xref: /freebsd/sys/vm/vm_page.c (revision 48c779cdecb5f803e5fe5d761987e976ca9609db)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
36  */
37 
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *	Resident memory management module.
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_vm.h"
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 #include <vm/uma_int.h>
113 
114 #include <machine/md_var.h>
115 
116 extern int	uma_startup_count(int);
117 extern void	uma_startup(void *, int);
118 extern int	vmem_startup_count(void);
119 
120 struct vm_domain vm_dom[MAXMEMDOM];
121 
122 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
123 
124 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
125 
126 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
127 /* The following fields are protected by the domainset lock. */
128 domainset_t __exclusive_cache_line vm_min_domains;
129 domainset_t __exclusive_cache_line vm_severe_domains;
130 static int vm_min_waiters;
131 static int vm_severe_waiters;
132 static int vm_pageproc_waiters;
133 
134 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD, 0,
135     "VM page statistics");
136 
137 static counter_u64_t queue_ops = EARLY_COUNTER;
138 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
139     CTLFLAG_RD, &queue_ops,
140     "Number of batched queue operations");
141 
142 static counter_u64_t queue_nops = EARLY_COUNTER;
143 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
144     CTLFLAG_RD, &queue_nops,
145     "Number of batched queue operations with no effects");
146 
147 static void
148 counter_startup(void)
149 {
150 
151 	queue_ops = counter_u64_alloc(M_WAITOK);
152 	queue_nops = counter_u64_alloc(M_WAITOK);
153 }
154 SYSINIT(page_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
155 
156 /*
157  * bogus page -- for I/O to/from partially complete buffers,
158  * or for paging into sparsely invalid regions.
159  */
160 vm_page_t bogus_page;
161 
162 vm_page_t vm_page_array;
163 long vm_page_array_size;
164 long first_page;
165 
166 static int boot_pages;
167 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
168     &boot_pages, 0,
169     "number of pages allocated for bootstrapping the VM system");
170 
171 static TAILQ_HEAD(, vm_page) blacklist_head;
172 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
173 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
174     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
175 
176 static uma_zone_t fakepg_zone;
177 
178 static void vm_page_alloc_check(vm_page_t m);
179 static void _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
180     const char *wmesg, bool nonshared, bool locked);
181 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
182 static void vm_page_dequeue_complete(vm_page_t m);
183 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
184 static void vm_page_init(void *dummy);
185 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
186     vm_pindex_t pindex, vm_page_t mpred);
187 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
188     vm_page_t mpred);
189 static void vm_page_mvqueue(vm_page_t m, uint8_t queue);
190 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
191     vm_page_t m_run, vm_paddr_t high);
192 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
193     int req);
194 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
195     int flags);
196 static void vm_page_zone_release(void *arg, void **store, int cnt);
197 
198 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
199 
200 static void
201 vm_page_init(void *dummy)
202 {
203 
204 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
205 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
206 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
207 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
208 }
209 
210 /*
211  * The cache page zone is initialized later since we need to be able to allocate
212  * pages before UMA is fully initialized.
213  */
214 static void
215 vm_page_init_cache_zones(void *dummy __unused)
216 {
217 	struct vm_domain *vmd;
218 	struct vm_pgcache *pgcache;
219 	int domain, maxcache, pool;
220 
221 	maxcache = 0;
222 	TUNABLE_INT_FETCH("vm.pgcache_zone_max", &maxcache);
223 	for (domain = 0; domain < vm_ndomains; domain++) {
224 		vmd = VM_DOMAIN(domain);
225 
226 		/*
227 		 * Don't allow the page caches to take up more than .1875% of
228 		 * memory.  A UMA bucket contains at most 256 free pages, and we
229 		 * have two buckets per CPU per free pool.
230 		 */
231 		if (vmd->vmd_page_count / 600 < 2 * 256 * mp_ncpus *
232 		    VM_NFREEPOOL)
233 			continue;
234 		for (pool = 0; pool < VM_NFREEPOOL; pool++) {
235 			pgcache = &vmd->vmd_pgcache[pool];
236 			pgcache->domain = domain;
237 			pgcache->pool = pool;
238 			pgcache->zone = uma_zcache_create("vm pgcache",
239 			    sizeof(struct vm_page), NULL, NULL, NULL, NULL,
240 			    vm_page_zone_import, vm_page_zone_release, pgcache,
241 			    UMA_ZONE_MAXBUCKET | UMA_ZONE_VM);
242 			(void)uma_zone_set_maxcache(pgcache->zone, maxcache);
243 		}
244 	}
245 }
246 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
247 
248 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
249 #if PAGE_SIZE == 32768
250 #ifdef CTASSERT
251 CTASSERT(sizeof(u_long) >= 8);
252 #endif
253 #endif
254 
255 /*
256  *	vm_set_page_size:
257  *
258  *	Sets the page size, perhaps based upon the memory
259  *	size.  Must be called before any use of page-size
260  *	dependent functions.
261  */
262 void
263 vm_set_page_size(void)
264 {
265 	if (vm_cnt.v_page_size == 0)
266 		vm_cnt.v_page_size = PAGE_SIZE;
267 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
268 		panic("vm_set_page_size: page size not a power of two");
269 }
270 
271 /*
272  *	vm_page_blacklist_next:
273  *
274  *	Find the next entry in the provided string of blacklist
275  *	addresses.  Entries are separated by space, comma, or newline.
276  *	If an invalid integer is encountered then the rest of the
277  *	string is skipped.  Updates the list pointer to the next
278  *	character, or NULL if the string is exhausted or invalid.
279  */
280 static vm_paddr_t
281 vm_page_blacklist_next(char **list, char *end)
282 {
283 	vm_paddr_t bad;
284 	char *cp, *pos;
285 
286 	if (list == NULL || *list == NULL)
287 		return (0);
288 	if (**list =='\0') {
289 		*list = NULL;
290 		return (0);
291 	}
292 
293 	/*
294 	 * If there's no end pointer then the buffer is coming from
295 	 * the kenv and we know it's null-terminated.
296 	 */
297 	if (end == NULL)
298 		end = *list + strlen(*list);
299 
300 	/* Ensure that strtoq() won't walk off the end */
301 	if (*end != '\0') {
302 		if (*end == '\n' || *end == ' ' || *end  == ',')
303 			*end = '\0';
304 		else {
305 			printf("Blacklist not terminated, skipping\n");
306 			*list = NULL;
307 			return (0);
308 		}
309 	}
310 
311 	for (pos = *list; *pos != '\0'; pos = cp) {
312 		bad = strtoq(pos, &cp, 0);
313 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
314 			if (bad == 0) {
315 				if (++cp < end)
316 					continue;
317 				else
318 					break;
319 			}
320 		} else
321 			break;
322 		if (*cp == '\0' || ++cp >= end)
323 			*list = NULL;
324 		else
325 			*list = cp;
326 		return (trunc_page(bad));
327 	}
328 	printf("Garbage in RAM blacklist, skipping\n");
329 	*list = NULL;
330 	return (0);
331 }
332 
333 bool
334 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
335 {
336 	struct vm_domain *vmd;
337 	vm_page_t m;
338 	int ret;
339 
340 	m = vm_phys_paddr_to_vm_page(pa);
341 	if (m == NULL)
342 		return (true); /* page does not exist, no failure */
343 
344 	vmd = vm_pagequeue_domain(m);
345 	vm_domain_free_lock(vmd);
346 	ret = vm_phys_unfree_page(m);
347 	vm_domain_free_unlock(vmd);
348 	if (ret != 0) {
349 		vm_domain_freecnt_inc(vmd, -1);
350 		TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
351 		if (verbose)
352 			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
353 	}
354 	return (ret);
355 }
356 
357 /*
358  *	vm_page_blacklist_check:
359  *
360  *	Iterate through the provided string of blacklist addresses, pulling
361  *	each entry out of the physical allocator free list and putting it
362  *	onto a list for reporting via the vm.page_blacklist sysctl.
363  */
364 static void
365 vm_page_blacklist_check(char *list, char *end)
366 {
367 	vm_paddr_t pa;
368 	char *next;
369 
370 	next = list;
371 	while (next != NULL) {
372 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
373 			continue;
374 		vm_page_blacklist_add(pa, bootverbose);
375 	}
376 }
377 
378 /*
379  *	vm_page_blacklist_load:
380  *
381  *	Search for a special module named "ram_blacklist".  It'll be a
382  *	plain text file provided by the user via the loader directive
383  *	of the same name.
384  */
385 static void
386 vm_page_blacklist_load(char **list, char **end)
387 {
388 	void *mod;
389 	u_char *ptr;
390 	u_int len;
391 
392 	mod = NULL;
393 	ptr = NULL;
394 
395 	mod = preload_search_by_type("ram_blacklist");
396 	if (mod != NULL) {
397 		ptr = preload_fetch_addr(mod);
398 		len = preload_fetch_size(mod);
399         }
400 	*list = ptr;
401 	if (ptr != NULL)
402 		*end = ptr + len;
403 	else
404 		*end = NULL;
405 	return;
406 }
407 
408 static int
409 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
410 {
411 	vm_page_t m;
412 	struct sbuf sbuf;
413 	int error, first;
414 
415 	first = 1;
416 	error = sysctl_wire_old_buffer(req, 0);
417 	if (error != 0)
418 		return (error);
419 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
420 	TAILQ_FOREACH(m, &blacklist_head, listq) {
421 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
422 		    (uintmax_t)m->phys_addr);
423 		first = 0;
424 	}
425 	error = sbuf_finish(&sbuf);
426 	sbuf_delete(&sbuf);
427 	return (error);
428 }
429 
430 /*
431  * Initialize a dummy page for use in scans of the specified paging queue.
432  * In principle, this function only needs to set the flag PG_MARKER.
433  * Nonetheless, it write busies the page as a safety precaution.
434  */
435 static void
436 vm_page_init_marker(vm_page_t marker, int queue, uint8_t aflags)
437 {
438 
439 	bzero(marker, sizeof(*marker));
440 	marker->flags = PG_MARKER;
441 	marker->aflags = aflags;
442 	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
443 	marker->queue = queue;
444 }
445 
446 static void
447 vm_page_domain_init(int domain)
448 {
449 	struct vm_domain *vmd;
450 	struct vm_pagequeue *pq;
451 	int i;
452 
453 	vmd = VM_DOMAIN(domain);
454 	bzero(vmd, sizeof(*vmd));
455 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
456 	    "vm inactive pagequeue";
457 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
458 	    "vm active pagequeue";
459 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
460 	    "vm laundry pagequeue";
461 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
462 	    "vm unswappable pagequeue";
463 	vmd->vmd_domain = domain;
464 	vmd->vmd_page_count = 0;
465 	vmd->vmd_free_count = 0;
466 	vmd->vmd_segs = 0;
467 	vmd->vmd_oom = FALSE;
468 	for (i = 0; i < PQ_COUNT; i++) {
469 		pq = &vmd->vmd_pagequeues[i];
470 		TAILQ_INIT(&pq->pq_pl);
471 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
472 		    MTX_DEF | MTX_DUPOK);
473 		pq->pq_pdpages = 0;
474 		vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
475 	}
476 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
477 	mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
478 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
479 
480 	/*
481 	 * inacthead is used to provide FIFO ordering for LRU-bypassing
482 	 * insertions.
483 	 */
484 	vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
485 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
486 	    &vmd->vmd_inacthead, plinks.q);
487 
488 	/*
489 	 * The clock pages are used to implement active queue scanning without
490 	 * requeues.  Scans start at clock[0], which is advanced after the scan
491 	 * ends.  When the two clock hands meet, they are reset and scanning
492 	 * resumes from the head of the queue.
493 	 */
494 	vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
495 	vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
496 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
497 	    &vmd->vmd_clock[0], plinks.q);
498 	TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
499 	    &vmd->vmd_clock[1], plinks.q);
500 }
501 
502 /*
503  * Initialize a physical page in preparation for adding it to the free
504  * lists.
505  */
506 static void
507 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
508 {
509 
510 	m->object = NULL;
511 	m->ref_count = 0;
512 	m->busy_lock = VPB_UNBUSIED;
513 	m->flags = m->aflags = 0;
514 	m->phys_addr = pa;
515 	m->queue = PQ_NONE;
516 	m->psind = 0;
517 	m->segind = segind;
518 	m->order = VM_NFREEORDER;
519 	m->pool = VM_FREEPOOL_DEFAULT;
520 	m->valid = m->dirty = 0;
521 	pmap_page_init(m);
522 }
523 
524 #ifndef PMAP_HAS_PAGE_ARRAY
525 static vm_paddr_t
526 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
527 {
528 	vm_paddr_t new_end;
529 
530 	/*
531 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
532 	 * However, because this page is allocated from KVM, out-of-bounds
533 	 * accesses using the direct map will not be trapped.
534 	 */
535 	*vaddr += PAGE_SIZE;
536 
537 	/*
538 	 * Allocate physical memory for the page structures, and map it.
539 	 */
540 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
541 	vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
542 	    VM_PROT_READ | VM_PROT_WRITE);
543 	vm_page_array_size = page_range;
544 
545 	return (new_end);
546 }
547 #endif
548 
549 /*
550  *	vm_page_startup:
551  *
552  *	Initializes the resident memory module.  Allocates physical memory for
553  *	bootstrapping UMA and some data structures that are used to manage
554  *	physical pages.  Initializes these structures, and populates the free
555  *	page queues.
556  */
557 vm_offset_t
558 vm_page_startup(vm_offset_t vaddr)
559 {
560 	struct vm_phys_seg *seg;
561 	vm_page_t m;
562 	char *list, *listend;
563 	vm_offset_t mapped;
564 	vm_paddr_t end, high_avail, low_avail, new_end, page_range, size;
565 	vm_paddr_t last_pa, pa;
566 	u_long pagecount;
567 	int biggestone, i, segind;
568 #ifdef WITNESS
569 	int witness_size;
570 #endif
571 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
572 	long ii;
573 #endif
574 
575 	vaddr = round_page(vaddr);
576 
577 	vm_phys_early_startup();
578 	biggestone = vm_phys_avail_largest();
579 	end = phys_avail[biggestone+1];
580 
581 	/*
582 	 * Initialize the page and queue locks.
583 	 */
584 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
585 	for (i = 0; i < PA_LOCK_COUNT; i++)
586 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
587 	for (i = 0; i < vm_ndomains; i++)
588 		vm_page_domain_init(i);
589 
590 	/*
591 	 * Allocate memory for use when boot strapping the kernel memory
592 	 * allocator.  Tell UMA how many zones we are going to create
593 	 * before going fully functional.  UMA will add its zones.
594 	 *
595 	 * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP,
596 	 * KMAP ENTRY, MAP ENTRY, VMSPACE.
597 	 */
598 	boot_pages = uma_startup_count(8);
599 
600 #ifndef UMA_MD_SMALL_ALLOC
601 	/* vmem_startup() calls uma_prealloc(). */
602 	boot_pages += vmem_startup_count();
603 	/* vm_map_startup() calls uma_prealloc(). */
604 	boot_pages += howmany(MAX_KMAP,
605 	    UMA_SLAB_SPACE / sizeof(struct vm_map));
606 
607 	/*
608 	 * Before going fully functional kmem_init() does allocation
609 	 * from "KMAP ENTRY" and vmem_create() does allocation from "vmem".
610 	 */
611 	boot_pages += 2;
612 #endif
613 	/*
614 	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
615 	 * manually fetch the value.
616 	 */
617 	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
618 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
619 	new_end = trunc_page(new_end);
620 	mapped = pmap_map(&vaddr, new_end, end,
621 	    VM_PROT_READ | VM_PROT_WRITE);
622 	bzero((void *)mapped, end - new_end);
623 	uma_startup((void *)mapped, boot_pages);
624 
625 #ifdef WITNESS
626 	witness_size = round_page(witness_startup_count());
627 	new_end -= witness_size;
628 	mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
629 	    VM_PROT_READ | VM_PROT_WRITE);
630 	bzero((void *)mapped, witness_size);
631 	witness_startup((void *)mapped);
632 #endif
633 
634 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
635     defined(__i386__) || defined(__mips__) || defined(__riscv) || \
636     defined(__powerpc64__)
637 	/*
638 	 * Allocate a bitmap to indicate that a random physical page
639 	 * needs to be included in a minidump.
640 	 *
641 	 * The amd64 port needs this to indicate which direct map pages
642 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
643 	 *
644 	 * However, i386 still needs this workspace internally within the
645 	 * minidump code.  In theory, they are not needed on i386, but are
646 	 * included should the sf_buf code decide to use them.
647 	 */
648 	last_pa = 0;
649 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
650 		if (dump_avail[i + 1] > last_pa)
651 			last_pa = dump_avail[i + 1];
652 	page_range = last_pa / PAGE_SIZE;
653 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
654 	new_end -= vm_page_dump_size;
655 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
656 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
657 	bzero((void *)vm_page_dump, vm_page_dump_size);
658 #else
659 	(void)last_pa;
660 #endif
661 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
662     defined(__riscv) || defined(__powerpc64__)
663 	/*
664 	 * Include the UMA bootstrap pages, witness pages and vm_page_dump
665 	 * in a crash dump.  When pmap_map() uses the direct map, they are
666 	 * not automatically included.
667 	 */
668 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
669 		dump_add_page(pa);
670 #endif
671 	phys_avail[biggestone + 1] = new_end;
672 #ifdef __amd64__
673 	/*
674 	 * Request that the physical pages underlying the message buffer be
675 	 * included in a crash dump.  Since the message buffer is accessed
676 	 * through the direct map, they are not automatically included.
677 	 */
678 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
679 	last_pa = pa + round_page(msgbufsize);
680 	while (pa < last_pa) {
681 		dump_add_page(pa);
682 		pa += PAGE_SIZE;
683 	}
684 #endif
685 	/*
686 	 * Compute the number of pages of memory that will be available for
687 	 * use, taking into account the overhead of a page structure per page.
688 	 * In other words, solve
689 	 *	"available physical memory" - round_page(page_range *
690 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
691 	 * for page_range.
692 	 */
693 	low_avail = phys_avail[0];
694 	high_avail = phys_avail[1];
695 	for (i = 0; i < vm_phys_nsegs; i++) {
696 		if (vm_phys_segs[i].start < low_avail)
697 			low_avail = vm_phys_segs[i].start;
698 		if (vm_phys_segs[i].end > high_avail)
699 			high_avail = vm_phys_segs[i].end;
700 	}
701 	/* Skip the first chunk.  It is already accounted for. */
702 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
703 		if (phys_avail[i] < low_avail)
704 			low_avail = phys_avail[i];
705 		if (phys_avail[i + 1] > high_avail)
706 			high_avail = phys_avail[i + 1];
707 	}
708 	first_page = low_avail / PAGE_SIZE;
709 #ifdef VM_PHYSSEG_SPARSE
710 	size = 0;
711 	for (i = 0; i < vm_phys_nsegs; i++)
712 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
713 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
714 		size += phys_avail[i + 1] - phys_avail[i];
715 #elif defined(VM_PHYSSEG_DENSE)
716 	size = high_avail - low_avail;
717 #else
718 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
719 #endif
720 
721 #ifdef PMAP_HAS_PAGE_ARRAY
722 	pmap_page_array_startup(size / PAGE_SIZE);
723 	biggestone = vm_phys_avail_largest();
724 	end = new_end = phys_avail[biggestone + 1];
725 #else
726 #ifdef VM_PHYSSEG_DENSE
727 	/*
728 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
729 	 * the overhead of a page structure per page only if vm_page_array is
730 	 * allocated from the last physical memory chunk.  Otherwise, we must
731 	 * allocate page structures representing the physical memory
732 	 * underlying vm_page_array, even though they will not be used.
733 	 */
734 	if (new_end != high_avail)
735 		page_range = size / PAGE_SIZE;
736 	else
737 #endif
738 	{
739 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
740 
741 		/*
742 		 * If the partial bytes remaining are large enough for
743 		 * a page (PAGE_SIZE) without a corresponding
744 		 * 'struct vm_page', then new_end will contain an
745 		 * extra page after subtracting the length of the VM
746 		 * page array.  Compensate by subtracting an extra
747 		 * page from new_end.
748 		 */
749 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
750 			if (new_end == high_avail)
751 				high_avail -= PAGE_SIZE;
752 			new_end -= PAGE_SIZE;
753 		}
754 	}
755 	end = new_end;
756 	new_end = vm_page_array_alloc(&vaddr, end, page_range);
757 #endif
758 
759 #if VM_NRESERVLEVEL > 0
760 	/*
761 	 * Allocate physical memory for the reservation management system's
762 	 * data structures, and map it.
763 	 */
764 	new_end = vm_reserv_startup(&vaddr, new_end);
765 #endif
766 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
767     defined(__riscv) || defined(__powerpc64__)
768 	/*
769 	 * Include vm_page_array and vm_reserv_array in a crash dump.
770 	 */
771 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
772 		dump_add_page(pa);
773 #endif
774 	phys_avail[biggestone + 1] = new_end;
775 
776 	/*
777 	 * Add physical memory segments corresponding to the available
778 	 * physical pages.
779 	 */
780 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
781 		if (vm_phys_avail_size(i) != 0)
782 			vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
783 
784 	/*
785 	 * Initialize the physical memory allocator.
786 	 */
787 	vm_phys_init();
788 
789 	/*
790 	 * Initialize the page structures and add every available page to the
791 	 * physical memory allocator's free lists.
792 	 */
793 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
794 	for (ii = 0; ii < vm_page_array_size; ii++) {
795 		m = &vm_page_array[ii];
796 		vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
797 		m->flags = PG_FICTITIOUS;
798 	}
799 #endif
800 	vm_cnt.v_page_count = 0;
801 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
802 		seg = &vm_phys_segs[segind];
803 		for (m = seg->first_page, pa = seg->start; pa < seg->end;
804 		    m++, pa += PAGE_SIZE)
805 			vm_page_init_page(m, pa, segind);
806 
807 		/*
808 		 * Add the segment to the free lists only if it is covered by
809 		 * one of the ranges in phys_avail.  Because we've added the
810 		 * ranges to the vm_phys_segs array, we can assume that each
811 		 * segment is either entirely contained in one of the ranges,
812 		 * or doesn't overlap any of them.
813 		 */
814 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
815 			struct vm_domain *vmd;
816 
817 			if (seg->start < phys_avail[i] ||
818 			    seg->end > phys_avail[i + 1])
819 				continue;
820 
821 			m = seg->first_page;
822 			pagecount = (u_long)atop(seg->end - seg->start);
823 
824 			vmd = VM_DOMAIN(seg->domain);
825 			vm_domain_free_lock(vmd);
826 			vm_phys_enqueue_contig(m, pagecount);
827 			vm_domain_free_unlock(vmd);
828 			vm_domain_freecnt_inc(vmd, pagecount);
829 			vm_cnt.v_page_count += (u_int)pagecount;
830 
831 			vmd = VM_DOMAIN(seg->domain);
832 			vmd->vmd_page_count += (u_int)pagecount;
833 			vmd->vmd_segs |= 1UL << m->segind;
834 			break;
835 		}
836 	}
837 
838 	/*
839 	 * Remove blacklisted pages from the physical memory allocator.
840 	 */
841 	TAILQ_INIT(&blacklist_head);
842 	vm_page_blacklist_load(&list, &listend);
843 	vm_page_blacklist_check(list, listend);
844 
845 	list = kern_getenv("vm.blacklist");
846 	vm_page_blacklist_check(list, NULL);
847 
848 	freeenv(list);
849 #if VM_NRESERVLEVEL > 0
850 	/*
851 	 * Initialize the reservation management system.
852 	 */
853 	vm_reserv_init();
854 #endif
855 
856 	return (vaddr);
857 }
858 
859 void
860 vm_page_reference(vm_page_t m)
861 {
862 
863 	vm_page_aflag_set(m, PGA_REFERENCED);
864 }
865 
866 /*
867  *	vm_page_busy_acquire:
868  *
869  *	Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
870  *	and drop the object lock if necessary.
871  */
872 int
873 vm_page_busy_acquire(vm_page_t m, int allocflags)
874 {
875 	vm_object_t obj;
876 	bool locked;
877 
878 	/*
879 	 * The page-specific object must be cached because page
880 	 * identity can change during the sleep, causing the
881 	 * re-lock of a different object.
882 	 * It is assumed that a reference to the object is already
883 	 * held by the callers.
884 	 */
885 	obj = m->object;
886 	for (;;) {
887 		if ((allocflags & VM_ALLOC_SBUSY) == 0) {
888 			if (vm_page_tryxbusy(m))
889 				return (TRUE);
890 		} else {
891 			if (vm_page_trysbusy(m))
892 				return (TRUE);
893 		}
894 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
895 			return (FALSE);
896 		if (obj != NULL)
897 			locked = VM_OBJECT_WOWNED(obj);
898 		else
899 			locked = FALSE;
900 		MPASS(locked || vm_page_wired(m));
901 		_vm_page_busy_sleep(obj, m, "vmpba",
902 		    (allocflags & VM_ALLOC_SBUSY) != 0, locked);
903 		if (locked)
904 			VM_OBJECT_WLOCK(obj);
905 		if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
906 			return (FALSE);
907 		KASSERT(m->object == obj || m->object == NULL,
908 		    ("vm_page_busy_acquire: page %p does not belong to %p",
909 		    m, obj));
910 	}
911 }
912 
913 /*
914  *	vm_page_busy_downgrade:
915  *
916  *	Downgrade an exclusive busy page into a single shared busy page.
917  */
918 void
919 vm_page_busy_downgrade(vm_page_t m)
920 {
921 	u_int x;
922 
923 	vm_page_assert_xbusied(m);
924 
925 	x = m->busy_lock;
926 	for (;;) {
927 		if (atomic_fcmpset_rel_int(&m->busy_lock,
928 		    &x, VPB_SHARERS_WORD(1)))
929 			break;
930 	}
931 	if ((x & VPB_BIT_WAITERS) != 0)
932 		wakeup(m);
933 }
934 
935 /*
936  *
937  *	vm_page_busy_tryupgrade:
938  *
939  *	Attempt to upgrade a single shared busy into an exclusive busy.
940  */
941 int
942 vm_page_busy_tryupgrade(vm_page_t m)
943 {
944 	u_int x;
945 
946 	vm_page_assert_sbusied(m);
947 
948 	x = m->busy_lock;
949 	for (;;) {
950 		if (VPB_SHARERS(x) > 1)
951 			return (0);
952 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
953 		    ("vm_page_busy_tryupgrade: invalid lock state"));
954 		if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
955 		    VPB_SINGLE_EXCLUSIVER | (x & VPB_BIT_WAITERS)))
956 			continue;
957 		return (1);
958 	}
959 }
960 
961 /*
962  *	vm_page_sbusied:
963  *
964  *	Return a positive value if the page is shared busied, 0 otherwise.
965  */
966 int
967 vm_page_sbusied(vm_page_t m)
968 {
969 	u_int x;
970 
971 	x = m->busy_lock;
972 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
973 }
974 
975 /*
976  *	vm_page_sunbusy:
977  *
978  *	Shared unbusy a page.
979  */
980 void
981 vm_page_sunbusy(vm_page_t m)
982 {
983 	u_int x;
984 
985 	vm_page_assert_sbusied(m);
986 
987 	x = m->busy_lock;
988 	for (;;) {
989 		if (VPB_SHARERS(x) > 1) {
990 			if (atomic_fcmpset_int(&m->busy_lock, &x,
991 			    x - VPB_ONE_SHARER))
992 				break;
993 			continue;
994 		}
995 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
996 		    ("vm_page_sunbusy: invalid lock state"));
997 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
998 			continue;
999 		if ((x & VPB_BIT_WAITERS) == 0)
1000 			break;
1001 		wakeup(m);
1002 		break;
1003 	}
1004 }
1005 
1006 /*
1007  *	vm_page_busy_sleep:
1008  *
1009  *	Sleep if the page is busy, using the page pointer as wchan.
1010  *	This is used to implement the hard-path of busying mechanism.
1011  *
1012  *	If nonshared is true, sleep only if the page is xbusy.
1013  *
1014  *	The object lock must be held on entry and will be released on exit.
1015  */
1016 void
1017 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1018 {
1019 	vm_object_t obj;
1020 
1021 	obj = m->object;
1022 	VM_OBJECT_ASSERT_LOCKED(obj);
1023 	vm_page_lock_assert(m, MA_NOTOWNED);
1024 
1025 	_vm_page_busy_sleep(obj, m, wmesg, nonshared, true);
1026 }
1027 
1028 static void
1029 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, const char *wmesg,
1030     bool nonshared, bool locked)
1031 {
1032 	u_int x;
1033 
1034 	/*
1035 	 * If the object is busy we must wait for that to drain to zero
1036 	 * before trying the page again.
1037 	 */
1038 	if (obj != NULL && vm_object_busied(obj)) {
1039 		if (locked)
1040 			VM_OBJECT_DROP(obj);
1041 		vm_object_busy_wait(obj, wmesg);
1042 		return;
1043 	}
1044 	sleepq_lock(m);
1045 	x = m->busy_lock;
1046 	if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
1047 	    ((x & VPB_BIT_WAITERS) == 0 &&
1048 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
1049 		if (locked)
1050 			VM_OBJECT_DROP(obj);
1051 		sleepq_release(m);
1052 		return;
1053 	}
1054 	if (locked)
1055 		VM_OBJECT_DROP(obj);
1056 	DROP_GIANT();
1057 	sleepq_add(m, NULL, wmesg, 0, 0);
1058 	sleepq_wait(m, PVM);
1059 	PICKUP_GIANT();
1060 }
1061 
1062 /*
1063  *	vm_page_trysbusy:
1064  *
1065  *	Try to shared busy a page.
1066  *	If the operation succeeds 1 is returned otherwise 0.
1067  *	The operation never sleeps.
1068  */
1069 int
1070 vm_page_trysbusy(vm_page_t m)
1071 {
1072 	vm_object_t obj;
1073 	u_int x;
1074 
1075 	obj = m->object;
1076 	x = m->busy_lock;
1077 	for (;;) {
1078 		if ((x & VPB_BIT_SHARED) == 0)
1079 			return (0);
1080 		/*
1081 		 * Reduce the window for transient busies that will trigger
1082 		 * false negatives in vm_page_ps_test().
1083 		 */
1084 		if (obj != NULL && vm_object_busied(obj))
1085 			return (0);
1086 		if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1087 		    x + VPB_ONE_SHARER))
1088 			break;
1089 	}
1090 
1091 	/* Refetch the object now that we're guaranteed that it is stable. */
1092 	obj = m->object;
1093 	if (obj != NULL && vm_object_busied(obj)) {
1094 		vm_page_sunbusy(m);
1095 		return (0);
1096 	}
1097 	return (1);
1098 }
1099 
1100 /*
1101  *	vm_page_tryxbusy:
1102  *
1103  *	Try to exclusive busy a page.
1104  *	If the operation succeeds 1 is returned otherwise 0.
1105  *	The operation never sleeps.
1106  */
1107 int
1108 vm_page_tryxbusy(vm_page_t m)
1109 {
1110 	vm_object_t obj;
1111 
1112         if (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED,
1113             VPB_SINGLE_EXCLUSIVER) == 0)
1114 		return (0);
1115 
1116 	obj = m->object;
1117 	if (obj != NULL && vm_object_busied(obj)) {
1118 		vm_page_xunbusy(m);
1119 		return (0);
1120 	}
1121 	return (1);
1122 }
1123 
1124 /*
1125  *	vm_page_xunbusy_hard:
1126  *
1127  *	Called when unbusy has failed because there is a waiter.
1128  */
1129 void
1130 vm_page_xunbusy_hard(vm_page_t m)
1131 {
1132 
1133 	vm_page_assert_xbusied(m);
1134 
1135 	/*
1136 	 * Wake the waiter.
1137 	 */
1138 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1139 	wakeup(m);
1140 }
1141 
1142 /*
1143  * Avoid releasing and reacquiring the same page lock.
1144  */
1145 void
1146 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
1147 {
1148 	struct mtx *mtx1;
1149 
1150 	mtx1 = vm_page_lockptr(m);
1151 	if (*mtx == mtx1)
1152 		return;
1153 	if (*mtx != NULL)
1154 		mtx_unlock(*mtx);
1155 	*mtx = mtx1;
1156 	mtx_lock(mtx1);
1157 }
1158 
1159 /*
1160  *	vm_page_unhold_pages:
1161  *
1162  *	Unhold each of the pages that is referenced by the given array.
1163  */
1164 void
1165 vm_page_unhold_pages(vm_page_t *ma, int count)
1166 {
1167 
1168 	for (; count != 0; count--) {
1169 		vm_page_unwire(*ma, PQ_ACTIVE);
1170 		ma++;
1171 	}
1172 }
1173 
1174 vm_page_t
1175 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1176 {
1177 	vm_page_t m;
1178 
1179 #ifdef VM_PHYSSEG_SPARSE
1180 	m = vm_phys_paddr_to_vm_page(pa);
1181 	if (m == NULL)
1182 		m = vm_phys_fictitious_to_vm_page(pa);
1183 	return (m);
1184 #elif defined(VM_PHYSSEG_DENSE)
1185 	long pi;
1186 
1187 	pi = atop(pa);
1188 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1189 		m = &vm_page_array[pi - first_page];
1190 		return (m);
1191 	}
1192 	return (vm_phys_fictitious_to_vm_page(pa));
1193 #else
1194 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1195 #endif
1196 }
1197 
1198 /*
1199  *	vm_page_getfake:
1200  *
1201  *	Create a fictitious page with the specified physical address and
1202  *	memory attribute.  The memory attribute is the only the machine-
1203  *	dependent aspect of a fictitious page that must be initialized.
1204  */
1205 vm_page_t
1206 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1207 {
1208 	vm_page_t m;
1209 
1210 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1211 	vm_page_initfake(m, paddr, memattr);
1212 	return (m);
1213 }
1214 
1215 void
1216 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1217 {
1218 
1219 	if ((m->flags & PG_FICTITIOUS) != 0) {
1220 		/*
1221 		 * The page's memattr might have changed since the
1222 		 * previous initialization.  Update the pmap to the
1223 		 * new memattr.
1224 		 */
1225 		goto memattr;
1226 	}
1227 	m->phys_addr = paddr;
1228 	m->queue = PQ_NONE;
1229 	/* Fictitious pages don't use "segind". */
1230 	m->flags = PG_FICTITIOUS;
1231 	/* Fictitious pages don't use "order" or "pool". */
1232 	m->oflags = VPO_UNMANAGED;
1233 	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1234 	/* Fictitious pages are unevictable. */
1235 	m->ref_count = 1;
1236 	pmap_page_init(m);
1237 memattr:
1238 	pmap_page_set_memattr(m, memattr);
1239 }
1240 
1241 /*
1242  *	vm_page_putfake:
1243  *
1244  *	Release a fictitious page.
1245  */
1246 void
1247 vm_page_putfake(vm_page_t m)
1248 {
1249 
1250 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1251 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1252 	    ("vm_page_putfake: bad page %p", m));
1253 	if (vm_page_xbusied(m))
1254 		vm_page_xunbusy(m);
1255 	uma_zfree(fakepg_zone, m);
1256 }
1257 
1258 /*
1259  *	vm_page_updatefake:
1260  *
1261  *	Update the given fictitious page to the specified physical address and
1262  *	memory attribute.
1263  */
1264 void
1265 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1266 {
1267 
1268 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1269 	    ("vm_page_updatefake: bad page %p", m));
1270 	m->phys_addr = paddr;
1271 	pmap_page_set_memattr(m, memattr);
1272 }
1273 
1274 /*
1275  *	vm_page_free:
1276  *
1277  *	Free a page.
1278  */
1279 void
1280 vm_page_free(vm_page_t m)
1281 {
1282 
1283 	m->flags &= ~PG_ZERO;
1284 	vm_page_free_toq(m);
1285 }
1286 
1287 /*
1288  *	vm_page_free_zero:
1289  *
1290  *	Free a page to the zerod-pages queue
1291  */
1292 void
1293 vm_page_free_zero(vm_page_t m)
1294 {
1295 
1296 	m->flags |= PG_ZERO;
1297 	vm_page_free_toq(m);
1298 }
1299 
1300 /*
1301  * Unbusy and handle the page queueing for a page from a getpages request that
1302  * was optionally read ahead or behind.
1303  */
1304 void
1305 vm_page_readahead_finish(vm_page_t m)
1306 {
1307 
1308 	/* We shouldn't put invalid pages on queues. */
1309 	KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1310 
1311 	/*
1312 	 * Since the page is not the actually needed one, whether it should
1313 	 * be activated or deactivated is not obvious.  Empirical results
1314 	 * have shown that deactivating the page is usually the best choice,
1315 	 * unless the page is wanted by another thread.
1316 	 */
1317 	vm_page_lock(m);
1318 	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1319 		vm_page_activate(m);
1320 	else
1321 		vm_page_deactivate(m);
1322 	vm_page_unlock(m);
1323 	vm_page_xunbusy(m);
1324 }
1325 
1326 /*
1327  *	vm_page_sleep_if_busy:
1328  *
1329  *	Sleep and release the object lock if the page is busied.
1330  *	Returns TRUE if the thread slept.
1331  *
1332  *	The given page must be unlocked and object containing it must
1333  *	be locked.
1334  */
1335 int
1336 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1337 {
1338 	vm_object_t obj;
1339 
1340 	vm_page_lock_assert(m, MA_NOTOWNED);
1341 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1342 
1343 	/*
1344 	 * The page-specific object must be cached because page
1345 	 * identity can change during the sleep, causing the
1346 	 * re-lock of a different object.
1347 	 * It is assumed that a reference to the object is already
1348 	 * held by the callers.
1349 	 */
1350 	obj = m->object;
1351 	if (vm_page_busied(m) || (obj != NULL && obj->busy)) {
1352 		vm_page_busy_sleep(m, msg, false);
1353 		VM_OBJECT_WLOCK(obj);
1354 		return (TRUE);
1355 	}
1356 	return (FALSE);
1357 }
1358 
1359 /*
1360  *	vm_page_sleep_if_xbusy:
1361  *
1362  *	Sleep and release the object lock if the page is xbusied.
1363  *	Returns TRUE if the thread slept.
1364  *
1365  *	The given page must be unlocked and object containing it must
1366  *	be locked.
1367  */
1368 int
1369 vm_page_sleep_if_xbusy(vm_page_t m, const char *msg)
1370 {
1371 	vm_object_t obj;
1372 
1373 	vm_page_lock_assert(m, MA_NOTOWNED);
1374 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1375 
1376 	/*
1377 	 * The page-specific object must be cached because page
1378 	 * identity can change during the sleep, causing the
1379 	 * re-lock of a different object.
1380 	 * It is assumed that a reference to the object is already
1381 	 * held by the callers.
1382 	 */
1383 	obj = m->object;
1384 	if (vm_page_xbusied(m) || (obj != NULL && obj->busy)) {
1385 		vm_page_busy_sleep(m, msg, true);
1386 		VM_OBJECT_WLOCK(obj);
1387 		return (TRUE);
1388 	}
1389 	return (FALSE);
1390 }
1391 
1392 /*
1393  *	vm_page_dirty_KBI:		[ internal use only ]
1394  *
1395  *	Set all bits in the page's dirty field.
1396  *
1397  *	The object containing the specified page must be locked if the
1398  *	call is made from the machine-independent layer.
1399  *
1400  *	See vm_page_clear_dirty_mask().
1401  *
1402  *	This function should only be called by vm_page_dirty().
1403  */
1404 void
1405 vm_page_dirty_KBI(vm_page_t m)
1406 {
1407 
1408 	/* Refer to this operation by its public name. */
1409 	KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1410 	m->dirty = VM_PAGE_BITS_ALL;
1411 }
1412 
1413 /*
1414  *	vm_page_insert:		[ internal use only ]
1415  *
1416  *	Inserts the given mem entry into the object and object list.
1417  *
1418  *	The object must be locked.
1419  */
1420 int
1421 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1422 {
1423 	vm_page_t mpred;
1424 
1425 	VM_OBJECT_ASSERT_WLOCKED(object);
1426 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1427 	return (vm_page_insert_after(m, object, pindex, mpred));
1428 }
1429 
1430 /*
1431  *	vm_page_insert_after:
1432  *
1433  *	Inserts the page "m" into the specified object at offset "pindex".
1434  *
1435  *	The page "mpred" must immediately precede the offset "pindex" within
1436  *	the specified object.
1437  *
1438  *	The object must be locked.
1439  */
1440 static int
1441 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1442     vm_page_t mpred)
1443 {
1444 	vm_page_t msucc;
1445 
1446 	VM_OBJECT_ASSERT_WLOCKED(object);
1447 	KASSERT(m->object == NULL,
1448 	    ("vm_page_insert_after: page already inserted"));
1449 	if (mpred != NULL) {
1450 		KASSERT(mpred->object == object,
1451 		    ("vm_page_insert_after: object doesn't contain mpred"));
1452 		KASSERT(mpred->pindex < pindex,
1453 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1454 		msucc = TAILQ_NEXT(mpred, listq);
1455 	} else
1456 		msucc = TAILQ_FIRST(&object->memq);
1457 	if (msucc != NULL)
1458 		KASSERT(msucc->pindex > pindex,
1459 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1460 
1461 	/*
1462 	 * Record the object/offset pair in this page.
1463 	 */
1464 	m->object = object;
1465 	m->pindex = pindex;
1466 	m->ref_count |= VPRC_OBJREF;
1467 
1468 	/*
1469 	 * Now link into the object's ordered list of backed pages.
1470 	 */
1471 	if (vm_radix_insert(&object->rtree, m)) {
1472 		m->object = NULL;
1473 		m->pindex = 0;
1474 		m->ref_count &= ~VPRC_OBJREF;
1475 		return (1);
1476 	}
1477 	vm_page_insert_radixdone(m, object, mpred);
1478 	return (0);
1479 }
1480 
1481 /*
1482  *	vm_page_insert_radixdone:
1483  *
1484  *	Complete page "m" insertion into the specified object after the
1485  *	radix trie hooking.
1486  *
1487  *	The page "mpred" must precede the offset "m->pindex" within the
1488  *	specified object.
1489  *
1490  *	The object must be locked.
1491  */
1492 static void
1493 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1494 {
1495 
1496 	VM_OBJECT_ASSERT_WLOCKED(object);
1497 	KASSERT(object != NULL && m->object == object,
1498 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1499 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1500 	    ("vm_page_insert_radixdone: page %p is missing object ref", m));
1501 	if (mpred != NULL) {
1502 		KASSERT(mpred->object == object,
1503 		    ("vm_page_insert_radixdone: object doesn't contain mpred"));
1504 		KASSERT(mpred->pindex < m->pindex,
1505 		    ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1506 	}
1507 
1508 	if (mpred != NULL)
1509 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1510 	else
1511 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1512 
1513 	/*
1514 	 * Show that the object has one more resident page.
1515 	 */
1516 	object->resident_page_count++;
1517 
1518 	/*
1519 	 * Hold the vnode until the last page is released.
1520 	 */
1521 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1522 		vhold(object->handle);
1523 
1524 	/*
1525 	 * Since we are inserting a new and possibly dirty page,
1526 	 * update the object's generation count.
1527 	 */
1528 	if (pmap_page_is_write_mapped(m))
1529 		vm_object_set_writeable_dirty(object);
1530 }
1531 
1532 /*
1533  * Do the work to remove a page from its object.  The caller is responsible for
1534  * updating the page's fields to reflect this removal.
1535  */
1536 static void
1537 vm_page_object_remove(vm_page_t m)
1538 {
1539 	vm_object_t object;
1540 	vm_page_t mrem;
1541 
1542 	object = m->object;
1543 	VM_OBJECT_ASSERT_WLOCKED(object);
1544 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1545 	    ("page %p is missing its object ref", m));
1546 
1547 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1548 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1549 
1550 	/*
1551 	 * Now remove from the object's list of backed pages.
1552 	 */
1553 	TAILQ_REMOVE(&object->memq, m, listq);
1554 
1555 	/*
1556 	 * And show that the object has one fewer resident page.
1557 	 */
1558 	object->resident_page_count--;
1559 
1560 	/*
1561 	 * The vnode may now be recycled.
1562 	 */
1563 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1564 		vdrop(object->handle);
1565 }
1566 
1567 /*
1568  *	vm_page_remove:
1569  *
1570  *	Removes the specified page from its containing object, but does not
1571  *	invalidate any backing storage.  Returns true if the object's reference
1572  *	was the last reference to the page, and false otherwise.
1573  *
1574  *	The object must be locked.
1575  */
1576 bool
1577 vm_page_remove(vm_page_t m)
1578 {
1579 
1580 	vm_page_object_remove(m);
1581 	m->object = NULL;
1582 	return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1583 }
1584 
1585 /*
1586  *	vm_page_lookup:
1587  *
1588  *	Returns the page associated with the object/offset
1589  *	pair specified; if none is found, NULL is returned.
1590  *
1591  *	The object must be locked.
1592  */
1593 vm_page_t
1594 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1595 {
1596 
1597 	VM_OBJECT_ASSERT_LOCKED(object);
1598 	return (vm_radix_lookup(&object->rtree, pindex));
1599 }
1600 
1601 /*
1602  *	vm_page_find_least:
1603  *
1604  *	Returns the page associated with the object with least pindex
1605  *	greater than or equal to the parameter pindex, or NULL.
1606  *
1607  *	The object must be locked.
1608  */
1609 vm_page_t
1610 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1611 {
1612 	vm_page_t m;
1613 
1614 	VM_OBJECT_ASSERT_LOCKED(object);
1615 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1616 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1617 	return (m);
1618 }
1619 
1620 /*
1621  * Returns the given page's successor (by pindex) within the object if it is
1622  * resident; if none is found, NULL is returned.
1623  *
1624  * The object must be locked.
1625  */
1626 vm_page_t
1627 vm_page_next(vm_page_t m)
1628 {
1629 	vm_page_t next;
1630 
1631 	VM_OBJECT_ASSERT_LOCKED(m->object);
1632 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1633 		MPASS(next->object == m->object);
1634 		if (next->pindex != m->pindex + 1)
1635 			next = NULL;
1636 	}
1637 	return (next);
1638 }
1639 
1640 /*
1641  * Returns the given page's predecessor (by pindex) within the object if it is
1642  * resident; if none is found, NULL is returned.
1643  *
1644  * The object must be locked.
1645  */
1646 vm_page_t
1647 vm_page_prev(vm_page_t m)
1648 {
1649 	vm_page_t prev;
1650 
1651 	VM_OBJECT_ASSERT_LOCKED(m->object);
1652 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1653 		MPASS(prev->object == m->object);
1654 		if (prev->pindex != m->pindex - 1)
1655 			prev = NULL;
1656 	}
1657 	return (prev);
1658 }
1659 
1660 /*
1661  * Uses the page mnew as a replacement for an existing page at index
1662  * pindex which must be already present in the object.
1663  */
1664 vm_page_t
1665 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1666 {
1667 	vm_page_t mold;
1668 
1669 	VM_OBJECT_ASSERT_WLOCKED(object);
1670 	KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1671 	    ("vm_page_replace: page %p already in object", mnew));
1672 
1673 	/*
1674 	 * This function mostly follows vm_page_insert() and
1675 	 * vm_page_remove() without the radix, object count and vnode
1676 	 * dance.  Double check such functions for more comments.
1677 	 */
1678 
1679 	mnew->object = object;
1680 	mnew->pindex = pindex;
1681 	atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1682 	mold = vm_radix_replace(&object->rtree, mnew);
1683 	KASSERT(mold->queue == PQ_NONE,
1684 	    ("vm_page_replace: old page %p is on a paging queue", mold));
1685 
1686 	/* Keep the resident page list in sorted order. */
1687 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1688 	TAILQ_REMOVE(&object->memq, mold, listq);
1689 
1690 	mold->object = NULL;
1691 	atomic_clear_int(&mold->ref_count, VPRC_OBJREF);
1692 	vm_page_xunbusy(mold);
1693 
1694 	/*
1695 	 * The object's resident_page_count does not change because we have
1696 	 * swapped one page for another, but the generation count should
1697 	 * change if the page is dirty.
1698 	 */
1699 	if (pmap_page_is_write_mapped(mnew))
1700 		vm_object_set_writeable_dirty(object);
1701 	return (mold);
1702 }
1703 
1704 /*
1705  *	vm_page_rename:
1706  *
1707  *	Move the given memory entry from its
1708  *	current object to the specified target object/offset.
1709  *
1710  *	Note: swap associated with the page must be invalidated by the move.  We
1711  *	      have to do this for several reasons:  (1) we aren't freeing the
1712  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1713  *	      moving the page from object A to B, and will then later move
1714  *	      the backing store from A to B and we can't have a conflict.
1715  *
1716  *	Note: we *always* dirty the page.  It is necessary both for the
1717  *	      fact that we moved it, and because we may be invalidating
1718  *	      swap.
1719  *
1720  *	The objects must be locked.
1721  */
1722 int
1723 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1724 {
1725 	vm_page_t mpred;
1726 	vm_pindex_t opidx;
1727 
1728 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1729 
1730 	KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1731 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1732 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1733 	    ("vm_page_rename: pindex already renamed"));
1734 
1735 	/*
1736 	 * Create a custom version of vm_page_insert() which does not depend
1737 	 * by m_prev and can cheat on the implementation aspects of the
1738 	 * function.
1739 	 */
1740 	opidx = m->pindex;
1741 	m->pindex = new_pindex;
1742 	if (vm_radix_insert(&new_object->rtree, m)) {
1743 		m->pindex = opidx;
1744 		return (1);
1745 	}
1746 
1747 	/*
1748 	 * The operation cannot fail anymore.  The removal must happen before
1749 	 * the listq iterator is tainted.
1750 	 */
1751 	m->pindex = opidx;
1752 	vm_page_object_remove(m);
1753 
1754 	/* Return back to the new pindex to complete vm_page_insert(). */
1755 	m->pindex = new_pindex;
1756 	m->object = new_object;
1757 
1758 	vm_page_insert_radixdone(m, new_object, mpred);
1759 	vm_page_dirty(m);
1760 	return (0);
1761 }
1762 
1763 /*
1764  *	vm_page_alloc:
1765  *
1766  *	Allocate and return a page that is associated with the specified
1767  *	object and offset pair.  By default, this page is exclusive busied.
1768  *
1769  *	The caller must always specify an allocation class.
1770  *
1771  *	allocation classes:
1772  *	VM_ALLOC_NORMAL		normal process request
1773  *	VM_ALLOC_SYSTEM		system *really* needs a page
1774  *	VM_ALLOC_INTERRUPT	interrupt time request
1775  *
1776  *	optional allocation flags:
1777  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1778  *				intends to allocate
1779  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1780  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1781  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1782  *				should not be exclusive busy
1783  *	VM_ALLOC_SBUSY		shared busy the allocated page
1784  *	VM_ALLOC_WIRED		wire the allocated page
1785  *	VM_ALLOC_ZERO		prefer a zeroed page
1786  */
1787 vm_page_t
1788 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1789 {
1790 
1791 	return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1792 	    vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1793 }
1794 
1795 vm_page_t
1796 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1797     int req)
1798 {
1799 
1800 	return (vm_page_alloc_domain_after(object, pindex, domain, req,
1801 	    object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1802 	    NULL));
1803 }
1804 
1805 /*
1806  * Allocate a page in the specified object with the given page index.  To
1807  * optimize insertion of the page into the object, the caller must also specifiy
1808  * the resident page in the object with largest index smaller than the given
1809  * page index, or NULL if no such page exists.
1810  */
1811 vm_page_t
1812 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1813     int req, vm_page_t mpred)
1814 {
1815 	struct vm_domainset_iter di;
1816 	vm_page_t m;
1817 	int domain;
1818 
1819 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1820 	do {
1821 		m = vm_page_alloc_domain_after(object, pindex, domain, req,
1822 		    mpred);
1823 		if (m != NULL)
1824 			break;
1825 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
1826 
1827 	return (m);
1828 }
1829 
1830 /*
1831  * Returns true if the number of free pages exceeds the minimum
1832  * for the request class and false otherwise.
1833  */
1834 int
1835 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1836 {
1837 	u_int limit, old, new;
1838 
1839 	req = req & VM_ALLOC_CLASS_MASK;
1840 
1841 	/*
1842 	 * The page daemon is allowed to dig deeper into the free page list.
1843 	 */
1844 	if (curproc == pageproc && req != VM_ALLOC_INTERRUPT)
1845 		req = VM_ALLOC_SYSTEM;
1846 	if (req == VM_ALLOC_INTERRUPT)
1847 		limit = 0;
1848 	else if (req == VM_ALLOC_SYSTEM)
1849 		limit = vmd->vmd_interrupt_free_min;
1850 	else
1851 		limit = vmd->vmd_free_reserved;
1852 
1853 	/*
1854 	 * Attempt to reserve the pages.  Fail if we're below the limit.
1855 	 */
1856 	limit += npages;
1857 	old = vmd->vmd_free_count;
1858 	do {
1859 		if (old < limit)
1860 			return (0);
1861 		new = old - npages;
1862 	} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1863 
1864 	/* Wake the page daemon if we've crossed the threshold. */
1865 	if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1866 		pagedaemon_wakeup(vmd->vmd_domain);
1867 
1868 	/* Only update bitsets on transitions. */
1869 	if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1870 	    (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1871 		vm_domain_set(vmd);
1872 
1873 	return (1);
1874 }
1875 
1876 vm_page_t
1877 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1878     int req, vm_page_t mpred)
1879 {
1880 	struct vm_domain *vmd;
1881 	vm_page_t m;
1882 	int flags, pool;
1883 
1884 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1885 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1886 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1887 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1888 	    ("inconsistent object(%p)/req(%x)", object, req));
1889 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1890 	    ("Can't sleep and retry object insertion."));
1891 	KASSERT(mpred == NULL || mpred->pindex < pindex,
1892 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
1893 	    (uintmax_t)pindex));
1894 	if (object != NULL)
1895 		VM_OBJECT_ASSERT_WLOCKED(object);
1896 
1897 	flags = 0;
1898 	m = NULL;
1899 	pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
1900 again:
1901 #if VM_NRESERVLEVEL > 0
1902 	/*
1903 	 * Can we allocate the page from a reservation?
1904 	 */
1905 	if (vm_object_reserv(object) &&
1906 	    (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
1907 	    NULL) {
1908 		domain = vm_phys_domain(m);
1909 		vmd = VM_DOMAIN(domain);
1910 		goto found;
1911 	}
1912 #endif
1913 	vmd = VM_DOMAIN(domain);
1914 	if (vmd->vmd_pgcache[pool].zone != NULL) {
1915 		m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT);
1916 		if (m != NULL) {
1917 			flags |= PG_PCPU_CACHE;
1918 			goto found;
1919 		}
1920 	}
1921 	if (vm_domain_allocate(vmd, req, 1)) {
1922 		/*
1923 		 * If not, allocate it from the free page queues.
1924 		 */
1925 		vm_domain_free_lock(vmd);
1926 		m = vm_phys_alloc_pages(domain, pool, 0);
1927 		vm_domain_free_unlock(vmd);
1928 		if (m == NULL) {
1929 			vm_domain_freecnt_inc(vmd, 1);
1930 #if VM_NRESERVLEVEL > 0
1931 			if (vm_reserv_reclaim_inactive(domain))
1932 				goto again;
1933 #endif
1934 		}
1935 	}
1936 	if (m == NULL) {
1937 		/*
1938 		 * Not allocatable, give up.
1939 		 */
1940 		if (vm_domain_alloc_fail(vmd, object, req))
1941 			goto again;
1942 		return (NULL);
1943 	}
1944 
1945 	/*
1946 	 * At this point we had better have found a good page.
1947 	 */
1948 found:
1949 	vm_page_dequeue(m);
1950 	vm_page_alloc_check(m);
1951 
1952 	/*
1953 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1954 	 */
1955 	if ((req & VM_ALLOC_ZERO) != 0)
1956 		flags |= (m->flags & PG_ZERO);
1957 	if ((req & VM_ALLOC_NODUMP) != 0)
1958 		flags |= PG_NODUMP;
1959 	m->flags = flags;
1960 	m->aflags = 0;
1961 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1962 	    VPO_UNMANAGED : 0;
1963 	m->busy_lock = VPB_UNBUSIED;
1964 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1965 		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1966 	if ((req & VM_ALLOC_SBUSY) != 0)
1967 		m->busy_lock = VPB_SHARERS_WORD(1);
1968 	if (req & VM_ALLOC_WIRED) {
1969 		/*
1970 		 * The page lock is not required for wiring a page until that
1971 		 * page is inserted into the object.
1972 		 */
1973 		vm_wire_add(1);
1974 		m->ref_count = 1;
1975 	}
1976 	m->act_count = 0;
1977 
1978 	if (object != NULL) {
1979 		if (vm_page_insert_after(m, object, pindex, mpred)) {
1980 			if (req & VM_ALLOC_WIRED) {
1981 				vm_wire_sub(1);
1982 				m->ref_count = 0;
1983 			}
1984 			KASSERT(m->object == NULL, ("page %p has object", m));
1985 			m->oflags = VPO_UNMANAGED;
1986 			m->busy_lock = VPB_UNBUSIED;
1987 			/* Don't change PG_ZERO. */
1988 			vm_page_free_toq(m);
1989 			if (req & VM_ALLOC_WAITFAIL) {
1990 				VM_OBJECT_WUNLOCK(object);
1991 				vm_radix_wait();
1992 				VM_OBJECT_WLOCK(object);
1993 			}
1994 			return (NULL);
1995 		}
1996 
1997 		/* Ignore device objects; the pager sets "memattr" for them. */
1998 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1999 		    (object->flags & OBJ_FICTITIOUS) == 0)
2000 			pmap_page_set_memattr(m, object->memattr);
2001 	} else
2002 		m->pindex = pindex;
2003 
2004 	return (m);
2005 }
2006 
2007 /*
2008  *	vm_page_alloc_contig:
2009  *
2010  *	Allocate a contiguous set of physical pages of the given size "npages"
2011  *	from the free lists.  All of the physical pages must be at or above
2012  *	the given physical address "low" and below the given physical address
2013  *	"high".  The given value "alignment" determines the alignment of the
2014  *	first physical page in the set.  If the given value "boundary" is
2015  *	non-zero, then the set of physical pages cannot cross any physical
2016  *	address boundary that is a multiple of that value.  Both "alignment"
2017  *	and "boundary" must be a power of two.
2018  *
2019  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2020  *	then the memory attribute setting for the physical pages is configured
2021  *	to the object's memory attribute setting.  Otherwise, the memory
2022  *	attribute setting for the physical pages is configured to "memattr",
2023  *	overriding the object's memory attribute setting.  However, if the
2024  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2025  *	memory attribute setting for the physical pages cannot be configured
2026  *	to VM_MEMATTR_DEFAULT.
2027  *
2028  *	The specified object may not contain fictitious pages.
2029  *
2030  *	The caller must always specify an allocation class.
2031  *
2032  *	allocation classes:
2033  *	VM_ALLOC_NORMAL		normal process request
2034  *	VM_ALLOC_SYSTEM		system *really* needs a page
2035  *	VM_ALLOC_INTERRUPT	interrupt time request
2036  *
2037  *	optional allocation flags:
2038  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
2039  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
2040  *	VM_ALLOC_NOOBJ		page is not associated with an object and
2041  *				should not be exclusive busy
2042  *	VM_ALLOC_SBUSY		shared busy the allocated page
2043  *	VM_ALLOC_WIRED		wire the allocated page
2044  *	VM_ALLOC_ZERO		prefer a zeroed page
2045  */
2046 vm_page_t
2047 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2048     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2049     vm_paddr_t boundary, vm_memattr_t memattr)
2050 {
2051 	struct vm_domainset_iter di;
2052 	vm_page_t m;
2053 	int domain;
2054 
2055 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2056 	do {
2057 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2058 		    npages, low, high, alignment, boundary, memattr);
2059 		if (m != NULL)
2060 			break;
2061 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
2062 
2063 	return (m);
2064 }
2065 
2066 vm_page_t
2067 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2068     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2069     vm_paddr_t boundary, vm_memattr_t memattr)
2070 {
2071 	struct vm_domain *vmd;
2072 	vm_page_t m, m_ret, mpred;
2073 	u_int busy_lock, flags, oflags;
2074 
2075 	mpred = NULL;	/* XXX: pacify gcc */
2076 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2077 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2078 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2079 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2080 	    ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2081 	    req));
2082 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2083 	    ("Can't sleep and retry object insertion."));
2084 	if (object != NULL) {
2085 		VM_OBJECT_ASSERT_WLOCKED(object);
2086 		KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2087 		    ("vm_page_alloc_contig: object %p has fictitious pages",
2088 		    object));
2089 	}
2090 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2091 
2092 	if (object != NULL) {
2093 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
2094 		KASSERT(mpred == NULL || mpred->pindex != pindex,
2095 		    ("vm_page_alloc_contig: pindex already allocated"));
2096 	}
2097 
2098 	/*
2099 	 * Can we allocate the pages without the number of free pages falling
2100 	 * below the lower bound for the allocation class?
2101 	 */
2102 	m_ret = NULL;
2103 again:
2104 #if VM_NRESERVLEVEL > 0
2105 	/*
2106 	 * Can we allocate the pages from a reservation?
2107 	 */
2108 	if (vm_object_reserv(object) &&
2109 	    (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2110 	    mpred, npages, low, high, alignment, boundary)) != NULL) {
2111 		domain = vm_phys_domain(m_ret);
2112 		vmd = VM_DOMAIN(domain);
2113 		goto found;
2114 	}
2115 #endif
2116 	vmd = VM_DOMAIN(domain);
2117 	if (vm_domain_allocate(vmd, req, npages)) {
2118 		/*
2119 		 * allocate them from the free page queues.
2120 		 */
2121 		vm_domain_free_lock(vmd);
2122 		m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2123 		    alignment, boundary);
2124 		vm_domain_free_unlock(vmd);
2125 		if (m_ret == NULL) {
2126 			vm_domain_freecnt_inc(vmd, npages);
2127 #if VM_NRESERVLEVEL > 0
2128 			if (vm_reserv_reclaim_contig(domain, npages, low,
2129 			    high, alignment, boundary))
2130 				goto again;
2131 #endif
2132 		}
2133 	}
2134 	if (m_ret == NULL) {
2135 		if (vm_domain_alloc_fail(vmd, object, req))
2136 			goto again;
2137 		return (NULL);
2138 	}
2139 #if VM_NRESERVLEVEL > 0
2140 found:
2141 #endif
2142 	for (m = m_ret; m < &m_ret[npages]; m++) {
2143 		vm_page_dequeue(m);
2144 		vm_page_alloc_check(m);
2145 	}
2146 
2147 	/*
2148 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2149 	 */
2150 	flags = 0;
2151 	if ((req & VM_ALLOC_ZERO) != 0)
2152 		flags = PG_ZERO;
2153 	if ((req & VM_ALLOC_NODUMP) != 0)
2154 		flags |= PG_NODUMP;
2155 	oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2156 	    VPO_UNMANAGED : 0;
2157 	busy_lock = VPB_UNBUSIED;
2158 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2159 		busy_lock = VPB_SINGLE_EXCLUSIVER;
2160 	if ((req & VM_ALLOC_SBUSY) != 0)
2161 		busy_lock = VPB_SHARERS_WORD(1);
2162 	if ((req & VM_ALLOC_WIRED) != 0)
2163 		vm_wire_add(npages);
2164 	if (object != NULL) {
2165 		if (object->memattr != VM_MEMATTR_DEFAULT &&
2166 		    memattr == VM_MEMATTR_DEFAULT)
2167 			memattr = object->memattr;
2168 	}
2169 	for (m = m_ret; m < &m_ret[npages]; m++) {
2170 		m->aflags = 0;
2171 		m->flags = (m->flags | PG_NODUMP) & flags;
2172 		m->busy_lock = busy_lock;
2173 		if ((req & VM_ALLOC_WIRED) != 0)
2174 			m->ref_count = 1;
2175 		m->act_count = 0;
2176 		m->oflags = oflags;
2177 		if (object != NULL) {
2178 			if (vm_page_insert_after(m, object, pindex, mpred)) {
2179 				if ((req & VM_ALLOC_WIRED) != 0)
2180 					vm_wire_sub(npages);
2181 				KASSERT(m->object == NULL,
2182 				    ("page %p has object", m));
2183 				mpred = m;
2184 				for (m = m_ret; m < &m_ret[npages]; m++) {
2185 					if (m <= mpred &&
2186 					    (req & VM_ALLOC_WIRED) != 0)
2187 						m->ref_count = 0;
2188 					m->oflags = VPO_UNMANAGED;
2189 					m->busy_lock = VPB_UNBUSIED;
2190 					/* Don't change PG_ZERO. */
2191 					vm_page_free_toq(m);
2192 				}
2193 				if (req & VM_ALLOC_WAITFAIL) {
2194 					VM_OBJECT_WUNLOCK(object);
2195 					vm_radix_wait();
2196 					VM_OBJECT_WLOCK(object);
2197 				}
2198 				return (NULL);
2199 			}
2200 			mpred = m;
2201 		} else
2202 			m->pindex = pindex;
2203 		if (memattr != VM_MEMATTR_DEFAULT)
2204 			pmap_page_set_memattr(m, memattr);
2205 		pindex++;
2206 	}
2207 	return (m_ret);
2208 }
2209 
2210 /*
2211  * Check a page that has been freshly dequeued from a freelist.
2212  */
2213 static void
2214 vm_page_alloc_check(vm_page_t m)
2215 {
2216 
2217 	KASSERT(m->object == NULL, ("page %p has object", m));
2218 	KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
2219 	    ("page %p has unexpected queue %d, flags %#x",
2220 	    m, m->queue, (m->aflags & PGA_QUEUE_STATE_MASK)));
2221 	KASSERT(m->ref_count == 0, ("page %p has references", m));
2222 	KASSERT(!vm_page_busied(m), ("page %p is busy", m));
2223 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2224 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2225 	    ("page %p has unexpected memattr %d",
2226 	    m, pmap_page_get_memattr(m)));
2227 	KASSERT(m->valid == 0, ("free page %p is valid", m));
2228 }
2229 
2230 /*
2231  * 	vm_page_alloc_freelist:
2232  *
2233  *	Allocate a physical page from the specified free page list.
2234  *
2235  *	The caller must always specify an allocation class.
2236  *
2237  *	allocation classes:
2238  *	VM_ALLOC_NORMAL		normal process request
2239  *	VM_ALLOC_SYSTEM		system *really* needs a page
2240  *	VM_ALLOC_INTERRUPT	interrupt time request
2241  *
2242  *	optional allocation flags:
2243  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2244  *				intends to allocate
2245  *	VM_ALLOC_WIRED		wire the allocated page
2246  *	VM_ALLOC_ZERO		prefer a zeroed page
2247  */
2248 vm_page_t
2249 vm_page_alloc_freelist(int freelist, int req)
2250 {
2251 	struct vm_domainset_iter di;
2252 	vm_page_t m;
2253 	int domain;
2254 
2255 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2256 	do {
2257 		m = vm_page_alloc_freelist_domain(domain, freelist, req);
2258 		if (m != NULL)
2259 			break;
2260 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2261 
2262 	return (m);
2263 }
2264 
2265 vm_page_t
2266 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2267 {
2268 	struct vm_domain *vmd;
2269 	vm_page_t m;
2270 	u_int flags;
2271 
2272 	m = NULL;
2273 	vmd = VM_DOMAIN(domain);
2274 again:
2275 	if (vm_domain_allocate(vmd, req, 1)) {
2276 		vm_domain_free_lock(vmd);
2277 		m = vm_phys_alloc_freelist_pages(domain, freelist,
2278 		    VM_FREEPOOL_DIRECT, 0);
2279 		vm_domain_free_unlock(vmd);
2280 		if (m == NULL)
2281 			vm_domain_freecnt_inc(vmd, 1);
2282 	}
2283 	if (m == NULL) {
2284 		if (vm_domain_alloc_fail(vmd, NULL, req))
2285 			goto again;
2286 		return (NULL);
2287 	}
2288 	vm_page_dequeue(m);
2289 	vm_page_alloc_check(m);
2290 
2291 	/*
2292 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2293 	 */
2294 	m->aflags = 0;
2295 	flags = 0;
2296 	if ((req & VM_ALLOC_ZERO) != 0)
2297 		flags = PG_ZERO;
2298 	m->flags &= flags;
2299 	if ((req & VM_ALLOC_WIRED) != 0) {
2300 		/*
2301 		 * The page lock is not required for wiring a page that does
2302 		 * not belong to an object.
2303 		 */
2304 		vm_wire_add(1);
2305 		m->ref_count = 1;
2306 	}
2307 	/* Unmanaged pages don't use "act_count". */
2308 	m->oflags = VPO_UNMANAGED;
2309 	return (m);
2310 }
2311 
2312 static int
2313 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2314 {
2315 	struct vm_domain *vmd;
2316 	struct vm_pgcache *pgcache;
2317 	int i;
2318 
2319 	pgcache = arg;
2320 	vmd = VM_DOMAIN(pgcache->domain);
2321 	/* Only import if we can bring in a full bucket. */
2322 	if (cnt == 1 || !vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2323 		return (0);
2324 	domain = vmd->vmd_domain;
2325 	vm_domain_free_lock(vmd);
2326 	i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2327 	    (vm_page_t *)store);
2328 	vm_domain_free_unlock(vmd);
2329 	if (cnt != i)
2330 		vm_domain_freecnt_inc(vmd, cnt - i);
2331 
2332 	return (i);
2333 }
2334 
2335 static void
2336 vm_page_zone_release(void *arg, void **store, int cnt)
2337 {
2338 	struct vm_domain *vmd;
2339 	struct vm_pgcache *pgcache;
2340 	vm_page_t m;
2341 	int i;
2342 
2343 	pgcache = arg;
2344 	vmd = VM_DOMAIN(pgcache->domain);
2345 	vm_domain_free_lock(vmd);
2346 	for (i = 0; i < cnt; i++) {
2347 		m = (vm_page_t)store[i];
2348 		vm_phys_free_pages(m, 0);
2349 	}
2350 	vm_domain_free_unlock(vmd);
2351 	vm_domain_freecnt_inc(vmd, cnt);
2352 }
2353 
2354 #define	VPSC_ANY	0	/* No restrictions. */
2355 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2356 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2357 
2358 /*
2359  *	vm_page_scan_contig:
2360  *
2361  *	Scan vm_page_array[] between the specified entries "m_start" and
2362  *	"m_end" for a run of contiguous physical pages that satisfy the
2363  *	specified conditions, and return the lowest page in the run.  The
2364  *	specified "alignment" determines the alignment of the lowest physical
2365  *	page in the run.  If the specified "boundary" is non-zero, then the
2366  *	run of physical pages cannot span a physical address that is a
2367  *	multiple of "boundary".
2368  *
2369  *	"m_end" is never dereferenced, so it need not point to a vm_page
2370  *	structure within vm_page_array[].
2371  *
2372  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2373  *	span a hole (or discontiguity) in the physical address space.  Both
2374  *	"alignment" and "boundary" must be a power of two.
2375  */
2376 vm_page_t
2377 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2378     u_long alignment, vm_paddr_t boundary, int options)
2379 {
2380 	struct mtx *m_mtx;
2381 	vm_object_t object;
2382 	vm_paddr_t pa;
2383 	vm_page_t m, m_run;
2384 #if VM_NRESERVLEVEL > 0
2385 	int level;
2386 #endif
2387 	int m_inc, order, run_ext, run_len;
2388 
2389 	KASSERT(npages > 0, ("npages is 0"));
2390 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2391 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2392 	m_run = NULL;
2393 	run_len = 0;
2394 	m_mtx = NULL;
2395 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2396 		KASSERT((m->flags & PG_MARKER) == 0,
2397 		    ("page %p is PG_MARKER", m));
2398 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2399 		    ("fictitious page %p has invalid ref count", m));
2400 
2401 		/*
2402 		 * If the current page would be the start of a run, check its
2403 		 * physical address against the end, alignment, and boundary
2404 		 * conditions.  If it doesn't satisfy these conditions, either
2405 		 * terminate the scan or advance to the next page that
2406 		 * satisfies the failed condition.
2407 		 */
2408 		if (run_len == 0) {
2409 			KASSERT(m_run == NULL, ("m_run != NULL"));
2410 			if (m + npages > m_end)
2411 				break;
2412 			pa = VM_PAGE_TO_PHYS(m);
2413 			if ((pa & (alignment - 1)) != 0) {
2414 				m_inc = atop(roundup2(pa, alignment) - pa);
2415 				continue;
2416 			}
2417 			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2418 			    boundary) != 0) {
2419 				m_inc = atop(roundup2(pa, boundary) - pa);
2420 				continue;
2421 			}
2422 		} else
2423 			KASSERT(m_run != NULL, ("m_run == NULL"));
2424 
2425 		vm_page_change_lock(m, &m_mtx);
2426 		m_inc = 1;
2427 retry:
2428 		if (vm_page_wired(m))
2429 			run_ext = 0;
2430 #if VM_NRESERVLEVEL > 0
2431 		else if ((level = vm_reserv_level(m)) >= 0 &&
2432 		    (options & VPSC_NORESERV) != 0) {
2433 			run_ext = 0;
2434 			/* Advance to the end of the reservation. */
2435 			pa = VM_PAGE_TO_PHYS(m);
2436 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2437 			    pa);
2438 		}
2439 #endif
2440 		else if ((object = m->object) != NULL) {
2441 			/*
2442 			 * The page is considered eligible for relocation if
2443 			 * and only if it could be laundered or reclaimed by
2444 			 * the page daemon.
2445 			 */
2446 			if (!VM_OBJECT_TRYRLOCK(object)) {
2447 				mtx_unlock(m_mtx);
2448 				VM_OBJECT_RLOCK(object);
2449 				mtx_lock(m_mtx);
2450 				if (m->object != object) {
2451 					/*
2452 					 * The page may have been freed.
2453 					 */
2454 					VM_OBJECT_RUNLOCK(object);
2455 					goto retry;
2456 				}
2457 			}
2458 			/* Don't care: PG_NODUMP, PG_ZERO. */
2459 			if (object->type != OBJT_DEFAULT &&
2460 			    object->type != OBJT_SWAP &&
2461 			    object->type != OBJT_VNODE) {
2462 				run_ext = 0;
2463 #if VM_NRESERVLEVEL > 0
2464 			} else if ((options & VPSC_NOSUPER) != 0 &&
2465 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2466 				run_ext = 0;
2467 				/* Advance to the end of the superpage. */
2468 				pa = VM_PAGE_TO_PHYS(m);
2469 				m_inc = atop(roundup2(pa + 1,
2470 				    vm_reserv_size(level)) - pa);
2471 #endif
2472 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2473 			    vm_page_queue(m) != PQ_NONE && !vm_page_busied(m) &&
2474 			    !vm_page_wired(m)) {
2475 				/*
2476 				 * The page is allocated but eligible for
2477 				 * relocation.  Extend the current run by one
2478 				 * page.
2479 				 */
2480 				KASSERT(pmap_page_get_memattr(m) ==
2481 				    VM_MEMATTR_DEFAULT,
2482 				    ("page %p has an unexpected memattr", m));
2483 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2484 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2485 				    ("page %p has unexpected oflags", m));
2486 				/* Don't care: PGA_NOSYNC. */
2487 				run_ext = 1;
2488 			} else
2489 				run_ext = 0;
2490 			VM_OBJECT_RUNLOCK(object);
2491 #if VM_NRESERVLEVEL > 0
2492 		} else if (level >= 0) {
2493 			/*
2494 			 * The page is reserved but not yet allocated.  In
2495 			 * other words, it is still free.  Extend the current
2496 			 * run by one page.
2497 			 */
2498 			run_ext = 1;
2499 #endif
2500 		} else if ((order = m->order) < VM_NFREEORDER) {
2501 			/*
2502 			 * The page is enqueued in the physical memory
2503 			 * allocator's free page queues.  Moreover, it is the
2504 			 * first page in a power-of-two-sized run of
2505 			 * contiguous free pages.  Add these pages to the end
2506 			 * of the current run, and jump ahead.
2507 			 */
2508 			run_ext = 1 << order;
2509 			m_inc = 1 << order;
2510 		} else {
2511 			/*
2512 			 * Skip the page for one of the following reasons: (1)
2513 			 * It is enqueued in the physical memory allocator's
2514 			 * free page queues.  However, it is not the first
2515 			 * page in a run of contiguous free pages.  (This case
2516 			 * rarely occurs because the scan is performed in
2517 			 * ascending order.) (2) It is not reserved, and it is
2518 			 * transitioning from free to allocated.  (Conversely,
2519 			 * the transition from allocated to free for managed
2520 			 * pages is blocked by the page lock.) (3) It is
2521 			 * allocated but not contained by an object and not
2522 			 * wired, e.g., allocated by Xen's balloon driver.
2523 			 */
2524 			run_ext = 0;
2525 		}
2526 
2527 		/*
2528 		 * Extend or reset the current run of pages.
2529 		 */
2530 		if (run_ext > 0) {
2531 			if (run_len == 0)
2532 				m_run = m;
2533 			run_len += run_ext;
2534 		} else {
2535 			if (run_len > 0) {
2536 				m_run = NULL;
2537 				run_len = 0;
2538 			}
2539 		}
2540 	}
2541 	if (m_mtx != NULL)
2542 		mtx_unlock(m_mtx);
2543 	if (run_len >= npages)
2544 		return (m_run);
2545 	return (NULL);
2546 }
2547 
2548 /*
2549  *	vm_page_reclaim_run:
2550  *
2551  *	Try to relocate each of the allocated virtual pages within the
2552  *	specified run of physical pages to a new physical address.  Free the
2553  *	physical pages underlying the relocated virtual pages.  A virtual page
2554  *	is relocatable if and only if it could be laundered or reclaimed by
2555  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2556  *	physical address above "high".
2557  *
2558  *	Returns 0 if every physical page within the run was already free or
2559  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2560  *	value indicating why the last attempt to relocate a virtual page was
2561  *	unsuccessful.
2562  *
2563  *	"req_class" must be an allocation class.
2564  */
2565 static int
2566 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2567     vm_paddr_t high)
2568 {
2569 	struct vm_domain *vmd;
2570 	struct mtx *m_mtx;
2571 	struct spglist free;
2572 	vm_object_t object;
2573 	vm_paddr_t pa;
2574 	vm_page_t m, m_end, m_new;
2575 	int error, order, req;
2576 
2577 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2578 	    ("req_class is not an allocation class"));
2579 	SLIST_INIT(&free);
2580 	error = 0;
2581 	m = m_run;
2582 	m_end = m_run + npages;
2583 	m_mtx = NULL;
2584 	for (; error == 0 && m < m_end; m++) {
2585 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2586 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2587 
2588 		/*
2589 		 * Avoid releasing and reacquiring the same page lock.
2590 		 */
2591 		vm_page_change_lock(m, &m_mtx);
2592 retry:
2593 		/*
2594 		 * Racily check for wirings.  Races are handled below.
2595 		 */
2596 		if (vm_page_wired(m))
2597 			error = EBUSY;
2598 		else if ((object = m->object) != NULL) {
2599 			/*
2600 			 * The page is relocated if and only if it could be
2601 			 * laundered or reclaimed by the page daemon.
2602 			 */
2603 			if (!VM_OBJECT_TRYWLOCK(object)) {
2604 				mtx_unlock(m_mtx);
2605 				VM_OBJECT_WLOCK(object);
2606 				mtx_lock(m_mtx);
2607 				if (m->object != object) {
2608 					/*
2609 					 * The page may have been freed.
2610 					 */
2611 					VM_OBJECT_WUNLOCK(object);
2612 					goto retry;
2613 				}
2614 			}
2615 			/* Don't care: PG_NODUMP, PG_ZERO. */
2616 			if (object->type != OBJT_DEFAULT &&
2617 			    object->type != OBJT_SWAP &&
2618 			    object->type != OBJT_VNODE)
2619 				error = EINVAL;
2620 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2621 				error = EINVAL;
2622 			else if (vm_page_queue(m) != PQ_NONE &&
2623 			    vm_page_tryxbusy(m) != 0) {
2624 				if (vm_page_wired(m)) {
2625 					vm_page_xunbusy(m);
2626 					error = EBUSY;
2627 					goto unlock;
2628 				}
2629 				KASSERT(pmap_page_get_memattr(m) ==
2630 				    VM_MEMATTR_DEFAULT,
2631 				    ("page %p has an unexpected memattr", m));
2632 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2633 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2634 				    ("page %p has unexpected oflags", m));
2635 				/* Don't care: PGA_NOSYNC. */
2636 				if (!vm_page_none_valid(m)) {
2637 					/*
2638 					 * First, try to allocate a new page
2639 					 * that is above "high".  Failing
2640 					 * that, try to allocate a new page
2641 					 * that is below "m_run".  Allocate
2642 					 * the new page between the end of
2643 					 * "m_run" and "high" only as a last
2644 					 * resort.
2645 					 */
2646 					req = req_class | VM_ALLOC_NOOBJ;
2647 					if ((m->flags & PG_NODUMP) != 0)
2648 						req |= VM_ALLOC_NODUMP;
2649 					if (trunc_page(high) !=
2650 					    ~(vm_paddr_t)PAGE_MASK) {
2651 						m_new = vm_page_alloc_contig(
2652 						    NULL, 0, req, 1,
2653 						    round_page(high),
2654 						    ~(vm_paddr_t)0,
2655 						    PAGE_SIZE, 0,
2656 						    VM_MEMATTR_DEFAULT);
2657 					} else
2658 						m_new = NULL;
2659 					if (m_new == NULL) {
2660 						pa = VM_PAGE_TO_PHYS(m_run);
2661 						m_new = vm_page_alloc_contig(
2662 						    NULL, 0, req, 1,
2663 						    0, pa - 1, PAGE_SIZE, 0,
2664 						    VM_MEMATTR_DEFAULT);
2665 					}
2666 					if (m_new == NULL) {
2667 						pa += ptoa(npages);
2668 						m_new = vm_page_alloc_contig(
2669 						    NULL, 0, req, 1,
2670 						    pa, high, PAGE_SIZE, 0,
2671 						    VM_MEMATTR_DEFAULT);
2672 					}
2673 					if (m_new == NULL) {
2674 						vm_page_xunbusy(m);
2675 						error = ENOMEM;
2676 						goto unlock;
2677 					}
2678 
2679 					/*
2680 					 * Unmap the page and check for new
2681 					 * wirings that may have been acquired
2682 					 * through a pmap lookup.
2683 					 */
2684 					if (object->ref_count != 0 &&
2685 					    !vm_page_try_remove_all(m)) {
2686 						vm_page_free(m_new);
2687 						error = EBUSY;
2688 						goto unlock;
2689 					}
2690 
2691 					/*
2692 					 * Replace "m" with the new page.  For
2693 					 * vm_page_replace(), "m" must be busy
2694 					 * and dequeued.  Finally, change "m"
2695 					 * as if vm_page_free() was called.
2696 					 */
2697 					m_new->aflags = m->aflags &
2698 					    ~PGA_QUEUE_STATE_MASK;
2699 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2700 					    ("page %p is managed", m_new));
2701 					pmap_copy_page(m, m_new);
2702 					m_new->valid = m->valid;
2703 					m_new->dirty = m->dirty;
2704 					m->flags &= ~PG_ZERO;
2705 					vm_page_dequeue(m);
2706 					vm_page_replace_checked(m_new, object,
2707 					    m->pindex, m);
2708 					if (vm_page_free_prep(m))
2709 						SLIST_INSERT_HEAD(&free, m,
2710 						    plinks.s.ss);
2711 
2712 					/*
2713 					 * The new page must be deactivated
2714 					 * before the object is unlocked.
2715 					 */
2716 					vm_page_change_lock(m_new, &m_mtx);
2717 					vm_page_deactivate(m_new);
2718 				} else {
2719 					m->flags &= ~PG_ZERO;
2720 					vm_page_dequeue(m);
2721 					if (vm_page_free_prep(m))
2722 						SLIST_INSERT_HEAD(&free, m,
2723 						    plinks.s.ss);
2724 					KASSERT(m->dirty == 0,
2725 					    ("page %p is dirty", m));
2726 				}
2727 			} else
2728 				error = EBUSY;
2729 unlock:
2730 			VM_OBJECT_WUNLOCK(object);
2731 		} else {
2732 			MPASS(vm_phys_domain(m) == domain);
2733 			vmd = VM_DOMAIN(domain);
2734 			vm_domain_free_lock(vmd);
2735 			order = m->order;
2736 			if (order < VM_NFREEORDER) {
2737 				/*
2738 				 * The page is enqueued in the physical memory
2739 				 * allocator's free page queues.  Moreover, it
2740 				 * is the first page in a power-of-two-sized
2741 				 * run of contiguous free pages.  Jump ahead
2742 				 * to the last page within that run, and
2743 				 * continue from there.
2744 				 */
2745 				m += (1 << order) - 1;
2746 			}
2747 #if VM_NRESERVLEVEL > 0
2748 			else if (vm_reserv_is_page_free(m))
2749 				order = 0;
2750 #endif
2751 			vm_domain_free_unlock(vmd);
2752 			if (order == VM_NFREEORDER)
2753 				error = EINVAL;
2754 		}
2755 	}
2756 	if (m_mtx != NULL)
2757 		mtx_unlock(m_mtx);
2758 	if ((m = SLIST_FIRST(&free)) != NULL) {
2759 		int cnt;
2760 
2761 		vmd = VM_DOMAIN(domain);
2762 		cnt = 0;
2763 		vm_domain_free_lock(vmd);
2764 		do {
2765 			MPASS(vm_phys_domain(m) == domain);
2766 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2767 			vm_phys_free_pages(m, 0);
2768 			cnt++;
2769 		} while ((m = SLIST_FIRST(&free)) != NULL);
2770 		vm_domain_free_unlock(vmd);
2771 		vm_domain_freecnt_inc(vmd, cnt);
2772 	}
2773 	return (error);
2774 }
2775 
2776 #define	NRUNS	16
2777 
2778 CTASSERT(powerof2(NRUNS));
2779 
2780 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2781 
2782 #define	MIN_RECLAIM	8
2783 
2784 /*
2785  *	vm_page_reclaim_contig:
2786  *
2787  *	Reclaim allocated, contiguous physical memory satisfying the specified
2788  *	conditions by relocating the virtual pages using that physical memory.
2789  *	Returns true if reclamation is successful and false otherwise.  Since
2790  *	relocation requires the allocation of physical pages, reclamation may
2791  *	fail due to a shortage of free pages.  When reclamation fails, callers
2792  *	are expected to perform vm_wait() before retrying a failed allocation
2793  *	operation, e.g., vm_page_alloc_contig().
2794  *
2795  *	The caller must always specify an allocation class through "req".
2796  *
2797  *	allocation classes:
2798  *	VM_ALLOC_NORMAL		normal process request
2799  *	VM_ALLOC_SYSTEM		system *really* needs a page
2800  *	VM_ALLOC_INTERRUPT	interrupt time request
2801  *
2802  *	The optional allocation flags are ignored.
2803  *
2804  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2805  *	must be a power of two.
2806  */
2807 bool
2808 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2809     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2810 {
2811 	struct vm_domain *vmd;
2812 	vm_paddr_t curr_low;
2813 	vm_page_t m_run, m_runs[NRUNS];
2814 	u_long count, reclaimed;
2815 	int error, i, options, req_class;
2816 
2817 	KASSERT(npages > 0, ("npages is 0"));
2818 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2819 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2820 	req_class = req & VM_ALLOC_CLASS_MASK;
2821 
2822 	/*
2823 	 * The page daemon is allowed to dig deeper into the free page list.
2824 	 */
2825 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2826 		req_class = VM_ALLOC_SYSTEM;
2827 
2828 	/*
2829 	 * Return if the number of free pages cannot satisfy the requested
2830 	 * allocation.
2831 	 */
2832 	vmd = VM_DOMAIN(domain);
2833 	count = vmd->vmd_free_count;
2834 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
2835 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2836 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2837 		return (false);
2838 
2839 	/*
2840 	 * Scan up to three times, relaxing the restrictions ("options") on
2841 	 * the reclamation of reservations and superpages each time.
2842 	 */
2843 	for (options = VPSC_NORESERV;;) {
2844 		/*
2845 		 * Find the highest runs that satisfy the given constraints
2846 		 * and restrictions, and record them in "m_runs".
2847 		 */
2848 		curr_low = low;
2849 		count = 0;
2850 		for (;;) {
2851 			m_run = vm_phys_scan_contig(domain, npages, curr_low,
2852 			    high, alignment, boundary, options);
2853 			if (m_run == NULL)
2854 				break;
2855 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2856 			m_runs[RUN_INDEX(count)] = m_run;
2857 			count++;
2858 		}
2859 
2860 		/*
2861 		 * Reclaim the highest runs in LIFO (descending) order until
2862 		 * the number of reclaimed pages, "reclaimed", is at least
2863 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2864 		 * reclamation is idempotent, and runs will (likely) recur
2865 		 * from one scan to the next as restrictions are relaxed.
2866 		 */
2867 		reclaimed = 0;
2868 		for (i = 0; count > 0 && i < NRUNS; i++) {
2869 			count--;
2870 			m_run = m_runs[RUN_INDEX(count)];
2871 			error = vm_page_reclaim_run(req_class, domain, npages,
2872 			    m_run, high);
2873 			if (error == 0) {
2874 				reclaimed += npages;
2875 				if (reclaimed >= MIN_RECLAIM)
2876 					return (true);
2877 			}
2878 		}
2879 
2880 		/*
2881 		 * Either relax the restrictions on the next scan or return if
2882 		 * the last scan had no restrictions.
2883 		 */
2884 		if (options == VPSC_NORESERV)
2885 			options = VPSC_NOSUPER;
2886 		else if (options == VPSC_NOSUPER)
2887 			options = VPSC_ANY;
2888 		else if (options == VPSC_ANY)
2889 			return (reclaimed != 0);
2890 	}
2891 }
2892 
2893 bool
2894 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2895     u_long alignment, vm_paddr_t boundary)
2896 {
2897 	struct vm_domainset_iter di;
2898 	int domain;
2899 	bool ret;
2900 
2901 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2902 	do {
2903 		ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
2904 		    high, alignment, boundary);
2905 		if (ret)
2906 			break;
2907 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2908 
2909 	return (ret);
2910 }
2911 
2912 /*
2913  * Set the domain in the appropriate page level domainset.
2914  */
2915 void
2916 vm_domain_set(struct vm_domain *vmd)
2917 {
2918 
2919 	mtx_lock(&vm_domainset_lock);
2920 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
2921 		vmd->vmd_minset = 1;
2922 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
2923 	}
2924 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
2925 		vmd->vmd_severeset = 1;
2926 		DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
2927 	}
2928 	mtx_unlock(&vm_domainset_lock);
2929 }
2930 
2931 /*
2932  * Clear the domain from the appropriate page level domainset.
2933  */
2934 void
2935 vm_domain_clear(struct vm_domain *vmd)
2936 {
2937 
2938 	mtx_lock(&vm_domainset_lock);
2939 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
2940 		vmd->vmd_minset = 0;
2941 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
2942 		if (vm_min_waiters != 0) {
2943 			vm_min_waiters = 0;
2944 			wakeup(&vm_min_domains);
2945 		}
2946 	}
2947 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
2948 		vmd->vmd_severeset = 0;
2949 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
2950 		if (vm_severe_waiters != 0) {
2951 			vm_severe_waiters = 0;
2952 			wakeup(&vm_severe_domains);
2953 		}
2954 	}
2955 
2956 	/*
2957 	 * If pageout daemon needs pages, then tell it that there are
2958 	 * some free.
2959 	 */
2960 	if (vmd->vmd_pageout_pages_needed &&
2961 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
2962 		wakeup(&vmd->vmd_pageout_pages_needed);
2963 		vmd->vmd_pageout_pages_needed = 0;
2964 	}
2965 
2966 	/* See comments in vm_wait_doms(). */
2967 	if (vm_pageproc_waiters) {
2968 		vm_pageproc_waiters = 0;
2969 		wakeup(&vm_pageproc_waiters);
2970 	}
2971 	mtx_unlock(&vm_domainset_lock);
2972 }
2973 
2974 /*
2975  * Wait for free pages to exceed the min threshold globally.
2976  */
2977 void
2978 vm_wait_min(void)
2979 {
2980 
2981 	mtx_lock(&vm_domainset_lock);
2982 	while (vm_page_count_min()) {
2983 		vm_min_waiters++;
2984 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
2985 	}
2986 	mtx_unlock(&vm_domainset_lock);
2987 }
2988 
2989 /*
2990  * Wait for free pages to exceed the severe threshold globally.
2991  */
2992 void
2993 vm_wait_severe(void)
2994 {
2995 
2996 	mtx_lock(&vm_domainset_lock);
2997 	while (vm_page_count_severe()) {
2998 		vm_severe_waiters++;
2999 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3000 		    "vmwait", 0);
3001 	}
3002 	mtx_unlock(&vm_domainset_lock);
3003 }
3004 
3005 u_int
3006 vm_wait_count(void)
3007 {
3008 
3009 	return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3010 }
3011 
3012 void
3013 vm_wait_doms(const domainset_t *wdoms)
3014 {
3015 
3016 	/*
3017 	 * We use racey wakeup synchronization to avoid expensive global
3018 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
3019 	 * To handle this, we only sleep for one tick in this instance.  It
3020 	 * is expected that most allocations for the pageproc will come from
3021 	 * kmem or vm_page_grab* which will use the more specific and
3022 	 * race-free vm_wait_domain().
3023 	 */
3024 	if (curproc == pageproc) {
3025 		mtx_lock(&vm_domainset_lock);
3026 		vm_pageproc_waiters++;
3027 		msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
3028 		    "pageprocwait", 1);
3029 	} else {
3030 		/*
3031 		 * XXX Ideally we would wait only until the allocation could
3032 		 * be satisfied.  This condition can cause new allocators to
3033 		 * consume all freed pages while old allocators wait.
3034 		 */
3035 		mtx_lock(&vm_domainset_lock);
3036 		if (vm_page_count_min_set(wdoms)) {
3037 			vm_min_waiters++;
3038 			msleep(&vm_min_domains, &vm_domainset_lock,
3039 			    PVM | PDROP, "vmwait", 0);
3040 		} else
3041 			mtx_unlock(&vm_domainset_lock);
3042 	}
3043 }
3044 
3045 /*
3046  *	vm_wait_domain:
3047  *
3048  *	Sleep until free pages are available for allocation.
3049  *	- Called in various places after failed memory allocations.
3050  */
3051 void
3052 vm_wait_domain(int domain)
3053 {
3054 	struct vm_domain *vmd;
3055 	domainset_t wdom;
3056 
3057 	vmd = VM_DOMAIN(domain);
3058 	vm_domain_free_assert_unlocked(vmd);
3059 
3060 	if (curproc == pageproc) {
3061 		mtx_lock(&vm_domainset_lock);
3062 		if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3063 			vmd->vmd_pageout_pages_needed = 1;
3064 			msleep(&vmd->vmd_pageout_pages_needed,
3065 			    &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3066 		} else
3067 			mtx_unlock(&vm_domainset_lock);
3068 	} else {
3069 		if (pageproc == NULL)
3070 			panic("vm_wait in early boot");
3071 		DOMAINSET_ZERO(&wdom);
3072 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
3073 		vm_wait_doms(&wdom);
3074 	}
3075 }
3076 
3077 /*
3078  *	vm_wait:
3079  *
3080  *	Sleep until free pages are available for allocation in the
3081  *	affinity domains of the obj.  If obj is NULL, the domain set
3082  *	for the calling thread is used.
3083  *	Called in various places after failed memory allocations.
3084  */
3085 void
3086 vm_wait(vm_object_t obj)
3087 {
3088 	struct domainset *d;
3089 
3090 	d = NULL;
3091 
3092 	/*
3093 	 * Carefully fetch pointers only once: the struct domainset
3094 	 * itself is ummutable but the pointer might change.
3095 	 */
3096 	if (obj != NULL)
3097 		d = obj->domain.dr_policy;
3098 	if (d == NULL)
3099 		d = curthread->td_domain.dr_policy;
3100 
3101 	vm_wait_doms(&d->ds_mask);
3102 }
3103 
3104 /*
3105  *	vm_domain_alloc_fail:
3106  *
3107  *	Called when a page allocation function fails.  Informs the
3108  *	pagedaemon and performs the requested wait.  Requires the
3109  *	domain_free and object lock on entry.  Returns with the
3110  *	object lock held and free lock released.  Returns an error when
3111  *	retry is necessary.
3112  *
3113  */
3114 static int
3115 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3116 {
3117 
3118 	vm_domain_free_assert_unlocked(vmd);
3119 
3120 	atomic_add_int(&vmd->vmd_pageout_deficit,
3121 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3122 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3123 		if (object != NULL)
3124 			VM_OBJECT_WUNLOCK(object);
3125 		vm_wait_domain(vmd->vmd_domain);
3126 		if (object != NULL)
3127 			VM_OBJECT_WLOCK(object);
3128 		if (req & VM_ALLOC_WAITOK)
3129 			return (EAGAIN);
3130 	}
3131 
3132 	return (0);
3133 }
3134 
3135 /*
3136  *	vm_waitpfault:
3137  *
3138  *	Sleep until free pages are available for allocation.
3139  *	- Called only in vm_fault so that processes page faulting
3140  *	  can be easily tracked.
3141  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3142  *	  processes will be able to grab memory first.  Do not change
3143  *	  this balance without careful testing first.
3144  */
3145 void
3146 vm_waitpfault(struct domainset *dset, int timo)
3147 {
3148 
3149 	/*
3150 	 * XXX Ideally we would wait only until the allocation could
3151 	 * be satisfied.  This condition can cause new allocators to
3152 	 * consume all freed pages while old allocators wait.
3153 	 */
3154 	mtx_lock(&vm_domainset_lock);
3155 	if (vm_page_count_min_set(&dset->ds_mask)) {
3156 		vm_min_waiters++;
3157 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3158 		    "pfault", timo);
3159 	} else
3160 		mtx_unlock(&vm_domainset_lock);
3161 }
3162 
3163 static struct vm_pagequeue *
3164 vm_page_pagequeue(vm_page_t m)
3165 {
3166 
3167 	uint8_t queue;
3168 
3169 	if ((queue = atomic_load_8(&m->queue)) == PQ_NONE)
3170 		return (NULL);
3171 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3172 }
3173 
3174 static inline void
3175 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m)
3176 {
3177 	struct vm_domain *vmd;
3178 	uint8_t qflags;
3179 
3180 	CRITICAL_ASSERT(curthread);
3181 	vm_pagequeue_assert_locked(pq);
3182 
3183 	/*
3184 	 * The page daemon is allowed to set m->queue = PQ_NONE without
3185 	 * the page queue lock held.  In this case it is about to free the page,
3186 	 * which must not have any queue state.
3187 	 */
3188 	qflags = atomic_load_8(&m->aflags);
3189 	KASSERT(pq == vm_page_pagequeue(m) ||
3190 	    (qflags & PGA_QUEUE_STATE_MASK) == 0,
3191 	    ("page %p doesn't belong to queue %p but has aflags %#x",
3192 	    m, pq, qflags));
3193 
3194 	if ((qflags & PGA_DEQUEUE) != 0) {
3195 		if (__predict_true((qflags & PGA_ENQUEUED) != 0))
3196 			vm_pagequeue_remove(pq, m);
3197 		vm_page_dequeue_complete(m);
3198 		counter_u64_add(queue_ops, 1);
3199 	} else if ((qflags & (PGA_REQUEUE | PGA_REQUEUE_HEAD)) != 0) {
3200 		if ((qflags & PGA_ENQUEUED) != 0)
3201 			TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3202 		else {
3203 			vm_pagequeue_cnt_inc(pq);
3204 			vm_page_aflag_set(m, PGA_ENQUEUED);
3205 		}
3206 
3207 		/*
3208 		 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.
3209 		 * In particular, if both flags are set in close succession,
3210 		 * only PGA_REQUEUE_HEAD will be applied, even if it was set
3211 		 * first.
3212 		 */
3213 		if ((qflags & PGA_REQUEUE_HEAD) != 0) {
3214 			KASSERT(m->queue == PQ_INACTIVE,
3215 			    ("head enqueue not supported for page %p", m));
3216 			vmd = vm_pagequeue_domain(m);
3217 			TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3218 		} else
3219 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3220 
3221 		vm_page_aflag_clear(m, qflags & (PGA_REQUEUE |
3222 		    PGA_REQUEUE_HEAD));
3223 		counter_u64_add(queue_ops, 1);
3224 	} else {
3225 		counter_u64_add(queue_nops, 1);
3226 	}
3227 }
3228 
3229 static void
3230 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3231     uint8_t queue)
3232 {
3233 	vm_page_t m;
3234 	int i;
3235 
3236 	for (i = 0; i < bq->bq_cnt; i++) {
3237 		m = bq->bq_pa[i];
3238 		if (__predict_false(m->queue != queue))
3239 			continue;
3240 		vm_pqbatch_process_page(pq, m);
3241 	}
3242 	vm_batchqueue_init(bq);
3243 }
3244 
3245 /*
3246  *	vm_page_pqbatch_submit:		[ internal use only ]
3247  *
3248  *	Enqueue a page in the specified page queue's batched work queue.
3249  *	The caller must have encoded the requested operation in the page
3250  *	structure's aflags field.
3251  */
3252 void
3253 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3254 {
3255 	struct vm_batchqueue *bq;
3256 	struct vm_pagequeue *pq;
3257 	int domain;
3258 
3259 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3260 	    ("page %p is unmanaged", m));
3261 	KASSERT(mtx_owned(vm_page_lockptr(m)) || m->object == NULL,
3262 	    ("missing synchronization for page %p", m));
3263 	KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3264 
3265 	domain = vm_phys_domain(m);
3266 	pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3267 
3268 	critical_enter();
3269 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3270 	if (vm_batchqueue_insert(bq, m)) {
3271 		critical_exit();
3272 		return;
3273 	}
3274 	critical_exit();
3275 	vm_pagequeue_lock(pq);
3276 	critical_enter();
3277 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3278 	vm_pqbatch_process(pq, bq, queue);
3279 
3280 	/*
3281 	 * The page may have been logically dequeued before we acquired the
3282 	 * page queue lock.  In this case, since we either hold the page lock
3283 	 * or the page is being freed, a different thread cannot be concurrently
3284 	 * enqueuing the page.
3285 	 */
3286 	if (__predict_true(m->queue == queue))
3287 		vm_pqbatch_process_page(pq, m);
3288 	else {
3289 		KASSERT(m->queue == PQ_NONE,
3290 		    ("invalid queue transition for page %p", m));
3291 		KASSERT((m->aflags & PGA_ENQUEUED) == 0,
3292 		    ("page %p is enqueued with invalid queue index", m));
3293 	}
3294 	vm_pagequeue_unlock(pq);
3295 	critical_exit();
3296 }
3297 
3298 /*
3299  *	vm_page_pqbatch_drain:		[ internal use only ]
3300  *
3301  *	Force all per-CPU page queue batch queues to be drained.  This is
3302  *	intended for use in severe memory shortages, to ensure that pages
3303  *	do not remain stuck in the batch queues.
3304  */
3305 void
3306 vm_page_pqbatch_drain(void)
3307 {
3308 	struct thread *td;
3309 	struct vm_domain *vmd;
3310 	struct vm_pagequeue *pq;
3311 	int cpu, domain, queue;
3312 
3313 	td = curthread;
3314 	CPU_FOREACH(cpu) {
3315 		thread_lock(td);
3316 		sched_bind(td, cpu);
3317 		thread_unlock(td);
3318 
3319 		for (domain = 0; domain < vm_ndomains; domain++) {
3320 			vmd = VM_DOMAIN(domain);
3321 			for (queue = 0; queue < PQ_COUNT; queue++) {
3322 				pq = &vmd->vmd_pagequeues[queue];
3323 				vm_pagequeue_lock(pq);
3324 				critical_enter();
3325 				vm_pqbatch_process(pq,
3326 				    DPCPU_PTR(pqbatch[domain][queue]), queue);
3327 				critical_exit();
3328 				vm_pagequeue_unlock(pq);
3329 			}
3330 		}
3331 	}
3332 	thread_lock(td);
3333 	sched_unbind(td);
3334 	thread_unlock(td);
3335 }
3336 
3337 /*
3338  * Complete the logical removal of a page from a page queue.  We must be
3339  * careful to synchronize with the page daemon, which may be concurrently
3340  * examining the page with only the page lock held.  The page must not be
3341  * in a state where it appears to be logically enqueued.
3342  */
3343 static void
3344 vm_page_dequeue_complete(vm_page_t m)
3345 {
3346 
3347 	m->queue = PQ_NONE;
3348 	atomic_thread_fence_rel();
3349 	vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK);
3350 }
3351 
3352 /*
3353  *	vm_page_dequeue_deferred:	[ internal use only ]
3354  *
3355  *	Request removal of the given page from its current page
3356  *	queue.  Physical removal from the queue may be deferred
3357  *	indefinitely.
3358  *
3359  *	The page must be locked.
3360  */
3361 void
3362 vm_page_dequeue_deferred(vm_page_t m)
3363 {
3364 	uint8_t queue;
3365 
3366 	vm_page_assert_locked(m);
3367 
3368 	if ((queue = vm_page_queue(m)) == PQ_NONE)
3369 		return;
3370 
3371 	/*
3372 	 * Set PGA_DEQUEUE if it is not already set to handle a concurrent call
3373 	 * to vm_page_dequeue_deferred_free().  In particular, avoid modifying
3374 	 * the page's queue state once vm_page_dequeue_deferred_free() has been
3375 	 * called.  In the event of a race, two batch queue entries for the page
3376 	 * will be created, but the second will have no effect.
3377 	 */
3378 	if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE, PGA_DEQUEUE))
3379 		vm_page_pqbatch_submit(m, queue);
3380 }
3381 
3382 /*
3383  * A variant of vm_page_dequeue_deferred() that does not assert the page
3384  * lock and is only to be called from vm_page_free_prep().  Because the
3385  * page is being freed, we can assume that nothing other than the page
3386  * daemon is scheduling queue operations on this page, so we get for
3387  * free the mutual exclusion that is otherwise provided by the page lock.
3388  * To handle races, the page daemon must take care to atomically check
3389  * for PGA_DEQUEUE when updating queue state.
3390  */
3391 static void
3392 vm_page_dequeue_deferred_free(vm_page_t m)
3393 {
3394 	uint8_t queue;
3395 
3396 	KASSERT(m->ref_count == 0, ("page %p has references", m));
3397 
3398 	for (;;) {
3399 		if ((m->aflags & PGA_DEQUEUE) != 0)
3400 			return;
3401 		atomic_thread_fence_acq();
3402 		if ((queue = atomic_load_8(&m->queue)) == PQ_NONE)
3403 			return;
3404 		if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE,
3405 		    PGA_DEQUEUE)) {
3406 			vm_page_pqbatch_submit(m, queue);
3407 			break;
3408 		}
3409 	}
3410 }
3411 
3412 /*
3413  *	vm_page_dequeue:
3414  *
3415  *	Remove the page from whichever page queue it's in, if any.
3416  *	The page must either be locked or unallocated.  This constraint
3417  *	ensures that the queue state of the page will remain consistent
3418  *	after this function returns.
3419  */
3420 void
3421 vm_page_dequeue(vm_page_t m)
3422 {
3423 	struct vm_pagequeue *pq, *pq1;
3424 	uint8_t aflags;
3425 
3426 	KASSERT(mtx_owned(vm_page_lockptr(m)) || m->ref_count == 0,
3427 	    ("page %p is allocated and unlocked", m));
3428 
3429 	for (pq = vm_page_pagequeue(m);; pq = pq1) {
3430 		if (pq == NULL) {
3431 			/*
3432 			 * A thread may be concurrently executing
3433 			 * vm_page_dequeue_complete().  Ensure that all queue
3434 			 * state is cleared before we return.
3435 			 */
3436 			aflags = atomic_load_8(&m->aflags);
3437 			if ((aflags & PGA_QUEUE_STATE_MASK) == 0)
3438 				return;
3439 			KASSERT((aflags & PGA_DEQUEUE) != 0,
3440 			    ("page %p has unexpected queue state flags %#x",
3441 			    m, aflags));
3442 
3443 			/*
3444 			 * Busy wait until the thread updating queue state is
3445 			 * finished.  Such a thread must be executing in a
3446 			 * critical section.
3447 			 */
3448 			cpu_spinwait();
3449 			pq1 = vm_page_pagequeue(m);
3450 			continue;
3451 		}
3452 		vm_pagequeue_lock(pq);
3453 		if ((pq1 = vm_page_pagequeue(m)) == pq)
3454 			break;
3455 		vm_pagequeue_unlock(pq);
3456 	}
3457 	KASSERT(pq == vm_page_pagequeue(m),
3458 	    ("%s: page %p migrated directly between queues", __func__, m));
3459 	KASSERT((m->aflags & PGA_DEQUEUE) != 0 ||
3460 	    mtx_owned(vm_page_lockptr(m)),
3461 	    ("%s: queued unlocked page %p", __func__, m));
3462 
3463 	if ((m->aflags & PGA_ENQUEUED) != 0)
3464 		vm_pagequeue_remove(pq, m);
3465 	vm_page_dequeue_complete(m);
3466 	vm_pagequeue_unlock(pq);
3467 }
3468 
3469 /*
3470  * Schedule the given page for insertion into the specified page queue.
3471  * Physical insertion of the page may be deferred indefinitely.
3472  */
3473 static void
3474 vm_page_enqueue(vm_page_t m, uint8_t queue)
3475 {
3476 
3477 	vm_page_assert_locked(m);
3478 	KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
3479 	    ("%s: page %p is already enqueued", __func__, m));
3480 	KASSERT(m->ref_count > 0,
3481 	    ("%s: page %p does not carry any references", __func__, m));
3482 
3483 	m->queue = queue;
3484 	if ((m->aflags & PGA_REQUEUE) == 0)
3485 		vm_page_aflag_set(m, PGA_REQUEUE);
3486 	vm_page_pqbatch_submit(m, queue);
3487 }
3488 
3489 /*
3490  *	vm_page_requeue:		[ internal use only ]
3491  *
3492  *	Schedule a requeue of the given page.
3493  *
3494  *	The page must be locked.
3495  */
3496 void
3497 vm_page_requeue(vm_page_t m)
3498 {
3499 
3500 	vm_page_assert_locked(m);
3501 	KASSERT(vm_page_queue(m) != PQ_NONE,
3502 	    ("%s: page %p is not logically enqueued", __func__, m));
3503 	KASSERT(m->ref_count > 0,
3504 	    ("%s: page %p does not carry any references", __func__, m));
3505 
3506 	if ((m->aflags & PGA_REQUEUE) == 0)
3507 		vm_page_aflag_set(m, PGA_REQUEUE);
3508 	vm_page_pqbatch_submit(m, atomic_load_8(&m->queue));
3509 }
3510 
3511 /*
3512  *	vm_page_swapqueue:		[ internal use only ]
3513  *
3514  *	Move the page from one queue to another, or to the tail of its
3515  *	current queue, in the face of a possible concurrent call to
3516  *	vm_page_dequeue_deferred_free().
3517  */
3518 void
3519 vm_page_swapqueue(vm_page_t m, uint8_t oldq, uint8_t newq)
3520 {
3521 	struct vm_pagequeue *pq;
3522 	vm_page_t next;
3523 	bool queued;
3524 
3525 	KASSERT(oldq < PQ_COUNT && newq < PQ_COUNT && oldq != newq,
3526 	    ("vm_page_swapqueue: invalid queues (%d, %d)", oldq, newq));
3527 	vm_page_assert_locked(m);
3528 
3529 	pq = &vm_pagequeue_domain(m)->vmd_pagequeues[oldq];
3530 	vm_pagequeue_lock(pq);
3531 
3532 	/*
3533 	 * The physical queue state might change at any point before the page
3534 	 * queue lock is acquired, so we must verify that we hold the correct
3535 	 * lock before proceeding.
3536 	 */
3537 	if (__predict_false(m->queue != oldq)) {
3538 		vm_pagequeue_unlock(pq);
3539 		return;
3540 	}
3541 
3542 	/*
3543 	 * Once the queue index of the page changes, there is nothing
3544 	 * synchronizing with further updates to the physical queue state.
3545 	 * Therefore we must remove the page from the queue now in anticipation
3546 	 * of a successful commit, and be prepared to roll back.
3547 	 */
3548 	if (__predict_true((m->aflags & PGA_ENQUEUED) != 0)) {
3549 		next = TAILQ_NEXT(m, plinks.q);
3550 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3551 		vm_page_aflag_clear(m, PGA_ENQUEUED);
3552 		queued = true;
3553 	} else {
3554 		queued = false;
3555 	}
3556 
3557 	/*
3558 	 * Atomically update the queue field and set PGA_REQUEUE while
3559 	 * ensuring that PGA_DEQUEUE has not been set.
3560 	 */
3561 	if (__predict_false(!vm_page_pqstate_cmpset(m, oldq, newq, PGA_DEQUEUE,
3562 	    PGA_REQUEUE))) {
3563 		if (queued) {
3564 			vm_page_aflag_set(m, PGA_ENQUEUED);
3565 			if (next != NULL)
3566 				TAILQ_INSERT_BEFORE(next, m, plinks.q);
3567 			else
3568 				TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3569 		}
3570 		vm_pagequeue_unlock(pq);
3571 		return;
3572 	}
3573 	vm_pagequeue_cnt_dec(pq);
3574 	vm_pagequeue_unlock(pq);
3575 	vm_page_pqbatch_submit(m, newq);
3576 }
3577 
3578 /*
3579  *	vm_page_free_prep:
3580  *
3581  *	Prepares the given page to be put on the free list,
3582  *	disassociating it from any VM object. The caller may return
3583  *	the page to the free list only if this function returns true.
3584  *
3585  *	The object must be locked.  The page must be locked if it is
3586  *	managed.
3587  */
3588 bool
3589 vm_page_free_prep(vm_page_t m)
3590 {
3591 
3592 	/*
3593 	 * Synchronize with threads that have dropped a reference to this
3594 	 * page.
3595 	 */
3596 	atomic_thread_fence_acq();
3597 
3598 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3599 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3600 		uint64_t *p;
3601 		int i;
3602 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3603 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3604 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3605 			    m, i, (uintmax_t)*p));
3606 	}
3607 #endif
3608 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3609 		KASSERT(!pmap_page_is_mapped(m),
3610 		    ("vm_page_free_prep: freeing mapped page %p", m));
3611 		KASSERT((m->aflags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3612 		    ("vm_page_free_prep: mapping flags set in page %p", m));
3613 	} else {
3614 		KASSERT(m->queue == PQ_NONE,
3615 		    ("vm_page_free_prep: unmanaged page %p is queued", m));
3616 	}
3617 	VM_CNT_INC(v_tfree);
3618 
3619 	if (vm_page_sbusied(m))
3620 		panic("vm_page_free_prep: freeing shared busy page %p", m);
3621 
3622 	if (m->object != NULL) {
3623 		vm_page_object_remove(m);
3624 
3625 		/*
3626 		 * The object reference can be released without an atomic
3627 		 * operation.
3628 		 */
3629 		KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3630 		    m->ref_count == VPRC_OBJREF,
3631 		    ("vm_page_free_prep: page %p has unexpected ref_count %u",
3632 		    m, m->ref_count));
3633 		m->object = NULL;
3634 		m->ref_count -= VPRC_OBJREF;
3635 	}
3636 
3637 	if (vm_page_xbusied(m))
3638 		vm_page_xunbusy(m);
3639 
3640 	/*
3641 	 * If fictitious remove object association and
3642 	 * return.
3643 	 */
3644 	if ((m->flags & PG_FICTITIOUS) != 0) {
3645 		KASSERT(m->ref_count == 1,
3646 		    ("fictitious page %p is referenced", m));
3647 		KASSERT(m->queue == PQ_NONE,
3648 		    ("fictitious page %p is queued", m));
3649 		return (false);
3650 	}
3651 
3652 	/*
3653 	 * Pages need not be dequeued before they are returned to the physical
3654 	 * memory allocator, but they must at least be marked for a deferred
3655 	 * dequeue.
3656 	 */
3657 	if ((m->oflags & VPO_UNMANAGED) == 0)
3658 		vm_page_dequeue_deferred_free(m);
3659 
3660 	m->valid = 0;
3661 	vm_page_undirty(m);
3662 
3663 	if (m->ref_count != 0)
3664 		panic("vm_page_free_prep: page %p has references", m);
3665 
3666 	/*
3667 	 * Restore the default memory attribute to the page.
3668 	 */
3669 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3670 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3671 
3672 #if VM_NRESERVLEVEL > 0
3673 	/*
3674 	 * Determine whether the page belongs to a reservation.  If the page was
3675 	 * allocated from a per-CPU cache, it cannot belong to a reservation, so
3676 	 * as an optimization, we avoid the check in that case.
3677 	 */
3678 	if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3679 		return (false);
3680 #endif
3681 
3682 	return (true);
3683 }
3684 
3685 /*
3686  *	vm_page_free_toq:
3687  *
3688  *	Returns the given page to the free list, disassociating it
3689  *	from any VM object.
3690  *
3691  *	The object must be locked.  The page must be locked if it is
3692  *	managed.
3693  */
3694 void
3695 vm_page_free_toq(vm_page_t m)
3696 {
3697 	struct vm_domain *vmd;
3698 	uma_zone_t zone;
3699 
3700 	if (!vm_page_free_prep(m))
3701 		return;
3702 
3703 	vmd = vm_pagequeue_domain(m);
3704 	zone = vmd->vmd_pgcache[m->pool].zone;
3705 	if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3706 		uma_zfree(zone, m);
3707 		return;
3708 	}
3709 	vm_domain_free_lock(vmd);
3710 	vm_phys_free_pages(m, 0);
3711 	vm_domain_free_unlock(vmd);
3712 	vm_domain_freecnt_inc(vmd, 1);
3713 }
3714 
3715 /*
3716  *	vm_page_free_pages_toq:
3717  *
3718  *	Returns a list of pages to the free list, disassociating it
3719  *	from any VM object.  In other words, this is equivalent to
3720  *	calling vm_page_free_toq() for each page of a list of VM objects.
3721  *
3722  *	The objects must be locked.  The pages must be locked if it is
3723  *	managed.
3724  */
3725 void
3726 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3727 {
3728 	vm_page_t m;
3729 	int count;
3730 
3731 	if (SLIST_EMPTY(free))
3732 		return;
3733 
3734 	count = 0;
3735 	while ((m = SLIST_FIRST(free)) != NULL) {
3736 		count++;
3737 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
3738 		vm_page_free_toq(m);
3739 	}
3740 
3741 	if (update_wire_count)
3742 		vm_wire_sub(count);
3743 }
3744 
3745 /*
3746  * Mark this page as wired down, preventing reclamation by the page daemon
3747  * or when the containing object is destroyed.
3748  */
3749 void
3750 vm_page_wire(vm_page_t m)
3751 {
3752 	u_int old;
3753 
3754 	KASSERT(m->object != NULL,
3755 	    ("vm_page_wire: page %p does not belong to an object", m));
3756 	if (!vm_page_busied(m))
3757 		VM_OBJECT_ASSERT_LOCKED(m->object);
3758 	KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3759 	    VPRC_WIRE_COUNT(m->ref_count) >= 1,
3760 	    ("vm_page_wire: fictitious page %p has zero wirings", m));
3761 
3762 	old = atomic_fetchadd_int(&m->ref_count, 1);
3763 	KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3764 	    ("vm_page_wire: counter overflow for page %p", m));
3765 	if (VPRC_WIRE_COUNT(old) == 0)
3766 		vm_wire_add(1);
3767 }
3768 
3769 /*
3770  * Attempt to wire a mapped page following a pmap lookup of that page.
3771  * This may fail if a thread is concurrently tearing down mappings of the page.
3772  * The transient failure is acceptable because it translates to the
3773  * failure of the caller pmap_extract_and_hold(), which should be then
3774  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
3775  */
3776 bool
3777 vm_page_wire_mapped(vm_page_t m)
3778 {
3779 	u_int old;
3780 
3781 	old = m->ref_count;
3782 	do {
3783 		KASSERT(old > 0,
3784 		    ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3785 		if ((old & VPRC_BLOCKED) != 0)
3786 			return (false);
3787 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3788 
3789 	if (VPRC_WIRE_COUNT(old) == 0)
3790 		vm_wire_add(1);
3791 	return (true);
3792 }
3793 
3794 /*
3795  * Release one wiring of the specified page, potentially allowing it to be
3796  * paged out.
3797  *
3798  * Only managed pages belonging to an object can be paged out.  If the number
3799  * of wirings transitions to zero and the page is eligible for page out, then
3800  * the page is added to the specified paging queue.  If the released wiring
3801  * represented the last reference to the page, the page is freed.
3802  *
3803  * A managed page must be locked.
3804  */
3805 void
3806 vm_page_unwire(vm_page_t m, uint8_t queue)
3807 {
3808 	u_int old;
3809 	bool locked;
3810 
3811 	KASSERT(queue < PQ_COUNT,
3812 	    ("vm_page_unwire: invalid queue %u request for page %p", queue, m));
3813 
3814 	if ((m->oflags & VPO_UNMANAGED) != 0) {
3815 		if (vm_page_unwire_noq(m) && m->ref_count == 0)
3816 			vm_page_free(m);
3817 		return;
3818 	}
3819 
3820 	/*
3821 	 * Update LRU state before releasing the wiring reference.
3822 	 * We only need to do this once since we hold the page lock.
3823 	 * Use a release store when updating the reference count to
3824 	 * synchronize with vm_page_free_prep().
3825 	 */
3826 	old = m->ref_count;
3827 	locked = false;
3828 	do {
3829 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
3830 		    ("vm_page_unwire: wire count underflow for page %p", m));
3831 		if (!locked && VPRC_WIRE_COUNT(old) == 1) {
3832 			vm_page_lock(m);
3833 			locked = true;
3834 			if (queue == PQ_ACTIVE && vm_page_queue(m) == PQ_ACTIVE)
3835 				vm_page_reference(m);
3836 			else
3837 				vm_page_mvqueue(m, queue);
3838 		}
3839 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3840 
3841 	/*
3842 	 * Release the lock only after the wiring is released, to ensure that
3843 	 * the page daemon does not encounter and dequeue the page while it is
3844 	 * still wired.
3845 	 */
3846 	if (locked)
3847 		vm_page_unlock(m);
3848 
3849 	if (VPRC_WIRE_COUNT(old) == 1) {
3850 		vm_wire_sub(1);
3851 		if (old == 1)
3852 			vm_page_free(m);
3853 	}
3854 }
3855 
3856 /*
3857  * Unwire a page without (re-)inserting it into a page queue.  It is up
3858  * to the caller to enqueue, requeue, or free the page as appropriate.
3859  * In most cases involving managed pages, vm_page_unwire() should be used
3860  * instead.
3861  */
3862 bool
3863 vm_page_unwire_noq(vm_page_t m)
3864 {
3865 	u_int old;
3866 
3867 	old = vm_page_drop(m, 1);
3868 	KASSERT(VPRC_WIRE_COUNT(old) != 0,
3869 	    ("vm_page_unref: counter underflow for page %p", m));
3870 	KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
3871 	    ("vm_page_unref: missing ref on fictitious page %p", m));
3872 
3873 	if (VPRC_WIRE_COUNT(old) > 1)
3874 		return (false);
3875 	vm_wire_sub(1);
3876 	return (true);
3877 }
3878 
3879 /*
3880  * Ensure that the page is in the specified page queue.  If the page is
3881  * active or being moved to the active queue, ensure that its act_count is
3882  * at least ACT_INIT but do not otherwise mess with it.  Otherwise, ensure that
3883  * the page is at the tail of its page queue.
3884  *
3885  * The page may be wired.  The caller should release its wiring reference
3886  * before releasing the page lock, otherwise the page daemon may immediately
3887  * dequeue the page.
3888  *
3889  * A managed page must be locked.
3890  */
3891 static __always_inline void
3892 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue)
3893 {
3894 
3895 	vm_page_assert_locked(m);
3896 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3897 	    ("vm_page_mvqueue: page %p is unmanaged", m));
3898 	KASSERT(m->ref_count > 0,
3899 	    ("%s: page %p does not carry any references", __func__, m));
3900 
3901 	if (vm_page_queue(m) != nqueue) {
3902 		vm_page_dequeue(m);
3903 		vm_page_enqueue(m, nqueue);
3904 	} else if (nqueue != PQ_ACTIVE) {
3905 		vm_page_requeue(m);
3906 	}
3907 
3908 	if (nqueue == PQ_ACTIVE && m->act_count < ACT_INIT)
3909 		m->act_count = ACT_INIT;
3910 }
3911 
3912 /*
3913  * Put the specified page on the active list (if appropriate).
3914  */
3915 void
3916 vm_page_activate(vm_page_t m)
3917 {
3918 
3919 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3920 		return;
3921 	vm_page_mvqueue(m, PQ_ACTIVE);
3922 }
3923 
3924 /*
3925  * Move the specified page to the tail of the inactive queue, or requeue
3926  * the page if it is already in the inactive queue.
3927  */
3928 void
3929 vm_page_deactivate(vm_page_t m)
3930 {
3931 
3932 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3933 		return;
3934 	vm_page_mvqueue(m, PQ_INACTIVE);
3935 }
3936 
3937 /*
3938  * Move the specified page close to the head of the inactive queue,
3939  * bypassing LRU.  A marker page is used to maintain FIFO ordering.
3940  * As with regular enqueues, we use a per-CPU batch queue to reduce
3941  * contention on the page queue lock.
3942  */
3943 static void
3944 _vm_page_deactivate_noreuse(vm_page_t m)
3945 {
3946 
3947 	vm_page_assert_locked(m);
3948 
3949 	if (!vm_page_inactive(m)) {
3950 		vm_page_dequeue(m);
3951 		m->queue = PQ_INACTIVE;
3952 	}
3953 	if ((m->aflags & PGA_REQUEUE_HEAD) == 0)
3954 		vm_page_aflag_set(m, PGA_REQUEUE_HEAD);
3955 	vm_page_pqbatch_submit(m, PQ_INACTIVE);
3956 }
3957 
3958 void
3959 vm_page_deactivate_noreuse(vm_page_t m)
3960 {
3961 
3962 	KASSERT(m->object != NULL,
3963 	    ("vm_page_deactivate_noreuse: page %p has no object", m));
3964 
3965 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_wired(m))
3966 		_vm_page_deactivate_noreuse(m);
3967 }
3968 
3969 /*
3970  * Put a page in the laundry, or requeue it if it is already there.
3971  */
3972 void
3973 vm_page_launder(vm_page_t m)
3974 {
3975 
3976 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3977 		return;
3978 	vm_page_mvqueue(m, PQ_LAUNDRY);
3979 }
3980 
3981 /*
3982  * Put a page in the PQ_UNSWAPPABLE holding queue.
3983  */
3984 void
3985 vm_page_unswappable(vm_page_t m)
3986 {
3987 
3988 	vm_page_assert_locked(m);
3989 	KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
3990 	    ("page %p already unswappable", m));
3991 
3992 	vm_page_dequeue(m);
3993 	vm_page_enqueue(m, PQ_UNSWAPPABLE);
3994 }
3995 
3996 static void
3997 vm_page_release_toq(vm_page_t m, int flags)
3998 {
3999 
4000 	vm_page_assert_locked(m);
4001 
4002 	/*
4003 	 * Use a check of the valid bits to determine whether we should
4004 	 * accelerate reclamation of the page.  The object lock might not be
4005 	 * held here, in which case the check is racy.  At worst we will either
4006 	 * accelerate reclamation of a valid page and violate LRU, or
4007 	 * unnecessarily defer reclamation of an invalid page.
4008 	 *
4009 	 * If we were asked to not cache the page, place it near the head of the
4010 	 * inactive queue so that is reclaimed sooner.
4011 	 */
4012 	if ((flags & (VPR_TRYFREE | VPR_NOREUSE)) != 0 || m->valid == 0)
4013 		_vm_page_deactivate_noreuse(m);
4014 	else if (vm_page_active(m))
4015 		vm_page_reference(m);
4016 	else
4017 		vm_page_mvqueue(m, PQ_INACTIVE);
4018 }
4019 
4020 /*
4021  * Unwire a page and either attempt to free it or re-add it to the page queues.
4022  */
4023 void
4024 vm_page_release(vm_page_t m, int flags)
4025 {
4026 	vm_object_t object;
4027 	u_int old;
4028 	bool locked;
4029 
4030 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4031 	    ("vm_page_release: page %p is unmanaged", m));
4032 
4033 	if ((flags & VPR_TRYFREE) != 0) {
4034 		for (;;) {
4035 			object = (vm_object_t)atomic_load_ptr(&m->object);
4036 			if (object == NULL)
4037 				break;
4038 			/* Depends on type-stability. */
4039 			if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) {
4040 				object = NULL;
4041 				break;
4042 			}
4043 			if (object == m->object)
4044 				break;
4045 			VM_OBJECT_WUNLOCK(object);
4046 		}
4047 		if (__predict_true(object != NULL)) {
4048 			vm_page_release_locked(m, flags);
4049 			VM_OBJECT_WUNLOCK(object);
4050 			return;
4051 		}
4052 	}
4053 
4054 	/*
4055 	 * Update LRU state before releasing the wiring reference.
4056 	 * Use a release store when updating the reference count to
4057 	 * synchronize with vm_page_free_prep().
4058 	 */
4059 	old = m->ref_count;
4060 	locked = false;
4061 	do {
4062 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
4063 		    ("vm_page_unwire: wire count underflow for page %p", m));
4064 		if (!locked && VPRC_WIRE_COUNT(old) == 1) {
4065 			vm_page_lock(m);
4066 			locked = true;
4067 			vm_page_release_toq(m, flags);
4068 		}
4069 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4070 
4071 	/*
4072 	 * Release the lock only after the wiring is released, to ensure that
4073 	 * the page daemon does not encounter and dequeue the page while it is
4074 	 * still wired.
4075 	 */
4076 	if (locked)
4077 		vm_page_unlock(m);
4078 
4079 	if (VPRC_WIRE_COUNT(old) == 1) {
4080 		vm_wire_sub(1);
4081 		if (old == 1)
4082 			vm_page_free(m);
4083 	}
4084 }
4085 
4086 /* See vm_page_release(). */
4087 void
4088 vm_page_release_locked(vm_page_t m, int flags)
4089 {
4090 
4091 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4092 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4093 	    ("vm_page_release_locked: page %p is unmanaged", m));
4094 
4095 	if (vm_page_unwire_noq(m)) {
4096 		if ((flags & VPR_TRYFREE) != 0 &&
4097 		    (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4098 		    m->dirty == 0 && !vm_page_busied(m)) {
4099 			vm_page_free(m);
4100 		} else {
4101 			vm_page_lock(m);
4102 			vm_page_release_toq(m, flags);
4103 			vm_page_unlock(m);
4104 		}
4105 	}
4106 }
4107 
4108 static bool
4109 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4110 {
4111 	u_int old;
4112 
4113 	KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4114 	    ("vm_page_try_blocked_op: page %p has no object", m));
4115 	KASSERT(vm_page_busied(m),
4116 	    ("vm_page_try_blocked_op: page %p is not busy", m));
4117 	VM_OBJECT_ASSERT_LOCKED(m->object);
4118 
4119 	old = m->ref_count;
4120 	do {
4121 		KASSERT(old != 0,
4122 		    ("vm_page_try_blocked_op: page %p has no references", m));
4123 		if (VPRC_WIRE_COUNT(old) != 0)
4124 			return (false);
4125 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4126 
4127 	(op)(m);
4128 
4129 	/*
4130 	 * If the object is read-locked, new wirings may be created via an
4131 	 * object lookup.
4132 	 */
4133 	old = vm_page_drop(m, VPRC_BLOCKED);
4134 	KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4135 	    old == (VPRC_BLOCKED | VPRC_OBJREF),
4136 	    ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4137 	    old, m));
4138 	return (true);
4139 }
4140 
4141 /*
4142  * Atomically check for wirings and remove all mappings of the page.
4143  */
4144 bool
4145 vm_page_try_remove_all(vm_page_t m)
4146 {
4147 
4148 	return (vm_page_try_blocked_op(m, pmap_remove_all));
4149 }
4150 
4151 /*
4152  * Atomically check for wirings and remove all writeable mappings of the page.
4153  */
4154 bool
4155 vm_page_try_remove_write(vm_page_t m)
4156 {
4157 
4158 	return (vm_page_try_blocked_op(m, pmap_remove_write));
4159 }
4160 
4161 /*
4162  * vm_page_advise
4163  *
4164  * 	Apply the specified advice to the given page.
4165  *
4166  *	The object and page must be locked.
4167  */
4168 void
4169 vm_page_advise(vm_page_t m, int advice)
4170 {
4171 
4172 	vm_page_assert_locked(m);
4173 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4174 	if (advice == MADV_FREE)
4175 		/*
4176 		 * Mark the page clean.  This will allow the page to be freed
4177 		 * without first paging it out.  MADV_FREE pages are often
4178 		 * quickly reused by malloc(3), so we do not do anything that
4179 		 * would result in a page fault on a later access.
4180 		 */
4181 		vm_page_undirty(m);
4182 	else if (advice != MADV_DONTNEED) {
4183 		if (advice == MADV_WILLNEED)
4184 			vm_page_activate(m);
4185 		return;
4186 	}
4187 
4188 	/*
4189 	 * Clear any references to the page.  Otherwise, the page daemon will
4190 	 * immediately reactivate the page.
4191 	 */
4192 	vm_page_aflag_clear(m, PGA_REFERENCED);
4193 
4194 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4195 		vm_page_dirty(m);
4196 
4197 	/*
4198 	 * Place clean pages near the head of the inactive queue rather than
4199 	 * the tail, thus defeating the queue's LRU operation and ensuring that
4200 	 * the page will be reused quickly.  Dirty pages not already in the
4201 	 * laundry are moved there.
4202 	 */
4203 	if (m->dirty == 0)
4204 		vm_page_deactivate_noreuse(m);
4205 	else if (!vm_page_in_laundry(m))
4206 		vm_page_launder(m);
4207 }
4208 
4209 /*
4210  * Grab a page, waiting until we are waken up due to the page
4211  * changing state.  We keep on waiting, if the page continues
4212  * to be in the object.  If the page doesn't exist, first allocate it
4213  * and then conditionally zero it.
4214  *
4215  * This routine may sleep.
4216  *
4217  * The object must be locked on entry.  The lock will, however, be released
4218  * and reacquired if the routine sleeps.
4219  */
4220 vm_page_t
4221 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4222 {
4223 	vm_page_t m;
4224 	int sleep;
4225 	int pflags;
4226 
4227 	VM_OBJECT_ASSERT_WLOCKED(object);
4228 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4229 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4230 	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4231 	pflags = allocflags &
4232 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4233 	    VM_ALLOC_NOBUSY);
4234 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4235 		pflags |= VM_ALLOC_WAITFAIL;
4236 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4237 		pflags |= VM_ALLOC_SBUSY;
4238 retrylookup:
4239 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4240 		if ((allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) != 0)
4241 			sleep = !vm_page_trysbusy(m);
4242 		else
4243 			sleep = !vm_page_tryxbusy(m);
4244 		if (sleep) {
4245 			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4246 				return (NULL);
4247 			/*
4248 			 * Reference the page before unlocking and
4249 			 * sleeping so that the page daemon is less
4250 			 * likely to reclaim it.
4251 			 */
4252 			if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4253 				vm_page_aflag_set(m, PGA_REFERENCED);
4254 			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
4255 			    VM_ALLOC_IGN_SBUSY) != 0);
4256 			VM_OBJECT_WLOCK(object);
4257 			if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4258 				return (NULL);
4259 			goto retrylookup;
4260 		} else {
4261 			if ((allocflags & VM_ALLOC_WIRED) != 0)
4262 				vm_page_wire(m);
4263 			goto out;
4264 		}
4265 	}
4266 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4267 		return (NULL);
4268 	m = vm_page_alloc(object, pindex, pflags);
4269 	if (m == NULL) {
4270 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4271 			return (NULL);
4272 		goto retrylookup;
4273 	}
4274 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4275 		pmap_zero_page(m);
4276 
4277 out:
4278 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4279 		if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4280 			vm_page_sunbusy(m);
4281 		else
4282 			vm_page_xunbusy(m);
4283 	}
4284 	return (m);
4285 }
4286 
4287 /*
4288  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4289  * their pager are zero filled and validated.
4290  */
4291 int
4292 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4293 {
4294 	vm_page_t m;
4295 	bool sleep, xbusy;
4296 	int pflags;
4297 	int rv;
4298 
4299 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4300 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4301 	    ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4302 	KASSERT((allocflags &
4303 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4304 	    ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4305 	VM_OBJECT_ASSERT_WLOCKED(object);
4306 	pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY);
4307 	pflags |= VM_ALLOC_WAITFAIL;
4308 
4309 retrylookup:
4310 	xbusy = false;
4311 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4312 		/*
4313 		 * If the page is fully valid it can only become invalid
4314 		 * with the object lock held.  If it is not valid it can
4315 		 * become valid with the busy lock held.  Therefore, we
4316 		 * may unnecessarily lock the exclusive busy here if we
4317 		 * race with I/O completion not using the object lock.
4318 		 * However, we will not end up with an invalid page and a
4319 		 * shared lock.
4320 		 */
4321 		if (!vm_page_all_valid(m) ||
4322 		    (allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) == 0) {
4323 			sleep = !vm_page_tryxbusy(m);
4324 			xbusy = true;
4325 		} else
4326 			sleep = !vm_page_trysbusy(m);
4327 		if (sleep) {
4328 			/*
4329 			 * Reference the page before unlocking and
4330 			 * sleeping so that the page daemon is less
4331 			 * likely to reclaim it.
4332 			 */
4333 			if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4334 				vm_page_aflag_set(m, PGA_REFERENCED);
4335 			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
4336 			    VM_ALLOC_IGN_SBUSY) != 0);
4337 			VM_OBJECT_WLOCK(object);
4338 			goto retrylookup;
4339 		}
4340 		if ((allocflags & VM_ALLOC_NOCREAT) != 0 &&
4341 		   !vm_page_all_valid(m)) {
4342 			if (xbusy)
4343 				vm_page_xunbusy(m);
4344 			else
4345 				vm_page_sunbusy(m);
4346 			*mp = NULL;
4347 			return (VM_PAGER_FAIL);
4348 		}
4349 		if ((allocflags & VM_ALLOC_WIRED) != 0)
4350 			vm_page_wire(m);
4351 		if (vm_page_all_valid(m))
4352 			goto out;
4353 	} else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4354 		*mp = NULL;
4355 		return (VM_PAGER_FAIL);
4356 	} else if ((m = vm_page_alloc(object, pindex, pflags)) != NULL) {
4357 		xbusy = true;
4358 	} else {
4359 		goto retrylookup;
4360 	}
4361 
4362 	vm_page_assert_xbusied(m);
4363 	MPASS(xbusy);
4364 	if (vm_pager_has_page(object, pindex, NULL, NULL)) {
4365 		rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
4366 		if (rv != VM_PAGER_OK) {
4367 			if (allocflags & VM_ALLOC_WIRED)
4368 				vm_page_unwire_noq(m);
4369 			vm_page_free(m);
4370 			*mp = NULL;
4371 			return (rv);
4372 		}
4373 		MPASS(vm_page_all_valid(m));
4374 	} else {
4375 		vm_page_zero_invalid(m, TRUE);
4376 	}
4377 out:
4378 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4379 		if (xbusy)
4380 			vm_page_xunbusy(m);
4381 		else
4382 			vm_page_sunbusy(m);
4383 	}
4384 	if ((allocflags & VM_ALLOC_SBUSY) != 0 && xbusy)
4385 		vm_page_busy_downgrade(m);
4386 	*mp = m;
4387 	return (VM_PAGER_OK);
4388 }
4389 
4390 /*
4391  * Return the specified range of pages from the given object.  For each
4392  * page offset within the range, if a page already exists within the object
4393  * at that offset and it is busy, then wait for it to change state.  If,
4394  * instead, the page doesn't exist, then allocate it.
4395  *
4396  * The caller must always specify an allocation class.
4397  *
4398  * allocation classes:
4399  *	VM_ALLOC_NORMAL		normal process request
4400  *	VM_ALLOC_SYSTEM		system *really* needs the pages
4401  *
4402  * The caller must always specify that the pages are to be busied and/or
4403  * wired.
4404  *
4405  * optional allocation flags:
4406  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
4407  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
4408  *	VM_ALLOC_NOWAIT		do not sleep
4409  *	VM_ALLOC_SBUSY		set page to sbusy state
4410  *	VM_ALLOC_WIRED		wire the pages
4411  *	VM_ALLOC_ZERO		zero and validate any invalid pages
4412  *
4413  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4414  * may return a partial prefix of the requested range.
4415  */
4416 int
4417 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4418     vm_page_t *ma, int count)
4419 {
4420 	vm_page_t m, mpred;
4421 	int pflags;
4422 	int i;
4423 	bool sleep;
4424 
4425 	VM_OBJECT_ASSERT_WLOCKED(object);
4426 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4427 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4428 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4429 	    (allocflags & VM_ALLOC_WIRED) != 0,
4430 	    ("vm_page_grab_pages: the pages must be busied or wired"));
4431 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4432 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4433 	    ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch"));
4434 	if (count == 0)
4435 		return (0);
4436 	pflags = allocflags &
4437 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4438 	    VM_ALLOC_NOBUSY);
4439 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4440 		pflags |= VM_ALLOC_WAITFAIL;
4441 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4442 		pflags |= VM_ALLOC_SBUSY;
4443 	i = 0;
4444 retrylookup:
4445 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
4446 	if (m == NULL || m->pindex != pindex + i) {
4447 		mpred = m;
4448 		m = NULL;
4449 	} else
4450 		mpred = TAILQ_PREV(m, pglist, listq);
4451 	for (; i < count; i++) {
4452 		if (m != NULL) {
4453 			if ((allocflags &
4454 			    (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
4455 				sleep = !vm_page_trysbusy(m);
4456 			else
4457 				sleep = !vm_page_tryxbusy(m);
4458 			if (sleep) {
4459 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4460 					break;
4461 				/*
4462 				 * Reference the page before unlocking and
4463 				 * sleeping so that the page daemon is less
4464 				 * likely to reclaim it.
4465 				 */
4466 				if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4467 					vm_page_aflag_set(m, PGA_REFERENCED);
4468 				vm_page_busy_sleep(m, "grbmaw", (allocflags &
4469 				    VM_ALLOC_IGN_SBUSY) != 0);
4470 				VM_OBJECT_WLOCK(object);
4471 				goto retrylookup;
4472 			}
4473 			if ((allocflags & VM_ALLOC_WIRED) != 0)
4474 				vm_page_wire(m);
4475 		} else {
4476 			if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4477 				break;
4478 			m = vm_page_alloc_after(object, pindex + i,
4479 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
4480 			if (m == NULL) {
4481 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4482 					break;
4483 				goto retrylookup;
4484 			}
4485 		}
4486 		if (vm_page_none_valid(m) &&
4487 		    (allocflags & VM_ALLOC_ZERO) != 0) {
4488 			if ((m->flags & PG_ZERO) == 0)
4489 				pmap_zero_page(m);
4490 			vm_page_valid(m);
4491 		}
4492 		if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4493 			if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4494 				vm_page_sunbusy(m);
4495 			else
4496 				vm_page_xunbusy(m);
4497 		}
4498 		ma[i] = mpred = m;
4499 		m = vm_page_next(m);
4500 	}
4501 	return (i);
4502 }
4503 
4504 /*
4505  * Mapping function for valid or dirty bits in a page.
4506  *
4507  * Inputs are required to range within a page.
4508  */
4509 vm_page_bits_t
4510 vm_page_bits(int base, int size)
4511 {
4512 	int first_bit;
4513 	int last_bit;
4514 
4515 	KASSERT(
4516 	    base + size <= PAGE_SIZE,
4517 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
4518 	);
4519 
4520 	if (size == 0)		/* handle degenerate case */
4521 		return (0);
4522 
4523 	first_bit = base >> DEV_BSHIFT;
4524 	last_bit = (base + size - 1) >> DEV_BSHIFT;
4525 
4526 	return (((vm_page_bits_t)2 << last_bit) -
4527 	    ((vm_page_bits_t)1 << first_bit));
4528 }
4529 
4530 static inline void
4531 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4532 {
4533 
4534 #if PAGE_SIZE == 32768
4535 	atomic_set_64((uint64_t *)bits, set);
4536 #elif PAGE_SIZE == 16384
4537 	atomic_set_32((uint32_t *)bits, set);
4538 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4539 	atomic_set_16((uint16_t *)bits, set);
4540 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4541 	atomic_set_8((uint8_t *)bits, set);
4542 #else		/* PAGE_SIZE <= 8192 */
4543 	uintptr_t addr;
4544 	int shift;
4545 
4546 	addr = (uintptr_t)bits;
4547 	/*
4548 	 * Use a trick to perform a 32-bit atomic on the
4549 	 * containing aligned word, to not depend on the existence
4550 	 * of atomic_{set, clear}_{8, 16}.
4551 	 */
4552 	shift = addr & (sizeof(uint32_t) - 1);
4553 #if BYTE_ORDER == BIG_ENDIAN
4554 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4555 #else
4556 	shift *= NBBY;
4557 #endif
4558 	addr &= ~(sizeof(uint32_t) - 1);
4559 	atomic_set_32((uint32_t *)addr, set << shift);
4560 #endif		/* PAGE_SIZE */
4561 }
4562 
4563 static inline void
4564 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4565 {
4566 
4567 #if PAGE_SIZE == 32768
4568 	atomic_clear_64((uint64_t *)bits, clear);
4569 #elif PAGE_SIZE == 16384
4570 	atomic_clear_32((uint32_t *)bits, clear);
4571 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4572 	atomic_clear_16((uint16_t *)bits, clear);
4573 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4574 	atomic_clear_8((uint8_t *)bits, clear);
4575 #else		/* PAGE_SIZE <= 8192 */
4576 	uintptr_t addr;
4577 	int shift;
4578 
4579 	addr = (uintptr_t)bits;
4580 	/*
4581 	 * Use a trick to perform a 32-bit atomic on the
4582 	 * containing aligned word, to not depend on the existence
4583 	 * of atomic_{set, clear}_{8, 16}.
4584 	 */
4585 	shift = addr & (sizeof(uint32_t) - 1);
4586 #if BYTE_ORDER == BIG_ENDIAN
4587 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4588 #else
4589 	shift *= NBBY;
4590 #endif
4591 	addr &= ~(sizeof(uint32_t) - 1);
4592 	atomic_clear_32((uint32_t *)addr, clear << shift);
4593 #endif		/* PAGE_SIZE */
4594 }
4595 
4596 /*
4597  *	vm_page_set_valid_range:
4598  *
4599  *	Sets portions of a page valid.  The arguments are expected
4600  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4601  *	of any partial chunks touched by the range.  The invalid portion of
4602  *	such chunks will be zeroed.
4603  *
4604  *	(base + size) must be less then or equal to PAGE_SIZE.
4605  */
4606 void
4607 vm_page_set_valid_range(vm_page_t m, int base, int size)
4608 {
4609 	int endoff, frag;
4610 	vm_page_bits_t pagebits;
4611 
4612 	vm_page_assert_busied(m);
4613 	if (size == 0)	/* handle degenerate case */
4614 		return;
4615 
4616 	/*
4617 	 * If the base is not DEV_BSIZE aligned and the valid
4618 	 * bit is clear, we have to zero out a portion of the
4619 	 * first block.
4620 	 */
4621 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4622 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4623 		pmap_zero_page_area(m, frag, base - frag);
4624 
4625 	/*
4626 	 * If the ending offset is not DEV_BSIZE aligned and the
4627 	 * valid bit is clear, we have to zero out a portion of
4628 	 * the last block.
4629 	 */
4630 	endoff = base + size;
4631 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4632 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
4633 		pmap_zero_page_area(m, endoff,
4634 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4635 
4636 	/*
4637 	 * Assert that no previously invalid block that is now being validated
4638 	 * is already dirty.
4639 	 */
4640 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
4641 	    ("vm_page_set_valid_range: page %p is dirty", m));
4642 
4643 	/*
4644 	 * Set valid bits inclusive of any overlap.
4645 	 */
4646 	pagebits = vm_page_bits(base, size);
4647 	if (vm_page_xbusied(m))
4648 		m->valid |= pagebits;
4649 	else
4650 		vm_page_bits_set(m, &m->valid, pagebits);
4651 }
4652 
4653 /*
4654  * Clear the given bits from the specified page's dirty field.
4655  */
4656 static __inline void
4657 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
4658 {
4659 
4660 	vm_page_assert_busied(m);
4661 
4662 	/*
4663 	 * If the page is xbusied and not write mapped we are the
4664 	 * only thread that can modify dirty bits.  Otherwise, The pmap
4665 	 * layer can call vm_page_dirty() without holding a distinguished
4666 	 * lock.  The combination of page busy and atomic operations
4667 	 * suffice to guarantee consistency of the page dirty field.
4668 	 */
4669 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
4670 		m->dirty &= ~pagebits;
4671 	else
4672 		vm_page_bits_clear(m, &m->dirty, pagebits);
4673 }
4674 
4675 /*
4676  *	vm_page_set_validclean:
4677  *
4678  *	Sets portions of a page valid and clean.  The arguments are expected
4679  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4680  *	of any partial chunks touched by the range.  The invalid portion of
4681  *	such chunks will be zero'd.
4682  *
4683  *	(base + size) must be less then or equal to PAGE_SIZE.
4684  */
4685 void
4686 vm_page_set_validclean(vm_page_t m, int base, int size)
4687 {
4688 	vm_page_bits_t oldvalid, pagebits;
4689 	int endoff, frag;
4690 
4691 	vm_page_assert_busied(m);
4692 	if (size == 0)	/* handle degenerate case */
4693 		return;
4694 
4695 	/*
4696 	 * If the base is not DEV_BSIZE aligned and the valid
4697 	 * bit is clear, we have to zero out a portion of the
4698 	 * first block.
4699 	 */
4700 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4701 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
4702 		pmap_zero_page_area(m, frag, base - frag);
4703 
4704 	/*
4705 	 * If the ending offset is not DEV_BSIZE aligned and the
4706 	 * valid bit is clear, we have to zero out a portion of
4707 	 * the last block.
4708 	 */
4709 	endoff = base + size;
4710 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4711 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
4712 		pmap_zero_page_area(m, endoff,
4713 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4714 
4715 	/*
4716 	 * Set valid, clear dirty bits.  If validating the entire
4717 	 * page we can safely clear the pmap modify bit.  We also
4718 	 * use this opportunity to clear the PGA_NOSYNC flag.  If a process
4719 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
4720 	 * be set again.
4721 	 *
4722 	 * We set valid bits inclusive of any overlap, but we can only
4723 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
4724 	 * the range.
4725 	 */
4726 	oldvalid = m->valid;
4727 	pagebits = vm_page_bits(base, size);
4728 	if (vm_page_xbusied(m))
4729 		m->valid |= pagebits;
4730 	else
4731 		vm_page_bits_set(m, &m->valid, pagebits);
4732 #if 0	/* NOT YET */
4733 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
4734 		frag = DEV_BSIZE - frag;
4735 		base += frag;
4736 		size -= frag;
4737 		if (size < 0)
4738 			size = 0;
4739 	}
4740 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
4741 #endif
4742 	if (base == 0 && size == PAGE_SIZE) {
4743 		/*
4744 		 * The page can only be modified within the pmap if it is
4745 		 * mapped, and it can only be mapped if it was previously
4746 		 * fully valid.
4747 		 */
4748 		if (oldvalid == VM_PAGE_BITS_ALL)
4749 			/*
4750 			 * Perform the pmap_clear_modify() first.  Otherwise,
4751 			 * a concurrent pmap operation, such as
4752 			 * pmap_protect(), could clear a modification in the
4753 			 * pmap and set the dirty field on the page before
4754 			 * pmap_clear_modify() had begun and after the dirty
4755 			 * field was cleared here.
4756 			 */
4757 			pmap_clear_modify(m);
4758 		m->dirty = 0;
4759 		vm_page_aflag_clear(m, PGA_NOSYNC);
4760 	} else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
4761 		m->dirty &= ~pagebits;
4762 	else
4763 		vm_page_clear_dirty_mask(m, pagebits);
4764 }
4765 
4766 void
4767 vm_page_clear_dirty(vm_page_t m, int base, int size)
4768 {
4769 
4770 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
4771 }
4772 
4773 /*
4774  *	vm_page_set_invalid:
4775  *
4776  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
4777  *	valid and dirty bits for the effected areas are cleared.
4778  */
4779 void
4780 vm_page_set_invalid(vm_page_t m, int base, int size)
4781 {
4782 	vm_page_bits_t bits;
4783 	vm_object_t object;
4784 
4785 	/*
4786 	 * The object lock is required so that pages can't be mapped
4787 	 * read-only while we're in the process of invalidating them.
4788 	 */
4789 	object = m->object;
4790 	VM_OBJECT_ASSERT_WLOCKED(object);
4791 	vm_page_assert_busied(m);
4792 
4793 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
4794 	    size >= object->un_pager.vnp.vnp_size)
4795 		bits = VM_PAGE_BITS_ALL;
4796 	else
4797 		bits = vm_page_bits(base, size);
4798 	if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
4799 		pmap_remove_all(m);
4800 	KASSERT((bits == 0 && vm_page_all_valid(m)) ||
4801 	    !pmap_page_is_mapped(m),
4802 	    ("vm_page_set_invalid: page %p is mapped", m));
4803 	if (vm_page_xbusied(m)) {
4804 		m->valid &= ~bits;
4805 		m->dirty &= ~bits;
4806 	} else {
4807 		vm_page_bits_clear(m, &m->valid, bits);
4808 		vm_page_bits_clear(m, &m->dirty, bits);
4809 	}
4810 }
4811 
4812 /*
4813  *	vm_page_invalid:
4814  *
4815  *	Invalidates the entire page.  The page must be busy, unmapped, and
4816  *	the enclosing object must be locked.  The object locks protects
4817  *	against concurrent read-only pmap enter which is done without
4818  *	busy.
4819  */
4820 void
4821 vm_page_invalid(vm_page_t m)
4822 {
4823 
4824 	vm_page_assert_busied(m);
4825 	VM_OBJECT_ASSERT_LOCKED(m->object);
4826 	MPASS(!pmap_page_is_mapped(m));
4827 
4828 	if (vm_page_xbusied(m))
4829 		m->valid = 0;
4830 	else
4831 		vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
4832 }
4833 
4834 /*
4835  * vm_page_zero_invalid()
4836  *
4837  *	The kernel assumes that the invalid portions of a page contain
4838  *	garbage, but such pages can be mapped into memory by user code.
4839  *	When this occurs, we must zero out the non-valid portions of the
4840  *	page so user code sees what it expects.
4841  *
4842  *	Pages are most often semi-valid when the end of a file is mapped
4843  *	into memory and the file's size is not page aligned.
4844  */
4845 void
4846 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
4847 {
4848 	int b;
4849 	int i;
4850 
4851 	/*
4852 	 * Scan the valid bits looking for invalid sections that
4853 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
4854 	 * valid bit may be set ) have already been zeroed by
4855 	 * vm_page_set_validclean().
4856 	 */
4857 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
4858 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
4859 		    (m->valid & ((vm_page_bits_t)1 << i))) {
4860 			if (i > b) {
4861 				pmap_zero_page_area(m,
4862 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
4863 			}
4864 			b = i + 1;
4865 		}
4866 	}
4867 
4868 	/*
4869 	 * setvalid is TRUE when we can safely set the zero'd areas
4870 	 * as being valid.  We can do this if there are no cache consistancy
4871 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
4872 	 */
4873 	if (setvalid)
4874 		vm_page_valid(m);
4875 }
4876 
4877 /*
4878  *	vm_page_is_valid:
4879  *
4880  *	Is (partial) page valid?  Note that the case where size == 0
4881  *	will return FALSE in the degenerate case where the page is
4882  *	entirely invalid, and TRUE otherwise.
4883  *
4884  *	Some callers envoke this routine without the busy lock held and
4885  *	handle races via higher level locks.  Typical callers should
4886  *	hold a busy lock to prevent invalidation.
4887  */
4888 int
4889 vm_page_is_valid(vm_page_t m, int base, int size)
4890 {
4891 	vm_page_bits_t bits;
4892 
4893 	bits = vm_page_bits(base, size);
4894 	return (m->valid != 0 && (m->valid & bits) == bits);
4895 }
4896 
4897 /*
4898  * Returns true if all of the specified predicates are true for the entire
4899  * (super)page and false otherwise.
4900  */
4901 bool
4902 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
4903 {
4904 	vm_object_t object;
4905 	int i, npages;
4906 
4907 	object = m->object;
4908 	if (skip_m != NULL && skip_m->object != object)
4909 		return (false);
4910 	VM_OBJECT_ASSERT_LOCKED(object);
4911 	npages = atop(pagesizes[m->psind]);
4912 
4913 	/*
4914 	 * The physically contiguous pages that make up a superpage, i.e., a
4915 	 * page with a page size index ("psind") greater than zero, will
4916 	 * occupy adjacent entries in vm_page_array[].
4917 	 */
4918 	for (i = 0; i < npages; i++) {
4919 		/* Always test object consistency, including "skip_m". */
4920 		if (m[i].object != object)
4921 			return (false);
4922 		if (&m[i] == skip_m)
4923 			continue;
4924 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
4925 			return (false);
4926 		if ((flags & PS_ALL_DIRTY) != 0) {
4927 			/*
4928 			 * Calling vm_page_test_dirty() or pmap_is_modified()
4929 			 * might stop this case from spuriously returning
4930 			 * "false".  However, that would require a write lock
4931 			 * on the object containing "m[i]".
4932 			 */
4933 			if (m[i].dirty != VM_PAGE_BITS_ALL)
4934 				return (false);
4935 		}
4936 		if ((flags & PS_ALL_VALID) != 0 &&
4937 		    m[i].valid != VM_PAGE_BITS_ALL)
4938 			return (false);
4939 	}
4940 	return (true);
4941 }
4942 
4943 /*
4944  * Set the page's dirty bits if the page is modified.
4945  */
4946 void
4947 vm_page_test_dirty(vm_page_t m)
4948 {
4949 
4950 	vm_page_assert_busied(m);
4951 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
4952 		vm_page_dirty(m);
4953 }
4954 
4955 void
4956 vm_page_valid(vm_page_t m)
4957 {
4958 
4959 	vm_page_assert_busied(m);
4960 	if (vm_page_xbusied(m))
4961 		m->valid = VM_PAGE_BITS_ALL;
4962 	else
4963 		vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
4964 }
4965 
4966 void
4967 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
4968 {
4969 
4970 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
4971 }
4972 
4973 void
4974 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
4975 {
4976 
4977 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
4978 }
4979 
4980 int
4981 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
4982 {
4983 
4984 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
4985 }
4986 
4987 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
4988 void
4989 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
4990 {
4991 
4992 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
4993 }
4994 
4995 void
4996 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
4997 {
4998 
4999 	mtx_assert_(vm_page_lockptr(m), a, file, line);
5000 }
5001 #endif
5002 
5003 #ifdef INVARIANTS
5004 void
5005 vm_page_object_busy_assert(vm_page_t m)
5006 {
5007 
5008 	/*
5009 	 * Certain of the page's fields may only be modified by the
5010 	 * holder of a page or object busy.
5011 	 */
5012 	if (m->object != NULL && !vm_page_busied(m))
5013 		VM_OBJECT_ASSERT_BUSY(m->object);
5014 }
5015 
5016 void
5017 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
5018 {
5019 
5020 	if ((bits & PGA_WRITEABLE) == 0)
5021 		return;
5022 
5023 	/*
5024 	 * The PGA_WRITEABLE flag can only be set if the page is
5025 	 * managed, is exclusively busied or the object is locked.
5026 	 * Currently, this flag is only set by pmap_enter().
5027 	 */
5028 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5029 	    ("PGA_WRITEABLE on unmanaged page"));
5030 	if (!vm_page_xbusied(m))
5031 		VM_OBJECT_ASSERT_BUSY(m->object);
5032 }
5033 #endif
5034 
5035 #include "opt_ddb.h"
5036 #ifdef DDB
5037 #include <sys/kernel.h>
5038 
5039 #include <ddb/ddb.h>
5040 
5041 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5042 {
5043 
5044 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5045 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5046 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5047 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5048 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5049 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5050 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5051 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5052 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5053 }
5054 
5055 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5056 {
5057 	int dom;
5058 
5059 	db_printf("pq_free %d\n", vm_free_count());
5060 	for (dom = 0; dom < vm_ndomains; dom++) {
5061 		db_printf(
5062     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5063 		    dom,
5064 		    vm_dom[dom].vmd_page_count,
5065 		    vm_dom[dom].vmd_free_count,
5066 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5067 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5068 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5069 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5070 	}
5071 }
5072 
5073 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5074 {
5075 	vm_page_t m;
5076 	boolean_t phys, virt;
5077 
5078 	if (!have_addr) {
5079 		db_printf("show pginfo addr\n");
5080 		return;
5081 	}
5082 
5083 	phys = strchr(modif, 'p') != NULL;
5084 	virt = strchr(modif, 'v') != NULL;
5085 	if (virt)
5086 		m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5087 	else if (phys)
5088 		m = PHYS_TO_VM_PAGE(addr);
5089 	else
5090 		m = (vm_page_t)addr;
5091 	db_printf(
5092     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref %u\n"
5093     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5094 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5095 	    m->queue, m->ref_count, m->aflags, m->oflags,
5096 	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
5097 }
5098 #endif /* DDB */
5099