1 /*- 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * The Mach Operating System project at Carnegie-Mellon University. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 34 */ 35 36 /*- 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * GENERAL RULES ON VM_PAGE MANIPULATION 65 * 66 * - A page queue lock is required when adding or removing a page from a 67 * page queue regardless of other locks or the busy state of a page. 68 * 69 * * In general, no thread besides the page daemon can acquire or 70 * hold more than one page queue lock at a time. 71 * 72 * * The page daemon can acquire and hold any pair of page queue 73 * locks in any order. 74 * 75 * - The object lock is required when inserting or removing 76 * pages from an object (vm_page_insert() or vm_page_remove()). 77 * 78 */ 79 80 /* 81 * Resident memory management module. 82 */ 83 84 #include <sys/cdefs.h> 85 __FBSDID("$FreeBSD$"); 86 87 #include "opt_vm.h" 88 89 #include <sys/param.h> 90 #include <sys/systm.h> 91 #include <sys/lock.h> 92 #include <sys/kernel.h> 93 #include <sys/limits.h> 94 #include <sys/malloc.h> 95 #include <sys/mman.h> 96 #include <sys/msgbuf.h> 97 #include <sys/mutex.h> 98 #include <sys/proc.h> 99 #include <sys/rwlock.h> 100 #include <sys/sysctl.h> 101 #include <sys/vmmeter.h> 102 #include <sys/vnode.h> 103 104 #include <vm/vm.h> 105 #include <vm/pmap.h> 106 #include <vm/vm_param.h> 107 #include <vm/vm_kern.h> 108 #include <vm/vm_object.h> 109 #include <vm/vm_page.h> 110 #include <vm/vm_pageout.h> 111 #include <vm/vm_pager.h> 112 #include <vm/vm_phys.h> 113 #include <vm/vm_radix.h> 114 #include <vm/vm_reserv.h> 115 #include <vm/vm_extern.h> 116 #include <vm/uma.h> 117 #include <vm/uma_int.h> 118 119 #include <machine/md_var.h> 120 121 /* 122 * Associated with page of user-allocatable memory is a 123 * page structure. 124 */ 125 126 struct vm_domain vm_dom[MAXMEMDOM]; 127 struct mtx_padalign vm_page_queue_free_mtx; 128 129 struct mtx_padalign pa_lock[PA_LOCK_COUNT]; 130 131 vm_page_t vm_page_array; 132 long vm_page_array_size; 133 long first_page; 134 int vm_page_zero_count; 135 136 static int boot_pages = UMA_BOOT_PAGES; 137 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN, &boot_pages, 0, 138 "number of pages allocated for bootstrapping the VM system"); 139 140 static int pa_tryrelock_restart; 141 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD, 142 &pa_tryrelock_restart, 0, "Number of tryrelock restarts"); 143 144 static uma_zone_t fakepg_zone; 145 146 static struct vnode *vm_page_alloc_init(vm_page_t m); 147 static void vm_page_cache_turn_free(vm_page_t m); 148 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 149 static void vm_page_enqueue(uint8_t queue, vm_page_t m); 150 static void vm_page_init_fakepg(void *dummy); 151 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 152 vm_pindex_t pindex, vm_page_t mpred); 153 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 154 vm_page_t mpred); 155 156 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL); 157 158 static void 159 vm_page_init_fakepg(void *dummy) 160 { 161 162 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 163 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 164 } 165 166 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 167 #if PAGE_SIZE == 32768 168 #ifdef CTASSERT 169 CTASSERT(sizeof(u_long) >= 8); 170 #endif 171 #endif 172 173 /* 174 * Try to acquire a physical address lock while a pmap is locked. If we 175 * fail to trylock we unlock and lock the pmap directly and cache the 176 * locked pa in *locked. The caller should then restart their loop in case 177 * the virtual to physical mapping has changed. 178 */ 179 int 180 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked) 181 { 182 vm_paddr_t lockpa; 183 184 lockpa = *locked; 185 *locked = pa; 186 if (lockpa) { 187 PA_LOCK_ASSERT(lockpa, MA_OWNED); 188 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa)) 189 return (0); 190 PA_UNLOCK(lockpa); 191 } 192 if (PA_TRYLOCK(pa)) 193 return (0); 194 PMAP_UNLOCK(pmap); 195 atomic_add_int(&pa_tryrelock_restart, 1); 196 PA_LOCK(pa); 197 PMAP_LOCK(pmap); 198 return (EAGAIN); 199 } 200 201 /* 202 * vm_set_page_size: 203 * 204 * Sets the page size, perhaps based upon the memory 205 * size. Must be called before any use of page-size 206 * dependent functions. 207 */ 208 void 209 vm_set_page_size(void) 210 { 211 if (vm_cnt.v_page_size == 0) 212 vm_cnt.v_page_size = PAGE_SIZE; 213 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 214 panic("vm_set_page_size: page size not a power of two"); 215 } 216 217 /* 218 * vm_page_blacklist_lookup: 219 * 220 * See if a physical address in this page has been listed 221 * in the blacklist tunable. Entries in the tunable are 222 * separated by spaces or commas. If an invalid integer is 223 * encountered then the rest of the string is skipped. 224 */ 225 static int 226 vm_page_blacklist_lookup(char *list, vm_paddr_t pa) 227 { 228 vm_paddr_t bad; 229 char *cp, *pos; 230 231 for (pos = list; *pos != '\0'; pos = cp) { 232 bad = strtoq(pos, &cp, 0); 233 if (*cp != '\0') { 234 if (*cp == ' ' || *cp == ',') { 235 cp++; 236 if (cp == pos) 237 continue; 238 } else 239 break; 240 } 241 if (pa == trunc_page(bad)) 242 return (1); 243 } 244 return (0); 245 } 246 247 static void 248 vm_page_domain_init(struct vm_domain *vmd) 249 { 250 struct vm_pagequeue *pq; 251 int i; 252 253 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 254 "vm inactive pagequeue"; 255 *__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) = 256 &vm_cnt.v_inactive_count; 257 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 258 "vm active pagequeue"; 259 *__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) = 260 &vm_cnt.v_active_count; 261 vmd->vmd_page_count = 0; 262 vmd->vmd_free_count = 0; 263 vmd->vmd_segs = 0; 264 vmd->vmd_oom = FALSE; 265 vmd->vmd_pass = 0; 266 for (i = 0; i < PQ_COUNT; i++) { 267 pq = &vmd->vmd_pagequeues[i]; 268 TAILQ_INIT(&pq->pq_pl); 269 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 270 MTX_DEF | MTX_DUPOK); 271 } 272 } 273 274 /* 275 * vm_page_startup: 276 * 277 * Initializes the resident memory module. 278 * 279 * Allocates memory for the page cells, and 280 * for the object/offset-to-page hash table headers. 281 * Each page cell is initialized and placed on the free list. 282 */ 283 vm_offset_t 284 vm_page_startup(vm_offset_t vaddr) 285 { 286 vm_offset_t mapped; 287 vm_paddr_t page_range; 288 vm_paddr_t new_end; 289 int i; 290 vm_paddr_t pa; 291 vm_paddr_t last_pa; 292 char *list; 293 vm_paddr_t end; 294 vm_paddr_t biggestsize; 295 vm_paddr_t low_water, high_water; 296 int biggestone; 297 298 biggestsize = 0; 299 biggestone = 0; 300 vaddr = round_page(vaddr); 301 302 for (i = 0; phys_avail[i + 1]; i += 2) { 303 phys_avail[i] = round_page(phys_avail[i]); 304 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 305 } 306 307 low_water = phys_avail[0]; 308 high_water = phys_avail[1]; 309 310 for (i = 0; phys_avail[i + 1]; i += 2) { 311 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 312 313 if (size > biggestsize) { 314 biggestone = i; 315 biggestsize = size; 316 } 317 if (phys_avail[i] < low_water) 318 low_water = phys_avail[i]; 319 if (phys_avail[i + 1] > high_water) 320 high_water = phys_avail[i + 1]; 321 } 322 323 #ifdef XEN 324 low_water = 0; 325 #endif 326 327 end = phys_avail[biggestone+1]; 328 329 /* 330 * Initialize the page and queue locks. 331 */ 332 mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF); 333 for (i = 0; i < PA_LOCK_COUNT; i++) 334 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 335 for (i = 0; i < vm_ndomains; i++) 336 vm_page_domain_init(&vm_dom[i]); 337 338 /* 339 * Allocate memory for use when boot strapping the kernel memory 340 * allocator. 341 */ 342 new_end = end - (boot_pages * UMA_SLAB_SIZE); 343 new_end = trunc_page(new_end); 344 mapped = pmap_map(&vaddr, new_end, end, 345 VM_PROT_READ | VM_PROT_WRITE); 346 bzero((void *)mapped, end - new_end); 347 uma_startup((void *)mapped, boot_pages); 348 349 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \ 350 defined(__mips__) 351 /* 352 * Allocate a bitmap to indicate that a random physical page 353 * needs to be included in a minidump. 354 * 355 * The amd64 port needs this to indicate which direct map pages 356 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 357 * 358 * However, i386 still needs this workspace internally within the 359 * minidump code. In theory, they are not needed on i386, but are 360 * included should the sf_buf code decide to use them. 361 */ 362 last_pa = 0; 363 for (i = 0; dump_avail[i + 1] != 0; i += 2) 364 if (dump_avail[i + 1] > last_pa) 365 last_pa = dump_avail[i + 1]; 366 page_range = last_pa / PAGE_SIZE; 367 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 368 new_end -= vm_page_dump_size; 369 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 370 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 371 bzero((void *)vm_page_dump, vm_page_dump_size); 372 #endif 373 #ifdef __amd64__ 374 /* 375 * Request that the physical pages underlying the message buffer be 376 * included in a crash dump. Since the message buffer is accessed 377 * through the direct map, they are not automatically included. 378 */ 379 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 380 last_pa = pa + round_page(msgbufsize); 381 while (pa < last_pa) { 382 dump_add_page(pa); 383 pa += PAGE_SIZE; 384 } 385 #endif 386 /* 387 * Compute the number of pages of memory that will be available for 388 * use (taking into account the overhead of a page structure per 389 * page). 390 */ 391 first_page = low_water / PAGE_SIZE; 392 #ifdef VM_PHYSSEG_SPARSE 393 page_range = 0; 394 for (i = 0; phys_avail[i + 1] != 0; i += 2) 395 page_range += atop(phys_avail[i + 1] - phys_avail[i]); 396 #elif defined(VM_PHYSSEG_DENSE) 397 page_range = high_water / PAGE_SIZE - first_page; 398 #else 399 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 400 #endif 401 end = new_end; 402 403 /* 404 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 405 */ 406 vaddr += PAGE_SIZE; 407 408 /* 409 * Initialize the mem entry structures now, and put them in the free 410 * queue. 411 */ 412 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 413 mapped = pmap_map(&vaddr, new_end, end, 414 VM_PROT_READ | VM_PROT_WRITE); 415 vm_page_array = (vm_page_t) mapped; 416 #if VM_NRESERVLEVEL > 0 417 /* 418 * Allocate memory for the reservation management system's data 419 * structures. 420 */ 421 new_end = vm_reserv_startup(&vaddr, new_end, high_water); 422 #endif 423 #if defined(__amd64__) || defined(__mips__) 424 /* 425 * pmap_map on amd64 and mips can come out of the direct-map, not kvm 426 * like i386, so the pages must be tracked for a crashdump to include 427 * this data. This includes the vm_page_array and the early UMA 428 * bootstrap pages. 429 */ 430 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 431 dump_add_page(pa); 432 #endif 433 phys_avail[biggestone + 1] = new_end; 434 435 /* 436 * Clear all of the page structures 437 */ 438 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 439 for (i = 0; i < page_range; i++) 440 vm_page_array[i].order = VM_NFREEORDER; 441 vm_page_array_size = page_range; 442 443 /* 444 * Initialize the physical memory allocator. 445 */ 446 vm_phys_init(); 447 448 /* 449 * Add every available physical page that is not blacklisted to 450 * the free lists. 451 */ 452 vm_cnt.v_page_count = 0; 453 vm_cnt.v_free_count = 0; 454 list = kern_getenv("vm.blacklist"); 455 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 456 pa = phys_avail[i]; 457 last_pa = phys_avail[i + 1]; 458 while (pa < last_pa) { 459 if (list != NULL && 460 vm_page_blacklist_lookup(list, pa)) 461 printf("Skipping page with pa 0x%jx\n", 462 (uintmax_t)pa); 463 else 464 vm_phys_add_page(pa); 465 pa += PAGE_SIZE; 466 } 467 } 468 freeenv(list); 469 #if VM_NRESERVLEVEL > 0 470 /* 471 * Initialize the reservation management system. 472 */ 473 vm_reserv_init(); 474 #endif 475 return (vaddr); 476 } 477 478 void 479 vm_page_reference(vm_page_t m) 480 { 481 482 vm_page_aflag_set(m, PGA_REFERENCED); 483 } 484 485 /* 486 * vm_page_busy_downgrade: 487 * 488 * Downgrade an exclusive busy page into a single shared busy page. 489 */ 490 void 491 vm_page_busy_downgrade(vm_page_t m) 492 { 493 u_int x; 494 495 vm_page_assert_xbusied(m); 496 497 for (;;) { 498 x = m->busy_lock; 499 x &= VPB_BIT_WAITERS; 500 if (atomic_cmpset_rel_int(&m->busy_lock, 501 VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x)) 502 break; 503 } 504 } 505 506 /* 507 * vm_page_sbusied: 508 * 509 * Return a positive value if the page is shared busied, 0 otherwise. 510 */ 511 int 512 vm_page_sbusied(vm_page_t m) 513 { 514 u_int x; 515 516 x = m->busy_lock; 517 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 518 } 519 520 /* 521 * vm_page_sunbusy: 522 * 523 * Shared unbusy a page. 524 */ 525 void 526 vm_page_sunbusy(vm_page_t m) 527 { 528 u_int x; 529 530 vm_page_assert_sbusied(m); 531 532 for (;;) { 533 x = m->busy_lock; 534 if (VPB_SHARERS(x) > 1) { 535 if (atomic_cmpset_int(&m->busy_lock, x, 536 x - VPB_ONE_SHARER)) 537 break; 538 continue; 539 } 540 if ((x & VPB_BIT_WAITERS) == 0) { 541 KASSERT(x == VPB_SHARERS_WORD(1), 542 ("vm_page_sunbusy: invalid lock state")); 543 if (atomic_cmpset_int(&m->busy_lock, 544 VPB_SHARERS_WORD(1), VPB_UNBUSIED)) 545 break; 546 continue; 547 } 548 KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS), 549 ("vm_page_sunbusy: invalid lock state for waiters")); 550 551 vm_page_lock(m); 552 if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) { 553 vm_page_unlock(m); 554 continue; 555 } 556 wakeup(m); 557 vm_page_unlock(m); 558 break; 559 } 560 } 561 562 /* 563 * vm_page_busy_sleep: 564 * 565 * Sleep and release the page lock, using the page pointer as wchan. 566 * This is used to implement the hard-path of busying mechanism. 567 * 568 * The given page must be locked. 569 */ 570 void 571 vm_page_busy_sleep(vm_page_t m, const char *wmesg) 572 { 573 u_int x; 574 575 vm_page_lock_assert(m, MA_OWNED); 576 577 x = m->busy_lock; 578 if (x == VPB_UNBUSIED) { 579 vm_page_unlock(m); 580 return; 581 } 582 if ((x & VPB_BIT_WAITERS) == 0 && 583 !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) { 584 vm_page_unlock(m); 585 return; 586 } 587 msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0); 588 } 589 590 /* 591 * vm_page_trysbusy: 592 * 593 * Try to shared busy a page. 594 * If the operation succeeds 1 is returned otherwise 0. 595 * The operation never sleeps. 596 */ 597 int 598 vm_page_trysbusy(vm_page_t m) 599 { 600 u_int x; 601 602 for (;;) { 603 x = m->busy_lock; 604 if ((x & VPB_BIT_SHARED) == 0) 605 return (0); 606 if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER)) 607 return (1); 608 } 609 } 610 611 /* 612 * vm_page_xunbusy_hard: 613 * 614 * Called after the first try the exclusive unbusy of a page failed. 615 * It is assumed that the waiters bit is on. 616 */ 617 void 618 vm_page_xunbusy_hard(vm_page_t m) 619 { 620 621 vm_page_assert_xbusied(m); 622 623 vm_page_lock(m); 624 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 625 wakeup(m); 626 vm_page_unlock(m); 627 } 628 629 /* 630 * vm_page_flash: 631 * 632 * Wakeup anyone waiting for the page. 633 * The ownership bits do not change. 634 * 635 * The given page must be locked. 636 */ 637 void 638 vm_page_flash(vm_page_t m) 639 { 640 u_int x; 641 642 vm_page_lock_assert(m, MA_OWNED); 643 644 for (;;) { 645 x = m->busy_lock; 646 if ((x & VPB_BIT_WAITERS) == 0) 647 return; 648 if (atomic_cmpset_int(&m->busy_lock, x, 649 x & (~VPB_BIT_WAITERS))) 650 break; 651 } 652 wakeup(m); 653 } 654 655 /* 656 * Keep page from being freed by the page daemon 657 * much of the same effect as wiring, except much lower 658 * overhead and should be used only for *very* temporary 659 * holding ("wiring"). 660 */ 661 void 662 vm_page_hold(vm_page_t mem) 663 { 664 665 vm_page_lock_assert(mem, MA_OWNED); 666 mem->hold_count++; 667 } 668 669 void 670 vm_page_unhold(vm_page_t mem) 671 { 672 673 vm_page_lock_assert(mem, MA_OWNED); 674 KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!")); 675 --mem->hold_count; 676 if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0) 677 vm_page_free_toq(mem); 678 } 679 680 /* 681 * vm_page_unhold_pages: 682 * 683 * Unhold each of the pages that is referenced by the given array. 684 */ 685 void 686 vm_page_unhold_pages(vm_page_t *ma, int count) 687 { 688 struct mtx *mtx, *new_mtx; 689 690 mtx = NULL; 691 for (; count != 0; count--) { 692 /* 693 * Avoid releasing and reacquiring the same page lock. 694 */ 695 new_mtx = vm_page_lockptr(*ma); 696 if (mtx != new_mtx) { 697 if (mtx != NULL) 698 mtx_unlock(mtx); 699 mtx = new_mtx; 700 mtx_lock(mtx); 701 } 702 vm_page_unhold(*ma); 703 ma++; 704 } 705 if (mtx != NULL) 706 mtx_unlock(mtx); 707 } 708 709 vm_page_t 710 PHYS_TO_VM_PAGE(vm_paddr_t pa) 711 { 712 vm_page_t m; 713 714 #ifdef VM_PHYSSEG_SPARSE 715 m = vm_phys_paddr_to_vm_page(pa); 716 if (m == NULL) 717 m = vm_phys_fictitious_to_vm_page(pa); 718 return (m); 719 #elif defined(VM_PHYSSEG_DENSE) 720 long pi; 721 722 pi = atop(pa); 723 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 724 m = &vm_page_array[pi - first_page]; 725 return (m); 726 } 727 return (vm_phys_fictitious_to_vm_page(pa)); 728 #else 729 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 730 #endif 731 } 732 733 /* 734 * vm_page_getfake: 735 * 736 * Create a fictitious page with the specified physical address and 737 * memory attribute. The memory attribute is the only the machine- 738 * dependent aspect of a fictitious page that must be initialized. 739 */ 740 vm_page_t 741 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 742 { 743 vm_page_t m; 744 745 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 746 vm_page_initfake(m, paddr, memattr); 747 return (m); 748 } 749 750 void 751 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 752 { 753 754 if ((m->flags & PG_FICTITIOUS) != 0) { 755 /* 756 * The page's memattr might have changed since the 757 * previous initialization. Update the pmap to the 758 * new memattr. 759 */ 760 goto memattr; 761 } 762 m->phys_addr = paddr; 763 m->queue = PQ_NONE; 764 /* Fictitious pages don't use "segind". */ 765 m->flags = PG_FICTITIOUS; 766 /* Fictitious pages don't use "order" or "pool". */ 767 m->oflags = VPO_UNMANAGED; 768 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 769 m->wire_count = 1; 770 pmap_page_init(m); 771 memattr: 772 pmap_page_set_memattr(m, memattr); 773 } 774 775 /* 776 * vm_page_putfake: 777 * 778 * Release a fictitious page. 779 */ 780 void 781 vm_page_putfake(vm_page_t m) 782 { 783 784 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 785 KASSERT((m->flags & PG_FICTITIOUS) != 0, 786 ("vm_page_putfake: bad page %p", m)); 787 uma_zfree(fakepg_zone, m); 788 } 789 790 /* 791 * vm_page_updatefake: 792 * 793 * Update the given fictitious page to the specified physical address and 794 * memory attribute. 795 */ 796 void 797 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 798 { 799 800 KASSERT((m->flags & PG_FICTITIOUS) != 0, 801 ("vm_page_updatefake: bad page %p", m)); 802 m->phys_addr = paddr; 803 pmap_page_set_memattr(m, memattr); 804 } 805 806 /* 807 * vm_page_free: 808 * 809 * Free a page. 810 */ 811 void 812 vm_page_free(vm_page_t m) 813 { 814 815 m->flags &= ~PG_ZERO; 816 vm_page_free_toq(m); 817 } 818 819 /* 820 * vm_page_free_zero: 821 * 822 * Free a page to the zerod-pages queue 823 */ 824 void 825 vm_page_free_zero(vm_page_t m) 826 { 827 828 m->flags |= PG_ZERO; 829 vm_page_free_toq(m); 830 } 831 832 /* 833 * Unbusy and handle the page queueing for a page from the VOP_GETPAGES() 834 * array which is not the request page. 835 */ 836 void 837 vm_page_readahead_finish(vm_page_t m) 838 { 839 840 if (m->valid != 0) { 841 /* 842 * Since the page is not the requested page, whether 843 * it should be activated or deactivated is not 844 * obvious. Empirical results have shown that 845 * deactivating the page is usually the best choice, 846 * unless the page is wanted by another thread. 847 */ 848 vm_page_lock(m); 849 if ((m->busy_lock & VPB_BIT_WAITERS) != 0) 850 vm_page_activate(m); 851 else 852 vm_page_deactivate(m); 853 vm_page_unlock(m); 854 vm_page_xunbusy(m); 855 } else { 856 /* 857 * Free the completely invalid page. Such page state 858 * occurs due to the short read operation which did 859 * not covered our page at all, or in case when a read 860 * error happens. 861 */ 862 vm_page_lock(m); 863 vm_page_free(m); 864 vm_page_unlock(m); 865 } 866 } 867 868 /* 869 * vm_page_sleep_if_busy: 870 * 871 * Sleep and release the page queues lock if the page is busied. 872 * Returns TRUE if the thread slept. 873 * 874 * The given page must be unlocked and object containing it must 875 * be locked. 876 */ 877 int 878 vm_page_sleep_if_busy(vm_page_t m, const char *msg) 879 { 880 vm_object_t obj; 881 882 vm_page_lock_assert(m, MA_NOTOWNED); 883 VM_OBJECT_ASSERT_WLOCKED(m->object); 884 885 if (vm_page_busied(m)) { 886 /* 887 * The page-specific object must be cached because page 888 * identity can change during the sleep, causing the 889 * re-lock of a different object. 890 * It is assumed that a reference to the object is already 891 * held by the callers. 892 */ 893 obj = m->object; 894 vm_page_lock(m); 895 VM_OBJECT_WUNLOCK(obj); 896 vm_page_busy_sleep(m, msg); 897 VM_OBJECT_WLOCK(obj); 898 return (TRUE); 899 } 900 return (FALSE); 901 } 902 903 /* 904 * vm_page_dirty_KBI: [ internal use only ] 905 * 906 * Set all bits in the page's dirty field. 907 * 908 * The object containing the specified page must be locked if the 909 * call is made from the machine-independent layer. 910 * 911 * See vm_page_clear_dirty_mask(). 912 * 913 * This function should only be called by vm_page_dirty(). 914 */ 915 void 916 vm_page_dirty_KBI(vm_page_t m) 917 { 918 919 /* These assertions refer to this operation by its public name. */ 920 KASSERT((m->flags & PG_CACHED) == 0, 921 ("vm_page_dirty: page in cache!")); 922 KASSERT(m->valid == VM_PAGE_BITS_ALL, 923 ("vm_page_dirty: page is invalid!")); 924 m->dirty = VM_PAGE_BITS_ALL; 925 } 926 927 /* 928 * vm_page_insert: [ internal use only ] 929 * 930 * Inserts the given mem entry into the object and object list. 931 * 932 * The object must be locked. 933 */ 934 int 935 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 936 { 937 vm_page_t mpred; 938 939 VM_OBJECT_ASSERT_WLOCKED(object); 940 mpred = vm_radix_lookup_le(&object->rtree, pindex); 941 return (vm_page_insert_after(m, object, pindex, mpred)); 942 } 943 944 /* 945 * vm_page_insert_after: 946 * 947 * Inserts the page "m" into the specified object at offset "pindex". 948 * 949 * The page "mpred" must immediately precede the offset "pindex" within 950 * the specified object. 951 * 952 * The object must be locked. 953 */ 954 static int 955 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 956 vm_page_t mpred) 957 { 958 vm_pindex_t sidx; 959 vm_object_t sobj; 960 vm_page_t msucc; 961 962 VM_OBJECT_ASSERT_WLOCKED(object); 963 KASSERT(m->object == NULL, 964 ("vm_page_insert_after: page already inserted")); 965 if (mpred != NULL) { 966 KASSERT(mpred->object == object, 967 ("vm_page_insert_after: object doesn't contain mpred")); 968 KASSERT(mpred->pindex < pindex, 969 ("vm_page_insert_after: mpred doesn't precede pindex")); 970 msucc = TAILQ_NEXT(mpred, listq); 971 } else 972 msucc = TAILQ_FIRST(&object->memq); 973 if (msucc != NULL) 974 KASSERT(msucc->pindex > pindex, 975 ("vm_page_insert_after: msucc doesn't succeed pindex")); 976 977 /* 978 * Record the object/offset pair in this page 979 */ 980 sobj = m->object; 981 sidx = m->pindex; 982 m->object = object; 983 m->pindex = pindex; 984 985 /* 986 * Now link into the object's ordered list of backed pages. 987 */ 988 if (vm_radix_insert(&object->rtree, m)) { 989 m->object = sobj; 990 m->pindex = sidx; 991 return (1); 992 } 993 vm_page_insert_radixdone(m, object, mpred); 994 return (0); 995 } 996 997 /* 998 * vm_page_insert_radixdone: 999 * 1000 * Complete page "m" insertion into the specified object after the 1001 * radix trie hooking. 1002 * 1003 * The page "mpred" must precede the offset "m->pindex" within the 1004 * specified object. 1005 * 1006 * The object must be locked. 1007 */ 1008 static void 1009 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1010 { 1011 1012 VM_OBJECT_ASSERT_WLOCKED(object); 1013 KASSERT(object != NULL && m->object == object, 1014 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1015 if (mpred != NULL) { 1016 KASSERT(mpred->object == object, 1017 ("vm_page_insert_after: object doesn't contain mpred")); 1018 KASSERT(mpred->pindex < m->pindex, 1019 ("vm_page_insert_after: mpred doesn't precede pindex")); 1020 } 1021 1022 if (mpred != NULL) 1023 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1024 else 1025 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1026 1027 /* 1028 * Show that the object has one more resident page. 1029 */ 1030 object->resident_page_count++; 1031 1032 /* 1033 * Hold the vnode until the last page is released. 1034 */ 1035 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1036 vhold(object->handle); 1037 1038 /* 1039 * Since we are inserting a new and possibly dirty page, 1040 * update the object's OBJ_MIGHTBEDIRTY flag. 1041 */ 1042 if (pmap_page_is_write_mapped(m)) 1043 vm_object_set_writeable_dirty(object); 1044 } 1045 1046 /* 1047 * vm_page_remove: 1048 * 1049 * Removes the given mem entry from the object/offset-page 1050 * table and the object page list, but do not invalidate/terminate 1051 * the backing store. 1052 * 1053 * The object must be locked. The page must be locked if it is managed. 1054 */ 1055 void 1056 vm_page_remove(vm_page_t m) 1057 { 1058 vm_object_t object; 1059 boolean_t lockacq; 1060 1061 if ((m->oflags & VPO_UNMANAGED) == 0) 1062 vm_page_lock_assert(m, MA_OWNED); 1063 if ((object = m->object) == NULL) 1064 return; 1065 VM_OBJECT_ASSERT_WLOCKED(object); 1066 if (vm_page_xbusied(m)) { 1067 lockacq = FALSE; 1068 if ((m->oflags & VPO_UNMANAGED) != 0 && 1069 !mtx_owned(vm_page_lockptr(m))) { 1070 lockacq = TRUE; 1071 vm_page_lock(m); 1072 } 1073 vm_page_flash(m); 1074 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 1075 if (lockacq) 1076 vm_page_unlock(m); 1077 } 1078 1079 /* 1080 * Now remove from the object's list of backed pages. 1081 */ 1082 vm_radix_remove(&object->rtree, m->pindex); 1083 TAILQ_REMOVE(&object->memq, m, listq); 1084 1085 /* 1086 * And show that the object has one fewer resident page. 1087 */ 1088 object->resident_page_count--; 1089 1090 /* 1091 * The vnode may now be recycled. 1092 */ 1093 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1094 vdrop(object->handle); 1095 1096 m->object = NULL; 1097 } 1098 1099 /* 1100 * vm_page_lookup: 1101 * 1102 * Returns the page associated with the object/offset 1103 * pair specified; if none is found, NULL is returned. 1104 * 1105 * The object must be locked. 1106 */ 1107 vm_page_t 1108 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1109 { 1110 1111 VM_OBJECT_ASSERT_LOCKED(object); 1112 return (vm_radix_lookup(&object->rtree, pindex)); 1113 } 1114 1115 /* 1116 * vm_page_find_least: 1117 * 1118 * Returns the page associated with the object with least pindex 1119 * greater than or equal to the parameter pindex, or NULL. 1120 * 1121 * The object must be locked. 1122 */ 1123 vm_page_t 1124 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1125 { 1126 vm_page_t m; 1127 1128 VM_OBJECT_ASSERT_LOCKED(object); 1129 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1130 m = vm_radix_lookup_ge(&object->rtree, pindex); 1131 return (m); 1132 } 1133 1134 /* 1135 * Returns the given page's successor (by pindex) within the object if it is 1136 * resident; if none is found, NULL is returned. 1137 * 1138 * The object must be locked. 1139 */ 1140 vm_page_t 1141 vm_page_next(vm_page_t m) 1142 { 1143 vm_page_t next; 1144 1145 VM_OBJECT_ASSERT_WLOCKED(m->object); 1146 if ((next = TAILQ_NEXT(m, listq)) != NULL && 1147 next->pindex != m->pindex + 1) 1148 next = NULL; 1149 return (next); 1150 } 1151 1152 /* 1153 * Returns the given page's predecessor (by pindex) within the object if it is 1154 * resident; if none is found, NULL is returned. 1155 * 1156 * The object must be locked. 1157 */ 1158 vm_page_t 1159 vm_page_prev(vm_page_t m) 1160 { 1161 vm_page_t prev; 1162 1163 VM_OBJECT_ASSERT_WLOCKED(m->object); 1164 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL && 1165 prev->pindex != m->pindex - 1) 1166 prev = NULL; 1167 return (prev); 1168 } 1169 1170 /* 1171 * Uses the page mnew as a replacement for an existing page at index 1172 * pindex which must be already present in the object. 1173 * 1174 * The existing page must not be on a paging queue. 1175 */ 1176 vm_page_t 1177 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex) 1178 { 1179 vm_page_t mold, mpred; 1180 1181 VM_OBJECT_ASSERT_WLOCKED(object); 1182 1183 /* 1184 * This function mostly follows vm_page_insert() and 1185 * vm_page_remove() without the radix, object count and vnode 1186 * dance. Double check such functions for more comments. 1187 */ 1188 mpred = vm_radix_lookup(&object->rtree, pindex); 1189 KASSERT(mpred != NULL, 1190 ("vm_page_replace: replacing page not present with pindex")); 1191 mpred = TAILQ_PREV(mpred, respgs, listq); 1192 if (mpred != NULL) 1193 KASSERT(mpred->pindex < pindex, 1194 ("vm_page_insert_after: mpred doesn't precede pindex")); 1195 1196 mnew->object = object; 1197 mnew->pindex = pindex; 1198 mold = vm_radix_replace(&object->rtree, mnew); 1199 KASSERT(mold->queue == PQ_NONE, 1200 ("vm_page_replace: mold is on a paging queue")); 1201 1202 /* Detach the old page from the resident tailq. */ 1203 TAILQ_REMOVE(&object->memq, mold, listq); 1204 1205 mold->object = NULL; 1206 vm_page_xunbusy(mold); 1207 1208 /* Insert the new page in the resident tailq. */ 1209 if (mpred != NULL) 1210 TAILQ_INSERT_AFTER(&object->memq, mpred, mnew, listq); 1211 else 1212 TAILQ_INSERT_HEAD(&object->memq, mnew, listq); 1213 if (pmap_page_is_write_mapped(mnew)) 1214 vm_object_set_writeable_dirty(object); 1215 return (mold); 1216 } 1217 1218 /* 1219 * vm_page_rename: 1220 * 1221 * Move the given memory entry from its 1222 * current object to the specified target object/offset. 1223 * 1224 * Note: swap associated with the page must be invalidated by the move. We 1225 * have to do this for several reasons: (1) we aren't freeing the 1226 * page, (2) we are dirtying the page, (3) the VM system is probably 1227 * moving the page from object A to B, and will then later move 1228 * the backing store from A to B and we can't have a conflict. 1229 * 1230 * Note: we *always* dirty the page. It is necessary both for the 1231 * fact that we moved it, and because we may be invalidating 1232 * swap. If the page is on the cache, we have to deactivate it 1233 * or vm_page_dirty() will panic. Dirty pages are not allowed 1234 * on the cache. 1235 * 1236 * The objects must be locked. 1237 */ 1238 int 1239 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1240 { 1241 vm_page_t mpred; 1242 vm_pindex_t opidx; 1243 1244 VM_OBJECT_ASSERT_WLOCKED(new_object); 1245 1246 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); 1247 KASSERT(mpred == NULL || mpred->pindex != new_pindex, 1248 ("vm_page_rename: pindex already renamed")); 1249 1250 /* 1251 * Create a custom version of vm_page_insert() which does not depend 1252 * by m_prev and can cheat on the implementation aspects of the 1253 * function. 1254 */ 1255 opidx = m->pindex; 1256 m->pindex = new_pindex; 1257 if (vm_radix_insert(&new_object->rtree, m)) { 1258 m->pindex = opidx; 1259 return (1); 1260 } 1261 1262 /* 1263 * The operation cannot fail anymore. The removal must happen before 1264 * the listq iterator is tainted. 1265 */ 1266 m->pindex = opidx; 1267 vm_page_lock(m); 1268 vm_page_remove(m); 1269 1270 /* Return back to the new pindex to complete vm_page_insert(). */ 1271 m->pindex = new_pindex; 1272 m->object = new_object; 1273 vm_page_unlock(m); 1274 vm_page_insert_radixdone(m, new_object, mpred); 1275 vm_page_dirty(m); 1276 return (0); 1277 } 1278 1279 /* 1280 * Convert all of the given object's cached pages that have a 1281 * pindex within the given range into free pages. If the value 1282 * zero is given for "end", then the range's upper bound is 1283 * infinity. If the given object is backed by a vnode and it 1284 * transitions from having one or more cached pages to none, the 1285 * vnode's hold count is reduced. 1286 */ 1287 void 1288 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end) 1289 { 1290 vm_page_t m; 1291 boolean_t empty; 1292 1293 mtx_lock(&vm_page_queue_free_mtx); 1294 if (__predict_false(vm_radix_is_empty(&object->cache))) { 1295 mtx_unlock(&vm_page_queue_free_mtx); 1296 return; 1297 } 1298 while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) { 1299 if (end != 0 && m->pindex >= end) 1300 break; 1301 vm_radix_remove(&object->cache, m->pindex); 1302 vm_page_cache_turn_free(m); 1303 } 1304 empty = vm_radix_is_empty(&object->cache); 1305 mtx_unlock(&vm_page_queue_free_mtx); 1306 if (object->type == OBJT_VNODE && empty) 1307 vdrop(object->handle); 1308 } 1309 1310 /* 1311 * Returns the cached page that is associated with the given 1312 * object and offset. If, however, none exists, returns NULL. 1313 * 1314 * The free page queue must be locked. 1315 */ 1316 static inline vm_page_t 1317 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex) 1318 { 1319 1320 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1321 return (vm_radix_lookup(&object->cache, pindex)); 1322 } 1323 1324 /* 1325 * Remove the given cached page from its containing object's 1326 * collection of cached pages. 1327 * 1328 * The free page queue must be locked. 1329 */ 1330 static void 1331 vm_page_cache_remove(vm_page_t m) 1332 { 1333 1334 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1335 KASSERT((m->flags & PG_CACHED) != 0, 1336 ("vm_page_cache_remove: page %p is not cached", m)); 1337 vm_radix_remove(&m->object->cache, m->pindex); 1338 m->object = NULL; 1339 vm_cnt.v_cache_count--; 1340 } 1341 1342 /* 1343 * Transfer all of the cached pages with offset greater than or 1344 * equal to 'offidxstart' from the original object's cache to the 1345 * new object's cache. However, any cached pages with offset 1346 * greater than or equal to the new object's size are kept in the 1347 * original object. Initially, the new object's cache must be 1348 * empty. Offset 'offidxstart' in the original object must 1349 * correspond to offset zero in the new object. 1350 * 1351 * The new object must be locked. 1352 */ 1353 void 1354 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart, 1355 vm_object_t new_object) 1356 { 1357 vm_page_t m; 1358 1359 /* 1360 * Insertion into an object's collection of cached pages 1361 * requires the object to be locked. In contrast, removal does 1362 * not. 1363 */ 1364 VM_OBJECT_ASSERT_WLOCKED(new_object); 1365 KASSERT(vm_radix_is_empty(&new_object->cache), 1366 ("vm_page_cache_transfer: object %p has cached pages", 1367 new_object)); 1368 mtx_lock(&vm_page_queue_free_mtx); 1369 while ((m = vm_radix_lookup_ge(&orig_object->cache, 1370 offidxstart)) != NULL) { 1371 /* 1372 * Transfer all of the pages with offset greater than or 1373 * equal to 'offidxstart' from the original object's 1374 * cache to the new object's cache. 1375 */ 1376 if ((m->pindex - offidxstart) >= new_object->size) 1377 break; 1378 vm_radix_remove(&orig_object->cache, m->pindex); 1379 /* Update the page's object and offset. */ 1380 m->object = new_object; 1381 m->pindex -= offidxstart; 1382 if (vm_radix_insert(&new_object->cache, m)) 1383 vm_page_cache_turn_free(m); 1384 } 1385 mtx_unlock(&vm_page_queue_free_mtx); 1386 } 1387 1388 /* 1389 * Returns TRUE if a cached page is associated with the given object and 1390 * offset, and FALSE otherwise. 1391 * 1392 * The object must be locked. 1393 */ 1394 boolean_t 1395 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex) 1396 { 1397 vm_page_t m; 1398 1399 /* 1400 * Insertion into an object's collection of cached pages requires the 1401 * object to be locked. Therefore, if the object is locked and the 1402 * object's collection is empty, there is no need to acquire the free 1403 * page queues lock in order to prove that the specified page doesn't 1404 * exist. 1405 */ 1406 VM_OBJECT_ASSERT_WLOCKED(object); 1407 if (__predict_true(vm_object_cache_is_empty(object))) 1408 return (FALSE); 1409 mtx_lock(&vm_page_queue_free_mtx); 1410 m = vm_page_cache_lookup(object, pindex); 1411 mtx_unlock(&vm_page_queue_free_mtx); 1412 return (m != NULL); 1413 } 1414 1415 /* 1416 * vm_page_alloc: 1417 * 1418 * Allocate and return a page that is associated with the specified 1419 * object and offset pair. By default, this page is exclusive busied. 1420 * 1421 * The caller must always specify an allocation class. 1422 * 1423 * allocation classes: 1424 * VM_ALLOC_NORMAL normal process request 1425 * VM_ALLOC_SYSTEM system *really* needs a page 1426 * VM_ALLOC_INTERRUPT interrupt time request 1427 * 1428 * optional allocation flags: 1429 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1430 * intends to allocate 1431 * VM_ALLOC_IFCACHED return page only if it is cached 1432 * VM_ALLOC_IFNOTCACHED return NULL, do not reactivate if the page 1433 * is cached 1434 * VM_ALLOC_NOBUSY do not exclusive busy the page 1435 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1436 * VM_ALLOC_NOOBJ page is not associated with an object and 1437 * should not be exclusive busy 1438 * VM_ALLOC_SBUSY shared busy the allocated page 1439 * VM_ALLOC_WIRED wire the allocated page 1440 * VM_ALLOC_ZERO prefer a zeroed page 1441 * 1442 * This routine may not sleep. 1443 */ 1444 vm_page_t 1445 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1446 { 1447 struct vnode *vp = NULL; 1448 vm_object_t m_object; 1449 vm_page_t m, mpred; 1450 int flags, req_class; 1451 1452 mpred = 0; /* XXX: pacify gcc */ 1453 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1454 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1455 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1456 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1457 ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object, 1458 req)); 1459 if (object != NULL) 1460 VM_OBJECT_ASSERT_WLOCKED(object); 1461 1462 req_class = req & VM_ALLOC_CLASS_MASK; 1463 1464 /* 1465 * The page daemon is allowed to dig deeper into the free page list. 1466 */ 1467 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1468 req_class = VM_ALLOC_SYSTEM; 1469 1470 if (object != NULL) { 1471 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1472 KASSERT(mpred == NULL || mpred->pindex != pindex, 1473 ("vm_page_alloc: pindex already allocated")); 1474 } 1475 1476 /* 1477 * The page allocation request can came from consumers which already 1478 * hold the free page queue mutex, like vm_page_insert() in 1479 * vm_page_cache(). 1480 */ 1481 mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE); 1482 if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved || 1483 (req_class == VM_ALLOC_SYSTEM && 1484 vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) || 1485 (req_class == VM_ALLOC_INTERRUPT && 1486 vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) { 1487 /* 1488 * Allocate from the free queue if the number of free pages 1489 * exceeds the minimum for the request class. 1490 */ 1491 if (object != NULL && 1492 (m = vm_page_cache_lookup(object, pindex)) != NULL) { 1493 if ((req & VM_ALLOC_IFNOTCACHED) != 0) { 1494 mtx_unlock(&vm_page_queue_free_mtx); 1495 return (NULL); 1496 } 1497 if (vm_phys_unfree_page(m)) 1498 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0); 1499 #if VM_NRESERVLEVEL > 0 1500 else if (!vm_reserv_reactivate_page(m)) 1501 #else 1502 else 1503 #endif 1504 panic("vm_page_alloc: cache page %p is missing" 1505 " from the free queue", m); 1506 } else if ((req & VM_ALLOC_IFCACHED) != 0) { 1507 mtx_unlock(&vm_page_queue_free_mtx); 1508 return (NULL); 1509 #if VM_NRESERVLEVEL > 0 1510 } else if (object == NULL || (object->flags & (OBJ_COLORED | 1511 OBJ_FICTITIOUS)) != OBJ_COLORED || (m = 1512 vm_reserv_alloc_page(object, pindex, mpred)) == NULL) { 1513 #else 1514 } else { 1515 #endif 1516 m = vm_phys_alloc_pages(object != NULL ? 1517 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); 1518 #if VM_NRESERVLEVEL > 0 1519 if (m == NULL && vm_reserv_reclaim_inactive()) { 1520 m = vm_phys_alloc_pages(object != NULL ? 1521 VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 1522 0); 1523 } 1524 #endif 1525 } 1526 } else { 1527 /* 1528 * Not allocatable, give up. 1529 */ 1530 mtx_unlock(&vm_page_queue_free_mtx); 1531 atomic_add_int(&vm_pageout_deficit, 1532 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 1533 pagedaemon_wakeup(); 1534 return (NULL); 1535 } 1536 1537 /* 1538 * At this point we had better have found a good page. 1539 */ 1540 KASSERT(m != NULL, ("vm_page_alloc: missing page")); 1541 KASSERT(m->queue == PQ_NONE, 1542 ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue)); 1543 KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m)); 1544 KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m)); 1545 KASSERT(!vm_page_sbusied(m), 1546 ("vm_page_alloc: page %p is busy", m)); 1547 KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m)); 1548 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1549 ("vm_page_alloc: page %p has unexpected memattr %d", m, 1550 pmap_page_get_memattr(m))); 1551 if ((m->flags & PG_CACHED) != 0) { 1552 KASSERT((m->flags & PG_ZERO) == 0, 1553 ("vm_page_alloc: cached page %p is PG_ZERO", m)); 1554 KASSERT(m->valid != 0, 1555 ("vm_page_alloc: cached page %p is invalid", m)); 1556 if (m->object == object && m->pindex == pindex) 1557 vm_cnt.v_reactivated++; 1558 else 1559 m->valid = 0; 1560 m_object = m->object; 1561 vm_page_cache_remove(m); 1562 if (m_object->type == OBJT_VNODE && 1563 vm_object_cache_is_empty(m_object)) 1564 vp = m_object->handle; 1565 } else { 1566 KASSERT(m->valid == 0, 1567 ("vm_page_alloc: free page %p is valid", m)); 1568 vm_phys_freecnt_adj(m, -1); 1569 if ((m->flags & PG_ZERO) != 0) 1570 vm_page_zero_count--; 1571 } 1572 mtx_unlock(&vm_page_queue_free_mtx); 1573 1574 /* 1575 * Initialize the page. Only the PG_ZERO flag is inherited. 1576 */ 1577 flags = 0; 1578 if ((req & VM_ALLOC_ZERO) != 0) 1579 flags = PG_ZERO; 1580 flags &= m->flags; 1581 if ((req & VM_ALLOC_NODUMP) != 0) 1582 flags |= PG_NODUMP; 1583 m->flags = flags; 1584 m->aflags = 0; 1585 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 1586 VPO_UNMANAGED : 0; 1587 m->busy_lock = VPB_UNBUSIED; 1588 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 1589 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1590 if ((req & VM_ALLOC_SBUSY) != 0) 1591 m->busy_lock = VPB_SHARERS_WORD(1); 1592 if (req & VM_ALLOC_WIRED) { 1593 /* 1594 * The page lock is not required for wiring a page until that 1595 * page is inserted into the object. 1596 */ 1597 atomic_add_int(&vm_cnt.v_wire_count, 1); 1598 m->wire_count = 1; 1599 } 1600 m->act_count = 0; 1601 1602 if (object != NULL) { 1603 if (vm_page_insert_after(m, object, pindex, mpred)) { 1604 /* See the comment below about hold count. */ 1605 if (vp != NULL) 1606 vdrop(vp); 1607 pagedaemon_wakeup(); 1608 if (req & VM_ALLOC_WIRED) { 1609 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 1610 m->wire_count = 0; 1611 } 1612 m->object = NULL; 1613 vm_page_free(m); 1614 return (NULL); 1615 } 1616 1617 /* Ignore device objects; the pager sets "memattr" for them. */ 1618 if (object->memattr != VM_MEMATTR_DEFAULT && 1619 (object->flags & OBJ_FICTITIOUS) == 0) 1620 pmap_page_set_memattr(m, object->memattr); 1621 } else 1622 m->pindex = pindex; 1623 1624 /* 1625 * The following call to vdrop() must come after the above call 1626 * to vm_page_insert() in case both affect the same object and 1627 * vnode. Otherwise, the affected vnode's hold count could 1628 * temporarily become zero. 1629 */ 1630 if (vp != NULL) 1631 vdrop(vp); 1632 1633 /* 1634 * Don't wakeup too often - wakeup the pageout daemon when 1635 * we would be nearly out of memory. 1636 */ 1637 if (vm_paging_needed()) 1638 pagedaemon_wakeup(); 1639 1640 return (m); 1641 } 1642 1643 static void 1644 vm_page_alloc_contig_vdrop(struct spglist *lst) 1645 { 1646 1647 while (!SLIST_EMPTY(lst)) { 1648 vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv); 1649 SLIST_REMOVE_HEAD(lst, plinks.s.ss); 1650 } 1651 } 1652 1653 /* 1654 * vm_page_alloc_contig: 1655 * 1656 * Allocate a contiguous set of physical pages of the given size "npages" 1657 * from the free lists. All of the physical pages must be at or above 1658 * the given physical address "low" and below the given physical address 1659 * "high". The given value "alignment" determines the alignment of the 1660 * first physical page in the set. If the given value "boundary" is 1661 * non-zero, then the set of physical pages cannot cross any physical 1662 * address boundary that is a multiple of that value. Both "alignment" 1663 * and "boundary" must be a power of two. 1664 * 1665 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 1666 * then the memory attribute setting for the physical pages is configured 1667 * to the object's memory attribute setting. Otherwise, the memory 1668 * attribute setting for the physical pages is configured to "memattr", 1669 * overriding the object's memory attribute setting. However, if the 1670 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 1671 * memory attribute setting for the physical pages cannot be configured 1672 * to VM_MEMATTR_DEFAULT. 1673 * 1674 * The caller must always specify an allocation class. 1675 * 1676 * allocation classes: 1677 * VM_ALLOC_NORMAL normal process request 1678 * VM_ALLOC_SYSTEM system *really* needs a page 1679 * VM_ALLOC_INTERRUPT interrupt time request 1680 * 1681 * optional allocation flags: 1682 * VM_ALLOC_NOBUSY do not exclusive busy the page 1683 * VM_ALLOC_NOOBJ page is not associated with an object and 1684 * should not be exclusive busy 1685 * VM_ALLOC_SBUSY shared busy the allocated page 1686 * VM_ALLOC_WIRED wire the allocated page 1687 * VM_ALLOC_ZERO prefer a zeroed page 1688 * 1689 * This routine may not sleep. 1690 */ 1691 vm_page_t 1692 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 1693 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 1694 vm_paddr_t boundary, vm_memattr_t memattr) 1695 { 1696 struct vnode *drop; 1697 struct spglist deferred_vdrop_list; 1698 vm_page_t m, m_tmp, m_ret; 1699 u_int flags; 1700 int req_class; 1701 1702 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 1703 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 1704 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 1705 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 1706 ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object, 1707 req)); 1708 if (object != NULL) { 1709 VM_OBJECT_ASSERT_WLOCKED(object); 1710 KASSERT(object->type == OBJT_PHYS, 1711 ("vm_page_alloc_contig: object %p isn't OBJT_PHYS", 1712 object)); 1713 } 1714 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 1715 req_class = req & VM_ALLOC_CLASS_MASK; 1716 1717 /* 1718 * The page daemon is allowed to dig deeper into the free page list. 1719 */ 1720 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1721 req_class = VM_ALLOC_SYSTEM; 1722 1723 SLIST_INIT(&deferred_vdrop_list); 1724 mtx_lock(&vm_page_queue_free_mtx); 1725 if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages + 1726 vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM && 1727 vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages + 1728 vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT && 1729 vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) { 1730 #if VM_NRESERVLEVEL > 0 1731 retry: 1732 if (object == NULL || (object->flags & OBJ_COLORED) == 0 || 1733 (m_ret = vm_reserv_alloc_contig(object, pindex, npages, 1734 low, high, alignment, boundary)) == NULL) 1735 #endif 1736 m_ret = vm_phys_alloc_contig(npages, low, high, 1737 alignment, boundary); 1738 } else { 1739 mtx_unlock(&vm_page_queue_free_mtx); 1740 atomic_add_int(&vm_pageout_deficit, npages); 1741 pagedaemon_wakeup(); 1742 return (NULL); 1743 } 1744 if (m_ret != NULL) 1745 for (m = m_ret; m < &m_ret[npages]; m++) { 1746 drop = vm_page_alloc_init(m); 1747 if (drop != NULL) { 1748 /* 1749 * Enqueue the vnode for deferred vdrop(). 1750 */ 1751 m->plinks.s.pv = drop; 1752 SLIST_INSERT_HEAD(&deferred_vdrop_list, m, 1753 plinks.s.ss); 1754 } 1755 } 1756 else { 1757 #if VM_NRESERVLEVEL > 0 1758 if (vm_reserv_reclaim_contig(npages, low, high, alignment, 1759 boundary)) 1760 goto retry; 1761 #endif 1762 } 1763 mtx_unlock(&vm_page_queue_free_mtx); 1764 if (m_ret == NULL) 1765 return (NULL); 1766 1767 /* 1768 * Initialize the pages. Only the PG_ZERO flag is inherited. 1769 */ 1770 flags = 0; 1771 if ((req & VM_ALLOC_ZERO) != 0) 1772 flags = PG_ZERO; 1773 if ((req & VM_ALLOC_NODUMP) != 0) 1774 flags |= PG_NODUMP; 1775 if ((req & VM_ALLOC_WIRED) != 0) 1776 atomic_add_int(&vm_cnt.v_wire_count, npages); 1777 if (object != NULL) { 1778 if (object->memattr != VM_MEMATTR_DEFAULT && 1779 memattr == VM_MEMATTR_DEFAULT) 1780 memattr = object->memattr; 1781 } 1782 for (m = m_ret; m < &m_ret[npages]; m++) { 1783 m->aflags = 0; 1784 m->flags = (m->flags | PG_NODUMP) & flags; 1785 m->busy_lock = VPB_UNBUSIED; 1786 if (object != NULL) { 1787 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 1788 m->busy_lock = VPB_SINGLE_EXCLUSIVER; 1789 if ((req & VM_ALLOC_SBUSY) != 0) 1790 m->busy_lock = VPB_SHARERS_WORD(1); 1791 } 1792 if ((req & VM_ALLOC_WIRED) != 0) 1793 m->wire_count = 1; 1794 /* Unmanaged pages don't use "act_count". */ 1795 m->oflags = VPO_UNMANAGED; 1796 if (object != NULL) { 1797 if (vm_page_insert(m, object, pindex)) { 1798 vm_page_alloc_contig_vdrop( 1799 &deferred_vdrop_list); 1800 if (vm_paging_needed()) 1801 pagedaemon_wakeup(); 1802 if ((req & VM_ALLOC_WIRED) != 0) 1803 atomic_subtract_int(&vm_cnt.v_wire_count, 1804 npages); 1805 for (m_tmp = m, m = m_ret; 1806 m < &m_ret[npages]; m++) { 1807 if ((req & VM_ALLOC_WIRED) != 0) 1808 m->wire_count = 0; 1809 if (m >= m_tmp) 1810 m->object = NULL; 1811 vm_page_free(m); 1812 } 1813 return (NULL); 1814 } 1815 } else 1816 m->pindex = pindex; 1817 if (memattr != VM_MEMATTR_DEFAULT) 1818 pmap_page_set_memattr(m, memattr); 1819 pindex++; 1820 } 1821 vm_page_alloc_contig_vdrop(&deferred_vdrop_list); 1822 if (vm_paging_needed()) 1823 pagedaemon_wakeup(); 1824 return (m_ret); 1825 } 1826 1827 /* 1828 * Initialize a page that has been freshly dequeued from a freelist. 1829 * The caller has to drop the vnode returned, if it is not NULL. 1830 * 1831 * This function may only be used to initialize unmanaged pages. 1832 * 1833 * To be called with vm_page_queue_free_mtx held. 1834 */ 1835 static struct vnode * 1836 vm_page_alloc_init(vm_page_t m) 1837 { 1838 struct vnode *drop; 1839 vm_object_t m_object; 1840 1841 KASSERT(m->queue == PQ_NONE, 1842 ("vm_page_alloc_init: page %p has unexpected queue %d", 1843 m, m->queue)); 1844 KASSERT(m->wire_count == 0, 1845 ("vm_page_alloc_init: page %p is wired", m)); 1846 KASSERT(m->hold_count == 0, 1847 ("vm_page_alloc_init: page %p is held", m)); 1848 KASSERT(!vm_page_sbusied(m), 1849 ("vm_page_alloc_init: page %p is busy", m)); 1850 KASSERT(m->dirty == 0, 1851 ("vm_page_alloc_init: page %p is dirty", m)); 1852 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 1853 ("vm_page_alloc_init: page %p has unexpected memattr %d", 1854 m, pmap_page_get_memattr(m))); 1855 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 1856 drop = NULL; 1857 if ((m->flags & PG_CACHED) != 0) { 1858 KASSERT((m->flags & PG_ZERO) == 0, 1859 ("vm_page_alloc_init: cached page %p is PG_ZERO", m)); 1860 m->valid = 0; 1861 m_object = m->object; 1862 vm_page_cache_remove(m); 1863 if (m_object->type == OBJT_VNODE && 1864 vm_object_cache_is_empty(m_object)) 1865 drop = m_object->handle; 1866 } else { 1867 KASSERT(m->valid == 0, 1868 ("vm_page_alloc_init: free page %p is valid", m)); 1869 vm_phys_freecnt_adj(m, -1); 1870 if ((m->flags & PG_ZERO) != 0) 1871 vm_page_zero_count--; 1872 } 1873 return (drop); 1874 } 1875 1876 /* 1877 * vm_page_alloc_freelist: 1878 * 1879 * Allocate a physical page from the specified free page list. 1880 * 1881 * The caller must always specify an allocation class. 1882 * 1883 * allocation classes: 1884 * VM_ALLOC_NORMAL normal process request 1885 * VM_ALLOC_SYSTEM system *really* needs a page 1886 * VM_ALLOC_INTERRUPT interrupt time request 1887 * 1888 * optional allocation flags: 1889 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1890 * intends to allocate 1891 * VM_ALLOC_WIRED wire the allocated page 1892 * VM_ALLOC_ZERO prefer a zeroed page 1893 * 1894 * This routine may not sleep. 1895 */ 1896 vm_page_t 1897 vm_page_alloc_freelist(int flind, int req) 1898 { 1899 struct vnode *drop; 1900 vm_page_t m; 1901 u_int flags; 1902 int req_class; 1903 1904 req_class = req & VM_ALLOC_CLASS_MASK; 1905 1906 /* 1907 * The page daemon is allowed to dig deeper into the free page list. 1908 */ 1909 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1910 req_class = VM_ALLOC_SYSTEM; 1911 1912 /* 1913 * Do not allocate reserved pages unless the req has asked for it. 1914 */ 1915 mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE); 1916 if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved || 1917 (req_class == VM_ALLOC_SYSTEM && 1918 vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) || 1919 (req_class == VM_ALLOC_INTERRUPT && 1920 vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) 1921 m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0); 1922 else { 1923 mtx_unlock(&vm_page_queue_free_mtx); 1924 atomic_add_int(&vm_pageout_deficit, 1925 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 1926 pagedaemon_wakeup(); 1927 return (NULL); 1928 } 1929 if (m == NULL) { 1930 mtx_unlock(&vm_page_queue_free_mtx); 1931 return (NULL); 1932 } 1933 drop = vm_page_alloc_init(m); 1934 mtx_unlock(&vm_page_queue_free_mtx); 1935 1936 /* 1937 * Initialize the page. Only the PG_ZERO flag is inherited. 1938 */ 1939 m->aflags = 0; 1940 flags = 0; 1941 if ((req & VM_ALLOC_ZERO) != 0) 1942 flags = PG_ZERO; 1943 m->flags &= flags; 1944 if ((req & VM_ALLOC_WIRED) != 0) { 1945 /* 1946 * The page lock is not required for wiring a page that does 1947 * not belong to an object. 1948 */ 1949 atomic_add_int(&vm_cnt.v_wire_count, 1); 1950 m->wire_count = 1; 1951 } 1952 /* Unmanaged pages don't use "act_count". */ 1953 m->oflags = VPO_UNMANAGED; 1954 if (drop != NULL) 1955 vdrop(drop); 1956 if (vm_paging_needed()) 1957 pagedaemon_wakeup(); 1958 return (m); 1959 } 1960 1961 /* 1962 * vm_wait: (also see VM_WAIT macro) 1963 * 1964 * Sleep until free pages are available for allocation. 1965 * - Called in various places before memory allocations. 1966 */ 1967 void 1968 vm_wait(void) 1969 { 1970 1971 mtx_lock(&vm_page_queue_free_mtx); 1972 if (curproc == pageproc) { 1973 vm_pageout_pages_needed = 1; 1974 msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, 1975 PDROP | PSWP, "VMWait", 0); 1976 } else { 1977 if (!vm_pages_needed) { 1978 vm_pages_needed = 1; 1979 wakeup(&vm_pages_needed); 1980 } 1981 msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, 1982 "vmwait", 0); 1983 } 1984 } 1985 1986 /* 1987 * vm_waitpfault: (also see VM_WAITPFAULT macro) 1988 * 1989 * Sleep until free pages are available for allocation. 1990 * - Called only in vm_fault so that processes page faulting 1991 * can be easily tracked. 1992 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 1993 * processes will be able to grab memory first. Do not change 1994 * this balance without careful testing first. 1995 */ 1996 void 1997 vm_waitpfault(void) 1998 { 1999 2000 mtx_lock(&vm_page_queue_free_mtx); 2001 if (!vm_pages_needed) { 2002 vm_pages_needed = 1; 2003 wakeup(&vm_pages_needed); 2004 } 2005 msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, 2006 "pfault", 0); 2007 } 2008 2009 struct vm_pagequeue * 2010 vm_page_pagequeue(vm_page_t m) 2011 { 2012 2013 return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]); 2014 } 2015 2016 /* 2017 * vm_page_dequeue: 2018 * 2019 * Remove the given page from its current page queue. 2020 * 2021 * The page must be locked. 2022 */ 2023 void 2024 vm_page_dequeue(vm_page_t m) 2025 { 2026 struct vm_pagequeue *pq; 2027 2028 vm_page_assert_locked(m); 2029 KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued", 2030 m)); 2031 pq = vm_page_pagequeue(m); 2032 vm_pagequeue_lock(pq); 2033 m->queue = PQ_NONE; 2034 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2035 vm_pagequeue_cnt_dec(pq); 2036 vm_pagequeue_unlock(pq); 2037 } 2038 2039 /* 2040 * vm_page_dequeue_locked: 2041 * 2042 * Remove the given page from its current page queue. 2043 * 2044 * The page and page queue must be locked. 2045 */ 2046 void 2047 vm_page_dequeue_locked(vm_page_t m) 2048 { 2049 struct vm_pagequeue *pq; 2050 2051 vm_page_lock_assert(m, MA_OWNED); 2052 pq = vm_page_pagequeue(m); 2053 vm_pagequeue_assert_locked(pq); 2054 m->queue = PQ_NONE; 2055 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2056 vm_pagequeue_cnt_dec(pq); 2057 } 2058 2059 /* 2060 * vm_page_enqueue: 2061 * 2062 * Add the given page to the specified page queue. 2063 * 2064 * The page must be locked. 2065 */ 2066 static void 2067 vm_page_enqueue(uint8_t queue, vm_page_t m) 2068 { 2069 struct vm_pagequeue *pq; 2070 2071 vm_page_lock_assert(m, MA_OWNED); 2072 KASSERT(queue < PQ_COUNT, 2073 ("vm_page_enqueue: invalid queue %u request for page %p", 2074 queue, m)); 2075 pq = &vm_phys_domain(m)->vmd_pagequeues[queue]; 2076 vm_pagequeue_lock(pq); 2077 m->queue = queue; 2078 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2079 vm_pagequeue_cnt_inc(pq); 2080 vm_pagequeue_unlock(pq); 2081 } 2082 2083 /* 2084 * vm_page_requeue: 2085 * 2086 * Move the given page to the tail of its current page queue. 2087 * 2088 * The page must be locked. 2089 */ 2090 void 2091 vm_page_requeue(vm_page_t m) 2092 { 2093 struct vm_pagequeue *pq; 2094 2095 vm_page_lock_assert(m, MA_OWNED); 2096 KASSERT(m->queue != PQ_NONE, 2097 ("vm_page_requeue: page %p is not queued", m)); 2098 pq = vm_page_pagequeue(m); 2099 vm_pagequeue_lock(pq); 2100 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2101 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2102 vm_pagequeue_unlock(pq); 2103 } 2104 2105 /* 2106 * vm_page_requeue_locked: 2107 * 2108 * Move the given page to the tail of its current page queue. 2109 * 2110 * The page queue must be locked. 2111 */ 2112 void 2113 vm_page_requeue_locked(vm_page_t m) 2114 { 2115 struct vm_pagequeue *pq; 2116 2117 KASSERT(m->queue != PQ_NONE, 2118 ("vm_page_requeue_locked: page %p is not queued", m)); 2119 pq = vm_page_pagequeue(m); 2120 vm_pagequeue_assert_locked(pq); 2121 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 2122 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2123 } 2124 2125 /* 2126 * vm_page_activate: 2127 * 2128 * Put the specified page on the active list (if appropriate). 2129 * Ensure that act_count is at least ACT_INIT but do not otherwise 2130 * mess with it. 2131 * 2132 * The page must be locked. 2133 */ 2134 void 2135 vm_page_activate(vm_page_t m) 2136 { 2137 int queue; 2138 2139 vm_page_lock_assert(m, MA_OWNED); 2140 if ((queue = m->queue) != PQ_ACTIVE) { 2141 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 2142 if (m->act_count < ACT_INIT) 2143 m->act_count = ACT_INIT; 2144 if (queue != PQ_NONE) 2145 vm_page_dequeue(m); 2146 vm_page_enqueue(PQ_ACTIVE, m); 2147 } else 2148 KASSERT(queue == PQ_NONE, 2149 ("vm_page_activate: wired page %p is queued", m)); 2150 } else { 2151 if (m->act_count < ACT_INIT) 2152 m->act_count = ACT_INIT; 2153 } 2154 } 2155 2156 /* 2157 * vm_page_free_wakeup: 2158 * 2159 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 2160 * routine is called when a page has been added to the cache or free 2161 * queues. 2162 * 2163 * The page queues must be locked. 2164 */ 2165 static inline void 2166 vm_page_free_wakeup(void) 2167 { 2168 2169 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 2170 /* 2171 * if pageout daemon needs pages, then tell it that there are 2172 * some free. 2173 */ 2174 if (vm_pageout_pages_needed && 2175 vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) { 2176 wakeup(&vm_pageout_pages_needed); 2177 vm_pageout_pages_needed = 0; 2178 } 2179 /* 2180 * wakeup processes that are waiting on memory if we hit a 2181 * high water mark. And wakeup scheduler process if we have 2182 * lots of memory. this process will swapin processes. 2183 */ 2184 if (vm_pages_needed && !vm_page_count_min()) { 2185 vm_pages_needed = 0; 2186 wakeup(&vm_cnt.v_free_count); 2187 } 2188 } 2189 2190 /* 2191 * Turn a cached page into a free page, by changing its attributes. 2192 * Keep the statistics up-to-date. 2193 * 2194 * The free page queue must be locked. 2195 */ 2196 static void 2197 vm_page_cache_turn_free(vm_page_t m) 2198 { 2199 2200 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 2201 2202 m->object = NULL; 2203 m->valid = 0; 2204 KASSERT((m->flags & PG_CACHED) != 0, 2205 ("vm_page_cache_turn_free: page %p is not cached", m)); 2206 m->flags &= ~PG_CACHED; 2207 vm_cnt.v_cache_count--; 2208 vm_phys_freecnt_adj(m, 1); 2209 } 2210 2211 /* 2212 * vm_page_free_toq: 2213 * 2214 * Returns the given page to the free list, 2215 * disassociating it with any VM object. 2216 * 2217 * The object must be locked. The page must be locked if it is managed. 2218 */ 2219 void 2220 vm_page_free_toq(vm_page_t m) 2221 { 2222 2223 if ((m->oflags & VPO_UNMANAGED) == 0) { 2224 vm_page_lock_assert(m, MA_OWNED); 2225 KASSERT(!pmap_page_is_mapped(m), 2226 ("vm_page_free_toq: freeing mapped page %p", m)); 2227 } else 2228 KASSERT(m->queue == PQ_NONE, 2229 ("vm_page_free_toq: unmanaged page %p is queued", m)); 2230 PCPU_INC(cnt.v_tfree); 2231 2232 if (vm_page_sbusied(m)) 2233 panic("vm_page_free: freeing busy page %p", m); 2234 2235 /* 2236 * Unqueue, then remove page. Note that we cannot destroy 2237 * the page here because we do not want to call the pager's 2238 * callback routine until after we've put the page on the 2239 * appropriate free queue. 2240 */ 2241 vm_page_remque(m); 2242 vm_page_remove(m); 2243 2244 /* 2245 * If fictitious remove object association and 2246 * return, otherwise delay object association removal. 2247 */ 2248 if ((m->flags & PG_FICTITIOUS) != 0) { 2249 return; 2250 } 2251 2252 m->valid = 0; 2253 vm_page_undirty(m); 2254 2255 if (m->wire_count != 0) 2256 panic("vm_page_free: freeing wired page %p", m); 2257 if (m->hold_count != 0) { 2258 m->flags &= ~PG_ZERO; 2259 KASSERT((m->flags & PG_UNHOLDFREE) == 0, 2260 ("vm_page_free: freeing PG_UNHOLDFREE page %p", m)); 2261 m->flags |= PG_UNHOLDFREE; 2262 } else { 2263 /* 2264 * Restore the default memory attribute to the page. 2265 */ 2266 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 2267 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 2268 2269 /* 2270 * Insert the page into the physical memory allocator's 2271 * cache/free page queues. 2272 */ 2273 mtx_lock(&vm_page_queue_free_mtx); 2274 vm_phys_freecnt_adj(m, 1); 2275 #if VM_NRESERVLEVEL > 0 2276 if (!vm_reserv_free_page(m)) 2277 #else 2278 if (TRUE) 2279 #endif 2280 vm_phys_free_pages(m, 0); 2281 if ((m->flags & PG_ZERO) != 0) 2282 ++vm_page_zero_count; 2283 else 2284 vm_page_zero_idle_wakeup(); 2285 vm_page_free_wakeup(); 2286 mtx_unlock(&vm_page_queue_free_mtx); 2287 } 2288 } 2289 2290 /* 2291 * vm_page_wire: 2292 * 2293 * Mark this page as wired down by yet 2294 * another map, removing it from paging queues 2295 * as necessary. 2296 * 2297 * If the page is fictitious, then its wire count must remain one. 2298 * 2299 * The page must be locked. 2300 */ 2301 void 2302 vm_page_wire(vm_page_t m) 2303 { 2304 2305 /* 2306 * Only bump the wire statistics if the page is not already wired, 2307 * and only unqueue the page if it is on some queue (if it is unmanaged 2308 * it is already off the queues). 2309 */ 2310 vm_page_lock_assert(m, MA_OWNED); 2311 if ((m->flags & PG_FICTITIOUS) != 0) { 2312 KASSERT(m->wire_count == 1, 2313 ("vm_page_wire: fictitious page %p's wire count isn't one", 2314 m)); 2315 return; 2316 } 2317 if (m->wire_count == 0) { 2318 KASSERT((m->oflags & VPO_UNMANAGED) == 0 || 2319 m->queue == PQ_NONE, 2320 ("vm_page_wire: unmanaged page %p is queued", m)); 2321 vm_page_remque(m); 2322 atomic_add_int(&vm_cnt.v_wire_count, 1); 2323 } 2324 m->wire_count++; 2325 KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); 2326 } 2327 2328 /* 2329 * vm_page_unwire: 2330 * 2331 * Release one wiring of the specified page, potentially enabling it to be 2332 * paged again. If paging is enabled, then the value of the parameter 2333 * "queue" determines the queue to which the page is added. 2334 * 2335 * However, unless the page belongs to an object, it is not enqueued because 2336 * it cannot be paged out. 2337 * 2338 * If a page is fictitious, then its wire count must always be one. 2339 * 2340 * A managed page must be locked. 2341 */ 2342 void 2343 vm_page_unwire(vm_page_t m, uint8_t queue) 2344 { 2345 2346 KASSERT(queue < PQ_COUNT, 2347 ("vm_page_unwire: invalid queue %u request for page %p", 2348 queue, m)); 2349 if ((m->oflags & VPO_UNMANAGED) == 0) 2350 vm_page_lock_assert(m, MA_OWNED); 2351 if ((m->flags & PG_FICTITIOUS) != 0) { 2352 KASSERT(m->wire_count == 1, 2353 ("vm_page_unwire: fictitious page %p's wire count isn't one", m)); 2354 return; 2355 } 2356 if (m->wire_count > 0) { 2357 m->wire_count--; 2358 if (m->wire_count == 0) { 2359 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 2360 if ((m->oflags & VPO_UNMANAGED) != 0 || 2361 m->object == NULL) 2362 return; 2363 if (queue == PQ_INACTIVE) 2364 m->flags &= ~PG_WINATCFLS; 2365 vm_page_enqueue(queue, m); 2366 } 2367 } else 2368 panic("vm_page_unwire: page %p's wire count is zero", m); 2369 } 2370 2371 /* 2372 * Move the specified page to the inactive queue. 2373 * 2374 * Many pages placed on the inactive queue should actually go 2375 * into the cache, but it is difficult to figure out which. What 2376 * we do instead, if the inactive target is well met, is to put 2377 * clean pages at the head of the inactive queue instead of the tail. 2378 * This will cause them to be moved to the cache more quickly and 2379 * if not actively re-referenced, reclaimed more quickly. If we just 2380 * stick these pages at the end of the inactive queue, heavy filesystem 2381 * meta-data accesses can cause an unnecessary paging load on memory bound 2382 * processes. This optimization causes one-time-use metadata to be 2383 * reused more quickly. 2384 * 2385 * Normally athead is 0 resulting in LRU operation. athead is set 2386 * to 1 if we want this page to be 'as if it were placed in the cache', 2387 * except without unmapping it from the process address space. 2388 * 2389 * The page must be locked. 2390 */ 2391 static inline void 2392 _vm_page_deactivate(vm_page_t m, int athead) 2393 { 2394 struct vm_pagequeue *pq; 2395 int queue; 2396 2397 vm_page_lock_assert(m, MA_OWNED); 2398 2399 /* 2400 * Ignore if already inactive. 2401 */ 2402 if ((queue = m->queue) == PQ_INACTIVE) 2403 return; 2404 if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { 2405 if (queue != PQ_NONE) 2406 vm_page_dequeue(m); 2407 m->flags &= ~PG_WINATCFLS; 2408 pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE]; 2409 vm_pagequeue_lock(pq); 2410 m->queue = PQ_INACTIVE; 2411 if (athead) 2412 TAILQ_INSERT_HEAD(&pq->pq_pl, m, plinks.q); 2413 else 2414 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 2415 vm_pagequeue_cnt_inc(pq); 2416 vm_pagequeue_unlock(pq); 2417 } 2418 } 2419 2420 /* 2421 * Move the specified page to the inactive queue. 2422 * 2423 * The page must be locked. 2424 */ 2425 void 2426 vm_page_deactivate(vm_page_t m) 2427 { 2428 2429 _vm_page_deactivate(m, 0); 2430 } 2431 2432 /* 2433 * vm_page_try_to_cache: 2434 * 2435 * Returns 0 on failure, 1 on success 2436 */ 2437 int 2438 vm_page_try_to_cache(vm_page_t m) 2439 { 2440 2441 vm_page_lock_assert(m, MA_OWNED); 2442 VM_OBJECT_ASSERT_WLOCKED(m->object); 2443 if (m->dirty || m->hold_count || m->wire_count || 2444 (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m)) 2445 return (0); 2446 pmap_remove_all(m); 2447 if (m->dirty) 2448 return (0); 2449 vm_page_cache(m); 2450 return (1); 2451 } 2452 2453 /* 2454 * vm_page_try_to_free() 2455 * 2456 * Attempt to free the page. If we cannot free it, we do nothing. 2457 * 1 is returned on success, 0 on failure. 2458 */ 2459 int 2460 vm_page_try_to_free(vm_page_t m) 2461 { 2462 2463 vm_page_lock_assert(m, MA_OWNED); 2464 if (m->object != NULL) 2465 VM_OBJECT_ASSERT_WLOCKED(m->object); 2466 if (m->dirty || m->hold_count || m->wire_count || 2467 (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m)) 2468 return (0); 2469 pmap_remove_all(m); 2470 if (m->dirty) 2471 return (0); 2472 vm_page_free(m); 2473 return (1); 2474 } 2475 2476 /* 2477 * vm_page_cache 2478 * 2479 * Put the specified page onto the page cache queue (if appropriate). 2480 * 2481 * The object and page must be locked. 2482 */ 2483 void 2484 vm_page_cache(vm_page_t m) 2485 { 2486 vm_object_t object; 2487 boolean_t cache_was_empty; 2488 2489 vm_page_lock_assert(m, MA_OWNED); 2490 object = m->object; 2491 VM_OBJECT_ASSERT_WLOCKED(object); 2492 if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) || 2493 m->hold_count || m->wire_count) 2494 panic("vm_page_cache: attempting to cache busy page"); 2495 KASSERT(!pmap_page_is_mapped(m), 2496 ("vm_page_cache: page %p is mapped", m)); 2497 KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m)); 2498 if (m->valid == 0 || object->type == OBJT_DEFAULT || 2499 (object->type == OBJT_SWAP && 2500 !vm_pager_has_page(object, m->pindex, NULL, NULL))) { 2501 /* 2502 * Hypothesis: A cache-eligible page belonging to a 2503 * default object or swap object but without a backing 2504 * store must be zero filled. 2505 */ 2506 vm_page_free(m); 2507 return; 2508 } 2509 KASSERT((m->flags & PG_CACHED) == 0, 2510 ("vm_page_cache: page %p is already cached", m)); 2511 2512 /* 2513 * Remove the page from the paging queues. 2514 */ 2515 vm_page_remque(m); 2516 2517 /* 2518 * Remove the page from the object's collection of resident 2519 * pages. 2520 */ 2521 vm_radix_remove(&object->rtree, m->pindex); 2522 TAILQ_REMOVE(&object->memq, m, listq); 2523 object->resident_page_count--; 2524 2525 /* 2526 * Restore the default memory attribute to the page. 2527 */ 2528 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 2529 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 2530 2531 /* 2532 * Insert the page into the object's collection of cached pages 2533 * and the physical memory allocator's cache/free page queues. 2534 */ 2535 m->flags &= ~PG_ZERO; 2536 mtx_lock(&vm_page_queue_free_mtx); 2537 cache_was_empty = vm_radix_is_empty(&object->cache); 2538 if (vm_radix_insert(&object->cache, m)) { 2539 mtx_unlock(&vm_page_queue_free_mtx); 2540 if (object->resident_page_count == 0) 2541 vdrop(object->handle); 2542 m->object = NULL; 2543 vm_page_free(m); 2544 return; 2545 } 2546 2547 /* 2548 * The above call to vm_radix_insert() could reclaim the one pre- 2549 * existing cached page from this object, resulting in a call to 2550 * vdrop(). 2551 */ 2552 if (!cache_was_empty) 2553 cache_was_empty = vm_radix_is_singleton(&object->cache); 2554 2555 m->flags |= PG_CACHED; 2556 vm_cnt.v_cache_count++; 2557 PCPU_INC(cnt.v_tcached); 2558 #if VM_NRESERVLEVEL > 0 2559 if (!vm_reserv_free_page(m)) { 2560 #else 2561 if (TRUE) { 2562 #endif 2563 vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0); 2564 vm_phys_free_pages(m, 0); 2565 } 2566 vm_page_free_wakeup(); 2567 mtx_unlock(&vm_page_queue_free_mtx); 2568 2569 /* 2570 * Increment the vnode's hold count if this is the object's only 2571 * cached page. Decrement the vnode's hold count if this was 2572 * the object's only resident page. 2573 */ 2574 if (object->type == OBJT_VNODE) { 2575 if (cache_was_empty && object->resident_page_count != 0) 2576 vhold(object->handle); 2577 else if (!cache_was_empty && object->resident_page_count == 0) 2578 vdrop(object->handle); 2579 } 2580 } 2581 2582 /* 2583 * vm_page_advise 2584 * 2585 * Cache, deactivate, or do nothing as appropriate. This routine 2586 * is used by madvise(). 2587 * 2588 * Generally speaking we want to move the page into the cache so 2589 * it gets reused quickly. However, this can result in a silly syndrome 2590 * due to the page recycling too quickly. Small objects will not be 2591 * fully cached. On the other hand, if we move the page to the inactive 2592 * queue we wind up with a problem whereby very large objects 2593 * unnecessarily blow away our inactive and cache queues. 2594 * 2595 * The solution is to move the pages based on a fixed weighting. We 2596 * either leave them alone, deactivate them, or move them to the cache, 2597 * where moving them to the cache has the highest weighting. 2598 * By forcing some pages into other queues we eventually force the 2599 * system to balance the queues, potentially recovering other unrelated 2600 * space from active. The idea is to not force this to happen too 2601 * often. 2602 * 2603 * The object and page must be locked. 2604 */ 2605 void 2606 vm_page_advise(vm_page_t m, int advice) 2607 { 2608 int dnw, head; 2609 2610 vm_page_assert_locked(m); 2611 VM_OBJECT_ASSERT_WLOCKED(m->object); 2612 if (advice == MADV_FREE) { 2613 /* 2614 * Mark the page clean. This will allow the page to be freed 2615 * up by the system. However, such pages are often reused 2616 * quickly by malloc() so we do not do anything that would 2617 * cause a page fault if we can help it. 2618 * 2619 * Specifically, we do not try to actually free the page now 2620 * nor do we try to put it in the cache (which would cause a 2621 * page fault on reuse). 2622 * 2623 * But we do make the page is freeable as we can without 2624 * actually taking the step of unmapping it. 2625 */ 2626 m->dirty = 0; 2627 m->act_count = 0; 2628 } else if (advice != MADV_DONTNEED) 2629 return; 2630 dnw = PCPU_GET(dnweight); 2631 PCPU_INC(dnweight); 2632 2633 /* 2634 * Occasionally leave the page alone. 2635 */ 2636 if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) { 2637 if (m->act_count >= ACT_INIT) 2638 --m->act_count; 2639 return; 2640 } 2641 2642 /* 2643 * Clear any references to the page. Otherwise, the page daemon will 2644 * immediately reactivate the page. 2645 */ 2646 vm_page_aflag_clear(m, PGA_REFERENCED); 2647 2648 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 2649 vm_page_dirty(m); 2650 2651 if (m->dirty || (dnw & 0x0070) == 0) { 2652 /* 2653 * Deactivate the page 3 times out of 32. 2654 */ 2655 head = 0; 2656 } else { 2657 /* 2658 * Cache the page 28 times out of every 32. Note that 2659 * the page is deactivated instead of cached, but placed 2660 * at the head of the queue instead of the tail. 2661 */ 2662 head = 1; 2663 } 2664 _vm_page_deactivate(m, head); 2665 } 2666 2667 /* 2668 * Grab a page, waiting until we are waken up due to the page 2669 * changing state. We keep on waiting, if the page continues 2670 * to be in the object. If the page doesn't exist, first allocate it 2671 * and then conditionally zero it. 2672 * 2673 * This routine may sleep. 2674 * 2675 * The object must be locked on entry. The lock will, however, be released 2676 * and reacquired if the routine sleeps. 2677 */ 2678 vm_page_t 2679 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2680 { 2681 vm_page_t m; 2682 int sleep; 2683 2684 VM_OBJECT_ASSERT_WLOCKED(object); 2685 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 2686 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 2687 ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 2688 retrylookup: 2689 if ((m = vm_page_lookup(object, pindex)) != NULL) { 2690 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? 2691 vm_page_xbusied(m) : vm_page_busied(m); 2692 if (sleep) { 2693 /* 2694 * Reference the page before unlocking and 2695 * sleeping so that the page daemon is less 2696 * likely to reclaim it. 2697 */ 2698 vm_page_aflag_set(m, PGA_REFERENCED); 2699 vm_page_lock(m); 2700 VM_OBJECT_WUNLOCK(object); 2701 vm_page_busy_sleep(m, "pgrbwt"); 2702 VM_OBJECT_WLOCK(object); 2703 goto retrylookup; 2704 } else { 2705 if ((allocflags & VM_ALLOC_WIRED) != 0) { 2706 vm_page_lock(m); 2707 vm_page_wire(m); 2708 vm_page_unlock(m); 2709 } 2710 if ((allocflags & 2711 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) 2712 vm_page_xbusy(m); 2713 if ((allocflags & VM_ALLOC_SBUSY) != 0) 2714 vm_page_sbusy(m); 2715 return (m); 2716 } 2717 } 2718 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_IGN_SBUSY); 2719 if (m == NULL) { 2720 VM_OBJECT_WUNLOCK(object); 2721 VM_WAIT; 2722 VM_OBJECT_WLOCK(object); 2723 goto retrylookup; 2724 } else if (m->valid != 0) 2725 return (m); 2726 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 2727 pmap_zero_page(m); 2728 return (m); 2729 } 2730 2731 /* 2732 * Mapping function for valid or dirty bits in a page. 2733 * 2734 * Inputs are required to range within a page. 2735 */ 2736 vm_page_bits_t 2737 vm_page_bits(int base, int size) 2738 { 2739 int first_bit; 2740 int last_bit; 2741 2742 KASSERT( 2743 base + size <= PAGE_SIZE, 2744 ("vm_page_bits: illegal base/size %d/%d", base, size) 2745 ); 2746 2747 if (size == 0) /* handle degenerate case */ 2748 return (0); 2749 2750 first_bit = base >> DEV_BSHIFT; 2751 last_bit = (base + size - 1) >> DEV_BSHIFT; 2752 2753 return (((vm_page_bits_t)2 << last_bit) - 2754 ((vm_page_bits_t)1 << first_bit)); 2755 } 2756 2757 /* 2758 * vm_page_set_valid_range: 2759 * 2760 * Sets portions of a page valid. The arguments are expected 2761 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2762 * of any partial chunks touched by the range. The invalid portion of 2763 * such chunks will be zeroed. 2764 * 2765 * (base + size) must be less then or equal to PAGE_SIZE. 2766 */ 2767 void 2768 vm_page_set_valid_range(vm_page_t m, int base, int size) 2769 { 2770 int endoff, frag; 2771 2772 VM_OBJECT_ASSERT_WLOCKED(m->object); 2773 if (size == 0) /* handle degenerate case */ 2774 return; 2775 2776 /* 2777 * If the base is not DEV_BSIZE aligned and the valid 2778 * bit is clear, we have to zero out a portion of the 2779 * first block. 2780 */ 2781 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2782 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 2783 pmap_zero_page_area(m, frag, base - frag); 2784 2785 /* 2786 * If the ending offset is not DEV_BSIZE aligned and the 2787 * valid bit is clear, we have to zero out a portion of 2788 * the last block. 2789 */ 2790 endoff = base + size; 2791 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2792 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 2793 pmap_zero_page_area(m, endoff, 2794 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 2795 2796 /* 2797 * Assert that no previously invalid block that is now being validated 2798 * is already dirty. 2799 */ 2800 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 2801 ("vm_page_set_valid_range: page %p is dirty", m)); 2802 2803 /* 2804 * Set valid bits inclusive of any overlap. 2805 */ 2806 m->valid |= vm_page_bits(base, size); 2807 } 2808 2809 /* 2810 * Clear the given bits from the specified page's dirty field. 2811 */ 2812 static __inline void 2813 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 2814 { 2815 uintptr_t addr; 2816 #if PAGE_SIZE < 16384 2817 int shift; 2818 #endif 2819 2820 /* 2821 * If the object is locked and the page is neither exclusive busy nor 2822 * write mapped, then the page's dirty field cannot possibly be 2823 * set by a concurrent pmap operation. 2824 */ 2825 VM_OBJECT_ASSERT_WLOCKED(m->object); 2826 if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 2827 m->dirty &= ~pagebits; 2828 else { 2829 /* 2830 * The pmap layer can call vm_page_dirty() without 2831 * holding a distinguished lock. The combination of 2832 * the object's lock and an atomic operation suffice 2833 * to guarantee consistency of the page dirty field. 2834 * 2835 * For PAGE_SIZE == 32768 case, compiler already 2836 * properly aligns the dirty field, so no forcible 2837 * alignment is needed. Only require existence of 2838 * atomic_clear_64 when page size is 32768. 2839 */ 2840 addr = (uintptr_t)&m->dirty; 2841 #if PAGE_SIZE == 32768 2842 atomic_clear_64((uint64_t *)addr, pagebits); 2843 #elif PAGE_SIZE == 16384 2844 atomic_clear_32((uint32_t *)addr, pagebits); 2845 #else /* PAGE_SIZE <= 8192 */ 2846 /* 2847 * Use a trick to perform a 32-bit atomic on the 2848 * containing aligned word, to not depend on the existence 2849 * of atomic_clear_{8, 16}. 2850 */ 2851 shift = addr & (sizeof(uint32_t) - 1); 2852 #if BYTE_ORDER == BIG_ENDIAN 2853 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY; 2854 #else 2855 shift *= NBBY; 2856 #endif 2857 addr &= ~(sizeof(uint32_t) - 1); 2858 atomic_clear_32((uint32_t *)addr, pagebits << shift); 2859 #endif /* PAGE_SIZE */ 2860 } 2861 } 2862 2863 /* 2864 * vm_page_set_validclean: 2865 * 2866 * Sets portions of a page valid and clean. The arguments are expected 2867 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2868 * of any partial chunks touched by the range. The invalid portion of 2869 * such chunks will be zero'd. 2870 * 2871 * (base + size) must be less then or equal to PAGE_SIZE. 2872 */ 2873 void 2874 vm_page_set_validclean(vm_page_t m, int base, int size) 2875 { 2876 vm_page_bits_t oldvalid, pagebits; 2877 int endoff, frag; 2878 2879 VM_OBJECT_ASSERT_WLOCKED(m->object); 2880 if (size == 0) /* handle degenerate case */ 2881 return; 2882 2883 /* 2884 * If the base is not DEV_BSIZE aligned and the valid 2885 * bit is clear, we have to zero out a portion of the 2886 * first block. 2887 */ 2888 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2889 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 2890 pmap_zero_page_area(m, frag, base - frag); 2891 2892 /* 2893 * If the ending offset is not DEV_BSIZE aligned and the 2894 * valid bit is clear, we have to zero out a portion of 2895 * the last block. 2896 */ 2897 endoff = base + size; 2898 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2899 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 2900 pmap_zero_page_area(m, endoff, 2901 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 2902 2903 /* 2904 * Set valid, clear dirty bits. If validating the entire 2905 * page we can safely clear the pmap modify bit. We also 2906 * use this opportunity to clear the VPO_NOSYNC flag. If a process 2907 * takes a write fault on a MAP_NOSYNC memory area the flag will 2908 * be set again. 2909 * 2910 * We set valid bits inclusive of any overlap, but we can only 2911 * clear dirty bits for DEV_BSIZE chunks that are fully within 2912 * the range. 2913 */ 2914 oldvalid = m->valid; 2915 pagebits = vm_page_bits(base, size); 2916 m->valid |= pagebits; 2917 #if 0 /* NOT YET */ 2918 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 2919 frag = DEV_BSIZE - frag; 2920 base += frag; 2921 size -= frag; 2922 if (size < 0) 2923 size = 0; 2924 } 2925 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 2926 #endif 2927 if (base == 0 && size == PAGE_SIZE) { 2928 /* 2929 * The page can only be modified within the pmap if it is 2930 * mapped, and it can only be mapped if it was previously 2931 * fully valid. 2932 */ 2933 if (oldvalid == VM_PAGE_BITS_ALL) 2934 /* 2935 * Perform the pmap_clear_modify() first. Otherwise, 2936 * a concurrent pmap operation, such as 2937 * pmap_protect(), could clear a modification in the 2938 * pmap and set the dirty field on the page before 2939 * pmap_clear_modify() had begun and after the dirty 2940 * field was cleared here. 2941 */ 2942 pmap_clear_modify(m); 2943 m->dirty = 0; 2944 m->oflags &= ~VPO_NOSYNC; 2945 } else if (oldvalid != VM_PAGE_BITS_ALL) 2946 m->dirty &= ~pagebits; 2947 else 2948 vm_page_clear_dirty_mask(m, pagebits); 2949 } 2950 2951 void 2952 vm_page_clear_dirty(vm_page_t m, int base, int size) 2953 { 2954 2955 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 2956 } 2957 2958 /* 2959 * vm_page_set_invalid: 2960 * 2961 * Invalidates DEV_BSIZE'd chunks within a page. Both the 2962 * valid and dirty bits for the effected areas are cleared. 2963 */ 2964 void 2965 vm_page_set_invalid(vm_page_t m, int base, int size) 2966 { 2967 vm_page_bits_t bits; 2968 vm_object_t object; 2969 2970 object = m->object; 2971 VM_OBJECT_ASSERT_WLOCKED(object); 2972 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 2973 size >= object->un_pager.vnp.vnp_size) 2974 bits = VM_PAGE_BITS_ALL; 2975 else 2976 bits = vm_page_bits(base, size); 2977 if (m->valid == VM_PAGE_BITS_ALL && bits != 0) 2978 pmap_remove_all(m); 2979 KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) || 2980 !pmap_page_is_mapped(m), 2981 ("vm_page_set_invalid: page %p is mapped", m)); 2982 m->valid &= ~bits; 2983 m->dirty &= ~bits; 2984 } 2985 2986 /* 2987 * vm_page_zero_invalid() 2988 * 2989 * The kernel assumes that the invalid portions of a page contain 2990 * garbage, but such pages can be mapped into memory by user code. 2991 * When this occurs, we must zero out the non-valid portions of the 2992 * page so user code sees what it expects. 2993 * 2994 * Pages are most often semi-valid when the end of a file is mapped 2995 * into memory and the file's size is not page aligned. 2996 */ 2997 void 2998 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 2999 { 3000 int b; 3001 int i; 3002 3003 VM_OBJECT_ASSERT_WLOCKED(m->object); 3004 /* 3005 * Scan the valid bits looking for invalid sections that 3006 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 3007 * valid bit may be set ) have already been zerod by 3008 * vm_page_set_validclean(). 3009 */ 3010 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 3011 if (i == (PAGE_SIZE / DEV_BSIZE) || 3012 (m->valid & ((vm_page_bits_t)1 << i))) { 3013 if (i > b) { 3014 pmap_zero_page_area(m, 3015 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 3016 } 3017 b = i + 1; 3018 } 3019 } 3020 3021 /* 3022 * setvalid is TRUE when we can safely set the zero'd areas 3023 * as being valid. We can do this if there are no cache consistancy 3024 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 3025 */ 3026 if (setvalid) 3027 m->valid = VM_PAGE_BITS_ALL; 3028 } 3029 3030 /* 3031 * vm_page_is_valid: 3032 * 3033 * Is (partial) page valid? Note that the case where size == 0 3034 * will return FALSE in the degenerate case where the page is 3035 * entirely invalid, and TRUE otherwise. 3036 */ 3037 int 3038 vm_page_is_valid(vm_page_t m, int base, int size) 3039 { 3040 vm_page_bits_t bits; 3041 3042 VM_OBJECT_ASSERT_LOCKED(m->object); 3043 bits = vm_page_bits(base, size); 3044 return (m->valid != 0 && (m->valid & bits) == bits); 3045 } 3046 3047 /* 3048 * vm_page_ps_is_valid: 3049 * 3050 * Returns TRUE if the entire (super)page is valid and FALSE otherwise. 3051 */ 3052 boolean_t 3053 vm_page_ps_is_valid(vm_page_t m) 3054 { 3055 int i, npages; 3056 3057 VM_OBJECT_ASSERT_LOCKED(m->object); 3058 npages = atop(pagesizes[m->psind]); 3059 3060 /* 3061 * The physically contiguous pages that make up a superpage, i.e., a 3062 * page with a page size index ("psind") greater than zero, will 3063 * occupy adjacent entries in vm_page_array[]. 3064 */ 3065 for (i = 0; i < npages; i++) { 3066 if (m[i].valid != VM_PAGE_BITS_ALL) 3067 return (FALSE); 3068 } 3069 return (TRUE); 3070 } 3071 3072 /* 3073 * Set the page's dirty bits if the page is modified. 3074 */ 3075 void 3076 vm_page_test_dirty(vm_page_t m) 3077 { 3078 3079 VM_OBJECT_ASSERT_WLOCKED(m->object); 3080 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 3081 vm_page_dirty(m); 3082 } 3083 3084 void 3085 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 3086 { 3087 3088 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 3089 } 3090 3091 void 3092 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 3093 { 3094 3095 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 3096 } 3097 3098 int 3099 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 3100 { 3101 3102 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 3103 } 3104 3105 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 3106 void 3107 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 3108 { 3109 3110 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 3111 } 3112 3113 void 3114 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 3115 { 3116 3117 mtx_assert_(vm_page_lockptr(m), a, file, line); 3118 } 3119 #endif 3120 3121 #ifdef INVARIANTS 3122 void 3123 vm_page_object_lock_assert(vm_page_t m) 3124 { 3125 3126 /* 3127 * Certain of the page's fields may only be modified by the 3128 * holder of the containing object's lock or the exclusive busy. 3129 * holder. Unfortunately, the holder of the write busy is 3130 * not recorded, and thus cannot be checked here. 3131 */ 3132 if (m->object != NULL && !vm_page_xbusied(m)) 3133 VM_OBJECT_ASSERT_WLOCKED(m->object); 3134 } 3135 3136 void 3137 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits) 3138 { 3139 3140 if ((bits & PGA_WRITEABLE) == 0) 3141 return; 3142 3143 /* 3144 * The PGA_WRITEABLE flag can only be set if the page is 3145 * managed, is exclusively busied or the object is locked. 3146 * Currently, this flag is only set by pmap_enter(). 3147 */ 3148 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3149 ("PGA_WRITEABLE on unmanaged page")); 3150 if (!vm_page_xbusied(m)) 3151 VM_OBJECT_ASSERT_LOCKED(m->object); 3152 } 3153 #endif 3154 3155 #include "opt_ddb.h" 3156 #ifdef DDB 3157 #include <sys/kernel.h> 3158 3159 #include <ddb/ddb.h> 3160 3161 DB_SHOW_COMMAND(page, vm_page_print_page_info) 3162 { 3163 db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count); 3164 db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count); 3165 db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count); 3166 db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count); 3167 db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count); 3168 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 3169 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 3170 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 3171 db_printf("vm_cnt.v_cache_min: %d\n", vm_cnt.v_cache_min); 3172 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 3173 } 3174 3175 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 3176 { 3177 int dom; 3178 3179 db_printf("pq_free %d pq_cache %d\n", 3180 vm_cnt.v_free_count, vm_cnt.v_cache_count); 3181 for (dom = 0; dom < vm_ndomains; dom++) { 3182 db_printf( 3183 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n", 3184 dom, 3185 vm_dom[dom].vmd_page_count, 3186 vm_dom[dom].vmd_free_count, 3187 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 3188 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 3189 vm_dom[dom].vmd_pass); 3190 } 3191 } 3192 3193 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 3194 { 3195 vm_page_t m; 3196 boolean_t phys; 3197 3198 if (!have_addr) { 3199 db_printf("show pginfo addr\n"); 3200 return; 3201 } 3202 3203 phys = strchr(modif, 'p') != NULL; 3204 if (phys) 3205 m = PHYS_TO_VM_PAGE(addr); 3206 else 3207 m = (vm_page_t)addr; 3208 db_printf( 3209 "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n" 3210 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 3211 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 3212 m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags, 3213 m->flags, m->act_count, m->busy_lock, m->valid, m->dirty); 3214 } 3215 #endif /* DDB */ 3216