xref: /freebsd/sys/vm/vm_page.c (revision 4b63a7c678a1291c8056de3770cfa393773b1f94)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- A page queue lock is required when adding or removing a page from a
67  *	  page queue regardless of other locks or the busy state of a page.
68  *
69  *		* In general, no thread besides the page daemon can acquire or
70  *		  hold more than one page queue lock at a time.
71  *
72  *		* The page daemon can acquire and hold any pair of page queue
73  *		  locks in any order.
74  *
75  *	- The object lock is required when inserting or removing
76  *	  pages from an object (vm_page_insert() or vm_page_remove()).
77  *
78  */
79 
80 /*
81  *	Resident memory management module.
82  */
83 
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD$");
86 
87 #include "opt_vm.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/lock.h>
92 #include <sys/kernel.h>
93 #include <sys/limits.h>
94 #include <sys/malloc.h>
95 #include <sys/mman.h>
96 #include <sys/msgbuf.h>
97 #include <sys/mutex.h>
98 #include <sys/proc.h>
99 #include <sys/rwlock.h>
100 #include <sys/sysctl.h>
101 #include <sys/vmmeter.h>
102 #include <sys/vnode.h>
103 
104 #include <vm/vm.h>
105 #include <vm/pmap.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_kern.h>
108 #include <vm/vm_object.h>
109 #include <vm/vm_page.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_radix.h>
114 #include <vm/vm_reserv.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117 #include <vm/uma_int.h>
118 
119 #include <machine/md_var.h>
120 
121 /*
122  *	Associated with page of user-allocatable memory is a
123  *	page structure.
124  */
125 
126 struct vm_domain vm_dom[MAXMEMDOM];
127 struct mtx_padalign vm_page_queue_free_mtx;
128 
129 struct mtx_padalign pa_lock[PA_LOCK_COUNT];
130 
131 vm_page_t vm_page_array;
132 long vm_page_array_size;
133 long first_page;
134 int vm_page_zero_count;
135 
136 static int boot_pages = UMA_BOOT_PAGES;
137 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN, &boot_pages, 0,
138 	"number of pages allocated for bootstrapping the VM system");
139 
140 static int pa_tryrelock_restart;
141 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
142     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
143 
144 static uma_zone_t fakepg_zone;
145 
146 static struct vnode *vm_page_alloc_init(vm_page_t m);
147 static void vm_page_cache_turn_free(vm_page_t m);
148 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
149 static void vm_page_enqueue(uint8_t queue, vm_page_t m);
150 static void vm_page_init_fakepg(void *dummy);
151 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
152     vm_pindex_t pindex, vm_page_t mpred);
153 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
154     vm_page_t mpred);
155 
156 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);
157 
158 static void
159 vm_page_init_fakepg(void *dummy)
160 {
161 
162 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
163 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
164 }
165 
166 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
167 #if PAGE_SIZE == 32768
168 #ifdef CTASSERT
169 CTASSERT(sizeof(u_long) >= 8);
170 #endif
171 #endif
172 
173 /*
174  * Try to acquire a physical address lock while a pmap is locked.  If we
175  * fail to trylock we unlock and lock the pmap directly and cache the
176  * locked pa in *locked.  The caller should then restart their loop in case
177  * the virtual to physical mapping has changed.
178  */
179 int
180 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
181 {
182 	vm_paddr_t lockpa;
183 
184 	lockpa = *locked;
185 	*locked = pa;
186 	if (lockpa) {
187 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
188 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
189 			return (0);
190 		PA_UNLOCK(lockpa);
191 	}
192 	if (PA_TRYLOCK(pa))
193 		return (0);
194 	PMAP_UNLOCK(pmap);
195 	atomic_add_int(&pa_tryrelock_restart, 1);
196 	PA_LOCK(pa);
197 	PMAP_LOCK(pmap);
198 	return (EAGAIN);
199 }
200 
201 /*
202  *	vm_set_page_size:
203  *
204  *	Sets the page size, perhaps based upon the memory
205  *	size.  Must be called before any use of page-size
206  *	dependent functions.
207  */
208 void
209 vm_set_page_size(void)
210 {
211 	if (vm_cnt.v_page_size == 0)
212 		vm_cnt.v_page_size = PAGE_SIZE;
213 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
214 		panic("vm_set_page_size: page size not a power of two");
215 }
216 
217 /*
218  *	vm_page_blacklist_lookup:
219  *
220  *	See if a physical address in this page has been listed
221  *	in the blacklist tunable.  Entries in the tunable are
222  *	separated by spaces or commas.  If an invalid integer is
223  *	encountered then the rest of the string is skipped.
224  */
225 static int
226 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
227 {
228 	vm_paddr_t bad;
229 	char *cp, *pos;
230 
231 	for (pos = list; *pos != '\0'; pos = cp) {
232 		bad = strtoq(pos, &cp, 0);
233 		if (*cp != '\0') {
234 			if (*cp == ' ' || *cp == ',') {
235 				cp++;
236 				if (cp == pos)
237 					continue;
238 			} else
239 				break;
240 		}
241 		if (pa == trunc_page(bad))
242 			return (1);
243 	}
244 	return (0);
245 }
246 
247 static void
248 vm_page_domain_init(struct vm_domain *vmd)
249 {
250 	struct vm_pagequeue *pq;
251 	int i;
252 
253 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
254 	    "vm inactive pagequeue";
255 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
256 	    &vm_cnt.v_inactive_count;
257 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
258 	    "vm active pagequeue";
259 	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
260 	    &vm_cnt.v_active_count;
261 	vmd->vmd_page_count = 0;
262 	vmd->vmd_free_count = 0;
263 	vmd->vmd_segs = 0;
264 	vmd->vmd_oom = FALSE;
265 	vmd->vmd_pass = 0;
266 	for (i = 0; i < PQ_COUNT; i++) {
267 		pq = &vmd->vmd_pagequeues[i];
268 		TAILQ_INIT(&pq->pq_pl);
269 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
270 		    MTX_DEF | MTX_DUPOK);
271 	}
272 }
273 
274 /*
275  *	vm_page_startup:
276  *
277  *	Initializes the resident memory module.
278  *
279  *	Allocates memory for the page cells, and
280  *	for the object/offset-to-page hash table headers.
281  *	Each page cell is initialized and placed on the free list.
282  */
283 vm_offset_t
284 vm_page_startup(vm_offset_t vaddr)
285 {
286 	vm_offset_t mapped;
287 	vm_paddr_t page_range;
288 	vm_paddr_t new_end;
289 	int i;
290 	vm_paddr_t pa;
291 	vm_paddr_t last_pa;
292 	char *list;
293 	vm_paddr_t end;
294 	vm_paddr_t biggestsize;
295 	vm_paddr_t low_water, high_water;
296 	int biggestone;
297 
298 	biggestsize = 0;
299 	biggestone = 0;
300 	vaddr = round_page(vaddr);
301 
302 	for (i = 0; phys_avail[i + 1]; i += 2) {
303 		phys_avail[i] = round_page(phys_avail[i]);
304 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
305 	}
306 
307 	low_water = phys_avail[0];
308 	high_water = phys_avail[1];
309 
310 	for (i = 0; phys_avail[i + 1]; i += 2) {
311 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
312 
313 		if (size > biggestsize) {
314 			biggestone = i;
315 			biggestsize = size;
316 		}
317 		if (phys_avail[i] < low_water)
318 			low_water = phys_avail[i];
319 		if (phys_avail[i + 1] > high_water)
320 			high_water = phys_avail[i + 1];
321 	}
322 
323 #ifdef XEN
324 	low_water = 0;
325 #endif
326 
327 	end = phys_avail[biggestone+1];
328 
329 	/*
330 	 * Initialize the page and queue locks.
331 	 */
332 	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
333 	for (i = 0; i < PA_LOCK_COUNT; i++)
334 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
335 	for (i = 0; i < vm_ndomains; i++)
336 		vm_page_domain_init(&vm_dom[i]);
337 
338 	/*
339 	 * Allocate memory for use when boot strapping the kernel memory
340 	 * allocator.
341 	 */
342 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
343 	new_end = trunc_page(new_end);
344 	mapped = pmap_map(&vaddr, new_end, end,
345 	    VM_PROT_READ | VM_PROT_WRITE);
346 	bzero((void *)mapped, end - new_end);
347 	uma_startup((void *)mapped, boot_pages);
348 
349 #if defined(__amd64__) || defined(__i386__) || defined(__arm__) || \
350     defined(__mips__)
351 	/*
352 	 * Allocate a bitmap to indicate that a random physical page
353 	 * needs to be included in a minidump.
354 	 *
355 	 * The amd64 port needs this to indicate which direct map pages
356 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
357 	 *
358 	 * However, i386 still needs this workspace internally within the
359 	 * minidump code.  In theory, they are not needed on i386, but are
360 	 * included should the sf_buf code decide to use them.
361 	 */
362 	last_pa = 0;
363 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
364 		if (dump_avail[i + 1] > last_pa)
365 			last_pa = dump_avail[i + 1];
366 	page_range = last_pa / PAGE_SIZE;
367 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
368 	new_end -= vm_page_dump_size;
369 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
370 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
371 	bzero((void *)vm_page_dump, vm_page_dump_size);
372 #endif
373 #ifdef __amd64__
374 	/*
375 	 * Request that the physical pages underlying the message buffer be
376 	 * included in a crash dump.  Since the message buffer is accessed
377 	 * through the direct map, they are not automatically included.
378 	 */
379 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
380 	last_pa = pa + round_page(msgbufsize);
381 	while (pa < last_pa) {
382 		dump_add_page(pa);
383 		pa += PAGE_SIZE;
384 	}
385 #endif
386 	/*
387 	 * Compute the number of pages of memory that will be available for
388 	 * use (taking into account the overhead of a page structure per
389 	 * page).
390 	 */
391 	first_page = low_water / PAGE_SIZE;
392 #ifdef VM_PHYSSEG_SPARSE
393 	page_range = 0;
394 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
395 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
396 #elif defined(VM_PHYSSEG_DENSE)
397 	page_range = high_water / PAGE_SIZE - first_page;
398 #else
399 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
400 #endif
401 	end = new_end;
402 
403 	/*
404 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
405 	 */
406 	vaddr += PAGE_SIZE;
407 
408 	/*
409 	 * Initialize the mem entry structures now, and put them in the free
410 	 * queue.
411 	 */
412 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
413 	mapped = pmap_map(&vaddr, new_end, end,
414 	    VM_PROT_READ | VM_PROT_WRITE);
415 	vm_page_array = (vm_page_t) mapped;
416 #if VM_NRESERVLEVEL > 0
417 	/*
418 	 * Allocate memory for the reservation management system's data
419 	 * structures.
420 	 */
421 	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
422 #endif
423 #if defined(__amd64__) || defined(__mips__)
424 	/*
425 	 * pmap_map on amd64 and mips can come out of the direct-map, not kvm
426 	 * like i386, so the pages must be tracked for a crashdump to include
427 	 * this data.  This includes the vm_page_array and the early UMA
428 	 * bootstrap pages.
429 	 */
430 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
431 		dump_add_page(pa);
432 #endif
433 	phys_avail[biggestone + 1] = new_end;
434 
435 	/*
436 	 * Clear all of the page structures
437 	 */
438 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
439 	for (i = 0; i < page_range; i++)
440 		vm_page_array[i].order = VM_NFREEORDER;
441 	vm_page_array_size = page_range;
442 
443 	/*
444 	 * Initialize the physical memory allocator.
445 	 */
446 	vm_phys_init();
447 
448 	/*
449 	 * Add every available physical page that is not blacklisted to
450 	 * the free lists.
451 	 */
452 	vm_cnt.v_page_count = 0;
453 	vm_cnt.v_free_count = 0;
454 	list = kern_getenv("vm.blacklist");
455 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
456 		pa = phys_avail[i];
457 		last_pa = phys_avail[i + 1];
458 		while (pa < last_pa) {
459 			if (list != NULL &&
460 			    vm_page_blacklist_lookup(list, pa))
461 				printf("Skipping page with pa 0x%jx\n",
462 				    (uintmax_t)pa);
463 			else
464 				vm_phys_add_page(pa);
465 			pa += PAGE_SIZE;
466 		}
467 	}
468 	freeenv(list);
469 #if VM_NRESERVLEVEL > 0
470 	/*
471 	 * Initialize the reservation management system.
472 	 */
473 	vm_reserv_init();
474 #endif
475 	return (vaddr);
476 }
477 
478 void
479 vm_page_reference(vm_page_t m)
480 {
481 
482 	vm_page_aflag_set(m, PGA_REFERENCED);
483 }
484 
485 /*
486  *	vm_page_busy_downgrade:
487  *
488  *	Downgrade an exclusive busy page into a single shared busy page.
489  */
490 void
491 vm_page_busy_downgrade(vm_page_t m)
492 {
493 	u_int x;
494 
495 	vm_page_assert_xbusied(m);
496 
497 	for (;;) {
498 		x = m->busy_lock;
499 		x &= VPB_BIT_WAITERS;
500 		if (atomic_cmpset_rel_int(&m->busy_lock,
501 		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1) | x))
502 			break;
503 	}
504 }
505 
506 /*
507  *	vm_page_sbusied:
508  *
509  *	Return a positive value if the page is shared busied, 0 otherwise.
510  */
511 int
512 vm_page_sbusied(vm_page_t m)
513 {
514 	u_int x;
515 
516 	x = m->busy_lock;
517 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
518 }
519 
520 /*
521  *	vm_page_sunbusy:
522  *
523  *	Shared unbusy a page.
524  */
525 void
526 vm_page_sunbusy(vm_page_t m)
527 {
528 	u_int x;
529 
530 	vm_page_assert_sbusied(m);
531 
532 	for (;;) {
533 		x = m->busy_lock;
534 		if (VPB_SHARERS(x) > 1) {
535 			if (atomic_cmpset_int(&m->busy_lock, x,
536 			    x - VPB_ONE_SHARER))
537 				break;
538 			continue;
539 		}
540 		if ((x & VPB_BIT_WAITERS) == 0) {
541 			KASSERT(x == VPB_SHARERS_WORD(1),
542 			    ("vm_page_sunbusy: invalid lock state"));
543 			if (atomic_cmpset_int(&m->busy_lock,
544 			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
545 				break;
546 			continue;
547 		}
548 		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
549 		    ("vm_page_sunbusy: invalid lock state for waiters"));
550 
551 		vm_page_lock(m);
552 		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
553 			vm_page_unlock(m);
554 			continue;
555 		}
556 		wakeup(m);
557 		vm_page_unlock(m);
558 		break;
559 	}
560 }
561 
562 /*
563  *	vm_page_busy_sleep:
564  *
565  *	Sleep and release the page lock, using the page pointer as wchan.
566  *	This is used to implement the hard-path of busying mechanism.
567  *
568  *	The given page must be locked.
569  */
570 void
571 vm_page_busy_sleep(vm_page_t m, const char *wmesg)
572 {
573 	u_int x;
574 
575 	vm_page_lock_assert(m, MA_OWNED);
576 
577 	x = m->busy_lock;
578 	if (x == VPB_UNBUSIED) {
579 		vm_page_unlock(m);
580 		return;
581 	}
582 	if ((x & VPB_BIT_WAITERS) == 0 &&
583 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS)) {
584 		vm_page_unlock(m);
585 		return;
586 	}
587 	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
588 }
589 
590 /*
591  *	vm_page_trysbusy:
592  *
593  *	Try to shared busy a page.
594  *	If the operation succeeds 1 is returned otherwise 0.
595  *	The operation never sleeps.
596  */
597 int
598 vm_page_trysbusy(vm_page_t m)
599 {
600 	u_int x;
601 
602 	for (;;) {
603 		x = m->busy_lock;
604 		if ((x & VPB_BIT_SHARED) == 0)
605 			return (0);
606 		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
607 			return (1);
608 	}
609 }
610 
611 /*
612  *	vm_page_xunbusy_hard:
613  *
614  *	Called after the first try the exclusive unbusy of a page failed.
615  *	It is assumed that the waiters bit is on.
616  */
617 void
618 vm_page_xunbusy_hard(vm_page_t m)
619 {
620 
621 	vm_page_assert_xbusied(m);
622 
623 	vm_page_lock(m);
624 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
625 	wakeup(m);
626 	vm_page_unlock(m);
627 }
628 
629 /*
630  *	vm_page_flash:
631  *
632  *	Wakeup anyone waiting for the page.
633  *	The ownership bits do not change.
634  *
635  *	The given page must be locked.
636  */
637 void
638 vm_page_flash(vm_page_t m)
639 {
640 	u_int x;
641 
642 	vm_page_lock_assert(m, MA_OWNED);
643 
644 	for (;;) {
645 		x = m->busy_lock;
646 		if ((x & VPB_BIT_WAITERS) == 0)
647 			return;
648 		if (atomic_cmpset_int(&m->busy_lock, x,
649 		    x & (~VPB_BIT_WAITERS)))
650 			break;
651 	}
652 	wakeup(m);
653 }
654 
655 /*
656  * Keep page from being freed by the page daemon
657  * much of the same effect as wiring, except much lower
658  * overhead and should be used only for *very* temporary
659  * holding ("wiring").
660  */
661 void
662 vm_page_hold(vm_page_t mem)
663 {
664 
665 	vm_page_lock_assert(mem, MA_OWNED);
666         mem->hold_count++;
667 }
668 
669 void
670 vm_page_unhold(vm_page_t mem)
671 {
672 
673 	vm_page_lock_assert(mem, MA_OWNED);
674 	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
675 	--mem->hold_count;
676 	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
677 		vm_page_free_toq(mem);
678 }
679 
680 /*
681  *	vm_page_unhold_pages:
682  *
683  *	Unhold each of the pages that is referenced by the given array.
684  */
685 void
686 vm_page_unhold_pages(vm_page_t *ma, int count)
687 {
688 	struct mtx *mtx, *new_mtx;
689 
690 	mtx = NULL;
691 	for (; count != 0; count--) {
692 		/*
693 		 * Avoid releasing and reacquiring the same page lock.
694 		 */
695 		new_mtx = vm_page_lockptr(*ma);
696 		if (mtx != new_mtx) {
697 			if (mtx != NULL)
698 				mtx_unlock(mtx);
699 			mtx = new_mtx;
700 			mtx_lock(mtx);
701 		}
702 		vm_page_unhold(*ma);
703 		ma++;
704 	}
705 	if (mtx != NULL)
706 		mtx_unlock(mtx);
707 }
708 
709 vm_page_t
710 PHYS_TO_VM_PAGE(vm_paddr_t pa)
711 {
712 	vm_page_t m;
713 
714 #ifdef VM_PHYSSEG_SPARSE
715 	m = vm_phys_paddr_to_vm_page(pa);
716 	if (m == NULL)
717 		m = vm_phys_fictitious_to_vm_page(pa);
718 	return (m);
719 #elif defined(VM_PHYSSEG_DENSE)
720 	long pi;
721 
722 	pi = atop(pa);
723 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
724 		m = &vm_page_array[pi - first_page];
725 		return (m);
726 	}
727 	return (vm_phys_fictitious_to_vm_page(pa));
728 #else
729 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
730 #endif
731 }
732 
733 /*
734  *	vm_page_getfake:
735  *
736  *	Create a fictitious page with the specified physical address and
737  *	memory attribute.  The memory attribute is the only the machine-
738  *	dependent aspect of a fictitious page that must be initialized.
739  */
740 vm_page_t
741 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
742 {
743 	vm_page_t m;
744 
745 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
746 	vm_page_initfake(m, paddr, memattr);
747 	return (m);
748 }
749 
750 void
751 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
752 {
753 
754 	if ((m->flags & PG_FICTITIOUS) != 0) {
755 		/*
756 		 * The page's memattr might have changed since the
757 		 * previous initialization.  Update the pmap to the
758 		 * new memattr.
759 		 */
760 		goto memattr;
761 	}
762 	m->phys_addr = paddr;
763 	m->queue = PQ_NONE;
764 	/* Fictitious pages don't use "segind". */
765 	m->flags = PG_FICTITIOUS;
766 	/* Fictitious pages don't use "order" or "pool". */
767 	m->oflags = VPO_UNMANAGED;
768 	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
769 	m->wire_count = 1;
770 	pmap_page_init(m);
771 memattr:
772 	pmap_page_set_memattr(m, memattr);
773 }
774 
775 /*
776  *	vm_page_putfake:
777  *
778  *	Release a fictitious page.
779  */
780 void
781 vm_page_putfake(vm_page_t m)
782 {
783 
784 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
785 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
786 	    ("vm_page_putfake: bad page %p", m));
787 	uma_zfree(fakepg_zone, m);
788 }
789 
790 /*
791  *	vm_page_updatefake:
792  *
793  *	Update the given fictitious page to the specified physical address and
794  *	memory attribute.
795  */
796 void
797 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
798 {
799 
800 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
801 	    ("vm_page_updatefake: bad page %p", m));
802 	m->phys_addr = paddr;
803 	pmap_page_set_memattr(m, memattr);
804 }
805 
806 /*
807  *	vm_page_free:
808  *
809  *	Free a page.
810  */
811 void
812 vm_page_free(vm_page_t m)
813 {
814 
815 	m->flags &= ~PG_ZERO;
816 	vm_page_free_toq(m);
817 }
818 
819 /*
820  *	vm_page_free_zero:
821  *
822  *	Free a page to the zerod-pages queue
823  */
824 void
825 vm_page_free_zero(vm_page_t m)
826 {
827 
828 	m->flags |= PG_ZERO;
829 	vm_page_free_toq(m);
830 }
831 
832 /*
833  * Unbusy and handle the page queueing for a page from the VOP_GETPAGES()
834  * array which is not the request page.
835  */
836 void
837 vm_page_readahead_finish(vm_page_t m)
838 {
839 
840 	if (m->valid != 0) {
841 		/*
842 		 * Since the page is not the requested page, whether
843 		 * it should be activated or deactivated is not
844 		 * obvious.  Empirical results have shown that
845 		 * deactivating the page is usually the best choice,
846 		 * unless the page is wanted by another thread.
847 		 */
848 		vm_page_lock(m);
849 		if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
850 			vm_page_activate(m);
851 		else
852 			vm_page_deactivate(m);
853 		vm_page_unlock(m);
854 		vm_page_xunbusy(m);
855 	} else {
856 		/*
857 		 * Free the completely invalid page.  Such page state
858 		 * occurs due to the short read operation which did
859 		 * not covered our page at all, or in case when a read
860 		 * error happens.
861 		 */
862 		vm_page_lock(m);
863 		vm_page_free(m);
864 		vm_page_unlock(m);
865 	}
866 }
867 
868 /*
869  *	vm_page_sleep_if_busy:
870  *
871  *	Sleep and release the page queues lock if the page is busied.
872  *	Returns TRUE if the thread slept.
873  *
874  *	The given page must be unlocked and object containing it must
875  *	be locked.
876  */
877 int
878 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
879 {
880 	vm_object_t obj;
881 
882 	vm_page_lock_assert(m, MA_NOTOWNED);
883 	VM_OBJECT_ASSERT_WLOCKED(m->object);
884 
885 	if (vm_page_busied(m)) {
886 		/*
887 		 * The page-specific object must be cached because page
888 		 * identity can change during the sleep, causing the
889 		 * re-lock of a different object.
890 		 * It is assumed that a reference to the object is already
891 		 * held by the callers.
892 		 */
893 		obj = m->object;
894 		vm_page_lock(m);
895 		VM_OBJECT_WUNLOCK(obj);
896 		vm_page_busy_sleep(m, msg);
897 		VM_OBJECT_WLOCK(obj);
898 		return (TRUE);
899 	}
900 	return (FALSE);
901 }
902 
903 /*
904  *	vm_page_dirty_KBI:		[ internal use only ]
905  *
906  *	Set all bits in the page's dirty field.
907  *
908  *	The object containing the specified page must be locked if the
909  *	call is made from the machine-independent layer.
910  *
911  *	See vm_page_clear_dirty_mask().
912  *
913  *	This function should only be called by vm_page_dirty().
914  */
915 void
916 vm_page_dirty_KBI(vm_page_t m)
917 {
918 
919 	/* These assertions refer to this operation by its public name. */
920 	KASSERT((m->flags & PG_CACHED) == 0,
921 	    ("vm_page_dirty: page in cache!"));
922 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
923 	    ("vm_page_dirty: page is invalid!"));
924 	m->dirty = VM_PAGE_BITS_ALL;
925 }
926 
927 /*
928  *	vm_page_insert:		[ internal use only ]
929  *
930  *	Inserts the given mem entry into the object and object list.
931  *
932  *	The object must be locked.
933  */
934 int
935 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
936 {
937 	vm_page_t mpred;
938 
939 	VM_OBJECT_ASSERT_WLOCKED(object);
940 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
941 	return (vm_page_insert_after(m, object, pindex, mpred));
942 }
943 
944 /*
945  *	vm_page_insert_after:
946  *
947  *	Inserts the page "m" into the specified object at offset "pindex".
948  *
949  *	The page "mpred" must immediately precede the offset "pindex" within
950  *	the specified object.
951  *
952  *	The object must be locked.
953  */
954 static int
955 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
956     vm_page_t mpred)
957 {
958 	vm_pindex_t sidx;
959 	vm_object_t sobj;
960 	vm_page_t msucc;
961 
962 	VM_OBJECT_ASSERT_WLOCKED(object);
963 	KASSERT(m->object == NULL,
964 	    ("vm_page_insert_after: page already inserted"));
965 	if (mpred != NULL) {
966 		KASSERT(mpred->object == object,
967 		    ("vm_page_insert_after: object doesn't contain mpred"));
968 		KASSERT(mpred->pindex < pindex,
969 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
970 		msucc = TAILQ_NEXT(mpred, listq);
971 	} else
972 		msucc = TAILQ_FIRST(&object->memq);
973 	if (msucc != NULL)
974 		KASSERT(msucc->pindex > pindex,
975 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
976 
977 	/*
978 	 * Record the object/offset pair in this page
979 	 */
980 	sobj = m->object;
981 	sidx = m->pindex;
982 	m->object = object;
983 	m->pindex = pindex;
984 
985 	/*
986 	 * Now link into the object's ordered list of backed pages.
987 	 */
988 	if (vm_radix_insert(&object->rtree, m)) {
989 		m->object = sobj;
990 		m->pindex = sidx;
991 		return (1);
992 	}
993 	vm_page_insert_radixdone(m, object, mpred);
994 	return (0);
995 }
996 
997 /*
998  *	vm_page_insert_radixdone:
999  *
1000  *	Complete page "m" insertion into the specified object after the
1001  *	radix trie hooking.
1002  *
1003  *	The page "mpred" must precede the offset "m->pindex" within the
1004  *	specified object.
1005  *
1006  *	The object must be locked.
1007  */
1008 static void
1009 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1010 {
1011 
1012 	VM_OBJECT_ASSERT_WLOCKED(object);
1013 	KASSERT(object != NULL && m->object == object,
1014 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1015 	if (mpred != NULL) {
1016 		KASSERT(mpred->object == object,
1017 		    ("vm_page_insert_after: object doesn't contain mpred"));
1018 		KASSERT(mpred->pindex < m->pindex,
1019 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1020 	}
1021 
1022 	if (mpred != NULL)
1023 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1024 	else
1025 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1026 
1027 	/*
1028 	 * Show that the object has one more resident page.
1029 	 */
1030 	object->resident_page_count++;
1031 
1032 	/*
1033 	 * Hold the vnode until the last page is released.
1034 	 */
1035 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1036 		vhold(object->handle);
1037 
1038 	/*
1039 	 * Since we are inserting a new and possibly dirty page,
1040 	 * update the object's OBJ_MIGHTBEDIRTY flag.
1041 	 */
1042 	if (pmap_page_is_write_mapped(m))
1043 		vm_object_set_writeable_dirty(object);
1044 }
1045 
1046 /*
1047  *	vm_page_remove:
1048  *
1049  *	Removes the given mem entry from the object/offset-page
1050  *	table and the object page list, but do not invalidate/terminate
1051  *	the backing store.
1052  *
1053  *	The object must be locked.  The page must be locked if it is managed.
1054  */
1055 void
1056 vm_page_remove(vm_page_t m)
1057 {
1058 	vm_object_t object;
1059 	boolean_t lockacq;
1060 
1061 	if ((m->oflags & VPO_UNMANAGED) == 0)
1062 		vm_page_lock_assert(m, MA_OWNED);
1063 	if ((object = m->object) == NULL)
1064 		return;
1065 	VM_OBJECT_ASSERT_WLOCKED(object);
1066 	if (vm_page_xbusied(m)) {
1067 		lockacq = FALSE;
1068 		if ((m->oflags & VPO_UNMANAGED) != 0 &&
1069 		    !mtx_owned(vm_page_lockptr(m))) {
1070 			lockacq = TRUE;
1071 			vm_page_lock(m);
1072 		}
1073 		vm_page_flash(m);
1074 		atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1075 		if (lockacq)
1076 			vm_page_unlock(m);
1077 	}
1078 
1079 	/*
1080 	 * Now remove from the object's list of backed pages.
1081 	 */
1082 	vm_radix_remove(&object->rtree, m->pindex);
1083 	TAILQ_REMOVE(&object->memq, m, listq);
1084 
1085 	/*
1086 	 * And show that the object has one fewer resident page.
1087 	 */
1088 	object->resident_page_count--;
1089 
1090 	/*
1091 	 * The vnode may now be recycled.
1092 	 */
1093 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1094 		vdrop(object->handle);
1095 
1096 	m->object = NULL;
1097 }
1098 
1099 /*
1100  *	vm_page_lookup:
1101  *
1102  *	Returns the page associated with the object/offset
1103  *	pair specified; if none is found, NULL is returned.
1104  *
1105  *	The object must be locked.
1106  */
1107 vm_page_t
1108 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1109 {
1110 
1111 	VM_OBJECT_ASSERT_LOCKED(object);
1112 	return (vm_radix_lookup(&object->rtree, pindex));
1113 }
1114 
1115 /*
1116  *	vm_page_find_least:
1117  *
1118  *	Returns the page associated with the object with least pindex
1119  *	greater than or equal to the parameter pindex, or NULL.
1120  *
1121  *	The object must be locked.
1122  */
1123 vm_page_t
1124 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1125 {
1126 	vm_page_t m;
1127 
1128 	VM_OBJECT_ASSERT_LOCKED(object);
1129 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1130 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1131 	return (m);
1132 }
1133 
1134 /*
1135  * Returns the given page's successor (by pindex) within the object if it is
1136  * resident; if none is found, NULL is returned.
1137  *
1138  * The object must be locked.
1139  */
1140 vm_page_t
1141 vm_page_next(vm_page_t m)
1142 {
1143 	vm_page_t next;
1144 
1145 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1146 	if ((next = TAILQ_NEXT(m, listq)) != NULL &&
1147 	    next->pindex != m->pindex + 1)
1148 		next = NULL;
1149 	return (next);
1150 }
1151 
1152 /*
1153  * Returns the given page's predecessor (by pindex) within the object if it is
1154  * resident; if none is found, NULL is returned.
1155  *
1156  * The object must be locked.
1157  */
1158 vm_page_t
1159 vm_page_prev(vm_page_t m)
1160 {
1161 	vm_page_t prev;
1162 
1163 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1164 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL &&
1165 	    prev->pindex != m->pindex - 1)
1166 		prev = NULL;
1167 	return (prev);
1168 }
1169 
1170 /*
1171  * Uses the page mnew as a replacement for an existing page at index
1172  * pindex which must be already present in the object.
1173  *
1174  * The existing page must not be on a paging queue.
1175  */
1176 vm_page_t
1177 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1178 {
1179 	vm_page_t mold, mpred;
1180 
1181 	VM_OBJECT_ASSERT_WLOCKED(object);
1182 
1183 	/*
1184 	 * This function mostly follows vm_page_insert() and
1185 	 * vm_page_remove() without the radix, object count and vnode
1186 	 * dance.  Double check such functions for more comments.
1187 	 */
1188 	mpred = vm_radix_lookup(&object->rtree, pindex);
1189 	KASSERT(mpred != NULL,
1190 	    ("vm_page_replace: replacing page not present with pindex"));
1191 	mpred = TAILQ_PREV(mpred, respgs, listq);
1192 	if (mpred != NULL)
1193 		KASSERT(mpred->pindex < pindex,
1194 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1195 
1196 	mnew->object = object;
1197 	mnew->pindex = pindex;
1198 	mold = vm_radix_replace(&object->rtree, mnew);
1199 	KASSERT(mold->queue == PQ_NONE,
1200 	    ("vm_page_replace: mold is on a paging queue"));
1201 
1202 	/* Detach the old page from the resident tailq. */
1203 	TAILQ_REMOVE(&object->memq, mold, listq);
1204 
1205 	mold->object = NULL;
1206 	vm_page_xunbusy(mold);
1207 
1208 	/* Insert the new page in the resident tailq. */
1209 	if (mpred != NULL)
1210 		TAILQ_INSERT_AFTER(&object->memq, mpred, mnew, listq);
1211 	else
1212 		TAILQ_INSERT_HEAD(&object->memq, mnew, listq);
1213 	if (pmap_page_is_write_mapped(mnew))
1214 		vm_object_set_writeable_dirty(object);
1215 	return (mold);
1216 }
1217 
1218 /*
1219  *	vm_page_rename:
1220  *
1221  *	Move the given memory entry from its
1222  *	current object to the specified target object/offset.
1223  *
1224  *	Note: swap associated with the page must be invalidated by the move.  We
1225  *	      have to do this for several reasons:  (1) we aren't freeing the
1226  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1227  *	      moving the page from object A to B, and will then later move
1228  *	      the backing store from A to B and we can't have a conflict.
1229  *
1230  *	Note: we *always* dirty the page.  It is necessary both for the
1231  *	      fact that we moved it, and because we may be invalidating
1232  *	      swap.  If the page is on the cache, we have to deactivate it
1233  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
1234  *	      on the cache.
1235  *
1236  *	The objects must be locked.
1237  */
1238 int
1239 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1240 {
1241 	vm_page_t mpred;
1242 	vm_pindex_t opidx;
1243 
1244 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1245 
1246 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1247 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1248 	    ("vm_page_rename: pindex already renamed"));
1249 
1250 	/*
1251 	 * Create a custom version of vm_page_insert() which does not depend
1252 	 * by m_prev and can cheat on the implementation aspects of the
1253 	 * function.
1254 	 */
1255 	opidx = m->pindex;
1256 	m->pindex = new_pindex;
1257 	if (vm_radix_insert(&new_object->rtree, m)) {
1258 		m->pindex = opidx;
1259 		return (1);
1260 	}
1261 
1262 	/*
1263 	 * The operation cannot fail anymore.  The removal must happen before
1264 	 * the listq iterator is tainted.
1265 	 */
1266 	m->pindex = opidx;
1267 	vm_page_lock(m);
1268 	vm_page_remove(m);
1269 
1270 	/* Return back to the new pindex to complete vm_page_insert(). */
1271 	m->pindex = new_pindex;
1272 	m->object = new_object;
1273 	vm_page_unlock(m);
1274 	vm_page_insert_radixdone(m, new_object, mpred);
1275 	vm_page_dirty(m);
1276 	return (0);
1277 }
1278 
1279 /*
1280  *	Convert all of the given object's cached pages that have a
1281  *	pindex within the given range into free pages.  If the value
1282  *	zero is given for "end", then the range's upper bound is
1283  *	infinity.  If the given object is backed by a vnode and it
1284  *	transitions from having one or more cached pages to none, the
1285  *	vnode's hold count is reduced.
1286  */
1287 void
1288 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1289 {
1290 	vm_page_t m;
1291 	boolean_t empty;
1292 
1293 	mtx_lock(&vm_page_queue_free_mtx);
1294 	if (__predict_false(vm_radix_is_empty(&object->cache))) {
1295 		mtx_unlock(&vm_page_queue_free_mtx);
1296 		return;
1297 	}
1298 	while ((m = vm_radix_lookup_ge(&object->cache, start)) != NULL) {
1299 		if (end != 0 && m->pindex >= end)
1300 			break;
1301 		vm_radix_remove(&object->cache, m->pindex);
1302 		vm_page_cache_turn_free(m);
1303 	}
1304 	empty = vm_radix_is_empty(&object->cache);
1305 	mtx_unlock(&vm_page_queue_free_mtx);
1306 	if (object->type == OBJT_VNODE && empty)
1307 		vdrop(object->handle);
1308 }
1309 
1310 /*
1311  *	Returns the cached page that is associated with the given
1312  *	object and offset.  If, however, none exists, returns NULL.
1313  *
1314  *	The free page queue must be locked.
1315  */
1316 static inline vm_page_t
1317 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
1318 {
1319 
1320 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1321 	return (vm_radix_lookup(&object->cache, pindex));
1322 }
1323 
1324 /*
1325  *	Remove the given cached page from its containing object's
1326  *	collection of cached pages.
1327  *
1328  *	The free page queue must be locked.
1329  */
1330 static void
1331 vm_page_cache_remove(vm_page_t m)
1332 {
1333 
1334 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1335 	KASSERT((m->flags & PG_CACHED) != 0,
1336 	    ("vm_page_cache_remove: page %p is not cached", m));
1337 	vm_radix_remove(&m->object->cache, m->pindex);
1338 	m->object = NULL;
1339 	vm_cnt.v_cache_count--;
1340 }
1341 
1342 /*
1343  *	Transfer all of the cached pages with offset greater than or
1344  *	equal to 'offidxstart' from the original object's cache to the
1345  *	new object's cache.  However, any cached pages with offset
1346  *	greater than or equal to the new object's size are kept in the
1347  *	original object.  Initially, the new object's cache must be
1348  *	empty.  Offset 'offidxstart' in the original object must
1349  *	correspond to offset zero in the new object.
1350  *
1351  *	The new object must be locked.
1352  */
1353 void
1354 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1355     vm_object_t new_object)
1356 {
1357 	vm_page_t m;
1358 
1359 	/*
1360 	 * Insertion into an object's collection of cached pages
1361 	 * requires the object to be locked.  In contrast, removal does
1362 	 * not.
1363 	 */
1364 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1365 	KASSERT(vm_radix_is_empty(&new_object->cache),
1366 	    ("vm_page_cache_transfer: object %p has cached pages",
1367 	    new_object));
1368 	mtx_lock(&vm_page_queue_free_mtx);
1369 	while ((m = vm_radix_lookup_ge(&orig_object->cache,
1370 	    offidxstart)) != NULL) {
1371 		/*
1372 		 * Transfer all of the pages with offset greater than or
1373 		 * equal to 'offidxstart' from the original object's
1374 		 * cache to the new object's cache.
1375 		 */
1376 		if ((m->pindex - offidxstart) >= new_object->size)
1377 			break;
1378 		vm_radix_remove(&orig_object->cache, m->pindex);
1379 		/* Update the page's object and offset. */
1380 		m->object = new_object;
1381 		m->pindex -= offidxstart;
1382 		if (vm_radix_insert(&new_object->cache, m))
1383 			vm_page_cache_turn_free(m);
1384 	}
1385 	mtx_unlock(&vm_page_queue_free_mtx);
1386 }
1387 
1388 /*
1389  *	Returns TRUE if a cached page is associated with the given object and
1390  *	offset, and FALSE otherwise.
1391  *
1392  *	The object must be locked.
1393  */
1394 boolean_t
1395 vm_page_is_cached(vm_object_t object, vm_pindex_t pindex)
1396 {
1397 	vm_page_t m;
1398 
1399 	/*
1400 	 * Insertion into an object's collection of cached pages requires the
1401 	 * object to be locked.  Therefore, if the object is locked and the
1402 	 * object's collection is empty, there is no need to acquire the free
1403 	 * page queues lock in order to prove that the specified page doesn't
1404 	 * exist.
1405 	 */
1406 	VM_OBJECT_ASSERT_WLOCKED(object);
1407 	if (__predict_true(vm_object_cache_is_empty(object)))
1408 		return (FALSE);
1409 	mtx_lock(&vm_page_queue_free_mtx);
1410 	m = vm_page_cache_lookup(object, pindex);
1411 	mtx_unlock(&vm_page_queue_free_mtx);
1412 	return (m != NULL);
1413 }
1414 
1415 /*
1416  *	vm_page_alloc:
1417  *
1418  *	Allocate and return a page that is associated with the specified
1419  *	object and offset pair.  By default, this page is exclusive busied.
1420  *
1421  *	The caller must always specify an allocation class.
1422  *
1423  *	allocation classes:
1424  *	VM_ALLOC_NORMAL		normal process request
1425  *	VM_ALLOC_SYSTEM		system *really* needs a page
1426  *	VM_ALLOC_INTERRUPT	interrupt time request
1427  *
1428  *	optional allocation flags:
1429  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1430  *				intends to allocate
1431  *	VM_ALLOC_IFCACHED	return page only if it is cached
1432  *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1433  *				is cached
1434  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1435  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1436  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1437  *				should not be exclusive busy
1438  *	VM_ALLOC_SBUSY		shared busy the allocated page
1439  *	VM_ALLOC_WIRED		wire the allocated page
1440  *	VM_ALLOC_ZERO		prefer a zeroed page
1441  *
1442  *	This routine may not sleep.
1443  */
1444 vm_page_t
1445 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1446 {
1447 	struct vnode *vp = NULL;
1448 	vm_object_t m_object;
1449 	vm_page_t m, mpred;
1450 	int flags, req_class;
1451 
1452 	mpred = 0;	/* XXX: pacify gcc */
1453 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1454 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1455 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1456 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1457 	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1458 	    req));
1459 	if (object != NULL)
1460 		VM_OBJECT_ASSERT_WLOCKED(object);
1461 
1462 	req_class = req & VM_ALLOC_CLASS_MASK;
1463 
1464 	/*
1465 	 * The page daemon is allowed to dig deeper into the free page list.
1466 	 */
1467 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1468 		req_class = VM_ALLOC_SYSTEM;
1469 
1470 	if (object != NULL) {
1471 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
1472 		KASSERT(mpred == NULL || mpred->pindex != pindex,
1473 		   ("vm_page_alloc: pindex already allocated"));
1474 	}
1475 
1476 	/*
1477 	 * The page allocation request can came from consumers which already
1478 	 * hold the free page queue mutex, like vm_page_insert() in
1479 	 * vm_page_cache().
1480 	 */
1481 	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1482 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1483 	    (req_class == VM_ALLOC_SYSTEM &&
1484 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1485 	    (req_class == VM_ALLOC_INTERRUPT &&
1486 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) {
1487 		/*
1488 		 * Allocate from the free queue if the number of free pages
1489 		 * exceeds the minimum for the request class.
1490 		 */
1491 		if (object != NULL &&
1492 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1493 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1494 				mtx_unlock(&vm_page_queue_free_mtx);
1495 				return (NULL);
1496 			}
1497 			if (vm_phys_unfree_page(m))
1498 				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1499 #if VM_NRESERVLEVEL > 0
1500 			else if (!vm_reserv_reactivate_page(m))
1501 #else
1502 			else
1503 #endif
1504 				panic("vm_page_alloc: cache page %p is missing"
1505 				    " from the free queue", m);
1506 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1507 			mtx_unlock(&vm_page_queue_free_mtx);
1508 			return (NULL);
1509 #if VM_NRESERVLEVEL > 0
1510 		} else if (object == NULL || (object->flags & (OBJ_COLORED |
1511 		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
1512 		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL) {
1513 #else
1514 		} else {
1515 #endif
1516 			m = vm_phys_alloc_pages(object != NULL ?
1517 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1518 #if VM_NRESERVLEVEL > 0
1519 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1520 				m = vm_phys_alloc_pages(object != NULL ?
1521 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1522 				    0);
1523 			}
1524 #endif
1525 		}
1526 	} else {
1527 		/*
1528 		 * Not allocatable, give up.
1529 		 */
1530 		mtx_unlock(&vm_page_queue_free_mtx);
1531 		atomic_add_int(&vm_pageout_deficit,
1532 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1533 		pagedaemon_wakeup();
1534 		return (NULL);
1535 	}
1536 
1537 	/*
1538 	 *  At this point we had better have found a good page.
1539 	 */
1540 	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1541 	KASSERT(m->queue == PQ_NONE,
1542 	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1543 	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1544 	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1545 	KASSERT(!vm_page_sbusied(m),
1546 	    ("vm_page_alloc: page %p is busy", m));
1547 	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1548 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1549 	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1550 	    pmap_page_get_memattr(m)));
1551 	if ((m->flags & PG_CACHED) != 0) {
1552 		KASSERT((m->flags & PG_ZERO) == 0,
1553 		    ("vm_page_alloc: cached page %p is PG_ZERO", m));
1554 		KASSERT(m->valid != 0,
1555 		    ("vm_page_alloc: cached page %p is invalid", m));
1556 		if (m->object == object && m->pindex == pindex)
1557 			vm_cnt.v_reactivated++;
1558 		else
1559 			m->valid = 0;
1560 		m_object = m->object;
1561 		vm_page_cache_remove(m);
1562 		if (m_object->type == OBJT_VNODE &&
1563 		    vm_object_cache_is_empty(m_object))
1564 			vp = m_object->handle;
1565 	} else {
1566 		KASSERT(m->valid == 0,
1567 		    ("vm_page_alloc: free page %p is valid", m));
1568 		vm_phys_freecnt_adj(m, -1);
1569 		if ((m->flags & PG_ZERO) != 0)
1570 			vm_page_zero_count--;
1571 	}
1572 	mtx_unlock(&vm_page_queue_free_mtx);
1573 
1574 	/*
1575 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1576 	 */
1577 	flags = 0;
1578 	if ((req & VM_ALLOC_ZERO) != 0)
1579 		flags = PG_ZERO;
1580 	flags &= m->flags;
1581 	if ((req & VM_ALLOC_NODUMP) != 0)
1582 		flags |= PG_NODUMP;
1583 	m->flags = flags;
1584 	m->aflags = 0;
1585 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1586 	    VPO_UNMANAGED : 0;
1587 	m->busy_lock = VPB_UNBUSIED;
1588 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1589 		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1590 	if ((req & VM_ALLOC_SBUSY) != 0)
1591 		m->busy_lock = VPB_SHARERS_WORD(1);
1592 	if (req & VM_ALLOC_WIRED) {
1593 		/*
1594 		 * The page lock is not required for wiring a page until that
1595 		 * page is inserted into the object.
1596 		 */
1597 		atomic_add_int(&vm_cnt.v_wire_count, 1);
1598 		m->wire_count = 1;
1599 	}
1600 	m->act_count = 0;
1601 
1602 	if (object != NULL) {
1603 		if (vm_page_insert_after(m, object, pindex, mpred)) {
1604 			/* See the comment below about hold count. */
1605 			if (vp != NULL)
1606 				vdrop(vp);
1607 			pagedaemon_wakeup();
1608 			if (req & VM_ALLOC_WIRED) {
1609 				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1610 				m->wire_count = 0;
1611 			}
1612 			m->object = NULL;
1613 			vm_page_free(m);
1614 			return (NULL);
1615 		}
1616 
1617 		/* Ignore device objects; the pager sets "memattr" for them. */
1618 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1619 		    (object->flags & OBJ_FICTITIOUS) == 0)
1620 			pmap_page_set_memattr(m, object->memattr);
1621 	} else
1622 		m->pindex = pindex;
1623 
1624 	/*
1625 	 * The following call to vdrop() must come after the above call
1626 	 * to vm_page_insert() in case both affect the same object and
1627 	 * vnode.  Otherwise, the affected vnode's hold count could
1628 	 * temporarily become zero.
1629 	 */
1630 	if (vp != NULL)
1631 		vdrop(vp);
1632 
1633 	/*
1634 	 * Don't wakeup too often - wakeup the pageout daemon when
1635 	 * we would be nearly out of memory.
1636 	 */
1637 	if (vm_paging_needed())
1638 		pagedaemon_wakeup();
1639 
1640 	return (m);
1641 }
1642 
1643 static void
1644 vm_page_alloc_contig_vdrop(struct spglist *lst)
1645 {
1646 
1647 	while (!SLIST_EMPTY(lst)) {
1648 		vdrop((struct vnode *)SLIST_FIRST(lst)-> plinks.s.pv);
1649 		SLIST_REMOVE_HEAD(lst, plinks.s.ss);
1650 	}
1651 }
1652 
1653 /*
1654  *	vm_page_alloc_contig:
1655  *
1656  *	Allocate a contiguous set of physical pages of the given size "npages"
1657  *	from the free lists.  All of the physical pages must be at or above
1658  *	the given physical address "low" and below the given physical address
1659  *	"high".  The given value "alignment" determines the alignment of the
1660  *	first physical page in the set.  If the given value "boundary" is
1661  *	non-zero, then the set of physical pages cannot cross any physical
1662  *	address boundary that is a multiple of that value.  Both "alignment"
1663  *	and "boundary" must be a power of two.
1664  *
1665  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1666  *	then the memory attribute setting for the physical pages is configured
1667  *	to the object's memory attribute setting.  Otherwise, the memory
1668  *	attribute setting for the physical pages is configured to "memattr",
1669  *	overriding the object's memory attribute setting.  However, if the
1670  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1671  *	memory attribute setting for the physical pages cannot be configured
1672  *	to VM_MEMATTR_DEFAULT.
1673  *
1674  *	The caller must always specify an allocation class.
1675  *
1676  *	allocation classes:
1677  *	VM_ALLOC_NORMAL		normal process request
1678  *	VM_ALLOC_SYSTEM		system *really* needs a page
1679  *	VM_ALLOC_INTERRUPT	interrupt time request
1680  *
1681  *	optional allocation flags:
1682  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1683  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1684  *				should not be exclusive busy
1685  *	VM_ALLOC_SBUSY		shared busy the allocated page
1686  *	VM_ALLOC_WIRED		wire the allocated page
1687  *	VM_ALLOC_ZERO		prefer a zeroed page
1688  *
1689  *	This routine may not sleep.
1690  */
1691 vm_page_t
1692 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1693     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1694     vm_paddr_t boundary, vm_memattr_t memattr)
1695 {
1696 	struct vnode *drop;
1697 	struct spglist deferred_vdrop_list;
1698 	vm_page_t m, m_tmp, m_ret;
1699 	u_int flags;
1700 	int req_class;
1701 
1702 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1703 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1704 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1705 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1706 	    ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object,
1707 	    req));
1708 	if (object != NULL) {
1709 		VM_OBJECT_ASSERT_WLOCKED(object);
1710 		KASSERT(object->type == OBJT_PHYS,
1711 		    ("vm_page_alloc_contig: object %p isn't OBJT_PHYS",
1712 		    object));
1713 	}
1714 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
1715 	req_class = req & VM_ALLOC_CLASS_MASK;
1716 
1717 	/*
1718 	 * The page daemon is allowed to dig deeper into the free page list.
1719 	 */
1720 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1721 		req_class = VM_ALLOC_SYSTEM;
1722 
1723 	SLIST_INIT(&deferred_vdrop_list);
1724 	mtx_lock(&vm_page_queue_free_mtx);
1725 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1726 	    vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM &&
1727 	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages +
1728 	    vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT &&
1729 	    vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) {
1730 #if VM_NRESERVLEVEL > 0
1731 retry:
1732 		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
1733 		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
1734 		    low, high, alignment, boundary)) == NULL)
1735 #endif
1736 			m_ret = vm_phys_alloc_contig(npages, low, high,
1737 			    alignment, boundary);
1738 	} else {
1739 		mtx_unlock(&vm_page_queue_free_mtx);
1740 		atomic_add_int(&vm_pageout_deficit, npages);
1741 		pagedaemon_wakeup();
1742 		return (NULL);
1743 	}
1744 	if (m_ret != NULL)
1745 		for (m = m_ret; m < &m_ret[npages]; m++) {
1746 			drop = vm_page_alloc_init(m);
1747 			if (drop != NULL) {
1748 				/*
1749 				 * Enqueue the vnode for deferred vdrop().
1750 				 */
1751 				m->plinks.s.pv = drop;
1752 				SLIST_INSERT_HEAD(&deferred_vdrop_list, m,
1753 				    plinks.s.ss);
1754 			}
1755 		}
1756 	else {
1757 #if VM_NRESERVLEVEL > 0
1758 		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
1759 		    boundary))
1760 			goto retry;
1761 #endif
1762 	}
1763 	mtx_unlock(&vm_page_queue_free_mtx);
1764 	if (m_ret == NULL)
1765 		return (NULL);
1766 
1767 	/*
1768 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
1769 	 */
1770 	flags = 0;
1771 	if ((req & VM_ALLOC_ZERO) != 0)
1772 		flags = PG_ZERO;
1773 	if ((req & VM_ALLOC_NODUMP) != 0)
1774 		flags |= PG_NODUMP;
1775 	if ((req & VM_ALLOC_WIRED) != 0)
1776 		atomic_add_int(&vm_cnt.v_wire_count, npages);
1777 	if (object != NULL) {
1778 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1779 		    memattr == VM_MEMATTR_DEFAULT)
1780 			memattr = object->memattr;
1781 	}
1782 	for (m = m_ret; m < &m_ret[npages]; m++) {
1783 		m->aflags = 0;
1784 		m->flags = (m->flags | PG_NODUMP) & flags;
1785 		m->busy_lock = VPB_UNBUSIED;
1786 		if (object != NULL) {
1787 			if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
1788 				m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1789 			if ((req & VM_ALLOC_SBUSY) != 0)
1790 				m->busy_lock = VPB_SHARERS_WORD(1);
1791 		}
1792 		if ((req & VM_ALLOC_WIRED) != 0)
1793 			m->wire_count = 1;
1794 		/* Unmanaged pages don't use "act_count". */
1795 		m->oflags = VPO_UNMANAGED;
1796 		if (object != NULL) {
1797 			if (vm_page_insert(m, object, pindex)) {
1798 				vm_page_alloc_contig_vdrop(
1799 				    &deferred_vdrop_list);
1800 				if (vm_paging_needed())
1801 					pagedaemon_wakeup();
1802 				if ((req & VM_ALLOC_WIRED) != 0)
1803 					atomic_subtract_int(&vm_cnt.v_wire_count,
1804 					    npages);
1805 				for (m_tmp = m, m = m_ret;
1806 				    m < &m_ret[npages]; m++) {
1807 					if ((req & VM_ALLOC_WIRED) != 0)
1808 						m->wire_count = 0;
1809 					if (m >= m_tmp)
1810 						m->object = NULL;
1811 					vm_page_free(m);
1812 				}
1813 				return (NULL);
1814 			}
1815 		} else
1816 			m->pindex = pindex;
1817 		if (memattr != VM_MEMATTR_DEFAULT)
1818 			pmap_page_set_memattr(m, memattr);
1819 		pindex++;
1820 	}
1821 	vm_page_alloc_contig_vdrop(&deferred_vdrop_list);
1822 	if (vm_paging_needed())
1823 		pagedaemon_wakeup();
1824 	return (m_ret);
1825 }
1826 
1827 /*
1828  * Initialize a page that has been freshly dequeued from a freelist.
1829  * The caller has to drop the vnode returned, if it is not NULL.
1830  *
1831  * This function may only be used to initialize unmanaged pages.
1832  *
1833  * To be called with vm_page_queue_free_mtx held.
1834  */
1835 static struct vnode *
1836 vm_page_alloc_init(vm_page_t m)
1837 {
1838 	struct vnode *drop;
1839 	vm_object_t m_object;
1840 
1841 	KASSERT(m->queue == PQ_NONE,
1842 	    ("vm_page_alloc_init: page %p has unexpected queue %d",
1843 	    m, m->queue));
1844 	KASSERT(m->wire_count == 0,
1845 	    ("vm_page_alloc_init: page %p is wired", m));
1846 	KASSERT(m->hold_count == 0,
1847 	    ("vm_page_alloc_init: page %p is held", m));
1848 	KASSERT(!vm_page_sbusied(m),
1849 	    ("vm_page_alloc_init: page %p is busy", m));
1850 	KASSERT(m->dirty == 0,
1851 	    ("vm_page_alloc_init: page %p is dirty", m));
1852 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1853 	    ("vm_page_alloc_init: page %p has unexpected memattr %d",
1854 	    m, pmap_page_get_memattr(m)));
1855 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1856 	drop = NULL;
1857 	if ((m->flags & PG_CACHED) != 0) {
1858 		KASSERT((m->flags & PG_ZERO) == 0,
1859 		    ("vm_page_alloc_init: cached page %p is PG_ZERO", m));
1860 		m->valid = 0;
1861 		m_object = m->object;
1862 		vm_page_cache_remove(m);
1863 		if (m_object->type == OBJT_VNODE &&
1864 		    vm_object_cache_is_empty(m_object))
1865 			drop = m_object->handle;
1866 	} else {
1867 		KASSERT(m->valid == 0,
1868 		    ("vm_page_alloc_init: free page %p is valid", m));
1869 		vm_phys_freecnt_adj(m, -1);
1870 		if ((m->flags & PG_ZERO) != 0)
1871 			vm_page_zero_count--;
1872 	}
1873 	return (drop);
1874 }
1875 
1876 /*
1877  * 	vm_page_alloc_freelist:
1878  *
1879  *	Allocate a physical page from the specified free page list.
1880  *
1881  *	The caller must always specify an allocation class.
1882  *
1883  *	allocation classes:
1884  *	VM_ALLOC_NORMAL		normal process request
1885  *	VM_ALLOC_SYSTEM		system *really* needs a page
1886  *	VM_ALLOC_INTERRUPT	interrupt time request
1887  *
1888  *	optional allocation flags:
1889  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1890  *				intends to allocate
1891  *	VM_ALLOC_WIRED		wire the allocated page
1892  *	VM_ALLOC_ZERO		prefer a zeroed page
1893  *
1894  *	This routine may not sleep.
1895  */
1896 vm_page_t
1897 vm_page_alloc_freelist(int flind, int req)
1898 {
1899 	struct vnode *drop;
1900 	vm_page_t m;
1901 	u_int flags;
1902 	int req_class;
1903 
1904 	req_class = req & VM_ALLOC_CLASS_MASK;
1905 
1906 	/*
1907 	 * The page daemon is allowed to dig deeper into the free page list.
1908 	 */
1909 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1910 		req_class = VM_ALLOC_SYSTEM;
1911 
1912 	/*
1913 	 * Do not allocate reserved pages unless the req has asked for it.
1914 	 */
1915 	mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE);
1916 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved ||
1917 	    (req_class == VM_ALLOC_SYSTEM &&
1918 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) ||
1919 	    (req_class == VM_ALLOC_INTERRUPT &&
1920 	    vm_cnt.v_free_count + vm_cnt.v_cache_count > 0))
1921 		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
1922 	else {
1923 		mtx_unlock(&vm_page_queue_free_mtx);
1924 		atomic_add_int(&vm_pageout_deficit,
1925 		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
1926 		pagedaemon_wakeup();
1927 		return (NULL);
1928 	}
1929 	if (m == NULL) {
1930 		mtx_unlock(&vm_page_queue_free_mtx);
1931 		return (NULL);
1932 	}
1933 	drop = vm_page_alloc_init(m);
1934 	mtx_unlock(&vm_page_queue_free_mtx);
1935 
1936 	/*
1937 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1938 	 */
1939 	m->aflags = 0;
1940 	flags = 0;
1941 	if ((req & VM_ALLOC_ZERO) != 0)
1942 		flags = PG_ZERO;
1943 	m->flags &= flags;
1944 	if ((req & VM_ALLOC_WIRED) != 0) {
1945 		/*
1946 		 * The page lock is not required for wiring a page that does
1947 		 * not belong to an object.
1948 		 */
1949 		atomic_add_int(&vm_cnt.v_wire_count, 1);
1950 		m->wire_count = 1;
1951 	}
1952 	/* Unmanaged pages don't use "act_count". */
1953 	m->oflags = VPO_UNMANAGED;
1954 	if (drop != NULL)
1955 		vdrop(drop);
1956 	if (vm_paging_needed())
1957 		pagedaemon_wakeup();
1958 	return (m);
1959 }
1960 
1961 /*
1962  *	vm_wait:	(also see VM_WAIT macro)
1963  *
1964  *	Sleep until free pages are available for allocation.
1965  *	- Called in various places before memory allocations.
1966  */
1967 void
1968 vm_wait(void)
1969 {
1970 
1971 	mtx_lock(&vm_page_queue_free_mtx);
1972 	if (curproc == pageproc) {
1973 		vm_pageout_pages_needed = 1;
1974 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1975 		    PDROP | PSWP, "VMWait", 0);
1976 	} else {
1977 		if (!vm_pages_needed) {
1978 			vm_pages_needed = 1;
1979 			wakeup(&vm_pages_needed);
1980 		}
1981 		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1982 		    "vmwait", 0);
1983 	}
1984 }
1985 
1986 /*
1987  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1988  *
1989  *	Sleep until free pages are available for allocation.
1990  *	- Called only in vm_fault so that processes page faulting
1991  *	  can be easily tracked.
1992  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1993  *	  processes will be able to grab memory first.  Do not change
1994  *	  this balance without careful testing first.
1995  */
1996 void
1997 vm_waitpfault(void)
1998 {
1999 
2000 	mtx_lock(&vm_page_queue_free_mtx);
2001 	if (!vm_pages_needed) {
2002 		vm_pages_needed = 1;
2003 		wakeup(&vm_pages_needed);
2004 	}
2005 	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
2006 	    "pfault", 0);
2007 }
2008 
2009 struct vm_pagequeue *
2010 vm_page_pagequeue(vm_page_t m)
2011 {
2012 
2013 	return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
2014 }
2015 
2016 /*
2017  *	vm_page_dequeue:
2018  *
2019  *	Remove the given page from its current page queue.
2020  *
2021  *	The page must be locked.
2022  */
2023 void
2024 vm_page_dequeue(vm_page_t m)
2025 {
2026 	struct vm_pagequeue *pq;
2027 
2028 	vm_page_assert_locked(m);
2029 	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
2030 	    m));
2031 	pq = vm_page_pagequeue(m);
2032 	vm_pagequeue_lock(pq);
2033 	m->queue = PQ_NONE;
2034 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2035 	vm_pagequeue_cnt_dec(pq);
2036 	vm_pagequeue_unlock(pq);
2037 }
2038 
2039 /*
2040  *	vm_page_dequeue_locked:
2041  *
2042  *	Remove the given page from its current page queue.
2043  *
2044  *	The page and page queue must be locked.
2045  */
2046 void
2047 vm_page_dequeue_locked(vm_page_t m)
2048 {
2049 	struct vm_pagequeue *pq;
2050 
2051 	vm_page_lock_assert(m, MA_OWNED);
2052 	pq = vm_page_pagequeue(m);
2053 	vm_pagequeue_assert_locked(pq);
2054 	m->queue = PQ_NONE;
2055 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2056 	vm_pagequeue_cnt_dec(pq);
2057 }
2058 
2059 /*
2060  *	vm_page_enqueue:
2061  *
2062  *	Add the given page to the specified page queue.
2063  *
2064  *	The page must be locked.
2065  */
2066 static void
2067 vm_page_enqueue(uint8_t queue, vm_page_t m)
2068 {
2069 	struct vm_pagequeue *pq;
2070 
2071 	vm_page_lock_assert(m, MA_OWNED);
2072 	KASSERT(queue < PQ_COUNT,
2073 	    ("vm_page_enqueue: invalid queue %u request for page %p",
2074 	    queue, m));
2075 	pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
2076 	vm_pagequeue_lock(pq);
2077 	m->queue = queue;
2078 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2079 	vm_pagequeue_cnt_inc(pq);
2080 	vm_pagequeue_unlock(pq);
2081 }
2082 
2083 /*
2084  *	vm_page_requeue:
2085  *
2086  *	Move the given page to the tail of its current page queue.
2087  *
2088  *	The page must be locked.
2089  */
2090 void
2091 vm_page_requeue(vm_page_t m)
2092 {
2093 	struct vm_pagequeue *pq;
2094 
2095 	vm_page_lock_assert(m, MA_OWNED);
2096 	KASSERT(m->queue != PQ_NONE,
2097 	    ("vm_page_requeue: page %p is not queued", m));
2098 	pq = vm_page_pagequeue(m);
2099 	vm_pagequeue_lock(pq);
2100 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2101 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2102 	vm_pagequeue_unlock(pq);
2103 }
2104 
2105 /*
2106  *	vm_page_requeue_locked:
2107  *
2108  *	Move the given page to the tail of its current page queue.
2109  *
2110  *	The page queue must be locked.
2111  */
2112 void
2113 vm_page_requeue_locked(vm_page_t m)
2114 {
2115 	struct vm_pagequeue *pq;
2116 
2117 	KASSERT(m->queue != PQ_NONE,
2118 	    ("vm_page_requeue_locked: page %p is not queued", m));
2119 	pq = vm_page_pagequeue(m);
2120 	vm_pagequeue_assert_locked(pq);
2121 	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
2122 	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2123 }
2124 
2125 /*
2126  *	vm_page_activate:
2127  *
2128  *	Put the specified page on the active list (if appropriate).
2129  *	Ensure that act_count is at least ACT_INIT but do not otherwise
2130  *	mess with it.
2131  *
2132  *	The page must be locked.
2133  */
2134 void
2135 vm_page_activate(vm_page_t m)
2136 {
2137 	int queue;
2138 
2139 	vm_page_lock_assert(m, MA_OWNED);
2140 	if ((queue = m->queue) != PQ_ACTIVE) {
2141 		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2142 			if (m->act_count < ACT_INIT)
2143 				m->act_count = ACT_INIT;
2144 			if (queue != PQ_NONE)
2145 				vm_page_dequeue(m);
2146 			vm_page_enqueue(PQ_ACTIVE, m);
2147 		} else
2148 			KASSERT(queue == PQ_NONE,
2149 			    ("vm_page_activate: wired page %p is queued", m));
2150 	} else {
2151 		if (m->act_count < ACT_INIT)
2152 			m->act_count = ACT_INIT;
2153 	}
2154 }
2155 
2156 /*
2157  *	vm_page_free_wakeup:
2158  *
2159  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
2160  *	routine is called when a page has been added to the cache or free
2161  *	queues.
2162  *
2163  *	The page queues must be locked.
2164  */
2165 static inline void
2166 vm_page_free_wakeup(void)
2167 {
2168 
2169 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2170 	/*
2171 	 * if pageout daemon needs pages, then tell it that there are
2172 	 * some free.
2173 	 */
2174 	if (vm_pageout_pages_needed &&
2175 	    vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
2176 		wakeup(&vm_pageout_pages_needed);
2177 		vm_pageout_pages_needed = 0;
2178 	}
2179 	/*
2180 	 * wakeup processes that are waiting on memory if we hit a
2181 	 * high water mark. And wakeup scheduler process if we have
2182 	 * lots of memory. this process will swapin processes.
2183 	 */
2184 	if (vm_pages_needed && !vm_page_count_min()) {
2185 		vm_pages_needed = 0;
2186 		wakeup(&vm_cnt.v_free_count);
2187 	}
2188 }
2189 
2190 /*
2191  *	Turn a cached page into a free page, by changing its attributes.
2192  *	Keep the statistics up-to-date.
2193  *
2194  *	The free page queue must be locked.
2195  */
2196 static void
2197 vm_page_cache_turn_free(vm_page_t m)
2198 {
2199 
2200 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
2201 
2202 	m->object = NULL;
2203 	m->valid = 0;
2204 	KASSERT((m->flags & PG_CACHED) != 0,
2205 	    ("vm_page_cache_turn_free: page %p is not cached", m));
2206 	m->flags &= ~PG_CACHED;
2207 	vm_cnt.v_cache_count--;
2208 	vm_phys_freecnt_adj(m, 1);
2209 }
2210 
2211 /*
2212  *	vm_page_free_toq:
2213  *
2214  *	Returns the given page to the free list,
2215  *	disassociating it with any VM object.
2216  *
2217  *	The object must be locked.  The page must be locked if it is managed.
2218  */
2219 void
2220 vm_page_free_toq(vm_page_t m)
2221 {
2222 
2223 	if ((m->oflags & VPO_UNMANAGED) == 0) {
2224 		vm_page_lock_assert(m, MA_OWNED);
2225 		KASSERT(!pmap_page_is_mapped(m),
2226 		    ("vm_page_free_toq: freeing mapped page %p", m));
2227 	} else
2228 		KASSERT(m->queue == PQ_NONE,
2229 		    ("vm_page_free_toq: unmanaged page %p is queued", m));
2230 	PCPU_INC(cnt.v_tfree);
2231 
2232 	if (vm_page_sbusied(m))
2233 		panic("vm_page_free: freeing busy page %p", m);
2234 
2235 	/*
2236 	 * Unqueue, then remove page.  Note that we cannot destroy
2237 	 * the page here because we do not want to call the pager's
2238 	 * callback routine until after we've put the page on the
2239 	 * appropriate free queue.
2240 	 */
2241 	vm_page_remque(m);
2242 	vm_page_remove(m);
2243 
2244 	/*
2245 	 * If fictitious remove object association and
2246 	 * return, otherwise delay object association removal.
2247 	 */
2248 	if ((m->flags & PG_FICTITIOUS) != 0) {
2249 		return;
2250 	}
2251 
2252 	m->valid = 0;
2253 	vm_page_undirty(m);
2254 
2255 	if (m->wire_count != 0)
2256 		panic("vm_page_free: freeing wired page %p", m);
2257 	if (m->hold_count != 0) {
2258 		m->flags &= ~PG_ZERO;
2259 		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2260 		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
2261 		m->flags |= PG_UNHOLDFREE;
2262 	} else {
2263 		/*
2264 		 * Restore the default memory attribute to the page.
2265 		 */
2266 		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2267 			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2268 
2269 		/*
2270 		 * Insert the page into the physical memory allocator's
2271 		 * cache/free page queues.
2272 		 */
2273 		mtx_lock(&vm_page_queue_free_mtx);
2274 		vm_phys_freecnt_adj(m, 1);
2275 #if VM_NRESERVLEVEL > 0
2276 		if (!vm_reserv_free_page(m))
2277 #else
2278 		if (TRUE)
2279 #endif
2280 			vm_phys_free_pages(m, 0);
2281 		if ((m->flags & PG_ZERO) != 0)
2282 			++vm_page_zero_count;
2283 		else
2284 			vm_page_zero_idle_wakeup();
2285 		vm_page_free_wakeup();
2286 		mtx_unlock(&vm_page_queue_free_mtx);
2287 	}
2288 }
2289 
2290 /*
2291  *	vm_page_wire:
2292  *
2293  *	Mark this page as wired down by yet
2294  *	another map, removing it from paging queues
2295  *	as necessary.
2296  *
2297  *	If the page is fictitious, then its wire count must remain one.
2298  *
2299  *	The page must be locked.
2300  */
2301 void
2302 vm_page_wire(vm_page_t m)
2303 {
2304 
2305 	/*
2306 	 * Only bump the wire statistics if the page is not already wired,
2307 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2308 	 * it is already off the queues).
2309 	 */
2310 	vm_page_lock_assert(m, MA_OWNED);
2311 	if ((m->flags & PG_FICTITIOUS) != 0) {
2312 		KASSERT(m->wire_count == 1,
2313 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
2314 		    m));
2315 		return;
2316 	}
2317 	if (m->wire_count == 0) {
2318 		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
2319 		    m->queue == PQ_NONE,
2320 		    ("vm_page_wire: unmanaged page %p is queued", m));
2321 		vm_page_remque(m);
2322 		atomic_add_int(&vm_cnt.v_wire_count, 1);
2323 	}
2324 	m->wire_count++;
2325 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
2326 }
2327 
2328 /*
2329  * vm_page_unwire:
2330  *
2331  * Release one wiring of the specified page, potentially enabling it to be
2332  * paged again.  If paging is enabled, then the value of the parameter
2333  * "queue" determines the queue to which the page is added.
2334  *
2335  * However, unless the page belongs to an object, it is not enqueued because
2336  * it cannot be paged out.
2337  *
2338  * If a page is fictitious, then its wire count must always be one.
2339  *
2340  * A managed page must be locked.
2341  */
2342 void
2343 vm_page_unwire(vm_page_t m, uint8_t queue)
2344 {
2345 
2346 	KASSERT(queue < PQ_COUNT,
2347 	    ("vm_page_unwire: invalid queue %u request for page %p",
2348 	    queue, m));
2349 	if ((m->oflags & VPO_UNMANAGED) == 0)
2350 		vm_page_lock_assert(m, MA_OWNED);
2351 	if ((m->flags & PG_FICTITIOUS) != 0) {
2352 		KASSERT(m->wire_count == 1,
2353 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
2354 		return;
2355 	}
2356 	if (m->wire_count > 0) {
2357 		m->wire_count--;
2358 		if (m->wire_count == 0) {
2359 			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
2360 			if ((m->oflags & VPO_UNMANAGED) != 0 ||
2361 			    m->object == NULL)
2362 				return;
2363 			if (queue == PQ_INACTIVE)
2364 				m->flags &= ~PG_WINATCFLS;
2365 			vm_page_enqueue(queue, m);
2366 		}
2367 	} else
2368 		panic("vm_page_unwire: page %p's wire count is zero", m);
2369 }
2370 
2371 /*
2372  * Move the specified page to the inactive queue.
2373  *
2374  * Many pages placed on the inactive queue should actually go
2375  * into the cache, but it is difficult to figure out which.  What
2376  * we do instead, if the inactive target is well met, is to put
2377  * clean pages at the head of the inactive queue instead of the tail.
2378  * This will cause them to be moved to the cache more quickly and
2379  * if not actively re-referenced, reclaimed more quickly.  If we just
2380  * stick these pages at the end of the inactive queue, heavy filesystem
2381  * meta-data accesses can cause an unnecessary paging load on memory bound
2382  * processes.  This optimization causes one-time-use metadata to be
2383  * reused more quickly.
2384  *
2385  * Normally athead is 0 resulting in LRU operation.  athead is set
2386  * to 1 if we want this page to be 'as if it were placed in the cache',
2387  * except without unmapping it from the process address space.
2388  *
2389  * The page must be locked.
2390  */
2391 static inline void
2392 _vm_page_deactivate(vm_page_t m, int athead)
2393 {
2394 	struct vm_pagequeue *pq;
2395 	int queue;
2396 
2397 	vm_page_lock_assert(m, MA_OWNED);
2398 
2399 	/*
2400 	 * Ignore if already inactive.
2401 	 */
2402 	if ((queue = m->queue) == PQ_INACTIVE)
2403 		return;
2404 	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
2405 		if (queue != PQ_NONE)
2406 			vm_page_dequeue(m);
2407 		m->flags &= ~PG_WINATCFLS;
2408 		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
2409 		vm_pagequeue_lock(pq);
2410 		m->queue = PQ_INACTIVE;
2411 		if (athead)
2412 			TAILQ_INSERT_HEAD(&pq->pq_pl, m, plinks.q);
2413 		else
2414 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
2415 		vm_pagequeue_cnt_inc(pq);
2416 		vm_pagequeue_unlock(pq);
2417 	}
2418 }
2419 
2420 /*
2421  * Move the specified page to the inactive queue.
2422  *
2423  * The page must be locked.
2424  */
2425 void
2426 vm_page_deactivate(vm_page_t m)
2427 {
2428 
2429 	_vm_page_deactivate(m, 0);
2430 }
2431 
2432 /*
2433  * vm_page_try_to_cache:
2434  *
2435  * Returns 0 on failure, 1 on success
2436  */
2437 int
2438 vm_page_try_to_cache(vm_page_t m)
2439 {
2440 
2441 	vm_page_lock_assert(m, MA_OWNED);
2442 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2443 	if (m->dirty || m->hold_count || m->wire_count ||
2444 	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2445 		return (0);
2446 	pmap_remove_all(m);
2447 	if (m->dirty)
2448 		return (0);
2449 	vm_page_cache(m);
2450 	return (1);
2451 }
2452 
2453 /*
2454  * vm_page_try_to_free()
2455  *
2456  *	Attempt to free the page.  If we cannot free it, we do nothing.
2457  *	1 is returned on success, 0 on failure.
2458  */
2459 int
2460 vm_page_try_to_free(vm_page_t m)
2461 {
2462 
2463 	vm_page_lock_assert(m, MA_OWNED);
2464 	if (m->object != NULL)
2465 		VM_OBJECT_ASSERT_WLOCKED(m->object);
2466 	if (m->dirty || m->hold_count || m->wire_count ||
2467 	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
2468 		return (0);
2469 	pmap_remove_all(m);
2470 	if (m->dirty)
2471 		return (0);
2472 	vm_page_free(m);
2473 	return (1);
2474 }
2475 
2476 /*
2477  * vm_page_cache
2478  *
2479  * Put the specified page onto the page cache queue (if appropriate).
2480  *
2481  * The object and page must be locked.
2482  */
2483 void
2484 vm_page_cache(vm_page_t m)
2485 {
2486 	vm_object_t object;
2487 	boolean_t cache_was_empty;
2488 
2489 	vm_page_lock_assert(m, MA_OWNED);
2490 	object = m->object;
2491 	VM_OBJECT_ASSERT_WLOCKED(object);
2492 	if (vm_page_busied(m) || (m->oflags & VPO_UNMANAGED) ||
2493 	    m->hold_count || m->wire_count)
2494 		panic("vm_page_cache: attempting to cache busy page");
2495 	KASSERT(!pmap_page_is_mapped(m),
2496 	    ("vm_page_cache: page %p is mapped", m));
2497 	KASSERT(m->dirty == 0, ("vm_page_cache: page %p is dirty", m));
2498 	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
2499 	    (object->type == OBJT_SWAP &&
2500 	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
2501 		/*
2502 		 * Hypothesis: A cache-eligible page belonging to a
2503 		 * default object or swap object but without a backing
2504 		 * store must be zero filled.
2505 		 */
2506 		vm_page_free(m);
2507 		return;
2508 	}
2509 	KASSERT((m->flags & PG_CACHED) == 0,
2510 	    ("vm_page_cache: page %p is already cached", m));
2511 
2512 	/*
2513 	 * Remove the page from the paging queues.
2514 	 */
2515 	vm_page_remque(m);
2516 
2517 	/*
2518 	 * Remove the page from the object's collection of resident
2519 	 * pages.
2520 	 */
2521 	vm_radix_remove(&object->rtree, m->pindex);
2522 	TAILQ_REMOVE(&object->memq, m, listq);
2523 	object->resident_page_count--;
2524 
2525 	/*
2526 	 * Restore the default memory attribute to the page.
2527 	 */
2528 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
2529 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
2530 
2531 	/*
2532 	 * Insert the page into the object's collection of cached pages
2533 	 * and the physical memory allocator's cache/free page queues.
2534 	 */
2535 	m->flags &= ~PG_ZERO;
2536 	mtx_lock(&vm_page_queue_free_mtx);
2537 	cache_was_empty = vm_radix_is_empty(&object->cache);
2538 	if (vm_radix_insert(&object->cache, m)) {
2539 		mtx_unlock(&vm_page_queue_free_mtx);
2540 		if (object->resident_page_count == 0)
2541 			vdrop(object->handle);
2542 		m->object = NULL;
2543 		vm_page_free(m);
2544 		return;
2545 	}
2546 
2547 	/*
2548 	 * The above call to vm_radix_insert() could reclaim the one pre-
2549 	 * existing cached page from this object, resulting in a call to
2550 	 * vdrop().
2551 	 */
2552 	if (!cache_was_empty)
2553 		cache_was_empty = vm_radix_is_singleton(&object->cache);
2554 
2555 	m->flags |= PG_CACHED;
2556 	vm_cnt.v_cache_count++;
2557 	PCPU_INC(cnt.v_tcached);
2558 #if VM_NRESERVLEVEL > 0
2559 	if (!vm_reserv_free_page(m)) {
2560 #else
2561 	if (TRUE) {
2562 #endif
2563 		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
2564 		vm_phys_free_pages(m, 0);
2565 	}
2566 	vm_page_free_wakeup();
2567 	mtx_unlock(&vm_page_queue_free_mtx);
2568 
2569 	/*
2570 	 * Increment the vnode's hold count if this is the object's only
2571 	 * cached page.  Decrement the vnode's hold count if this was
2572 	 * the object's only resident page.
2573 	 */
2574 	if (object->type == OBJT_VNODE) {
2575 		if (cache_was_empty && object->resident_page_count != 0)
2576 			vhold(object->handle);
2577 		else if (!cache_was_empty && object->resident_page_count == 0)
2578 			vdrop(object->handle);
2579 	}
2580 }
2581 
2582 /*
2583  * vm_page_advise
2584  *
2585  *	Cache, deactivate, or do nothing as appropriate.  This routine
2586  *	is used by madvise().
2587  *
2588  *	Generally speaking we want to move the page into the cache so
2589  *	it gets reused quickly.  However, this can result in a silly syndrome
2590  *	due to the page recycling too quickly.  Small objects will not be
2591  *	fully cached.  On the other hand, if we move the page to the inactive
2592  *	queue we wind up with a problem whereby very large objects
2593  *	unnecessarily blow away our inactive and cache queues.
2594  *
2595  *	The solution is to move the pages based on a fixed weighting.  We
2596  *	either leave them alone, deactivate them, or move them to the cache,
2597  *	where moving them to the cache has the highest weighting.
2598  *	By forcing some pages into other queues we eventually force the
2599  *	system to balance the queues, potentially recovering other unrelated
2600  *	space from active.  The idea is to not force this to happen too
2601  *	often.
2602  *
2603  *	The object and page must be locked.
2604  */
2605 void
2606 vm_page_advise(vm_page_t m, int advice)
2607 {
2608 	int dnw, head;
2609 
2610 	vm_page_assert_locked(m);
2611 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2612 	if (advice == MADV_FREE) {
2613 		/*
2614 		 * Mark the page clean.  This will allow the page to be freed
2615 		 * up by the system.  However, such pages are often reused
2616 		 * quickly by malloc() so we do not do anything that would
2617 		 * cause a page fault if we can help it.
2618 		 *
2619 		 * Specifically, we do not try to actually free the page now
2620 		 * nor do we try to put it in the cache (which would cause a
2621 		 * page fault on reuse).
2622 		 *
2623 		 * But we do make the page is freeable as we can without
2624 		 * actually taking the step of unmapping it.
2625 		 */
2626 		m->dirty = 0;
2627 		m->act_count = 0;
2628 	} else if (advice != MADV_DONTNEED)
2629 		return;
2630 	dnw = PCPU_GET(dnweight);
2631 	PCPU_INC(dnweight);
2632 
2633 	/*
2634 	 * Occasionally leave the page alone.
2635 	 */
2636 	if ((dnw & 0x01F0) == 0 || m->queue == PQ_INACTIVE) {
2637 		if (m->act_count >= ACT_INIT)
2638 			--m->act_count;
2639 		return;
2640 	}
2641 
2642 	/*
2643 	 * Clear any references to the page.  Otherwise, the page daemon will
2644 	 * immediately reactivate the page.
2645 	 */
2646 	vm_page_aflag_clear(m, PGA_REFERENCED);
2647 
2648 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
2649 		vm_page_dirty(m);
2650 
2651 	if (m->dirty || (dnw & 0x0070) == 0) {
2652 		/*
2653 		 * Deactivate the page 3 times out of 32.
2654 		 */
2655 		head = 0;
2656 	} else {
2657 		/*
2658 		 * Cache the page 28 times out of every 32.  Note that
2659 		 * the page is deactivated instead of cached, but placed
2660 		 * at the head of the queue instead of the tail.
2661 		 */
2662 		head = 1;
2663 	}
2664 	_vm_page_deactivate(m, head);
2665 }
2666 
2667 /*
2668  * Grab a page, waiting until we are waken up due to the page
2669  * changing state.  We keep on waiting, if the page continues
2670  * to be in the object.  If the page doesn't exist, first allocate it
2671  * and then conditionally zero it.
2672  *
2673  * This routine may sleep.
2674  *
2675  * The object must be locked on entry.  The lock will, however, be released
2676  * and reacquired if the routine sleeps.
2677  */
2678 vm_page_t
2679 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2680 {
2681 	vm_page_t m;
2682 	int sleep;
2683 
2684 	VM_OBJECT_ASSERT_WLOCKED(object);
2685 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
2686 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
2687 	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
2688 retrylookup:
2689 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
2690 		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
2691 		    vm_page_xbusied(m) : vm_page_busied(m);
2692 		if (sleep) {
2693 			/*
2694 			 * Reference the page before unlocking and
2695 			 * sleeping so that the page daemon is less
2696 			 * likely to reclaim it.
2697 			 */
2698 			vm_page_aflag_set(m, PGA_REFERENCED);
2699 			vm_page_lock(m);
2700 			VM_OBJECT_WUNLOCK(object);
2701 			vm_page_busy_sleep(m, "pgrbwt");
2702 			VM_OBJECT_WLOCK(object);
2703 			goto retrylookup;
2704 		} else {
2705 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
2706 				vm_page_lock(m);
2707 				vm_page_wire(m);
2708 				vm_page_unlock(m);
2709 			}
2710 			if ((allocflags &
2711 			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2712 				vm_page_xbusy(m);
2713 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
2714 				vm_page_sbusy(m);
2715 			return (m);
2716 		}
2717 	}
2718 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_IGN_SBUSY);
2719 	if (m == NULL) {
2720 		VM_OBJECT_WUNLOCK(object);
2721 		VM_WAIT;
2722 		VM_OBJECT_WLOCK(object);
2723 		goto retrylookup;
2724 	} else if (m->valid != 0)
2725 		return (m);
2726 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2727 		pmap_zero_page(m);
2728 	return (m);
2729 }
2730 
2731 /*
2732  * Mapping function for valid or dirty bits in a page.
2733  *
2734  * Inputs are required to range within a page.
2735  */
2736 vm_page_bits_t
2737 vm_page_bits(int base, int size)
2738 {
2739 	int first_bit;
2740 	int last_bit;
2741 
2742 	KASSERT(
2743 	    base + size <= PAGE_SIZE,
2744 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2745 	);
2746 
2747 	if (size == 0)		/* handle degenerate case */
2748 		return (0);
2749 
2750 	first_bit = base >> DEV_BSHIFT;
2751 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2752 
2753 	return (((vm_page_bits_t)2 << last_bit) -
2754 	    ((vm_page_bits_t)1 << first_bit));
2755 }
2756 
2757 /*
2758  *	vm_page_set_valid_range:
2759  *
2760  *	Sets portions of a page valid.  The arguments are expected
2761  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2762  *	of any partial chunks touched by the range.  The invalid portion of
2763  *	such chunks will be zeroed.
2764  *
2765  *	(base + size) must be less then or equal to PAGE_SIZE.
2766  */
2767 void
2768 vm_page_set_valid_range(vm_page_t m, int base, int size)
2769 {
2770 	int endoff, frag;
2771 
2772 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2773 	if (size == 0)	/* handle degenerate case */
2774 		return;
2775 
2776 	/*
2777 	 * If the base is not DEV_BSIZE aligned and the valid
2778 	 * bit is clear, we have to zero out a portion of the
2779 	 * first block.
2780 	 */
2781 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2782 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2783 		pmap_zero_page_area(m, frag, base - frag);
2784 
2785 	/*
2786 	 * If the ending offset is not DEV_BSIZE aligned and the
2787 	 * valid bit is clear, we have to zero out a portion of
2788 	 * the last block.
2789 	 */
2790 	endoff = base + size;
2791 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2792 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2793 		pmap_zero_page_area(m, endoff,
2794 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2795 
2796 	/*
2797 	 * Assert that no previously invalid block that is now being validated
2798 	 * is already dirty.
2799 	 */
2800 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2801 	    ("vm_page_set_valid_range: page %p is dirty", m));
2802 
2803 	/*
2804 	 * Set valid bits inclusive of any overlap.
2805 	 */
2806 	m->valid |= vm_page_bits(base, size);
2807 }
2808 
2809 /*
2810  * Clear the given bits from the specified page's dirty field.
2811  */
2812 static __inline void
2813 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
2814 {
2815 	uintptr_t addr;
2816 #if PAGE_SIZE < 16384
2817 	int shift;
2818 #endif
2819 
2820 	/*
2821 	 * If the object is locked and the page is neither exclusive busy nor
2822 	 * write mapped, then the page's dirty field cannot possibly be
2823 	 * set by a concurrent pmap operation.
2824 	 */
2825 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2826 	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
2827 		m->dirty &= ~pagebits;
2828 	else {
2829 		/*
2830 		 * The pmap layer can call vm_page_dirty() without
2831 		 * holding a distinguished lock.  The combination of
2832 		 * the object's lock and an atomic operation suffice
2833 		 * to guarantee consistency of the page dirty field.
2834 		 *
2835 		 * For PAGE_SIZE == 32768 case, compiler already
2836 		 * properly aligns the dirty field, so no forcible
2837 		 * alignment is needed. Only require existence of
2838 		 * atomic_clear_64 when page size is 32768.
2839 		 */
2840 		addr = (uintptr_t)&m->dirty;
2841 #if PAGE_SIZE == 32768
2842 		atomic_clear_64((uint64_t *)addr, pagebits);
2843 #elif PAGE_SIZE == 16384
2844 		atomic_clear_32((uint32_t *)addr, pagebits);
2845 #else		/* PAGE_SIZE <= 8192 */
2846 		/*
2847 		 * Use a trick to perform a 32-bit atomic on the
2848 		 * containing aligned word, to not depend on the existence
2849 		 * of atomic_clear_{8, 16}.
2850 		 */
2851 		shift = addr & (sizeof(uint32_t) - 1);
2852 #if BYTE_ORDER == BIG_ENDIAN
2853 		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
2854 #else
2855 		shift *= NBBY;
2856 #endif
2857 		addr &= ~(sizeof(uint32_t) - 1);
2858 		atomic_clear_32((uint32_t *)addr, pagebits << shift);
2859 #endif		/* PAGE_SIZE */
2860 	}
2861 }
2862 
2863 /*
2864  *	vm_page_set_validclean:
2865  *
2866  *	Sets portions of a page valid and clean.  The arguments are expected
2867  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2868  *	of any partial chunks touched by the range.  The invalid portion of
2869  *	such chunks will be zero'd.
2870  *
2871  *	(base + size) must be less then or equal to PAGE_SIZE.
2872  */
2873 void
2874 vm_page_set_validclean(vm_page_t m, int base, int size)
2875 {
2876 	vm_page_bits_t oldvalid, pagebits;
2877 	int endoff, frag;
2878 
2879 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2880 	if (size == 0)	/* handle degenerate case */
2881 		return;
2882 
2883 	/*
2884 	 * If the base is not DEV_BSIZE aligned and the valid
2885 	 * bit is clear, we have to zero out a portion of the
2886 	 * first block.
2887 	 */
2888 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2889 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
2890 		pmap_zero_page_area(m, frag, base - frag);
2891 
2892 	/*
2893 	 * If the ending offset is not DEV_BSIZE aligned and the
2894 	 * valid bit is clear, we have to zero out a portion of
2895 	 * the last block.
2896 	 */
2897 	endoff = base + size;
2898 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2899 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
2900 		pmap_zero_page_area(m, endoff,
2901 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2902 
2903 	/*
2904 	 * Set valid, clear dirty bits.  If validating the entire
2905 	 * page we can safely clear the pmap modify bit.  We also
2906 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2907 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2908 	 * be set again.
2909 	 *
2910 	 * We set valid bits inclusive of any overlap, but we can only
2911 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2912 	 * the range.
2913 	 */
2914 	oldvalid = m->valid;
2915 	pagebits = vm_page_bits(base, size);
2916 	m->valid |= pagebits;
2917 #if 0	/* NOT YET */
2918 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2919 		frag = DEV_BSIZE - frag;
2920 		base += frag;
2921 		size -= frag;
2922 		if (size < 0)
2923 			size = 0;
2924 	}
2925 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2926 #endif
2927 	if (base == 0 && size == PAGE_SIZE) {
2928 		/*
2929 		 * The page can only be modified within the pmap if it is
2930 		 * mapped, and it can only be mapped if it was previously
2931 		 * fully valid.
2932 		 */
2933 		if (oldvalid == VM_PAGE_BITS_ALL)
2934 			/*
2935 			 * Perform the pmap_clear_modify() first.  Otherwise,
2936 			 * a concurrent pmap operation, such as
2937 			 * pmap_protect(), could clear a modification in the
2938 			 * pmap and set the dirty field on the page before
2939 			 * pmap_clear_modify() had begun and after the dirty
2940 			 * field was cleared here.
2941 			 */
2942 			pmap_clear_modify(m);
2943 		m->dirty = 0;
2944 		m->oflags &= ~VPO_NOSYNC;
2945 	} else if (oldvalid != VM_PAGE_BITS_ALL)
2946 		m->dirty &= ~pagebits;
2947 	else
2948 		vm_page_clear_dirty_mask(m, pagebits);
2949 }
2950 
2951 void
2952 vm_page_clear_dirty(vm_page_t m, int base, int size)
2953 {
2954 
2955 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2956 }
2957 
2958 /*
2959  *	vm_page_set_invalid:
2960  *
2961  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2962  *	valid and dirty bits for the effected areas are cleared.
2963  */
2964 void
2965 vm_page_set_invalid(vm_page_t m, int base, int size)
2966 {
2967 	vm_page_bits_t bits;
2968 	vm_object_t object;
2969 
2970 	object = m->object;
2971 	VM_OBJECT_ASSERT_WLOCKED(object);
2972 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
2973 	    size >= object->un_pager.vnp.vnp_size)
2974 		bits = VM_PAGE_BITS_ALL;
2975 	else
2976 		bits = vm_page_bits(base, size);
2977 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2978 		pmap_remove_all(m);
2979 	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
2980 	    !pmap_page_is_mapped(m),
2981 	    ("vm_page_set_invalid: page %p is mapped", m));
2982 	m->valid &= ~bits;
2983 	m->dirty &= ~bits;
2984 }
2985 
2986 /*
2987  * vm_page_zero_invalid()
2988  *
2989  *	The kernel assumes that the invalid portions of a page contain
2990  *	garbage, but such pages can be mapped into memory by user code.
2991  *	When this occurs, we must zero out the non-valid portions of the
2992  *	page so user code sees what it expects.
2993  *
2994  *	Pages are most often semi-valid when the end of a file is mapped
2995  *	into memory and the file's size is not page aligned.
2996  */
2997 void
2998 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2999 {
3000 	int b;
3001 	int i;
3002 
3003 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3004 	/*
3005 	 * Scan the valid bits looking for invalid sections that
3006 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
3007 	 * valid bit may be set ) have already been zerod by
3008 	 * vm_page_set_validclean().
3009 	 */
3010 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3011 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3012 		    (m->valid & ((vm_page_bits_t)1 << i))) {
3013 			if (i > b) {
3014 				pmap_zero_page_area(m,
3015 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
3016 			}
3017 			b = i + 1;
3018 		}
3019 	}
3020 
3021 	/*
3022 	 * setvalid is TRUE when we can safely set the zero'd areas
3023 	 * as being valid.  We can do this if there are no cache consistancy
3024 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3025 	 */
3026 	if (setvalid)
3027 		m->valid = VM_PAGE_BITS_ALL;
3028 }
3029 
3030 /*
3031  *	vm_page_is_valid:
3032  *
3033  *	Is (partial) page valid?  Note that the case where size == 0
3034  *	will return FALSE in the degenerate case where the page is
3035  *	entirely invalid, and TRUE otherwise.
3036  */
3037 int
3038 vm_page_is_valid(vm_page_t m, int base, int size)
3039 {
3040 	vm_page_bits_t bits;
3041 
3042 	VM_OBJECT_ASSERT_LOCKED(m->object);
3043 	bits = vm_page_bits(base, size);
3044 	return (m->valid != 0 && (m->valid & bits) == bits);
3045 }
3046 
3047 /*
3048  *	vm_page_ps_is_valid:
3049  *
3050  *	Returns TRUE if the entire (super)page is valid and FALSE otherwise.
3051  */
3052 boolean_t
3053 vm_page_ps_is_valid(vm_page_t m)
3054 {
3055 	int i, npages;
3056 
3057 	VM_OBJECT_ASSERT_LOCKED(m->object);
3058 	npages = atop(pagesizes[m->psind]);
3059 
3060 	/*
3061 	 * The physically contiguous pages that make up a superpage, i.e., a
3062 	 * page with a page size index ("psind") greater than zero, will
3063 	 * occupy adjacent entries in vm_page_array[].
3064 	 */
3065 	for (i = 0; i < npages; i++) {
3066 		if (m[i].valid != VM_PAGE_BITS_ALL)
3067 			return (FALSE);
3068 	}
3069 	return (TRUE);
3070 }
3071 
3072 /*
3073  * Set the page's dirty bits if the page is modified.
3074  */
3075 void
3076 vm_page_test_dirty(vm_page_t m)
3077 {
3078 
3079 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3080 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
3081 		vm_page_dirty(m);
3082 }
3083 
3084 void
3085 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
3086 {
3087 
3088 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
3089 }
3090 
3091 void
3092 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
3093 {
3094 
3095 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
3096 }
3097 
3098 int
3099 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
3100 {
3101 
3102 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
3103 }
3104 
3105 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
3106 void
3107 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
3108 {
3109 
3110 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
3111 }
3112 
3113 void
3114 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
3115 {
3116 
3117 	mtx_assert_(vm_page_lockptr(m), a, file, line);
3118 }
3119 #endif
3120 
3121 #ifdef INVARIANTS
3122 void
3123 vm_page_object_lock_assert(vm_page_t m)
3124 {
3125 
3126 	/*
3127 	 * Certain of the page's fields may only be modified by the
3128 	 * holder of the containing object's lock or the exclusive busy.
3129 	 * holder.  Unfortunately, the holder of the write busy is
3130 	 * not recorded, and thus cannot be checked here.
3131 	 */
3132 	if (m->object != NULL && !vm_page_xbusied(m))
3133 		VM_OBJECT_ASSERT_WLOCKED(m->object);
3134 }
3135 
3136 void
3137 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
3138 {
3139 
3140 	if ((bits & PGA_WRITEABLE) == 0)
3141 		return;
3142 
3143 	/*
3144 	 * The PGA_WRITEABLE flag can only be set if the page is
3145 	 * managed, is exclusively busied or the object is locked.
3146 	 * Currently, this flag is only set by pmap_enter().
3147 	 */
3148 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3149 	    ("PGA_WRITEABLE on unmanaged page"));
3150 	if (!vm_page_xbusied(m))
3151 		VM_OBJECT_ASSERT_LOCKED(m->object);
3152 }
3153 #endif
3154 
3155 #include "opt_ddb.h"
3156 #ifdef DDB
3157 #include <sys/kernel.h>
3158 
3159 #include <ddb/ddb.h>
3160 
3161 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3162 {
3163 	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
3164 	db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count);
3165 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
3166 	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
3167 	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
3168 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
3169 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
3170 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
3171 	db_printf("vm_cnt.v_cache_min: %d\n", vm_cnt.v_cache_min);
3172 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
3173 }
3174 
3175 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3176 {
3177 	int dom;
3178 
3179 	db_printf("pq_free %d pq_cache %d\n",
3180 	    vm_cnt.v_free_count, vm_cnt.v_cache_count);
3181 	for (dom = 0; dom < vm_ndomains; dom++) {
3182 		db_printf(
3183 	"dom %d page_cnt %d free %d pq_act %d pq_inact %d pass %d\n",
3184 		    dom,
3185 		    vm_dom[dom].vmd_page_count,
3186 		    vm_dom[dom].vmd_free_count,
3187 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
3188 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
3189 		    vm_dom[dom].vmd_pass);
3190 	}
3191 }
3192 
3193 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
3194 {
3195 	vm_page_t m;
3196 	boolean_t phys;
3197 
3198 	if (!have_addr) {
3199 		db_printf("show pginfo addr\n");
3200 		return;
3201 	}
3202 
3203 	phys = strchr(modif, 'p') != NULL;
3204 	if (phys)
3205 		m = PHYS_TO_VM_PAGE(addr);
3206 	else
3207 		m = (vm_page_t)addr;
3208 	db_printf(
3209     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
3210     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
3211 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
3212 	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
3213 	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
3214 }
3215 #endif /* DDB */
3216