xref: /freebsd/sys/vm/vm_page.c (revision 4ad8cb68134a393f1080757aabaf959391a3a238)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
36  */
37 
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *	Resident memory management module.
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_vm.h"
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 #include <vm/uma_int.h>
113 
114 #include <machine/md_var.h>
115 
116 extern int	uma_startup_count(int);
117 extern void	uma_startup(void *, int);
118 extern int	vmem_startup_count(void);
119 
120 struct vm_domain vm_dom[MAXMEMDOM];
121 
122 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
123 
124 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
125 
126 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
127 /* The following fields are protected by the domainset lock. */
128 domainset_t __exclusive_cache_line vm_min_domains;
129 domainset_t __exclusive_cache_line vm_severe_domains;
130 static int vm_min_waiters;
131 static int vm_severe_waiters;
132 static int vm_pageproc_waiters;
133 
134 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD, 0,
135     "VM page statistics");
136 
137 static counter_u64_t queue_ops = EARLY_COUNTER;
138 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
139     CTLFLAG_RD, &queue_ops,
140     "Number of batched queue operations");
141 
142 static counter_u64_t queue_nops = EARLY_COUNTER;
143 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
144     CTLFLAG_RD, &queue_nops,
145     "Number of batched queue operations with no effects");
146 
147 static void
148 counter_startup(void)
149 {
150 
151 	queue_ops = counter_u64_alloc(M_WAITOK);
152 	queue_nops = counter_u64_alloc(M_WAITOK);
153 }
154 SYSINIT(page_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
155 
156 /*
157  * bogus page -- for I/O to/from partially complete buffers,
158  * or for paging into sparsely invalid regions.
159  */
160 vm_page_t bogus_page;
161 
162 vm_page_t vm_page_array;
163 long vm_page_array_size;
164 long first_page;
165 
166 static int boot_pages;
167 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
168     &boot_pages, 0,
169     "number of pages allocated for bootstrapping the VM system");
170 
171 static TAILQ_HEAD(, vm_page) blacklist_head;
172 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
173 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
174     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
175 
176 static uma_zone_t fakepg_zone;
177 
178 static void vm_page_alloc_check(vm_page_t m);
179 static void _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
180     const char *wmesg, bool nonshared, bool locked);
181 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
182 static void vm_page_dequeue_complete(vm_page_t m);
183 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
184 static void vm_page_init(void *dummy);
185 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
186     vm_pindex_t pindex, vm_page_t mpred);
187 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
188     vm_page_t mpred);
189 static void vm_page_mvqueue(vm_page_t m, uint8_t queue);
190 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
191     vm_page_t m_run, vm_paddr_t high);
192 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
193     int req);
194 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
195     int flags);
196 static void vm_page_zone_release(void *arg, void **store, int cnt);
197 
198 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
199 
200 static void
201 vm_page_init(void *dummy)
202 {
203 
204 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
205 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
206 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
207 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
208 }
209 
210 /*
211  * The cache page zone is initialized later since we need to be able to allocate
212  * pages before UMA is fully initialized.
213  */
214 static void
215 vm_page_init_cache_zones(void *dummy __unused)
216 {
217 	struct vm_domain *vmd;
218 	struct vm_pgcache *pgcache;
219 	int domain, pool;
220 
221 	for (domain = 0; domain < vm_ndomains; domain++) {
222 		vmd = VM_DOMAIN(domain);
223 
224 		/*
225 		 * Don't allow the page caches to take up more than .1875% of
226 		 * memory.  A UMA bucket contains at most 256 free pages, and we
227 		 * have two buckets per CPU per free pool.
228 		 */
229 		if (vmd->vmd_page_count / 600 < 2 * 256 * mp_ncpus *
230 		    VM_NFREEPOOL)
231 			continue;
232 		for (pool = 0; pool < VM_NFREEPOOL; pool++) {
233 			pgcache = &vmd->vmd_pgcache[pool];
234 			pgcache->domain = domain;
235 			pgcache->pool = pool;
236 			pgcache->zone = uma_zcache_create("vm pgcache",
237 			    sizeof(struct vm_page), NULL, NULL, NULL, NULL,
238 			    vm_page_zone_import, vm_page_zone_release, pgcache,
239 			    UMA_ZONE_MAXBUCKET | UMA_ZONE_VM);
240 			(void)uma_zone_set_maxcache(pgcache->zone, 0);
241 		}
242 	}
243 }
244 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
245 
246 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
247 #if PAGE_SIZE == 32768
248 #ifdef CTASSERT
249 CTASSERT(sizeof(u_long) >= 8);
250 #endif
251 #endif
252 
253 /*
254  *	vm_set_page_size:
255  *
256  *	Sets the page size, perhaps based upon the memory
257  *	size.  Must be called before any use of page-size
258  *	dependent functions.
259  */
260 void
261 vm_set_page_size(void)
262 {
263 	if (vm_cnt.v_page_size == 0)
264 		vm_cnt.v_page_size = PAGE_SIZE;
265 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
266 		panic("vm_set_page_size: page size not a power of two");
267 }
268 
269 /*
270  *	vm_page_blacklist_next:
271  *
272  *	Find the next entry in the provided string of blacklist
273  *	addresses.  Entries are separated by space, comma, or newline.
274  *	If an invalid integer is encountered then the rest of the
275  *	string is skipped.  Updates the list pointer to the next
276  *	character, or NULL if the string is exhausted or invalid.
277  */
278 static vm_paddr_t
279 vm_page_blacklist_next(char **list, char *end)
280 {
281 	vm_paddr_t bad;
282 	char *cp, *pos;
283 
284 	if (list == NULL || *list == NULL)
285 		return (0);
286 	if (**list =='\0') {
287 		*list = NULL;
288 		return (0);
289 	}
290 
291 	/*
292 	 * If there's no end pointer then the buffer is coming from
293 	 * the kenv and we know it's null-terminated.
294 	 */
295 	if (end == NULL)
296 		end = *list + strlen(*list);
297 
298 	/* Ensure that strtoq() won't walk off the end */
299 	if (*end != '\0') {
300 		if (*end == '\n' || *end == ' ' || *end  == ',')
301 			*end = '\0';
302 		else {
303 			printf("Blacklist not terminated, skipping\n");
304 			*list = NULL;
305 			return (0);
306 		}
307 	}
308 
309 	for (pos = *list; *pos != '\0'; pos = cp) {
310 		bad = strtoq(pos, &cp, 0);
311 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
312 			if (bad == 0) {
313 				if (++cp < end)
314 					continue;
315 				else
316 					break;
317 			}
318 		} else
319 			break;
320 		if (*cp == '\0' || ++cp >= end)
321 			*list = NULL;
322 		else
323 			*list = cp;
324 		return (trunc_page(bad));
325 	}
326 	printf("Garbage in RAM blacklist, skipping\n");
327 	*list = NULL;
328 	return (0);
329 }
330 
331 bool
332 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
333 {
334 	struct vm_domain *vmd;
335 	vm_page_t m;
336 	int ret;
337 
338 	m = vm_phys_paddr_to_vm_page(pa);
339 	if (m == NULL)
340 		return (true); /* page does not exist, no failure */
341 
342 	vmd = vm_pagequeue_domain(m);
343 	vm_domain_free_lock(vmd);
344 	ret = vm_phys_unfree_page(m);
345 	vm_domain_free_unlock(vmd);
346 	if (ret != 0) {
347 		vm_domain_freecnt_inc(vmd, -1);
348 		TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
349 		if (verbose)
350 			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
351 	}
352 	return (ret);
353 }
354 
355 /*
356  *	vm_page_blacklist_check:
357  *
358  *	Iterate through the provided string of blacklist addresses, pulling
359  *	each entry out of the physical allocator free list and putting it
360  *	onto a list for reporting via the vm.page_blacklist sysctl.
361  */
362 static void
363 vm_page_blacklist_check(char *list, char *end)
364 {
365 	vm_paddr_t pa;
366 	char *next;
367 
368 	next = list;
369 	while (next != NULL) {
370 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
371 			continue;
372 		vm_page_blacklist_add(pa, bootverbose);
373 	}
374 }
375 
376 /*
377  *	vm_page_blacklist_load:
378  *
379  *	Search for a special module named "ram_blacklist".  It'll be a
380  *	plain text file provided by the user via the loader directive
381  *	of the same name.
382  */
383 static void
384 vm_page_blacklist_load(char **list, char **end)
385 {
386 	void *mod;
387 	u_char *ptr;
388 	u_int len;
389 
390 	mod = NULL;
391 	ptr = NULL;
392 
393 	mod = preload_search_by_type("ram_blacklist");
394 	if (mod != NULL) {
395 		ptr = preload_fetch_addr(mod);
396 		len = preload_fetch_size(mod);
397         }
398 	*list = ptr;
399 	if (ptr != NULL)
400 		*end = ptr + len;
401 	else
402 		*end = NULL;
403 	return;
404 }
405 
406 static int
407 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
408 {
409 	vm_page_t m;
410 	struct sbuf sbuf;
411 	int error, first;
412 
413 	first = 1;
414 	error = sysctl_wire_old_buffer(req, 0);
415 	if (error != 0)
416 		return (error);
417 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
418 	TAILQ_FOREACH(m, &blacklist_head, listq) {
419 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
420 		    (uintmax_t)m->phys_addr);
421 		first = 0;
422 	}
423 	error = sbuf_finish(&sbuf);
424 	sbuf_delete(&sbuf);
425 	return (error);
426 }
427 
428 /*
429  * Initialize a dummy page for use in scans of the specified paging queue.
430  * In principle, this function only needs to set the flag PG_MARKER.
431  * Nonetheless, it write busies the page as a safety precaution.
432  */
433 static void
434 vm_page_init_marker(vm_page_t marker, int queue, uint8_t aflags)
435 {
436 
437 	bzero(marker, sizeof(*marker));
438 	marker->flags = PG_MARKER;
439 	marker->aflags = aflags;
440 	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
441 	marker->queue = queue;
442 }
443 
444 static void
445 vm_page_domain_init(int domain)
446 {
447 	struct vm_domain *vmd;
448 	struct vm_pagequeue *pq;
449 	int i;
450 
451 	vmd = VM_DOMAIN(domain);
452 	bzero(vmd, sizeof(*vmd));
453 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
454 	    "vm inactive pagequeue";
455 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
456 	    "vm active pagequeue";
457 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
458 	    "vm laundry pagequeue";
459 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
460 	    "vm unswappable pagequeue";
461 	vmd->vmd_domain = domain;
462 	vmd->vmd_page_count = 0;
463 	vmd->vmd_free_count = 0;
464 	vmd->vmd_segs = 0;
465 	vmd->vmd_oom = FALSE;
466 	for (i = 0; i < PQ_COUNT; i++) {
467 		pq = &vmd->vmd_pagequeues[i];
468 		TAILQ_INIT(&pq->pq_pl);
469 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
470 		    MTX_DEF | MTX_DUPOK);
471 		pq->pq_pdpages = 0;
472 		vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
473 	}
474 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
475 	mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
476 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
477 
478 	/*
479 	 * inacthead is used to provide FIFO ordering for LRU-bypassing
480 	 * insertions.
481 	 */
482 	vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
483 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
484 	    &vmd->vmd_inacthead, plinks.q);
485 
486 	/*
487 	 * The clock pages are used to implement active queue scanning without
488 	 * requeues.  Scans start at clock[0], which is advanced after the scan
489 	 * ends.  When the two clock hands meet, they are reset and scanning
490 	 * resumes from the head of the queue.
491 	 */
492 	vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
493 	vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
494 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
495 	    &vmd->vmd_clock[0], plinks.q);
496 	TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
497 	    &vmd->vmd_clock[1], plinks.q);
498 }
499 
500 /*
501  * Initialize a physical page in preparation for adding it to the free
502  * lists.
503  */
504 static void
505 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
506 {
507 
508 	m->object = NULL;
509 	m->ref_count = 0;
510 	m->busy_lock = VPB_UNBUSIED;
511 	m->flags = m->aflags = 0;
512 	m->phys_addr = pa;
513 	m->queue = PQ_NONE;
514 	m->psind = 0;
515 	m->segind = segind;
516 	m->order = VM_NFREEORDER;
517 	m->pool = VM_FREEPOOL_DEFAULT;
518 	m->valid = m->dirty = 0;
519 	pmap_page_init(m);
520 }
521 
522 #ifndef PMAP_HAS_PAGE_ARRAY
523 static vm_paddr_t
524 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
525 {
526 	vm_paddr_t new_end;
527 
528 	/*
529 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
530 	 * However, because this page is allocated from KVM, out-of-bounds
531 	 * accesses using the direct map will not be trapped.
532 	 */
533 	*vaddr += PAGE_SIZE;
534 
535 	/*
536 	 * Allocate physical memory for the page structures, and map it.
537 	 */
538 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
539 	vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
540 	    VM_PROT_READ | VM_PROT_WRITE);
541 	vm_page_array_size = page_range;
542 
543 	return (new_end);
544 }
545 #endif
546 
547 /*
548  *	vm_page_startup:
549  *
550  *	Initializes the resident memory module.  Allocates physical memory for
551  *	bootstrapping UMA and some data structures that are used to manage
552  *	physical pages.  Initializes these structures, and populates the free
553  *	page queues.
554  */
555 vm_offset_t
556 vm_page_startup(vm_offset_t vaddr)
557 {
558 	struct vm_phys_seg *seg;
559 	vm_page_t m;
560 	char *list, *listend;
561 	vm_offset_t mapped;
562 	vm_paddr_t end, high_avail, low_avail, new_end, page_range, size;
563 	vm_paddr_t last_pa, pa;
564 	u_long pagecount;
565 	int biggestone, i, segind;
566 #ifdef WITNESS
567 	int witness_size;
568 #endif
569 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
570 	long ii;
571 #endif
572 
573 	vaddr = round_page(vaddr);
574 
575 	vm_phys_early_startup();
576 	biggestone = vm_phys_avail_largest();
577 	end = phys_avail[biggestone+1];
578 
579 	/*
580 	 * Initialize the page and queue locks.
581 	 */
582 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
583 	for (i = 0; i < PA_LOCK_COUNT; i++)
584 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
585 	for (i = 0; i < vm_ndomains; i++)
586 		vm_page_domain_init(i);
587 
588 	/*
589 	 * Allocate memory for use when boot strapping the kernel memory
590 	 * allocator.  Tell UMA how many zones we are going to create
591 	 * before going fully functional.  UMA will add its zones.
592 	 *
593 	 * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP,
594 	 * KMAP ENTRY, MAP ENTRY, VMSPACE.
595 	 */
596 	boot_pages = uma_startup_count(8);
597 
598 #ifndef UMA_MD_SMALL_ALLOC
599 	/* vmem_startup() calls uma_prealloc(). */
600 	boot_pages += vmem_startup_count();
601 	/* vm_map_startup() calls uma_prealloc(). */
602 	boot_pages += howmany(MAX_KMAP,
603 	    UMA_SLAB_SPACE / sizeof(struct vm_map));
604 
605 	/*
606 	 * Before going fully functional kmem_init() does allocation
607 	 * from "KMAP ENTRY" and vmem_create() does allocation from "vmem".
608 	 */
609 	boot_pages += 2;
610 #endif
611 	/*
612 	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
613 	 * manually fetch the value.
614 	 */
615 	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
616 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
617 	new_end = trunc_page(new_end);
618 	mapped = pmap_map(&vaddr, new_end, end,
619 	    VM_PROT_READ | VM_PROT_WRITE);
620 	bzero((void *)mapped, end - new_end);
621 	uma_startup((void *)mapped, boot_pages);
622 
623 #ifdef WITNESS
624 	witness_size = round_page(witness_startup_count());
625 	new_end -= witness_size;
626 	mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
627 	    VM_PROT_READ | VM_PROT_WRITE);
628 	bzero((void *)mapped, witness_size);
629 	witness_startup((void *)mapped);
630 #endif
631 
632 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
633     defined(__i386__) || defined(__mips__) || defined(__riscv) || \
634     defined(__powerpc64__)
635 	/*
636 	 * Allocate a bitmap to indicate that a random physical page
637 	 * needs to be included in a minidump.
638 	 *
639 	 * The amd64 port needs this to indicate which direct map pages
640 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
641 	 *
642 	 * However, i386 still needs this workspace internally within the
643 	 * minidump code.  In theory, they are not needed on i386, but are
644 	 * included should the sf_buf code decide to use them.
645 	 */
646 	last_pa = 0;
647 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
648 		if (dump_avail[i + 1] > last_pa)
649 			last_pa = dump_avail[i + 1];
650 	page_range = last_pa / PAGE_SIZE;
651 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
652 	new_end -= vm_page_dump_size;
653 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
654 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
655 	bzero((void *)vm_page_dump, vm_page_dump_size);
656 #else
657 	(void)last_pa;
658 #endif
659 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
660     defined(__riscv) || defined(__powerpc64__)
661 	/*
662 	 * Include the UMA bootstrap pages, witness pages and vm_page_dump
663 	 * in a crash dump.  When pmap_map() uses the direct map, they are
664 	 * not automatically included.
665 	 */
666 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
667 		dump_add_page(pa);
668 #endif
669 	phys_avail[biggestone + 1] = new_end;
670 #ifdef __amd64__
671 	/*
672 	 * Request that the physical pages underlying the message buffer be
673 	 * included in a crash dump.  Since the message buffer is accessed
674 	 * through the direct map, they are not automatically included.
675 	 */
676 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
677 	last_pa = pa + round_page(msgbufsize);
678 	while (pa < last_pa) {
679 		dump_add_page(pa);
680 		pa += PAGE_SIZE;
681 	}
682 #endif
683 	/*
684 	 * Compute the number of pages of memory that will be available for
685 	 * use, taking into account the overhead of a page structure per page.
686 	 * In other words, solve
687 	 *	"available physical memory" - round_page(page_range *
688 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
689 	 * for page_range.
690 	 */
691 	low_avail = phys_avail[0];
692 	high_avail = phys_avail[1];
693 	for (i = 0; i < vm_phys_nsegs; i++) {
694 		if (vm_phys_segs[i].start < low_avail)
695 			low_avail = vm_phys_segs[i].start;
696 		if (vm_phys_segs[i].end > high_avail)
697 			high_avail = vm_phys_segs[i].end;
698 	}
699 	/* Skip the first chunk.  It is already accounted for. */
700 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
701 		if (phys_avail[i] < low_avail)
702 			low_avail = phys_avail[i];
703 		if (phys_avail[i + 1] > high_avail)
704 			high_avail = phys_avail[i + 1];
705 	}
706 	first_page = low_avail / PAGE_SIZE;
707 #ifdef VM_PHYSSEG_SPARSE
708 	size = 0;
709 	for (i = 0; i < vm_phys_nsegs; i++)
710 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
711 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
712 		size += phys_avail[i + 1] - phys_avail[i];
713 #elif defined(VM_PHYSSEG_DENSE)
714 	size = high_avail - low_avail;
715 #else
716 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
717 #endif
718 
719 #ifdef PMAP_HAS_PAGE_ARRAY
720 	pmap_page_array_startup(size / PAGE_SIZE);
721 	biggestone = vm_phys_avail_largest();
722 	end = new_end = phys_avail[biggestone + 1];
723 #else
724 #ifdef VM_PHYSSEG_DENSE
725 	/*
726 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
727 	 * the overhead of a page structure per page only if vm_page_array is
728 	 * allocated from the last physical memory chunk.  Otherwise, we must
729 	 * allocate page structures representing the physical memory
730 	 * underlying vm_page_array, even though they will not be used.
731 	 */
732 	if (new_end != high_avail)
733 		page_range = size / PAGE_SIZE;
734 	else
735 #endif
736 	{
737 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
738 
739 		/*
740 		 * If the partial bytes remaining are large enough for
741 		 * a page (PAGE_SIZE) without a corresponding
742 		 * 'struct vm_page', then new_end will contain an
743 		 * extra page after subtracting the length of the VM
744 		 * page array.  Compensate by subtracting an extra
745 		 * page from new_end.
746 		 */
747 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
748 			if (new_end == high_avail)
749 				high_avail -= PAGE_SIZE;
750 			new_end -= PAGE_SIZE;
751 		}
752 	}
753 	end = new_end;
754 	new_end = vm_page_array_alloc(&vaddr, end, page_range);
755 #endif
756 
757 #if VM_NRESERVLEVEL > 0
758 	/*
759 	 * Allocate physical memory for the reservation management system's
760 	 * data structures, and map it.
761 	 */
762 	new_end = vm_reserv_startup(&vaddr, new_end);
763 #endif
764 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
765     defined(__riscv) || defined(__powerpc64__)
766 	/*
767 	 * Include vm_page_array and vm_reserv_array in a crash dump.
768 	 */
769 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
770 		dump_add_page(pa);
771 #endif
772 	phys_avail[biggestone + 1] = new_end;
773 
774 	/*
775 	 * Add physical memory segments corresponding to the available
776 	 * physical pages.
777 	 */
778 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
779 		if (vm_phys_avail_size(i) != 0)
780 			vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
781 
782 	/*
783 	 * Initialize the physical memory allocator.
784 	 */
785 	vm_phys_init();
786 
787 	/*
788 	 * Initialize the page structures and add every available page to the
789 	 * physical memory allocator's free lists.
790 	 */
791 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
792 	for (ii = 0; ii < vm_page_array_size; ii++) {
793 		m = &vm_page_array[ii];
794 		vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
795 		m->flags = PG_FICTITIOUS;
796 	}
797 #endif
798 	vm_cnt.v_page_count = 0;
799 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
800 		seg = &vm_phys_segs[segind];
801 		for (m = seg->first_page, pa = seg->start; pa < seg->end;
802 		    m++, pa += PAGE_SIZE)
803 			vm_page_init_page(m, pa, segind);
804 
805 		/*
806 		 * Add the segment to the free lists only if it is covered by
807 		 * one of the ranges in phys_avail.  Because we've added the
808 		 * ranges to the vm_phys_segs array, we can assume that each
809 		 * segment is either entirely contained in one of the ranges,
810 		 * or doesn't overlap any of them.
811 		 */
812 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
813 			struct vm_domain *vmd;
814 
815 			if (seg->start < phys_avail[i] ||
816 			    seg->end > phys_avail[i + 1])
817 				continue;
818 
819 			m = seg->first_page;
820 			pagecount = (u_long)atop(seg->end - seg->start);
821 
822 			vmd = VM_DOMAIN(seg->domain);
823 			vm_domain_free_lock(vmd);
824 			vm_phys_enqueue_contig(m, pagecount);
825 			vm_domain_free_unlock(vmd);
826 			vm_domain_freecnt_inc(vmd, pagecount);
827 			vm_cnt.v_page_count += (u_int)pagecount;
828 
829 			vmd = VM_DOMAIN(seg->domain);
830 			vmd->vmd_page_count += (u_int)pagecount;
831 			vmd->vmd_segs |= 1UL << m->segind;
832 			break;
833 		}
834 	}
835 
836 	/*
837 	 * Remove blacklisted pages from the physical memory allocator.
838 	 */
839 	TAILQ_INIT(&blacklist_head);
840 	vm_page_blacklist_load(&list, &listend);
841 	vm_page_blacklist_check(list, listend);
842 
843 	list = kern_getenv("vm.blacklist");
844 	vm_page_blacklist_check(list, NULL);
845 
846 	freeenv(list);
847 #if VM_NRESERVLEVEL > 0
848 	/*
849 	 * Initialize the reservation management system.
850 	 */
851 	vm_reserv_init();
852 #endif
853 
854 	return (vaddr);
855 }
856 
857 void
858 vm_page_reference(vm_page_t m)
859 {
860 
861 	vm_page_aflag_set(m, PGA_REFERENCED);
862 }
863 
864 /*
865  *	vm_page_busy_acquire:
866  *
867  *	Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
868  *	and drop the object lock if necessary.
869  */
870 int
871 vm_page_busy_acquire(vm_page_t m, int allocflags)
872 {
873 	vm_object_t obj;
874 	bool locked;
875 
876 	/*
877 	 * The page-specific object must be cached because page
878 	 * identity can change during the sleep, causing the
879 	 * re-lock of a different object.
880 	 * It is assumed that a reference to the object is already
881 	 * held by the callers.
882 	 */
883 	obj = m->object;
884 	for (;;) {
885 		if ((allocflags & VM_ALLOC_SBUSY) == 0) {
886 			if (vm_page_tryxbusy(m))
887 				return (TRUE);
888 		} else {
889 			if (vm_page_trysbusy(m))
890 				return (TRUE);
891 		}
892 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
893 			return (FALSE);
894 		if (obj != NULL)
895 			locked = VM_OBJECT_WOWNED(obj);
896 		else
897 			locked = FALSE;
898 		MPASS(locked || vm_page_wired(m));
899 		_vm_page_busy_sleep(obj, m, "vmpba",
900 		    (allocflags & VM_ALLOC_SBUSY) != 0, locked);
901 		if (locked)
902 			VM_OBJECT_WLOCK(obj);
903 		MPASS(m->object == obj || m->object == NULL);
904 		if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
905 			return (FALSE);
906 	}
907 }
908 
909 /*
910  *	vm_page_busy_downgrade:
911  *
912  *	Downgrade an exclusive busy page into a single shared busy page.
913  */
914 void
915 vm_page_busy_downgrade(vm_page_t m)
916 {
917 	u_int x;
918 
919 	vm_page_assert_xbusied(m);
920 
921 	x = m->busy_lock;
922 	for (;;) {
923 		if (atomic_fcmpset_rel_int(&m->busy_lock,
924 		    &x, VPB_SHARERS_WORD(1)))
925 			break;
926 	}
927 	if ((x & VPB_BIT_WAITERS) != 0)
928 		wakeup(m);
929 }
930 
931 /*
932  *
933  *	vm_page_busy_tryupgrade:
934  *
935  *	Attempt to upgrade a single shared busy into an exclusive busy.
936  */
937 int
938 vm_page_busy_tryupgrade(vm_page_t m)
939 {
940 	u_int x;
941 
942 	vm_page_assert_sbusied(m);
943 
944 	x = m->busy_lock;
945 	for (;;) {
946 		if (VPB_SHARERS(x) > 1)
947 			return (0);
948 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
949 		    ("vm_page_busy_tryupgrade: invalid lock state"));
950 		if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
951 		    VPB_SINGLE_EXCLUSIVER | (x & VPB_BIT_WAITERS)))
952 			continue;
953 		return (1);
954 	}
955 }
956 
957 /*
958  *	vm_page_sbusied:
959  *
960  *	Return a positive value if the page is shared busied, 0 otherwise.
961  */
962 int
963 vm_page_sbusied(vm_page_t m)
964 {
965 	u_int x;
966 
967 	x = m->busy_lock;
968 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
969 }
970 
971 /*
972  *	vm_page_sunbusy:
973  *
974  *	Shared unbusy a page.
975  */
976 void
977 vm_page_sunbusy(vm_page_t m)
978 {
979 	u_int x;
980 
981 	vm_page_assert_sbusied(m);
982 
983 	x = m->busy_lock;
984 	for (;;) {
985 		if (VPB_SHARERS(x) > 1) {
986 			if (atomic_fcmpset_int(&m->busy_lock, &x,
987 			    x - VPB_ONE_SHARER))
988 				break;
989 			continue;
990 		}
991 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
992 		    ("vm_page_sunbusy: invalid lock state"));
993 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
994 			continue;
995 		if ((x & VPB_BIT_WAITERS) == 0)
996 			break;
997 		wakeup(m);
998 		break;
999 	}
1000 }
1001 
1002 /*
1003  *	vm_page_busy_sleep:
1004  *
1005  *	Sleep if the page is busy, using the page pointer as wchan.
1006  *	This is used to implement the hard-path of busying mechanism.
1007  *
1008  *	If nonshared is true, sleep only if the page is xbusy.
1009  *
1010  *	The object lock must be held on entry and will be released on exit.
1011  */
1012 void
1013 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1014 {
1015 	vm_object_t obj;
1016 
1017 	obj = m->object;
1018 	VM_OBJECT_ASSERT_LOCKED(obj);
1019 	vm_page_lock_assert(m, MA_NOTOWNED);
1020 
1021 	_vm_page_busy_sleep(obj, m, wmesg, nonshared, true);
1022 }
1023 
1024 static void
1025 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, const char *wmesg,
1026     bool nonshared, bool locked)
1027 {
1028 	u_int x;
1029 
1030 	/*
1031 	 * If the object is busy we must wait for that to drain to zero
1032 	 * before trying the page again.
1033 	 */
1034 	if (obj != NULL && vm_object_busied(obj)) {
1035 		if (locked)
1036 			VM_OBJECT_DROP(obj);
1037 		vm_object_busy_wait(obj, wmesg);
1038 		return;
1039 	}
1040 	sleepq_lock(m);
1041 	x = m->busy_lock;
1042 	if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
1043 	    ((x & VPB_BIT_WAITERS) == 0 &&
1044 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
1045 		if (locked)
1046 			VM_OBJECT_DROP(obj);
1047 		sleepq_release(m);
1048 		return;
1049 	}
1050 	if (locked)
1051 		VM_OBJECT_DROP(obj);
1052 	sleepq_add(m, NULL, wmesg, 0, 0);
1053 	sleepq_wait(m, PVM);
1054 }
1055 
1056 /*
1057  *	vm_page_trysbusy:
1058  *
1059  *	Try to shared busy a page.
1060  *	If the operation succeeds 1 is returned otherwise 0.
1061  *	The operation never sleeps.
1062  */
1063 int
1064 vm_page_trysbusy(vm_page_t m)
1065 {
1066 	vm_object_t obj;
1067 	u_int x;
1068 
1069 	obj = m->object;
1070 	x = m->busy_lock;
1071 	for (;;) {
1072 		if ((x & VPB_BIT_SHARED) == 0)
1073 			return (0);
1074 		/*
1075 		 * Reduce the window for transient busies that will trigger
1076 		 * false negatives in vm_page_ps_test().
1077 		 */
1078 		if (obj != NULL && vm_object_busied(obj))
1079 			return (0);
1080 		if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1081 		    x + VPB_ONE_SHARER))
1082 			break;
1083 	}
1084 
1085 	/* Refetch the object now that we're guaranteed that it is stable. */
1086 	obj = m->object;
1087 	if (obj != NULL && vm_object_busied(obj)) {
1088 		vm_page_sunbusy(m);
1089 		return (0);
1090 	}
1091 	return (1);
1092 }
1093 
1094 /*
1095  *	vm_page_tryxbusy:
1096  *
1097  *	Try to exclusive busy a page.
1098  *	If the operation succeeds 1 is returned otherwise 0.
1099  *	The operation never sleeps.
1100  */
1101 int
1102 vm_page_tryxbusy(vm_page_t m)
1103 {
1104 	vm_object_t obj;
1105 
1106         if (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED,
1107             VPB_SINGLE_EXCLUSIVER) == 0)
1108 		return (0);
1109 
1110 	obj = m->object;
1111 	if (obj != NULL && vm_object_busied(obj)) {
1112 		vm_page_xunbusy(m);
1113 		return (0);
1114 	}
1115 	return (1);
1116 }
1117 
1118 /*
1119  *	vm_page_xunbusy_hard:
1120  *
1121  *	Called when unbusy has failed because there is a waiter.
1122  */
1123 void
1124 vm_page_xunbusy_hard(vm_page_t m)
1125 {
1126 
1127 	vm_page_assert_xbusied(m);
1128 
1129 	/*
1130 	 * Wake the waiter.
1131 	 */
1132 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1133 	wakeup(m);
1134 }
1135 
1136 /*
1137  * Avoid releasing and reacquiring the same page lock.
1138  */
1139 void
1140 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
1141 {
1142 	struct mtx *mtx1;
1143 
1144 	mtx1 = vm_page_lockptr(m);
1145 	if (*mtx == mtx1)
1146 		return;
1147 	if (*mtx != NULL)
1148 		mtx_unlock(*mtx);
1149 	*mtx = mtx1;
1150 	mtx_lock(mtx1);
1151 }
1152 
1153 /*
1154  *	vm_page_unhold_pages:
1155  *
1156  *	Unhold each of the pages that is referenced by the given array.
1157  */
1158 void
1159 vm_page_unhold_pages(vm_page_t *ma, int count)
1160 {
1161 
1162 	for (; count != 0; count--) {
1163 		vm_page_unwire(*ma, PQ_ACTIVE);
1164 		ma++;
1165 	}
1166 }
1167 
1168 vm_page_t
1169 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1170 {
1171 	vm_page_t m;
1172 
1173 #ifdef VM_PHYSSEG_SPARSE
1174 	m = vm_phys_paddr_to_vm_page(pa);
1175 	if (m == NULL)
1176 		m = vm_phys_fictitious_to_vm_page(pa);
1177 	return (m);
1178 #elif defined(VM_PHYSSEG_DENSE)
1179 	long pi;
1180 
1181 	pi = atop(pa);
1182 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1183 		m = &vm_page_array[pi - first_page];
1184 		return (m);
1185 	}
1186 	return (vm_phys_fictitious_to_vm_page(pa));
1187 #else
1188 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1189 #endif
1190 }
1191 
1192 /*
1193  *	vm_page_getfake:
1194  *
1195  *	Create a fictitious page with the specified physical address and
1196  *	memory attribute.  The memory attribute is the only the machine-
1197  *	dependent aspect of a fictitious page that must be initialized.
1198  */
1199 vm_page_t
1200 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1201 {
1202 	vm_page_t m;
1203 
1204 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1205 	vm_page_initfake(m, paddr, memattr);
1206 	return (m);
1207 }
1208 
1209 void
1210 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1211 {
1212 
1213 	if ((m->flags & PG_FICTITIOUS) != 0) {
1214 		/*
1215 		 * The page's memattr might have changed since the
1216 		 * previous initialization.  Update the pmap to the
1217 		 * new memattr.
1218 		 */
1219 		goto memattr;
1220 	}
1221 	m->phys_addr = paddr;
1222 	m->queue = PQ_NONE;
1223 	/* Fictitious pages don't use "segind". */
1224 	m->flags = PG_FICTITIOUS;
1225 	/* Fictitious pages don't use "order" or "pool". */
1226 	m->oflags = VPO_UNMANAGED;
1227 	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1228 	/* Fictitious pages are unevictable. */
1229 	m->ref_count = 1;
1230 	pmap_page_init(m);
1231 memattr:
1232 	pmap_page_set_memattr(m, memattr);
1233 }
1234 
1235 /*
1236  *	vm_page_putfake:
1237  *
1238  *	Release a fictitious page.
1239  */
1240 void
1241 vm_page_putfake(vm_page_t m)
1242 {
1243 
1244 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1245 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1246 	    ("vm_page_putfake: bad page %p", m));
1247 	if (vm_page_xbusied(m))
1248 		vm_page_xunbusy(m);
1249 	uma_zfree(fakepg_zone, m);
1250 }
1251 
1252 /*
1253  *	vm_page_updatefake:
1254  *
1255  *	Update the given fictitious page to the specified physical address and
1256  *	memory attribute.
1257  */
1258 void
1259 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1260 {
1261 
1262 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1263 	    ("vm_page_updatefake: bad page %p", m));
1264 	m->phys_addr = paddr;
1265 	pmap_page_set_memattr(m, memattr);
1266 }
1267 
1268 /*
1269  *	vm_page_free:
1270  *
1271  *	Free a page.
1272  */
1273 void
1274 vm_page_free(vm_page_t m)
1275 {
1276 
1277 	m->flags &= ~PG_ZERO;
1278 	vm_page_free_toq(m);
1279 }
1280 
1281 /*
1282  *	vm_page_free_zero:
1283  *
1284  *	Free a page to the zerod-pages queue
1285  */
1286 void
1287 vm_page_free_zero(vm_page_t m)
1288 {
1289 
1290 	m->flags |= PG_ZERO;
1291 	vm_page_free_toq(m);
1292 }
1293 
1294 /*
1295  * Unbusy and handle the page queueing for a page from a getpages request that
1296  * was optionally read ahead or behind.
1297  */
1298 void
1299 vm_page_readahead_finish(vm_page_t m)
1300 {
1301 
1302 	/* We shouldn't put invalid pages on queues. */
1303 	KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1304 
1305 	/*
1306 	 * Since the page is not the actually needed one, whether it should
1307 	 * be activated or deactivated is not obvious.  Empirical results
1308 	 * have shown that deactivating the page is usually the best choice,
1309 	 * unless the page is wanted by another thread.
1310 	 */
1311 	vm_page_lock(m);
1312 	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1313 		vm_page_activate(m);
1314 	else
1315 		vm_page_deactivate(m);
1316 	vm_page_unlock(m);
1317 	vm_page_xunbusy(m);
1318 }
1319 
1320 /*
1321  *	vm_page_sleep_if_busy:
1322  *
1323  *	Sleep and release the object lock if the page is busied.
1324  *	Returns TRUE if the thread slept.
1325  *
1326  *	The given page must be unlocked and object containing it must
1327  *	be locked.
1328  */
1329 int
1330 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1331 {
1332 	vm_object_t obj;
1333 
1334 	vm_page_lock_assert(m, MA_NOTOWNED);
1335 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1336 
1337 	/*
1338 	 * The page-specific object must be cached because page
1339 	 * identity can change during the sleep, causing the
1340 	 * re-lock of a different object.
1341 	 * It is assumed that a reference to the object is already
1342 	 * held by the callers.
1343 	 */
1344 	obj = m->object;
1345 	if (vm_page_busied(m) || (obj != NULL && obj->busy)) {
1346 		vm_page_busy_sleep(m, msg, false);
1347 		VM_OBJECT_WLOCK(obj);
1348 		return (TRUE);
1349 	}
1350 	return (FALSE);
1351 }
1352 
1353 /*
1354  *	vm_page_sleep_if_xbusy:
1355  *
1356  *	Sleep and release the object lock if the page is xbusied.
1357  *	Returns TRUE if the thread slept.
1358  *
1359  *	The given page must be unlocked and object containing it must
1360  *	be locked.
1361  */
1362 int
1363 vm_page_sleep_if_xbusy(vm_page_t m, const char *msg)
1364 {
1365 	vm_object_t obj;
1366 
1367 	vm_page_lock_assert(m, MA_NOTOWNED);
1368 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1369 
1370 	/*
1371 	 * The page-specific object must be cached because page
1372 	 * identity can change during the sleep, causing the
1373 	 * re-lock of a different object.
1374 	 * It is assumed that a reference to the object is already
1375 	 * held by the callers.
1376 	 */
1377 	obj = m->object;
1378 	if (vm_page_xbusied(m) || (obj != NULL && obj->busy)) {
1379 		vm_page_busy_sleep(m, msg, true);
1380 		VM_OBJECT_WLOCK(obj);
1381 		return (TRUE);
1382 	}
1383 	return (FALSE);
1384 }
1385 
1386 /*
1387  *	vm_page_dirty_KBI:		[ internal use only ]
1388  *
1389  *	Set all bits in the page's dirty field.
1390  *
1391  *	The object containing the specified page must be locked if the
1392  *	call is made from the machine-independent layer.
1393  *
1394  *	See vm_page_clear_dirty_mask().
1395  *
1396  *	This function should only be called by vm_page_dirty().
1397  */
1398 void
1399 vm_page_dirty_KBI(vm_page_t m)
1400 {
1401 
1402 	/* Refer to this operation by its public name. */
1403 	KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1404 	m->dirty = VM_PAGE_BITS_ALL;
1405 }
1406 
1407 /*
1408  *	vm_page_insert:		[ internal use only ]
1409  *
1410  *	Inserts the given mem entry into the object and object list.
1411  *
1412  *	The object must be locked.
1413  */
1414 int
1415 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1416 {
1417 	vm_page_t mpred;
1418 
1419 	VM_OBJECT_ASSERT_WLOCKED(object);
1420 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1421 	return (vm_page_insert_after(m, object, pindex, mpred));
1422 }
1423 
1424 /*
1425  *	vm_page_insert_after:
1426  *
1427  *	Inserts the page "m" into the specified object at offset "pindex".
1428  *
1429  *	The page "mpred" must immediately precede the offset "pindex" within
1430  *	the specified object.
1431  *
1432  *	The object must be locked.
1433  */
1434 static int
1435 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1436     vm_page_t mpred)
1437 {
1438 	vm_page_t msucc;
1439 
1440 	VM_OBJECT_ASSERT_WLOCKED(object);
1441 	KASSERT(m->object == NULL,
1442 	    ("vm_page_insert_after: page already inserted"));
1443 	if (mpred != NULL) {
1444 		KASSERT(mpred->object == object,
1445 		    ("vm_page_insert_after: object doesn't contain mpred"));
1446 		KASSERT(mpred->pindex < pindex,
1447 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1448 		msucc = TAILQ_NEXT(mpred, listq);
1449 	} else
1450 		msucc = TAILQ_FIRST(&object->memq);
1451 	if (msucc != NULL)
1452 		KASSERT(msucc->pindex > pindex,
1453 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1454 
1455 	/*
1456 	 * Record the object/offset pair in this page.
1457 	 */
1458 	m->object = object;
1459 	m->pindex = pindex;
1460 	m->ref_count |= VPRC_OBJREF;
1461 
1462 	/*
1463 	 * Now link into the object's ordered list of backed pages.
1464 	 */
1465 	if (vm_radix_insert(&object->rtree, m)) {
1466 		m->object = NULL;
1467 		m->pindex = 0;
1468 		m->ref_count &= ~VPRC_OBJREF;
1469 		return (1);
1470 	}
1471 	vm_page_insert_radixdone(m, object, mpred);
1472 	return (0);
1473 }
1474 
1475 /*
1476  *	vm_page_insert_radixdone:
1477  *
1478  *	Complete page "m" insertion into the specified object after the
1479  *	radix trie hooking.
1480  *
1481  *	The page "mpred" must precede the offset "m->pindex" within the
1482  *	specified object.
1483  *
1484  *	The object must be locked.
1485  */
1486 static void
1487 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1488 {
1489 
1490 	VM_OBJECT_ASSERT_WLOCKED(object);
1491 	KASSERT(object != NULL && m->object == object,
1492 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1493 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1494 	    ("vm_page_insert_radixdone: page %p is missing object ref", m));
1495 	if (mpred != NULL) {
1496 		KASSERT(mpred->object == object,
1497 		    ("vm_page_insert_radixdone: object doesn't contain mpred"));
1498 		KASSERT(mpred->pindex < m->pindex,
1499 		    ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1500 	}
1501 
1502 	if (mpred != NULL)
1503 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1504 	else
1505 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1506 
1507 	/*
1508 	 * Show that the object has one more resident page.
1509 	 */
1510 	object->resident_page_count++;
1511 
1512 	/*
1513 	 * Hold the vnode until the last page is released.
1514 	 */
1515 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1516 		vhold(object->handle);
1517 
1518 	/*
1519 	 * Since we are inserting a new and possibly dirty page,
1520 	 * update the object's OBJ_MIGHTBEDIRTY flag.
1521 	 */
1522 	if (pmap_page_is_write_mapped(m))
1523 		vm_object_set_writeable_dirty(object);
1524 }
1525 
1526 /*
1527  * Do the work to remove a page from its object.  The caller is responsible for
1528  * updating the page's fields to reflect this removal.
1529  */
1530 static void
1531 vm_page_object_remove(vm_page_t m)
1532 {
1533 	vm_object_t object;
1534 	vm_page_t mrem;
1535 
1536 	object = m->object;
1537 	VM_OBJECT_ASSERT_WLOCKED(object);
1538 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1539 	    ("page %p is missing its object ref", m));
1540 
1541 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1542 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1543 
1544 	/*
1545 	 * Now remove from the object's list of backed pages.
1546 	 */
1547 	TAILQ_REMOVE(&object->memq, m, listq);
1548 
1549 	/*
1550 	 * And show that the object has one fewer resident page.
1551 	 */
1552 	object->resident_page_count--;
1553 
1554 	/*
1555 	 * The vnode may now be recycled.
1556 	 */
1557 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1558 		vdrop(object->handle);
1559 }
1560 
1561 /*
1562  *	vm_page_remove:
1563  *
1564  *	Removes the specified page from its containing object, but does not
1565  *	invalidate any backing storage.  Returns true if the object's reference
1566  *	was the last reference to the page, and false otherwise.
1567  *
1568  *	The object must be locked.
1569  */
1570 bool
1571 vm_page_remove(vm_page_t m)
1572 {
1573 
1574 	vm_page_object_remove(m);
1575 	m->object = NULL;
1576 	return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1577 }
1578 
1579 /*
1580  *	vm_page_lookup:
1581  *
1582  *	Returns the page associated with the object/offset
1583  *	pair specified; if none is found, NULL is returned.
1584  *
1585  *	The object must be locked.
1586  */
1587 vm_page_t
1588 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1589 {
1590 
1591 	VM_OBJECT_ASSERT_LOCKED(object);
1592 	return (vm_radix_lookup(&object->rtree, pindex));
1593 }
1594 
1595 /*
1596  *	vm_page_find_least:
1597  *
1598  *	Returns the page associated with the object with least pindex
1599  *	greater than or equal to the parameter pindex, or NULL.
1600  *
1601  *	The object must be locked.
1602  */
1603 vm_page_t
1604 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1605 {
1606 	vm_page_t m;
1607 
1608 	VM_OBJECT_ASSERT_LOCKED(object);
1609 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1610 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1611 	return (m);
1612 }
1613 
1614 /*
1615  * Returns the given page's successor (by pindex) within the object if it is
1616  * resident; if none is found, NULL is returned.
1617  *
1618  * The object must be locked.
1619  */
1620 vm_page_t
1621 vm_page_next(vm_page_t m)
1622 {
1623 	vm_page_t next;
1624 
1625 	VM_OBJECT_ASSERT_LOCKED(m->object);
1626 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1627 		MPASS(next->object == m->object);
1628 		if (next->pindex != m->pindex + 1)
1629 			next = NULL;
1630 	}
1631 	return (next);
1632 }
1633 
1634 /*
1635  * Returns the given page's predecessor (by pindex) within the object if it is
1636  * resident; if none is found, NULL is returned.
1637  *
1638  * The object must be locked.
1639  */
1640 vm_page_t
1641 vm_page_prev(vm_page_t m)
1642 {
1643 	vm_page_t prev;
1644 
1645 	VM_OBJECT_ASSERT_LOCKED(m->object);
1646 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1647 		MPASS(prev->object == m->object);
1648 		if (prev->pindex != m->pindex - 1)
1649 			prev = NULL;
1650 	}
1651 	return (prev);
1652 }
1653 
1654 /*
1655  * Uses the page mnew as a replacement for an existing page at index
1656  * pindex which must be already present in the object.
1657  */
1658 vm_page_t
1659 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1660 {
1661 	vm_page_t mold;
1662 
1663 	VM_OBJECT_ASSERT_WLOCKED(object);
1664 	KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1665 	    ("vm_page_replace: page %p already in object", mnew));
1666 
1667 	/*
1668 	 * This function mostly follows vm_page_insert() and
1669 	 * vm_page_remove() without the radix, object count and vnode
1670 	 * dance.  Double check such functions for more comments.
1671 	 */
1672 
1673 	mnew->object = object;
1674 	mnew->pindex = pindex;
1675 	atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1676 	mold = vm_radix_replace(&object->rtree, mnew);
1677 	KASSERT(mold->queue == PQ_NONE,
1678 	    ("vm_page_replace: old page %p is on a paging queue", mold));
1679 
1680 	/* Keep the resident page list in sorted order. */
1681 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1682 	TAILQ_REMOVE(&object->memq, mold, listq);
1683 
1684 	mold->object = NULL;
1685 	atomic_clear_int(&mold->ref_count, VPRC_OBJREF);
1686 	vm_page_xunbusy(mold);
1687 
1688 	/*
1689 	 * The object's resident_page_count does not change because we have
1690 	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1691 	 */
1692 	if (pmap_page_is_write_mapped(mnew))
1693 		vm_object_set_writeable_dirty(object);
1694 	return (mold);
1695 }
1696 
1697 /*
1698  *	vm_page_rename:
1699  *
1700  *	Move the given memory entry from its
1701  *	current object to the specified target object/offset.
1702  *
1703  *	Note: swap associated with the page must be invalidated by the move.  We
1704  *	      have to do this for several reasons:  (1) we aren't freeing the
1705  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1706  *	      moving the page from object A to B, and will then later move
1707  *	      the backing store from A to B and we can't have a conflict.
1708  *
1709  *	Note: we *always* dirty the page.  It is necessary both for the
1710  *	      fact that we moved it, and because we may be invalidating
1711  *	      swap.
1712  *
1713  *	The objects must be locked.
1714  */
1715 int
1716 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1717 {
1718 	vm_page_t mpred;
1719 	vm_pindex_t opidx;
1720 
1721 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1722 
1723 	KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1724 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1725 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1726 	    ("vm_page_rename: pindex already renamed"));
1727 
1728 	/*
1729 	 * Create a custom version of vm_page_insert() which does not depend
1730 	 * by m_prev and can cheat on the implementation aspects of the
1731 	 * function.
1732 	 */
1733 	opidx = m->pindex;
1734 	m->pindex = new_pindex;
1735 	if (vm_radix_insert(&new_object->rtree, m)) {
1736 		m->pindex = opidx;
1737 		return (1);
1738 	}
1739 
1740 	/*
1741 	 * The operation cannot fail anymore.  The removal must happen before
1742 	 * the listq iterator is tainted.
1743 	 */
1744 	m->pindex = opidx;
1745 	vm_page_object_remove(m);
1746 
1747 	/* Return back to the new pindex to complete vm_page_insert(). */
1748 	m->pindex = new_pindex;
1749 	m->object = new_object;
1750 
1751 	vm_page_insert_radixdone(m, new_object, mpred);
1752 	vm_page_dirty(m);
1753 	return (0);
1754 }
1755 
1756 /*
1757  *	vm_page_alloc:
1758  *
1759  *	Allocate and return a page that is associated with the specified
1760  *	object and offset pair.  By default, this page is exclusive busied.
1761  *
1762  *	The caller must always specify an allocation class.
1763  *
1764  *	allocation classes:
1765  *	VM_ALLOC_NORMAL		normal process request
1766  *	VM_ALLOC_SYSTEM		system *really* needs a page
1767  *	VM_ALLOC_INTERRUPT	interrupt time request
1768  *
1769  *	optional allocation flags:
1770  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1771  *				intends to allocate
1772  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1773  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1774  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1775  *				should not be exclusive busy
1776  *	VM_ALLOC_SBUSY		shared busy the allocated page
1777  *	VM_ALLOC_WIRED		wire the allocated page
1778  *	VM_ALLOC_ZERO		prefer a zeroed page
1779  */
1780 vm_page_t
1781 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1782 {
1783 
1784 	return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1785 	    vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1786 }
1787 
1788 vm_page_t
1789 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1790     int req)
1791 {
1792 
1793 	return (vm_page_alloc_domain_after(object, pindex, domain, req,
1794 	    object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1795 	    NULL));
1796 }
1797 
1798 /*
1799  * Allocate a page in the specified object with the given page index.  To
1800  * optimize insertion of the page into the object, the caller must also specifiy
1801  * the resident page in the object with largest index smaller than the given
1802  * page index, or NULL if no such page exists.
1803  */
1804 vm_page_t
1805 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1806     int req, vm_page_t mpred)
1807 {
1808 	struct vm_domainset_iter di;
1809 	vm_page_t m;
1810 	int domain;
1811 
1812 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1813 	do {
1814 		m = vm_page_alloc_domain_after(object, pindex, domain, req,
1815 		    mpred);
1816 		if (m != NULL)
1817 			break;
1818 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
1819 
1820 	return (m);
1821 }
1822 
1823 /*
1824  * Returns true if the number of free pages exceeds the minimum
1825  * for the request class and false otherwise.
1826  */
1827 int
1828 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1829 {
1830 	u_int limit, old, new;
1831 
1832 	req = req & VM_ALLOC_CLASS_MASK;
1833 
1834 	/*
1835 	 * The page daemon is allowed to dig deeper into the free page list.
1836 	 */
1837 	if (curproc == pageproc && req != VM_ALLOC_INTERRUPT)
1838 		req = VM_ALLOC_SYSTEM;
1839 	if (req == VM_ALLOC_INTERRUPT)
1840 		limit = 0;
1841 	else if (req == VM_ALLOC_SYSTEM)
1842 		limit = vmd->vmd_interrupt_free_min;
1843 	else
1844 		limit = vmd->vmd_free_reserved;
1845 
1846 	/*
1847 	 * Attempt to reserve the pages.  Fail if we're below the limit.
1848 	 */
1849 	limit += npages;
1850 	old = vmd->vmd_free_count;
1851 	do {
1852 		if (old < limit)
1853 			return (0);
1854 		new = old - npages;
1855 	} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1856 
1857 	/* Wake the page daemon if we've crossed the threshold. */
1858 	if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1859 		pagedaemon_wakeup(vmd->vmd_domain);
1860 
1861 	/* Only update bitsets on transitions. */
1862 	if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1863 	    (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1864 		vm_domain_set(vmd);
1865 
1866 	return (1);
1867 }
1868 
1869 vm_page_t
1870 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1871     int req, vm_page_t mpred)
1872 {
1873 	struct vm_domain *vmd;
1874 	vm_page_t m;
1875 	int flags, pool;
1876 
1877 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1878 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1879 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1880 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1881 	    ("inconsistent object(%p)/req(%x)", object, req));
1882 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1883 	    ("Can't sleep and retry object insertion."));
1884 	KASSERT(mpred == NULL || mpred->pindex < pindex,
1885 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
1886 	    (uintmax_t)pindex));
1887 	if (object != NULL)
1888 		VM_OBJECT_ASSERT_WLOCKED(object);
1889 
1890 	flags = 0;
1891 	m = NULL;
1892 	pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
1893 again:
1894 #if VM_NRESERVLEVEL > 0
1895 	/*
1896 	 * Can we allocate the page from a reservation?
1897 	 */
1898 	if (vm_object_reserv(object) &&
1899 	    (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
1900 	    NULL) {
1901 		domain = vm_phys_domain(m);
1902 		vmd = VM_DOMAIN(domain);
1903 		goto found;
1904 	}
1905 #endif
1906 	vmd = VM_DOMAIN(domain);
1907 	if (vmd->vmd_pgcache[pool].zone != NULL) {
1908 		m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT);
1909 		if (m != NULL) {
1910 			flags |= PG_PCPU_CACHE;
1911 			goto found;
1912 		}
1913 	}
1914 	if (vm_domain_allocate(vmd, req, 1)) {
1915 		/*
1916 		 * If not, allocate it from the free page queues.
1917 		 */
1918 		vm_domain_free_lock(vmd);
1919 		m = vm_phys_alloc_pages(domain, pool, 0);
1920 		vm_domain_free_unlock(vmd);
1921 		if (m == NULL) {
1922 			vm_domain_freecnt_inc(vmd, 1);
1923 #if VM_NRESERVLEVEL > 0
1924 			if (vm_reserv_reclaim_inactive(domain))
1925 				goto again;
1926 #endif
1927 		}
1928 	}
1929 	if (m == NULL) {
1930 		/*
1931 		 * Not allocatable, give up.
1932 		 */
1933 		if (vm_domain_alloc_fail(vmd, object, req))
1934 			goto again;
1935 		return (NULL);
1936 	}
1937 
1938 	/*
1939 	 * At this point we had better have found a good page.
1940 	 */
1941 found:
1942 	vm_page_dequeue(m);
1943 	vm_page_alloc_check(m);
1944 
1945 	/*
1946 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1947 	 */
1948 	if ((req & VM_ALLOC_ZERO) != 0)
1949 		flags |= (m->flags & PG_ZERO);
1950 	if ((req & VM_ALLOC_NODUMP) != 0)
1951 		flags |= PG_NODUMP;
1952 	m->flags = flags;
1953 	m->aflags = 0;
1954 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1955 	    VPO_UNMANAGED : 0;
1956 	m->busy_lock = VPB_UNBUSIED;
1957 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1958 		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1959 	if ((req & VM_ALLOC_SBUSY) != 0)
1960 		m->busy_lock = VPB_SHARERS_WORD(1);
1961 	if (req & VM_ALLOC_WIRED) {
1962 		/*
1963 		 * The page lock is not required for wiring a page until that
1964 		 * page is inserted into the object.
1965 		 */
1966 		vm_wire_add(1);
1967 		m->ref_count = 1;
1968 	}
1969 	m->act_count = 0;
1970 
1971 	if (object != NULL) {
1972 		if (vm_page_insert_after(m, object, pindex, mpred)) {
1973 			if (req & VM_ALLOC_WIRED) {
1974 				vm_wire_sub(1);
1975 				m->ref_count = 0;
1976 			}
1977 			KASSERT(m->object == NULL, ("page %p has object", m));
1978 			m->oflags = VPO_UNMANAGED;
1979 			m->busy_lock = VPB_UNBUSIED;
1980 			/* Don't change PG_ZERO. */
1981 			vm_page_free_toq(m);
1982 			if (req & VM_ALLOC_WAITFAIL) {
1983 				VM_OBJECT_WUNLOCK(object);
1984 				vm_radix_wait();
1985 				VM_OBJECT_WLOCK(object);
1986 			}
1987 			return (NULL);
1988 		}
1989 
1990 		/* Ignore device objects; the pager sets "memattr" for them. */
1991 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1992 		    (object->flags & OBJ_FICTITIOUS) == 0)
1993 			pmap_page_set_memattr(m, object->memattr);
1994 	} else
1995 		m->pindex = pindex;
1996 
1997 	return (m);
1998 }
1999 
2000 /*
2001  *	vm_page_alloc_contig:
2002  *
2003  *	Allocate a contiguous set of physical pages of the given size "npages"
2004  *	from the free lists.  All of the physical pages must be at or above
2005  *	the given physical address "low" and below the given physical address
2006  *	"high".  The given value "alignment" determines the alignment of the
2007  *	first physical page in the set.  If the given value "boundary" is
2008  *	non-zero, then the set of physical pages cannot cross any physical
2009  *	address boundary that is a multiple of that value.  Both "alignment"
2010  *	and "boundary" must be a power of two.
2011  *
2012  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2013  *	then the memory attribute setting for the physical pages is configured
2014  *	to the object's memory attribute setting.  Otherwise, the memory
2015  *	attribute setting for the physical pages is configured to "memattr",
2016  *	overriding the object's memory attribute setting.  However, if the
2017  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2018  *	memory attribute setting for the physical pages cannot be configured
2019  *	to VM_MEMATTR_DEFAULT.
2020  *
2021  *	The specified object may not contain fictitious pages.
2022  *
2023  *	The caller must always specify an allocation class.
2024  *
2025  *	allocation classes:
2026  *	VM_ALLOC_NORMAL		normal process request
2027  *	VM_ALLOC_SYSTEM		system *really* needs a page
2028  *	VM_ALLOC_INTERRUPT	interrupt time request
2029  *
2030  *	optional allocation flags:
2031  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
2032  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
2033  *	VM_ALLOC_NOOBJ		page is not associated with an object and
2034  *				should not be exclusive busy
2035  *	VM_ALLOC_SBUSY		shared busy the allocated page
2036  *	VM_ALLOC_WIRED		wire the allocated page
2037  *	VM_ALLOC_ZERO		prefer a zeroed page
2038  */
2039 vm_page_t
2040 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2041     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2042     vm_paddr_t boundary, vm_memattr_t memattr)
2043 {
2044 	struct vm_domainset_iter di;
2045 	vm_page_t m;
2046 	int domain;
2047 
2048 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2049 	do {
2050 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2051 		    npages, low, high, alignment, boundary, memattr);
2052 		if (m != NULL)
2053 			break;
2054 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
2055 
2056 	return (m);
2057 }
2058 
2059 vm_page_t
2060 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2061     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2062     vm_paddr_t boundary, vm_memattr_t memattr)
2063 {
2064 	struct vm_domain *vmd;
2065 	vm_page_t m, m_ret, mpred;
2066 	u_int busy_lock, flags, oflags;
2067 
2068 	mpred = NULL;	/* XXX: pacify gcc */
2069 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2070 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2071 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2072 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2073 	    ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2074 	    req));
2075 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2076 	    ("Can't sleep and retry object insertion."));
2077 	if (object != NULL) {
2078 		VM_OBJECT_ASSERT_WLOCKED(object);
2079 		KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2080 		    ("vm_page_alloc_contig: object %p has fictitious pages",
2081 		    object));
2082 	}
2083 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2084 
2085 	if (object != NULL) {
2086 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
2087 		KASSERT(mpred == NULL || mpred->pindex != pindex,
2088 		    ("vm_page_alloc_contig: pindex already allocated"));
2089 	}
2090 
2091 	/*
2092 	 * Can we allocate the pages without the number of free pages falling
2093 	 * below the lower bound for the allocation class?
2094 	 */
2095 	m_ret = NULL;
2096 again:
2097 #if VM_NRESERVLEVEL > 0
2098 	/*
2099 	 * Can we allocate the pages from a reservation?
2100 	 */
2101 	if (vm_object_reserv(object) &&
2102 	    (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2103 	    mpred, npages, low, high, alignment, boundary)) != NULL) {
2104 		domain = vm_phys_domain(m_ret);
2105 		vmd = VM_DOMAIN(domain);
2106 		goto found;
2107 	}
2108 #endif
2109 	vmd = VM_DOMAIN(domain);
2110 	if (vm_domain_allocate(vmd, req, npages)) {
2111 		/*
2112 		 * allocate them from the free page queues.
2113 		 */
2114 		vm_domain_free_lock(vmd);
2115 		m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2116 		    alignment, boundary);
2117 		vm_domain_free_unlock(vmd);
2118 		if (m_ret == NULL) {
2119 			vm_domain_freecnt_inc(vmd, npages);
2120 #if VM_NRESERVLEVEL > 0
2121 			if (vm_reserv_reclaim_contig(domain, npages, low,
2122 			    high, alignment, boundary))
2123 				goto again;
2124 #endif
2125 		}
2126 	}
2127 	if (m_ret == NULL) {
2128 		if (vm_domain_alloc_fail(vmd, object, req))
2129 			goto again;
2130 		return (NULL);
2131 	}
2132 #if VM_NRESERVLEVEL > 0
2133 found:
2134 #endif
2135 	for (m = m_ret; m < &m_ret[npages]; m++) {
2136 		vm_page_dequeue(m);
2137 		vm_page_alloc_check(m);
2138 	}
2139 
2140 	/*
2141 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2142 	 */
2143 	flags = 0;
2144 	if ((req & VM_ALLOC_ZERO) != 0)
2145 		flags = PG_ZERO;
2146 	if ((req & VM_ALLOC_NODUMP) != 0)
2147 		flags |= PG_NODUMP;
2148 	oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2149 	    VPO_UNMANAGED : 0;
2150 	busy_lock = VPB_UNBUSIED;
2151 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2152 		busy_lock = VPB_SINGLE_EXCLUSIVER;
2153 	if ((req & VM_ALLOC_SBUSY) != 0)
2154 		busy_lock = VPB_SHARERS_WORD(1);
2155 	if ((req & VM_ALLOC_WIRED) != 0)
2156 		vm_wire_add(npages);
2157 	if (object != NULL) {
2158 		if (object->memattr != VM_MEMATTR_DEFAULT &&
2159 		    memattr == VM_MEMATTR_DEFAULT)
2160 			memattr = object->memattr;
2161 	}
2162 	for (m = m_ret; m < &m_ret[npages]; m++) {
2163 		m->aflags = 0;
2164 		m->flags = (m->flags | PG_NODUMP) & flags;
2165 		m->busy_lock = busy_lock;
2166 		if ((req & VM_ALLOC_WIRED) != 0)
2167 			m->ref_count = 1;
2168 		m->act_count = 0;
2169 		m->oflags = oflags;
2170 		if (object != NULL) {
2171 			if (vm_page_insert_after(m, object, pindex, mpred)) {
2172 				if ((req & VM_ALLOC_WIRED) != 0)
2173 					vm_wire_sub(npages);
2174 				KASSERT(m->object == NULL,
2175 				    ("page %p has object", m));
2176 				mpred = m;
2177 				for (m = m_ret; m < &m_ret[npages]; m++) {
2178 					if (m <= mpred &&
2179 					    (req & VM_ALLOC_WIRED) != 0)
2180 						m->ref_count = 0;
2181 					m->oflags = VPO_UNMANAGED;
2182 					m->busy_lock = VPB_UNBUSIED;
2183 					/* Don't change PG_ZERO. */
2184 					vm_page_free_toq(m);
2185 				}
2186 				if (req & VM_ALLOC_WAITFAIL) {
2187 					VM_OBJECT_WUNLOCK(object);
2188 					vm_radix_wait();
2189 					VM_OBJECT_WLOCK(object);
2190 				}
2191 				return (NULL);
2192 			}
2193 			mpred = m;
2194 		} else
2195 			m->pindex = pindex;
2196 		if (memattr != VM_MEMATTR_DEFAULT)
2197 			pmap_page_set_memattr(m, memattr);
2198 		pindex++;
2199 	}
2200 	return (m_ret);
2201 }
2202 
2203 /*
2204  * Check a page that has been freshly dequeued from a freelist.
2205  */
2206 static void
2207 vm_page_alloc_check(vm_page_t m)
2208 {
2209 
2210 	KASSERT(m->object == NULL, ("page %p has object", m));
2211 	KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
2212 	    ("page %p has unexpected queue %d, flags %#x",
2213 	    m, m->queue, (m->aflags & PGA_QUEUE_STATE_MASK)));
2214 	KASSERT(m->ref_count == 0, ("page %p has references", m));
2215 	KASSERT(!vm_page_busied(m), ("page %p is busy", m));
2216 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2217 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2218 	    ("page %p has unexpected memattr %d",
2219 	    m, pmap_page_get_memattr(m)));
2220 	KASSERT(m->valid == 0, ("free page %p is valid", m));
2221 }
2222 
2223 /*
2224  * 	vm_page_alloc_freelist:
2225  *
2226  *	Allocate a physical page from the specified free page list.
2227  *
2228  *	The caller must always specify an allocation class.
2229  *
2230  *	allocation classes:
2231  *	VM_ALLOC_NORMAL		normal process request
2232  *	VM_ALLOC_SYSTEM		system *really* needs a page
2233  *	VM_ALLOC_INTERRUPT	interrupt time request
2234  *
2235  *	optional allocation flags:
2236  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2237  *				intends to allocate
2238  *	VM_ALLOC_WIRED		wire the allocated page
2239  *	VM_ALLOC_ZERO		prefer a zeroed page
2240  */
2241 vm_page_t
2242 vm_page_alloc_freelist(int freelist, int req)
2243 {
2244 	struct vm_domainset_iter di;
2245 	vm_page_t m;
2246 	int domain;
2247 
2248 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2249 	do {
2250 		m = vm_page_alloc_freelist_domain(domain, freelist, req);
2251 		if (m != NULL)
2252 			break;
2253 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2254 
2255 	return (m);
2256 }
2257 
2258 vm_page_t
2259 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2260 {
2261 	struct vm_domain *vmd;
2262 	vm_page_t m;
2263 	u_int flags;
2264 
2265 	m = NULL;
2266 	vmd = VM_DOMAIN(domain);
2267 again:
2268 	if (vm_domain_allocate(vmd, req, 1)) {
2269 		vm_domain_free_lock(vmd);
2270 		m = vm_phys_alloc_freelist_pages(domain, freelist,
2271 		    VM_FREEPOOL_DIRECT, 0);
2272 		vm_domain_free_unlock(vmd);
2273 		if (m == NULL)
2274 			vm_domain_freecnt_inc(vmd, 1);
2275 	}
2276 	if (m == NULL) {
2277 		if (vm_domain_alloc_fail(vmd, NULL, req))
2278 			goto again;
2279 		return (NULL);
2280 	}
2281 	vm_page_dequeue(m);
2282 	vm_page_alloc_check(m);
2283 
2284 	/*
2285 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2286 	 */
2287 	m->aflags = 0;
2288 	flags = 0;
2289 	if ((req & VM_ALLOC_ZERO) != 0)
2290 		flags = PG_ZERO;
2291 	m->flags &= flags;
2292 	if ((req & VM_ALLOC_WIRED) != 0) {
2293 		/*
2294 		 * The page lock is not required for wiring a page that does
2295 		 * not belong to an object.
2296 		 */
2297 		vm_wire_add(1);
2298 		m->ref_count = 1;
2299 	}
2300 	/* Unmanaged pages don't use "act_count". */
2301 	m->oflags = VPO_UNMANAGED;
2302 	return (m);
2303 }
2304 
2305 static int
2306 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2307 {
2308 	struct vm_domain *vmd;
2309 	struct vm_pgcache *pgcache;
2310 	int i;
2311 
2312 	pgcache = arg;
2313 	vmd = VM_DOMAIN(pgcache->domain);
2314 	/* Only import if we can bring in a full bucket. */
2315 	if (cnt == 1 || !vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2316 		return (0);
2317 	domain = vmd->vmd_domain;
2318 	vm_domain_free_lock(vmd);
2319 	i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2320 	    (vm_page_t *)store);
2321 	vm_domain_free_unlock(vmd);
2322 	if (cnt != i)
2323 		vm_domain_freecnt_inc(vmd, cnt - i);
2324 
2325 	return (i);
2326 }
2327 
2328 static void
2329 vm_page_zone_release(void *arg, void **store, int cnt)
2330 {
2331 	struct vm_domain *vmd;
2332 	struct vm_pgcache *pgcache;
2333 	vm_page_t m;
2334 	int i;
2335 
2336 	pgcache = arg;
2337 	vmd = VM_DOMAIN(pgcache->domain);
2338 	vm_domain_free_lock(vmd);
2339 	for (i = 0; i < cnt; i++) {
2340 		m = (vm_page_t)store[i];
2341 		vm_phys_free_pages(m, 0);
2342 	}
2343 	vm_domain_free_unlock(vmd);
2344 	vm_domain_freecnt_inc(vmd, cnt);
2345 }
2346 
2347 #define	VPSC_ANY	0	/* No restrictions. */
2348 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2349 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2350 
2351 /*
2352  *	vm_page_scan_contig:
2353  *
2354  *	Scan vm_page_array[] between the specified entries "m_start" and
2355  *	"m_end" for a run of contiguous physical pages that satisfy the
2356  *	specified conditions, and return the lowest page in the run.  The
2357  *	specified "alignment" determines the alignment of the lowest physical
2358  *	page in the run.  If the specified "boundary" is non-zero, then the
2359  *	run of physical pages cannot span a physical address that is a
2360  *	multiple of "boundary".
2361  *
2362  *	"m_end" is never dereferenced, so it need not point to a vm_page
2363  *	structure within vm_page_array[].
2364  *
2365  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2366  *	span a hole (or discontiguity) in the physical address space.  Both
2367  *	"alignment" and "boundary" must be a power of two.
2368  */
2369 vm_page_t
2370 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2371     u_long alignment, vm_paddr_t boundary, int options)
2372 {
2373 	struct mtx *m_mtx;
2374 	vm_object_t object;
2375 	vm_paddr_t pa;
2376 	vm_page_t m, m_run;
2377 #if VM_NRESERVLEVEL > 0
2378 	int level;
2379 #endif
2380 	int m_inc, order, run_ext, run_len;
2381 
2382 	KASSERT(npages > 0, ("npages is 0"));
2383 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2384 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2385 	m_run = NULL;
2386 	run_len = 0;
2387 	m_mtx = NULL;
2388 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2389 		KASSERT((m->flags & PG_MARKER) == 0,
2390 		    ("page %p is PG_MARKER", m));
2391 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2392 		    ("fictitious page %p has invalid ref count", m));
2393 
2394 		/*
2395 		 * If the current page would be the start of a run, check its
2396 		 * physical address against the end, alignment, and boundary
2397 		 * conditions.  If it doesn't satisfy these conditions, either
2398 		 * terminate the scan or advance to the next page that
2399 		 * satisfies the failed condition.
2400 		 */
2401 		if (run_len == 0) {
2402 			KASSERT(m_run == NULL, ("m_run != NULL"));
2403 			if (m + npages > m_end)
2404 				break;
2405 			pa = VM_PAGE_TO_PHYS(m);
2406 			if ((pa & (alignment - 1)) != 0) {
2407 				m_inc = atop(roundup2(pa, alignment) - pa);
2408 				continue;
2409 			}
2410 			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2411 			    boundary) != 0) {
2412 				m_inc = atop(roundup2(pa, boundary) - pa);
2413 				continue;
2414 			}
2415 		} else
2416 			KASSERT(m_run != NULL, ("m_run == NULL"));
2417 
2418 		vm_page_change_lock(m, &m_mtx);
2419 		m_inc = 1;
2420 retry:
2421 		if (vm_page_wired(m))
2422 			run_ext = 0;
2423 #if VM_NRESERVLEVEL > 0
2424 		else if ((level = vm_reserv_level(m)) >= 0 &&
2425 		    (options & VPSC_NORESERV) != 0) {
2426 			run_ext = 0;
2427 			/* Advance to the end of the reservation. */
2428 			pa = VM_PAGE_TO_PHYS(m);
2429 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2430 			    pa);
2431 		}
2432 #endif
2433 		else if ((object = m->object) != NULL) {
2434 			/*
2435 			 * The page is considered eligible for relocation if
2436 			 * and only if it could be laundered or reclaimed by
2437 			 * the page daemon.
2438 			 */
2439 			if (!VM_OBJECT_TRYRLOCK(object)) {
2440 				mtx_unlock(m_mtx);
2441 				VM_OBJECT_RLOCK(object);
2442 				mtx_lock(m_mtx);
2443 				if (m->object != object) {
2444 					/*
2445 					 * The page may have been freed.
2446 					 */
2447 					VM_OBJECT_RUNLOCK(object);
2448 					goto retry;
2449 				}
2450 			}
2451 			/* Don't care: PG_NODUMP, PG_ZERO. */
2452 			if (object->type != OBJT_DEFAULT &&
2453 			    object->type != OBJT_SWAP &&
2454 			    object->type != OBJT_VNODE) {
2455 				run_ext = 0;
2456 #if VM_NRESERVLEVEL > 0
2457 			} else if ((options & VPSC_NOSUPER) != 0 &&
2458 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2459 				run_ext = 0;
2460 				/* Advance to the end of the superpage. */
2461 				pa = VM_PAGE_TO_PHYS(m);
2462 				m_inc = atop(roundup2(pa + 1,
2463 				    vm_reserv_size(level)) - pa);
2464 #endif
2465 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2466 			    vm_page_queue(m) != PQ_NONE && !vm_page_busied(m) &&
2467 			    !vm_page_wired(m)) {
2468 				/*
2469 				 * The page is allocated but eligible for
2470 				 * relocation.  Extend the current run by one
2471 				 * page.
2472 				 */
2473 				KASSERT(pmap_page_get_memattr(m) ==
2474 				    VM_MEMATTR_DEFAULT,
2475 				    ("page %p has an unexpected memattr", m));
2476 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2477 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2478 				    ("page %p has unexpected oflags", m));
2479 				/* Don't care: PGA_NOSYNC. */
2480 				run_ext = 1;
2481 			} else
2482 				run_ext = 0;
2483 			VM_OBJECT_RUNLOCK(object);
2484 #if VM_NRESERVLEVEL > 0
2485 		} else if (level >= 0) {
2486 			/*
2487 			 * The page is reserved but not yet allocated.  In
2488 			 * other words, it is still free.  Extend the current
2489 			 * run by one page.
2490 			 */
2491 			run_ext = 1;
2492 #endif
2493 		} else if ((order = m->order) < VM_NFREEORDER) {
2494 			/*
2495 			 * The page is enqueued in the physical memory
2496 			 * allocator's free page queues.  Moreover, it is the
2497 			 * first page in a power-of-two-sized run of
2498 			 * contiguous free pages.  Add these pages to the end
2499 			 * of the current run, and jump ahead.
2500 			 */
2501 			run_ext = 1 << order;
2502 			m_inc = 1 << order;
2503 		} else {
2504 			/*
2505 			 * Skip the page for one of the following reasons: (1)
2506 			 * It is enqueued in the physical memory allocator's
2507 			 * free page queues.  However, it is not the first
2508 			 * page in a run of contiguous free pages.  (This case
2509 			 * rarely occurs because the scan is performed in
2510 			 * ascending order.) (2) It is not reserved, and it is
2511 			 * transitioning from free to allocated.  (Conversely,
2512 			 * the transition from allocated to free for managed
2513 			 * pages is blocked by the page lock.) (3) It is
2514 			 * allocated but not contained by an object and not
2515 			 * wired, e.g., allocated by Xen's balloon driver.
2516 			 */
2517 			run_ext = 0;
2518 		}
2519 
2520 		/*
2521 		 * Extend or reset the current run of pages.
2522 		 */
2523 		if (run_ext > 0) {
2524 			if (run_len == 0)
2525 				m_run = m;
2526 			run_len += run_ext;
2527 		} else {
2528 			if (run_len > 0) {
2529 				m_run = NULL;
2530 				run_len = 0;
2531 			}
2532 		}
2533 	}
2534 	if (m_mtx != NULL)
2535 		mtx_unlock(m_mtx);
2536 	if (run_len >= npages)
2537 		return (m_run);
2538 	return (NULL);
2539 }
2540 
2541 /*
2542  *	vm_page_reclaim_run:
2543  *
2544  *	Try to relocate each of the allocated virtual pages within the
2545  *	specified run of physical pages to a new physical address.  Free the
2546  *	physical pages underlying the relocated virtual pages.  A virtual page
2547  *	is relocatable if and only if it could be laundered or reclaimed by
2548  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2549  *	physical address above "high".
2550  *
2551  *	Returns 0 if every physical page within the run was already free or
2552  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2553  *	value indicating why the last attempt to relocate a virtual page was
2554  *	unsuccessful.
2555  *
2556  *	"req_class" must be an allocation class.
2557  */
2558 static int
2559 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2560     vm_paddr_t high)
2561 {
2562 	struct vm_domain *vmd;
2563 	struct mtx *m_mtx;
2564 	struct spglist free;
2565 	vm_object_t object;
2566 	vm_paddr_t pa;
2567 	vm_page_t m, m_end, m_new;
2568 	int error, order, req;
2569 
2570 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2571 	    ("req_class is not an allocation class"));
2572 	SLIST_INIT(&free);
2573 	error = 0;
2574 	m = m_run;
2575 	m_end = m_run + npages;
2576 	m_mtx = NULL;
2577 	for (; error == 0 && m < m_end; m++) {
2578 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2579 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2580 
2581 		/*
2582 		 * Avoid releasing and reacquiring the same page lock.
2583 		 */
2584 		vm_page_change_lock(m, &m_mtx);
2585 retry:
2586 		/*
2587 		 * Racily check for wirings.  Races are handled below.
2588 		 */
2589 		if (vm_page_wired(m))
2590 			error = EBUSY;
2591 		else if ((object = m->object) != NULL) {
2592 			/*
2593 			 * The page is relocated if and only if it could be
2594 			 * laundered or reclaimed by the page daemon.
2595 			 */
2596 			if (!VM_OBJECT_TRYWLOCK(object)) {
2597 				mtx_unlock(m_mtx);
2598 				VM_OBJECT_WLOCK(object);
2599 				mtx_lock(m_mtx);
2600 				if (m->object != object) {
2601 					/*
2602 					 * The page may have been freed.
2603 					 */
2604 					VM_OBJECT_WUNLOCK(object);
2605 					goto retry;
2606 				}
2607 			}
2608 			/* Don't care: PG_NODUMP, PG_ZERO. */
2609 			if (object->type != OBJT_DEFAULT &&
2610 			    object->type != OBJT_SWAP &&
2611 			    object->type != OBJT_VNODE)
2612 				error = EINVAL;
2613 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2614 				error = EINVAL;
2615 			else if (vm_page_queue(m) != PQ_NONE &&
2616 			    vm_page_tryxbusy(m) != 0) {
2617 				if (vm_page_wired(m)) {
2618 					vm_page_xunbusy(m);
2619 					error = EBUSY;
2620 					goto unlock;
2621 				}
2622 				KASSERT(pmap_page_get_memattr(m) ==
2623 				    VM_MEMATTR_DEFAULT,
2624 				    ("page %p has an unexpected memattr", m));
2625 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2626 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2627 				    ("page %p has unexpected oflags", m));
2628 				/* Don't care: PGA_NOSYNC. */
2629 				if (!vm_page_none_valid(m)) {
2630 					/*
2631 					 * First, try to allocate a new page
2632 					 * that is above "high".  Failing
2633 					 * that, try to allocate a new page
2634 					 * that is below "m_run".  Allocate
2635 					 * the new page between the end of
2636 					 * "m_run" and "high" only as a last
2637 					 * resort.
2638 					 */
2639 					req = req_class | VM_ALLOC_NOOBJ;
2640 					if ((m->flags & PG_NODUMP) != 0)
2641 						req |= VM_ALLOC_NODUMP;
2642 					if (trunc_page(high) !=
2643 					    ~(vm_paddr_t)PAGE_MASK) {
2644 						m_new = vm_page_alloc_contig(
2645 						    NULL, 0, req, 1,
2646 						    round_page(high),
2647 						    ~(vm_paddr_t)0,
2648 						    PAGE_SIZE, 0,
2649 						    VM_MEMATTR_DEFAULT);
2650 					} else
2651 						m_new = NULL;
2652 					if (m_new == NULL) {
2653 						pa = VM_PAGE_TO_PHYS(m_run);
2654 						m_new = vm_page_alloc_contig(
2655 						    NULL, 0, req, 1,
2656 						    0, pa - 1, PAGE_SIZE, 0,
2657 						    VM_MEMATTR_DEFAULT);
2658 					}
2659 					if (m_new == NULL) {
2660 						pa += ptoa(npages);
2661 						m_new = vm_page_alloc_contig(
2662 						    NULL, 0, req, 1,
2663 						    pa, high, PAGE_SIZE, 0,
2664 						    VM_MEMATTR_DEFAULT);
2665 					}
2666 					if (m_new == NULL) {
2667 						vm_page_xunbusy(m);
2668 						error = ENOMEM;
2669 						goto unlock;
2670 					}
2671 
2672 					/*
2673 					 * Unmap the page and check for new
2674 					 * wirings that may have been acquired
2675 					 * through a pmap lookup.
2676 					 */
2677 					if (object->ref_count != 0 &&
2678 					    !vm_page_try_remove_all(m)) {
2679 						vm_page_free(m_new);
2680 						error = EBUSY;
2681 						goto unlock;
2682 					}
2683 
2684 					/*
2685 					 * Replace "m" with the new page.  For
2686 					 * vm_page_replace(), "m" must be busy
2687 					 * and dequeued.  Finally, change "m"
2688 					 * as if vm_page_free() was called.
2689 					 */
2690 					m_new->aflags = m->aflags &
2691 					    ~PGA_QUEUE_STATE_MASK;
2692 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2693 					    ("page %p is managed", m_new));
2694 					pmap_copy_page(m, m_new);
2695 					m_new->valid = m->valid;
2696 					m_new->dirty = m->dirty;
2697 					m->flags &= ~PG_ZERO;
2698 					vm_page_dequeue(m);
2699 					vm_page_replace_checked(m_new, object,
2700 					    m->pindex, m);
2701 					if (vm_page_free_prep(m))
2702 						SLIST_INSERT_HEAD(&free, m,
2703 						    plinks.s.ss);
2704 
2705 					/*
2706 					 * The new page must be deactivated
2707 					 * before the object is unlocked.
2708 					 */
2709 					vm_page_change_lock(m_new, &m_mtx);
2710 					vm_page_deactivate(m_new);
2711 				} else {
2712 					m->flags &= ~PG_ZERO;
2713 					vm_page_dequeue(m);
2714 					if (vm_page_free_prep(m))
2715 						SLIST_INSERT_HEAD(&free, m,
2716 						    plinks.s.ss);
2717 					KASSERT(m->dirty == 0,
2718 					    ("page %p is dirty", m));
2719 				}
2720 			} else
2721 				error = EBUSY;
2722 unlock:
2723 			VM_OBJECT_WUNLOCK(object);
2724 		} else {
2725 			MPASS(vm_phys_domain(m) == domain);
2726 			vmd = VM_DOMAIN(domain);
2727 			vm_domain_free_lock(vmd);
2728 			order = m->order;
2729 			if (order < VM_NFREEORDER) {
2730 				/*
2731 				 * The page is enqueued in the physical memory
2732 				 * allocator's free page queues.  Moreover, it
2733 				 * is the first page in a power-of-two-sized
2734 				 * run of contiguous free pages.  Jump ahead
2735 				 * to the last page within that run, and
2736 				 * continue from there.
2737 				 */
2738 				m += (1 << order) - 1;
2739 			}
2740 #if VM_NRESERVLEVEL > 0
2741 			else if (vm_reserv_is_page_free(m))
2742 				order = 0;
2743 #endif
2744 			vm_domain_free_unlock(vmd);
2745 			if (order == VM_NFREEORDER)
2746 				error = EINVAL;
2747 		}
2748 	}
2749 	if (m_mtx != NULL)
2750 		mtx_unlock(m_mtx);
2751 	if ((m = SLIST_FIRST(&free)) != NULL) {
2752 		int cnt;
2753 
2754 		vmd = VM_DOMAIN(domain);
2755 		cnt = 0;
2756 		vm_domain_free_lock(vmd);
2757 		do {
2758 			MPASS(vm_phys_domain(m) == domain);
2759 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2760 			vm_phys_free_pages(m, 0);
2761 			cnt++;
2762 		} while ((m = SLIST_FIRST(&free)) != NULL);
2763 		vm_domain_free_unlock(vmd);
2764 		vm_domain_freecnt_inc(vmd, cnt);
2765 	}
2766 	return (error);
2767 }
2768 
2769 #define	NRUNS	16
2770 
2771 CTASSERT(powerof2(NRUNS));
2772 
2773 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2774 
2775 #define	MIN_RECLAIM	8
2776 
2777 /*
2778  *	vm_page_reclaim_contig:
2779  *
2780  *	Reclaim allocated, contiguous physical memory satisfying the specified
2781  *	conditions by relocating the virtual pages using that physical memory.
2782  *	Returns true if reclamation is successful and false otherwise.  Since
2783  *	relocation requires the allocation of physical pages, reclamation may
2784  *	fail due to a shortage of free pages.  When reclamation fails, callers
2785  *	are expected to perform vm_wait() before retrying a failed allocation
2786  *	operation, e.g., vm_page_alloc_contig().
2787  *
2788  *	The caller must always specify an allocation class through "req".
2789  *
2790  *	allocation classes:
2791  *	VM_ALLOC_NORMAL		normal process request
2792  *	VM_ALLOC_SYSTEM		system *really* needs a page
2793  *	VM_ALLOC_INTERRUPT	interrupt time request
2794  *
2795  *	The optional allocation flags are ignored.
2796  *
2797  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2798  *	must be a power of two.
2799  */
2800 bool
2801 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2802     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2803 {
2804 	struct vm_domain *vmd;
2805 	vm_paddr_t curr_low;
2806 	vm_page_t m_run, m_runs[NRUNS];
2807 	u_long count, reclaimed;
2808 	int error, i, options, req_class;
2809 
2810 	KASSERT(npages > 0, ("npages is 0"));
2811 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2812 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2813 	req_class = req & VM_ALLOC_CLASS_MASK;
2814 
2815 	/*
2816 	 * The page daemon is allowed to dig deeper into the free page list.
2817 	 */
2818 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2819 		req_class = VM_ALLOC_SYSTEM;
2820 
2821 	/*
2822 	 * Return if the number of free pages cannot satisfy the requested
2823 	 * allocation.
2824 	 */
2825 	vmd = VM_DOMAIN(domain);
2826 	count = vmd->vmd_free_count;
2827 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
2828 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2829 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2830 		return (false);
2831 
2832 	/*
2833 	 * Scan up to three times, relaxing the restrictions ("options") on
2834 	 * the reclamation of reservations and superpages each time.
2835 	 */
2836 	for (options = VPSC_NORESERV;;) {
2837 		/*
2838 		 * Find the highest runs that satisfy the given constraints
2839 		 * and restrictions, and record them in "m_runs".
2840 		 */
2841 		curr_low = low;
2842 		count = 0;
2843 		for (;;) {
2844 			m_run = vm_phys_scan_contig(domain, npages, curr_low,
2845 			    high, alignment, boundary, options);
2846 			if (m_run == NULL)
2847 				break;
2848 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2849 			m_runs[RUN_INDEX(count)] = m_run;
2850 			count++;
2851 		}
2852 
2853 		/*
2854 		 * Reclaim the highest runs in LIFO (descending) order until
2855 		 * the number of reclaimed pages, "reclaimed", is at least
2856 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2857 		 * reclamation is idempotent, and runs will (likely) recur
2858 		 * from one scan to the next as restrictions are relaxed.
2859 		 */
2860 		reclaimed = 0;
2861 		for (i = 0; count > 0 && i < NRUNS; i++) {
2862 			count--;
2863 			m_run = m_runs[RUN_INDEX(count)];
2864 			error = vm_page_reclaim_run(req_class, domain, npages,
2865 			    m_run, high);
2866 			if (error == 0) {
2867 				reclaimed += npages;
2868 				if (reclaimed >= MIN_RECLAIM)
2869 					return (true);
2870 			}
2871 		}
2872 
2873 		/*
2874 		 * Either relax the restrictions on the next scan or return if
2875 		 * the last scan had no restrictions.
2876 		 */
2877 		if (options == VPSC_NORESERV)
2878 			options = VPSC_NOSUPER;
2879 		else if (options == VPSC_NOSUPER)
2880 			options = VPSC_ANY;
2881 		else if (options == VPSC_ANY)
2882 			return (reclaimed != 0);
2883 	}
2884 }
2885 
2886 bool
2887 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2888     u_long alignment, vm_paddr_t boundary)
2889 {
2890 	struct vm_domainset_iter di;
2891 	int domain;
2892 	bool ret;
2893 
2894 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2895 	do {
2896 		ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
2897 		    high, alignment, boundary);
2898 		if (ret)
2899 			break;
2900 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2901 
2902 	return (ret);
2903 }
2904 
2905 /*
2906  * Set the domain in the appropriate page level domainset.
2907  */
2908 void
2909 vm_domain_set(struct vm_domain *vmd)
2910 {
2911 
2912 	mtx_lock(&vm_domainset_lock);
2913 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
2914 		vmd->vmd_minset = 1;
2915 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
2916 	}
2917 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
2918 		vmd->vmd_severeset = 1;
2919 		DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
2920 	}
2921 	mtx_unlock(&vm_domainset_lock);
2922 }
2923 
2924 /*
2925  * Clear the domain from the appropriate page level domainset.
2926  */
2927 void
2928 vm_domain_clear(struct vm_domain *vmd)
2929 {
2930 
2931 	mtx_lock(&vm_domainset_lock);
2932 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
2933 		vmd->vmd_minset = 0;
2934 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
2935 		if (vm_min_waiters != 0) {
2936 			vm_min_waiters = 0;
2937 			wakeup(&vm_min_domains);
2938 		}
2939 	}
2940 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
2941 		vmd->vmd_severeset = 0;
2942 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
2943 		if (vm_severe_waiters != 0) {
2944 			vm_severe_waiters = 0;
2945 			wakeup(&vm_severe_domains);
2946 		}
2947 	}
2948 
2949 	/*
2950 	 * If pageout daemon needs pages, then tell it that there are
2951 	 * some free.
2952 	 */
2953 	if (vmd->vmd_pageout_pages_needed &&
2954 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
2955 		wakeup(&vmd->vmd_pageout_pages_needed);
2956 		vmd->vmd_pageout_pages_needed = 0;
2957 	}
2958 
2959 	/* See comments in vm_wait_doms(). */
2960 	if (vm_pageproc_waiters) {
2961 		vm_pageproc_waiters = 0;
2962 		wakeup(&vm_pageproc_waiters);
2963 	}
2964 	mtx_unlock(&vm_domainset_lock);
2965 }
2966 
2967 /*
2968  * Wait for free pages to exceed the min threshold globally.
2969  */
2970 void
2971 vm_wait_min(void)
2972 {
2973 
2974 	mtx_lock(&vm_domainset_lock);
2975 	while (vm_page_count_min()) {
2976 		vm_min_waiters++;
2977 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
2978 	}
2979 	mtx_unlock(&vm_domainset_lock);
2980 }
2981 
2982 /*
2983  * Wait for free pages to exceed the severe threshold globally.
2984  */
2985 void
2986 vm_wait_severe(void)
2987 {
2988 
2989 	mtx_lock(&vm_domainset_lock);
2990 	while (vm_page_count_severe()) {
2991 		vm_severe_waiters++;
2992 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
2993 		    "vmwait", 0);
2994 	}
2995 	mtx_unlock(&vm_domainset_lock);
2996 }
2997 
2998 u_int
2999 vm_wait_count(void)
3000 {
3001 
3002 	return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3003 }
3004 
3005 void
3006 vm_wait_doms(const domainset_t *wdoms)
3007 {
3008 
3009 	/*
3010 	 * We use racey wakeup synchronization to avoid expensive global
3011 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
3012 	 * To handle this, we only sleep for one tick in this instance.  It
3013 	 * is expected that most allocations for the pageproc will come from
3014 	 * kmem or vm_page_grab* which will use the more specific and
3015 	 * race-free vm_wait_domain().
3016 	 */
3017 	if (curproc == pageproc) {
3018 		mtx_lock(&vm_domainset_lock);
3019 		vm_pageproc_waiters++;
3020 		msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
3021 		    "pageprocwait", 1);
3022 	} else {
3023 		/*
3024 		 * XXX Ideally we would wait only until the allocation could
3025 		 * be satisfied.  This condition can cause new allocators to
3026 		 * consume all freed pages while old allocators wait.
3027 		 */
3028 		mtx_lock(&vm_domainset_lock);
3029 		if (vm_page_count_min_set(wdoms)) {
3030 			vm_min_waiters++;
3031 			msleep(&vm_min_domains, &vm_domainset_lock,
3032 			    PVM | PDROP, "vmwait", 0);
3033 		} else
3034 			mtx_unlock(&vm_domainset_lock);
3035 	}
3036 }
3037 
3038 /*
3039  *	vm_wait_domain:
3040  *
3041  *	Sleep until free pages are available for allocation.
3042  *	- Called in various places after failed memory allocations.
3043  */
3044 void
3045 vm_wait_domain(int domain)
3046 {
3047 	struct vm_domain *vmd;
3048 	domainset_t wdom;
3049 
3050 	vmd = VM_DOMAIN(domain);
3051 	vm_domain_free_assert_unlocked(vmd);
3052 
3053 	if (curproc == pageproc) {
3054 		mtx_lock(&vm_domainset_lock);
3055 		if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3056 			vmd->vmd_pageout_pages_needed = 1;
3057 			msleep(&vmd->vmd_pageout_pages_needed,
3058 			    &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3059 		} else
3060 			mtx_unlock(&vm_domainset_lock);
3061 	} else {
3062 		if (pageproc == NULL)
3063 			panic("vm_wait in early boot");
3064 		DOMAINSET_ZERO(&wdom);
3065 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
3066 		vm_wait_doms(&wdom);
3067 	}
3068 }
3069 
3070 /*
3071  *	vm_wait:
3072  *
3073  *	Sleep until free pages are available for allocation in the
3074  *	affinity domains of the obj.  If obj is NULL, the domain set
3075  *	for the calling thread is used.
3076  *	Called in various places after failed memory allocations.
3077  */
3078 void
3079 vm_wait(vm_object_t obj)
3080 {
3081 	struct domainset *d;
3082 
3083 	d = NULL;
3084 
3085 	/*
3086 	 * Carefully fetch pointers only once: the struct domainset
3087 	 * itself is ummutable but the pointer might change.
3088 	 */
3089 	if (obj != NULL)
3090 		d = obj->domain.dr_policy;
3091 	if (d == NULL)
3092 		d = curthread->td_domain.dr_policy;
3093 
3094 	vm_wait_doms(&d->ds_mask);
3095 }
3096 
3097 /*
3098  *	vm_domain_alloc_fail:
3099  *
3100  *	Called when a page allocation function fails.  Informs the
3101  *	pagedaemon and performs the requested wait.  Requires the
3102  *	domain_free and object lock on entry.  Returns with the
3103  *	object lock held and free lock released.  Returns an error when
3104  *	retry is necessary.
3105  *
3106  */
3107 static int
3108 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3109 {
3110 
3111 	vm_domain_free_assert_unlocked(vmd);
3112 
3113 	atomic_add_int(&vmd->vmd_pageout_deficit,
3114 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3115 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3116 		if (object != NULL)
3117 			VM_OBJECT_WUNLOCK(object);
3118 		vm_wait_domain(vmd->vmd_domain);
3119 		if (object != NULL)
3120 			VM_OBJECT_WLOCK(object);
3121 		if (req & VM_ALLOC_WAITOK)
3122 			return (EAGAIN);
3123 	}
3124 
3125 	return (0);
3126 }
3127 
3128 /*
3129  *	vm_waitpfault:
3130  *
3131  *	Sleep until free pages are available for allocation.
3132  *	- Called only in vm_fault so that processes page faulting
3133  *	  can be easily tracked.
3134  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3135  *	  processes will be able to grab memory first.  Do not change
3136  *	  this balance without careful testing first.
3137  */
3138 void
3139 vm_waitpfault(struct domainset *dset, int timo)
3140 {
3141 
3142 	/*
3143 	 * XXX Ideally we would wait only until the allocation could
3144 	 * be satisfied.  This condition can cause new allocators to
3145 	 * consume all freed pages while old allocators wait.
3146 	 */
3147 	mtx_lock(&vm_domainset_lock);
3148 	if (vm_page_count_min_set(&dset->ds_mask)) {
3149 		vm_min_waiters++;
3150 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3151 		    "pfault", timo);
3152 	} else
3153 		mtx_unlock(&vm_domainset_lock);
3154 }
3155 
3156 static struct vm_pagequeue *
3157 vm_page_pagequeue(vm_page_t m)
3158 {
3159 
3160 	uint8_t queue;
3161 
3162 	if ((queue = atomic_load_8(&m->queue)) == PQ_NONE)
3163 		return (NULL);
3164 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3165 }
3166 
3167 static inline void
3168 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m)
3169 {
3170 	struct vm_domain *vmd;
3171 	uint8_t qflags;
3172 
3173 	CRITICAL_ASSERT(curthread);
3174 	vm_pagequeue_assert_locked(pq);
3175 
3176 	/*
3177 	 * The page daemon is allowed to set m->queue = PQ_NONE without
3178 	 * the page queue lock held.  In this case it is about to free the page,
3179 	 * which must not have any queue state.
3180 	 */
3181 	qflags = atomic_load_8(&m->aflags);
3182 	KASSERT(pq == vm_page_pagequeue(m) ||
3183 	    (qflags & PGA_QUEUE_STATE_MASK) == 0,
3184 	    ("page %p doesn't belong to queue %p but has aflags %#x",
3185 	    m, pq, qflags));
3186 
3187 	if ((qflags & PGA_DEQUEUE) != 0) {
3188 		if (__predict_true((qflags & PGA_ENQUEUED) != 0))
3189 			vm_pagequeue_remove(pq, m);
3190 		vm_page_dequeue_complete(m);
3191 		counter_u64_add(queue_ops, 1);
3192 	} else if ((qflags & (PGA_REQUEUE | PGA_REQUEUE_HEAD)) != 0) {
3193 		if ((qflags & PGA_ENQUEUED) != 0)
3194 			TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3195 		else {
3196 			vm_pagequeue_cnt_inc(pq);
3197 			vm_page_aflag_set(m, PGA_ENQUEUED);
3198 		}
3199 
3200 		/*
3201 		 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.
3202 		 * In particular, if both flags are set in close succession,
3203 		 * only PGA_REQUEUE_HEAD will be applied, even if it was set
3204 		 * first.
3205 		 */
3206 		if ((qflags & PGA_REQUEUE_HEAD) != 0) {
3207 			KASSERT(m->queue == PQ_INACTIVE,
3208 			    ("head enqueue not supported for page %p", m));
3209 			vmd = vm_pagequeue_domain(m);
3210 			TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3211 		} else
3212 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3213 
3214 		vm_page_aflag_clear(m, qflags & (PGA_REQUEUE |
3215 		    PGA_REQUEUE_HEAD));
3216 		counter_u64_add(queue_ops, 1);
3217 	} else {
3218 		counter_u64_add(queue_nops, 1);
3219 	}
3220 }
3221 
3222 static void
3223 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3224     uint8_t queue)
3225 {
3226 	vm_page_t m;
3227 	int i;
3228 
3229 	for (i = 0; i < bq->bq_cnt; i++) {
3230 		m = bq->bq_pa[i];
3231 		if (__predict_false(m->queue != queue))
3232 			continue;
3233 		vm_pqbatch_process_page(pq, m);
3234 	}
3235 	vm_batchqueue_init(bq);
3236 }
3237 
3238 /*
3239  *	vm_page_pqbatch_submit:		[ internal use only ]
3240  *
3241  *	Enqueue a page in the specified page queue's batched work queue.
3242  *	The caller must have encoded the requested operation in the page
3243  *	structure's aflags field.
3244  */
3245 void
3246 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3247 {
3248 	struct vm_batchqueue *bq;
3249 	struct vm_pagequeue *pq;
3250 	int domain;
3251 
3252 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3253 	    ("page %p is unmanaged", m));
3254 	KASSERT(mtx_owned(vm_page_lockptr(m)) || m->object == NULL,
3255 	    ("missing synchronization for page %p", m));
3256 	KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3257 
3258 	domain = vm_phys_domain(m);
3259 	pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3260 
3261 	critical_enter();
3262 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3263 	if (vm_batchqueue_insert(bq, m)) {
3264 		critical_exit();
3265 		return;
3266 	}
3267 	critical_exit();
3268 	vm_pagequeue_lock(pq);
3269 	critical_enter();
3270 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3271 	vm_pqbatch_process(pq, bq, queue);
3272 
3273 	/*
3274 	 * The page may have been logically dequeued before we acquired the
3275 	 * page queue lock.  In this case, since we either hold the page lock
3276 	 * or the page is being freed, a different thread cannot be concurrently
3277 	 * enqueuing the page.
3278 	 */
3279 	if (__predict_true(m->queue == queue))
3280 		vm_pqbatch_process_page(pq, m);
3281 	else {
3282 		KASSERT(m->queue == PQ_NONE,
3283 		    ("invalid queue transition for page %p", m));
3284 		KASSERT((m->aflags & PGA_ENQUEUED) == 0,
3285 		    ("page %p is enqueued with invalid queue index", m));
3286 	}
3287 	vm_pagequeue_unlock(pq);
3288 	critical_exit();
3289 }
3290 
3291 /*
3292  *	vm_page_pqbatch_drain:		[ internal use only ]
3293  *
3294  *	Force all per-CPU page queue batch queues to be drained.  This is
3295  *	intended for use in severe memory shortages, to ensure that pages
3296  *	do not remain stuck in the batch queues.
3297  */
3298 void
3299 vm_page_pqbatch_drain(void)
3300 {
3301 	struct thread *td;
3302 	struct vm_domain *vmd;
3303 	struct vm_pagequeue *pq;
3304 	int cpu, domain, queue;
3305 
3306 	td = curthread;
3307 	CPU_FOREACH(cpu) {
3308 		thread_lock(td);
3309 		sched_bind(td, cpu);
3310 		thread_unlock(td);
3311 
3312 		for (domain = 0; domain < vm_ndomains; domain++) {
3313 			vmd = VM_DOMAIN(domain);
3314 			for (queue = 0; queue < PQ_COUNT; queue++) {
3315 				pq = &vmd->vmd_pagequeues[queue];
3316 				vm_pagequeue_lock(pq);
3317 				critical_enter();
3318 				vm_pqbatch_process(pq,
3319 				    DPCPU_PTR(pqbatch[domain][queue]), queue);
3320 				critical_exit();
3321 				vm_pagequeue_unlock(pq);
3322 			}
3323 		}
3324 	}
3325 	thread_lock(td);
3326 	sched_unbind(td);
3327 	thread_unlock(td);
3328 }
3329 
3330 /*
3331  * Complete the logical removal of a page from a page queue.  We must be
3332  * careful to synchronize with the page daemon, which may be concurrently
3333  * examining the page with only the page lock held.  The page must not be
3334  * in a state where it appears to be logically enqueued.
3335  */
3336 static void
3337 vm_page_dequeue_complete(vm_page_t m)
3338 {
3339 
3340 	m->queue = PQ_NONE;
3341 	atomic_thread_fence_rel();
3342 	vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK);
3343 }
3344 
3345 /*
3346  *	vm_page_dequeue_deferred:	[ internal use only ]
3347  *
3348  *	Request removal of the given page from its current page
3349  *	queue.  Physical removal from the queue may be deferred
3350  *	indefinitely.
3351  *
3352  *	The page must be locked.
3353  */
3354 void
3355 vm_page_dequeue_deferred(vm_page_t m)
3356 {
3357 	uint8_t queue;
3358 
3359 	vm_page_assert_locked(m);
3360 
3361 	if ((queue = vm_page_queue(m)) == PQ_NONE)
3362 		return;
3363 
3364 	/*
3365 	 * Set PGA_DEQUEUE if it is not already set to handle a concurrent call
3366 	 * to vm_page_dequeue_deferred_free().  In particular, avoid modifying
3367 	 * the page's queue state once vm_page_dequeue_deferred_free() has been
3368 	 * called.  In the event of a race, two batch queue entries for the page
3369 	 * will be created, but the second will have no effect.
3370 	 */
3371 	if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE, PGA_DEQUEUE))
3372 		vm_page_pqbatch_submit(m, queue);
3373 }
3374 
3375 /*
3376  * A variant of vm_page_dequeue_deferred() that does not assert the page
3377  * lock and is only to be called from vm_page_free_prep().  Because the
3378  * page is being freed, we can assume that nothing other than the page
3379  * daemon is scheduling queue operations on this page, so we get for
3380  * free the mutual exclusion that is otherwise provided by the page lock.
3381  * To handle races, the page daemon must take care to atomically check
3382  * for PGA_DEQUEUE when updating queue state.
3383  */
3384 static void
3385 vm_page_dequeue_deferred_free(vm_page_t m)
3386 {
3387 	uint8_t queue;
3388 
3389 	KASSERT(m->ref_count == 0, ("page %p has references", m));
3390 
3391 	for (;;) {
3392 		if ((m->aflags & PGA_DEQUEUE) != 0)
3393 			return;
3394 		atomic_thread_fence_acq();
3395 		if ((queue = atomic_load_8(&m->queue)) == PQ_NONE)
3396 			return;
3397 		if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE,
3398 		    PGA_DEQUEUE)) {
3399 			vm_page_pqbatch_submit(m, queue);
3400 			break;
3401 		}
3402 	}
3403 }
3404 
3405 /*
3406  *	vm_page_dequeue:
3407  *
3408  *	Remove the page from whichever page queue it's in, if any.
3409  *	The page must either be locked or unallocated.  This constraint
3410  *	ensures that the queue state of the page will remain consistent
3411  *	after this function returns.
3412  */
3413 void
3414 vm_page_dequeue(vm_page_t m)
3415 {
3416 	struct vm_pagequeue *pq, *pq1;
3417 	uint8_t aflags;
3418 
3419 	KASSERT(mtx_owned(vm_page_lockptr(m)) || m->object == NULL,
3420 	    ("page %p is allocated and unlocked", m));
3421 
3422 	for (pq = vm_page_pagequeue(m);; pq = pq1) {
3423 		if (pq == NULL) {
3424 			/*
3425 			 * A thread may be concurrently executing
3426 			 * vm_page_dequeue_complete().  Ensure that all queue
3427 			 * state is cleared before we return.
3428 			 */
3429 			aflags = atomic_load_8(&m->aflags);
3430 			if ((aflags & PGA_QUEUE_STATE_MASK) == 0)
3431 				return;
3432 			KASSERT((aflags & PGA_DEQUEUE) != 0,
3433 			    ("page %p has unexpected queue state flags %#x",
3434 			    m, aflags));
3435 
3436 			/*
3437 			 * Busy wait until the thread updating queue state is
3438 			 * finished.  Such a thread must be executing in a
3439 			 * critical section.
3440 			 */
3441 			cpu_spinwait();
3442 			pq1 = vm_page_pagequeue(m);
3443 			continue;
3444 		}
3445 		vm_pagequeue_lock(pq);
3446 		if ((pq1 = vm_page_pagequeue(m)) == pq)
3447 			break;
3448 		vm_pagequeue_unlock(pq);
3449 	}
3450 	KASSERT(pq == vm_page_pagequeue(m),
3451 	    ("%s: page %p migrated directly between queues", __func__, m));
3452 	KASSERT((m->aflags & PGA_DEQUEUE) != 0 ||
3453 	    mtx_owned(vm_page_lockptr(m)),
3454 	    ("%s: queued unlocked page %p", __func__, m));
3455 
3456 	if ((m->aflags & PGA_ENQUEUED) != 0)
3457 		vm_pagequeue_remove(pq, m);
3458 	vm_page_dequeue_complete(m);
3459 	vm_pagequeue_unlock(pq);
3460 }
3461 
3462 /*
3463  * Schedule the given page for insertion into the specified page queue.
3464  * Physical insertion of the page may be deferred indefinitely.
3465  */
3466 static void
3467 vm_page_enqueue(vm_page_t m, uint8_t queue)
3468 {
3469 
3470 	vm_page_assert_locked(m);
3471 	KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
3472 	    ("%s: page %p is already enqueued", __func__, m));
3473 
3474 	m->queue = queue;
3475 	if ((m->aflags & PGA_REQUEUE) == 0)
3476 		vm_page_aflag_set(m, PGA_REQUEUE);
3477 	vm_page_pqbatch_submit(m, queue);
3478 }
3479 
3480 /*
3481  *	vm_page_requeue:		[ internal use only ]
3482  *
3483  *	Schedule a requeue of the given page.
3484  *
3485  *	The page must be locked.
3486  */
3487 void
3488 vm_page_requeue(vm_page_t m)
3489 {
3490 
3491 	vm_page_assert_locked(m);
3492 	KASSERT(vm_page_queue(m) != PQ_NONE,
3493 	    ("%s: page %p is not logically enqueued", __func__, m));
3494 
3495 	if ((m->aflags & PGA_REQUEUE) == 0)
3496 		vm_page_aflag_set(m, PGA_REQUEUE);
3497 	vm_page_pqbatch_submit(m, atomic_load_8(&m->queue));
3498 }
3499 
3500 /*
3501  *	vm_page_swapqueue:		[ internal use only ]
3502  *
3503  *	Move the page from one queue to another, or to the tail of its
3504  *	current queue, in the face of a possible concurrent call to
3505  *	vm_page_dequeue_deferred_free().
3506  */
3507 void
3508 vm_page_swapqueue(vm_page_t m, uint8_t oldq, uint8_t newq)
3509 {
3510 	struct vm_pagequeue *pq;
3511 	vm_page_t next;
3512 	bool queued;
3513 
3514 	KASSERT(oldq < PQ_COUNT && newq < PQ_COUNT && oldq != newq,
3515 	    ("vm_page_swapqueue: invalid queues (%d, %d)", oldq, newq));
3516 	vm_page_assert_locked(m);
3517 
3518 	pq = &vm_pagequeue_domain(m)->vmd_pagequeues[oldq];
3519 	vm_pagequeue_lock(pq);
3520 
3521 	/*
3522 	 * The physical queue state might change at any point before the page
3523 	 * queue lock is acquired, so we must verify that we hold the correct
3524 	 * lock before proceeding.
3525 	 */
3526 	if (__predict_false(m->queue != oldq)) {
3527 		vm_pagequeue_unlock(pq);
3528 		return;
3529 	}
3530 
3531 	/*
3532 	 * Once the queue index of the page changes, there is nothing
3533 	 * synchronizing with further updates to the physical queue state.
3534 	 * Therefore we must remove the page from the queue now in anticipation
3535 	 * of a successful commit, and be prepared to roll back.
3536 	 */
3537 	if (__predict_true((m->aflags & PGA_ENQUEUED) != 0)) {
3538 		next = TAILQ_NEXT(m, plinks.q);
3539 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3540 		vm_page_aflag_clear(m, PGA_ENQUEUED);
3541 		queued = true;
3542 	} else {
3543 		queued = false;
3544 	}
3545 
3546 	/*
3547 	 * Atomically update the queue field and set PGA_REQUEUE while
3548 	 * ensuring that PGA_DEQUEUE has not been set.
3549 	 */
3550 	if (__predict_false(!vm_page_pqstate_cmpset(m, oldq, newq, PGA_DEQUEUE,
3551 	    PGA_REQUEUE))) {
3552 		if (queued) {
3553 			vm_page_aflag_set(m, PGA_ENQUEUED);
3554 			if (next != NULL)
3555 				TAILQ_INSERT_BEFORE(next, m, plinks.q);
3556 			else
3557 				TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3558 		}
3559 		vm_pagequeue_unlock(pq);
3560 		return;
3561 	}
3562 	vm_pagequeue_cnt_dec(pq);
3563 	vm_pagequeue_unlock(pq);
3564 	vm_page_pqbatch_submit(m, newq);
3565 }
3566 
3567 /*
3568  *	vm_page_free_prep:
3569  *
3570  *	Prepares the given page to be put on the free list,
3571  *	disassociating it from any VM object. The caller may return
3572  *	the page to the free list only if this function returns true.
3573  *
3574  *	The object must be locked.  The page must be locked if it is
3575  *	managed.
3576  */
3577 bool
3578 vm_page_free_prep(vm_page_t m)
3579 {
3580 
3581 	/*
3582 	 * Synchronize with threads that have dropped a reference to this
3583 	 * page.
3584 	 */
3585 	atomic_thread_fence_acq();
3586 
3587 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3588 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3589 		uint64_t *p;
3590 		int i;
3591 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3592 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3593 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3594 			    m, i, (uintmax_t)*p));
3595 	}
3596 #endif
3597 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3598 		KASSERT(!pmap_page_is_mapped(m),
3599 		    ("vm_page_free_prep: freeing mapped page %p", m));
3600 		KASSERT((m->aflags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3601 		    ("vm_page_free_prep: mapping flags set in page %p", m));
3602 	} else {
3603 		KASSERT(m->queue == PQ_NONE,
3604 		    ("vm_page_free_prep: unmanaged page %p is queued", m));
3605 	}
3606 	VM_CNT_INC(v_tfree);
3607 
3608 	if (vm_page_sbusied(m))
3609 		panic("vm_page_free_prep: freeing shared busy page %p", m);
3610 
3611 	if (m->object != NULL) {
3612 		vm_page_object_remove(m);
3613 
3614 		/*
3615 		 * The object reference can be released without an atomic
3616 		 * operation.
3617 		 */
3618 		KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3619 		    m->ref_count == VPRC_OBJREF,
3620 		    ("vm_page_free_prep: page %p has unexpected ref_count %u",
3621 		    m, m->ref_count));
3622 		m->object = NULL;
3623 		m->ref_count -= VPRC_OBJREF;
3624 	}
3625 
3626 	if (vm_page_xbusied(m))
3627 		vm_page_xunbusy(m);
3628 
3629 	/*
3630 	 * If fictitious remove object association and
3631 	 * return.
3632 	 */
3633 	if ((m->flags & PG_FICTITIOUS) != 0) {
3634 		KASSERT(m->ref_count == 1,
3635 		    ("fictitious page %p is referenced", m));
3636 		KASSERT(m->queue == PQ_NONE,
3637 		    ("fictitious page %p is queued", m));
3638 		return (false);
3639 	}
3640 
3641 	/*
3642 	 * Pages need not be dequeued before they are returned to the physical
3643 	 * memory allocator, but they must at least be marked for a deferred
3644 	 * dequeue.
3645 	 */
3646 	if ((m->oflags & VPO_UNMANAGED) == 0)
3647 		vm_page_dequeue_deferred_free(m);
3648 
3649 	m->valid = 0;
3650 	vm_page_undirty(m);
3651 
3652 	if (m->ref_count != 0)
3653 		panic("vm_page_free_prep: page %p has references", m);
3654 
3655 	/*
3656 	 * Restore the default memory attribute to the page.
3657 	 */
3658 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3659 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3660 
3661 #if VM_NRESERVLEVEL > 0
3662 	/*
3663 	 * Determine whether the page belongs to a reservation.  If the page was
3664 	 * allocated from a per-CPU cache, it cannot belong to a reservation, so
3665 	 * as an optimization, we avoid the check in that case.
3666 	 */
3667 	if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3668 		return (false);
3669 #endif
3670 
3671 	return (true);
3672 }
3673 
3674 /*
3675  *	vm_page_free_toq:
3676  *
3677  *	Returns the given page to the free list, disassociating it
3678  *	from any VM object.
3679  *
3680  *	The object must be locked.  The page must be locked if it is
3681  *	managed.
3682  */
3683 void
3684 vm_page_free_toq(vm_page_t m)
3685 {
3686 	struct vm_domain *vmd;
3687 	uma_zone_t zone;
3688 
3689 	if (!vm_page_free_prep(m))
3690 		return;
3691 
3692 	vmd = vm_pagequeue_domain(m);
3693 	zone = vmd->vmd_pgcache[m->pool].zone;
3694 	if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3695 		uma_zfree(zone, m);
3696 		return;
3697 	}
3698 	vm_domain_free_lock(vmd);
3699 	vm_phys_free_pages(m, 0);
3700 	vm_domain_free_unlock(vmd);
3701 	vm_domain_freecnt_inc(vmd, 1);
3702 }
3703 
3704 /*
3705  *	vm_page_free_pages_toq:
3706  *
3707  *	Returns a list of pages to the free list, disassociating it
3708  *	from any VM object.  In other words, this is equivalent to
3709  *	calling vm_page_free_toq() for each page of a list of VM objects.
3710  *
3711  *	The objects must be locked.  The pages must be locked if it is
3712  *	managed.
3713  */
3714 void
3715 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3716 {
3717 	vm_page_t m;
3718 	int count;
3719 
3720 	if (SLIST_EMPTY(free))
3721 		return;
3722 
3723 	count = 0;
3724 	while ((m = SLIST_FIRST(free)) != NULL) {
3725 		count++;
3726 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
3727 		vm_page_free_toq(m);
3728 	}
3729 
3730 	if (update_wire_count)
3731 		vm_wire_sub(count);
3732 }
3733 
3734 /*
3735  * Mark this page as wired down, preventing reclamation by the page daemon
3736  * or when the containing object is destroyed.
3737  */
3738 void
3739 vm_page_wire(vm_page_t m)
3740 {
3741 	u_int old;
3742 
3743 	KASSERT(m->object != NULL,
3744 	    ("vm_page_wire: page %p does not belong to an object", m));
3745 	if (!vm_page_busied(m))
3746 		VM_OBJECT_ASSERT_LOCKED(m->object);
3747 	KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3748 	    VPRC_WIRE_COUNT(m->ref_count) >= 1,
3749 	    ("vm_page_wire: fictitious page %p has zero wirings", m));
3750 
3751 	old = atomic_fetchadd_int(&m->ref_count, 1);
3752 	KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3753 	    ("vm_page_wire: counter overflow for page %p", m));
3754 	if (VPRC_WIRE_COUNT(old) == 0)
3755 		vm_wire_add(1);
3756 }
3757 
3758 /*
3759  * Attempt to wire a mapped page following a pmap lookup of that page.
3760  * This may fail if a thread is concurrently tearing down mappings of the page.
3761  */
3762 bool
3763 vm_page_wire_mapped(vm_page_t m)
3764 {
3765 	u_int old;
3766 
3767 	old = m->ref_count;
3768 	do {
3769 		KASSERT(old > 0,
3770 		    ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3771 		if ((old & VPRC_BLOCKED) != 0)
3772 			return (false);
3773 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3774 
3775 	if (VPRC_WIRE_COUNT(old) == 0)
3776 		vm_wire_add(1);
3777 	return (true);
3778 }
3779 
3780 /*
3781  * Release one wiring of the specified page, potentially allowing it to be
3782  * paged out.
3783  *
3784  * Only managed pages belonging to an object can be paged out.  If the number
3785  * of wirings transitions to zero and the page is eligible for page out, then
3786  * the page is added to the specified paging queue.  If the released wiring
3787  * represented the last reference to the page, the page is freed.
3788  *
3789  * A managed page must be locked.
3790  */
3791 void
3792 vm_page_unwire(vm_page_t m, uint8_t queue)
3793 {
3794 	u_int old;
3795 	bool locked;
3796 
3797 	KASSERT(queue < PQ_COUNT,
3798 	    ("vm_page_unwire: invalid queue %u request for page %p", queue, m));
3799 
3800 	if ((m->oflags & VPO_UNMANAGED) != 0) {
3801 		if (vm_page_unwire_noq(m) && m->ref_count == 0)
3802 			vm_page_free(m);
3803 		return;
3804 	}
3805 
3806 	/*
3807 	 * Update LRU state before releasing the wiring reference.
3808 	 * We only need to do this once since we hold the page lock.
3809 	 * Use a release store when updating the reference count to
3810 	 * synchronize with vm_page_free_prep().
3811 	 */
3812 	old = m->ref_count;
3813 	locked = false;
3814 	do {
3815 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
3816 		    ("vm_page_unwire: wire count underflow for page %p", m));
3817 		if (!locked && VPRC_WIRE_COUNT(old) == 1) {
3818 			vm_page_lock(m);
3819 			locked = true;
3820 			if (queue == PQ_ACTIVE && vm_page_queue(m) == PQ_ACTIVE)
3821 				vm_page_reference(m);
3822 			else
3823 				vm_page_mvqueue(m, queue);
3824 		}
3825 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3826 
3827 	/*
3828 	 * Release the lock only after the wiring is released, to ensure that
3829 	 * the page daemon does not encounter and dequeue the page while it is
3830 	 * still wired.
3831 	 */
3832 	if (locked)
3833 		vm_page_unlock(m);
3834 
3835 	if (VPRC_WIRE_COUNT(old) == 1) {
3836 		vm_wire_sub(1);
3837 		if (old == 1)
3838 			vm_page_free(m);
3839 	}
3840 }
3841 
3842 /*
3843  * Unwire a page without (re-)inserting it into a page queue.  It is up
3844  * to the caller to enqueue, requeue, or free the page as appropriate.
3845  * In most cases involving managed pages, vm_page_unwire() should be used
3846  * instead.
3847  */
3848 bool
3849 vm_page_unwire_noq(vm_page_t m)
3850 {
3851 	u_int old;
3852 
3853 	old = vm_page_drop(m, 1);
3854 	KASSERT(VPRC_WIRE_COUNT(old) != 0,
3855 	    ("vm_page_unref: counter underflow for page %p", m));
3856 	KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
3857 	    ("vm_page_unref: missing ref on fictitious page %p", m));
3858 
3859 	if (VPRC_WIRE_COUNT(old) > 1)
3860 		return (false);
3861 	vm_wire_sub(1);
3862 	return (true);
3863 }
3864 
3865 /*
3866  * Ensure that the page is in the specified page queue.  If the page is
3867  * active or being moved to the active queue, ensure that its act_count is
3868  * at least ACT_INIT but do not otherwise mess with it.  Otherwise, ensure that
3869  * the page is at the tail of its page queue.
3870  *
3871  * The page may be wired.  The caller should release its wiring reference
3872  * before releasing the page lock, otherwise the page daemon may immediately
3873  * dequeue the page.
3874  *
3875  * A managed page must be locked.
3876  */
3877 static __always_inline void
3878 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue)
3879 {
3880 
3881 	vm_page_assert_locked(m);
3882 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3883 	    ("vm_page_mvqueue: page %p is unmanaged", m));
3884 
3885 	if (vm_page_queue(m) != nqueue) {
3886 		vm_page_dequeue(m);
3887 		vm_page_enqueue(m, nqueue);
3888 	} else if (nqueue != PQ_ACTIVE) {
3889 		vm_page_requeue(m);
3890 	}
3891 
3892 	if (nqueue == PQ_ACTIVE && m->act_count < ACT_INIT)
3893 		m->act_count = ACT_INIT;
3894 }
3895 
3896 /*
3897  * Put the specified page on the active list (if appropriate).
3898  */
3899 void
3900 vm_page_activate(vm_page_t m)
3901 {
3902 
3903 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3904 		return;
3905 	vm_page_mvqueue(m, PQ_ACTIVE);
3906 }
3907 
3908 /*
3909  * Move the specified page to the tail of the inactive queue, or requeue
3910  * the page if it is already in the inactive queue.
3911  */
3912 void
3913 vm_page_deactivate(vm_page_t m)
3914 {
3915 
3916 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3917 		return;
3918 	vm_page_mvqueue(m, PQ_INACTIVE);
3919 }
3920 
3921 /*
3922  * Move the specified page close to the head of the inactive queue,
3923  * bypassing LRU.  A marker page is used to maintain FIFO ordering.
3924  * As with regular enqueues, we use a per-CPU batch queue to reduce
3925  * contention on the page queue lock.
3926  */
3927 static void
3928 _vm_page_deactivate_noreuse(vm_page_t m)
3929 {
3930 
3931 	vm_page_assert_locked(m);
3932 
3933 	if (!vm_page_inactive(m)) {
3934 		vm_page_dequeue(m);
3935 		m->queue = PQ_INACTIVE;
3936 	}
3937 	if ((m->aflags & PGA_REQUEUE_HEAD) == 0)
3938 		vm_page_aflag_set(m, PGA_REQUEUE_HEAD);
3939 	vm_page_pqbatch_submit(m, PQ_INACTIVE);
3940 }
3941 
3942 void
3943 vm_page_deactivate_noreuse(vm_page_t m)
3944 {
3945 
3946 	KASSERT(m->object != NULL,
3947 	    ("vm_page_deactivate_noreuse: page %p has no object", m));
3948 
3949 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_wired(m))
3950 		_vm_page_deactivate_noreuse(m);
3951 }
3952 
3953 /*
3954  * Put a page in the laundry, or requeue it if it is already there.
3955  */
3956 void
3957 vm_page_launder(vm_page_t m)
3958 {
3959 
3960 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3961 		return;
3962 	vm_page_mvqueue(m, PQ_LAUNDRY);
3963 }
3964 
3965 /*
3966  * Put a page in the PQ_UNSWAPPABLE holding queue.
3967  */
3968 void
3969 vm_page_unswappable(vm_page_t m)
3970 {
3971 
3972 	vm_page_assert_locked(m);
3973 	KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
3974 	    ("page %p already unswappable", m));
3975 
3976 	vm_page_dequeue(m);
3977 	vm_page_enqueue(m, PQ_UNSWAPPABLE);
3978 }
3979 
3980 static void
3981 vm_page_release_toq(vm_page_t m, int flags)
3982 {
3983 
3984 	vm_page_assert_locked(m);
3985 
3986 	/*
3987 	 * Use a check of the valid bits to determine whether we should
3988 	 * accelerate reclamation of the page.  The object lock might not be
3989 	 * held here, in which case the check is racy.  At worst we will either
3990 	 * accelerate reclamation of a valid page and violate LRU, or
3991 	 * unnecessarily defer reclamation of an invalid page.
3992 	 *
3993 	 * If we were asked to not cache the page, place it near the head of the
3994 	 * inactive queue so that is reclaimed sooner.
3995 	 */
3996 	if ((flags & (VPR_TRYFREE | VPR_NOREUSE)) != 0 || m->valid == 0)
3997 		_vm_page_deactivate_noreuse(m);
3998 	else if (vm_page_active(m))
3999 		vm_page_reference(m);
4000 	else
4001 		vm_page_mvqueue(m, PQ_INACTIVE);
4002 }
4003 
4004 /*
4005  * Unwire a page and either attempt to free it or re-add it to the page queues.
4006  */
4007 void
4008 vm_page_release(vm_page_t m, int flags)
4009 {
4010 	vm_object_t object;
4011 	u_int old;
4012 	bool locked;
4013 
4014 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4015 	    ("vm_page_release: page %p is unmanaged", m));
4016 
4017 	if ((flags & VPR_TRYFREE) != 0) {
4018 		for (;;) {
4019 			object = (vm_object_t)atomic_load_ptr(&m->object);
4020 			if (object == NULL)
4021 				break;
4022 			/* Depends on type-stability. */
4023 			if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) {
4024 				object = NULL;
4025 				break;
4026 			}
4027 			if (object == m->object)
4028 				break;
4029 			VM_OBJECT_WUNLOCK(object);
4030 		}
4031 		if (__predict_true(object != NULL)) {
4032 			vm_page_release_locked(m, flags);
4033 			VM_OBJECT_WUNLOCK(object);
4034 			return;
4035 		}
4036 	}
4037 
4038 	/*
4039 	 * Update LRU state before releasing the wiring reference.
4040 	 * Use a release store when updating the reference count to
4041 	 * synchronize with vm_page_free_prep().
4042 	 */
4043 	old = m->ref_count;
4044 	locked = false;
4045 	do {
4046 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
4047 		    ("vm_page_unwire: wire count underflow for page %p", m));
4048 		if (!locked && VPRC_WIRE_COUNT(old) == 1) {
4049 			vm_page_lock(m);
4050 			locked = true;
4051 			vm_page_release_toq(m, flags);
4052 		}
4053 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4054 
4055 	/*
4056 	 * Release the lock only after the wiring is released, to ensure that
4057 	 * the page daemon does not encounter and dequeue the page while it is
4058 	 * still wired.
4059 	 */
4060 	if (locked)
4061 		vm_page_unlock(m);
4062 
4063 	if (VPRC_WIRE_COUNT(old) == 1) {
4064 		vm_wire_sub(1);
4065 		if (old == 1)
4066 			vm_page_free(m);
4067 	}
4068 }
4069 
4070 /* See vm_page_release(). */
4071 void
4072 vm_page_release_locked(vm_page_t m, int flags)
4073 {
4074 
4075 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4076 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4077 	    ("vm_page_release_locked: page %p is unmanaged", m));
4078 
4079 	if (vm_page_unwire_noq(m)) {
4080 		if ((flags & VPR_TRYFREE) != 0 &&
4081 		    (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4082 		    m->dirty == 0 && !vm_page_busied(m)) {
4083 			vm_page_free(m);
4084 		} else {
4085 			vm_page_lock(m);
4086 			vm_page_release_toq(m, flags);
4087 			vm_page_unlock(m);
4088 		}
4089 	}
4090 }
4091 
4092 static bool
4093 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4094 {
4095 	u_int old;
4096 
4097 	KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4098 	    ("vm_page_try_blocked_op: page %p has no object", m));
4099 	KASSERT(vm_page_busied(m),
4100 	    ("vm_page_try_blocked_op: page %p is not busy", m));
4101 	VM_OBJECT_ASSERT_LOCKED(m->object);
4102 
4103 	old = m->ref_count;
4104 	do {
4105 		KASSERT(old != 0,
4106 		    ("vm_page_try_blocked_op: page %p has no references", m));
4107 		if (VPRC_WIRE_COUNT(old) != 0)
4108 			return (false);
4109 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4110 
4111 	(op)(m);
4112 
4113 	/*
4114 	 * If the object is read-locked, new wirings may be created via an
4115 	 * object lookup.
4116 	 */
4117 	old = vm_page_drop(m, VPRC_BLOCKED);
4118 	KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4119 	    old == (VPRC_BLOCKED | VPRC_OBJREF),
4120 	    ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4121 	    old, m));
4122 	return (true);
4123 }
4124 
4125 /*
4126  * Atomically check for wirings and remove all mappings of the page.
4127  */
4128 bool
4129 vm_page_try_remove_all(vm_page_t m)
4130 {
4131 
4132 	return (vm_page_try_blocked_op(m, pmap_remove_all));
4133 }
4134 
4135 /*
4136  * Atomically check for wirings and remove all writeable mappings of the page.
4137  */
4138 bool
4139 vm_page_try_remove_write(vm_page_t m)
4140 {
4141 
4142 	return (vm_page_try_blocked_op(m, pmap_remove_write));
4143 }
4144 
4145 /*
4146  * vm_page_advise
4147  *
4148  * 	Apply the specified advice to the given page.
4149  *
4150  *	The object and page must be locked.
4151  */
4152 void
4153 vm_page_advise(vm_page_t m, int advice)
4154 {
4155 
4156 	vm_page_assert_locked(m);
4157 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4158 	if (advice == MADV_FREE)
4159 		/*
4160 		 * Mark the page clean.  This will allow the page to be freed
4161 		 * without first paging it out.  MADV_FREE pages are often
4162 		 * quickly reused by malloc(3), so we do not do anything that
4163 		 * would result in a page fault on a later access.
4164 		 */
4165 		vm_page_undirty(m);
4166 	else if (advice != MADV_DONTNEED) {
4167 		if (advice == MADV_WILLNEED)
4168 			vm_page_activate(m);
4169 		return;
4170 	}
4171 
4172 	/*
4173 	 * Clear any references to the page.  Otherwise, the page daemon will
4174 	 * immediately reactivate the page.
4175 	 */
4176 	vm_page_aflag_clear(m, PGA_REFERENCED);
4177 
4178 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4179 		vm_page_dirty(m);
4180 
4181 	/*
4182 	 * Place clean pages near the head of the inactive queue rather than
4183 	 * the tail, thus defeating the queue's LRU operation and ensuring that
4184 	 * the page will be reused quickly.  Dirty pages not already in the
4185 	 * laundry are moved there.
4186 	 */
4187 	if (m->dirty == 0)
4188 		vm_page_deactivate_noreuse(m);
4189 	else if (!vm_page_in_laundry(m))
4190 		vm_page_launder(m);
4191 }
4192 
4193 /*
4194  * Grab a page, waiting until we are waken up due to the page
4195  * changing state.  We keep on waiting, if the page continues
4196  * to be in the object.  If the page doesn't exist, first allocate it
4197  * and then conditionally zero it.
4198  *
4199  * This routine may sleep.
4200  *
4201  * The object must be locked on entry.  The lock will, however, be released
4202  * and reacquired if the routine sleeps.
4203  */
4204 vm_page_t
4205 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4206 {
4207 	vm_page_t m;
4208 	int sleep;
4209 	int pflags;
4210 
4211 	VM_OBJECT_ASSERT_WLOCKED(object);
4212 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4213 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4214 	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4215 	pflags = allocflags &
4216 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4217 	    VM_ALLOC_NOBUSY);
4218 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4219 		pflags |= VM_ALLOC_WAITFAIL;
4220 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4221 		pflags |= VM_ALLOC_SBUSY;
4222 retrylookup:
4223 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4224 		if ((allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) != 0)
4225 			sleep = !vm_page_trysbusy(m);
4226 		else
4227 			sleep = !vm_page_tryxbusy(m);
4228 		if (sleep) {
4229 			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4230 				return (NULL);
4231 			/*
4232 			 * Reference the page before unlocking and
4233 			 * sleeping so that the page daemon is less
4234 			 * likely to reclaim it.
4235 			 */
4236 			if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4237 				vm_page_aflag_set(m, PGA_REFERENCED);
4238 			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
4239 			    VM_ALLOC_IGN_SBUSY) != 0);
4240 			VM_OBJECT_WLOCK(object);
4241 			if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4242 				return (NULL);
4243 			goto retrylookup;
4244 		} else {
4245 			if ((allocflags & VM_ALLOC_WIRED) != 0)
4246 				vm_page_wire(m);
4247 			goto out;
4248 		}
4249 	}
4250 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4251 		return (NULL);
4252 	m = vm_page_alloc(object, pindex, pflags);
4253 	if (m == NULL) {
4254 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4255 			return (NULL);
4256 		goto retrylookup;
4257 	}
4258 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4259 		pmap_zero_page(m);
4260 
4261 out:
4262 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4263 		if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4264 			vm_page_sunbusy(m);
4265 		else
4266 			vm_page_xunbusy(m);
4267 	}
4268 	return (m);
4269 }
4270 
4271 /*
4272  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4273  * their pager are zero filled and validated.
4274  */
4275 int
4276 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4277 {
4278 	vm_page_t m;
4279 	bool sleep, xbusy;
4280 	int pflags;
4281 	int rv;
4282 
4283 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4284 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4285 	    ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4286 	KASSERT((allocflags &
4287 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4288 	    ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4289 	VM_OBJECT_ASSERT_WLOCKED(object);
4290 	pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY);
4291 	pflags |= VM_ALLOC_WAITFAIL;
4292 
4293 retrylookup:
4294 	xbusy = false;
4295 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4296 		/*
4297 		 * If the page is fully valid it can only become invalid
4298 		 * with the object lock held.  If it is not valid it can
4299 		 * become valid with the busy lock held.  Therefore, we
4300 		 * may unnecessarily lock the exclusive busy here if we
4301 		 * race with I/O completion not using the object lock.
4302 		 * However, we will not end up with an invalid page and a
4303 		 * shared lock.
4304 		 */
4305 		if (!vm_page_all_valid(m) ||
4306 		    (allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) == 0) {
4307 			sleep = !vm_page_tryxbusy(m);
4308 			xbusy = true;
4309 		} else
4310 			sleep = !vm_page_trysbusy(m);
4311 		if (sleep) {
4312 			/*
4313 			 * Reference the page before unlocking and
4314 			 * sleeping so that the page daemon is less
4315 			 * likely to reclaim it.
4316 			 */
4317 			if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4318 				vm_page_aflag_set(m, PGA_REFERENCED);
4319 			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
4320 			    VM_ALLOC_IGN_SBUSY) != 0);
4321 			VM_OBJECT_WLOCK(object);
4322 			goto retrylookup;
4323 		}
4324 		if ((allocflags & VM_ALLOC_NOCREAT) != 0 &&
4325 		   !vm_page_all_valid(m)) {
4326 			if (xbusy)
4327 				vm_page_xunbusy(m);
4328 			else
4329 				vm_page_sunbusy(m);
4330 			*mp = NULL;
4331 			return (VM_PAGER_FAIL);
4332 		}
4333 		if ((allocflags & VM_ALLOC_WIRED) != 0)
4334 			vm_page_wire(m);
4335 		if (vm_page_all_valid(m))
4336 			goto out;
4337 	} else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4338 		*mp = NULL;
4339 		return (VM_PAGER_FAIL);
4340 	} else if ((m = vm_page_alloc(object, pindex, pflags)) != NULL) {
4341 		xbusy = true;
4342 	} else {
4343 		goto retrylookup;
4344 	}
4345 
4346 	vm_page_assert_xbusied(m);
4347 	MPASS(xbusy);
4348 	if (vm_pager_has_page(object, pindex, NULL, NULL)) {
4349 		rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
4350 		if (rv != VM_PAGER_OK) {
4351 			if (allocflags & VM_ALLOC_WIRED)
4352 				vm_page_unwire_noq(m);
4353 			vm_page_free(m);
4354 			*mp = NULL;
4355 			return (rv);
4356 		}
4357 		MPASS(vm_page_all_valid(m));
4358 	} else {
4359 		vm_page_zero_invalid(m, TRUE);
4360 	}
4361 out:
4362 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4363 		if (xbusy)
4364 			vm_page_xunbusy(m);
4365 		else
4366 			vm_page_sunbusy(m);
4367 	}
4368 	if ((allocflags & VM_ALLOC_SBUSY) != 0 && xbusy)
4369 		vm_page_busy_downgrade(m);
4370 	*mp = m;
4371 	return (VM_PAGER_OK);
4372 }
4373 
4374 /*
4375  * Return the specified range of pages from the given object.  For each
4376  * page offset within the range, if a page already exists within the object
4377  * at that offset and it is busy, then wait for it to change state.  If,
4378  * instead, the page doesn't exist, then allocate it.
4379  *
4380  * The caller must always specify an allocation class.
4381  *
4382  * allocation classes:
4383  *	VM_ALLOC_NORMAL		normal process request
4384  *	VM_ALLOC_SYSTEM		system *really* needs the pages
4385  *
4386  * The caller must always specify that the pages are to be busied and/or
4387  * wired.
4388  *
4389  * optional allocation flags:
4390  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
4391  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
4392  *	VM_ALLOC_NOWAIT		do not sleep
4393  *	VM_ALLOC_SBUSY		set page to sbusy state
4394  *	VM_ALLOC_WIRED		wire the pages
4395  *	VM_ALLOC_ZERO		zero and validate any invalid pages
4396  *
4397  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4398  * may return a partial prefix of the requested range.
4399  */
4400 int
4401 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4402     vm_page_t *ma, int count)
4403 {
4404 	vm_page_t m, mpred;
4405 	int pflags;
4406 	int i;
4407 	bool sleep;
4408 
4409 	VM_OBJECT_ASSERT_WLOCKED(object);
4410 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4411 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4412 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4413 	    (allocflags & VM_ALLOC_WIRED) != 0,
4414 	    ("vm_page_grab_pages: the pages must be busied or wired"));
4415 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4416 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4417 	    ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch"));
4418 	if (count == 0)
4419 		return (0);
4420 	pflags = allocflags &
4421 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4422 	    VM_ALLOC_NOBUSY);
4423 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4424 		pflags |= VM_ALLOC_WAITFAIL;
4425 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4426 		pflags |= VM_ALLOC_SBUSY;
4427 	i = 0;
4428 retrylookup:
4429 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
4430 	if (m == NULL || m->pindex != pindex + i) {
4431 		mpred = m;
4432 		m = NULL;
4433 	} else
4434 		mpred = TAILQ_PREV(m, pglist, listq);
4435 	for (; i < count; i++) {
4436 		if (m != NULL) {
4437 			if ((allocflags &
4438 			    (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
4439 				sleep = !vm_page_trysbusy(m);
4440 			else
4441 				sleep = !vm_page_tryxbusy(m);
4442 			if (sleep) {
4443 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4444 					break;
4445 				/*
4446 				 * Reference the page before unlocking and
4447 				 * sleeping so that the page daemon is less
4448 				 * likely to reclaim it.
4449 				 */
4450 				if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4451 					vm_page_aflag_set(m, PGA_REFERENCED);
4452 				vm_page_busy_sleep(m, "grbmaw", (allocflags &
4453 				    VM_ALLOC_IGN_SBUSY) != 0);
4454 				VM_OBJECT_WLOCK(object);
4455 				goto retrylookup;
4456 			}
4457 			if ((allocflags & VM_ALLOC_WIRED) != 0)
4458 				vm_page_wire(m);
4459 		} else {
4460 			if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4461 				break;
4462 			m = vm_page_alloc_after(object, pindex + i,
4463 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
4464 			if (m == NULL) {
4465 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4466 					break;
4467 				goto retrylookup;
4468 			}
4469 		}
4470 		if (vm_page_none_valid(m) &&
4471 		    (allocflags & VM_ALLOC_ZERO) != 0) {
4472 			if ((m->flags & PG_ZERO) == 0)
4473 				pmap_zero_page(m);
4474 			vm_page_valid(m);
4475 		}
4476 		if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4477 			if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4478 				vm_page_sunbusy(m);
4479 			else
4480 				vm_page_xunbusy(m);
4481 		}
4482 		ma[i] = mpred = m;
4483 		m = vm_page_next(m);
4484 	}
4485 	return (i);
4486 }
4487 
4488 /*
4489  * Mapping function for valid or dirty bits in a page.
4490  *
4491  * Inputs are required to range within a page.
4492  */
4493 vm_page_bits_t
4494 vm_page_bits(int base, int size)
4495 {
4496 	int first_bit;
4497 	int last_bit;
4498 
4499 	KASSERT(
4500 	    base + size <= PAGE_SIZE,
4501 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
4502 	);
4503 
4504 	if (size == 0)		/* handle degenerate case */
4505 		return (0);
4506 
4507 	first_bit = base >> DEV_BSHIFT;
4508 	last_bit = (base + size - 1) >> DEV_BSHIFT;
4509 
4510 	return (((vm_page_bits_t)2 << last_bit) -
4511 	    ((vm_page_bits_t)1 << first_bit));
4512 }
4513 
4514 static inline void
4515 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4516 {
4517 
4518 #if PAGE_SIZE == 32768
4519 	atomic_set_64((uint64_t *)bits, set);
4520 #elif PAGE_SIZE == 16384
4521 	atomic_set_32((uint32_t *)bits, set);
4522 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4523 	atomic_set_16((uint16_t *)bits, set);
4524 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4525 	atomic_set_8((uint8_t *)bits, set);
4526 #else		/* PAGE_SIZE <= 8192 */
4527 	uintptr_t addr;
4528 	int shift;
4529 
4530 	addr = (uintptr_t)bits;
4531 	/*
4532 	 * Use a trick to perform a 32-bit atomic on the
4533 	 * containing aligned word, to not depend on the existence
4534 	 * of atomic_{set, clear}_{8, 16}.
4535 	 */
4536 	shift = addr & (sizeof(uint32_t) - 1);
4537 #if BYTE_ORDER == BIG_ENDIAN
4538 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4539 #else
4540 	shift *= NBBY;
4541 #endif
4542 	addr &= ~(sizeof(uint32_t) - 1);
4543 	atomic_set_32((uint32_t *)addr, set << shift);
4544 #endif		/* PAGE_SIZE */
4545 }
4546 
4547 static inline void
4548 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4549 {
4550 
4551 #if PAGE_SIZE == 32768
4552 	atomic_clear_64((uint64_t *)bits, clear);
4553 #elif PAGE_SIZE == 16384
4554 	atomic_clear_32((uint32_t *)bits, clear);
4555 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4556 	atomic_clear_16((uint16_t *)bits, clear);
4557 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4558 	atomic_clear_8((uint8_t *)bits, clear);
4559 #else		/* PAGE_SIZE <= 8192 */
4560 	uintptr_t addr;
4561 	int shift;
4562 
4563 	addr = (uintptr_t)bits;
4564 	/*
4565 	 * Use a trick to perform a 32-bit atomic on the
4566 	 * containing aligned word, to not depend on the existence
4567 	 * of atomic_{set, clear}_{8, 16}.
4568 	 */
4569 	shift = addr & (sizeof(uint32_t) - 1);
4570 #if BYTE_ORDER == BIG_ENDIAN
4571 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4572 #else
4573 	shift *= NBBY;
4574 #endif
4575 	addr &= ~(sizeof(uint32_t) - 1);
4576 	atomic_clear_32((uint32_t *)addr, clear << shift);
4577 #endif		/* PAGE_SIZE */
4578 }
4579 
4580 /*
4581  *	vm_page_set_valid_range:
4582  *
4583  *	Sets portions of a page valid.  The arguments are expected
4584  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4585  *	of any partial chunks touched by the range.  The invalid portion of
4586  *	such chunks will be zeroed.
4587  *
4588  *	(base + size) must be less then or equal to PAGE_SIZE.
4589  */
4590 void
4591 vm_page_set_valid_range(vm_page_t m, int base, int size)
4592 {
4593 	int endoff, frag;
4594 	vm_page_bits_t pagebits;
4595 
4596 	vm_page_assert_busied(m);
4597 	if (size == 0)	/* handle degenerate case */
4598 		return;
4599 
4600 	/*
4601 	 * If the base is not DEV_BSIZE aligned and the valid
4602 	 * bit is clear, we have to zero out a portion of the
4603 	 * first block.
4604 	 */
4605 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4606 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4607 		pmap_zero_page_area(m, frag, base - frag);
4608 
4609 	/*
4610 	 * If the ending offset is not DEV_BSIZE aligned and the
4611 	 * valid bit is clear, we have to zero out a portion of
4612 	 * the last block.
4613 	 */
4614 	endoff = base + size;
4615 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4616 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
4617 		pmap_zero_page_area(m, endoff,
4618 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4619 
4620 	/*
4621 	 * Assert that no previously invalid block that is now being validated
4622 	 * is already dirty.
4623 	 */
4624 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
4625 	    ("vm_page_set_valid_range: page %p is dirty", m));
4626 
4627 	/*
4628 	 * Set valid bits inclusive of any overlap.
4629 	 */
4630 	pagebits = vm_page_bits(base, size);
4631 	if (vm_page_xbusied(m))
4632 		m->valid |= pagebits;
4633 	else
4634 		vm_page_bits_set(m, &m->valid, pagebits);
4635 }
4636 
4637 /*
4638  * Clear the given bits from the specified page's dirty field.
4639  */
4640 static __inline void
4641 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
4642 {
4643 
4644 	vm_page_assert_busied(m);
4645 
4646 	/*
4647 	 * If the page is xbusied and not write mapped we are the
4648 	 * only thread that can modify dirty bits.  Otherwise, The pmap
4649 	 * layer can call vm_page_dirty() without holding a distinguished
4650 	 * lock.  The combination of page busy and atomic operations
4651 	 * suffice to guarantee consistency of the page dirty field.
4652 	 */
4653 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
4654 		m->dirty &= ~pagebits;
4655 	else
4656 		vm_page_bits_clear(m, &m->dirty, pagebits);
4657 }
4658 
4659 /*
4660  *	vm_page_set_validclean:
4661  *
4662  *	Sets portions of a page valid and clean.  The arguments are expected
4663  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4664  *	of any partial chunks touched by the range.  The invalid portion of
4665  *	such chunks will be zero'd.
4666  *
4667  *	(base + size) must be less then or equal to PAGE_SIZE.
4668  */
4669 void
4670 vm_page_set_validclean(vm_page_t m, int base, int size)
4671 {
4672 	vm_page_bits_t oldvalid, pagebits;
4673 	int endoff, frag;
4674 
4675 	vm_page_assert_busied(m);
4676 	if (size == 0)	/* handle degenerate case */
4677 		return;
4678 
4679 	/*
4680 	 * If the base is not DEV_BSIZE aligned and the valid
4681 	 * bit is clear, we have to zero out a portion of the
4682 	 * first block.
4683 	 */
4684 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4685 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
4686 		pmap_zero_page_area(m, frag, base - frag);
4687 
4688 	/*
4689 	 * If the ending offset is not DEV_BSIZE aligned and the
4690 	 * valid bit is clear, we have to zero out a portion of
4691 	 * the last block.
4692 	 */
4693 	endoff = base + size;
4694 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4695 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
4696 		pmap_zero_page_area(m, endoff,
4697 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4698 
4699 	/*
4700 	 * Set valid, clear dirty bits.  If validating the entire
4701 	 * page we can safely clear the pmap modify bit.  We also
4702 	 * use this opportunity to clear the PGA_NOSYNC flag.  If a process
4703 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
4704 	 * be set again.
4705 	 *
4706 	 * We set valid bits inclusive of any overlap, but we can only
4707 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
4708 	 * the range.
4709 	 */
4710 	oldvalid = m->valid;
4711 	pagebits = vm_page_bits(base, size);
4712 	if (vm_page_xbusied(m))
4713 		m->valid |= pagebits;
4714 	else
4715 		vm_page_bits_set(m, &m->valid, pagebits);
4716 #if 0	/* NOT YET */
4717 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
4718 		frag = DEV_BSIZE - frag;
4719 		base += frag;
4720 		size -= frag;
4721 		if (size < 0)
4722 			size = 0;
4723 	}
4724 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
4725 #endif
4726 	if (base == 0 && size == PAGE_SIZE) {
4727 		/*
4728 		 * The page can only be modified within the pmap if it is
4729 		 * mapped, and it can only be mapped if it was previously
4730 		 * fully valid.
4731 		 */
4732 		if (oldvalid == VM_PAGE_BITS_ALL)
4733 			/*
4734 			 * Perform the pmap_clear_modify() first.  Otherwise,
4735 			 * a concurrent pmap operation, such as
4736 			 * pmap_protect(), could clear a modification in the
4737 			 * pmap and set the dirty field on the page before
4738 			 * pmap_clear_modify() had begun and after the dirty
4739 			 * field was cleared here.
4740 			 */
4741 			pmap_clear_modify(m);
4742 		m->dirty = 0;
4743 		vm_page_aflag_clear(m, PGA_NOSYNC);
4744 	} else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
4745 		m->dirty &= ~pagebits;
4746 	else
4747 		vm_page_clear_dirty_mask(m, pagebits);
4748 }
4749 
4750 void
4751 vm_page_clear_dirty(vm_page_t m, int base, int size)
4752 {
4753 
4754 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
4755 }
4756 
4757 /*
4758  *	vm_page_set_invalid:
4759  *
4760  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
4761  *	valid and dirty bits for the effected areas are cleared.
4762  */
4763 void
4764 vm_page_set_invalid(vm_page_t m, int base, int size)
4765 {
4766 	vm_page_bits_t bits;
4767 	vm_object_t object;
4768 
4769 	/*
4770 	 * The object lock is required so that pages can't be mapped
4771 	 * read-only while we're in the process of invalidating them.
4772 	 */
4773 	object = m->object;
4774 	VM_OBJECT_ASSERT_WLOCKED(object);
4775 	vm_page_assert_busied(m);
4776 
4777 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
4778 	    size >= object->un_pager.vnp.vnp_size)
4779 		bits = VM_PAGE_BITS_ALL;
4780 	else
4781 		bits = vm_page_bits(base, size);
4782 	if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
4783 		pmap_remove_all(m);
4784 	KASSERT((bits == 0 && vm_page_all_valid(m)) ||
4785 	    !pmap_page_is_mapped(m),
4786 	    ("vm_page_set_invalid: page %p is mapped", m));
4787 	if (vm_page_xbusied(m)) {
4788 		m->valid &= ~bits;
4789 		m->dirty &= ~bits;
4790 	} else {
4791 		vm_page_bits_clear(m, &m->valid, bits);
4792 		vm_page_bits_clear(m, &m->dirty, bits);
4793 	}
4794 }
4795 
4796 /*
4797  *	vm_page_invalid:
4798  *
4799  *	Invalidates the entire page.  The page must be busy, unmapped, and
4800  *	the enclosing object must be locked.  The object locks protects
4801  *	against concurrent read-only pmap enter which is done without
4802  *	busy.
4803  */
4804 void
4805 vm_page_invalid(vm_page_t m)
4806 {
4807 
4808 	vm_page_assert_busied(m);
4809 	VM_OBJECT_ASSERT_LOCKED(m->object);
4810 	MPASS(!pmap_page_is_mapped(m));
4811 
4812 	if (vm_page_xbusied(m))
4813 		m->valid = 0;
4814 	else
4815 		vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
4816 }
4817 
4818 /*
4819  * vm_page_zero_invalid()
4820  *
4821  *	The kernel assumes that the invalid portions of a page contain
4822  *	garbage, but such pages can be mapped into memory by user code.
4823  *	When this occurs, we must zero out the non-valid portions of the
4824  *	page so user code sees what it expects.
4825  *
4826  *	Pages are most often semi-valid when the end of a file is mapped
4827  *	into memory and the file's size is not page aligned.
4828  */
4829 void
4830 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
4831 {
4832 	int b;
4833 	int i;
4834 
4835 	/*
4836 	 * Scan the valid bits looking for invalid sections that
4837 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
4838 	 * valid bit may be set ) have already been zeroed by
4839 	 * vm_page_set_validclean().
4840 	 */
4841 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
4842 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
4843 		    (m->valid & ((vm_page_bits_t)1 << i))) {
4844 			if (i > b) {
4845 				pmap_zero_page_area(m,
4846 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
4847 			}
4848 			b = i + 1;
4849 		}
4850 	}
4851 
4852 	/*
4853 	 * setvalid is TRUE when we can safely set the zero'd areas
4854 	 * as being valid.  We can do this if there are no cache consistancy
4855 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
4856 	 */
4857 	if (setvalid)
4858 		vm_page_valid(m);
4859 }
4860 
4861 /*
4862  *	vm_page_is_valid:
4863  *
4864  *	Is (partial) page valid?  Note that the case where size == 0
4865  *	will return FALSE in the degenerate case where the page is
4866  *	entirely invalid, and TRUE otherwise.
4867  *
4868  *	Some callers envoke this routine without the busy lock held and
4869  *	handle races via higher level locks.  Typical callers should
4870  *	hold a busy lock to prevent invalidation.
4871  */
4872 int
4873 vm_page_is_valid(vm_page_t m, int base, int size)
4874 {
4875 	vm_page_bits_t bits;
4876 
4877 	bits = vm_page_bits(base, size);
4878 	return (m->valid != 0 && (m->valid & bits) == bits);
4879 }
4880 
4881 /*
4882  * Returns true if all of the specified predicates are true for the entire
4883  * (super)page and false otherwise.
4884  */
4885 bool
4886 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
4887 {
4888 	vm_object_t object;
4889 	int i, npages;
4890 
4891 	object = m->object;
4892 	if (skip_m != NULL && skip_m->object != object)
4893 		return (false);
4894 	VM_OBJECT_ASSERT_LOCKED(object);
4895 	npages = atop(pagesizes[m->psind]);
4896 
4897 	/*
4898 	 * The physically contiguous pages that make up a superpage, i.e., a
4899 	 * page with a page size index ("psind") greater than zero, will
4900 	 * occupy adjacent entries in vm_page_array[].
4901 	 */
4902 	for (i = 0; i < npages; i++) {
4903 		/* Always test object consistency, including "skip_m". */
4904 		if (m[i].object != object)
4905 			return (false);
4906 		if (&m[i] == skip_m)
4907 			continue;
4908 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
4909 			return (false);
4910 		if ((flags & PS_ALL_DIRTY) != 0) {
4911 			/*
4912 			 * Calling vm_page_test_dirty() or pmap_is_modified()
4913 			 * might stop this case from spuriously returning
4914 			 * "false".  However, that would require a write lock
4915 			 * on the object containing "m[i]".
4916 			 */
4917 			if (m[i].dirty != VM_PAGE_BITS_ALL)
4918 				return (false);
4919 		}
4920 		if ((flags & PS_ALL_VALID) != 0 &&
4921 		    m[i].valid != VM_PAGE_BITS_ALL)
4922 			return (false);
4923 	}
4924 	return (true);
4925 }
4926 
4927 /*
4928  * Set the page's dirty bits if the page is modified.
4929  */
4930 void
4931 vm_page_test_dirty(vm_page_t m)
4932 {
4933 
4934 	vm_page_assert_busied(m);
4935 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
4936 		vm_page_dirty(m);
4937 }
4938 
4939 void
4940 vm_page_valid(vm_page_t m)
4941 {
4942 
4943 	vm_page_assert_busied(m);
4944 	if (vm_page_xbusied(m))
4945 		m->valid = VM_PAGE_BITS_ALL;
4946 	else
4947 		vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
4948 }
4949 
4950 void
4951 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
4952 {
4953 
4954 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
4955 }
4956 
4957 void
4958 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
4959 {
4960 
4961 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
4962 }
4963 
4964 int
4965 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
4966 {
4967 
4968 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
4969 }
4970 
4971 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
4972 void
4973 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
4974 {
4975 
4976 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
4977 }
4978 
4979 void
4980 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
4981 {
4982 
4983 	mtx_assert_(vm_page_lockptr(m), a, file, line);
4984 }
4985 #endif
4986 
4987 #ifdef INVARIANTS
4988 void
4989 vm_page_object_busy_assert(vm_page_t m)
4990 {
4991 
4992 	/*
4993 	 * Certain of the page's fields may only be modified by the
4994 	 * holder of a page or object busy.
4995 	 */
4996 	if (m->object != NULL && !vm_page_busied(m))
4997 		VM_OBJECT_ASSERT_BUSY(m->object);
4998 }
4999 
5000 void
5001 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
5002 {
5003 
5004 	if ((bits & PGA_WRITEABLE) == 0)
5005 		return;
5006 
5007 	/*
5008 	 * The PGA_WRITEABLE flag can only be set if the page is
5009 	 * managed, is exclusively busied or the object is locked.
5010 	 * Currently, this flag is only set by pmap_enter().
5011 	 */
5012 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5013 	    ("PGA_WRITEABLE on unmanaged page"));
5014 	if (!vm_page_xbusied(m))
5015 		VM_OBJECT_ASSERT_BUSY(m->object);
5016 }
5017 #endif
5018 
5019 #include "opt_ddb.h"
5020 #ifdef DDB
5021 #include <sys/kernel.h>
5022 
5023 #include <ddb/ddb.h>
5024 
5025 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5026 {
5027 
5028 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5029 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5030 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5031 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5032 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5033 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5034 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5035 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5036 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5037 }
5038 
5039 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5040 {
5041 	int dom;
5042 
5043 	db_printf("pq_free %d\n", vm_free_count());
5044 	for (dom = 0; dom < vm_ndomains; dom++) {
5045 		db_printf(
5046     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5047 		    dom,
5048 		    vm_dom[dom].vmd_page_count,
5049 		    vm_dom[dom].vmd_free_count,
5050 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5051 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5052 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5053 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5054 	}
5055 }
5056 
5057 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5058 {
5059 	vm_page_t m;
5060 	boolean_t phys, virt;
5061 
5062 	if (!have_addr) {
5063 		db_printf("show pginfo addr\n");
5064 		return;
5065 	}
5066 
5067 	phys = strchr(modif, 'p') != NULL;
5068 	virt = strchr(modif, 'v') != NULL;
5069 	if (virt)
5070 		m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5071 	else if (phys)
5072 		m = PHYS_TO_VM_PAGE(addr);
5073 	else
5074 		m = (vm_page_t)addr;
5075 	db_printf(
5076     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref %u\n"
5077     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5078 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5079 	    m->queue, m->ref_count, m->aflags, m->oflags,
5080 	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
5081 }
5082 #endif /* DDB */
5083