflags) 4990 { 4991 vm_page_t m; 4992 int flags; 4993 int error; 4994 4995 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4996 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4997 ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY " 4998 "mismatch")); 4999 KASSERT((allocflags & 5000 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0, 5001 ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags)); 5002 5003 /* 5004 * Attempt a lockless lookup and busy. We need at least an sbusy 5005 * before we can inspect the valid field and return a wired page. 5006 */ 5007 flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED); 5008 vm_page_grab_check(flags); 5009 m = vm_page_acquire_unlocked(object, pindex, NULL, flags); 5010 if (m == PAGE_NOT_ACQUIRED) 5011 return (VM_PAGER_FAIL); 5012 if (m != NULL) { 5013 if (vm_page_all_valid(m)) { 5014 if ((allocflags & VM_ALLOC_WIRED) != 0) 5015 vm_page_wire(m); 5016 vm_page_grab_release(m, allocflags); 5017 *mp = m; 5018 return (VM_PAGER_OK); 5019 } 5020 vm_page_busy_release(m); 5021 } 5022 if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 5023 *mp = NULL; 5024 return (VM_PAGER_FAIL); 5025 } 5026 VM_OBJECT_WLOCK(object); 5027 error = vm_page_grab_valid(mp, object, pindex, allocflags); 5028 VM_OBJECT_WUNLOCK(object); 5029 5030 return (error); 5031 } 5032 5033 /* 5034 * Return the specified range of pages from the given object. For each 5035 * page offset within the range, if a page already exists within the object 5036 * at that offset and it is busy, then wait for it to change state. If, 5037 * instead, the page doesn't exist, then allocate it. 5038 * 5039 * The caller must always specify an allocation class. 5040 * 5041 * allocation classes: 5042 * VM_ALLOC_NORMAL normal process request 5043 * VM_ALLOC_SYSTEM system *really* needs the pages 5044 * 5045 * The caller must always specify that the pages are to be busied and/or 5046 * wired. 5047 * 5048 * optional allocation flags: 5049 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages 5050 * VM_ALLOC_NOBUSY do not exclusive busy the page 5051 * VM_ALLOC_NOWAIT do not sleep 5052 * VM_ALLOC_SBUSY set page to sbusy state 5053 * VM_ALLOC_WIRED wire the pages 5054 * VM_ALLOC_ZERO zero and validate any invalid pages 5055 * 5056 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it 5057 * may return a partial prefix of the requested range. 5058 */ 5059 int 5060 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, 5061 vm_page_t *ma, int count) 5062 { 5063 vm_page_t m, mpred; 5064 int pflags; 5065 int i; 5066 5067 VM_OBJECT_ASSERT_WLOCKED(object); 5068 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0, 5069 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed")); 5070 KASSERT(count > 0, 5071 ("vm_page_grab_pages: invalid page count %d", count)); 5072 vm_page_grab_check(allocflags); 5073 5074 pflags = vm_page_grab_pflags(allocflags); 5075 i = 0; 5076 retrylookup: 5077 m = vm_page_mpred(object, pindex + i); 5078 if (m == NULL || m->pindex != pindex + i) { 5079 mpred = m; 5080 m = NULL; 5081 } else 5082 mpred = TAILQ_PREV(m, pglist, listq); 5083 for (; i < count; i++) { 5084 if (m != NULL) { 5085 if (!vm_page_tryacquire(m, allocflags)) { 5086 if (vm_page_grab_sleep(object, m, pindex + i, 5087 "grbmaw", allocflags, true)) 5088 goto retrylookup; 5089 break; 5090 } 5091 } else { 5092 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 5093 break; 5094 m = vm_page_alloc_after(object, pindex + i, 5095 pflags | VM_ALLOC_COUNT(count - i), mpred); 5096 if (m == NULL) { 5097 if ((allocflags & (VM_ALLOC_NOWAIT | 5098 VM_ALLOC_WAITFAIL)) != 0) 5099 break; 5100 goto retrylookup; 5101 } 5102 } 5103 if (vm_page_none_valid(m) && 5104 (allocflags & VM_ALLOC_ZERO) != 0) { 5105 if ((m->flags & PG_ZERO) == 0) 5106 pmap_zero_page(m); 5107 vm_page_valid(m); 5108 } 5109 vm_page_grab_release(m, allocflags); 5110 ma[i] = mpred = m; 5111 m = vm_page_next(m); 5112 } 5113 return (i); 5114 } 5115 5116 /* 5117 * Unlocked variant of vm_page_grab_pages(). This accepts the same flags 5118 * and will fall back to the locked variant to handle allocation. 5119 */ 5120 int 5121 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex, 5122 int allocflags, vm_page_t *ma, int count) 5123 { 5124 vm_page_t m; 5125 int flags; 5126 int i; 5127 5128 KASSERT(count > 0, 5129 ("vm_page_grab_pages_unlocked: invalid page count %d", count)); 5130 vm_page_grab_check(allocflags); 5131 5132 /* 5133 * Modify flags for lockless acquire to hold the page until we 5134 * set it valid if necessary. 5135 */ 5136 flags = allocflags & ~VM_ALLOC_NOBUSY; 5137 vm_page_grab_check(flags); 5138 m = NULL; 5139 for (i = 0; i < count; i++, pindex++) { 5140 /* 5141 * We may see a false NULL here because the previous page has 5142 * been removed or just inserted and the list is loaded without 5143 * barriers. Switch to radix to verify. 5144 */ 5145 if (m == NULL || QMD_IS_TRASHED(m) || m->pindex != pindex || 5146 atomic_load_ptr(&m->object) != object) { 5147 /* 5148 * This guarantees the result is instantaneously 5149 * correct. 5150 */ 5151 m = NULL; 5152 } 5153 m = vm_page_acquire_unlocked(object, pindex, m, flags); 5154 if (m == PAGE_NOT_ACQUIRED) 5155 return (i); 5156 if (m == NULL) 5157 break; 5158 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) { 5159 if ((m->flags & PG_ZERO) == 0) 5160 pmap_zero_page(m); 5161 vm_page_valid(m); 5162 } 5163 /* m will still be wired or busy according to flags. */ 5164 vm_page_grab_release(m, allocflags); 5165 ma[i] = m; 5166 m = TAILQ_NEXT(m, listq); 5167 } 5168 if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0) 5169 return (i); 5170 count -= i; 5171 VM_OBJECT_WLOCK(object); 5172 i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count); 5173 VM_OBJECT_WUNLOCK(object); 5174 5175 return (i); 5176 } 5177 5178 /* 5179 * Mapping function for valid or dirty bits in a page. 5180 * 5181 * Inputs are required to range within a page. 5182 */ 5183 vm_page_bits_t 5184 vm_page_bits(int base, int size) 5185 { 5186 int first_bit; 5187 int last_bit; 5188 5189 KASSERT( 5190 base + size <= PAGE_SIZE, 5191 ("vm_page_bits: illegal base/size %d/%d", base, size) 5192 ); 5193 5194 if (size == 0) /* handle degenerate case */ 5195 return (0); 5196 5197 first_bit = base >> DEV_BSHIFT; 5198 last_bit = (base + size - 1) >> DEV_BSHIFT; 5199 5200 return (((vm_page_bits_t)2 << last_bit) - 5201 ((vm_page_bits_t)1 << first_bit)); 5202 } 5203 5204 void 5205 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set) 5206 { 5207 5208 #if PAGE_SIZE == 32768 5209 atomic_set_64((uint64_t *)bits, set); 5210 #elif PAGE_SIZE == 16384 5211 atomic_set_32((uint32_t *)bits, set); 5212 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16) 5213 atomic_set_16((uint16_t *)bits, set); 5214 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8) 5215 atomic_set_8((uint8_t *)bits, set); 5216 #else /* PAGE_SIZE <= 8192 */ 5217 uintptr_t addr; 5218 int shift; 5219 5220 addr = (uintptr_t)bits; 5221 /* 5222 * Use a trick to perform a 32-bit atomic on the 5223 * containing aligned word, to not depend on the existence 5224 * of atomic_{set, clear}_{8, 16}. 5225 */ 5226 shift = addr & (sizeof(uint32_t) - 1); 5227 #if BYTE_ORDER == BIG_ENDIAN 5228 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5229 #else 5230 shift *= NBBY; 5231 #endif 5232 addr &= ~(sizeof(uint32_t) - 1); 5233 atomic_set_32((uint32_t *)addr, set << shift); 5234 #endif /* PAGE_SIZE */ 5235 } 5236 5237 static inline void 5238 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear) 5239 { 5240 5241 #if PAGE_SIZE == 32768 5242 atomic_clear_64((uint64_t *)bits, clear); 5243 #elif PAGE_SIZE == 16384 5244 atomic_clear_32((uint32_t *)bits, clear); 5245 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16) 5246 atomic_clear_16((uint16_t *)bits, clear); 5247 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8) 5248 atomic_clear_8((uint8_t *)bits, clear); 5249 #else /* PAGE_SIZE <= 8192 */ 5250 uintptr_t addr; 5251 int shift; 5252 5253 addr = (uintptr_t)bits; 5254 /* 5255 * Use a trick to perform a 32-bit atomic on the 5256 * containing aligned word, to not depend on the existence 5257 * of atomic_{set, clear}_{8, 16}. 5258 */ 5259 shift = addr & (sizeof(uint32_t) - 1); 5260 #if BYTE_ORDER == BIG_ENDIAN 5261 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5262 #else 5263 shift *= NBBY; 5264 #endif 5265 addr &= ~(sizeof(uint32_t) - 1); 5266 atomic_clear_32((uint32_t *)addr, clear << shift); 5267 #endif /* PAGE_SIZE */ 5268 } 5269 5270 static inline vm_page_bits_t 5271 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits) 5272 { 5273 #if PAGE_SIZE == 32768 5274 uint64_t old; 5275 5276 old = *bits; 5277 while (atomic_fcmpset_64(bits, &old, newbits) == 0); 5278 return (old); 5279 #elif PAGE_SIZE == 16384 5280 uint32_t old; 5281 5282 old = *bits; 5283 while (atomic_fcmpset_32(bits, &old, newbits) == 0); 5284 return (old); 5285 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16) 5286 uint16_t old; 5287 5288 old = *bits; 5289 while (atomic_fcmpset_16(bits, &old, newbits) == 0); 5290 return (old); 5291 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8) 5292 uint8_t old; 5293 5294 old = *bits; 5295 while (atomic_fcmpset_8(bits, &old, newbits) == 0); 5296 return (old); 5297 #else /* PAGE_SIZE <= 4096*/ 5298 uintptr_t addr; 5299 uint32_t old, new, mask; 5300 int shift; 5301 5302 addr = (uintptr_t)bits; 5303 /* 5304 * Use a trick to perform a 32-bit atomic on the 5305 * containing aligned word, to not depend on the existence 5306 * of atomic_{set, swap, clear}_{8, 16}. 5307 */ 5308 shift = addr & (sizeof(uint32_t) - 1); 5309 #if BYTE_ORDER == BIG_ENDIAN 5310 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 5311 #else 5312 shift *= NBBY; 5313 #endif 5314 addr &= ~(sizeof(uint32_t) - 1); 5315 mask = VM_PAGE_BITS_ALL << shift; 5316 5317 old = *bits; 5318 do { 5319 new = old & ~mask; 5320 new |= newbits << shift; 5321 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0); 5322 return (old >> shift); 5323 #endif /* PAGE_SIZE */ 5324 } 5325 5326 /* 5327 * vm_page_set_valid_range: 5328 * 5329 * Sets portions of a page valid. The arguments are expected 5330 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 5331 * of any partial chunks touched by the range. The invalid portion of 5332 * such chunks will be zeroed. 5333 * 5334 * (base + size) must be less then or equal to PAGE_SIZE. 5335 */ 5336 void 5337 vm_page_set_valid_range(vm_page_t m, int base, int size) 5338 { 5339 int endoff, frag; 5340 vm_page_bits_t pagebits; 5341 5342 vm_page_assert_busied(m); 5343 if (size == 0) /* handle degenerate case */ 5344 return; 5345 5346 /* 5347 * If the base is not DEV_BSIZE aligned and the valid 5348 * bit is clear, we have to zero out a portion of the 5349 * first block. 5350 */ 5351 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 5352 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 5353 pmap_zero_page_area(m, frag, base - frag); 5354 5355 /* 5356 * If the ending offset is not DEV_BSIZE aligned and the 5357 * valid bit is clear, we have to zero out a portion of 5358 * the last block. 5359 */ 5360 endoff = base + size; 5361 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 5362 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 5363 pmap_zero_page_area(m, endoff, 5364 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 5365 5366 /* 5367 * Assert that no previously invalid block that is now being validated 5368 * is already dirty. 5369 */ 5370 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 5371 ("vm_page_set_valid_range: page %p is dirty", m)); 5372 5373 /* 5374 * Set valid bits inclusive of any overlap. 5375 */ 5376 pagebits = vm_page_bits(base, size); 5377 if (vm_page_xbusied(m)) 5378 m->valid |= pagebits; 5379 else 5380 vm_page_bits_set(m, &m->valid, pagebits); 5381 } 5382 5383 /* 5384 * Set the page dirty bits and free the invalid swap space if 5385 * present. Returns the previous dirty bits. 5386 */ 5387 vm_page_bits_t 5388 vm_page_set_dirty(vm_page_t m) 5389 { 5390 vm_page_bits_t old; 5391 5392 VM_PAGE_OBJECT_BUSY_ASSERT(m); 5393 5394 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) { 5395 old = m->dirty; 5396 m->dirty = VM_PAGE_BITS_ALL; 5397 } else 5398 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL); 5399 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0) 5400 vm_pager_page_unswapped(m); 5401 5402 return (old); 5403 } 5404 5405 /* 5406 * Clear the given bits from the specified page's dirty field. 5407 */ 5408 static __inline void 5409 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 5410 { 5411 5412 vm_page_assert_busied(m); 5413 5414 /* 5415 * If the page is xbusied and not write mapped we are the 5416 * only thread that can modify dirty bits. Otherwise, The pmap 5417 * layer can call vm_page_dirty() without holding a distinguished 5418 * lock. The combination of page busy and atomic operations 5419 * suffice to guarantee consistency of the page dirty field. 5420 */ 5421 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 5422 m->dirty &= ~pagebits; 5423 else 5424 vm_page_bits_clear(m, &m->dirty, pagebits); 5425 } 5426 5427 /* 5428 * vm_page_set_validclean: 5429 * 5430 * Sets portions of a page valid and clean. The arguments are expected 5431 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 5432 * of any partial chunks touched by the range. The invalid portion of 5433 * such chunks will be zero'd. 5434 * 5435 * (base + size) must be less then or equal to PAGE_SIZE. 5436 */ 5437 void 5438 vm_page_set_validclean(vm_page_t m, int base, int size) 5439 { 5440 vm_page_bits_t oldvalid, pagebits; 5441 int endoff, frag; 5442 5443 vm_page_assert_busied(m); 5444 if (size == 0) /* handle degenerate case */ 5445 return; 5446 5447 /* 5448 * If the base is not DEV_BSIZE aligned and the valid 5449 * bit is clear, we have to zero out a portion of the 5450 * first block. 5451 */ 5452 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 5453 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 5454 pmap_zero_page_area(m, frag, base - frag); 5455 5456 /* 5457 * If the ending offset is not DEV_BSIZE aligned and the 5458 * valid bit is clear, we have to zero out a portion of 5459 * the last block. 5460 */ 5461 endoff = base + size; 5462 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 5463 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 5464 pmap_zero_page_area(m, endoff, 5465 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 5466 5467 /* 5468 * Set valid, clear dirty bits. If validating the entire 5469 * page we can safely clear the pmap modify bit. We also 5470 * use this opportunity to clear the PGA_NOSYNC flag. If a process 5471 * takes a write fault on a MAP_NOSYNC memory area the flag will 5472 * be set again. 5473 * 5474 * We set valid bits inclusive of any overlap, but we can only 5475 * clear dirty bits for DEV_BSIZE chunks that are fully within 5476 * the range. 5477 */ 5478 oldvalid = m->valid; 5479 pagebits = vm_page_bits(base, size); 5480 if (vm_page_xbusied(m)) 5481 m->valid |= pagebits; 5482 else 5483 vm_page_bits_set(m, &m->valid, pagebits); 5484 #if 0 /* NOT YET */ 5485 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 5486 frag = DEV_BSIZE - frag; 5487 base += frag; 5488 size -= frag; 5489 if (size < 0) 5490 size = 0; 5491 } 5492 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 5493 #endif 5494 if (base == 0 && size == PAGE_SIZE) { 5495 /* 5496 * The page can only be modified within the pmap if it is 5497 * mapped, and it can only be mapped if it was previously 5498 * fully valid. 5499 */ 5500 if (oldvalid == VM_PAGE_BITS_ALL) 5501 /* 5502 * Perform the pmap_clear_modify() first. Otherwise, 5503 * a concurrent pmap operation, such as 5504 * pmap_protect(), could clear a modification in the 5505 * pmap and set the dirty field on the page before 5506 * pmap_clear_modify() had begun and after the dirty 5507 * field was cleared here. 5508 */ 5509 pmap_clear_modify(m); 5510 m->dirty = 0; 5511 vm_page_aflag_clear(m, PGA_NOSYNC); 5512 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m)) 5513 m->dirty &= ~pagebits; 5514 else 5515 vm_page_clear_dirty_mask(m, pagebits); 5516 } 5517 5518 void 5519 vm_page_clear_dirty(vm_page_t m, int base, int size) 5520 { 5521 5522 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 5523 } 5524 5525 /* 5526 * vm_page_set_invalid: 5527 * 5528 * Invalidates DEV_BSIZE'd chunks within a page. Both the 5529 * valid and dirty bits for the effected areas are cleared. 5530 */ 5531 void 5532 vm_page_set_invalid(vm_page_t m, int base, int size) 5533 { 5534 vm_page_bits_t bits; 5535 vm_object_t object; 5536 5537 /* 5538 * The object lock is required so that pages can't be mapped 5539 * read-only while we're in the process of invalidating them. 5540 */ 5541 object = m->object; 5542 VM_OBJECT_ASSERT_WLOCKED(object); 5543 vm_page_assert_busied(m); 5544 5545 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 5546 size >= object->un_pager.vnp.vnp_size) 5547 bits = VM_PAGE_BITS_ALL; 5548 else 5549 bits = vm_page_bits(base, size); 5550 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0) 5551 pmap_remove_all(m); 5552 KASSERT((bits == 0 && vm_page_all_valid(m)) || 5553 !pmap_page_is_mapped(m), 5554 ("vm_page_set_invalid: page %p is mapped", m)); 5555 if (vm_page_xbusied(m)) { 5556 m->valid &= ~bits; 5557 m->dirty &= ~bits; 5558 } else { 5559 vm_page_bits_clear(m, &m->valid, bits); 5560 vm_page_bits_clear(m, &m->dirty, bits); 5561 } 5562 } 5563 5564 /* 5565 * vm_page_invalid: 5566 * 5567 * Invalidates the entire page. The page must be busy, unmapped, and 5568 * the enclosing object must be locked. The object locks protects 5569 * against concurrent read-only pmap enter which is done without 5570 * busy. 5571 */ 5572 void 5573 vm_page_invalid(vm_page_t m) 5574 { 5575 5576 vm_page_assert_busied(m); 5577 VM_OBJECT_ASSERT_WLOCKED(m->object); 5578 MPASS(!pmap_page_is_mapped(m)); 5579 5580 if (vm_page_xbusied(m)) 5581 m->valid = 0; 5582 else 5583 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL); 5584 } 5585 5586 /* 5587 * vm_page_zero_invalid() 5588 * 5589 * The kernel assumes that the invalid portions of a page contain 5590 * garbage, but such pages can be mapped into memory by user code. 5591 * When this occurs, we must zero out the non-valid portions of the 5592 * page so user code sees what it expects. 5593 * 5594 * Pages are most often semi-valid when the end of a file is mapped 5595 * into memory and the file's size is not page aligned. 5596 */ 5597 void 5598 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 5599 { 5600 int b; 5601 int i; 5602 5603 /* 5604 * Scan the valid bits looking for invalid sections that 5605 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the 5606 * valid bit may be set ) have already been zeroed by 5607 * vm_page_set_validclean(). 5608 */ 5609 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 5610 if (i == (PAGE_SIZE / DEV_BSIZE) || 5611 (m->valid & ((vm_page_bits_t)1 << i))) { 5612 if (i > b) { 5613 pmap_zero_page_area(m, 5614 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 5615 } 5616 b = i + 1; 5617 } 5618 } 5619 5620 /* 5621 * setvalid is TRUE when we can safely set the zero'd areas 5622 * as being valid. We can do this if there are no cache consistency 5623 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 5624 */ 5625 if (setvalid) 5626 vm_page_valid(m); 5627 } 5628 5629 /* 5630 * vm_page_is_valid: 5631 * 5632 * Is (partial) page valid? Note that the case where size == 0 5633 * will return FALSE in the degenerate case where the page is 5634 * entirely invalid, and TRUE otherwise. 5635 * 5636 * Some callers envoke this routine without the busy lock held and 5637 * handle races via higher level locks. Typical callers should 5638 * hold a busy lock to prevent invalidation. 5639 */ 5640 int 5641 vm_page_is_valid(vm_page_t m, int base, int size) 5642 { 5643 vm_page_bits_t bits; 5644 5645 bits = vm_page_bits(base, size); 5646 return (vm_page_any_valid(m) && (m->valid & bits) == bits); 5647 } 5648 5649 /* 5650 * Returns true if all of the specified predicates are true for the entire 5651 * (super)page and false otherwise. 5652 */ 5653 bool 5654 vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m) 5655 { 5656 vm_object_t object; 5657 int i, npages; 5658 5659 object = m->object; 5660 if (skip_m != NULL && skip_m->object != object) 5661 return (false); 5662 VM_OBJECT_ASSERT_LOCKED(object); 5663 KASSERT(psind <= m->psind, 5664 ("psind %d > psind %d of m %p", psind, m->psind, m)); 5665 npages = atop(pagesizes[psind]); 5666 5667 /* 5668 * The physically contiguous pages that make up a superpage, i.e., a 5669 * page with a page size index ("psind") greater than zero, will 5670 * occupy adjacent entries in vm_page_array[]. 5671 */ 5672 for (i = 0; i < npages; i++) { 5673 /* Always test object consistency, including "skip_m". */ 5674 if (m[i].object != object) 5675 return (false); 5676 if (&m[i] == skip_m) 5677 continue; 5678 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i])) 5679 return (false); 5680 if ((flags & PS_ALL_DIRTY) != 0) { 5681 /* 5682 * Calling vm_page_test_dirty() or pmap_is_modified() 5683 * might stop this case from spuriously returning 5684 * "false". However, that would require a write lock 5685 * on the object containing "m[i]". 5686 */ 5687 if (m[i].dirty != VM_PAGE_BITS_ALL) 5688 return (false); 5689 } 5690 if ((flags & PS_ALL_VALID) != 0 && 5691 m[i].valid != VM_PAGE_BITS_ALL) 5692 return (false); 5693 } 5694 return (true); 5695 } 5696 5697 /* 5698 * Set the page's dirty bits if the page is modified. 5699 */ 5700 void 5701 vm_page_test_dirty(vm_page_t m) 5702 { 5703 5704 vm_page_assert_busied(m); 5705 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 5706 vm_page_dirty(m); 5707 } 5708 5709 void 5710 vm_page_valid(vm_page_t m) 5711 { 5712 5713 vm_page_assert_busied(m); 5714 if (vm_page_xbusied(m)) 5715 m->valid = VM_PAGE_BITS_ALL; 5716 else 5717 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL); 5718 } 5719 5720 void 5721 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 5722 { 5723 5724 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 5725 } 5726 5727 void 5728 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 5729 { 5730 5731 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 5732 } 5733 5734 int 5735 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 5736 { 5737 5738 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 5739 } 5740 5741 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 5742 void 5743 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 5744 { 5745 5746 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 5747 } 5748 5749 void 5750 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 5751 { 5752 5753 mtx_assert_(vm_page_lockptr(m), a, file, line); 5754 } 5755 #endif 5756 5757 #ifdef INVARIANTS 5758 void 5759 vm_page_object_busy_assert(vm_page_t m) 5760 { 5761 5762 /* 5763 * Certain of the page's fields may only be modified by the 5764 * holder of a page or object busy. 5765 */ 5766 if (m->object != NULL && !vm_page_busied(m)) 5767 VM_OBJECT_ASSERT_BUSY(m->object); 5768 } 5769 5770 void 5771 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits) 5772 { 5773 5774 if ((bits & PGA_WRITEABLE) == 0) 5775 return; 5776 5777 /* 5778 * The PGA_WRITEABLE flag can only be set if the page is 5779 * managed, is exclusively busied or the object is locked. 5780 * Currently, this flag is only set by pmap_enter(). 5781 */ 5782 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 5783 ("PGA_WRITEABLE on unmanaged page")); 5784 if (!vm_page_xbusied(m)) 5785 VM_OBJECT_ASSERT_BUSY(m->object); 5786 } 5787 #endif 5788 5789 #include "opt_ddb.h" 5790 #ifdef DDB 5791 #include <sys/kernel.h> 5792 5793 #include <ddb/ddb.h> 5794 5795 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE) 5796 { 5797 5798 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count()); 5799 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count()); 5800 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count()); 5801 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count()); 5802 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count()); 5803 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 5804 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 5805 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 5806 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 5807 } 5808 5809 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE) 5810 { 5811 int dom; 5812 5813 db_printf("pq_free %d\n", vm_free_count()); 5814 for (dom = 0; dom < vm_ndomains; dom++) { 5815 db_printf( 5816 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n", 5817 dom, 5818 vm_dom[dom].vmd_page_count, 5819 vm_dom[dom].vmd_free_count, 5820 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 5821 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 5822 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt, 5823 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt); 5824 } 5825 } 5826 5827 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 5828 { 5829 vm_page_t m; 5830 boolean_t phys, virt; 5831 5832 if (!have_addr) { 5833 db_printf("show pginfo addr\n"); 5834 return; 5835 } 5836 5837 phys = strchr(modif, 'p') != NULL; 5838 virt = strchr(modif, 'v') != NULL; 5839 if (virt) 5840 m = PHYS_TO_VM_PAGE(pmap_kextract(addr)); 5841 else if (phys) 5842 m = PHYS_TO_VM_PAGE(addr); 5843 else 5844 m = (vm_page_t)addr; 5845 db_printf( 5846 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n" 5847 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 5848 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 5849 m->a.queue, m->ref_count, m->a.flags, m->oflags, 5850 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty); 5851 } 5852 #endif /* DDB */ 5853