1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * The Mach Operating System project at Carnegie-Mellon University. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 36 */ 37 38 /*- 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 65 /* 66 * Resident memory management module. 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_vm.h" 73 74 #include <sys/param.h> 75 #include <sys/systm.h> 76 #include <sys/counter.h> 77 #include <sys/domainset.h> 78 #include <sys/kernel.h> 79 #include <sys/limits.h> 80 #include <sys/linker.h> 81 #include <sys/lock.h> 82 #include <sys/malloc.h> 83 #include <sys/mman.h> 84 #include <sys/msgbuf.h> 85 #include <sys/mutex.h> 86 #include <sys/proc.h> 87 #include <sys/rwlock.h> 88 #include <sys/sleepqueue.h> 89 #include <sys/sbuf.h> 90 #include <sys/sched.h> 91 #include <sys/smp.h> 92 #include <sys/sysctl.h> 93 #include <sys/vmmeter.h> 94 #include <sys/vnode.h> 95 96 #include <vm/vm.h> 97 #include <vm/pmap.h> 98 #include <vm/vm_param.h> 99 #include <vm/vm_domainset.h> 100 #include <vm/vm_kern.h> 101 #include <vm/vm_map.h> 102 #include <vm/vm_object.h> 103 #include <vm/vm_page.h> 104 #include <vm/vm_pageout.h> 105 #include <vm/vm_phys.h> 106 #include <vm/vm_pagequeue.h> 107 #include <vm/vm_pager.h> 108 #include <vm/vm_radix.h> 109 #include <vm/vm_reserv.h> 110 #include <vm/vm_extern.h> 111 #include <vm/uma.h> 112 #include <vm/uma_int.h> 113 114 #include <machine/md_var.h> 115 116 extern int uma_startup_count(int); 117 extern void uma_startup(void *, int); 118 extern int vmem_startup_count(void); 119 120 struct vm_domain vm_dom[MAXMEMDOM]; 121 122 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]); 123 124 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT]; 125 126 struct mtx_padalign __exclusive_cache_line vm_domainset_lock; 127 /* The following fields are protected by the domainset lock. */ 128 domainset_t __exclusive_cache_line vm_min_domains; 129 domainset_t __exclusive_cache_line vm_severe_domains; 130 static int vm_min_waiters; 131 static int vm_severe_waiters; 132 static int vm_pageproc_waiters; 133 134 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD, 0, 135 "VM page statistics"); 136 137 static counter_u64_t pqstate_commit_retries = EARLY_COUNTER; 138 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries, 139 CTLFLAG_RD, &pqstate_commit_retries, 140 "Number of failed per-page atomic queue state updates"); 141 142 static counter_u64_t queue_ops = EARLY_COUNTER; 143 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops, 144 CTLFLAG_RD, &queue_ops, 145 "Number of batched queue operations"); 146 147 static counter_u64_t queue_nops = EARLY_COUNTER; 148 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops, 149 CTLFLAG_RD, &queue_nops, 150 "Number of batched queue operations with no effects"); 151 152 static void 153 counter_startup(void) 154 { 155 156 pqstate_commit_retries = counter_u64_alloc(M_WAITOK); 157 queue_ops = counter_u64_alloc(M_WAITOK); 158 queue_nops = counter_u64_alloc(M_WAITOK); 159 } 160 SYSINIT(page_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL); 161 162 /* 163 * bogus page -- for I/O to/from partially complete buffers, 164 * or for paging into sparsely invalid regions. 165 */ 166 vm_page_t bogus_page; 167 168 vm_page_t vm_page_array; 169 long vm_page_array_size; 170 long first_page; 171 172 static int boot_pages; 173 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 174 &boot_pages, 0, 175 "number of pages allocated for bootstrapping the VM system"); 176 177 static TAILQ_HEAD(, vm_page) blacklist_head; 178 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); 179 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | 180 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); 181 182 static uma_zone_t fakepg_zone; 183 184 static void vm_page_alloc_check(vm_page_t m); 185 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, 186 const char *wmesg, bool nonshared, bool locked); 187 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); 188 static void vm_page_enqueue(vm_page_t m, uint8_t queue); 189 static bool vm_page_free_prep(vm_page_t m); 190 static void vm_page_free_toq(vm_page_t m); 191 static void vm_page_init(void *dummy); 192 static int vm_page_insert_after(vm_page_t m, vm_object_t object, 193 vm_pindex_t pindex, vm_page_t mpred); 194 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, 195 vm_page_t mpred); 196 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue, 197 const uint16_t nflag); 198 static int vm_page_reclaim_run(int req_class, int domain, u_long npages, 199 vm_page_t m_run, vm_paddr_t high); 200 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse); 201 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, 202 int req); 203 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain, 204 int flags); 205 static void vm_page_zone_release(void *arg, void **store, int cnt); 206 207 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL); 208 209 static void 210 vm_page_init(void *dummy) 211 { 212 213 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, 214 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 215 bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | 216 VM_ALLOC_NORMAL | VM_ALLOC_WIRED); 217 } 218 219 /* 220 * The cache page zone is initialized later since we need to be able to allocate 221 * pages before UMA is fully initialized. 222 */ 223 static void 224 vm_page_init_cache_zones(void *dummy __unused) 225 { 226 struct vm_domain *vmd; 227 struct vm_pgcache *pgcache; 228 int cache, domain, maxcache, pool; 229 230 maxcache = 0; 231 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache); 232 maxcache *= mp_ncpus; 233 for (domain = 0; domain < vm_ndomains; domain++) { 234 vmd = VM_DOMAIN(domain); 235 for (pool = 0; pool < VM_NFREEPOOL; pool++) { 236 pgcache = &vmd->vmd_pgcache[pool]; 237 pgcache->domain = domain; 238 pgcache->pool = pool; 239 pgcache->zone = uma_zcache_create("vm pgcache", 240 PAGE_SIZE, NULL, NULL, NULL, NULL, 241 vm_page_zone_import, vm_page_zone_release, pgcache, 242 UMA_ZONE_VM); 243 244 /* 245 * Limit each pool's zone to 0.1% of the pages in the 246 * domain. 247 */ 248 cache = maxcache != 0 ? maxcache : 249 vmd->vmd_page_count / 1000; 250 uma_zone_set_maxcache(pgcache->zone, cache); 251 } 252 } 253 } 254 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL); 255 256 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ 257 #if PAGE_SIZE == 32768 258 #ifdef CTASSERT 259 CTASSERT(sizeof(u_long) >= 8); 260 #endif 261 #endif 262 263 /* 264 * vm_set_page_size: 265 * 266 * Sets the page size, perhaps based upon the memory 267 * size. Must be called before any use of page-size 268 * dependent functions. 269 */ 270 void 271 vm_set_page_size(void) 272 { 273 if (vm_cnt.v_page_size == 0) 274 vm_cnt.v_page_size = PAGE_SIZE; 275 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) 276 panic("vm_set_page_size: page size not a power of two"); 277 } 278 279 /* 280 * vm_page_blacklist_next: 281 * 282 * Find the next entry in the provided string of blacklist 283 * addresses. Entries are separated by space, comma, or newline. 284 * If an invalid integer is encountered then the rest of the 285 * string is skipped. Updates the list pointer to the next 286 * character, or NULL if the string is exhausted or invalid. 287 */ 288 static vm_paddr_t 289 vm_page_blacklist_next(char **list, char *end) 290 { 291 vm_paddr_t bad; 292 char *cp, *pos; 293 294 if (list == NULL || *list == NULL) 295 return (0); 296 if (**list =='\0') { 297 *list = NULL; 298 return (0); 299 } 300 301 /* 302 * If there's no end pointer then the buffer is coming from 303 * the kenv and we know it's null-terminated. 304 */ 305 if (end == NULL) 306 end = *list + strlen(*list); 307 308 /* Ensure that strtoq() won't walk off the end */ 309 if (*end != '\0') { 310 if (*end == '\n' || *end == ' ' || *end == ',') 311 *end = '\0'; 312 else { 313 printf("Blacklist not terminated, skipping\n"); 314 *list = NULL; 315 return (0); 316 } 317 } 318 319 for (pos = *list; *pos != '\0'; pos = cp) { 320 bad = strtoq(pos, &cp, 0); 321 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { 322 if (bad == 0) { 323 if (++cp < end) 324 continue; 325 else 326 break; 327 } 328 } else 329 break; 330 if (*cp == '\0' || ++cp >= end) 331 *list = NULL; 332 else 333 *list = cp; 334 return (trunc_page(bad)); 335 } 336 printf("Garbage in RAM blacklist, skipping\n"); 337 *list = NULL; 338 return (0); 339 } 340 341 bool 342 vm_page_blacklist_add(vm_paddr_t pa, bool verbose) 343 { 344 struct vm_domain *vmd; 345 vm_page_t m; 346 int ret; 347 348 m = vm_phys_paddr_to_vm_page(pa); 349 if (m == NULL) 350 return (true); /* page does not exist, no failure */ 351 352 vmd = vm_pagequeue_domain(m); 353 vm_domain_free_lock(vmd); 354 ret = vm_phys_unfree_page(m); 355 vm_domain_free_unlock(vmd); 356 if (ret != 0) { 357 vm_domain_freecnt_inc(vmd, -1); 358 TAILQ_INSERT_TAIL(&blacklist_head, m, listq); 359 if (verbose) 360 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa); 361 } 362 return (ret); 363 } 364 365 /* 366 * vm_page_blacklist_check: 367 * 368 * Iterate through the provided string of blacklist addresses, pulling 369 * each entry out of the physical allocator free list and putting it 370 * onto a list for reporting via the vm.page_blacklist sysctl. 371 */ 372 static void 373 vm_page_blacklist_check(char *list, char *end) 374 { 375 vm_paddr_t pa; 376 char *next; 377 378 next = list; 379 while (next != NULL) { 380 if ((pa = vm_page_blacklist_next(&next, end)) == 0) 381 continue; 382 vm_page_blacklist_add(pa, bootverbose); 383 } 384 } 385 386 /* 387 * vm_page_blacklist_load: 388 * 389 * Search for a special module named "ram_blacklist". It'll be a 390 * plain text file provided by the user via the loader directive 391 * of the same name. 392 */ 393 static void 394 vm_page_blacklist_load(char **list, char **end) 395 { 396 void *mod; 397 u_char *ptr; 398 u_int len; 399 400 mod = NULL; 401 ptr = NULL; 402 403 mod = preload_search_by_type("ram_blacklist"); 404 if (mod != NULL) { 405 ptr = preload_fetch_addr(mod); 406 len = preload_fetch_size(mod); 407 } 408 *list = ptr; 409 if (ptr != NULL) 410 *end = ptr + len; 411 else 412 *end = NULL; 413 return; 414 } 415 416 static int 417 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) 418 { 419 vm_page_t m; 420 struct sbuf sbuf; 421 int error, first; 422 423 first = 1; 424 error = sysctl_wire_old_buffer(req, 0); 425 if (error != 0) 426 return (error); 427 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 428 TAILQ_FOREACH(m, &blacklist_head, listq) { 429 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", 430 (uintmax_t)m->phys_addr); 431 first = 0; 432 } 433 error = sbuf_finish(&sbuf); 434 sbuf_delete(&sbuf); 435 return (error); 436 } 437 438 /* 439 * Initialize a dummy page for use in scans of the specified paging queue. 440 * In principle, this function only needs to set the flag PG_MARKER. 441 * Nonetheless, it write busies the page as a safety precaution. 442 */ 443 static void 444 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags) 445 { 446 447 bzero(marker, sizeof(*marker)); 448 marker->flags = PG_MARKER; 449 marker->a.flags = aflags; 450 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 451 marker->a.queue = queue; 452 } 453 454 static void 455 vm_page_domain_init(int domain) 456 { 457 struct vm_domain *vmd; 458 struct vm_pagequeue *pq; 459 int i; 460 461 vmd = VM_DOMAIN(domain); 462 bzero(vmd, sizeof(*vmd)); 463 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = 464 "vm inactive pagequeue"; 465 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = 466 "vm active pagequeue"; 467 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) = 468 "vm laundry pagequeue"; 469 *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) = 470 "vm unswappable pagequeue"; 471 vmd->vmd_domain = domain; 472 vmd->vmd_page_count = 0; 473 vmd->vmd_free_count = 0; 474 vmd->vmd_segs = 0; 475 vmd->vmd_oom = FALSE; 476 for (i = 0; i < PQ_COUNT; i++) { 477 pq = &vmd->vmd_pagequeues[i]; 478 TAILQ_INIT(&pq->pq_pl); 479 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", 480 MTX_DEF | MTX_DUPOK); 481 pq->pq_pdpages = 0; 482 vm_page_init_marker(&vmd->vmd_markers[i], i, 0); 483 } 484 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF); 485 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF); 486 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain); 487 488 /* 489 * inacthead is used to provide FIFO ordering for LRU-bypassing 490 * insertions. 491 */ 492 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED); 493 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl, 494 &vmd->vmd_inacthead, plinks.q); 495 496 /* 497 * The clock pages are used to implement active queue scanning without 498 * requeues. Scans start at clock[0], which is advanced after the scan 499 * ends. When the two clock hands meet, they are reset and scanning 500 * resumes from the head of the queue. 501 */ 502 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED); 503 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED); 504 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 505 &vmd->vmd_clock[0], plinks.q); 506 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, 507 &vmd->vmd_clock[1], plinks.q); 508 } 509 510 /* 511 * Initialize a physical page in preparation for adding it to the free 512 * lists. 513 */ 514 static void 515 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind) 516 { 517 518 m->object = NULL; 519 m->ref_count = 0; 520 m->busy_lock = VPB_UNBUSIED; 521 m->flags = m->a.flags = 0; 522 m->phys_addr = pa; 523 m->a.queue = PQ_NONE; 524 m->psind = 0; 525 m->segind = segind; 526 m->order = VM_NFREEORDER; 527 m->pool = VM_FREEPOOL_DEFAULT; 528 m->valid = m->dirty = 0; 529 pmap_page_init(m); 530 } 531 532 #ifndef PMAP_HAS_PAGE_ARRAY 533 static vm_paddr_t 534 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range) 535 { 536 vm_paddr_t new_end; 537 538 /* 539 * Reserve an unmapped guard page to trap access to vm_page_array[-1]. 540 * However, because this page is allocated from KVM, out-of-bounds 541 * accesses using the direct map will not be trapped. 542 */ 543 *vaddr += PAGE_SIZE; 544 545 /* 546 * Allocate physical memory for the page structures, and map it. 547 */ 548 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 549 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end, 550 VM_PROT_READ | VM_PROT_WRITE); 551 vm_page_array_size = page_range; 552 553 return (new_end); 554 } 555 #endif 556 557 /* 558 * vm_page_startup: 559 * 560 * Initializes the resident memory module. Allocates physical memory for 561 * bootstrapping UMA and some data structures that are used to manage 562 * physical pages. Initializes these structures, and populates the free 563 * page queues. 564 */ 565 vm_offset_t 566 vm_page_startup(vm_offset_t vaddr) 567 { 568 struct vm_phys_seg *seg; 569 vm_page_t m; 570 char *list, *listend; 571 vm_offset_t mapped; 572 vm_paddr_t end, high_avail, low_avail, new_end, size; 573 vm_paddr_t page_range __unused; 574 vm_paddr_t last_pa, pa; 575 u_long pagecount; 576 int biggestone, i, segind; 577 #ifdef WITNESS 578 int witness_size; 579 #endif 580 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 581 long ii; 582 #endif 583 584 vaddr = round_page(vaddr); 585 586 vm_phys_early_startup(); 587 biggestone = vm_phys_avail_largest(); 588 end = phys_avail[biggestone+1]; 589 590 /* 591 * Initialize the page and queue locks. 592 */ 593 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF); 594 for (i = 0; i < PA_LOCK_COUNT; i++) 595 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); 596 for (i = 0; i < vm_ndomains; i++) 597 vm_page_domain_init(i); 598 599 /* 600 * Allocate memory for use when boot strapping the kernel memory 601 * allocator. Tell UMA how many zones we are going to create 602 * before going fully functional. UMA will add its zones. 603 * 604 * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP, 605 * KMAP ENTRY, MAP ENTRY, VMSPACE. 606 */ 607 boot_pages = uma_startup_count(8); 608 609 #ifndef UMA_MD_SMALL_ALLOC 610 /* vmem_startup() calls uma_prealloc(). */ 611 boot_pages += vmem_startup_count(); 612 /* vm_map_startup() calls uma_prealloc(). */ 613 boot_pages += howmany(MAX_KMAP, 614 slab_ipers(sizeof(struct vm_map), UMA_ALIGN_PTR)); 615 616 /* 617 * Before we are fully boot strapped we need to account for the 618 * following allocations: 619 * 620 * "KMAP ENTRY" from kmem_init() 621 * "vmem btag" from vmem_startup() 622 * "vmem" from vmem_create() 623 * "KMAP" from vm_map_startup() 624 * 625 * Each needs at least one page per-domain. 626 */ 627 boot_pages += 4 * vm_ndomains; 628 #endif 629 /* 630 * CTFLAG_RDTUN doesn't work during the early boot process, so we must 631 * manually fetch the value. 632 */ 633 TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages); 634 new_end = end - (boot_pages * UMA_SLAB_SIZE); 635 new_end = trunc_page(new_end); 636 mapped = pmap_map(&vaddr, new_end, end, 637 VM_PROT_READ | VM_PROT_WRITE); 638 bzero((void *)mapped, end - new_end); 639 uma_startup((void *)mapped, boot_pages); 640 641 #ifdef WITNESS 642 witness_size = round_page(witness_startup_count()); 643 new_end -= witness_size; 644 mapped = pmap_map(&vaddr, new_end, new_end + witness_size, 645 VM_PROT_READ | VM_PROT_WRITE); 646 bzero((void *)mapped, witness_size); 647 witness_startup((void *)mapped); 648 #endif 649 650 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 651 defined(__i386__) || defined(__mips__) || defined(__riscv) || \ 652 defined(__powerpc64__) 653 /* 654 * Allocate a bitmap to indicate that a random physical page 655 * needs to be included in a minidump. 656 * 657 * The amd64 port needs this to indicate which direct map pages 658 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 659 * 660 * However, i386 still needs this workspace internally within the 661 * minidump code. In theory, they are not needed on i386, but are 662 * included should the sf_buf code decide to use them. 663 */ 664 last_pa = 0; 665 for (i = 0; dump_avail[i + 1] != 0; i += 2) 666 if (dump_avail[i + 1] > last_pa) 667 last_pa = dump_avail[i + 1]; 668 page_range = last_pa / PAGE_SIZE; 669 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 670 new_end -= vm_page_dump_size; 671 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, 672 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); 673 bzero((void *)vm_page_dump, vm_page_dump_size); 674 #else 675 (void)last_pa; 676 #endif 677 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 678 defined(__riscv) || defined(__powerpc64__) 679 /* 680 * Include the UMA bootstrap pages, witness pages and vm_page_dump 681 * in a crash dump. When pmap_map() uses the direct map, they are 682 * not automatically included. 683 */ 684 for (pa = new_end; pa < end; pa += PAGE_SIZE) 685 dump_add_page(pa); 686 #endif 687 phys_avail[biggestone + 1] = new_end; 688 #ifdef __amd64__ 689 /* 690 * Request that the physical pages underlying the message buffer be 691 * included in a crash dump. Since the message buffer is accessed 692 * through the direct map, they are not automatically included. 693 */ 694 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); 695 last_pa = pa + round_page(msgbufsize); 696 while (pa < last_pa) { 697 dump_add_page(pa); 698 pa += PAGE_SIZE; 699 } 700 #endif 701 /* 702 * Compute the number of pages of memory that will be available for 703 * use, taking into account the overhead of a page structure per page. 704 * In other words, solve 705 * "available physical memory" - round_page(page_range * 706 * sizeof(struct vm_page)) = page_range * PAGE_SIZE 707 * for page_range. 708 */ 709 low_avail = phys_avail[0]; 710 high_avail = phys_avail[1]; 711 for (i = 0; i < vm_phys_nsegs; i++) { 712 if (vm_phys_segs[i].start < low_avail) 713 low_avail = vm_phys_segs[i].start; 714 if (vm_phys_segs[i].end > high_avail) 715 high_avail = vm_phys_segs[i].end; 716 } 717 /* Skip the first chunk. It is already accounted for. */ 718 for (i = 2; phys_avail[i + 1] != 0; i += 2) { 719 if (phys_avail[i] < low_avail) 720 low_avail = phys_avail[i]; 721 if (phys_avail[i + 1] > high_avail) 722 high_avail = phys_avail[i + 1]; 723 } 724 first_page = low_avail / PAGE_SIZE; 725 #ifdef VM_PHYSSEG_SPARSE 726 size = 0; 727 for (i = 0; i < vm_phys_nsegs; i++) 728 size += vm_phys_segs[i].end - vm_phys_segs[i].start; 729 for (i = 0; phys_avail[i + 1] != 0; i += 2) 730 size += phys_avail[i + 1] - phys_avail[i]; 731 #elif defined(VM_PHYSSEG_DENSE) 732 size = high_avail - low_avail; 733 #else 734 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 735 #endif 736 737 #ifdef PMAP_HAS_PAGE_ARRAY 738 pmap_page_array_startup(size / PAGE_SIZE); 739 biggestone = vm_phys_avail_largest(); 740 end = new_end = phys_avail[biggestone + 1]; 741 #else 742 #ifdef VM_PHYSSEG_DENSE 743 /* 744 * In the VM_PHYSSEG_DENSE case, the number of pages can account for 745 * the overhead of a page structure per page only if vm_page_array is 746 * allocated from the last physical memory chunk. Otherwise, we must 747 * allocate page structures representing the physical memory 748 * underlying vm_page_array, even though they will not be used. 749 */ 750 if (new_end != high_avail) 751 page_range = size / PAGE_SIZE; 752 else 753 #endif 754 { 755 page_range = size / (PAGE_SIZE + sizeof(struct vm_page)); 756 757 /* 758 * If the partial bytes remaining are large enough for 759 * a page (PAGE_SIZE) without a corresponding 760 * 'struct vm_page', then new_end will contain an 761 * extra page after subtracting the length of the VM 762 * page array. Compensate by subtracting an extra 763 * page from new_end. 764 */ 765 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) { 766 if (new_end == high_avail) 767 high_avail -= PAGE_SIZE; 768 new_end -= PAGE_SIZE; 769 } 770 } 771 end = new_end; 772 new_end = vm_page_array_alloc(&vaddr, end, page_range); 773 #endif 774 775 #if VM_NRESERVLEVEL > 0 776 /* 777 * Allocate physical memory for the reservation management system's 778 * data structures, and map it. 779 */ 780 new_end = vm_reserv_startup(&vaddr, new_end); 781 #endif 782 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 783 defined(__riscv) || defined(__powerpc64__) 784 /* 785 * Include vm_page_array and vm_reserv_array in a crash dump. 786 */ 787 for (pa = new_end; pa < end; pa += PAGE_SIZE) 788 dump_add_page(pa); 789 #endif 790 phys_avail[biggestone + 1] = new_end; 791 792 /* 793 * Add physical memory segments corresponding to the available 794 * physical pages. 795 */ 796 for (i = 0; phys_avail[i + 1] != 0; i += 2) 797 if (vm_phys_avail_size(i) != 0) 798 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); 799 800 /* 801 * Initialize the physical memory allocator. 802 */ 803 vm_phys_init(); 804 805 /* 806 * Initialize the page structures and add every available page to the 807 * physical memory allocator's free lists. 808 */ 809 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) 810 for (ii = 0; ii < vm_page_array_size; ii++) { 811 m = &vm_page_array[ii]; 812 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0); 813 m->flags = PG_FICTITIOUS; 814 } 815 #endif 816 vm_cnt.v_page_count = 0; 817 for (segind = 0; segind < vm_phys_nsegs; segind++) { 818 seg = &vm_phys_segs[segind]; 819 for (m = seg->first_page, pa = seg->start; pa < seg->end; 820 m++, pa += PAGE_SIZE) 821 vm_page_init_page(m, pa, segind); 822 823 /* 824 * Add the segment to the free lists only if it is covered by 825 * one of the ranges in phys_avail. Because we've added the 826 * ranges to the vm_phys_segs array, we can assume that each 827 * segment is either entirely contained in one of the ranges, 828 * or doesn't overlap any of them. 829 */ 830 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 831 struct vm_domain *vmd; 832 833 if (seg->start < phys_avail[i] || 834 seg->end > phys_avail[i + 1]) 835 continue; 836 837 m = seg->first_page; 838 pagecount = (u_long)atop(seg->end - seg->start); 839 840 vmd = VM_DOMAIN(seg->domain); 841 vm_domain_free_lock(vmd); 842 vm_phys_enqueue_contig(m, pagecount); 843 vm_domain_free_unlock(vmd); 844 vm_domain_freecnt_inc(vmd, pagecount); 845 vm_cnt.v_page_count += (u_int)pagecount; 846 847 vmd = VM_DOMAIN(seg->domain); 848 vmd->vmd_page_count += (u_int)pagecount; 849 vmd->vmd_segs |= 1UL << m->segind; 850 break; 851 } 852 } 853 854 /* 855 * Remove blacklisted pages from the physical memory allocator. 856 */ 857 TAILQ_INIT(&blacklist_head); 858 vm_page_blacklist_load(&list, &listend); 859 vm_page_blacklist_check(list, listend); 860 861 list = kern_getenv("vm.blacklist"); 862 vm_page_blacklist_check(list, NULL); 863 864 freeenv(list); 865 #if VM_NRESERVLEVEL > 0 866 /* 867 * Initialize the reservation management system. 868 */ 869 vm_reserv_init(); 870 #endif 871 872 return (vaddr); 873 } 874 875 void 876 vm_page_reference(vm_page_t m) 877 { 878 879 vm_page_aflag_set(m, PGA_REFERENCED); 880 } 881 882 static bool 883 vm_page_acquire_flags(vm_page_t m, int allocflags) 884 { 885 bool locked; 886 887 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0) 888 locked = vm_page_trysbusy(m); 889 else 890 locked = vm_page_tryxbusy(m); 891 if (locked && (allocflags & VM_ALLOC_WIRED) != 0) 892 vm_page_wire(m); 893 return (locked); 894 } 895 896 /* 897 * vm_page_busy_sleep_flags 898 * 899 * Sleep for busy according to VM_ALLOC_ parameters. 900 */ 901 static bool 902 vm_page_busy_sleep_flags(vm_object_t object, vm_page_t m, const char *wmesg, 903 int allocflags) 904 { 905 906 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 907 return (false); 908 /* 909 * Reference the page before unlocking and 910 * sleeping so that the page daemon is less 911 * likely to reclaim it. 912 */ 913 if ((allocflags & VM_ALLOC_NOCREAT) == 0) 914 vm_page_aflag_set(m, PGA_REFERENCED); 915 if (_vm_page_busy_sleep(object, m, wmesg, (allocflags & 916 VM_ALLOC_IGN_SBUSY) != 0, true)) 917 VM_OBJECT_WLOCK(object); 918 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 919 return (false); 920 return (true); 921 } 922 923 /* 924 * vm_page_busy_acquire: 925 * 926 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop 927 * and drop the object lock if necessary. 928 */ 929 bool 930 vm_page_busy_acquire(vm_page_t m, int allocflags) 931 { 932 vm_object_t obj; 933 bool locked; 934 935 /* 936 * The page-specific object must be cached because page 937 * identity can change during the sleep, causing the 938 * re-lock of a different object. 939 * It is assumed that a reference to the object is already 940 * held by the callers. 941 */ 942 obj = m->object; 943 for (;;) { 944 if (vm_page_acquire_flags(m, allocflags)) 945 return (true); 946 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 947 return (false); 948 if (obj != NULL) 949 locked = VM_OBJECT_WOWNED(obj); 950 else 951 locked = false; 952 MPASS(locked || vm_page_wired(m)); 953 if (_vm_page_busy_sleep(obj, m, "vmpba", 954 (allocflags & VM_ALLOC_SBUSY) != 0, locked)) 955 VM_OBJECT_WLOCK(obj); 956 if ((allocflags & VM_ALLOC_WAITFAIL) != 0) 957 return (false); 958 KASSERT(m->object == obj || m->object == NULL, 959 ("vm_page_busy_acquire: page %p does not belong to %p", 960 m, obj)); 961 } 962 } 963 964 /* 965 * vm_page_busy_downgrade: 966 * 967 * Downgrade an exclusive busy page into a single shared busy page. 968 */ 969 void 970 vm_page_busy_downgrade(vm_page_t m) 971 { 972 u_int x; 973 974 vm_page_assert_xbusied(m); 975 976 x = m->busy_lock; 977 for (;;) { 978 if (atomic_fcmpset_rel_int(&m->busy_lock, 979 &x, VPB_SHARERS_WORD(1))) 980 break; 981 } 982 if ((x & VPB_BIT_WAITERS) != 0) 983 wakeup(m); 984 } 985 986 /* 987 * 988 * vm_page_busy_tryupgrade: 989 * 990 * Attempt to upgrade a single shared busy into an exclusive busy. 991 */ 992 int 993 vm_page_busy_tryupgrade(vm_page_t m) 994 { 995 u_int ce, x; 996 997 vm_page_assert_sbusied(m); 998 999 x = m->busy_lock; 1000 ce = VPB_CURTHREAD_EXCLUSIVE; 1001 for (;;) { 1002 if (VPB_SHARERS(x) > 1) 1003 return (0); 1004 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 1005 ("vm_page_busy_tryupgrade: invalid lock state")); 1006 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x, 1007 ce | (x & VPB_BIT_WAITERS))) 1008 continue; 1009 return (1); 1010 } 1011 } 1012 1013 /* 1014 * vm_page_sbusied: 1015 * 1016 * Return a positive value if the page is shared busied, 0 otherwise. 1017 */ 1018 int 1019 vm_page_sbusied(vm_page_t m) 1020 { 1021 u_int x; 1022 1023 x = m->busy_lock; 1024 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); 1025 } 1026 1027 /* 1028 * vm_page_sunbusy: 1029 * 1030 * Shared unbusy a page. 1031 */ 1032 void 1033 vm_page_sunbusy(vm_page_t m) 1034 { 1035 u_int x; 1036 1037 vm_page_assert_sbusied(m); 1038 1039 x = m->busy_lock; 1040 for (;;) { 1041 if (VPB_SHARERS(x) > 1) { 1042 if (atomic_fcmpset_int(&m->busy_lock, &x, 1043 x - VPB_ONE_SHARER)) 1044 break; 1045 continue; 1046 } 1047 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), 1048 ("vm_page_sunbusy: invalid lock state")); 1049 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED)) 1050 continue; 1051 if ((x & VPB_BIT_WAITERS) == 0) 1052 break; 1053 wakeup(m); 1054 break; 1055 } 1056 } 1057 1058 /* 1059 * vm_page_busy_sleep: 1060 * 1061 * Sleep if the page is busy, using the page pointer as wchan. 1062 * This is used to implement the hard-path of busying mechanism. 1063 * 1064 * If nonshared is true, sleep only if the page is xbusy. 1065 * 1066 * The object lock must be held on entry and will be released on exit. 1067 */ 1068 void 1069 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared) 1070 { 1071 vm_object_t obj; 1072 1073 obj = m->object; 1074 VM_OBJECT_ASSERT_LOCKED(obj); 1075 vm_page_lock_assert(m, MA_NOTOWNED); 1076 1077 if (!_vm_page_busy_sleep(obj, m, wmesg, nonshared, true)) 1078 VM_OBJECT_DROP(obj); 1079 } 1080 1081 /* 1082 * _vm_page_busy_sleep: 1083 * 1084 * Internal busy sleep function. 1085 */ 1086 static bool 1087 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, const char *wmesg, 1088 bool nonshared, bool locked) 1089 { 1090 u_int x; 1091 1092 /* 1093 * If the object is busy we must wait for that to drain to zero 1094 * before trying the page again. 1095 */ 1096 if (obj != NULL && vm_object_busied(obj)) { 1097 if (locked) 1098 VM_OBJECT_DROP(obj); 1099 vm_object_busy_wait(obj, wmesg); 1100 return (locked); 1101 } 1102 sleepq_lock(m); 1103 x = m->busy_lock; 1104 if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) || 1105 ((x & VPB_BIT_WAITERS) == 0 && 1106 !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) { 1107 sleepq_release(m); 1108 return (false); 1109 } 1110 if (locked) 1111 VM_OBJECT_DROP(obj); 1112 DROP_GIANT(); 1113 sleepq_add(m, NULL, wmesg, 0, 0); 1114 sleepq_wait(m, PVM); 1115 PICKUP_GIANT(); 1116 return (locked); 1117 } 1118 1119 /* 1120 * vm_page_trysbusy: 1121 * 1122 * Try to shared busy a page. 1123 * If the operation succeeds 1 is returned otherwise 0. 1124 * The operation never sleeps. 1125 */ 1126 int 1127 vm_page_trysbusy(vm_page_t m) 1128 { 1129 vm_object_t obj; 1130 u_int x; 1131 1132 obj = m->object; 1133 x = m->busy_lock; 1134 for (;;) { 1135 if ((x & VPB_BIT_SHARED) == 0) 1136 return (0); 1137 /* 1138 * Reduce the window for transient busies that will trigger 1139 * false negatives in vm_page_ps_test(). 1140 */ 1141 if (obj != NULL && vm_object_busied(obj)) 1142 return (0); 1143 if (atomic_fcmpset_acq_int(&m->busy_lock, &x, 1144 x + VPB_ONE_SHARER)) 1145 break; 1146 } 1147 1148 /* Refetch the object now that we're guaranteed that it is stable. */ 1149 obj = m->object; 1150 if (obj != NULL && vm_object_busied(obj)) { 1151 vm_page_sunbusy(m); 1152 return (0); 1153 } 1154 return (1); 1155 } 1156 1157 /* 1158 * vm_page_tryxbusy: 1159 * 1160 * Try to exclusive busy a page. 1161 * If the operation succeeds 1 is returned otherwise 0. 1162 * The operation never sleeps. 1163 */ 1164 int 1165 vm_page_tryxbusy(vm_page_t m) 1166 { 1167 vm_object_t obj; 1168 1169 if (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED, 1170 VPB_CURTHREAD_EXCLUSIVE) == 0) 1171 return (0); 1172 1173 obj = m->object; 1174 if (obj != NULL && vm_object_busied(obj)) { 1175 vm_page_xunbusy(m); 1176 return (0); 1177 } 1178 return (1); 1179 } 1180 1181 static void 1182 vm_page_xunbusy_hard_tail(vm_page_t m) 1183 { 1184 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); 1185 /* Wake the waiter. */ 1186 wakeup(m); 1187 } 1188 1189 /* 1190 * vm_page_xunbusy_hard: 1191 * 1192 * Called when unbusy has failed because there is a waiter. 1193 */ 1194 void 1195 vm_page_xunbusy_hard(vm_page_t m) 1196 { 1197 vm_page_assert_xbusied(m); 1198 vm_page_xunbusy_hard_tail(m); 1199 } 1200 1201 void 1202 vm_page_xunbusy_hard_unchecked(vm_page_t m) 1203 { 1204 vm_page_assert_xbusied_unchecked(m); 1205 vm_page_xunbusy_hard_tail(m); 1206 } 1207 1208 /* 1209 * Avoid releasing and reacquiring the same page lock. 1210 */ 1211 void 1212 vm_page_change_lock(vm_page_t m, struct mtx **mtx) 1213 { 1214 struct mtx *mtx1; 1215 1216 mtx1 = vm_page_lockptr(m); 1217 if (*mtx == mtx1) 1218 return; 1219 if (*mtx != NULL) 1220 mtx_unlock(*mtx); 1221 *mtx = mtx1; 1222 mtx_lock(mtx1); 1223 } 1224 1225 /* 1226 * vm_page_unhold_pages: 1227 * 1228 * Unhold each of the pages that is referenced by the given array. 1229 */ 1230 void 1231 vm_page_unhold_pages(vm_page_t *ma, int count) 1232 { 1233 1234 for (; count != 0; count--) { 1235 vm_page_unwire(*ma, PQ_ACTIVE); 1236 ma++; 1237 } 1238 } 1239 1240 vm_page_t 1241 PHYS_TO_VM_PAGE(vm_paddr_t pa) 1242 { 1243 vm_page_t m; 1244 1245 #ifdef VM_PHYSSEG_SPARSE 1246 m = vm_phys_paddr_to_vm_page(pa); 1247 if (m == NULL) 1248 m = vm_phys_fictitious_to_vm_page(pa); 1249 return (m); 1250 #elif defined(VM_PHYSSEG_DENSE) 1251 long pi; 1252 1253 pi = atop(pa); 1254 if (pi >= first_page && (pi - first_page) < vm_page_array_size) { 1255 m = &vm_page_array[pi - first_page]; 1256 return (m); 1257 } 1258 return (vm_phys_fictitious_to_vm_page(pa)); 1259 #else 1260 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." 1261 #endif 1262 } 1263 1264 /* 1265 * vm_page_getfake: 1266 * 1267 * Create a fictitious page with the specified physical address and 1268 * memory attribute. The memory attribute is the only the machine- 1269 * dependent aspect of a fictitious page that must be initialized. 1270 */ 1271 vm_page_t 1272 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) 1273 { 1274 vm_page_t m; 1275 1276 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); 1277 vm_page_initfake(m, paddr, memattr); 1278 return (m); 1279 } 1280 1281 void 1282 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1283 { 1284 1285 if ((m->flags & PG_FICTITIOUS) != 0) { 1286 /* 1287 * The page's memattr might have changed since the 1288 * previous initialization. Update the pmap to the 1289 * new memattr. 1290 */ 1291 goto memattr; 1292 } 1293 m->phys_addr = paddr; 1294 m->a.queue = PQ_NONE; 1295 /* Fictitious pages don't use "segind". */ 1296 m->flags = PG_FICTITIOUS; 1297 /* Fictitious pages don't use "order" or "pool". */ 1298 m->oflags = VPO_UNMANAGED; 1299 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 1300 /* Fictitious pages are unevictable. */ 1301 m->ref_count = 1; 1302 pmap_page_init(m); 1303 memattr: 1304 pmap_page_set_memattr(m, memattr); 1305 } 1306 1307 /* 1308 * vm_page_putfake: 1309 * 1310 * Release a fictitious page. 1311 */ 1312 void 1313 vm_page_putfake(vm_page_t m) 1314 { 1315 1316 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); 1317 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1318 ("vm_page_putfake: bad page %p", m)); 1319 vm_page_xunbusy(m); 1320 uma_zfree(fakepg_zone, m); 1321 } 1322 1323 /* 1324 * vm_page_updatefake: 1325 * 1326 * Update the given fictitious page to the specified physical address and 1327 * memory attribute. 1328 */ 1329 void 1330 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) 1331 { 1332 1333 KASSERT((m->flags & PG_FICTITIOUS) != 0, 1334 ("vm_page_updatefake: bad page %p", m)); 1335 m->phys_addr = paddr; 1336 pmap_page_set_memattr(m, memattr); 1337 } 1338 1339 /* 1340 * vm_page_free: 1341 * 1342 * Free a page. 1343 */ 1344 void 1345 vm_page_free(vm_page_t m) 1346 { 1347 1348 m->flags &= ~PG_ZERO; 1349 vm_page_free_toq(m); 1350 } 1351 1352 /* 1353 * vm_page_free_zero: 1354 * 1355 * Free a page to the zerod-pages queue 1356 */ 1357 void 1358 vm_page_free_zero(vm_page_t m) 1359 { 1360 1361 m->flags |= PG_ZERO; 1362 vm_page_free_toq(m); 1363 } 1364 1365 /* 1366 * Unbusy and handle the page queueing for a page from a getpages request that 1367 * was optionally read ahead or behind. 1368 */ 1369 void 1370 vm_page_readahead_finish(vm_page_t m) 1371 { 1372 1373 /* We shouldn't put invalid pages on queues. */ 1374 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m)); 1375 1376 /* 1377 * Since the page is not the actually needed one, whether it should 1378 * be activated or deactivated is not obvious. Empirical results 1379 * have shown that deactivating the page is usually the best choice, 1380 * unless the page is wanted by another thread. 1381 */ 1382 if ((m->busy_lock & VPB_BIT_WAITERS) != 0) 1383 vm_page_activate(m); 1384 else 1385 vm_page_deactivate(m); 1386 vm_page_xunbusy_unchecked(m); 1387 } 1388 1389 /* 1390 * vm_page_sleep_if_busy: 1391 * 1392 * Sleep and release the object lock if the page is busied. 1393 * Returns TRUE if the thread slept. 1394 * 1395 * The given page must be unlocked and object containing it must 1396 * be locked. 1397 */ 1398 int 1399 vm_page_sleep_if_busy(vm_page_t m, const char *msg) 1400 { 1401 vm_object_t obj; 1402 1403 vm_page_lock_assert(m, MA_NOTOWNED); 1404 VM_OBJECT_ASSERT_WLOCKED(m->object); 1405 1406 /* 1407 * The page-specific object must be cached because page 1408 * identity can change during the sleep, causing the 1409 * re-lock of a different object. 1410 * It is assumed that a reference to the object is already 1411 * held by the callers. 1412 */ 1413 obj = m->object; 1414 if (vm_page_busied(m) || (obj != NULL && obj->busy)) { 1415 vm_page_busy_sleep(m, msg, false); 1416 VM_OBJECT_WLOCK(obj); 1417 return (TRUE); 1418 } 1419 return (FALSE); 1420 } 1421 1422 /* 1423 * vm_page_sleep_if_xbusy: 1424 * 1425 * Sleep and release the object lock if the page is xbusied. 1426 * Returns TRUE if the thread slept. 1427 * 1428 * The given page must be unlocked and object containing it must 1429 * be locked. 1430 */ 1431 int 1432 vm_page_sleep_if_xbusy(vm_page_t m, const char *msg) 1433 { 1434 vm_object_t obj; 1435 1436 vm_page_lock_assert(m, MA_NOTOWNED); 1437 VM_OBJECT_ASSERT_WLOCKED(m->object); 1438 1439 /* 1440 * The page-specific object must be cached because page 1441 * identity can change during the sleep, causing the 1442 * re-lock of a different object. 1443 * It is assumed that a reference to the object is already 1444 * held by the callers. 1445 */ 1446 obj = m->object; 1447 if (vm_page_xbusied(m) || (obj != NULL && obj->busy)) { 1448 vm_page_busy_sleep(m, msg, true); 1449 VM_OBJECT_WLOCK(obj); 1450 return (TRUE); 1451 } 1452 return (FALSE); 1453 } 1454 1455 /* 1456 * vm_page_dirty_KBI: [ internal use only ] 1457 * 1458 * Set all bits in the page's dirty field. 1459 * 1460 * The object containing the specified page must be locked if the 1461 * call is made from the machine-independent layer. 1462 * 1463 * See vm_page_clear_dirty_mask(). 1464 * 1465 * This function should only be called by vm_page_dirty(). 1466 */ 1467 void 1468 vm_page_dirty_KBI(vm_page_t m) 1469 { 1470 1471 /* Refer to this operation by its public name. */ 1472 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!")); 1473 m->dirty = VM_PAGE_BITS_ALL; 1474 } 1475 1476 /* 1477 * vm_page_insert: [ internal use only ] 1478 * 1479 * Inserts the given mem entry into the object and object list. 1480 * 1481 * The object must be locked. 1482 */ 1483 int 1484 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 1485 { 1486 vm_page_t mpred; 1487 1488 VM_OBJECT_ASSERT_WLOCKED(object); 1489 mpred = vm_radix_lookup_le(&object->rtree, pindex); 1490 return (vm_page_insert_after(m, object, pindex, mpred)); 1491 } 1492 1493 /* 1494 * vm_page_insert_after: 1495 * 1496 * Inserts the page "m" into the specified object at offset "pindex". 1497 * 1498 * The page "mpred" must immediately precede the offset "pindex" within 1499 * the specified object. 1500 * 1501 * The object must be locked. 1502 */ 1503 static int 1504 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, 1505 vm_page_t mpred) 1506 { 1507 vm_page_t msucc; 1508 1509 VM_OBJECT_ASSERT_WLOCKED(object); 1510 KASSERT(m->object == NULL, 1511 ("vm_page_insert_after: page already inserted")); 1512 if (mpred != NULL) { 1513 KASSERT(mpred->object == object, 1514 ("vm_page_insert_after: object doesn't contain mpred")); 1515 KASSERT(mpred->pindex < pindex, 1516 ("vm_page_insert_after: mpred doesn't precede pindex")); 1517 msucc = TAILQ_NEXT(mpred, listq); 1518 } else 1519 msucc = TAILQ_FIRST(&object->memq); 1520 if (msucc != NULL) 1521 KASSERT(msucc->pindex > pindex, 1522 ("vm_page_insert_after: msucc doesn't succeed pindex")); 1523 1524 /* 1525 * Record the object/offset pair in this page. 1526 */ 1527 m->object = object; 1528 m->pindex = pindex; 1529 m->ref_count |= VPRC_OBJREF; 1530 1531 /* 1532 * Now link into the object's ordered list of backed pages. 1533 */ 1534 if (vm_radix_insert(&object->rtree, m)) { 1535 m->object = NULL; 1536 m->pindex = 0; 1537 m->ref_count &= ~VPRC_OBJREF; 1538 return (1); 1539 } 1540 vm_page_insert_radixdone(m, object, mpred); 1541 return (0); 1542 } 1543 1544 /* 1545 * vm_page_insert_radixdone: 1546 * 1547 * Complete page "m" insertion into the specified object after the 1548 * radix trie hooking. 1549 * 1550 * The page "mpred" must precede the offset "m->pindex" within the 1551 * specified object. 1552 * 1553 * The object must be locked. 1554 */ 1555 static void 1556 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) 1557 { 1558 1559 VM_OBJECT_ASSERT_WLOCKED(object); 1560 KASSERT(object != NULL && m->object == object, 1561 ("vm_page_insert_radixdone: page %p has inconsistent object", m)); 1562 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1563 ("vm_page_insert_radixdone: page %p is missing object ref", m)); 1564 if (mpred != NULL) { 1565 KASSERT(mpred->object == object, 1566 ("vm_page_insert_radixdone: object doesn't contain mpred")); 1567 KASSERT(mpred->pindex < m->pindex, 1568 ("vm_page_insert_radixdone: mpred doesn't precede pindex")); 1569 } 1570 1571 if (mpred != NULL) 1572 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); 1573 else 1574 TAILQ_INSERT_HEAD(&object->memq, m, listq); 1575 1576 /* 1577 * Show that the object has one more resident page. 1578 */ 1579 object->resident_page_count++; 1580 1581 /* 1582 * Hold the vnode until the last page is released. 1583 */ 1584 if (object->resident_page_count == 1 && object->type == OBJT_VNODE) 1585 vhold(object->handle); 1586 1587 /* 1588 * Since we are inserting a new and possibly dirty page, 1589 * update the object's generation count. 1590 */ 1591 if (pmap_page_is_write_mapped(m)) 1592 vm_object_set_writeable_dirty(object); 1593 } 1594 1595 /* 1596 * Do the work to remove a page from its object. The caller is responsible for 1597 * updating the page's fields to reflect this removal. 1598 */ 1599 static void 1600 vm_page_object_remove(vm_page_t m) 1601 { 1602 vm_object_t object; 1603 vm_page_t mrem; 1604 1605 vm_page_assert_xbusied(m); 1606 object = m->object; 1607 VM_OBJECT_ASSERT_WLOCKED(object); 1608 KASSERT((m->ref_count & VPRC_OBJREF) != 0, 1609 ("page %p is missing its object ref", m)); 1610 1611 /* Deferred free of swap space. */ 1612 if ((m->a.flags & PGA_SWAP_FREE) != 0) 1613 vm_pager_page_unswapped(m); 1614 1615 mrem = vm_radix_remove(&object->rtree, m->pindex); 1616 KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m)); 1617 1618 /* 1619 * Now remove from the object's list of backed pages. 1620 */ 1621 TAILQ_REMOVE(&object->memq, m, listq); 1622 1623 /* 1624 * And show that the object has one fewer resident page. 1625 */ 1626 object->resident_page_count--; 1627 1628 /* 1629 * The vnode may now be recycled. 1630 */ 1631 if (object->resident_page_count == 0 && object->type == OBJT_VNODE) 1632 vdrop(object->handle); 1633 } 1634 1635 /* 1636 * vm_page_remove: 1637 * 1638 * Removes the specified page from its containing object, but does not 1639 * invalidate any backing storage. Returns true if the object's reference 1640 * was the last reference to the page, and false otherwise. 1641 * 1642 * The object must be locked and the page must be exclusively busied. 1643 * The exclusive busy will be released on return. If this is not the 1644 * final ref and the caller does not hold a wire reference it may not 1645 * continue to access the page. 1646 */ 1647 bool 1648 vm_page_remove(vm_page_t m) 1649 { 1650 bool dropped; 1651 1652 dropped = vm_page_remove_xbusy(m); 1653 vm_page_xunbusy(m); 1654 1655 return (dropped); 1656 } 1657 1658 /* 1659 * vm_page_remove_xbusy 1660 * 1661 * Removes the page but leaves the xbusy held. Returns true if this 1662 * removed the final ref and false otherwise. 1663 */ 1664 bool 1665 vm_page_remove_xbusy(vm_page_t m) 1666 { 1667 1668 vm_page_object_remove(m); 1669 m->object = NULL; 1670 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF); 1671 } 1672 1673 /* 1674 * vm_page_lookup: 1675 * 1676 * Returns the page associated with the object/offset 1677 * pair specified; if none is found, NULL is returned. 1678 * 1679 * The object must be locked. 1680 */ 1681 vm_page_t 1682 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1683 { 1684 1685 VM_OBJECT_ASSERT_LOCKED(object); 1686 return (vm_radix_lookup(&object->rtree, pindex)); 1687 } 1688 1689 /* 1690 * vm_page_find_least: 1691 * 1692 * Returns the page associated with the object with least pindex 1693 * greater than or equal to the parameter pindex, or NULL. 1694 * 1695 * The object must be locked. 1696 */ 1697 vm_page_t 1698 vm_page_find_least(vm_object_t object, vm_pindex_t pindex) 1699 { 1700 vm_page_t m; 1701 1702 VM_OBJECT_ASSERT_LOCKED(object); 1703 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) 1704 m = vm_radix_lookup_ge(&object->rtree, pindex); 1705 return (m); 1706 } 1707 1708 /* 1709 * Returns the given page's successor (by pindex) within the object if it is 1710 * resident; if none is found, NULL is returned. 1711 * 1712 * The object must be locked. 1713 */ 1714 vm_page_t 1715 vm_page_next(vm_page_t m) 1716 { 1717 vm_page_t next; 1718 1719 VM_OBJECT_ASSERT_LOCKED(m->object); 1720 if ((next = TAILQ_NEXT(m, listq)) != NULL) { 1721 MPASS(next->object == m->object); 1722 if (next->pindex != m->pindex + 1) 1723 next = NULL; 1724 } 1725 return (next); 1726 } 1727 1728 /* 1729 * Returns the given page's predecessor (by pindex) within the object if it is 1730 * resident; if none is found, NULL is returned. 1731 * 1732 * The object must be locked. 1733 */ 1734 vm_page_t 1735 vm_page_prev(vm_page_t m) 1736 { 1737 vm_page_t prev; 1738 1739 VM_OBJECT_ASSERT_LOCKED(m->object); 1740 if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) { 1741 MPASS(prev->object == m->object); 1742 if (prev->pindex != m->pindex - 1) 1743 prev = NULL; 1744 } 1745 return (prev); 1746 } 1747 1748 /* 1749 * Uses the page mnew as a replacement for an existing page at index 1750 * pindex which must be already present in the object. 1751 * 1752 * Both pages must be exclusively busied on enter. The old page is 1753 * unbusied on exit. 1754 * 1755 * A return value of true means mold is now free. If this is not the 1756 * final ref and the caller does not hold a wire reference it may not 1757 * continue to access the page. 1758 */ 1759 static bool 1760 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 1761 vm_page_t mold) 1762 { 1763 vm_page_t mret; 1764 bool dropped; 1765 1766 VM_OBJECT_ASSERT_WLOCKED(object); 1767 vm_page_assert_xbusied(mold); 1768 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0, 1769 ("vm_page_replace: page %p already in object", mnew)); 1770 1771 /* 1772 * This function mostly follows vm_page_insert() and 1773 * vm_page_remove() without the radix, object count and vnode 1774 * dance. Double check such functions for more comments. 1775 */ 1776 1777 mnew->object = object; 1778 mnew->pindex = pindex; 1779 atomic_set_int(&mnew->ref_count, VPRC_OBJREF); 1780 mret = vm_radix_replace(&object->rtree, mnew); 1781 KASSERT(mret == mold, 1782 ("invalid page replacement, mold=%p, mret=%p", mold, mret)); 1783 KASSERT((mold->oflags & VPO_UNMANAGED) == 1784 (mnew->oflags & VPO_UNMANAGED), 1785 ("vm_page_replace: mismatched VPO_UNMANAGED")); 1786 1787 /* Keep the resident page list in sorted order. */ 1788 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); 1789 TAILQ_REMOVE(&object->memq, mold, listq); 1790 mold->object = NULL; 1791 1792 /* 1793 * The object's resident_page_count does not change because we have 1794 * swapped one page for another, but the generation count should 1795 * change if the page is dirty. 1796 */ 1797 if (pmap_page_is_write_mapped(mnew)) 1798 vm_object_set_writeable_dirty(object); 1799 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF; 1800 vm_page_xunbusy(mold); 1801 1802 return (dropped); 1803 } 1804 1805 void 1806 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, 1807 vm_page_t mold) 1808 { 1809 1810 vm_page_assert_xbusied(mnew); 1811 1812 if (vm_page_replace_hold(mnew, object, pindex, mold)) 1813 vm_page_free(mold); 1814 } 1815 1816 /* 1817 * vm_page_rename: 1818 * 1819 * Move the given memory entry from its 1820 * current object to the specified target object/offset. 1821 * 1822 * Note: swap associated with the page must be invalidated by the move. We 1823 * have to do this for several reasons: (1) we aren't freeing the 1824 * page, (2) we are dirtying the page, (3) the VM system is probably 1825 * moving the page from object A to B, and will then later move 1826 * the backing store from A to B and we can't have a conflict. 1827 * 1828 * Note: we *always* dirty the page. It is necessary both for the 1829 * fact that we moved it, and because we may be invalidating 1830 * swap. 1831 * 1832 * The objects must be locked. 1833 */ 1834 int 1835 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1836 { 1837 vm_page_t mpred; 1838 vm_pindex_t opidx; 1839 1840 VM_OBJECT_ASSERT_WLOCKED(new_object); 1841 1842 KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m)); 1843 mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); 1844 KASSERT(mpred == NULL || mpred->pindex != new_pindex, 1845 ("vm_page_rename: pindex already renamed")); 1846 1847 /* 1848 * Create a custom version of vm_page_insert() which does not depend 1849 * by m_prev and can cheat on the implementation aspects of the 1850 * function. 1851 */ 1852 opidx = m->pindex; 1853 m->pindex = new_pindex; 1854 if (vm_radix_insert(&new_object->rtree, m)) { 1855 m->pindex = opidx; 1856 return (1); 1857 } 1858 1859 /* 1860 * The operation cannot fail anymore. The removal must happen before 1861 * the listq iterator is tainted. 1862 */ 1863 m->pindex = opidx; 1864 vm_page_object_remove(m); 1865 1866 /* Return back to the new pindex to complete vm_page_insert(). */ 1867 m->pindex = new_pindex; 1868 m->object = new_object; 1869 1870 vm_page_insert_radixdone(m, new_object, mpred); 1871 vm_page_dirty(m); 1872 return (0); 1873 } 1874 1875 /* 1876 * vm_page_alloc: 1877 * 1878 * Allocate and return a page that is associated with the specified 1879 * object and offset pair. By default, this page is exclusive busied. 1880 * 1881 * The caller must always specify an allocation class. 1882 * 1883 * allocation classes: 1884 * VM_ALLOC_NORMAL normal process request 1885 * VM_ALLOC_SYSTEM system *really* needs a page 1886 * VM_ALLOC_INTERRUPT interrupt time request 1887 * 1888 * optional allocation flags: 1889 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 1890 * intends to allocate 1891 * VM_ALLOC_NOBUSY do not exclusive busy the page 1892 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 1893 * VM_ALLOC_NOOBJ page is not associated with an object and 1894 * should not be exclusive busy 1895 * VM_ALLOC_SBUSY shared busy the allocated page 1896 * VM_ALLOC_WIRED wire the allocated page 1897 * VM_ALLOC_ZERO prefer a zeroed page 1898 */ 1899 vm_page_t 1900 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) 1901 { 1902 1903 return (vm_page_alloc_after(object, pindex, req, object != NULL ? 1904 vm_radix_lookup_le(&object->rtree, pindex) : NULL)); 1905 } 1906 1907 vm_page_t 1908 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain, 1909 int req) 1910 { 1911 1912 return (vm_page_alloc_domain_after(object, pindex, domain, req, 1913 object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) : 1914 NULL)); 1915 } 1916 1917 /* 1918 * Allocate a page in the specified object with the given page index. To 1919 * optimize insertion of the page into the object, the caller must also specifiy 1920 * the resident page in the object with largest index smaller than the given 1921 * page index, or NULL if no such page exists. 1922 */ 1923 vm_page_t 1924 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, 1925 int req, vm_page_t mpred) 1926 { 1927 struct vm_domainset_iter di; 1928 vm_page_t m; 1929 int domain; 1930 1931 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 1932 do { 1933 m = vm_page_alloc_domain_after(object, pindex, domain, req, 1934 mpred); 1935 if (m != NULL) 1936 break; 1937 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 1938 1939 return (m); 1940 } 1941 1942 /* 1943 * Returns true if the number of free pages exceeds the minimum 1944 * for the request class and false otherwise. 1945 */ 1946 static int 1947 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages) 1948 { 1949 u_int limit, old, new; 1950 1951 if (req_class == VM_ALLOC_INTERRUPT) 1952 limit = 0; 1953 else if (req_class == VM_ALLOC_SYSTEM) 1954 limit = vmd->vmd_interrupt_free_min; 1955 else 1956 limit = vmd->vmd_free_reserved; 1957 1958 /* 1959 * Attempt to reserve the pages. Fail if we're below the limit. 1960 */ 1961 limit += npages; 1962 old = vmd->vmd_free_count; 1963 do { 1964 if (old < limit) 1965 return (0); 1966 new = old - npages; 1967 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0); 1968 1969 /* Wake the page daemon if we've crossed the threshold. */ 1970 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old)) 1971 pagedaemon_wakeup(vmd->vmd_domain); 1972 1973 /* Only update bitsets on transitions. */ 1974 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) || 1975 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe)) 1976 vm_domain_set(vmd); 1977 1978 return (1); 1979 } 1980 1981 int 1982 vm_domain_allocate(struct vm_domain *vmd, int req, int npages) 1983 { 1984 int req_class; 1985 1986 /* 1987 * The page daemon is allowed to dig deeper into the free page list. 1988 */ 1989 req_class = req & VM_ALLOC_CLASS_MASK; 1990 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 1991 req_class = VM_ALLOC_SYSTEM; 1992 return (_vm_domain_allocate(vmd, req_class, npages)); 1993 } 1994 1995 vm_page_t 1996 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain, 1997 int req, vm_page_t mpred) 1998 { 1999 struct vm_domain *vmd; 2000 vm_page_t m; 2001 int flags, pool; 2002 2003 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 2004 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 2005 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2006 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2007 ("inconsistent object(%p)/req(%x)", object, req)); 2008 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, 2009 ("Can't sleep and retry object insertion.")); 2010 KASSERT(mpred == NULL || mpred->pindex < pindex, 2011 ("mpred %p doesn't precede pindex 0x%jx", mpred, 2012 (uintmax_t)pindex)); 2013 if (object != NULL) 2014 VM_OBJECT_ASSERT_WLOCKED(object); 2015 2016 flags = 0; 2017 m = NULL; 2018 pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT; 2019 again: 2020 #if VM_NRESERVLEVEL > 0 2021 /* 2022 * Can we allocate the page from a reservation? 2023 */ 2024 if (vm_object_reserv(object) && 2025 (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) != 2026 NULL) { 2027 domain = vm_phys_domain(m); 2028 vmd = VM_DOMAIN(domain); 2029 goto found; 2030 } 2031 #endif 2032 vmd = VM_DOMAIN(domain); 2033 if (vmd->vmd_pgcache[pool].zone != NULL) { 2034 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT); 2035 if (m != NULL) { 2036 flags |= PG_PCPU_CACHE; 2037 goto found; 2038 } 2039 } 2040 if (vm_domain_allocate(vmd, req, 1)) { 2041 /* 2042 * If not, allocate it from the free page queues. 2043 */ 2044 vm_domain_free_lock(vmd); 2045 m = vm_phys_alloc_pages(domain, pool, 0); 2046 vm_domain_free_unlock(vmd); 2047 if (m == NULL) { 2048 vm_domain_freecnt_inc(vmd, 1); 2049 #if VM_NRESERVLEVEL > 0 2050 if (vm_reserv_reclaim_inactive(domain)) 2051 goto again; 2052 #endif 2053 } 2054 } 2055 if (m == NULL) { 2056 /* 2057 * Not allocatable, give up. 2058 */ 2059 if (vm_domain_alloc_fail(vmd, object, req)) 2060 goto again; 2061 return (NULL); 2062 } 2063 2064 /* 2065 * At this point we had better have found a good page. 2066 */ 2067 found: 2068 vm_page_dequeue(m); 2069 vm_page_alloc_check(m); 2070 2071 /* 2072 * Initialize the page. Only the PG_ZERO flag is inherited. 2073 */ 2074 if ((req & VM_ALLOC_ZERO) != 0) 2075 flags |= (m->flags & PG_ZERO); 2076 if ((req & VM_ALLOC_NODUMP) != 0) 2077 flags |= PG_NODUMP; 2078 m->flags = flags; 2079 m->a.flags = 0; 2080 m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 2081 VPO_UNMANAGED : 0; 2082 m->busy_lock = VPB_UNBUSIED; 2083 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 2084 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2085 if ((req & VM_ALLOC_SBUSY) != 0) 2086 m->busy_lock = VPB_SHARERS_WORD(1); 2087 if (req & VM_ALLOC_WIRED) { 2088 vm_wire_add(1); 2089 m->ref_count = 1; 2090 } 2091 m->a.act_count = 0; 2092 2093 if (object != NULL) { 2094 if (vm_page_insert_after(m, object, pindex, mpred)) { 2095 if (req & VM_ALLOC_WIRED) { 2096 vm_wire_sub(1); 2097 m->ref_count = 0; 2098 } 2099 KASSERT(m->object == NULL, ("page %p has object", m)); 2100 m->oflags = VPO_UNMANAGED; 2101 m->busy_lock = VPB_UNBUSIED; 2102 /* Don't change PG_ZERO. */ 2103 vm_page_free_toq(m); 2104 if (req & VM_ALLOC_WAITFAIL) { 2105 VM_OBJECT_WUNLOCK(object); 2106 vm_radix_wait(); 2107 VM_OBJECT_WLOCK(object); 2108 } 2109 return (NULL); 2110 } 2111 2112 /* Ignore device objects; the pager sets "memattr" for them. */ 2113 if (object->memattr != VM_MEMATTR_DEFAULT && 2114 (object->flags & OBJ_FICTITIOUS) == 0) 2115 pmap_page_set_memattr(m, object->memattr); 2116 } else 2117 m->pindex = pindex; 2118 2119 return (m); 2120 } 2121 2122 /* 2123 * vm_page_alloc_contig: 2124 * 2125 * Allocate a contiguous set of physical pages of the given size "npages" 2126 * from the free lists. All of the physical pages must be at or above 2127 * the given physical address "low" and below the given physical address 2128 * "high". The given value "alignment" determines the alignment of the 2129 * first physical page in the set. If the given value "boundary" is 2130 * non-zero, then the set of physical pages cannot cross any physical 2131 * address boundary that is a multiple of that value. Both "alignment" 2132 * and "boundary" must be a power of two. 2133 * 2134 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, 2135 * then the memory attribute setting for the physical pages is configured 2136 * to the object's memory attribute setting. Otherwise, the memory 2137 * attribute setting for the physical pages is configured to "memattr", 2138 * overriding the object's memory attribute setting. However, if the 2139 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the 2140 * memory attribute setting for the physical pages cannot be configured 2141 * to VM_MEMATTR_DEFAULT. 2142 * 2143 * The specified object may not contain fictitious pages. 2144 * 2145 * The caller must always specify an allocation class. 2146 * 2147 * allocation classes: 2148 * VM_ALLOC_NORMAL normal process request 2149 * VM_ALLOC_SYSTEM system *really* needs a page 2150 * VM_ALLOC_INTERRUPT interrupt time request 2151 * 2152 * optional allocation flags: 2153 * VM_ALLOC_NOBUSY do not exclusive busy the page 2154 * VM_ALLOC_NODUMP do not include the page in a kernel core dump 2155 * VM_ALLOC_NOOBJ page is not associated with an object and 2156 * should not be exclusive busy 2157 * VM_ALLOC_SBUSY shared busy the allocated page 2158 * VM_ALLOC_WIRED wire the allocated page 2159 * VM_ALLOC_ZERO prefer a zeroed page 2160 */ 2161 vm_page_t 2162 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, 2163 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2164 vm_paddr_t boundary, vm_memattr_t memattr) 2165 { 2166 struct vm_domainset_iter di; 2167 vm_page_t m; 2168 int domain; 2169 2170 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); 2171 do { 2172 m = vm_page_alloc_contig_domain(object, pindex, domain, req, 2173 npages, low, high, alignment, boundary, memattr); 2174 if (m != NULL) 2175 break; 2176 } while (vm_domainset_iter_page(&di, object, &domain) == 0); 2177 2178 return (m); 2179 } 2180 2181 vm_page_t 2182 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, 2183 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 2184 vm_paddr_t boundary, vm_memattr_t memattr) 2185 { 2186 struct vm_domain *vmd; 2187 vm_page_t m, m_ret, mpred; 2188 u_int busy_lock, flags, oflags; 2189 2190 mpred = NULL; /* XXX: pacify gcc */ 2191 KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && 2192 (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && 2193 ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != 2194 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), 2195 ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object, 2196 req)); 2197 KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, 2198 ("Can't sleep and retry object insertion.")); 2199 if (object != NULL) { 2200 VM_OBJECT_ASSERT_WLOCKED(object); 2201 KASSERT((object->flags & OBJ_FICTITIOUS) == 0, 2202 ("vm_page_alloc_contig: object %p has fictitious pages", 2203 object)); 2204 } 2205 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); 2206 2207 if (object != NULL) { 2208 mpred = vm_radix_lookup_le(&object->rtree, pindex); 2209 KASSERT(mpred == NULL || mpred->pindex != pindex, 2210 ("vm_page_alloc_contig: pindex already allocated")); 2211 } 2212 2213 /* 2214 * Can we allocate the pages without the number of free pages falling 2215 * below the lower bound for the allocation class? 2216 */ 2217 m_ret = NULL; 2218 again: 2219 #if VM_NRESERVLEVEL > 0 2220 /* 2221 * Can we allocate the pages from a reservation? 2222 */ 2223 if (vm_object_reserv(object) && 2224 (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req, 2225 mpred, npages, low, high, alignment, boundary)) != NULL) { 2226 domain = vm_phys_domain(m_ret); 2227 vmd = VM_DOMAIN(domain); 2228 goto found; 2229 } 2230 #endif 2231 vmd = VM_DOMAIN(domain); 2232 if (vm_domain_allocate(vmd, req, npages)) { 2233 /* 2234 * allocate them from the free page queues. 2235 */ 2236 vm_domain_free_lock(vmd); 2237 m_ret = vm_phys_alloc_contig(domain, npages, low, high, 2238 alignment, boundary); 2239 vm_domain_free_unlock(vmd); 2240 if (m_ret == NULL) { 2241 vm_domain_freecnt_inc(vmd, npages); 2242 #if VM_NRESERVLEVEL > 0 2243 if (vm_reserv_reclaim_contig(domain, npages, low, 2244 high, alignment, boundary)) 2245 goto again; 2246 #endif 2247 } 2248 } 2249 if (m_ret == NULL) { 2250 if (vm_domain_alloc_fail(vmd, object, req)) 2251 goto again; 2252 return (NULL); 2253 } 2254 #if VM_NRESERVLEVEL > 0 2255 found: 2256 #endif 2257 for (m = m_ret; m < &m_ret[npages]; m++) { 2258 vm_page_dequeue(m); 2259 vm_page_alloc_check(m); 2260 } 2261 2262 /* 2263 * Initialize the pages. Only the PG_ZERO flag is inherited. 2264 */ 2265 flags = 0; 2266 if ((req & VM_ALLOC_ZERO) != 0) 2267 flags = PG_ZERO; 2268 if ((req & VM_ALLOC_NODUMP) != 0) 2269 flags |= PG_NODUMP; 2270 oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? 2271 VPO_UNMANAGED : 0; 2272 busy_lock = VPB_UNBUSIED; 2273 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) 2274 busy_lock = VPB_CURTHREAD_EXCLUSIVE; 2275 if ((req & VM_ALLOC_SBUSY) != 0) 2276 busy_lock = VPB_SHARERS_WORD(1); 2277 if ((req & VM_ALLOC_WIRED) != 0) 2278 vm_wire_add(npages); 2279 if (object != NULL) { 2280 if (object->memattr != VM_MEMATTR_DEFAULT && 2281 memattr == VM_MEMATTR_DEFAULT) 2282 memattr = object->memattr; 2283 } 2284 for (m = m_ret; m < &m_ret[npages]; m++) { 2285 m->a.flags = 0; 2286 m->flags = (m->flags | PG_NODUMP) & flags; 2287 m->busy_lock = busy_lock; 2288 if ((req & VM_ALLOC_WIRED) != 0) 2289 m->ref_count = 1; 2290 m->a.act_count = 0; 2291 m->oflags = oflags; 2292 if (object != NULL) { 2293 if (vm_page_insert_after(m, object, pindex, mpred)) { 2294 if ((req & VM_ALLOC_WIRED) != 0) 2295 vm_wire_sub(npages); 2296 KASSERT(m->object == NULL, 2297 ("page %p has object", m)); 2298 mpred = m; 2299 for (m = m_ret; m < &m_ret[npages]; m++) { 2300 if (m <= mpred && 2301 (req & VM_ALLOC_WIRED) != 0) 2302 m->ref_count = 0; 2303 m->oflags = VPO_UNMANAGED; 2304 m->busy_lock = VPB_UNBUSIED; 2305 /* Don't change PG_ZERO. */ 2306 vm_page_free_toq(m); 2307 } 2308 if (req & VM_ALLOC_WAITFAIL) { 2309 VM_OBJECT_WUNLOCK(object); 2310 vm_radix_wait(); 2311 VM_OBJECT_WLOCK(object); 2312 } 2313 return (NULL); 2314 } 2315 mpred = m; 2316 } else 2317 m->pindex = pindex; 2318 if (memattr != VM_MEMATTR_DEFAULT) 2319 pmap_page_set_memattr(m, memattr); 2320 pindex++; 2321 } 2322 return (m_ret); 2323 } 2324 2325 /* 2326 * Check a page that has been freshly dequeued from a freelist. 2327 */ 2328 static void 2329 vm_page_alloc_check(vm_page_t m) 2330 { 2331 2332 KASSERT(m->object == NULL, ("page %p has object", m)); 2333 KASSERT(m->a.queue == PQ_NONE && 2334 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 2335 ("page %p has unexpected queue %d, flags %#x", 2336 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK))); 2337 KASSERT(m->ref_count == 0, ("page %p has references", m)); 2338 KASSERT(!vm_page_busied(m), ("page %p is busy", m)); 2339 KASSERT(m->dirty == 0, ("page %p is dirty", m)); 2340 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, 2341 ("page %p has unexpected memattr %d", 2342 m, pmap_page_get_memattr(m))); 2343 KASSERT(m->valid == 0, ("free page %p is valid", m)); 2344 } 2345 2346 /* 2347 * vm_page_alloc_freelist: 2348 * 2349 * Allocate a physical page from the specified free page list. 2350 * 2351 * The caller must always specify an allocation class. 2352 * 2353 * allocation classes: 2354 * VM_ALLOC_NORMAL normal process request 2355 * VM_ALLOC_SYSTEM system *really* needs a page 2356 * VM_ALLOC_INTERRUPT interrupt time request 2357 * 2358 * optional allocation flags: 2359 * VM_ALLOC_COUNT(number) the number of additional pages that the caller 2360 * intends to allocate 2361 * VM_ALLOC_WIRED wire the allocated page 2362 * VM_ALLOC_ZERO prefer a zeroed page 2363 */ 2364 vm_page_t 2365 vm_page_alloc_freelist(int freelist, int req) 2366 { 2367 struct vm_domainset_iter di; 2368 vm_page_t m; 2369 int domain; 2370 2371 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 2372 do { 2373 m = vm_page_alloc_freelist_domain(domain, freelist, req); 2374 if (m != NULL) 2375 break; 2376 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 2377 2378 return (m); 2379 } 2380 2381 vm_page_t 2382 vm_page_alloc_freelist_domain(int domain, int freelist, int req) 2383 { 2384 struct vm_domain *vmd; 2385 vm_page_t m; 2386 u_int flags; 2387 2388 m = NULL; 2389 vmd = VM_DOMAIN(domain); 2390 again: 2391 if (vm_domain_allocate(vmd, req, 1)) { 2392 vm_domain_free_lock(vmd); 2393 m = vm_phys_alloc_freelist_pages(domain, freelist, 2394 VM_FREEPOOL_DIRECT, 0); 2395 vm_domain_free_unlock(vmd); 2396 if (m == NULL) 2397 vm_domain_freecnt_inc(vmd, 1); 2398 } 2399 if (m == NULL) { 2400 if (vm_domain_alloc_fail(vmd, NULL, req)) 2401 goto again; 2402 return (NULL); 2403 } 2404 vm_page_dequeue(m); 2405 vm_page_alloc_check(m); 2406 2407 /* 2408 * Initialize the page. Only the PG_ZERO flag is inherited. 2409 */ 2410 m->a.flags = 0; 2411 flags = 0; 2412 if ((req & VM_ALLOC_ZERO) != 0) 2413 flags = PG_ZERO; 2414 m->flags &= flags; 2415 if ((req & VM_ALLOC_WIRED) != 0) { 2416 vm_wire_add(1); 2417 m->ref_count = 1; 2418 } 2419 /* Unmanaged pages don't use "act_count". */ 2420 m->oflags = VPO_UNMANAGED; 2421 return (m); 2422 } 2423 2424 static int 2425 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags) 2426 { 2427 struct vm_domain *vmd; 2428 struct vm_pgcache *pgcache; 2429 int i; 2430 2431 pgcache = arg; 2432 vmd = VM_DOMAIN(pgcache->domain); 2433 2434 /* 2435 * The page daemon should avoid creating extra memory pressure since its 2436 * main purpose is to replenish the store of free pages. 2437 */ 2438 if (vmd->vmd_severeset || curproc == pageproc || 2439 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt)) 2440 return (0); 2441 domain = vmd->vmd_domain; 2442 vm_domain_free_lock(vmd); 2443 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt, 2444 (vm_page_t *)store); 2445 vm_domain_free_unlock(vmd); 2446 if (cnt != i) 2447 vm_domain_freecnt_inc(vmd, cnt - i); 2448 2449 return (i); 2450 } 2451 2452 static void 2453 vm_page_zone_release(void *arg, void **store, int cnt) 2454 { 2455 struct vm_domain *vmd; 2456 struct vm_pgcache *pgcache; 2457 vm_page_t m; 2458 int i; 2459 2460 pgcache = arg; 2461 vmd = VM_DOMAIN(pgcache->domain); 2462 vm_domain_free_lock(vmd); 2463 for (i = 0; i < cnt; i++) { 2464 m = (vm_page_t)store[i]; 2465 vm_phys_free_pages(m, 0); 2466 } 2467 vm_domain_free_unlock(vmd); 2468 vm_domain_freecnt_inc(vmd, cnt); 2469 } 2470 2471 #define VPSC_ANY 0 /* No restrictions. */ 2472 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ 2473 #define VPSC_NOSUPER 2 /* Skip superpages. */ 2474 2475 /* 2476 * vm_page_scan_contig: 2477 * 2478 * Scan vm_page_array[] between the specified entries "m_start" and 2479 * "m_end" for a run of contiguous physical pages that satisfy the 2480 * specified conditions, and return the lowest page in the run. The 2481 * specified "alignment" determines the alignment of the lowest physical 2482 * page in the run. If the specified "boundary" is non-zero, then the 2483 * run of physical pages cannot span a physical address that is a 2484 * multiple of "boundary". 2485 * 2486 * "m_end" is never dereferenced, so it need not point to a vm_page 2487 * structure within vm_page_array[]. 2488 * 2489 * "npages" must be greater than zero. "m_start" and "m_end" must not 2490 * span a hole (or discontiguity) in the physical address space. Both 2491 * "alignment" and "boundary" must be a power of two. 2492 */ 2493 vm_page_t 2494 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, 2495 u_long alignment, vm_paddr_t boundary, int options) 2496 { 2497 struct mtx *m_mtx; 2498 vm_object_t object; 2499 vm_paddr_t pa; 2500 vm_page_t m, m_run; 2501 #if VM_NRESERVLEVEL > 0 2502 int level; 2503 #endif 2504 int m_inc, order, run_ext, run_len; 2505 2506 KASSERT(npages > 0, ("npages is 0")); 2507 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2508 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2509 m_run = NULL; 2510 run_len = 0; 2511 m_mtx = NULL; 2512 for (m = m_start; m < m_end && run_len < npages; m += m_inc) { 2513 KASSERT((m->flags & PG_MARKER) == 0, 2514 ("page %p is PG_MARKER", m)); 2515 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1, 2516 ("fictitious page %p has invalid ref count", m)); 2517 2518 /* 2519 * If the current page would be the start of a run, check its 2520 * physical address against the end, alignment, and boundary 2521 * conditions. If it doesn't satisfy these conditions, either 2522 * terminate the scan or advance to the next page that 2523 * satisfies the failed condition. 2524 */ 2525 if (run_len == 0) { 2526 KASSERT(m_run == NULL, ("m_run != NULL")); 2527 if (m + npages > m_end) 2528 break; 2529 pa = VM_PAGE_TO_PHYS(m); 2530 if ((pa & (alignment - 1)) != 0) { 2531 m_inc = atop(roundup2(pa, alignment) - pa); 2532 continue; 2533 } 2534 if (rounddown2(pa ^ (pa + ptoa(npages) - 1), 2535 boundary) != 0) { 2536 m_inc = atop(roundup2(pa, boundary) - pa); 2537 continue; 2538 } 2539 } else 2540 KASSERT(m_run != NULL, ("m_run == NULL")); 2541 2542 vm_page_change_lock(m, &m_mtx); 2543 m_inc = 1; 2544 retry: 2545 if (vm_page_wired(m)) 2546 run_ext = 0; 2547 #if VM_NRESERVLEVEL > 0 2548 else if ((level = vm_reserv_level(m)) >= 0 && 2549 (options & VPSC_NORESERV) != 0) { 2550 run_ext = 0; 2551 /* Advance to the end of the reservation. */ 2552 pa = VM_PAGE_TO_PHYS(m); 2553 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - 2554 pa); 2555 } 2556 #endif 2557 else if ((object = m->object) != NULL) { 2558 /* 2559 * The page is considered eligible for relocation if 2560 * and only if it could be laundered or reclaimed by 2561 * the page daemon. 2562 */ 2563 if (!VM_OBJECT_TRYRLOCK(object)) { 2564 mtx_unlock(m_mtx); 2565 VM_OBJECT_RLOCK(object); 2566 mtx_lock(m_mtx); 2567 if (m->object != object) { 2568 /* 2569 * The page may have been freed. 2570 */ 2571 VM_OBJECT_RUNLOCK(object); 2572 goto retry; 2573 } 2574 } 2575 /* Don't care: PG_NODUMP, PG_ZERO. */ 2576 if (object->type != OBJT_DEFAULT && 2577 object->type != OBJT_SWAP && 2578 object->type != OBJT_VNODE) { 2579 run_ext = 0; 2580 #if VM_NRESERVLEVEL > 0 2581 } else if ((options & VPSC_NOSUPER) != 0 && 2582 (level = vm_reserv_level_iffullpop(m)) >= 0) { 2583 run_ext = 0; 2584 /* Advance to the end of the superpage. */ 2585 pa = VM_PAGE_TO_PHYS(m); 2586 m_inc = atop(roundup2(pa + 1, 2587 vm_reserv_size(level)) - pa); 2588 #endif 2589 } else if (object->memattr == VM_MEMATTR_DEFAULT && 2590 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m) && 2591 !vm_page_wired(m)) { 2592 /* 2593 * The page is allocated but eligible for 2594 * relocation. Extend the current run by one 2595 * page. 2596 */ 2597 KASSERT(pmap_page_get_memattr(m) == 2598 VM_MEMATTR_DEFAULT, 2599 ("page %p has an unexpected memattr", m)); 2600 KASSERT((m->oflags & (VPO_SWAPINPROG | 2601 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, 2602 ("page %p has unexpected oflags", m)); 2603 /* Don't care: PGA_NOSYNC. */ 2604 run_ext = 1; 2605 } else 2606 run_ext = 0; 2607 VM_OBJECT_RUNLOCK(object); 2608 #if VM_NRESERVLEVEL > 0 2609 } else if (level >= 0) { 2610 /* 2611 * The page is reserved but not yet allocated. In 2612 * other words, it is still free. Extend the current 2613 * run by one page. 2614 */ 2615 run_ext = 1; 2616 #endif 2617 } else if ((order = m->order) < VM_NFREEORDER) { 2618 /* 2619 * The page is enqueued in the physical memory 2620 * allocator's free page queues. Moreover, it is the 2621 * first page in a power-of-two-sized run of 2622 * contiguous free pages. Add these pages to the end 2623 * of the current run, and jump ahead. 2624 */ 2625 run_ext = 1 << order; 2626 m_inc = 1 << order; 2627 } else { 2628 /* 2629 * Skip the page for one of the following reasons: (1) 2630 * It is enqueued in the physical memory allocator's 2631 * free page queues. However, it is not the first 2632 * page in a run of contiguous free pages. (This case 2633 * rarely occurs because the scan is performed in 2634 * ascending order.) (2) It is not reserved, and it is 2635 * transitioning from free to allocated. (Conversely, 2636 * the transition from allocated to free for managed 2637 * pages is blocked by the page lock.) (3) It is 2638 * allocated but not contained by an object and not 2639 * wired, e.g., allocated by Xen's balloon driver. 2640 */ 2641 run_ext = 0; 2642 } 2643 2644 /* 2645 * Extend or reset the current run of pages. 2646 */ 2647 if (run_ext > 0) { 2648 if (run_len == 0) 2649 m_run = m; 2650 run_len += run_ext; 2651 } else { 2652 if (run_len > 0) { 2653 m_run = NULL; 2654 run_len = 0; 2655 } 2656 } 2657 } 2658 if (m_mtx != NULL) 2659 mtx_unlock(m_mtx); 2660 if (run_len >= npages) 2661 return (m_run); 2662 return (NULL); 2663 } 2664 2665 /* 2666 * vm_page_reclaim_run: 2667 * 2668 * Try to relocate each of the allocated virtual pages within the 2669 * specified run of physical pages to a new physical address. Free the 2670 * physical pages underlying the relocated virtual pages. A virtual page 2671 * is relocatable if and only if it could be laundered or reclaimed by 2672 * the page daemon. Whenever possible, a virtual page is relocated to a 2673 * physical address above "high". 2674 * 2675 * Returns 0 if every physical page within the run was already free or 2676 * just freed by a successful relocation. Otherwise, returns a non-zero 2677 * value indicating why the last attempt to relocate a virtual page was 2678 * unsuccessful. 2679 * 2680 * "req_class" must be an allocation class. 2681 */ 2682 static int 2683 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run, 2684 vm_paddr_t high) 2685 { 2686 struct vm_domain *vmd; 2687 struct mtx *m_mtx; 2688 struct spglist free; 2689 vm_object_t object; 2690 vm_paddr_t pa; 2691 vm_page_t m, m_end, m_new; 2692 int error, order, req; 2693 2694 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, 2695 ("req_class is not an allocation class")); 2696 SLIST_INIT(&free); 2697 error = 0; 2698 m = m_run; 2699 m_end = m_run + npages; 2700 m_mtx = NULL; 2701 for (; error == 0 && m < m_end; m++) { 2702 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, 2703 ("page %p is PG_FICTITIOUS or PG_MARKER", m)); 2704 2705 /* 2706 * Avoid releasing and reacquiring the same page lock. 2707 */ 2708 vm_page_change_lock(m, &m_mtx); 2709 retry: 2710 /* 2711 * Racily check for wirings. Races are handled below. 2712 */ 2713 if (vm_page_wired(m)) 2714 error = EBUSY; 2715 else if ((object = m->object) != NULL) { 2716 /* 2717 * The page is relocated if and only if it could be 2718 * laundered or reclaimed by the page daemon. 2719 */ 2720 if (!VM_OBJECT_TRYWLOCK(object)) { 2721 mtx_unlock(m_mtx); 2722 VM_OBJECT_WLOCK(object); 2723 mtx_lock(m_mtx); 2724 if (m->object != object) { 2725 /* 2726 * The page may have been freed. 2727 */ 2728 VM_OBJECT_WUNLOCK(object); 2729 goto retry; 2730 } 2731 } 2732 /* Don't care: PG_NODUMP, PG_ZERO. */ 2733 if (object->type != OBJT_DEFAULT && 2734 object->type != OBJT_SWAP && 2735 object->type != OBJT_VNODE) 2736 error = EINVAL; 2737 else if (object->memattr != VM_MEMATTR_DEFAULT) 2738 error = EINVAL; 2739 else if (vm_page_queue(m) != PQ_NONE && 2740 vm_page_tryxbusy(m) != 0) { 2741 if (vm_page_wired(m)) { 2742 vm_page_xunbusy(m); 2743 error = EBUSY; 2744 goto unlock; 2745 } 2746 KASSERT(pmap_page_get_memattr(m) == 2747 VM_MEMATTR_DEFAULT, 2748 ("page %p has an unexpected memattr", m)); 2749 KASSERT(m->oflags == 0, 2750 ("page %p has unexpected oflags", m)); 2751 /* Don't care: PGA_NOSYNC. */ 2752 if (!vm_page_none_valid(m)) { 2753 /* 2754 * First, try to allocate a new page 2755 * that is above "high". Failing 2756 * that, try to allocate a new page 2757 * that is below "m_run". Allocate 2758 * the new page between the end of 2759 * "m_run" and "high" only as a last 2760 * resort. 2761 */ 2762 req = req_class | VM_ALLOC_NOOBJ; 2763 if ((m->flags & PG_NODUMP) != 0) 2764 req |= VM_ALLOC_NODUMP; 2765 if (trunc_page(high) != 2766 ~(vm_paddr_t)PAGE_MASK) { 2767 m_new = vm_page_alloc_contig( 2768 NULL, 0, req, 1, 2769 round_page(high), 2770 ~(vm_paddr_t)0, 2771 PAGE_SIZE, 0, 2772 VM_MEMATTR_DEFAULT); 2773 } else 2774 m_new = NULL; 2775 if (m_new == NULL) { 2776 pa = VM_PAGE_TO_PHYS(m_run); 2777 m_new = vm_page_alloc_contig( 2778 NULL, 0, req, 1, 2779 0, pa - 1, PAGE_SIZE, 0, 2780 VM_MEMATTR_DEFAULT); 2781 } 2782 if (m_new == NULL) { 2783 pa += ptoa(npages); 2784 m_new = vm_page_alloc_contig( 2785 NULL, 0, req, 1, 2786 pa, high, PAGE_SIZE, 0, 2787 VM_MEMATTR_DEFAULT); 2788 } 2789 if (m_new == NULL) { 2790 vm_page_xunbusy(m); 2791 error = ENOMEM; 2792 goto unlock; 2793 } 2794 2795 /* 2796 * Unmap the page and check for new 2797 * wirings that may have been acquired 2798 * through a pmap lookup. 2799 */ 2800 if (object->ref_count != 0 && 2801 !vm_page_try_remove_all(m)) { 2802 vm_page_xunbusy(m); 2803 vm_page_free(m_new); 2804 error = EBUSY; 2805 goto unlock; 2806 } 2807 2808 /* 2809 * Replace "m" with the new page. For 2810 * vm_page_replace(), "m" must be busy 2811 * and dequeued. Finally, change "m" 2812 * as if vm_page_free() was called. 2813 */ 2814 m_new->a.flags = m->a.flags & 2815 ~PGA_QUEUE_STATE_MASK; 2816 KASSERT(m_new->oflags == VPO_UNMANAGED, 2817 ("page %p is managed", m_new)); 2818 m_new->oflags = 0; 2819 pmap_copy_page(m, m_new); 2820 m_new->valid = m->valid; 2821 m_new->dirty = m->dirty; 2822 m->flags &= ~PG_ZERO; 2823 vm_page_dequeue(m); 2824 if (vm_page_replace_hold(m_new, object, 2825 m->pindex, m) && 2826 vm_page_free_prep(m)) 2827 SLIST_INSERT_HEAD(&free, m, 2828 plinks.s.ss); 2829 2830 /* 2831 * The new page must be deactivated 2832 * before the object is unlocked. 2833 */ 2834 vm_page_change_lock(m_new, &m_mtx); 2835 vm_page_deactivate(m_new); 2836 } else { 2837 m->flags &= ~PG_ZERO; 2838 vm_page_dequeue(m); 2839 if (vm_page_free_prep(m)) 2840 SLIST_INSERT_HEAD(&free, m, 2841 plinks.s.ss); 2842 KASSERT(m->dirty == 0, 2843 ("page %p is dirty", m)); 2844 } 2845 } else 2846 error = EBUSY; 2847 unlock: 2848 VM_OBJECT_WUNLOCK(object); 2849 } else { 2850 MPASS(vm_phys_domain(m) == domain); 2851 vmd = VM_DOMAIN(domain); 2852 vm_domain_free_lock(vmd); 2853 order = m->order; 2854 if (order < VM_NFREEORDER) { 2855 /* 2856 * The page is enqueued in the physical memory 2857 * allocator's free page queues. Moreover, it 2858 * is the first page in a power-of-two-sized 2859 * run of contiguous free pages. Jump ahead 2860 * to the last page within that run, and 2861 * continue from there. 2862 */ 2863 m += (1 << order) - 1; 2864 } 2865 #if VM_NRESERVLEVEL > 0 2866 else if (vm_reserv_is_page_free(m)) 2867 order = 0; 2868 #endif 2869 vm_domain_free_unlock(vmd); 2870 if (order == VM_NFREEORDER) 2871 error = EINVAL; 2872 } 2873 } 2874 if (m_mtx != NULL) 2875 mtx_unlock(m_mtx); 2876 if ((m = SLIST_FIRST(&free)) != NULL) { 2877 int cnt; 2878 2879 vmd = VM_DOMAIN(domain); 2880 cnt = 0; 2881 vm_domain_free_lock(vmd); 2882 do { 2883 MPASS(vm_phys_domain(m) == domain); 2884 SLIST_REMOVE_HEAD(&free, plinks.s.ss); 2885 vm_phys_free_pages(m, 0); 2886 cnt++; 2887 } while ((m = SLIST_FIRST(&free)) != NULL); 2888 vm_domain_free_unlock(vmd); 2889 vm_domain_freecnt_inc(vmd, cnt); 2890 } 2891 return (error); 2892 } 2893 2894 #define NRUNS 16 2895 2896 CTASSERT(powerof2(NRUNS)); 2897 2898 #define RUN_INDEX(count) ((count) & (NRUNS - 1)) 2899 2900 #define MIN_RECLAIM 8 2901 2902 /* 2903 * vm_page_reclaim_contig: 2904 * 2905 * Reclaim allocated, contiguous physical memory satisfying the specified 2906 * conditions by relocating the virtual pages using that physical memory. 2907 * Returns true if reclamation is successful and false otherwise. Since 2908 * relocation requires the allocation of physical pages, reclamation may 2909 * fail due to a shortage of free pages. When reclamation fails, callers 2910 * are expected to perform vm_wait() before retrying a failed allocation 2911 * operation, e.g., vm_page_alloc_contig(). 2912 * 2913 * The caller must always specify an allocation class through "req". 2914 * 2915 * allocation classes: 2916 * VM_ALLOC_NORMAL normal process request 2917 * VM_ALLOC_SYSTEM system *really* needs a page 2918 * VM_ALLOC_INTERRUPT interrupt time request 2919 * 2920 * The optional allocation flags are ignored. 2921 * 2922 * "npages" must be greater than zero. Both "alignment" and "boundary" 2923 * must be a power of two. 2924 */ 2925 bool 2926 vm_page_reclaim_contig_domain(int domain, int req, u_long npages, 2927 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 2928 { 2929 struct vm_domain *vmd; 2930 vm_paddr_t curr_low; 2931 vm_page_t m_run, m_runs[NRUNS]; 2932 u_long count, reclaimed; 2933 int error, i, options, req_class; 2934 2935 KASSERT(npages > 0, ("npages is 0")); 2936 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 2937 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 2938 req_class = req & VM_ALLOC_CLASS_MASK; 2939 2940 /* 2941 * The page daemon is allowed to dig deeper into the free page list. 2942 */ 2943 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) 2944 req_class = VM_ALLOC_SYSTEM; 2945 2946 /* 2947 * Return if the number of free pages cannot satisfy the requested 2948 * allocation. 2949 */ 2950 vmd = VM_DOMAIN(domain); 2951 count = vmd->vmd_free_count; 2952 if (count < npages + vmd->vmd_free_reserved || (count < npages + 2953 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || 2954 (count < npages && req_class == VM_ALLOC_INTERRUPT)) 2955 return (false); 2956 2957 /* 2958 * Scan up to three times, relaxing the restrictions ("options") on 2959 * the reclamation of reservations and superpages each time. 2960 */ 2961 for (options = VPSC_NORESERV;;) { 2962 /* 2963 * Find the highest runs that satisfy the given constraints 2964 * and restrictions, and record them in "m_runs". 2965 */ 2966 curr_low = low; 2967 count = 0; 2968 for (;;) { 2969 m_run = vm_phys_scan_contig(domain, npages, curr_low, 2970 high, alignment, boundary, options); 2971 if (m_run == NULL) 2972 break; 2973 curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages); 2974 m_runs[RUN_INDEX(count)] = m_run; 2975 count++; 2976 } 2977 2978 /* 2979 * Reclaim the highest runs in LIFO (descending) order until 2980 * the number of reclaimed pages, "reclaimed", is at least 2981 * MIN_RECLAIM. Reset "reclaimed" each time because each 2982 * reclamation is idempotent, and runs will (likely) recur 2983 * from one scan to the next as restrictions are relaxed. 2984 */ 2985 reclaimed = 0; 2986 for (i = 0; count > 0 && i < NRUNS; i++) { 2987 count--; 2988 m_run = m_runs[RUN_INDEX(count)]; 2989 error = vm_page_reclaim_run(req_class, domain, npages, 2990 m_run, high); 2991 if (error == 0) { 2992 reclaimed += npages; 2993 if (reclaimed >= MIN_RECLAIM) 2994 return (true); 2995 } 2996 } 2997 2998 /* 2999 * Either relax the restrictions on the next scan or return if 3000 * the last scan had no restrictions. 3001 */ 3002 if (options == VPSC_NORESERV) 3003 options = VPSC_NOSUPER; 3004 else if (options == VPSC_NOSUPER) 3005 options = VPSC_ANY; 3006 else if (options == VPSC_ANY) 3007 return (reclaimed != 0); 3008 } 3009 } 3010 3011 bool 3012 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, 3013 u_long alignment, vm_paddr_t boundary) 3014 { 3015 struct vm_domainset_iter di; 3016 int domain; 3017 bool ret; 3018 3019 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); 3020 do { 3021 ret = vm_page_reclaim_contig_domain(domain, req, npages, low, 3022 high, alignment, boundary); 3023 if (ret) 3024 break; 3025 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); 3026 3027 return (ret); 3028 } 3029 3030 /* 3031 * Set the domain in the appropriate page level domainset. 3032 */ 3033 void 3034 vm_domain_set(struct vm_domain *vmd) 3035 { 3036 3037 mtx_lock(&vm_domainset_lock); 3038 if (!vmd->vmd_minset && vm_paging_min(vmd)) { 3039 vmd->vmd_minset = 1; 3040 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains); 3041 } 3042 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) { 3043 vmd->vmd_severeset = 1; 3044 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains); 3045 } 3046 mtx_unlock(&vm_domainset_lock); 3047 } 3048 3049 /* 3050 * Clear the domain from the appropriate page level domainset. 3051 */ 3052 void 3053 vm_domain_clear(struct vm_domain *vmd) 3054 { 3055 3056 mtx_lock(&vm_domainset_lock); 3057 if (vmd->vmd_minset && !vm_paging_min(vmd)) { 3058 vmd->vmd_minset = 0; 3059 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains); 3060 if (vm_min_waiters != 0) { 3061 vm_min_waiters = 0; 3062 wakeup(&vm_min_domains); 3063 } 3064 } 3065 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) { 3066 vmd->vmd_severeset = 0; 3067 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains); 3068 if (vm_severe_waiters != 0) { 3069 vm_severe_waiters = 0; 3070 wakeup(&vm_severe_domains); 3071 } 3072 } 3073 3074 /* 3075 * If pageout daemon needs pages, then tell it that there are 3076 * some free. 3077 */ 3078 if (vmd->vmd_pageout_pages_needed && 3079 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) { 3080 wakeup(&vmd->vmd_pageout_pages_needed); 3081 vmd->vmd_pageout_pages_needed = 0; 3082 } 3083 3084 /* See comments in vm_wait_doms(). */ 3085 if (vm_pageproc_waiters) { 3086 vm_pageproc_waiters = 0; 3087 wakeup(&vm_pageproc_waiters); 3088 } 3089 mtx_unlock(&vm_domainset_lock); 3090 } 3091 3092 /* 3093 * Wait for free pages to exceed the min threshold globally. 3094 */ 3095 void 3096 vm_wait_min(void) 3097 { 3098 3099 mtx_lock(&vm_domainset_lock); 3100 while (vm_page_count_min()) { 3101 vm_min_waiters++; 3102 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0); 3103 } 3104 mtx_unlock(&vm_domainset_lock); 3105 } 3106 3107 /* 3108 * Wait for free pages to exceed the severe threshold globally. 3109 */ 3110 void 3111 vm_wait_severe(void) 3112 { 3113 3114 mtx_lock(&vm_domainset_lock); 3115 while (vm_page_count_severe()) { 3116 vm_severe_waiters++; 3117 msleep(&vm_severe_domains, &vm_domainset_lock, PVM, 3118 "vmwait", 0); 3119 } 3120 mtx_unlock(&vm_domainset_lock); 3121 } 3122 3123 u_int 3124 vm_wait_count(void) 3125 { 3126 3127 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters); 3128 } 3129 3130 void 3131 vm_wait_doms(const domainset_t *wdoms) 3132 { 3133 3134 /* 3135 * We use racey wakeup synchronization to avoid expensive global 3136 * locking for the pageproc when sleeping with a non-specific vm_wait. 3137 * To handle this, we only sleep for one tick in this instance. It 3138 * is expected that most allocations for the pageproc will come from 3139 * kmem or vm_page_grab* which will use the more specific and 3140 * race-free vm_wait_domain(). 3141 */ 3142 if (curproc == pageproc) { 3143 mtx_lock(&vm_domainset_lock); 3144 vm_pageproc_waiters++; 3145 msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP, 3146 "pageprocwait", 1); 3147 } else { 3148 /* 3149 * XXX Ideally we would wait only until the allocation could 3150 * be satisfied. This condition can cause new allocators to 3151 * consume all freed pages while old allocators wait. 3152 */ 3153 mtx_lock(&vm_domainset_lock); 3154 if (vm_page_count_min_set(wdoms)) { 3155 vm_min_waiters++; 3156 msleep(&vm_min_domains, &vm_domainset_lock, 3157 PVM | PDROP, "vmwait", 0); 3158 } else 3159 mtx_unlock(&vm_domainset_lock); 3160 } 3161 } 3162 3163 /* 3164 * vm_wait_domain: 3165 * 3166 * Sleep until free pages are available for allocation. 3167 * - Called in various places after failed memory allocations. 3168 */ 3169 void 3170 vm_wait_domain(int domain) 3171 { 3172 struct vm_domain *vmd; 3173 domainset_t wdom; 3174 3175 vmd = VM_DOMAIN(domain); 3176 vm_domain_free_assert_unlocked(vmd); 3177 3178 if (curproc == pageproc) { 3179 mtx_lock(&vm_domainset_lock); 3180 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) { 3181 vmd->vmd_pageout_pages_needed = 1; 3182 msleep(&vmd->vmd_pageout_pages_needed, 3183 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0); 3184 } else 3185 mtx_unlock(&vm_domainset_lock); 3186 } else { 3187 if (pageproc == NULL) 3188 panic("vm_wait in early boot"); 3189 DOMAINSET_ZERO(&wdom); 3190 DOMAINSET_SET(vmd->vmd_domain, &wdom); 3191 vm_wait_doms(&wdom); 3192 } 3193 } 3194 3195 /* 3196 * vm_wait: 3197 * 3198 * Sleep until free pages are available for allocation in the 3199 * affinity domains of the obj. If obj is NULL, the domain set 3200 * for the calling thread is used. 3201 * Called in various places after failed memory allocations. 3202 */ 3203 void 3204 vm_wait(vm_object_t obj) 3205 { 3206 struct domainset *d; 3207 3208 d = NULL; 3209 3210 /* 3211 * Carefully fetch pointers only once: the struct domainset 3212 * itself is ummutable but the pointer might change. 3213 */ 3214 if (obj != NULL) 3215 d = obj->domain.dr_policy; 3216 if (d == NULL) 3217 d = curthread->td_domain.dr_policy; 3218 3219 vm_wait_doms(&d->ds_mask); 3220 } 3221 3222 /* 3223 * vm_domain_alloc_fail: 3224 * 3225 * Called when a page allocation function fails. Informs the 3226 * pagedaemon and performs the requested wait. Requires the 3227 * domain_free and object lock on entry. Returns with the 3228 * object lock held and free lock released. Returns an error when 3229 * retry is necessary. 3230 * 3231 */ 3232 static int 3233 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req) 3234 { 3235 3236 vm_domain_free_assert_unlocked(vmd); 3237 3238 atomic_add_int(&vmd->vmd_pageout_deficit, 3239 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); 3240 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) { 3241 if (object != NULL) 3242 VM_OBJECT_WUNLOCK(object); 3243 vm_wait_domain(vmd->vmd_domain); 3244 if (object != NULL) 3245 VM_OBJECT_WLOCK(object); 3246 if (req & VM_ALLOC_WAITOK) 3247 return (EAGAIN); 3248 } 3249 3250 return (0); 3251 } 3252 3253 /* 3254 * vm_waitpfault: 3255 * 3256 * Sleep until free pages are available for allocation. 3257 * - Called only in vm_fault so that processes page faulting 3258 * can be easily tracked. 3259 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing 3260 * processes will be able to grab memory first. Do not change 3261 * this balance without careful testing first. 3262 */ 3263 void 3264 vm_waitpfault(struct domainset *dset, int timo) 3265 { 3266 3267 /* 3268 * XXX Ideally we would wait only until the allocation could 3269 * be satisfied. This condition can cause new allocators to 3270 * consume all freed pages while old allocators wait. 3271 */ 3272 mtx_lock(&vm_domainset_lock); 3273 if (vm_page_count_min_set(&dset->ds_mask)) { 3274 vm_min_waiters++; 3275 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP, 3276 "pfault", timo); 3277 } else 3278 mtx_unlock(&vm_domainset_lock); 3279 } 3280 3281 static struct vm_pagequeue * 3282 _vm_page_pagequeue(vm_page_t m, uint8_t queue) 3283 { 3284 3285 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]); 3286 } 3287 3288 #ifdef INVARIANTS 3289 static struct vm_pagequeue * 3290 vm_page_pagequeue(vm_page_t m) 3291 { 3292 3293 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue)); 3294 } 3295 #endif 3296 3297 static __always_inline bool 3298 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) 3299 { 3300 vm_page_astate_t tmp; 3301 3302 tmp = *old; 3303 do { 3304 if (__predict_true(vm_page_astate_fcmpset(m, old, new))) 3305 return (true); 3306 counter_u64_add(pqstate_commit_retries, 1); 3307 } while (old->_bits == tmp._bits); 3308 3309 return (false); 3310 } 3311 3312 /* 3313 * Do the work of committing a queue state update that moves the page out of 3314 * its current queue. 3315 */ 3316 static bool 3317 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m, 3318 vm_page_astate_t *old, vm_page_astate_t new) 3319 { 3320 vm_page_t next; 3321 3322 vm_pagequeue_assert_locked(pq); 3323 KASSERT(vm_page_pagequeue(m) == pq, 3324 ("%s: queue %p does not match page %p", __func__, pq, m)); 3325 KASSERT(old->queue != PQ_NONE && new.queue != old->queue, 3326 ("%s: invalid queue indices %d %d", 3327 __func__, old->queue, new.queue)); 3328 3329 /* 3330 * Once the queue index of the page changes there is nothing 3331 * synchronizing with further updates to the page's physical 3332 * queue state. Therefore we must speculatively remove the page 3333 * from the queue now and be prepared to roll back if the queue 3334 * state update fails. If the page is not physically enqueued then 3335 * we just update its queue index. 3336 */ 3337 if ((old->flags & PGA_ENQUEUED) != 0) { 3338 new.flags &= ~PGA_ENQUEUED; 3339 next = TAILQ_NEXT(m, plinks.q); 3340 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3341 vm_pagequeue_cnt_dec(pq); 3342 if (!vm_page_pqstate_fcmpset(m, old, new)) { 3343 if (next == NULL) 3344 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3345 else 3346 TAILQ_INSERT_BEFORE(next, m, plinks.q); 3347 vm_pagequeue_cnt_inc(pq); 3348 return (false); 3349 } else { 3350 return (true); 3351 } 3352 } else { 3353 return (vm_page_pqstate_fcmpset(m, old, new)); 3354 } 3355 } 3356 3357 static bool 3358 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old, 3359 vm_page_astate_t new) 3360 { 3361 struct vm_pagequeue *pq; 3362 vm_page_astate_t as; 3363 bool ret; 3364 3365 pq = _vm_page_pagequeue(m, old->queue); 3366 3367 /* 3368 * The queue field and PGA_ENQUEUED flag are stable only so long as the 3369 * corresponding page queue lock is held. 3370 */ 3371 vm_pagequeue_lock(pq); 3372 as = vm_page_astate_load(m); 3373 if (__predict_false(as._bits != old->_bits)) { 3374 *old = as; 3375 ret = false; 3376 } else { 3377 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new); 3378 } 3379 vm_pagequeue_unlock(pq); 3380 return (ret); 3381 } 3382 3383 /* 3384 * Commit a queue state update that enqueues or requeues a page. 3385 */ 3386 static bool 3387 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m, 3388 vm_page_astate_t *old, vm_page_astate_t new) 3389 { 3390 struct vm_domain *vmd; 3391 3392 vm_pagequeue_assert_locked(pq); 3393 KASSERT(old->queue != PQ_NONE && new.queue == old->queue, 3394 ("%s: invalid queue indices %d %d", 3395 __func__, old->queue, new.queue)); 3396 3397 new.flags |= PGA_ENQUEUED; 3398 if (!vm_page_pqstate_fcmpset(m, old, new)) 3399 return (false); 3400 3401 if ((old->flags & PGA_ENQUEUED) != 0) 3402 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); 3403 else 3404 vm_pagequeue_cnt_inc(pq); 3405 3406 /* 3407 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if 3408 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be 3409 * applied, even if it was set first. 3410 */ 3411 if ((old->flags & PGA_REQUEUE_HEAD) != 0) { 3412 vmd = vm_pagequeue_domain(m); 3413 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE], 3414 ("%s: invalid page queue for page %p", __func__, m)); 3415 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); 3416 } else { 3417 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); 3418 } 3419 return (true); 3420 } 3421 3422 /* 3423 * Commit a queue state update that encodes a request for a deferred queue 3424 * operation. 3425 */ 3426 static bool 3427 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old, 3428 vm_page_astate_t new) 3429 { 3430 3431 KASSERT(old->queue == new.queue || new.queue != PQ_NONE, 3432 ("%s: invalid state, queue %d flags %x", 3433 __func__, new.queue, new.flags)); 3434 3435 if (old->_bits != new._bits && 3436 !vm_page_pqstate_fcmpset(m, old, new)) 3437 return (false); 3438 vm_page_pqbatch_submit(m, new.queue); 3439 return (true); 3440 } 3441 3442 /* 3443 * A generic queue state update function. This handles more cases than the 3444 * specialized functions above. 3445 */ 3446 bool 3447 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) 3448 { 3449 3450 if (old->_bits == new._bits) 3451 return (true); 3452 3453 if (old->queue != PQ_NONE && new.queue != old->queue) { 3454 if (!vm_page_pqstate_commit_dequeue(m, old, new)) 3455 return (false); 3456 if (new.queue != PQ_NONE) 3457 vm_page_pqbatch_submit(m, new.queue); 3458 } else { 3459 if (!vm_page_pqstate_fcmpset(m, old, new)) 3460 return (false); 3461 if (new.queue != PQ_NONE && 3462 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0) 3463 vm_page_pqbatch_submit(m, new.queue); 3464 } 3465 return (true); 3466 } 3467 3468 /* 3469 * Apply deferred queue state updates to a page. 3470 */ 3471 static inline void 3472 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue) 3473 { 3474 vm_page_astate_t new, old; 3475 3476 CRITICAL_ASSERT(curthread); 3477 vm_pagequeue_assert_locked(pq); 3478 KASSERT(queue < PQ_COUNT, 3479 ("%s: invalid queue index %d", __func__, queue)); 3480 KASSERT(pq == _vm_page_pagequeue(m, queue), 3481 ("%s: page %p does not belong to queue %p", __func__, m, pq)); 3482 3483 for (old = vm_page_astate_load(m);;) { 3484 if (__predict_false(old.queue != queue || 3485 (old.flags & PGA_QUEUE_OP_MASK) == 0)) { 3486 counter_u64_add(queue_nops, 1); 3487 break; 3488 } 3489 KASSERT(old.queue != PQ_NONE || (old.flags & PGA_QUEUE_STATE_MASK) == 0, 3490 ("%s: page %p has unexpected queue state", __func__, m)); 3491 3492 new = old; 3493 if ((old.flags & PGA_DEQUEUE) != 0) { 3494 new.flags &= ~PGA_QUEUE_OP_MASK; 3495 new.queue = PQ_NONE; 3496 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq, 3497 m, &old, new))) { 3498 counter_u64_add(queue_ops, 1); 3499 break; 3500 } 3501 } else { 3502 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD); 3503 if (__predict_true(_vm_page_pqstate_commit_requeue(pq, 3504 m, &old, new))) { 3505 counter_u64_add(queue_ops, 1); 3506 break; 3507 } 3508 } 3509 } 3510 } 3511 3512 static void 3513 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq, 3514 uint8_t queue) 3515 { 3516 int i; 3517 3518 for (i = 0; i < bq->bq_cnt; i++) 3519 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue); 3520 vm_batchqueue_init(bq); 3521 } 3522 3523 /* 3524 * vm_page_pqbatch_submit: [ internal use only ] 3525 * 3526 * Enqueue a page in the specified page queue's batched work queue. 3527 * The caller must have encoded the requested operation in the page 3528 * structure's a.flags field. 3529 */ 3530 void 3531 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue) 3532 { 3533 struct vm_batchqueue *bq; 3534 struct vm_pagequeue *pq; 3535 int domain; 3536 3537 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3538 ("page %p is unmanaged", m)); 3539 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue)); 3540 3541 domain = vm_phys_domain(m); 3542 pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue]; 3543 3544 critical_enter(); 3545 bq = DPCPU_PTR(pqbatch[domain][queue]); 3546 if (vm_batchqueue_insert(bq, m)) { 3547 critical_exit(); 3548 return; 3549 } 3550 critical_exit(); 3551 vm_pagequeue_lock(pq); 3552 critical_enter(); 3553 bq = DPCPU_PTR(pqbatch[domain][queue]); 3554 vm_pqbatch_process(pq, bq, queue); 3555 vm_pqbatch_process_page(pq, m, queue); 3556 vm_pagequeue_unlock(pq); 3557 critical_exit(); 3558 } 3559 3560 /* 3561 * vm_page_pqbatch_drain: [ internal use only ] 3562 * 3563 * Force all per-CPU page queue batch queues to be drained. This is 3564 * intended for use in severe memory shortages, to ensure that pages 3565 * do not remain stuck in the batch queues. 3566 */ 3567 void 3568 vm_page_pqbatch_drain(void) 3569 { 3570 struct thread *td; 3571 struct vm_domain *vmd; 3572 struct vm_pagequeue *pq; 3573 int cpu, domain, queue; 3574 3575 td = curthread; 3576 CPU_FOREACH(cpu) { 3577 thread_lock(td); 3578 sched_bind(td, cpu); 3579 thread_unlock(td); 3580 3581 for (domain = 0; domain < vm_ndomains; domain++) { 3582 vmd = VM_DOMAIN(domain); 3583 for (queue = 0; queue < PQ_COUNT; queue++) { 3584 pq = &vmd->vmd_pagequeues[queue]; 3585 vm_pagequeue_lock(pq); 3586 critical_enter(); 3587 vm_pqbatch_process(pq, 3588 DPCPU_PTR(pqbatch[domain][queue]), queue); 3589 critical_exit(); 3590 vm_pagequeue_unlock(pq); 3591 } 3592 } 3593 } 3594 thread_lock(td); 3595 sched_unbind(td); 3596 thread_unlock(td); 3597 } 3598 3599 /* 3600 * vm_page_dequeue_deferred: [ internal use only ] 3601 * 3602 * Request removal of the given page from its current page 3603 * queue. Physical removal from the queue may be deferred 3604 * indefinitely. 3605 * 3606 * The page must be locked. 3607 */ 3608 void 3609 vm_page_dequeue_deferred(vm_page_t m) 3610 { 3611 vm_page_astate_t new, old; 3612 3613 old = vm_page_astate_load(m); 3614 do { 3615 if (old.queue == PQ_NONE) { 3616 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, 3617 ("%s: page %p has unexpected queue state", 3618 __func__, m)); 3619 break; 3620 } 3621 new = old; 3622 new.flags |= PGA_DEQUEUE; 3623 } while (!vm_page_pqstate_commit_request(m, &old, new)); 3624 } 3625 3626 /* 3627 * vm_page_dequeue: 3628 * 3629 * Remove the page from whichever page queue it's in, if any, before 3630 * returning. 3631 */ 3632 void 3633 vm_page_dequeue(vm_page_t m) 3634 { 3635 vm_page_astate_t new, old; 3636 3637 old = vm_page_astate_load(m); 3638 do { 3639 if (old.queue == PQ_NONE) { 3640 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, 3641 ("%s: page %p has unexpected queue state", 3642 __func__, m)); 3643 break; 3644 } 3645 new = old; 3646 new.flags &= ~PGA_QUEUE_OP_MASK; 3647 new.queue = PQ_NONE; 3648 } while (!vm_page_pqstate_commit_dequeue(m, &old, new)); 3649 3650 } 3651 3652 /* 3653 * Schedule the given page for insertion into the specified page queue. 3654 * Physical insertion of the page may be deferred indefinitely. 3655 */ 3656 static void 3657 vm_page_enqueue(vm_page_t m, uint8_t queue) 3658 { 3659 3660 KASSERT(m->a.queue == PQ_NONE && 3661 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, 3662 ("%s: page %p is already enqueued", __func__, m)); 3663 KASSERT(m->ref_count > 0, 3664 ("%s: page %p does not carry any references", __func__, m)); 3665 3666 m->a.queue = queue; 3667 if ((m->a.flags & PGA_REQUEUE) == 0) 3668 vm_page_aflag_set(m, PGA_REQUEUE); 3669 vm_page_pqbatch_submit(m, queue); 3670 } 3671 3672 /* 3673 * vm_page_free_prep: 3674 * 3675 * Prepares the given page to be put on the free list, 3676 * disassociating it from any VM object. The caller may return 3677 * the page to the free list only if this function returns true. 3678 * 3679 * The object must be locked. The page must be locked if it is 3680 * managed. 3681 */ 3682 static bool 3683 vm_page_free_prep(vm_page_t m) 3684 { 3685 3686 /* 3687 * Synchronize with threads that have dropped a reference to this 3688 * page. 3689 */ 3690 atomic_thread_fence_acq(); 3691 3692 if (vm_page_sbusied(m)) 3693 panic("vm_page_free_prep: freeing shared busy page %p", m); 3694 3695 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP) 3696 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) { 3697 uint64_t *p; 3698 int i; 3699 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 3700 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++) 3701 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx", 3702 m, i, (uintmax_t)*p)); 3703 } 3704 #endif 3705 if ((m->oflags & VPO_UNMANAGED) == 0) { 3706 KASSERT(!pmap_page_is_mapped(m), 3707 ("vm_page_free_prep: freeing mapped page %p", m)); 3708 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0, 3709 ("vm_page_free_prep: mapping flags set in page %p", m)); 3710 } else { 3711 KASSERT(m->a.queue == PQ_NONE, 3712 ("vm_page_free_prep: unmanaged page %p is queued", m)); 3713 } 3714 VM_CNT_INC(v_tfree); 3715 3716 if (m->object != NULL) { 3717 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) == 3718 ((m->object->flags & OBJ_UNMANAGED) != 0), 3719 ("vm_page_free_prep: managed flag mismatch for page %p", 3720 m)); 3721 vm_page_object_remove(m); 3722 3723 /* 3724 * The object reference can be released without an atomic 3725 * operation. 3726 */ 3727 KASSERT((m->flags & PG_FICTITIOUS) != 0 || 3728 m->ref_count == VPRC_OBJREF, 3729 ("vm_page_free_prep: page %p has unexpected ref_count %u", 3730 m, m->ref_count)); 3731 m->object = NULL; 3732 m->ref_count -= VPRC_OBJREF; 3733 vm_page_xunbusy(m); 3734 } 3735 3736 if (vm_page_xbusied(m)) 3737 panic("vm_page_free_prep: freeing exclusive busy page %p", m); 3738 3739 /* 3740 * If fictitious remove object association and 3741 * return. 3742 */ 3743 if ((m->flags & PG_FICTITIOUS) != 0) { 3744 KASSERT(m->ref_count == 1, 3745 ("fictitious page %p is referenced", m)); 3746 KASSERT(m->a.queue == PQ_NONE, 3747 ("fictitious page %p is queued", m)); 3748 return (false); 3749 } 3750 3751 /* 3752 * Pages need not be dequeued before they are returned to the physical 3753 * memory allocator, but they must at least be marked for a deferred 3754 * dequeue. 3755 */ 3756 if ((m->oflags & VPO_UNMANAGED) == 0) 3757 vm_page_dequeue_deferred(m); 3758 3759 m->valid = 0; 3760 vm_page_undirty(m); 3761 3762 if (m->ref_count != 0) 3763 panic("vm_page_free_prep: page %p has references", m); 3764 3765 /* 3766 * Restore the default memory attribute to the page. 3767 */ 3768 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) 3769 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); 3770 3771 #if VM_NRESERVLEVEL > 0 3772 /* 3773 * Determine whether the page belongs to a reservation. If the page was 3774 * allocated from a per-CPU cache, it cannot belong to a reservation, so 3775 * as an optimization, we avoid the check in that case. 3776 */ 3777 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m)) 3778 return (false); 3779 #endif 3780 3781 return (true); 3782 } 3783 3784 /* 3785 * vm_page_free_toq: 3786 * 3787 * Returns the given page to the free list, disassociating it 3788 * from any VM object. 3789 * 3790 * The object must be locked. The page must be locked if it is 3791 * managed. 3792 */ 3793 static void 3794 vm_page_free_toq(vm_page_t m) 3795 { 3796 struct vm_domain *vmd; 3797 uma_zone_t zone; 3798 3799 if (!vm_page_free_prep(m)) 3800 return; 3801 3802 vmd = vm_pagequeue_domain(m); 3803 zone = vmd->vmd_pgcache[m->pool].zone; 3804 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) { 3805 uma_zfree(zone, m); 3806 return; 3807 } 3808 vm_domain_free_lock(vmd); 3809 vm_phys_free_pages(m, 0); 3810 vm_domain_free_unlock(vmd); 3811 vm_domain_freecnt_inc(vmd, 1); 3812 } 3813 3814 /* 3815 * vm_page_free_pages_toq: 3816 * 3817 * Returns a list of pages to the free list, disassociating it 3818 * from any VM object. In other words, this is equivalent to 3819 * calling vm_page_free_toq() for each page of a list of VM objects. 3820 * 3821 * The objects must be locked. The pages must be locked if it is 3822 * managed. 3823 */ 3824 void 3825 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count) 3826 { 3827 vm_page_t m; 3828 int count; 3829 3830 if (SLIST_EMPTY(free)) 3831 return; 3832 3833 count = 0; 3834 while ((m = SLIST_FIRST(free)) != NULL) { 3835 count++; 3836 SLIST_REMOVE_HEAD(free, plinks.s.ss); 3837 vm_page_free_toq(m); 3838 } 3839 3840 if (update_wire_count) 3841 vm_wire_sub(count); 3842 } 3843 3844 /* 3845 * Mark this page as wired down, preventing reclamation by the page daemon 3846 * or when the containing object is destroyed. 3847 */ 3848 void 3849 vm_page_wire(vm_page_t m) 3850 { 3851 u_int old; 3852 3853 KASSERT(m->object != NULL, 3854 ("vm_page_wire: page %p does not belong to an object", m)); 3855 if (!vm_page_busied(m) && !vm_object_busied(m->object)) 3856 VM_OBJECT_ASSERT_LOCKED(m->object); 3857 KASSERT((m->flags & PG_FICTITIOUS) == 0 || 3858 VPRC_WIRE_COUNT(m->ref_count) >= 1, 3859 ("vm_page_wire: fictitious page %p has zero wirings", m)); 3860 3861 old = atomic_fetchadd_int(&m->ref_count, 1); 3862 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX, 3863 ("vm_page_wire: counter overflow for page %p", m)); 3864 if (VPRC_WIRE_COUNT(old) == 0) { 3865 if ((m->oflags & VPO_UNMANAGED) == 0) 3866 vm_page_aflag_set(m, PGA_DEQUEUE); 3867 vm_wire_add(1); 3868 } 3869 } 3870 3871 /* 3872 * Attempt to wire a mapped page following a pmap lookup of that page. 3873 * This may fail if a thread is concurrently tearing down mappings of the page. 3874 * The transient failure is acceptable because it translates to the 3875 * failure of the caller pmap_extract_and_hold(), which should be then 3876 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages(). 3877 */ 3878 bool 3879 vm_page_wire_mapped(vm_page_t m) 3880 { 3881 u_int old; 3882 3883 old = m->ref_count; 3884 do { 3885 KASSERT(old > 0, 3886 ("vm_page_wire_mapped: wiring unreferenced page %p", m)); 3887 if ((old & VPRC_BLOCKED) != 0) 3888 return (false); 3889 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1)); 3890 3891 if (VPRC_WIRE_COUNT(old) == 0) { 3892 if ((m->oflags & VPO_UNMANAGED) == 0) 3893 vm_page_aflag_set(m, PGA_DEQUEUE); 3894 vm_wire_add(1); 3895 } 3896 return (true); 3897 } 3898 3899 /* 3900 * Release a wiring reference to a managed page. If the page still belongs to 3901 * an object, update its position in the page queues to reflect the reference. 3902 * If the wiring was the last reference to the page, free the page. 3903 */ 3904 static void 3905 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse) 3906 { 3907 u_int old; 3908 3909 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 3910 ("%s: page %p is unmanaged", __func__, m)); 3911 3912 /* 3913 * Update LRU state before releasing the wiring reference. 3914 * Use a release store when updating the reference count to 3915 * synchronize with vm_page_free_prep(). 3916 */ 3917 old = m->ref_count; 3918 do { 3919 KASSERT(VPRC_WIRE_COUNT(old) > 0, 3920 ("vm_page_unwire: wire count underflow for page %p", m)); 3921 3922 if (old > VPRC_OBJREF + 1) { 3923 /* 3924 * The page has at least one other wiring reference. An 3925 * earlier iteration of this loop may have called 3926 * vm_page_release_toq() and cleared PGA_DEQUEUE, so 3927 * re-set it if necessary. 3928 */ 3929 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0) 3930 vm_page_aflag_set(m, PGA_DEQUEUE); 3931 } else if (old == VPRC_OBJREF + 1) { 3932 /* 3933 * This is the last wiring. Clear PGA_DEQUEUE and 3934 * update the page's queue state to reflect the 3935 * reference. If the page does not belong to an object 3936 * (i.e., the VPRC_OBJREF bit is clear), we only need to 3937 * clear leftover queue state. 3938 */ 3939 vm_page_release_toq(m, nqueue, false); 3940 } else if (old == 1) { 3941 vm_page_aflag_clear(m, PGA_DEQUEUE); 3942 } 3943 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1)); 3944 3945 if (VPRC_WIRE_COUNT(old) == 1) { 3946 vm_wire_sub(1); 3947 if (old == 1) 3948 vm_page_free(m); 3949 } 3950 } 3951 3952 /* 3953 * Release one wiring of the specified page, potentially allowing it to be 3954 * paged out. 3955 * 3956 * Only managed pages belonging to an object can be paged out. If the number 3957 * of wirings transitions to zero and the page is eligible for page out, then 3958 * the page is added to the specified paging queue. If the released wiring 3959 * represented the last reference to the page, the page is freed. 3960 * 3961 * A managed page must be locked. 3962 */ 3963 void 3964 vm_page_unwire(vm_page_t m, uint8_t nqueue) 3965 { 3966 3967 KASSERT(nqueue < PQ_COUNT, 3968 ("vm_page_unwire: invalid queue %u request for page %p", 3969 nqueue, m)); 3970 3971 if ((m->oflags & VPO_UNMANAGED) != 0) { 3972 if (vm_page_unwire_noq(m) && m->ref_count == 0) 3973 vm_page_free(m); 3974 return; 3975 } 3976 vm_page_unwire_managed(m, nqueue, false); 3977 } 3978 3979 /* 3980 * Unwire a page without (re-)inserting it into a page queue. It is up 3981 * to the caller to enqueue, requeue, or free the page as appropriate. 3982 * In most cases involving managed pages, vm_page_unwire() should be used 3983 * instead. 3984 */ 3985 bool 3986 vm_page_unwire_noq(vm_page_t m) 3987 { 3988 u_int old; 3989 3990 old = vm_page_drop(m, 1); 3991 KASSERT(VPRC_WIRE_COUNT(old) != 0, 3992 ("vm_page_unref: counter underflow for page %p", m)); 3993 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1, 3994 ("vm_page_unref: missing ref on fictitious page %p", m)); 3995 3996 if (VPRC_WIRE_COUNT(old) > 1) 3997 return (false); 3998 if ((m->oflags & VPO_UNMANAGED) == 0) 3999 vm_page_aflag_clear(m, PGA_DEQUEUE); 4000 vm_wire_sub(1); 4001 return (true); 4002 } 4003 4004 /* 4005 * Ensure that the page ends up in the specified page queue. If the page is 4006 * active or being moved to the active queue, ensure that its act_count is 4007 * at least ACT_INIT but do not otherwise mess with it. 4008 * 4009 * A managed page must be locked. 4010 */ 4011 static __always_inline void 4012 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag) 4013 { 4014 vm_page_astate_t old, new; 4015 4016 KASSERT(m->ref_count > 0, 4017 ("%s: page %p does not carry any references", __func__, m)); 4018 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD, 4019 ("%s: invalid flags %x", __func__, nflag)); 4020 4021 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m)) 4022 return; 4023 4024 old = vm_page_astate_load(m); 4025 do { 4026 if ((old.flags & PGA_DEQUEUE) != 0) 4027 break; 4028 new = old; 4029 new.flags &= ~PGA_QUEUE_OP_MASK; 4030 if (nqueue == PQ_ACTIVE) 4031 new.act_count = max(old.act_count, ACT_INIT); 4032 if (old.queue == nqueue) { 4033 if (nqueue != PQ_ACTIVE) 4034 new.flags |= nflag; 4035 } else { 4036 new.flags |= nflag; 4037 new.queue = nqueue; 4038 } 4039 } while (!vm_page_pqstate_commit(m, &old, new)); 4040 } 4041 4042 /* 4043 * Put the specified page on the active list (if appropriate). 4044 */ 4045 void 4046 vm_page_activate(vm_page_t m) 4047 { 4048 4049 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE); 4050 } 4051 4052 /* 4053 * Move the specified page to the tail of the inactive queue, or requeue 4054 * the page if it is already in the inactive queue. 4055 */ 4056 void 4057 vm_page_deactivate(vm_page_t m) 4058 { 4059 4060 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE); 4061 } 4062 4063 void 4064 vm_page_deactivate_noreuse(vm_page_t m) 4065 { 4066 4067 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD); 4068 } 4069 4070 /* 4071 * Put a page in the laundry, or requeue it if it is already there. 4072 */ 4073 void 4074 vm_page_launder(vm_page_t m) 4075 { 4076 4077 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE); 4078 } 4079 4080 /* 4081 * Put a page in the PQ_UNSWAPPABLE holding queue. 4082 */ 4083 void 4084 vm_page_unswappable(vm_page_t m) 4085 { 4086 4087 KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0, 4088 ("page %p already unswappable", m)); 4089 4090 vm_page_dequeue(m); 4091 vm_page_enqueue(m, PQ_UNSWAPPABLE); 4092 } 4093 4094 /* 4095 * Release a page back to the page queues in preparation for unwiring. 4096 */ 4097 static void 4098 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse) 4099 { 4100 vm_page_astate_t old, new; 4101 uint16_t nflag; 4102 4103 /* 4104 * Use a check of the valid bits to determine whether we should 4105 * accelerate reclamation of the page. The object lock might not be 4106 * held here, in which case the check is racy. At worst we will either 4107 * accelerate reclamation of a valid page and violate LRU, or 4108 * unnecessarily defer reclamation of an invalid page. 4109 * 4110 * If we were asked to not cache the page, place it near the head of the 4111 * inactive queue so that is reclaimed sooner. 4112 */ 4113 if (noreuse || m->valid == 0) { 4114 nqueue = PQ_INACTIVE; 4115 nflag = PGA_REQUEUE_HEAD; 4116 } else { 4117 nflag = PGA_REQUEUE; 4118 } 4119 4120 old = vm_page_astate_load(m); 4121 do { 4122 new = old; 4123 4124 /* 4125 * If the page is already in the active queue and we are not 4126 * trying to accelerate reclamation, simply mark it as 4127 * referenced and avoid any queue operations. 4128 */ 4129 new.flags &= ~PGA_QUEUE_OP_MASK; 4130 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE) 4131 new.flags |= PGA_REFERENCED; 4132 else { 4133 new.flags |= nflag; 4134 new.queue = nqueue; 4135 } 4136 } while (!vm_page_pqstate_commit(m, &old, new)); 4137 } 4138 4139 /* 4140 * Unwire a page and either attempt to free it or re-add it to the page queues. 4141 */ 4142 void 4143 vm_page_release(vm_page_t m, int flags) 4144 { 4145 vm_object_t object; 4146 4147 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4148 ("vm_page_release: page %p is unmanaged", m)); 4149 4150 if ((flags & VPR_TRYFREE) != 0) { 4151 for (;;) { 4152 object = (vm_object_t)atomic_load_ptr(&m->object); 4153 if (object == NULL) 4154 break; 4155 /* Depends on type-stability. */ 4156 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) 4157 break; 4158 if (object == m->object) { 4159 vm_page_release_locked(m, flags); 4160 VM_OBJECT_WUNLOCK(object); 4161 return; 4162 } 4163 VM_OBJECT_WUNLOCK(object); 4164 } 4165 } 4166 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0); 4167 } 4168 4169 /* See vm_page_release(). */ 4170 void 4171 vm_page_release_locked(vm_page_t m, int flags) 4172 { 4173 4174 VM_OBJECT_ASSERT_WLOCKED(m->object); 4175 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 4176 ("vm_page_release_locked: page %p is unmanaged", m)); 4177 4178 if (vm_page_unwire_noq(m)) { 4179 if ((flags & VPR_TRYFREE) != 0 && 4180 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) && 4181 m->dirty == 0 && vm_page_tryxbusy(m)) { 4182 vm_page_free(m); 4183 } else { 4184 vm_page_release_toq(m, PQ_INACTIVE, flags != 0); 4185 } 4186 } 4187 } 4188 4189 static bool 4190 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t)) 4191 { 4192 u_int old; 4193 4194 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0, 4195 ("vm_page_try_blocked_op: page %p has no object", m)); 4196 KASSERT(vm_page_busied(m), 4197 ("vm_page_try_blocked_op: page %p is not busy", m)); 4198 VM_OBJECT_ASSERT_LOCKED(m->object); 4199 4200 old = m->ref_count; 4201 do { 4202 KASSERT(old != 0, 4203 ("vm_page_try_blocked_op: page %p has no references", m)); 4204 if (VPRC_WIRE_COUNT(old) != 0) 4205 return (false); 4206 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED)); 4207 4208 (op)(m); 4209 4210 /* 4211 * If the object is read-locked, new wirings may be created via an 4212 * object lookup. 4213 */ 4214 old = vm_page_drop(m, VPRC_BLOCKED); 4215 KASSERT(!VM_OBJECT_WOWNED(m->object) || 4216 old == (VPRC_BLOCKED | VPRC_OBJREF), 4217 ("vm_page_try_blocked_op: unexpected refcount value %u for %p", 4218 old, m)); 4219 return (true); 4220 } 4221 4222 /* 4223 * Atomically check for wirings and remove all mappings of the page. 4224 */ 4225 bool 4226 vm_page_try_remove_all(vm_page_t m) 4227 { 4228 4229 return (vm_page_try_blocked_op(m, pmap_remove_all)); 4230 } 4231 4232 /* 4233 * Atomically check for wirings and remove all writeable mappings of the page. 4234 */ 4235 bool 4236 vm_page_try_remove_write(vm_page_t m) 4237 { 4238 4239 return (vm_page_try_blocked_op(m, pmap_remove_write)); 4240 } 4241 4242 /* 4243 * vm_page_advise 4244 * 4245 * Apply the specified advice to the given page. 4246 * 4247 * The object and page must be locked. 4248 */ 4249 void 4250 vm_page_advise(vm_page_t m, int advice) 4251 { 4252 4253 VM_OBJECT_ASSERT_WLOCKED(m->object); 4254 if (advice == MADV_FREE) 4255 /* 4256 * Mark the page clean. This will allow the page to be freed 4257 * without first paging it out. MADV_FREE pages are often 4258 * quickly reused by malloc(3), so we do not do anything that 4259 * would result in a page fault on a later access. 4260 */ 4261 vm_page_undirty(m); 4262 else if (advice != MADV_DONTNEED) { 4263 if (advice == MADV_WILLNEED) 4264 vm_page_activate(m); 4265 return; 4266 } 4267 4268 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) 4269 vm_page_dirty(m); 4270 4271 /* 4272 * Clear any references to the page. Otherwise, the page daemon will 4273 * immediately reactivate the page. 4274 */ 4275 vm_page_aflag_clear(m, PGA_REFERENCED); 4276 4277 /* 4278 * Place clean pages near the head of the inactive queue rather than 4279 * the tail, thus defeating the queue's LRU operation and ensuring that 4280 * the page will be reused quickly. Dirty pages not already in the 4281 * laundry are moved there. 4282 */ 4283 if (m->dirty == 0) 4284 vm_page_deactivate_noreuse(m); 4285 else if (!vm_page_in_laundry(m)) 4286 vm_page_launder(m); 4287 } 4288 4289 static inline int 4290 vm_page_grab_pflags(int allocflags) 4291 { 4292 int pflags; 4293 4294 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 || 4295 (allocflags & VM_ALLOC_WIRED) != 0, 4296 ("vm_page_grab_pflags: the pages must be busied or wired")); 4297 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4298 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4299 ("vm_page_grab_pflags: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY " 4300 "mismatch")); 4301 pflags = allocflags & 4302 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL | 4303 VM_ALLOC_NOBUSY); 4304 if ((allocflags & VM_ALLOC_NOWAIT) == 0) 4305 pflags |= VM_ALLOC_WAITFAIL; 4306 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4307 pflags |= VM_ALLOC_SBUSY; 4308 4309 return (pflags); 4310 } 4311 4312 /* 4313 * Grab a page, waiting until we are waken up due to the page 4314 * changing state. We keep on waiting, if the page continues 4315 * to be in the object. If the page doesn't exist, first allocate it 4316 * and then conditionally zero it. 4317 * 4318 * This routine may sleep. 4319 * 4320 * The object must be locked on entry. The lock will, however, be released 4321 * and reacquired if the routine sleeps. 4322 */ 4323 vm_page_t 4324 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 4325 { 4326 vm_page_t m; 4327 int pflags; 4328 4329 VM_OBJECT_ASSERT_WLOCKED(object); 4330 pflags = vm_page_grab_pflags(allocflags); 4331 retrylookup: 4332 if ((m = vm_page_lookup(object, pindex)) != NULL) { 4333 if (!vm_page_acquire_flags(m, allocflags)) { 4334 if (vm_page_busy_sleep_flags(object, m, "pgrbwt", 4335 allocflags)) 4336 goto retrylookup; 4337 return (NULL); 4338 } 4339 goto out; 4340 } 4341 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4342 return (NULL); 4343 m = vm_page_alloc(object, pindex, pflags); 4344 if (m == NULL) { 4345 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 4346 return (NULL); 4347 goto retrylookup; 4348 } 4349 if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) 4350 pmap_zero_page(m); 4351 4352 out: 4353 if ((allocflags & VM_ALLOC_NOBUSY) != 0) { 4354 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4355 vm_page_sunbusy(m); 4356 else 4357 vm_page_xunbusy(m); 4358 } 4359 return (m); 4360 } 4361 4362 /* 4363 * Grab a page and make it valid, paging in if necessary. Pages missing from 4364 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied 4365 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought 4366 * in simultaneously. Additional pages will be left on a paging queue but 4367 * will neither be wired nor busy regardless of allocflags. 4368 */ 4369 int 4370 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags) 4371 { 4372 vm_page_t m; 4373 vm_page_t ma[VM_INITIAL_PAGEIN]; 4374 bool sleep, xbusy; 4375 int after, i, pflags, rv; 4376 4377 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || 4378 (allocflags & VM_ALLOC_IGN_SBUSY) != 0, 4379 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); 4380 KASSERT((allocflags & 4381 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0, 4382 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags)); 4383 VM_OBJECT_ASSERT_WLOCKED(object); 4384 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY); 4385 pflags |= VM_ALLOC_WAITFAIL; 4386 4387 retrylookup: 4388 xbusy = false; 4389 if ((m = vm_page_lookup(object, pindex)) != NULL) { 4390 /* 4391 * If the page is fully valid it can only become invalid 4392 * with the object lock held. If it is not valid it can 4393 * become valid with the busy lock held. Therefore, we 4394 * may unnecessarily lock the exclusive busy here if we 4395 * race with I/O completion not using the object lock. 4396 * However, we will not end up with an invalid page and a 4397 * shared lock. 4398 */ 4399 if (!vm_page_all_valid(m) || 4400 (allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) == 0) { 4401 sleep = !vm_page_tryxbusy(m); 4402 xbusy = true; 4403 } else 4404 sleep = !vm_page_trysbusy(m); 4405 if (sleep) { 4406 (void)vm_page_busy_sleep_flags(object, m, "pgrbwt", 4407 allocflags); 4408 goto retrylookup; 4409 } 4410 if ((allocflags & VM_ALLOC_NOCREAT) != 0 && 4411 !vm_page_all_valid(m)) { 4412 if (xbusy) 4413 vm_page_xunbusy(m); 4414 else 4415 vm_page_sunbusy(m); 4416 *mp = NULL; 4417 return (VM_PAGER_FAIL); 4418 } 4419 if ((allocflags & VM_ALLOC_WIRED) != 0) 4420 vm_page_wire(m); 4421 if (vm_page_all_valid(m)) 4422 goto out; 4423 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) { 4424 *mp = NULL; 4425 return (VM_PAGER_FAIL); 4426 } else if ((m = vm_page_alloc(object, pindex, pflags)) != NULL) { 4427 xbusy = true; 4428 } else { 4429 goto retrylookup; 4430 } 4431 4432 vm_page_assert_xbusied(m); 4433 MPASS(xbusy); 4434 if (vm_pager_has_page(object, pindex, NULL, &after)) { 4435 after = MIN(after, VM_INITIAL_PAGEIN); 4436 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT); 4437 after = MAX(after, 1); 4438 ma[0] = m; 4439 for (i = 1; i < after; i++) { 4440 if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) { 4441 if (ma[i]->valid || !vm_page_tryxbusy(ma[i])) 4442 break; 4443 } else { 4444 ma[i] = vm_page_alloc(object, m->pindex + i, 4445 VM_ALLOC_NORMAL); 4446 if (ma[i] == NULL) 4447 break; 4448 } 4449 } 4450 after = i; 4451 rv = vm_pager_get_pages(object, ma, after, NULL, NULL); 4452 /* Pager may have replaced a page. */ 4453 m = ma[0]; 4454 if (rv != VM_PAGER_OK) { 4455 if ((allocflags & VM_ALLOC_WIRED) != 0) 4456 vm_page_unwire_noq(m); 4457 for (i = 0; i < after; i++) { 4458 if (!vm_page_wired(ma[i])) 4459 vm_page_free(ma[i]); 4460 else 4461 vm_page_xunbusy(ma[i]); 4462 } 4463 *mp = NULL; 4464 return (rv); 4465 } 4466 for (i = 1; i < after; i++) 4467 vm_page_readahead_finish(ma[i]); 4468 MPASS(vm_page_all_valid(m)); 4469 } else { 4470 vm_page_zero_invalid(m, TRUE); 4471 } 4472 out: 4473 if ((allocflags & VM_ALLOC_NOBUSY) != 0) { 4474 if (xbusy) 4475 vm_page_xunbusy(m); 4476 else 4477 vm_page_sunbusy(m); 4478 } 4479 if ((allocflags & VM_ALLOC_SBUSY) != 0 && xbusy) 4480 vm_page_busy_downgrade(m); 4481 *mp = m; 4482 return (VM_PAGER_OK); 4483 } 4484 4485 /* 4486 * Return the specified range of pages from the given object. For each 4487 * page offset within the range, if a page already exists within the object 4488 * at that offset and it is busy, then wait for it to change state. If, 4489 * instead, the page doesn't exist, then allocate it. 4490 * 4491 * The caller must always specify an allocation class. 4492 * 4493 * allocation classes: 4494 * VM_ALLOC_NORMAL normal process request 4495 * VM_ALLOC_SYSTEM system *really* needs the pages 4496 * 4497 * The caller must always specify that the pages are to be busied and/or 4498 * wired. 4499 * 4500 * optional allocation flags: 4501 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages 4502 * VM_ALLOC_NOBUSY do not exclusive busy the page 4503 * VM_ALLOC_NOWAIT do not sleep 4504 * VM_ALLOC_SBUSY set page to sbusy state 4505 * VM_ALLOC_WIRED wire the pages 4506 * VM_ALLOC_ZERO zero and validate any invalid pages 4507 * 4508 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it 4509 * may return a partial prefix of the requested range. 4510 */ 4511 int 4512 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, 4513 vm_page_t *ma, int count) 4514 { 4515 vm_page_t m, mpred; 4516 int pflags; 4517 int i; 4518 4519 VM_OBJECT_ASSERT_WLOCKED(object); 4520 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0, 4521 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed")); 4522 4523 pflags = vm_page_grab_pflags(allocflags); 4524 if (count == 0) 4525 return (0); 4526 4527 i = 0; 4528 retrylookup: 4529 m = vm_radix_lookup_le(&object->rtree, pindex + i); 4530 if (m == NULL || m->pindex != pindex + i) { 4531 mpred = m; 4532 m = NULL; 4533 } else 4534 mpred = TAILQ_PREV(m, pglist, listq); 4535 for (; i < count; i++) { 4536 if (m != NULL) { 4537 if (!vm_page_acquire_flags(m, allocflags)) { 4538 if (vm_page_busy_sleep_flags(object, m, 4539 "grbmaw", allocflags)) 4540 goto retrylookup; 4541 break; 4542 } 4543 } else { 4544 if ((allocflags & VM_ALLOC_NOCREAT) != 0) 4545 break; 4546 m = vm_page_alloc_after(object, pindex + i, 4547 pflags | VM_ALLOC_COUNT(count - i), mpred); 4548 if (m == NULL) { 4549 if ((allocflags & VM_ALLOC_NOWAIT) != 0) 4550 break; 4551 goto retrylookup; 4552 } 4553 } 4554 if (vm_page_none_valid(m) && 4555 (allocflags & VM_ALLOC_ZERO) != 0) { 4556 if ((m->flags & PG_ZERO) == 0) 4557 pmap_zero_page(m); 4558 vm_page_valid(m); 4559 } 4560 if ((allocflags & VM_ALLOC_NOBUSY) != 0) { 4561 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) 4562 vm_page_sunbusy(m); 4563 else 4564 vm_page_xunbusy(m); 4565 } 4566 ma[i] = mpred = m; 4567 m = vm_page_next(m); 4568 } 4569 return (i); 4570 } 4571 4572 /* 4573 * Mapping function for valid or dirty bits in a page. 4574 * 4575 * Inputs are required to range within a page. 4576 */ 4577 vm_page_bits_t 4578 vm_page_bits(int base, int size) 4579 { 4580 int first_bit; 4581 int last_bit; 4582 4583 KASSERT( 4584 base + size <= PAGE_SIZE, 4585 ("vm_page_bits: illegal base/size %d/%d", base, size) 4586 ); 4587 4588 if (size == 0) /* handle degenerate case */ 4589 return (0); 4590 4591 first_bit = base >> DEV_BSHIFT; 4592 last_bit = (base + size - 1) >> DEV_BSHIFT; 4593 4594 return (((vm_page_bits_t)2 << last_bit) - 4595 ((vm_page_bits_t)1 << first_bit)); 4596 } 4597 4598 void 4599 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set) 4600 { 4601 4602 #if PAGE_SIZE == 32768 4603 atomic_set_64((uint64_t *)bits, set); 4604 #elif PAGE_SIZE == 16384 4605 atomic_set_32((uint32_t *)bits, set); 4606 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16) 4607 atomic_set_16((uint16_t *)bits, set); 4608 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8) 4609 atomic_set_8((uint8_t *)bits, set); 4610 #else /* PAGE_SIZE <= 8192 */ 4611 uintptr_t addr; 4612 int shift; 4613 4614 addr = (uintptr_t)bits; 4615 /* 4616 * Use a trick to perform a 32-bit atomic on the 4617 * containing aligned word, to not depend on the existence 4618 * of atomic_{set, clear}_{8, 16}. 4619 */ 4620 shift = addr & (sizeof(uint32_t) - 1); 4621 #if BYTE_ORDER == BIG_ENDIAN 4622 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 4623 #else 4624 shift *= NBBY; 4625 #endif 4626 addr &= ~(sizeof(uint32_t) - 1); 4627 atomic_set_32((uint32_t *)addr, set << shift); 4628 #endif /* PAGE_SIZE */ 4629 } 4630 4631 static inline void 4632 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear) 4633 { 4634 4635 #if PAGE_SIZE == 32768 4636 atomic_clear_64((uint64_t *)bits, clear); 4637 #elif PAGE_SIZE == 16384 4638 atomic_clear_32((uint32_t *)bits, clear); 4639 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16) 4640 atomic_clear_16((uint16_t *)bits, clear); 4641 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8) 4642 atomic_clear_8((uint8_t *)bits, clear); 4643 #else /* PAGE_SIZE <= 8192 */ 4644 uintptr_t addr; 4645 int shift; 4646 4647 addr = (uintptr_t)bits; 4648 /* 4649 * Use a trick to perform a 32-bit atomic on the 4650 * containing aligned word, to not depend on the existence 4651 * of atomic_{set, clear}_{8, 16}. 4652 */ 4653 shift = addr & (sizeof(uint32_t) - 1); 4654 #if BYTE_ORDER == BIG_ENDIAN 4655 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 4656 #else 4657 shift *= NBBY; 4658 #endif 4659 addr &= ~(sizeof(uint32_t) - 1); 4660 atomic_clear_32((uint32_t *)addr, clear << shift); 4661 #endif /* PAGE_SIZE */ 4662 } 4663 4664 static inline vm_page_bits_t 4665 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits) 4666 { 4667 #if PAGE_SIZE == 32768 4668 uint64_t old; 4669 4670 old = *bits; 4671 while (atomic_fcmpset_64(bits, &old, newbits) == 0); 4672 return (old); 4673 #elif PAGE_SIZE == 16384 4674 uint32_t old; 4675 4676 old = *bits; 4677 while (atomic_fcmpset_32(bits, &old, newbits) == 0); 4678 return (old); 4679 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16) 4680 uint16_t old; 4681 4682 old = *bits; 4683 while (atomic_fcmpset_16(bits, &old, newbits) == 0); 4684 return (old); 4685 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8) 4686 uint8_t old; 4687 4688 old = *bits; 4689 while (atomic_fcmpset_8(bits, &old, newbits) == 0); 4690 return (old); 4691 #else /* PAGE_SIZE <= 4096*/ 4692 uintptr_t addr; 4693 uint32_t old, new, mask; 4694 int shift; 4695 4696 addr = (uintptr_t)bits; 4697 /* 4698 * Use a trick to perform a 32-bit atomic on the 4699 * containing aligned word, to not depend on the existence 4700 * of atomic_{set, swap, clear}_{8, 16}. 4701 */ 4702 shift = addr & (sizeof(uint32_t) - 1); 4703 #if BYTE_ORDER == BIG_ENDIAN 4704 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; 4705 #else 4706 shift *= NBBY; 4707 #endif 4708 addr &= ~(sizeof(uint32_t) - 1); 4709 mask = VM_PAGE_BITS_ALL << shift; 4710 4711 old = *bits; 4712 do { 4713 new = old & ~mask; 4714 new |= newbits << shift; 4715 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0); 4716 return (old >> shift); 4717 #endif /* PAGE_SIZE */ 4718 } 4719 4720 /* 4721 * vm_page_set_valid_range: 4722 * 4723 * Sets portions of a page valid. The arguments are expected 4724 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 4725 * of any partial chunks touched by the range. The invalid portion of 4726 * such chunks will be zeroed. 4727 * 4728 * (base + size) must be less then or equal to PAGE_SIZE. 4729 */ 4730 void 4731 vm_page_set_valid_range(vm_page_t m, int base, int size) 4732 { 4733 int endoff, frag; 4734 vm_page_bits_t pagebits; 4735 4736 vm_page_assert_busied(m); 4737 if (size == 0) /* handle degenerate case */ 4738 return; 4739 4740 /* 4741 * If the base is not DEV_BSIZE aligned and the valid 4742 * bit is clear, we have to zero out a portion of the 4743 * first block. 4744 */ 4745 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 4746 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) 4747 pmap_zero_page_area(m, frag, base - frag); 4748 4749 /* 4750 * If the ending offset is not DEV_BSIZE aligned and the 4751 * valid bit is clear, we have to zero out a portion of 4752 * the last block. 4753 */ 4754 endoff = base + size; 4755 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 4756 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) 4757 pmap_zero_page_area(m, endoff, 4758 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 4759 4760 /* 4761 * Assert that no previously invalid block that is now being validated 4762 * is already dirty. 4763 */ 4764 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, 4765 ("vm_page_set_valid_range: page %p is dirty", m)); 4766 4767 /* 4768 * Set valid bits inclusive of any overlap. 4769 */ 4770 pagebits = vm_page_bits(base, size); 4771 if (vm_page_xbusied(m)) 4772 m->valid |= pagebits; 4773 else 4774 vm_page_bits_set(m, &m->valid, pagebits); 4775 } 4776 4777 /* 4778 * Set the page dirty bits and free the invalid swap space if 4779 * present. Returns the previous dirty bits. 4780 */ 4781 vm_page_bits_t 4782 vm_page_set_dirty(vm_page_t m) 4783 { 4784 vm_page_bits_t old; 4785 4786 VM_PAGE_OBJECT_BUSY_ASSERT(m); 4787 4788 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) { 4789 old = m->dirty; 4790 m->dirty = VM_PAGE_BITS_ALL; 4791 } else 4792 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL); 4793 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0) 4794 vm_pager_page_unswapped(m); 4795 4796 return (old); 4797 } 4798 4799 /* 4800 * Clear the given bits from the specified page's dirty field. 4801 */ 4802 static __inline void 4803 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) 4804 { 4805 4806 vm_page_assert_busied(m); 4807 4808 /* 4809 * If the page is xbusied and not write mapped we are the 4810 * only thread that can modify dirty bits. Otherwise, The pmap 4811 * layer can call vm_page_dirty() without holding a distinguished 4812 * lock. The combination of page busy and atomic operations 4813 * suffice to guarantee consistency of the page dirty field. 4814 */ 4815 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) 4816 m->dirty &= ~pagebits; 4817 else 4818 vm_page_bits_clear(m, &m->dirty, pagebits); 4819 } 4820 4821 /* 4822 * vm_page_set_validclean: 4823 * 4824 * Sets portions of a page valid and clean. The arguments are expected 4825 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 4826 * of any partial chunks touched by the range. The invalid portion of 4827 * such chunks will be zero'd. 4828 * 4829 * (base + size) must be less then or equal to PAGE_SIZE. 4830 */ 4831 void 4832 vm_page_set_validclean(vm_page_t m, int base, int size) 4833 { 4834 vm_page_bits_t oldvalid, pagebits; 4835 int endoff, frag; 4836 4837 vm_page_assert_busied(m); 4838 if (size == 0) /* handle degenerate case */ 4839 return; 4840 4841 /* 4842 * If the base is not DEV_BSIZE aligned and the valid 4843 * bit is clear, we have to zero out a portion of the 4844 * first block. 4845 */ 4846 if ((frag = rounddown2(base, DEV_BSIZE)) != base && 4847 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) 4848 pmap_zero_page_area(m, frag, base - frag); 4849 4850 /* 4851 * If the ending offset is not DEV_BSIZE aligned and the 4852 * valid bit is clear, we have to zero out a portion of 4853 * the last block. 4854 */ 4855 endoff = base + size; 4856 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && 4857 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) 4858 pmap_zero_page_area(m, endoff, 4859 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); 4860 4861 /* 4862 * Set valid, clear dirty bits. If validating the entire 4863 * page we can safely clear the pmap modify bit. We also 4864 * use this opportunity to clear the PGA_NOSYNC flag. If a process 4865 * takes a write fault on a MAP_NOSYNC memory area the flag will 4866 * be set again. 4867 * 4868 * We set valid bits inclusive of any overlap, but we can only 4869 * clear dirty bits for DEV_BSIZE chunks that are fully within 4870 * the range. 4871 */ 4872 oldvalid = m->valid; 4873 pagebits = vm_page_bits(base, size); 4874 if (vm_page_xbusied(m)) 4875 m->valid |= pagebits; 4876 else 4877 vm_page_bits_set(m, &m->valid, pagebits); 4878 #if 0 /* NOT YET */ 4879 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 4880 frag = DEV_BSIZE - frag; 4881 base += frag; 4882 size -= frag; 4883 if (size < 0) 4884 size = 0; 4885 } 4886 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 4887 #endif 4888 if (base == 0 && size == PAGE_SIZE) { 4889 /* 4890 * The page can only be modified within the pmap if it is 4891 * mapped, and it can only be mapped if it was previously 4892 * fully valid. 4893 */ 4894 if (oldvalid == VM_PAGE_BITS_ALL) 4895 /* 4896 * Perform the pmap_clear_modify() first. Otherwise, 4897 * a concurrent pmap operation, such as 4898 * pmap_protect(), could clear a modification in the 4899 * pmap and set the dirty field on the page before 4900 * pmap_clear_modify() had begun and after the dirty 4901 * field was cleared here. 4902 */ 4903 pmap_clear_modify(m); 4904 m->dirty = 0; 4905 vm_page_aflag_clear(m, PGA_NOSYNC); 4906 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m)) 4907 m->dirty &= ~pagebits; 4908 else 4909 vm_page_clear_dirty_mask(m, pagebits); 4910 } 4911 4912 void 4913 vm_page_clear_dirty(vm_page_t m, int base, int size) 4914 { 4915 4916 vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); 4917 } 4918 4919 /* 4920 * vm_page_set_invalid: 4921 * 4922 * Invalidates DEV_BSIZE'd chunks within a page. Both the 4923 * valid and dirty bits for the effected areas are cleared. 4924 */ 4925 void 4926 vm_page_set_invalid(vm_page_t m, int base, int size) 4927 { 4928 vm_page_bits_t bits; 4929 vm_object_t object; 4930 4931 /* 4932 * The object lock is required so that pages can't be mapped 4933 * read-only while we're in the process of invalidating them. 4934 */ 4935 object = m->object; 4936 VM_OBJECT_ASSERT_WLOCKED(object); 4937 vm_page_assert_busied(m); 4938 4939 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + 4940 size >= object->un_pager.vnp.vnp_size) 4941 bits = VM_PAGE_BITS_ALL; 4942 else 4943 bits = vm_page_bits(base, size); 4944 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0) 4945 pmap_remove_all(m); 4946 KASSERT((bits == 0 && vm_page_all_valid(m)) || 4947 !pmap_page_is_mapped(m), 4948 ("vm_page_set_invalid: page %p is mapped", m)); 4949 if (vm_page_xbusied(m)) { 4950 m->valid &= ~bits; 4951 m->dirty &= ~bits; 4952 } else { 4953 vm_page_bits_clear(m, &m->valid, bits); 4954 vm_page_bits_clear(m, &m->dirty, bits); 4955 } 4956 } 4957 4958 /* 4959 * vm_page_invalid: 4960 * 4961 * Invalidates the entire page. The page must be busy, unmapped, and 4962 * the enclosing object must be locked. The object locks protects 4963 * against concurrent read-only pmap enter which is done without 4964 * busy. 4965 */ 4966 void 4967 vm_page_invalid(vm_page_t m) 4968 { 4969 4970 vm_page_assert_busied(m); 4971 VM_OBJECT_ASSERT_LOCKED(m->object); 4972 MPASS(!pmap_page_is_mapped(m)); 4973 4974 if (vm_page_xbusied(m)) 4975 m->valid = 0; 4976 else 4977 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL); 4978 } 4979 4980 /* 4981 * vm_page_zero_invalid() 4982 * 4983 * The kernel assumes that the invalid portions of a page contain 4984 * garbage, but such pages can be mapped into memory by user code. 4985 * When this occurs, we must zero out the non-valid portions of the 4986 * page so user code sees what it expects. 4987 * 4988 * Pages are most often semi-valid when the end of a file is mapped 4989 * into memory and the file's size is not page aligned. 4990 */ 4991 void 4992 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 4993 { 4994 int b; 4995 int i; 4996 4997 /* 4998 * Scan the valid bits looking for invalid sections that 4999 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the 5000 * valid bit may be set ) have already been zeroed by 5001 * vm_page_set_validclean(). 5002 */ 5003 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 5004 if (i == (PAGE_SIZE / DEV_BSIZE) || 5005 (m->valid & ((vm_page_bits_t)1 << i))) { 5006 if (i > b) { 5007 pmap_zero_page_area(m, 5008 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); 5009 } 5010 b = i + 1; 5011 } 5012 } 5013 5014 /* 5015 * setvalid is TRUE when we can safely set the zero'd areas 5016 * as being valid. We can do this if there are no cache consistancy 5017 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 5018 */ 5019 if (setvalid) 5020 vm_page_valid(m); 5021 } 5022 5023 /* 5024 * vm_page_is_valid: 5025 * 5026 * Is (partial) page valid? Note that the case where size == 0 5027 * will return FALSE in the degenerate case where the page is 5028 * entirely invalid, and TRUE otherwise. 5029 * 5030 * Some callers envoke this routine without the busy lock held and 5031 * handle races via higher level locks. Typical callers should 5032 * hold a busy lock to prevent invalidation. 5033 */ 5034 int 5035 vm_page_is_valid(vm_page_t m, int base, int size) 5036 { 5037 vm_page_bits_t bits; 5038 5039 bits = vm_page_bits(base, size); 5040 return (m->valid != 0 && (m->valid & bits) == bits); 5041 } 5042 5043 /* 5044 * Returns true if all of the specified predicates are true for the entire 5045 * (super)page and false otherwise. 5046 */ 5047 bool 5048 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m) 5049 { 5050 vm_object_t object; 5051 int i, npages; 5052 5053 object = m->object; 5054 if (skip_m != NULL && skip_m->object != object) 5055 return (false); 5056 VM_OBJECT_ASSERT_LOCKED(object); 5057 npages = atop(pagesizes[m->psind]); 5058 5059 /* 5060 * The physically contiguous pages that make up a superpage, i.e., a 5061 * page with a page size index ("psind") greater than zero, will 5062 * occupy adjacent entries in vm_page_array[]. 5063 */ 5064 for (i = 0; i < npages; i++) { 5065 /* Always test object consistency, including "skip_m". */ 5066 if (m[i].object != object) 5067 return (false); 5068 if (&m[i] == skip_m) 5069 continue; 5070 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i])) 5071 return (false); 5072 if ((flags & PS_ALL_DIRTY) != 0) { 5073 /* 5074 * Calling vm_page_test_dirty() or pmap_is_modified() 5075 * might stop this case from spuriously returning 5076 * "false". However, that would require a write lock 5077 * on the object containing "m[i]". 5078 */ 5079 if (m[i].dirty != VM_PAGE_BITS_ALL) 5080 return (false); 5081 } 5082 if ((flags & PS_ALL_VALID) != 0 && 5083 m[i].valid != VM_PAGE_BITS_ALL) 5084 return (false); 5085 } 5086 return (true); 5087 } 5088 5089 /* 5090 * Set the page's dirty bits if the page is modified. 5091 */ 5092 void 5093 vm_page_test_dirty(vm_page_t m) 5094 { 5095 5096 vm_page_assert_busied(m); 5097 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) 5098 vm_page_dirty(m); 5099 } 5100 5101 void 5102 vm_page_valid(vm_page_t m) 5103 { 5104 5105 vm_page_assert_busied(m); 5106 if (vm_page_xbusied(m)) 5107 m->valid = VM_PAGE_BITS_ALL; 5108 else 5109 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL); 5110 } 5111 5112 void 5113 vm_page_lock_KBI(vm_page_t m, const char *file, int line) 5114 { 5115 5116 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); 5117 } 5118 5119 void 5120 vm_page_unlock_KBI(vm_page_t m, const char *file, int line) 5121 { 5122 5123 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); 5124 } 5125 5126 int 5127 vm_page_trylock_KBI(vm_page_t m, const char *file, int line) 5128 { 5129 5130 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); 5131 } 5132 5133 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) 5134 void 5135 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) 5136 { 5137 5138 vm_page_lock_assert_KBI(m, MA_OWNED, file, line); 5139 } 5140 5141 void 5142 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) 5143 { 5144 5145 mtx_assert_(vm_page_lockptr(m), a, file, line); 5146 } 5147 #endif 5148 5149 #ifdef INVARIANTS 5150 void 5151 vm_page_object_busy_assert(vm_page_t m) 5152 { 5153 5154 /* 5155 * Certain of the page's fields may only be modified by the 5156 * holder of a page or object busy. 5157 */ 5158 if (m->object != NULL && !vm_page_busied(m)) 5159 VM_OBJECT_ASSERT_BUSY(m->object); 5160 } 5161 5162 void 5163 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits) 5164 { 5165 5166 if ((bits & PGA_WRITEABLE) == 0) 5167 return; 5168 5169 /* 5170 * The PGA_WRITEABLE flag can only be set if the page is 5171 * managed, is exclusively busied or the object is locked. 5172 * Currently, this flag is only set by pmap_enter(). 5173 */ 5174 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 5175 ("PGA_WRITEABLE on unmanaged page")); 5176 if (!vm_page_xbusied(m)) 5177 VM_OBJECT_ASSERT_BUSY(m->object); 5178 } 5179 #endif 5180 5181 #include "opt_ddb.h" 5182 #ifdef DDB 5183 #include <sys/kernel.h> 5184 5185 #include <ddb/ddb.h> 5186 5187 DB_SHOW_COMMAND(page, vm_page_print_page_info) 5188 { 5189 5190 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count()); 5191 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count()); 5192 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count()); 5193 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count()); 5194 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count()); 5195 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); 5196 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); 5197 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); 5198 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); 5199 } 5200 5201 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 5202 { 5203 int dom; 5204 5205 db_printf("pq_free %d\n", vm_free_count()); 5206 for (dom = 0; dom < vm_ndomains; dom++) { 5207 db_printf( 5208 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n", 5209 dom, 5210 vm_dom[dom].vmd_page_count, 5211 vm_dom[dom].vmd_free_count, 5212 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, 5213 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, 5214 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt, 5215 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt); 5216 } 5217 } 5218 5219 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) 5220 { 5221 vm_page_t m; 5222 boolean_t phys, virt; 5223 5224 if (!have_addr) { 5225 db_printf("show pginfo addr\n"); 5226 return; 5227 } 5228 5229 phys = strchr(modif, 'p') != NULL; 5230 virt = strchr(modif, 'v') != NULL; 5231 if (virt) 5232 m = PHYS_TO_VM_PAGE(pmap_kextract(addr)); 5233 else if (phys) 5234 m = PHYS_TO_VM_PAGE(addr); 5235 else 5236 m = (vm_page_t)addr; 5237 db_printf( 5238 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref %u\n" 5239 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", 5240 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, 5241 m->a.queue, m->ref_count, m->a.flags, m->oflags, 5242 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty); 5243 } 5244 #endif /* DDB */ 5245